
JULY 2001

G A M E D E V E L O P E R M A G A Z I N E

G A M E P L A N
L E T T E R F R O M T H E E D I T O R

W hy are you a game
developer? Develop-
ers of games typi-
cally make less
money than devel-

opers in other industry sectors. There
must be something beyond salary driving
us, for a group of people so well-versed
in the circadian rhythm of the human
body during crunch time. Perhaps it is
the simple satisfaction of creating some-
thing that you can point to on the shelf
and say, “I made that!” Or it could be
the power of sharing a story or experi-
ence with others. Maybe you enjoy creat-
ing technology that looks and plays bet-
ter than anything else available.

Regardless, receiving more money pretty
much always makes a person a little hap-
pier. But how do you know that you’re
getting paid what you’re worth? If you
took a different job, would you get paid
more? What if you moved to a different
area? It’s challenging to find out this infor-
mation given how secretive people are
about their income.

One of the things we’re about here at
Game Developer is making your jobs easi-
er. We’d like to think that the information
we provide you reduces your crunch time,
and makes your game look, sound, and
play better when it hits the shelves. So we
set out to find you some solid information
about your salary opportunities. This
month’s salary survey combines the data
we’ve accumulated from Game Developer
magazine readers, Gamasutra.com mem-
bers, and Game Developers Conference
attendees over the past year. We’ve taken a
bunch of cuts at this data, separating it out
by job title, location, years of experience,
and other categories.

We expect this information to be useful
for those of you who are experienced
developers — after all, people in this
industry generally change jobs about
every two years, so you’ll be interested in
checking out how you might be able to
make more money on your next move.
But this data is also really useful for peo-
ple who are thinking about joining our
industry, so we’ve included some informa-
tion about what game development com-

panies are really looking for these days,
and how best to maneuver yourself in
your career.

Breaking In

S chools for game development are
becoming a strong force in our indus-

try. Between the schools and the amount of
information available on the Internet, it is
much easier to get an education in game
development than it used to be. And the
demand is high. Just take a look at the
number of schools (listed on the IGDA
web page www.igda.org/schools.htm)
which currently have some game-develop-
ment-related curriculum: 11 schools in
Canada, nine in Europe, one in Asia, 38 in
the United States. Some of these schools
are completely dedicated to game develop-
ment, while others provide a few courses
in game programming, interactive story-
telling, and so on.

While developers with a few titles under
their belt will always be the most valuable,
it’s only recently that graduates from these
programs have become important. A few
years ago we used to scoff at new graduates
— they would come into game develop-
ment and attempt to use advanced software
engineering practices, or design general-
purpose C++ classes, or create gorgeous 3D
models out of curved surfaces. These days
this stuff is actually useful. We used to be
worried about where we were going to get
another thousand polygons per second out
of our graphics engines; now we are push-
ing the state of the art in technology with
our titles, so all that college research and
rigor is immensely valuable.

With the massive size of modern PC
and console titles these days, it’s impor-
tant to examine new techniques which
can help us be more efficient day-to-day.
Although it may be a lot of fun to hack
something out quickly, that doesn’t neces-
sarily work so well when there are 50
programmers and artists hacking on the
same game.

What Are You Worth?

600 Harrison Street, San Francisco, CA 94107
t: 415.947.6000 f: 415.947.6090 w: www.gdmag.com

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief
Mark DeLoura mdeloura@cmp.com

Senior Editor
Jennifer Olsen jolsen@cmp.com

Managing Editor
Laura Huber lhuber@cmp.com

Production Editor
R.D.T. Byrd tbyrd@cmp.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Daniel Huebner dan@gamasutra.com
Jeff Lander jeffl@darwin3d.com
Tito Pagán tpagan@w-link.net

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook Independent
Susan Lee-Merrow Lucas Learning
Mark Miller Group Process Consulting
Paul Steed WildTangent
Dan Teven Teven Consulting
Rob Wyatt The Groove Alliance

ADVERTISING SALES
Director of Sales & Marketing
Greg Kerwin e: gkerwin@cmp.com t: 415.947.6218

National Sales Manager
Jennifer Orvik e: jorvik@cmp.com t: 415.947.6217

Senior Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 415.947.6224

Account Manager, Recruitment
Morgan Browning e: mbrowning@cmp.com t: 415.947.6225

Account Manager, Northern California
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Account Manager, Western Region, Silicon Valley & Asia
Craig Perreault e: cperreault@cmp.com t: 415.947.6223

Sales Associate
Aaron Murawski e: amurawski@cmp.com t: 415.947.6227

ADVERTISING PRODUCTION
Vice President/Manufacturing Bill Amstutz
Advertising Production Coordinator Kevin Chanel
Reprints Stella Valdez t: 916.983.6971

GAMA NETWORK MARKETING
Senior MarCom Manager Jennifer McLean
Marketing Coordinator Scott Lyon
Audience Development Coordinator Jessica Shultz

CIRCULATION
Group Circulation Director Kathy Henry
Director of Audience Development Henry Fung
Circulation Manager Ron Escobar
Circulation Assistant Ian Hay
Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes
t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas
t: 650.513.4234 f: 650.513.4482
e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall
Executive Vice President & CFO John Day
President, Business Technology Group Adam K. Marder
President, Specialized Technologies Group Regina Starr Ridley
President, Technology Solutions Group Robert Faletra
President, Electronics Group Steve Weitzner
Senior Vice President, Human Resources & Communications Leah Landro
Senior Vice President, Global Sales & Marketing Bill Howard
Senior Vice President, Business Development Vittoria Borazio
Vice President & General Counsel Sandra Grayson
Vice President, Creative Technologies Philip Chapnick

Game Developer
magazine is

BPA approved

W W W . G A M A N E T W O R K . C O M4

A D I V I S I O N O F C M P M E D I A L L C

✎

S A Y S Y O U
C T H E F O R U M F O R Y O U R P O I N T O F V I E W . G I V E U S Y O U R F E E D B A C K . . .

Author Stunned at
“Impulsive” Editorial

I ’m amazed that the editor-in-chief of
Game Developer would pen an editorial

(“Violence and Education,” Game Plan,
May 2001) with a statement as absurd as
the following: “One thing that a violent
game can teach a person is how to be a
sharpshooter. Those arcade games with
guns — they’re great training devices for
learning how to hit targets quickly and
accurately.” That certainly seems to be a
popular theory today, Mr. DeLoura, but
I’m afraid that it’s wholly untrue. If coin-
op shooters, “those arcade games with the
guns,” provide any advantage for the indi-
viduals who play them at all, it involves
improving their motor reflexes or hand
and eye coordination.

The current craze for suggesting that
computer games are somehow responsible
for producing violent “sharpshooters” is
nothing new; rock-and-roll, comic books,
horror movies, cartoons, heavy metal,
Dungeons and Dragons, and Elvis are but a
few of the things that have been accused of
complicity in whatever happened to be the
most notorious social problem of their day.
With computer games (now as with these
before), the argument that exposure to
something in any way diminishes an indi-
vidual’s responsibility for their actions is
ridiculous. I don’t care if Ozzy Osbourne
personally sneaks into your room each
night to whisper into your ear his unflinch-

ing support for any plans that involve push-
ing Mom down the stairs, if you actually do
it, it’s still exclusively your fault, even if he
is really persuasive.

Ian M. Fischer

Ensemble Studios

via e-mail

MARK DELOURA RESPONDS: Ian, I believe
you’ve misinterpreted what I stated. I did-
n’t say that “computer games are somehow
responsible for producing violent sharp-
shooters,” nor did I say that “exposure to
something in any way diminishes an indi-
vidual’s responsibility for their actions.” A
game that rewards you for pointing at a
target and pulling a trigger doesn’t teach
you to be violent, and it certainly doesn’t
diminish any responsibility you have for
your actions if you choose to be violent,
but you can’t argue that it doesn’t teach
you how to point and shoot. It may not
teach you how to shoot accurately, but it
certainly helps. It’s just as important for us
to be clear about the impact our games do
have on people as it is for us to be clear
about the impact they do not. I trust that
you feel the same way.

Games Can Create
Positive Change

S ome good points were made in your
editorial “Violence and Education.”

Unfortunately, we don’t know whether vio-

lent games affect people’s behavior. But
here’s one indirect piece of evidence: Click
Health (www.clickhealth.com) gave a
group of kids with diabetes PACKY &
MARLON, a game that teaches kids about
managing their diabetes. Here’s some infor-
mation from their web site: Children and
teens with diabetes who voluntarily used
PACKY & MARLON at home for six months
reduced their unscheduled urgent care visits
related to diabetes by 77 percent compared
to the control group. This represents a
reduction from 2.4 urgent visits per child
per year down to 0.5 urgent visits per child
per year. The control group did not change
in their rate of urgent care visits.

If health games can have such a dramatic
effect on kids’ behavior, it seems likely that
they’re learning something from violent
games as well. So what do we do about it? I
don’t believe in government regulation, but
as your editorial stated, we can develop
games with positive messages to provide
alternatives for kids. In my own work, I’m
developing a 3D game to teach math to high
school students called AQUAMOOSE, locat-
ed at www.cc.gatech.edu/elc/aquamoose.

Amy Bruckman

Assistant Professor, College of Computing

Georgia Institute of Technology

via e-mail

C
Send e-mail to editors@gdmag.com, or

write to Game Developer, 600 Harrison St.,

San Francisco, CA 94107

6 j u l y 2 0 0 1 | g a m e d e v e l o p e r

Kludge by Tiger Byrd and Daniel Huebner

8 j u l y 2 0 0 1 | g a m e d e v e l o p e r

I N D U S T R Y W A T C H
J

3D patent awarded. The United
States Patent and Trademark Office
has awarded a patent covering scal-
able 3D server technology. 3D vir-
tual reality entertainment portal
Worlds.com has been granted U.S.
Patent #6,219,045 for its scalable
architecture for a three-dimension-
al, multi-user, interactive virtual
world system. The technology cov-
ered by the patent is described as
allowing multiple users to interact
in a three-dimensional, computer-
generated graphical space where
each user executes a client process
to view a virtual world from the
perspective of that user, with
avatars representing the other users
in the virtual world and the user’s
view updating to reflect the motion of
other users by way of a central server
processor that provides position updates
to client processes. The client process also
employs an environment database to
determine which background objects to
render as well as to limit the number of
displayable avatars to a maximum num-
ber displayable by that client. Not unex-
pectedly, Worlds.com believes that its
patent may apply to currently existing
multiplayer games and has indicated its
intention to review offerings that may be
infringing on its new patent.

Sega makes cuts. Sega made plans to
slash its workforce by 28 percent in a bid
to return to profitability within a year. In
addition to cutting its payroll, the compa-
ny will sell off a number of the 58 compa-
nies it currently owns. Around 200 of the
job cuts will be made through a voluntary
retirement plan, leaving a balance of about
180 people that will be affected. All of the
planned cuts will be made at Sega’s Tokyo
headquarters, taking the company from its
peak of 1,081 staff in January to a target
of just 700 by March 2002. Sega’s total
investment in outside companies currently
stands at about $115 million; the company
will base its divestiture strategy upon
whether the companies are important to
Sega’s business and the degree to which
they are profitable.

Interplay’s revenues climb. Interplay
has reported improved operating results for
its fiscal year 2000. Net revenues climbed

to $104.6 million, from last year’s mark of
$101.9 million. That modest gain helped
Interplay cut its net loss for the year to
$12.1 million from last year’s $32.8 mil-
lion. Interplay still realized close to 75 per-
cent of its fiscal 2000 revenues from PC
titles and is taking measures to diversify its
lineup by securing new funding for next-
generation console projects. Interplay
Entertainment has secured more than $17
million in new funds through a combina-
tion of stock placement and credit exten-
sion. The company has completed a pri-
vate placement of common stock to raise
approximately $12.7 million in equity
capital and has arranged an additional
$15 million by opening a new working
capital line of credit secured by Interplay’s
company assets and a $2 million personal
guarantee from company chairman Brian
Fargo. The new funds will be used to
reduce Interplay’s outstanding debt and
replace a line of credit secured by Titus
Interactive, saving the company as much as
$1.5 million in interest payments this year.

Indrema and Digiscents bite the dust.
The struggling technology market has
claimed two would-be game industry inno-
vators. Indrema had been promoting an
Xbox-like game console that sported a
600MHz x86 processor, Nvidia GPU, and
10GB hard drive using a Linux operating
system. The company had hoped that the
open source nature of the project com-
bined with Indrema’s decision not to
impose royalties on developers would lure
independent game makers to the platform.

Financial realities, including a
harsh market climate for Linux-
related businesses, forced Indrema
to lay off its 50 employees when
the company was unable to secure
additional funding.

Another unlikely game technolo-
gy met a similar fate when comput-
er odor purveyor Digiscents like-
wise failed to secure additional
funding. After running through $20
million in initial financing and dis-
tributing 5,000 SDKs, Digiscents
was ultimately unable to bring any
scent-enabled titles or its scent-
enabling peripheral to market.

Low sales cut THQ’s revenues
and earnings. THQ reported

first-quarter income and revenue well
below last year’s, but the results were still
ahead of analyst expectations. The compa-
ny’s net income fell to $860,000 on rev-
enues of $59.3 million in the first quarter,
down sharply from income of $3.9 million
on revenues of $70.4 million in the same
period one year ago. Earnings per share
fell to four cents from last year’s 18 cents
per share. THQ cited slow sales and a
cyclical lull as the chief causes of its low-
ered earnings. q

d a n i e l h u e b n e r | T H E B U Z Z A B O U T T H E G A M E B I Z

2 0 0 1 I N T E R N AT I O N A L
J O I N T C O N F E R E N C E O N
A R T I F I C I A L I N T E L L I G E N C E

WASHINGTON STATE CONVENTION & TRADE
CENTER
Seattle, Wash.
August 4–10, 2001
Cost: $610 (member and student
discounts available)
www.ijcai.org

L I N U X W O R L D E X P O
MOSCONE CONVENTION CENTER

San Francisco, Calif.
August 26–30, 2001
Cost: $25–$1,550 (early bird discounts
available)
www.linuxworldexpo.com

U P C O M I N G E V E N T S

CCAALLEENNDDAARR

Worlds.com’s scalable 3D server patent may affect 3D multiplayer
online games such as TRIBES 2.

U nder the review spotlight
today is Rational Rose
2001 Enterprise Edition by
Rational Software. The ver-
sion I’m evaluating is the

Windows version, though Rose is also
available for Unix. Rational Rose is a tool
for creating graphical Unified Modeling
Language (UML) models of software.
Notable competitors to Rose include
TogetherSoft’s Together ControlCenter,
Popkin Software’s System Architect,
Telelogic Tau, and, for open source afi-
cionados, Tigris’ ArgoUML.

Rose creates and manages software blue-
prints. The language of these blueprints is
UML, the de facto standard for object mod-
eling. Object modeling, a common compo-
nent of many object-oriented analysis and
design methodologies, is the practice of cre-
ating diagrams toward better understanding
and communicating the complex systems
that comprise object-oriented software. As
a practicing programmer, you probably do
some informal object modeling, be it draw-
ing C++ classes on a whiteboard or simply
staring blankly off into space considering
how to break up the problem du jour. Rose
simply supports, formalizes, and records
that process.

Rational Rose models all of the diagrams
of the UML: use case requirements, process
flows, state machines, software compo-
nents, physical deployment topology, static
class structure, and the dynamics of object
interaction. The underlying state it main-
tains allows the various diagrams to refer to
the same objects. Suppose one diagram
illustrates how a socket class connects to a
player chat class, and another diagram
describes how that socket class operates in
the multiplayer command pipeline. The
model underpinning the whole diagram
framework tracks the relations, and the
socket class can show all connections from
all diagrams (or even connections that don’t
exist in any diagram). This can come in

handy when reimplementing the socket
object using UDP instead of TCP, giving a
quick and easy road map of the areas of
code that will need to be regression-tested.
Also, since all of this data lives within a sin-
gle tool, it offers easy traceability of
requirements to actual classes, classes to
components, and components to deploy-
ment packages. This enables a quick display
of which design elements have been imple-
mented, which interfaces live in which com-
ponents, and where all the components fit
in the overall framework.

Rose’s user interface uses the familiar
browser/MDI document window paradigm.
The browser window exhibits the various
views on the model, its hierarchy drilling
down into packages, diagrams, and classes,
while the main window hosts the various
diagrams that are the heart of the applica-
tion. A documentation window shows any
documentation for the currently selected ele-
ment, and a log window logs all messages
generated by Rose itself. Model navigation
uses the browser window or drill-down
within the diagrams themselves, linking the
diagrams into a conceptual whole that can
tell the complete story of the design. Pop-
ups enable access to information not avail-
able through the diagrams; toolbars are cus-
tomizable and dockable. A scripting lan-
guage that smells like Visual Basic and a

comprehensive COM model allow automa-
tion of Rose as well as calls to other applica-
tions. Icons used within the model are cus-
tomizable and vary based on element stereo-
types as well as primary element type, while
Rose’s layout engine automates common-
sense display of diagrams. Drag-and-drop
makes it a snap to generate new diagrams
illustrating new aspects of existing elements:
if one class, for example, inherits from or
contains an instance of another class and
both classes are dragged into a diagram, the
diagram automatically adds the relationship.

Rose can forward-engineer stubs in
Visual C++ (including ATL COM compo-
nents), Visual Basic, and Java, as well as
generating XML Document Type Defini-
tions. It can also construct models by
reverse-engineering code in any of its sup-
ported languages, including MIDL and
binary COM components via Type
Libraries (see Rational’s documentation for
a complete list). When it generates code —
limited to class definitions, instance vari-
ables, and method stubs — it inserts tag
comments with GUIDs so Rose can alter its
interfaces appropriately when prototypes
change. It ships with complete prebuilt class
models, including helpful diagrams, for
MFC 6.0, ATL 3.0, the VB6 standard
libraries, and others. Rose integrates with
Visual C++ as well as any source code con-

10

XXT H E S K I N N Y O N N E W T O O L S

P R O D U C T R E V I E W S

The Rational Rose drill down interface for a class diagram.

Rational
Rose

by jonathan sari

j u l y 2 0 0 1 | g a m e d e v e l o p e r

w w w . g d m a g . c o m 11

trol systems that conform to the SCC API
(most of them, including Visual SourceSafe
and Perforce).

If those are the bones, what’s the meat?
My first and simplest design step when
approaching a new system is building a
domain model that is a description of the
problem domain. When I can clearly and
precisely identify the concepts I want my
software to model, along with how those
concepts relate to each other, I’ve set the
vision for the entire engineering process.
Rose lets me do that quickly, cleanly, and
with all of the precision of UML, guiding
me to illustrate the essential semantics of
the system, semantics that can easily get
lost in the detail of the problems. But

object modeling is where Rose is worth its
weight in gold.

Object modeling is an amazing tool for
managing complex systems. With software,
the only real limit that defines what we can
create within hardware constraints is the
level of complexity. The systems enabled
by the object-oriented programming para-
digm are dramatically more complex than
the systems of structured programming. By
diagramming code visually and describing
aspects of the system in isolation, I can
build my own intuitive model of the over-
all system, encapsulating particular under-
standings and building the massive com-
plexity piecemeal. Wait, doesn’t creating
simple diagrams achieve that? Well, I don’t
know about you, but the system I build
never ends up being exactly the system that
I had designed. How often do the original
design documents represent the actual sys-
tem as constructed? With Rose I can con-
struct the initial diagrams, generate stubs,
and then implement. Through the process
of implementation, unanticipated complex-
ities invariably rear their ugly heads. By

bringing the code back into my modeling
tool, I can reevaluate the architectural
model based upon the real necessities of
functional code and keep the model up-to-
date in the process.

As a communication tool, UML is
invaluable. It’ll be nice when I don’t have
to muddle through a new ambiguous and
shifting design language consisting of arbi-
trary boxes and lines for each new design
diagram. Rose delivers, through the UML,
a consistent and complete language for
representing the essential aspects of object-
oriented analysis and design. By using
Rose’s built-in web publisher, those dia-
grams can be communicated to anyone
with a web browser, displaying a whole
system or just describing particular aspects.

All is not wine and roses, however.
With any significant tool there’s a learn-
ing curve, and Rose is no exception. The
speed, or lack of same, with which Rose
operates is agonizing. Reverse engineering
a 10MB Java .JAR file took more than 10
hours of CPU time on a 1GHz CPU; plan
to do other things while it is reverse engi-
neering code, loading models, generating
diagrams, or web publishing. It’s also
piggy about memory. Rose balloons to
over 280MB of memory with its substan-
tial object models loaded. Additionally,
Rose’s engineers could learn a trick or
two from the game industry regarding
user experience. There’s no way to cancel
out of many of the more time-intensive
activities, and the whole UI becomes use-
less while the tasks are operating. A little
work on the threading model would allow
me to review other diagrams while reverse
engineering is going on. Fortunately, I’ve
never had any of my inadvertently time-
consuming activities totally lock up the
system on me. Rose will finish its process,
if you can wait for it.

The biggest black mark of all is the
price tag. Rational Rose lists at $3,600 for
a single node-locked license, plus $660 to
pay for a compulsory year of support. For
larger organizations, floating licenses (at
$5,400 per license) allow many installa-
tions of the software, with networked
licensing software that prevents access
when other people are using all of the
available licenses. Rose is also available in
language-specific versions at a reduced
rate if you do all of your engineering in

C++, Java, or Visual Basic.
All in all, Rose is a gigantic tool, both

in terms of its memory footprint and its
actual functionality. Because it is capable
of so much, it’s easy to miss functionality,
and it isn’t possible for me to cover
everything it does here. Overall, Rose is
the best tool I’ve found for creating ele-
gant, maintainable, and reusable designs
rather than tangled webs of software that
mostly function.

A plethora of marketing information,
including some valuable whitepapers, can
be found on Rational’s web site. Two books
exist to kick-start the beginner: Visual
Modeling with Rational Rose 2000 and
UML by Terry Quatrani (Addison-Wesley,
1999), and Mastering UML with Rational
Rose by Wendy and Michael Boggs (Sybex,
1999). The Quatrani book, in particular,
comes highly recommended. q

A high-level domain model.

RATIONAL ROSE XXXXX

XXXXX
XXXX
XXX
=XX
X

excellent

very good

average

disappointing

don’t bother

STATS
RATIONAL SOFTWARE

Cupertino, Calif.

(408) 863-9900

www.rational.com

PRICE

$3,600 for single node-locked license

(plus $660 for mandatory one-year sup-

port fee); $5,400 for floating license.

SYSTEM REQUIREMENTS

Windows 95/98/2000 or NT 4.0, 64MB of

RAM (128MB recommended), 100MB of

disk space, SVGA-compatible display, and

pointing device with at least two buttons.

PROS
1. The most usable modeling tool.
2. Provides reverse and forward engi-

neering of most important languages.

3. Integrates with existing source control
and development tools rather than try-
ing to replace them.

CONS
1. Steep learning curve.

2. Poor user interface handling during
CPU-intensive activities.

3. Slow and piggy.

12 j u l y 2 0 0 1 | g a m e d e v e l o p e r

XP R O D U C T R E V I E W S

NEWTEK’S LIGHTWAVE 6.5
by david stripinis

I f I had only one word to describe
Newtek’s Lightwave 6.5 it would be

“powerful” — but “quirky” would be a
close runner-up. Lightwave 6.5 is the latest
release of the venerable 3D modeling and
animation program that offers powerful
tools to create pretty much any 3D asset
your game could need.

The interface is, to be generous, unique.
Lightwave is actually two separate pro-
grams, Layout and Modeler. Layout is
where everything from animation to light-
ing and rendering is accomplished, while
Modeler is dedicated to, and this should be
obvious, modeling and texturing. While
this may seem odd if you’re used to all-
inclusive programs like Maya or 3DS Max,
I found switching between them no differ-
ent from switching between menu sets or
panels in other programs, and it actually
offered an advantage I will discuss later.

Modeler is an extremely robust and ver-
satile tool for creating polygonal models.
Both organic and mechanical forms can be
created with equal ease, which is quite a
bit easier than in many of Lightwave’s
competitors, I might add. Modeler seems
to follow the theory that less is more.
Rather than an overwhelming suite of
tools which serve more to confuse rather
than aid in art creation, Lightwave encour-
ages you to use the same tools over and
over. While a large variety of tools are
offered, I found that using the bevel, trans-
late, and stretch tools in conjunction with
Lightwave’s truly amazing symmetry fea-
ture allowed me to create pretty much
anything I wanted with ease. The recent
addition of real UV coordinates drastically
improves the texturing capabilities of
Lightwave over previous versions.

No discussion of Lightwave’s modeling
capabilities would be complete without a
discussion of its subpatch objects. While
it’s true that subpatches are simply an
implementation of subdivision surfaces,
Lightwave has helped to popularize this
method of working and provides a nice
workflow for working on complex organ-
ic forms.

Modeler is also where users build their
“skelegons” — Newtek’s new skeletal
deformation tool. By incorporating these

skelegons into Modeler, all your modeling
tools are available for modifying your
character’s skeleton. This allows the user
to build a working character quickly with-
out having to learn a completely new
toolset for skeleton construction. Also new
is the addition of weight maps, which
allow for advanced weighting of surface
points to bones. Interactivity in Modeler is
very high, and the viewport display is
quite intuitive.

Animation itself is also quite nice. All
animation is accomplished in Layout.
Lightwave’s IK is fairly intuitive, and its
solver gives results pretty much as you’d
expect from any professional package. Ani-
mation doesn’t really need a lot of tools. It
is pretty much a case of setting keyframes
and editing function curves. The graph edi-
tor has many editing tools, though most
animators simply need to adjust curve han-
dles and move keyframes around.

One truly neat benefit of Lightwave’s
separate programs is being able to go
back and forth between a model in its rest
pose and the actual animation of that
model. If you notice you need more detail
in the shoulders to prevent crumpling dur-
ing a bone rotation, or you need to com-
pletely change the design of a character,
you need only change the model itself.
This interaction between Modeler and
Layout, while not exactly an exciting item
for a marketing brochure, is really a nice
feature appreciated by artists actually
working in production.

Lightwave 6.5 also incorporates a few
improvements to its world famous renderer
— including caustics, global illumination,
and 128-bit rendering — which gives fast,
clean, film-like results. The viewports also
offer many WYSIWYG rendering features
such as lens flares and fog. Lightwave 6.5
also incorporates VIPER, an interactive
renderer, the latest trend in 3D packages.

Lightwave 6.5 offers any artist good ani-
mation tools, great rendering technology,
and unbelievable modeling tools, especially
for creating characters. Affordably priced
($2,495) and available for a wide variety of
platforms, Lightwave offers a way to
round out the weaknesses of whatever
toolset you may now use.

XXXX | LIGHTWAVE 6.5
Newtek | www.newtek.com

HOUSE OF MOVES’
DOMINATRIX FOR MAYA

by christopher clay

T he first time I tried out Dominatrix, I
had received a zip file containing the

software and some sample motion capture
data. My task was to apply the data to a
nine-foot-tall hulking giant. After a quick
install-and-unlock process for the 15-day
free trial period, I set to the task. Roughly
15 minutes after first opening Dominatrix,
my character was dancing like the svelte
motion capture actress the data was based

on. As wrong as that looked, it left a lasting
impression on me; I had never worked with
motion capture data before, and the whole
process had worked almost seamlessly.

Dominatrix should be considered by
developers who need to apply motion cap-
ture data to a number of different charac-
ters with varied scaling, or who want to
apply, retarget, and edit mocap data in-
house (for example if you know your
game’s characters are likely to change over
the course of the production), and who
want to keep this kind of data manipula-
tion in Maya. It’s also an attractive option
for those looking for an easy way to loop
most of their motion capture data. From
this standpoint, the biggest deterrent is the
price tag: Dominatrix runs $5,000 for one
license and $2,500 for each additional seat.

At its most basic level, Dominatrix is a
very simple plug-in for Maya 2.5 and 3.0
that even the most nontechnical artist can
use to perform basic motion capture appli-
cation tasks. I can’t stress enough how sim-

XXXXX
XXXX
XXX
=XX
X

excellent

very good

average

disappointing

don’t bother

Motion capture data in Dominatrix.

16 j u l y 2 0 0 1 | g a m e d e v e l o p e r

XP R O D U C T R E V I E W S

ple it is to apply basic motion capture data
with Dominatrix. The configuration-saving
feature makes it easy to simplify the entire
process for nontechnical artists. For those
who are technically savvy, it has excellent
scripting and batch properties which allow

the user power-
ful access to the
tool. Among
other things,
these allow for
more fine-tun-
ing when retar-
geting motion
capture data to
a differently
sized skeleton.

An impressive
ability of Domi-
natrix, which

helps greatly when looping motions, is the
ability to convert traditional FK motion
capture data to IK data. Though setting this
up in Maya and within Dominatrix is tech-
nical and time-consuming, it is very effective
at maintaining data quality when remap-
ping data to nonstandard skeletons. I also
found it much easier to loop motion capture
using the IK solution. It should be noted
that House of Moves provided excellent
technical support while I was learning this
process which greatly smoothed out the
stumbling blocks I ran into.

Another handy feature is the ability to
export animation out of Maya to motion
capture files. This allows users to export
traditionally animated moves to motion
capture files and retarget them to different
game characters, providing them with a
great base motion that an animator can
then quickly recharacterize.

If your production is in need of a quick
solution to importing motion capture data,
this is an excellent choice for you. Though
the cost may seem steep at first, when you
consider the cost of having your in-house
engineering team write a similar plug-in, it
becomes negligible. Dominatrix is an easy
tool for beginners, with enough depth to
satisfy those who desire greater levels of
control. If you’re working on motion cap-
ture in Maya, let Dominatrix whip your
production into shape.

XXXX| DOMINATRIX
House of Moves | www.moveshack.com

BEGINNING DIRECT3D
GAME PROGRAMMING
BY WOLFGANG F. ENGEL AND AMIR GEVA

reviewed by mark deloura

I had high hopes for this title. I’ve been
using OpenGL and its predecessors for

about 10 years, and since any 3D program-
mer worth his or her salt these days needs
to have a working knowledge of both
OpenGL and Direct3D, I decided to read
through this book from Prima Publishing.
It seemed like a great way to quickly come
up to speed on Direct3D. Boy, was I wrong.

Beginning Direct3D Game Program-
ming is about 500 pages, and comes with a
CD that includes source code, the DirectX
8 SDK, and trial versions of a few pro-
grams and games. The first half of the
book is devoted to introducing you to
Direct3D 8; it then moves on to cover how
to use QUAKE 3 .MD3 files, and follows
with introductions to C++, Windows pro-
gramming, physics, collision detection,
mathematics, and the Common files that
are a part of Direct3D 8.

One great thing about this book is that
it covers Direct3D 8 and provides a bit of
history by discussing some of the changes
that have been made through the various
versions of Direct3D. Unfortunately, it
glaringly omits what are likely the most
revolutionary features of Direct3D 8: ver-
tex shaders and pixel shaders. While the
book is designed for beginners, it does go
into multi-texture and multi-pass tech-
niques as well as complicated subjects such
as anisotropic reflection. So the vertex and
pixel shaders aren’t left out because they’re
too complicated. This omission definitely
makes the book less valuable.

But unfortunately this book won’t be
very valuable for you anyway. From the
very first page of text, it is littered with
errors. Some of the errors are grammatical,
many are technical, and there are numer-
ous formatting errors, all of which add up
to a book that was obviously put together
in a hurry. The whole thing is almost
unreadable as a result, because you don’t
know which parts to trust. As an example,
for a book that targets beginners, leaving
out the exponents on nearly every equation
in the entire book is completely unaccept-
able. I’m serious. For example, take page
475, which has 42 missing exponents in

statements like this one:
2 * U * V = U_ + V_ - (U - V)_
Other errors are not as dramatic, but are

still highly confusing. The printed code is
formatted entirely haphazardly, wrapping
over page boundaries and pseudo-aligned
in some random fashion (this works partic-
ularly poorly in the case of printed matri-
ces). The description of 3D rotation is just
plain wrong. Some of the images are clearly
incorrect. (The “right” vector goes out the
back of my head?) Sometimes the images
and text are both incorrect. (Setting the tex-
ture coordinate range to [–0.5, 1.5] makes
the texture repeat 1.5 times?) The text in
the first half of the book is frequently con-
fusing and
occasionally
incorrect,
though fortu-
nately the
readability
improves after
about 150
pages.

I’m frankly
not certain
what the
point of some
of the accompanying chapters is. They’re
not bad, just not necessary. Someone who is
doing Direct3D programming probably
doesn’t need an introduction to C++. Also,
strangely enough, the entire physics chapter
is just eight pages, with the first two pages
concentrating on 3D math. Fortunately, the
collision detection section is a hefty 40
pages, and the Windows, C++, and math
sections are similarly well sized.

The CD which accompanies the book is
useful. Since you can’t trust the accuracy of
the material in the book, you can copy the
code from the CD, compile it, and test
things out for yourself. The programs on the
CD correspond to the chapters of the book.
They are well designed and easy to tweak.

The frustrating thing about this book is
that it could have been a great introduction
to Direct3D and game programming for
beginners, as well as being useful to 3D vet-
erans as a Direct3D introduction. Unfor-
tunately, it is neither.

X| Beginning Direct3D Game Programming
Prima Publishing

www.primapublishing.com

XXXXX
XXXX
XXX
=XX
X

excellent

very good

average

disappointing

don’t bother

Robots created with
Dominatrix.

18

P R O F I L E S
j e n n i f e r o l s e n | T A L K I N G T O P E O P L E W H O M A K E A D I F F E R E N C E

on Daglow began his career in 1971 with a baseball
game written for a PDP-10 mainframe. He joined
Mattel as one of the first five Intellivison program-
mers in 1980, worked as a producer at Electronic

Arts, and later headed up Broderbund’s Education and
Entertainment division. Over the past 30 years he’s had a hand in
more than 100 games, including the first mainframe RPG in 1976,
the first sim game (1982’s UTOPIA), and NEVERWINTER NIGHTS for
AOL (1990). He’s been hanging his hat in the big cheese’s office at
Stormfront Studios since founding the company in 1988.

Game Developer. You’ve developed for everything from main-
frames to Intellivision to Xbox. There aren’t very many people
who have been around that long who are still actively developing
games. Why do you think that is?

Don Daglow. I think first of all you have to be old [laughs]. And a
lot of people who are in this business were born at the wrong time
so they can’t yet be old. It’s a mathematical advantage. Kidding
aside, I think part of it is the paradigm shift in the industry. For a
lot of us who were in the one-person-in-their-spare-bedroom era
and were comfortable in that era, the idea of teams of people and
shared and collaborative responsibility I think was uncomfortable.

GD. Did you have to learn successful project management piece-
meal over the years, or did you find a few fundamentals early on
and iterate on them for bigger teams and projects?

DD. The half that for whatever reason I got pretty much right at
the start was the cultural part, because I really believed that having
the right culture was a key part of the process, and ironically that
seems different from project management. But there’s no better
way to ruin a great plan than to have the culture be awry and have
people be miserable. Being at EA in the early 1980s, I got a chance
to see that idea of “build a great culture and it will help you build
great games” put into action. The part that I learned bloody piece
by bloody piece by making mistakes is what formal project man-
agers in aerospace learn from day one, which is the mechanics of
how you go about doing it. For example, there’s a very standard
process of reviewing an initial project plan from the ground up to
make sure the budget, features, and schedule all match. I’ve only
learned that part by scraping my knees and my elbows. I still feel
like I have things to learn in that category.

GD. How has the shift to next-generation consoles gone over
with your team? Are you leaning toward continued multi-plat-
form development or might you home in on one platform you
consider the strongest?

DD. Never, ever one platform — I learned that on Intellivision!
It’s all about a few key things: Diversity of clients, so we have a
two-franchise limit for any one client; diversity of platforms, to
split the risk; and diversity of genres — we periodically get type-
cast for things. We work very hard to break that typecast. In the
early 1990s it was RPGs and baseball. Then it was team sports in
the mid-1990s. In the late 1990s it was motor sports. Now

because we have so much RPG and adventure going on I think
we’re going to go back to being typecast for that, and we’re
already taking projects to try to break that typecast.

GD. How important do you think it is for development studios
to remain independent?

DD. It’s worked well for us. The metaphor I use is that when
you meet the right partner, in terms of true love in your personal
life, you know it. You can’t orchestrate it and say, I know it will
happen at this moment. So you can’t say, I’m going to go out this
quarter, or this fiscal year, and I’m going to meet my perfect part-
ner. On the other hand, if do you meet that perfect person, you
have to surrender to them. The reason we’re still independent is
because we have not yet had a situation come up where that per-
fect partner came along. There’s no such thing as an idea that we
are by nature independent. We’re simply still single.

GD. Have you learned any memorable lessons about game design?
DD. I stopped taking design credits about 10 years ago. But on

my way to the first Game Developers Conference, which was at
Chris Crawford’s house in the hills above San Jose, I was going
up this narrow road, and there’s this construction worker who
says, “Road’s closed for two hours, detour this way.” So I take
this detour, and I come up on this other detour that puts you on
this gravel road. Then there’s another detour sign onto what is
basically a fire road. So I go down this and I’m thinking, this
could not possibly be right — I’m under electrical towers on an
access road. I come back down to retrace my steps to figure out
where I went wrong, and there’s a construction crew there, and
they have this look of sheer delight on their face. And I realized
that I was in fact a player in their own game, which was “take the
passerby and divert them into the boonies.” So I
ended up being late for GDC 1, but I did
make it. It just proves that “Wichita line-
men” have something in common with
game designers.

GD. Perhaps game designers ought to
have something in common with as
many people as possible.

DD. That’s an essential truth, because
the minute that we start thinking that we’re
somehow separate from players, and that
we in our infinite wisdom are providing them
with something that they have to come to
us for, we start to build a gap. And
once that gap happens, you stop
thinking about selling gameplay.
I’ve seen a lot of careers start
to unwind at that point. q

Don Daglow
Breaking Typecasts

RIGHT. Stormfront’s Don
Daglow.

j u l y 2 0 0 1 | g a m e d e v e l o p e r

21

U sually I dive right into my monthly topic without
letting my wandering thoughts carry me too far
away. Last month I left off discussing how to cre-
ate an artistic background using simple fluid
dynamics. I will get back to that in a minute, but

I wanted to discuss some general game development issues that
have been on my mind lately.

My game development career actually began with a high
school track meet. My friend from school, who drew comic
book art on his PeeChee and fancied himself quite an artist,
started a little side business. We both had Apple II computers
and were already hooked on games. We started looking for a
way to fund our toy habits. Our first “product” was a simple
database program for the track coach to keep stats at the meet.
We used that money to buy a copy of one of the latest games
out at the time, WIZARDRY. That game was amazing. I played it
for hours on end. When I got frustrated that I couldn’t find the
best equipment, in the true hacker spirit I started editing the
save game files to goose my stats. When friends started to ask
for copies of the program, we bought some blank floppy disks
and started selling disks with our little programs on them. We
created a slick editor for ULTIMA that let you edit the character
and object graphics. (This was all 20 years ago!) We packaged
up some of the wacky games we had created and put them on a
disk and sold them at the local computer store. We started
designing our epic adventure game on a budget of $40. We plot-

G R A P H I C C O N T E N T j e f f l a n d e r

Cleaning Up
the
Garage

J E F F L A N D E R | When not playing in the

garage planning his latest epic game project, Jeff

can be found hard at work at Darwin 3D. Send

tales of your garage game development experi-

ences to jeffl@darwin3d.com.

w w w . g d m a g . c o m

22

G R A P H I C C O N T E N T

ted out all the graphics on graph paper and
tacked the concept drawings all over the room.
We finished about five rooms of the adventure
before we decided to blow the remainder of the
budget on plywood and build a skateboard
ramp in my friend’s backyard. Another project
was the victim of irresponsible management.

In those early days, just like now, many peo-
ple were developing games. All you needed
was a little bit of technical skill, even less
artistic skill, and a few dollars for supplies
like blank disks and zip-lock bags. The history
of the early Apple II days is filled with tales of small groups of
people putting together games in their spare time that have
endured and are even copied today.

I get asked a lot whether I think that the days of garage game
development are over. It is an interesting question that I have
thought about quite a bit. Even back in those “good old days”
game development was a hard business. The game-buying public
was much smaller. Commercial success still relied largely on getting
publishing deals to ensure your game was available at the hundreds
of little computer stores around the country. Most game projects
probably never were completed and most that were finished proba-
bly lost money. However, clearly a lot of things have changed.

The public is now not only game savvy, they devour the stuff at
an incredible rate. Games go from being hot new releases to
anchors at the bottom of the bargain bin in a couple of months.
Access to those bargain bin shelves is not controlled by small
enthusiastic shop owners. It is controlled by national game buyers
looking for a quick resale. Name recognition, flash, hype, and
sure-thing are the rules that govern modern game distribution.

Flash and hype are expensive to achieve. Game graphics that
can compete for attention these days need to be at or very near
movie quality. Creating high-quality animation requires very
skilled artists and technicians. Content deep enough to impress the
game press takes a great amount of time and effort to create.

Most developers will quote that a full game project takes about
18 months to complete. In practice, I have rarely seen projects
(including simple sequels) hit that timeframe. In addition to the
time required to create the actual game, the amount of money
needed is staggering to a small garage development group. PC
game budgets are averaging in the millions of dollars. Console
development is even more difficult. While high-end console games
certainly have a better chance of recouping the development
money spent, the market is not open. Since the console publishers
will generally spend much more than the development budget on
marketing the product, they want to be pretty sure they will make
the money back. You need approval just to get started on the
game platform.

Is It Possible?

A re garage games possible in this climate? It is certainly possi-
ble to create a game with a small group of developers work-

ing on an extremely limited budget. Programmers and artists of
all kinds have gotten together and created impressive games and

game demos. I am impressed every year at the Independent
Games Festival by the quality of the games that people are able
to create. Many of these are at or near commercial quality. How-
ever, does this mean that these small groups are actually making
money? It is hard to imagine that they are.

The Internet has provided a marketplace of unprecedented size.
Now independent game developers are not limited by the number
of zip-lock bags they have or the number of computer stores with-
in bicycling distance. The entire world is available for marketing,
sales, and distribution. Many people discussed the idea that
increasing access to the market via the Internet would be the end
of the current distribution and sales systems for many industries,
including music and games. That may eventually happen, but it is
not going to happen anytime soon.

The Internet audience is pretty jaded. There is a great deal of
products out on the Internet free for the taking. While thousands
of people might download a developer’s latest game demo, very
few of those downloads would potentially turn into actual sales. I
have not yet heard of a game that made any significant money
through Internet sales. If not backed up by a well-funded and
organized advertising campaign or a partnership with a commer-
cial organization with a large audience such as AOL or
RealNetworks, real success would be difficult.

Since getting money directly from consumers via the Internet
is so difficult, advertising models have dominated the Internet
game development scene. Certainly developers of web games for
systems such as Flash and Shockwave have had quite a bit of
success. Web site owners seem willing, at least for now, to pay
developers to create simple little games to draw viewers to their
web sites. Since the capabilities of the systems are pretty limited,
a small team is able to create a project in a
reasonable amount of time and charge
fees that web site operators are will-
ing to pay. However, creating a game
of any significant scope is going to
require talent and time that may
break the back of this funding
model. Certainly the emergence of
3D technology in these online sys-
tems has started to signal this. As the
technology and content bar gets raised in
the online space, the same hurdles that face
developers of PC games appear. Complex and
sophisticated games require a great deal of tal-

j u l y 2 0 0 1 | g a m e d e v e l o p e r

WIZARDRY (left) and ULTIMA (right), two of the first computer role-playing games.

23

ent and time to create. Licensable game engines can help with
this to some extent. However, as anyone who has worked on a
licensed game project knows, a game engine doesn’t necessarily
make the process of creating a game much easier.

Other ideas for Internet distribution such as episodic develop-
ment and delivery hold some promise. However, until it is proven
that players will actually pay for this type of product, it would be
risky to count on it to fund your game project.

If business on the PC and Internet side of things seems a bit
bleak for the garage game developer, the console business is
downright depressing. Modern console games for systems like
the Playstation 2, Xbox, and Gamecube require extremely
advanced game engines simply to compete for the publisher’s
attention. Developers need to be able to create an entire CD, or
even worse a DVD, filled with content. To acually get a console
product to the state where it could be published, a garage devel-
oper would have to have a great many talented friends willing to
work a long time on a small chance. That time is probably much
better spent creating a demo and approaching publishers for
development money in a typical publishing scenario.

The Xbox is held as a great opportunity for garage developers.
Unlike the other high-end consoles, developers can get started on
the same tools they use for PC work. The technology and specifica-
tions are largely familiar to anyone who has worked on PC 3D
hardware. However, this does not lower the content bar. Microsoft
will most likely not allow any game to be released for the Xbox as
it is for the PC. In order to be released to the market, your game
will need to be approved. That means it will need to be of high

enough quality to compete with the other Xbox titles on the
market. Again this comes down to talent, time, and

development dollars, all things the garage
developer does not likely have.

Stop Fiddling in That
Garage and Get
Some Work Done

S o what can a small team of
independent developers

really hope to accomplish? If
you really want to get a commer-

cial game out on the market there are
only a few options. You can take a job with a

game company that has the talent and funding needed to com-
plete a project. You could also self-fund a demo and design that
is good enough to approach publishers with for development
money. However, you are going to need to be able to convince
them that you are capable of building a team large enough to
create the project in a reasonable amount of time. No publisher
is going to risk the development money for a cutting-edge title on
a small, inexperienced garage team. They are going to want a
large team in an office with the capacity to get the project done
on time and on budget.

The handheld game market is particularly interesting to me
these days. While the Game Boy never really excited me very
much, it probably should have. Here is a system with millions of
avid game players. A small garage team can easily handle the
graphics and coding needed for a game project. Getting a project
approved still requires jumping some obstacles, but the commit-
ment is not nearly as scary as the high-end consoles. The emer-
gence of cell phone and PDA games also offers opportunities for
garage developers.

The new Game Boy Advance is even more interesting. The sys-
tem is still largely 2D sprite based and there is no 3D hardware.
However, it looks like a pretty sophisticated little computer. This
system may provide a great opportunity for garage developers to
create some exciting projects.

The truth is that success as an independent garage developer
requires a bit of compromise. The developers I know who are
making it work are not spending most of their time creating their
own projects. They feed their garage project habit with a diet of
contract work, consulting, and depletion of savings. This is obvi-
ously not a recipe for quick game development. Ask any inde-
pendent developer how many pet projects they have on the shelf
at any one time and you will see what I mean.

Overall I think it is a very interesting time for independent
garage game developers. While the high end will likely be domi-
nated by traditional development and publishing methods, oppor-
tunities exist for the small group. Experienced developers who are
burned out and jaded by the development grind can band together
to form exciting new opportunities.

So what are you waiting for? Take up the challenge. Grab some
of your most talented friends and start cracking. You have a lot of
work to do before you can start proving that it can be done. Let
me know how it is going.

Back to Business

T ime to shelve my pet projects and get back to work. Last
month, I was discussing how I could use fluid simulation tech-

niques to create organic and artistic images (“The Era of Post-
Photorealism,” June 2001). I created a complex fluid field using
basic flow elements; now it is time to actually do something with
the flow field. The basic flow elements combine to form a velocity
field. Using the flow formula from last month’s column, I can
quickly determine the direction vector at any position in the flow.

The easiest way to create an image from the flow field is to
drop random particles of different colors into the flow field and
let them simulate through the flow. To integrate the position of

CHASE ACE 2 (left) and HARDWOOD SPADES (right), two of this year’s Inde-
pendent Games Festival finalists.

w w w . g d m a g . c o m

j u l y 2 0 0 1 | g a m e d e v e l o p e r24

G R A P H I C C O N T E N T

the particles forward through the velocity field, I am using the
predictor-corrector integrator I first described in my column last
year (“Pump Up the Volume: 3D Objects That Don’t Deflate,”
December 2000). Since there are no constraints on the particles
other than the flow field forces, this integrator is more than
robust enough.

By varying the particle size, I can create a sort of pointillistic
view of the flow. This alone is not really very interesting to
watch. A much more compelling image can be created by draw-
ing the particles as a connected line of color. Since the particles
are governed by the fluid flow, these connected lines will be very
smooth curves. A variety of smooth strokes can be created by
controlling the number of points in the connected line and vary-
ing the frequency of the particles along the line. Simply drawing
the line by connecting the dots is not really very interesting
unless you are trying to achieve a look like a moving etching.
However, the lines can be given width by creating polygons that
have vertices offset from the stroke line. This width can be ran-
domly varied along the length of stroke much as I described in
my column on cartoon-style ink strokes (“Deep in the Program-
mer’s Cave,” May 2001). Those stroke polygons can be rendered
using a solid color or with texture. I found that an interesting
watercolor style of display can be created by rendering each
stroke with a texture that is mostly translucent using the alpha
channel. These strokes are then layered and blended together to
make the final image. You can see the results of one of these
experiments in Liquid Sunset (see Figure 1). Since the system is
based on fluid flow, when this watercolor image animates, it does
so in a very fluid manner.

A different and more turbulent effect can be created by
changing the rendering technique using the same fluid flow.
Instead of creating long, smooth strokes this time, each particle
is rendered as a single billboard sprite using a series of fractal
textures that animate in a manner like a cloud evolves. Each

particle in the fluid field is given a life cycle. The particle is
born, lives for a while, and then dies. The size of the billboard
sprite grows after birth to a maximum size and then shrinks as
it dies out. When many of these particles are placed in the field
and rendered with these overlapping billboards, the effect is not
unlike moving smoke or fire. You can see the results of this in
Figure 2.

By simply experimenting with the fluid parameters and the
rendering system, a great deal of effects can be achieved. These
systems can be rendering in an off-screen buffer and then used as
texture maps for an environment. Given the performance of cur-
rent 3D graphics hardware, it is quite possible to use this tech-
nique to generate particles and polygons in the game and then
render them as normal 3D objects that can be applied anywhere.

I experimented a lot with animating the parameters of the flow
field. But by changing the position and setting of the basic flow
elements dynamically, even more complex effects can be achieved.

Extending to 3D Objects

T his method works well for creating backgrounds and complex
textures for flat surfaces. However, the ideas of potential fluid

flow are useful for 3D systems as well. I am probably not going to
be able to create a 3D grid of flow elements and fill the room
with 3D particles. But, in limited application, some complex
effects can be created.

The potential flow formulas that I described last month can
be easily extended to 3D. Once that is done, I can calculate the
velocity field at any point in a 3D space. A 3D particle dropped
into this flow field could then animate through the field just as
it did in 2D. This is really just an extension to the basic idea of
3D particle systems. In a particle system, particles are dropped
into a simulation space and various forces act upon them as they
move through the world. In addition to the normal forces used
in particle systems such as gravity and wind (which are really
just types of uniform flow using last month’s definition) I can
add the other flow elements such as vortex and doublet flows.
High-end 3D applications have elements like this built into their
particle systems.

With these vortex elements, the particle system takes on a more
turbulent appearance. Things like wispy smoke look more realistic
when they swirl around a bit. Doublet and vortex elements can be
attached to an object that moves through the particle field dis-
turbing the smoke in a realistic manner.

The idea of strings of particles as strokes is also useful in the
3D environment. I can take a simple 3D model of a tree and
emit short strings of particles from the faces of the tree. These
particles can be influenced by a series of vortex and uniform
flow elements attached to the tree. What would that look like?
Would it resemble a hairy tree blowing in a swirling wind or
would it look like the kind of twisted and expressive trees that
Vincent van Gogh created in his paintings? Why don’t you give
it a try and see what you can find?

Sample code and demonstrations of the techniques discussed in
this and last month’s columns can be found on the Game Devel-
oper web site at www.gdmag.com. q

FIGURE 1 (top). Liquid
Sunset.
FIGURE 2 (right). Fiery
Morning.

27

L ast month I shared some of the benefits of using proven design principles in
level design, an array of which can be borrowed from real-world architec-
ture and interior design. This month, I will present even more and relate
some of them to actual game levels and to the creation of custom-designed
level textures. Just to be clear, this isn’t a “how-to” tutorial on designing,

modeling, or texturing a game level. Instead it is a collection of considerations to help
you with a more efficient execution of good design for your level modeling and texture
work. As promised last month, I will also walk you through the steps of prequalifying
level assets so that you can avoid making costly mistakes, thus saving you time and
money better spent elsewhere.

High Expectations

W e have an interesting challenge in the game industry as computer hardware tech-
nology plows forward faster then ever. This increase in power has a direct corre-

lation with the player’s growing expectation for stunning visuals. As game artists and
level designers, we should try not to get overwhelmed or intimidated by the rising tech-
nology bar. We have a role to play in perpetuating its progress and should therefore
embrace it, at least to the point where it enhances our process of improving and imple-
menting good design that produces believable and engaging levels. This in turn improves
the product and the gaming experience. We are further challenged to meet these high
expectations with equally sound design principles and concepts. Improved hardware will

T I T O P A G Á N | Tito
has been creating art in
the game biz for about a
decade. Visit his web site
at www.titopagan.com.

Where’s the
Design in

Level Design?
Part 2

A R T I S T ’ S V I E W t i t o p a g á n

w w w . g d m a g . c o m

j u l y 2 0 0 1 | g a m e d e v e l o p e r28

A R T I S T ’ S V I E W

eventually make it possible to create game environments that are
intricate, highly detailed, and free from technological limitations
in performance. Where will you be and what will you be doing
when this happens?

So What Is Good Design?

E veryone has his or her own idea about what good design is.
One thing I think we

can all agree on is that
design is a perceivable
and desirable quality that
surrounds us in our
everyday life, yet we often
overlook its importance.
It provides comfort,
draws our attention, and
gives us the visual cues
we’ve learned to depend
on for infor-
mation such as
directional and
level changes,
defining means
of egress from
within a build-
ing, and so on.
In general
terms, design is
the skillful
planning and
fashioning of
the form or
structure of an
object, a space,
a work of art,
a decorative
scheme, and
yes, a game
level.

In creating a
comfortable
and logical game level, a job well done does not leave your player
feeling uneasy about the personality, balance, proportions, lines,
or character of the space or structure being portrayed. All envi-
ronments possess these traits. Keep in mind that there are many
different kinds of spatial designs that are well suited for a 3D
world. Your level design should be one that addresses your indi-
vidual game’s requirements and applies basic design principles.

Some guidelines that govern good design used by other practic-
ing design professionals include balance, scale, proportion, unity,
emphasis, rhythm, and harmony. All designs consist of color, pat-
tern, texture, and style, and if these guidelines are adhered to, the
player will feel comfortable in an environment.

Balance. Balance is the feeling of equilibrium. How do you feel
when your life is out of balance? That is also how a player will

feel when a decorative wall, room, or outdoor space is out of
balance. All balance is based on vertical and horizontal axes.
Getting equal weight on each side of an axis makes a space in or
out of balance. A good analogy would be riding a bicycle or
standing on your head.

Scale. Scale is the size of an item in comparison to its surround-
ings. A piece of furniture or an accessory can be too big or too
small for a room, a wall, or a setting. A carpet texture scaled too
big creates a “dollhouse” effect in a game. The casual observer is
uncomfortable when this occurs. It’s just not pleasing to the eye

when things
are out of
scale. A typi-
cal example
of bad scale
is the smaller-
scaled furni-
ture and
accessories in
a game level
created with
a level editor
that uses con-
structive solid
geometry
(CSG) brush-
es bound to a

grid (such as World-
craft). A popular
example is Valve’s
HALF-LIFE levels.
These were created
using Worldcraft 2.0,
which lacked fine con-
trol in the modeling
process back then and
probably forced the
level artists to create
and accept badly
scaled and dispropor-
tional furniture and
accessories. The game
is still fun to play (one
of my all-time

favorites) but can be quite the eyesore in some areas. I discovered
these limitations myself when I created levels for Sierra Studios’
S.W.A.T. 3 using this editor (see Figure 1).

Proportion. Proportion is the size of things compared to them-
selves. In furniture, legs can be too large or too small for cush-
ions. Doors and windows can be too long or too big for the
walls they are built into. Proportions that are pleasing to the eye
will promote feelings of satisfaction. Items that are out of pro-
portion actually create anxiety, and we usually don’t want to
look at them.

Unity. Unity is the element that carries the theme and scheme
of the room. The point of unity within a room can be a paint-

CLOCKWISE FROM TOP LEFT: FIGURE 1. Realistic
proportions in S.W.A.T. 3 by Sierra Studios. FIGURE 2.
A strong common element of structural support car-
ries the theme in this room. FIGURE 3. The focal
point of light ahead directs the player and gives ref-
erence. FIGURE 4. Good repetition of likeness creates
rhythm and movement.

Image by Christian Bradley

29

ing, an area rug, a major piece of upholstery, or an architectural
feature (see Figure 2). When a certain style and color scheme are
contained in a single decorative element in a room it makes it
easy for the player to understand what is going on.

Emphasis. A point of emphasis or focal point is that item or
place that catches your visual attention upon first glance. The focal
point of the room is essential to anchor the composition of the
room. Each time you enter a new space you have an opportunity
to create a new focal point. In a composition, the player’s eye trav-
els from the focal point to
the rest of the room and
back to the focal point (see
Figure 3). Without a focal
point, the eye tends to
wander aimlessly through-
out the space, searching for
something to focus on.
This lack of grounding
produces anxiety. If the
focal point can also be the
point of unity for the
space, you have accom-
plished two things at the
same time. You have
secured the player’s atten-
tion and unified the room.

Rhythm. A repetition of
like items in a room or
space that move the eye
from one area to another,
rhythm can be accom-
plished with color, pat-
tern, texture, lighting,
and style or character (see
Figure 4). Think in terms
of music. How important
are the drums and the
bass in a song? Once you
have the rhythm of the beat, you are into the music. That con-
sistent beat carries you throughout the music.

In a game level, a certain repetitive motif, pattern, or texture
could help guide the player though the experience of move-
ment. Moving or nudging the player through the exploration
experience is one of the most basic yet important responsibili-
ties that a level design has to satisfy. When a room or space has
rhythm, people feel secure because of the comfort in the pre-
dictable nature of their surroundings.

Harmony. Harmony is when a common element exists that
binds all parts together. Like a common denominator, this ele-
ment can be a color, pattern, texture, detail, or the character in
a room. In a picture grouping, for example, it can be the frame,
matte, accent color, or subject. When the principles of design are
adhered to, the result is harmony. All of the parts relate to each
other in a way that allows blending and bonding. Harmony is
the difference between a great-looking and -feeling place and a
room or space full of things.

Texture Design Also Matters

T hese same basic principles can be applied to the careful design
of textures. How many times have you sat in on a design

meeting where someone criticizing a level idea has made the fol-
lowing statement: “From the point of view of the player or rate of
travel through a level, no one cares about that much attention to
detail in the texture”? If you have invested time in the game
industry, then you more than likely have heard this several times.

Consequently, your environ-
ment’s overall look and feel
has probably taken a hit.

It is a misconception in
our industry to think that as
developers who play games
we know instinctively how
much detail is enough when
creating a great-looking
game that still runs well.
People are diverse, they play
games differently, and it is
safe to say that perception of
what makes a game great
will vary from person to per-
son. Giving attention to
detail in all aspects of a
game, including textures,
should be considered crucial.
Texture detail and design
can’t be an afterthought if
you are trying to achieve a
cohesive look in your levels.
And when it comes to detail
work, it’s the little things we
take for granted that count.
The rivets, dents, rust, stains,
and scratches all give life and
personality to a surface (see

Figure 5). If the level designer is not a skillful texture artist, then it
makes perfect sense to hear him or her play down the importance
of a well-crafted texture set.

An exceptional texture artist is worth his or her weight in
gold. This is often expressed by the seasoned art director whose
job it is to manage and direct creative resources. This art direc-
tor also knows that the texture artist has the ability to promote
the perception of quality in a product while addressing known
issues and constraints one has to consider when creating a tex-
ture set for a level. The 2D artist needs to be fully aware of the
latest effects supported by current and future graphics cards and
help devise creative ways to exploit them, such as real-time
reflection and bump maps. Besides helping to establish the final
look and mood of a level, the textures also provide the player
with important information such as direction, interactive clues,
and orientation. If your development budget does not afford you
a skillful and dedicated texture artist, then your level designer or
modeler has some ramping up to do.

FIGURE 5. Add life and personality to your objects with well-designed textures.
This 3D object was created for WildTangent’s BETTY BAD.

w w w . g d m a g . c o m

j u l y 2 0 0 1 | g a m e d e v e l o p e r30

A R T I S T ’ S V I E W

Make No Mistakes

T o avoid making costly 3D art assets that aren’t needed or that
just don’t work, level designers should analyze their needs to

determine what is required before creating objects such as furniture
and architectural details. Here is a basic guideline you can use to
accomplish your goal of creating an attractive 3D interior space to
play in and not make costly mistakes in the process. If you are
going to borrow from real-world environments for inspiration and
creation, you should consider using the design tools other profes-
sionals use to create the spaces we live in every day.

If you know what you need, what you want, and you understand
basic design, then your chances of making a mistake are almost
entirely eliminated. You can start to build with confidence and clear
direction. That is, of course, until the game designer changes the
general purpose or focus of the game level or space — at which
time you simply smile and reapply these basic steps.

Avoiding a Fall

T ake yourself step-by-step through the simplified design
process I’m about to describe. When you’re done you should

be able to define your list of art assets for your 3D interiors.
You’ll also begin creating the objects you need to make an effi-
cient and well-planned game level or walkthrough environment
without stress or fear. If done right, this prequalification for art
requirements should afford most developers more time at the end
of the project to add the finishing polish. This polish is often for-
gotten or omitted in most final 3D environments because of mis-
managed production schedules and loss of time.

As level designers, every level we design and create requires us to
determine where we are now, where we are going to end up, and
what we will need in the process of getting there. To map this prop-
erly requires organization and planning. For S.W.A.T. 3 we man-
aged to achieve a photorealistic look because of much preplanning.
We modeled, textured, and designed our lighting schemes using
Worldcraft and then loaded information into a proprietary engine.
A small team of artists took direction and design recommendations
from scaled floor plans which I helped create and then followed
certain established modeling and lighting techniques. These dimen-
sional floor plans and architectural drawings were based on the
game designer’s design document, which sometimes referenced
existing real-world buildings and environments.

Whether you are outfitting a room, a laboratory, or the inside of
a space station, the process for determining your needs is the same.
Preplan the spaces visually in order to understand the architectural
features. These features include windows, doors, fireplaces, stairs,
columns, an air lock, or a landing platform. These might dictate
what kind of furniture will actually fit before you create the pieces.
Also keep in mind that furniture is designed to fit people’s lifestyles.
Each furniture piece is designed to support a particular activity. To
visually preplan, I recommend creating a rough layout or floor plan
on grid paper and then recording each room using one square for
each foot measured. You must establish a working scale for the in-
game world and use this when creating and arranging the content
for each room. You must also know the measurements of all the

major pieces before creating them and at the same time be
ergonomically sensitive, especially in first-person game levels where
the characters interact with their environment at close camera view.

The first thing that must be done for each room is to determine
the limitations of the space. If there is no physical size limitation,
then set one. You can always increase the size later if necessary.
Setting self-imposed limitations is still better than not having any
at all. Before we can place furniture and other 3D items in a room
or level we must understand any technical constraints, including
camera limitations, pathfinding capabilities, how many polygons
or objects can be displayed in a given area, and the minimum
frame rate we need to sustain while traversing that area in the
level. Every asset we place in the level directly impacts perform-
ance during run time. This kind of information is often difficult to
get, because the programmers on the project may not have estab-
lished these parameters early on in the development cycle, often
leading to changes in the level later on. Be persistent in getting the
most accurate information as soon as possible. Doing so will
prove to be very beneficial in the months that follow.

Next we have to define the purpose of the space and who
occupies it. We must then determine the lifestyle and activities of
the occupants. Based on these room activities, we can now identi-
fy the furniture assets needed to fit the space and support those
activities. If they do not already exist, then a list must be made of
new art assets that require design and modeling time. We now
have the task of placing the chosen items into the room repre-
sented on paper. This allows us to continue to flesh out our
design without eating up the artist’s valuable time creating mod-
els that represent pieces to which we haven’t fully committed.
They should all be at the same scale as our drawing so that if
they fit in the plan, they will fit in our room. Finally, we deter-
mine all interaction the occupants will have with the space or its
furnishings before creating the models.

Now that we know what we need, let’s take a look at what we
want. A game designer’s or a level designer’s wants and desires are
an expression of who they are and what their product is to become.
There is no right or wrong in this; everything desired here is totally
legitimate. However, there are situations where what we want, we
don’t need, and what we need, we don’t want. The important thing
to determine is what assets are desired and hip, yet still solve our
in-game problems. Since we’ve prequalified all the pieces of content
in the steps above, the decision-making process now becomes much
less painful and costly.

Grow with the Times

I t’s a tremendous challenge for me to create 3D environments for
a game level. To be able to continue to do so, however, experi-

ence tells me that I must continue to evolve my process for creating
and designing the spaces for such worlds. Ever-improving technolo-
gy, gameplay demands, player expectations, and shorter develop-
ment cycles all guarantee that level designers and 3D artists will
need to mature their processes for creating attractive virtual destina-
tions to play in. You should need no more motivation than improv-
ing yourself as a game artist and what you have to contribute to
your team. For me, the alternative is unthinkable. q

T he great outdoors: rolling hills, majestic mountains, sun-drenched plains. An
increasing number of games are taking place in outdoor environments, but
getting them to look like the view out your window (if you have a house
with a nice view) or a scenic postcard (if you don’t) is not easy. Outdoor
scenes are very complex visually, which makes them hard to render realisti-

cally, especially at the high frame rates required for games.
Modern terrain engines (running on powerful graphics cards) are getting pretty good at

handling the geometric complexity — all the triangles needed to render those ridges and
ravines, erosion lines and canyons — but that just isn’t enough. After all, when we look at
something in real life, what we see is the light reflected from it. And outdoor scenes have
complex lighting, which is a major contributor to the visual intricacy that we find so
pleasing (and which makes that house with the nice view so expensive). Getting this right
for a single time of day is hard enough, but what if the time of day changes in your game?
It would be nice to capture those subtle shifts of light and shadow.

In this article, we present two different methods for achieving these effects in real
time. One or the other may be a better match for your game, depending on how you
construct the game environments.

Light, Radiance, and Irradiance

L ight is electromagnetic energy which radiates through space in all directions — we
need a specific physical quantity that describes the intensity of a single ray of light.

Luckily, there is such a quantity, called radiance.
To understand how radiance is defined, let us look at a patch of surface (see Figure 1).

This patch gives off light (either by glowing or reflection, it doesn’t matter) from every
point and in all directions, as represented by the red arrows. This light can be measured
as a certain amount of energy emitted every second — in other words, as power, which is
measured in watts. If we are interested in the light emitted from a specific point on the
surface, we can’t use power, since the power emitted from a zero-area point is zero. But
we can use power per area (measured in watts per square meter), which is represented by
the blue arrows. This varies from point to point on the surface. Finally, we are interested
in the light emitted in a specific direction from that point. Power per area is useless for

Photorealistic Terrain
Lighting in Real Time

j u l y 2 0 0 1 | g a m e d e v e l o p e r32

T E R R A I N L I G H T I N G n a t y h o f f m a n a n d k e n n y m i t c h e l l

N A T Y H O F F M A N | In 1997, after seven
years as a microprocessor architect at Intel

(where he was the lead architect for the Pen-
tium processor with MMX chip and involved
in the MMX, SSE, and SSE 2 instruction set
extension projects), Naty took the leap into

the game industry and full-time software engi-
neering. He has since been coding up a storm

at Westwood Studios, where he has been
working on EARTH AND BEYOND as a comput-

er graphics and optimization specialist.
K E N N Y M I T C H E L L | Kenny is one of an

increasing number of professionals entering
game development with a strong academic

background. His Ph.D. thesis, “3D Database
Environments,” introduced the use of real-

time 3D graphics on consumer PCs for data-
base visualization. He entered the game indus-

try in 1997 at VIS Interactive plc, where he
developed voxel and NURBS real-time render-
ing technologies. Kenny is director of 3D com-

puter graphics software engineering at
Westwood Studios, where his responsibilities
include research and development of cutting-

edge 3D graphics.

this, but we can use power per area per solid angle (solid angles,
shown in Figure 2, are the 3D extension of angles and are meas-
ured in steradians), which is radiance, as represented by the pur-
ple arrow. To be specific, radiance is power per projected area per
solid angle. The projected area is the area projected in the direc-
tion of the ray (see Figure 3), which is just the area times the dot
product between the surface normal and the light ray. It is impor-
tant to define radiance this way so that the intensity of the light
ray is not dependent on the direction of the surface, or even
whether there is a surface at all. The units of radiance are watts
per meter squared per steradian.

Radiance is a spectral quantity; it can have a different value for
each wavelength in the electromagnetic spectrum. For computer
graphics we usually just look at three frequencies (red, green, and
blue). In real life, radiance has a very large range — the radiance
of the sun is more than a million times that of a dark shadow.
However, in graphics we are usually limited to a small range, so
we will pick a maximum radiance that we can handle, define it as
1.0, and scale everything accordingly. This scale factor is some-
what arbitrary and can vary from scene to scene.

Another important quantity for measuring light is irradiance.
The irradiance at a point p, E(p), is simply the total of all the
incoming radiance in all directions at p. This total is usually cal-
culated via integration over all incoming directions in the hemi-
sphere around the surface normal (see Figure 4). Irradiance is
power per area (not projected area, since it’s tied to a surface),
and measured in watts per meter squared. Since radiance is
defined using projected area, the integration needs to convert
from one to the other, which gives us:

Eq. 1

where is the normal vector at p, H(p) is the hemisphere of
outgoing unit vectors centered on , is the incident
radiance from direction into point p, and dΩ is the infinitesimal
solid angle used in integration.

Why is irradiance important? For purely diffuse, nonglowing
surfaces (which we assume our terrains are), the outgoing radiance
Lo(p) from the point p is the same in all directions, and is equal to
the irradiance at p times the surface color, C(p), divided by π:

Eq. 2

So if we can find the irradiance, we can compute the radiance
from it. Color, like radiance and irradiance, is measured separate-
ly for red, green, and blue. However, unlike those quantities, its
scaling is not arbitrary. A diffuse color of 1.0 means that the sur-
face reflects all the incoming energy that hits it, a diffuse color of
0.5 means that it absorbs half and reflects half, and so on. For
nonglowing surfaces, the color can never be greater than 1.0.

Outdoor Lighting

S ince the radiance of a surface point depends on its irradiance,
let’s look at the irradiance of a terrain point p (see Figure 5).

We see several factors that contribute to the irradiance. The sun,
which covers a small solid angle (it is about 0.5 degrees across)

L p
C p

E po () =
() ()
π

r
v

L p vi ,
r()

r
N p()r

v

r
N p()

E p L p v N p vdi

v H p

() = () () ⋅
∈ ()
∫

r

r r r
, Ω

w w w . g d m a g . c o m 33

FIGURE 1 (left). Light radiating from a surface. FIGURE 2 (center). A solid angle, measured in steradians. FIGURE 3 (right). Projected area.

FIGURE 4 (left). Irradiance. FIGURE 5 (right). Outdoor irradiance.

but has a very high radiance, is the most important
contributor. In this case, part of the sun’s solid angle is
hidden by other terrain points. Also important is the
sky, which has a lower radiance than the sun but cov-
ers a much larger solid angle. This makes it very dif-
ferent from the lights we are used to in real-time
graphics and will cause its contribution to look very
different from that of a directional light. This contri-
bution is most noticeable in shadows. The remaining
incoming directions have interreflections, indirect light
reflected from the sun and sky off other terrain points
into p. This too is most noticeable in areas of shadow.

A Tale of Two Methods

A t Westwood Studios, we ran into the need for
realistic outdoor lighting in two different proj-

ects: EARTH AND BEYOND and PIRATES OF SKULL COVE.
Since the two projects had different needs, we ended
up with two very different systems. For both games
we wanted high-quality terrain lighting without sig-
nificantly impacting the run-time performance. However, for
EARTH AND BEYOND it was important to have short preprocess-
ing times, a low data footprint, and flexibility in changing the
lighting parameters on the fly. For PIRATES OF SKULL COVE the
paramount concern was achieving a very high quality overall
lighting environment, including the terrain, clouds, and sky.
These reasons led us to independently develop an analytical
method for EARTH AND BEYOND and a video-based rendering
method for PIRATES OF SKULL COVE. We will describe both meth-
ods in this article.

Analytical Method

U sing this method, we calculate the terrain lighting dynamical-
ly as the lighting conditions change with the time of day.

This requires us to solve Equations 1 and 2 for every terrain
point. We are able to do this in real time by using several simpli-
fying approximations and by doing as much offline precomputa-
tion as we can get away with.

We separate the lighting solution into two parts: sunlight and
skylight. We calculate each one separately and add the two solu-
tions to get the final lighting result. In our current implementa-
tion, we update a lightmap in software as the lighting changes. In
the future, we are considering doing the lighting calculation com-
pletely in hardware.

Sunlight. Since the sun’s solid angle is small, we treat it as a
directional light source except for the possibility of partial occlu-
sion (shadowing). Then the sun’s direct contribution to the irradi-
ance at each terrain point p, ESunDirect(p), is given by:

where OSun(p) is the sun’s occlusion factor at p (1 = completely
visible, 0 = completely occluded), and is the outgoing sun-
light direction vector.

We calculate the dot product by using palette normal mapping.
In a preprocessing step, we quantize all the terrain normals into a
table of 256 normals and store a table index for each terrain
point (a process very similar to palettizing a color texture). Then
each time we recompute the lighting, we calculate
for each of the 256 normals. After this step, all that remains for
each lightmap texel is to compute OSun(p) and perform a lookup.

How do we calculate OSun(p)? Again, we use precomputation.
We simplify the calculation by assuming that the sun travels in
an arc directly over the X-axis. For each texel in the lightmap,
we precompute and store horizon angles in the same plane as
the sun’s arc, thus creating a horizon map (first introduced by
Max; see For More Information). The horizon angles (see
Figure 6) are stored as 16-bit fixed-point numbers so that
0x0000 corresponds to 0 degrees and 0xFFFF corresponds to 90
degrees. To compute these horizon angles, we scan from each
point along the X-axis in both directions, computing elevation
angles and remembering the largest ones. We need to scan for a
fairly large distance if we want mountains to be able to cast long
shadows. This scanning is not expensive in terms of arithmetic
calculation, but it is expensive in terms of memory accesses. For
this reason it is important to store the height field with the rows
along the X-axis so we can scan along rows, as this improves
cache behavior.

As the sun’s position and color changes, we calculate maximum
and minimum angles each frame:

where �Center is the elevation angle of the center of the sun’s disk
and � is the angular diameter of the sun (about 0.5 degrees,
although to achieve pleasing soft-shadow effects, a larger quantity
can be used — soft shadow edges also have a useful antialiasing
effect on the low-resolution lightmap). OSun(p) is then calculated
by comparing �Min and �Max with the appropriate horizon angle �

θ θ αMax Center= + 1
2

θ θ αMin Center= –
1
2

L N p viSun Sun

r r() ⋅

r
vSun

E p O p L N p vSunDirect Sun iSun Sun() = () () ⋅
r r

j u l y 2 0 0 1 | g a m e d e v e l o p e r34

T E R R A I N L I G H T I N G

Figure 6 (top). Horizon angles. Figure 7 (bottom). Horizon angle clamping.

j u l y 2 0 0 1 | g a m e d e v e l o p e r36

(measured from the horizontal):

Another way of looking at it is that OSun(p) is equal to
(�Max – �) / �, clamped between 0 and 1. This is simply the frac-
tion of the sun’s angle that is unoccluded by other terrain.

There is one important thing to make sure of when using hori-
zon angles. Since irradiance is only measured over the hemisphere
around the surface normal, the horizon angles need to be clamped
to this hemisphere (see Figure 7). We didn’t do this at first, and
we had strange visual glitches appear from negative dot products
and other peculiarities.

We will ignore the effect of interreflections from sunlight. This is
a significant approximation, but it does not overly harm realism,
because we will count interreflections from skylight, and the effects
of interreflections are most noticeable where the sunlight contribu-
tion is small — in shadowed areas. In Figure 8, we can see the
result of the sunlight calculation. Note that the shadows are perfect-
ly dark. This is what you would expect to see in an airless environ-
ment such as the moon where the sky is pitch black and contributes
no illumination even during the daytime. EARTH AND BEYOND (for
which we developed this method) actually has such environments,
so this is not totally useless, but usually this is not sufficient. Usual-
ly, one must also consider and calculate the contribution of skylight.

Skylight. The sky’s color varies over its area as well as over
time. For simplification, we can divide the sky up into a small
number of patches based on elevation angle, on azimuth angle
relative to the sun’s arc, or both. A small number of patches can
capture the sky’s illumination nicely — in fact, for our first
implementation we have treated the entire sky as one color.

Since the portion of sky “seen” by each terrain point does not
change, all we need to do is to precompute the contribution of
each sky patch to each terrain point. Namely, what would the illu-
mination of this terrain point be if that patch of sky had a radi-
ance of (1,1,1)? This can be stored in the form of a texture. Then
during run time, all that needs to be done is to multiply each sky
patch’s texture with the current radiance of that patch, add the
results together, and we’re done.

Precalculating the contribution of direct skylight is fairly simple.
Since the sky radiance is constant over each patch, we just solve
the integral from Equation 1 to compute the irradiance. If we
define the patch simply enough, the integral will have a nice ana-
lytical solution that we can calculate directly. But what about the
interreflections? We skipped doing them for the sunlight; however,
we would really like to have them for the skylight, since this will
affect the realism of our shadows. The problem is that such inter-
reflections are a global illumination problem, where the radiance
of each point depends on those of many other points, so we need

to perform a very slow iterative process (like a radiosity solve). If
the terrains are static and you can afford long preprocessing times
in your game, this is a very good solution. Just set up the appropri-
ate patch of sky as an area light source in some tool such as Light-
scape, and let it crunch away overnight for a solve. Repeat for
each patch and you’re done. However, for EARTH AND BEYOND we
required much shorter preprocessing times.

Can we solve this directly? If we separate H(p) (the hemisphere
of directions around the normal) into D(p) (the subset of directions
in which the sky is visible) and H(p) – D(p) (the remaining direc-
tions, in which the sky is occluded by other terrain points) and use
this separation to expand Equation 1, we get:

where is the terrain point visible from point p in direction .
The factor is dependent on the lighting solution

for other terrain points, which is the problem. Luckily, we ran into
a paper by Stewart and Langer (see For More Information) which
gives a nice approximation for and also shows that
under diffuse lighting conditions, such as skylight, this approxima-
tion introduces very small errors. The approximation is amazingly
simple: just assume that for all in
H(p) – D(p). This means that the lighting on all terrain points visi-
ble from p is the same as the lighting of p itself. Why does this give
good results? More details are available in Stewart and Langer’s
paper, but the basic idea is that for a surface such as a terrain
under diffuse lighting, each point tends to “see” points which have
lighting similar to itself. The terrain points visible from a point in a
dark valley tend also to be in a dark valley, points visible from a
bright mountain peak tend also to be bright mountain peaks, and
so on.

Applying this approximation results in:

Applying Equation 2 gives us:

Eq. 3

E p L v N p vd
C p

E p N p vdSky iSky

v D p

Sky

v H p D p

() = () () ⋅ + () () () ⋅
∈ () ∈ () ()
∫ ∫

r r

r r r r r
Ω Ω

π
–

E p L v N p vd L p N p vdSky iSky

v D p

oSky

v H p D p

() = () () ⋅ + () () ⋅
∈ () ∈ () ()
∫ ∫

r r

r r r r r
Ω Ω

–

r
vL x p v L p voSky oSky, ,

r r()() = ()

L x p voSky ,
r()()

L x p voSky ,
r()()

r
vx p v,

r()

E p L v N p vd L x p v N p vdSky iSky

v D p

oSky

v H p D p

() = () () ⋅ + ()() () ⋅
∈ () ∈ () ()
∫ ∫

r r

r r r r r r
Ω Ω

–

,

φ θ

φ θ

θ φ θ θ φ
α

≤ () =

≥ () =

< < () =

Min Sun

Max Sun

Min Max Sun
Max

O p

O p

O p

1 0

0 0

.

.

–

if {
FIGURE 8. Terrain lit by sunlight only.

T E R R A I N L I G H T I N G

w w w . g d m a g . c o m 37

To simplify the derivation, we will assume for now that the sky
radiance is constant over the entire sky. In this case,
becomes LiSky and we can take it out of the integral. It is not diffi-
cult to extend the derivation for a sky that is divided into a number
of patches, each with its own radiance, if the patches are parameter-
ized carefully.

Note that:

Applying this to Equation 3 and using some algebra gives us:

This is a nice closed-form expression which takes interreflec-
tions as well as direct skylight into account. We can further sim-
plify it by substituting:

which gives us:

Now we need to calculate I(p) — Stewart and Langer also
describe how to do this in their paper. This is based on dividing the
sky into a number of sectors and using horizon angles (remember
those?) to represent D(p). We will use eight horizon angles in the
eight compass directions. We already have two horizon angles for
the sunlight shadows, so we need to compute just six more in the
preprocessing stage. We will not store those extra angles, we will
just use them to calculate the skylight texture. We do not need to
scan very far for these angles to get good results, which is a good
thing because now we need to scan along columns and diagonals of
the height field, which is not the best memory access pattern.

Given these eight horizon angles �i (measured from the vertical
this time), the equation for I(p) is:

Eq. 4

Note that the three expressions inside the sum in Equation 4
are the components of a 3-vector. The sum will produce a vector,
then the dot product between this vector and is calculated
and the result divided by two. Note also that �sini and �cosi are
constants and can be computed once and reused.

Since each vector being summed depends only on �i, we can
precalculate this vector for each sector and for 256 values of �i,
resulting in a 256�8 table. Note that better accuracy is achieved
if we use the tangent of the angle for the table lookup (the tangent
of the angle is calculated easily when computing horizon angles).

If we want more than one sky patch, we can assign different
sectors to different patches to get two, four, or even eight patches
(eight is overkill, though). In this case, a skylight texture needs to
be computed and stored for each patch. You don’t really need
many patches to get good results — currently we are using one,
and we intend to try two.

In Figure 9, we can see the result of the skylight calculation. The
lighting is very different from the strong directional lighting in Fig-
ure 8 and is very good for an overcast day where the sun is com-
pletely hidden by clouds and the only light comes from the sky. In
this case a gray value for sky radiance would produce good results.

Summary. In the general case, we add the two solutions togeth-
er, giving the result seen in Figure 10. We get strong sunlight, soft-
edged shadows, and subtle variations of light and dark in the
shadowed regions resulting from skylight. A time-lapse movie of a
day/night cycle using this technique is also available on the Game
Developer web site at www.gdmag.com.

The equations from the previous sections enable us to calculate
the irradiance. To get a lighting (radiance) solution, we need to
multiply by the diffuse color and divide by �. One possible way

r
N p()

∆cos cos cosi i i= 





+()





π π
4 4

1–

∆sin sin sini i i= +()











π π
4

1
4

–

I p N p i
i

i i
i

i i

i

() () 

















= ⋅
=
∑1

2

2

2

2

2 4
2

0

7r
φ

φ
ϕ

φ π
φ– –

sin
sin

sin
cos sin∆ ∆

E p
L I p

C p I p
Sky

iSky() = ()
() ()





1 1
1

– –
π

I p N p vd
v D p

() = () ⋅
∈ ()
∫

r r

r

Ω

E p

L N p vd

C p N p vd

Sky

iSky

v D p

v D p

() =

() ⋅

() () ⋅










∈ ()

∈ ()

∫

∫

r r

r r

r

r

Ω

Ω1 1
1

– –
π

r r r r r r r r

r r r r

N p vd N p vd N p vd N p vd
v H p D p v H p v D p v D p∈ ∈ ∈ ∈() () () () ()

∫ ∫ ∫ ∫() () () ()⋅ = ⋅ ⋅ = ⋅
–

– –Ω Ω Ω Ωπ

L viSky

r()

FIGURE 9 (left). Terrain lit by skylight only. FIGURE 10 (right). Terrain lit by both sunlight and skylight.

j u l y 2 0 0 1 | g a m e d e v e l o p e r38

T E R R A I N L I G H T I N G

of doing this is to calculate the irradiance divided by � (the divi-
sion can be put into the various tables so it adds almost no extra
cost) and then store the result into a lightmap. This lightmap can
be modulated with a color texture by using multi-texture or multi-
pass methods. Our terrain engine uses a diffuse color texture that
is the same resolution as the lightmap, combined with a repeating
detail texture to add noise.

This requires two passes, unless you have a card with three or
more texture units. We ended up using a slightly different solution
— since we calculate the lightmap in software anyway, we multiply
it with the diffuse color texture in software. Then we can draw the
terrain with a single pass (light * color map in one texture stage and
detail texture in the other).

This makes the lightmap calculation a little more expensive, but
we don’t care much. The reason is that the lighting changes slowly
over time, so we don’t need to recalculate the lightmap that often. If
we amortize the lightmap calculation over many frames, the per-
formance hit is low. We do this by running the lightmap calculation
in a separate thread, but it is possible to do it without multi-thread-
ing. We do plan eventually to optimize the lightmap calculations
(the inner loop is a very good fit for MMX or the new 128-bit
MMX instructions in the Pentium 4), but at the moment this is on
the back burner due to the low performance impact.

The precalculation is fast (about six seconds for a 512�512 light-
map on a 450MHz Pentium III) and doesn’t require excessive stor-
age (two 16-bit horizon angles and a 24-bit RGB value for each
lightmap texel, for a total of 1.75MB for a 512�512 lightmap).

Future directions. Currently, we calculate and upload lightmaps in
software. It is tempting to use hardware to generate the lightmaps
instead, using texture-blending techniques (such as Direct3D 8
pixel shaders) and multiple passes. The skylight contribution is fair-
ly simple. Each patch’s factors can be stored as an RGB texture,
and we can just render each texture (modulated with the current
patch color) additively to add them up. The sunlight contribution is
a little more complicated. Dot-product blending can do the diffuse
lighting, and if we drop soft shadows then a simple alpha test can
handle the shadowing. If we want soft shadows, we need to per-
form a subtraction, multiply by a constant, and clamp per pixel —

this should be doable in a pixel shader, and we plan to investigate
this possibility.

Local cloud shadows can be simulated by having an additional
texture, projected from above, which modulates the sunlight con-
tribution. It would be nice to be able to simulate the sunlight
interreflections. Polynomial texture maps (see Malzbender, Gelb,
and Wolters under For More Information) appear very promising
for achieving this. This addition should increase lighting realism
even more.

Video-Based Rendering Method

T hink for a minute how long it would take to compute a truly
photorealistic terrain rendering, with every detail and nuance

represented faithfully. Hours? Days? Accurately simulating photons
of light as they interact with particles in the atmosphere without
loss of detail could take . . . (insert long duration joke here).

One promising way to approach this level of realism is through
the use of image-based rendering techniques (see Debevec in For
More Information). In the case of terrain lighting, all the calcula-
tions may be either captured from real photographs or computed
offline with sophisticated terrain-rendering tools. The results can
then be stored as illumination maps and applied as textures in real
time with no CPU processing cost.

Figure 12 shows a single frame from a video sequence applied as
a single lightmap texture pass to the terrain. In this color image we
can see the effects of self-shadowing, cloud shadows, sunlight, sky-
light, atmospheric blue effects, atmospheric scattering, and haze.
All the calculations for these effects are precomputed in the game’s
asset creation process from raw height-field data using a high-quali-
ty terrain-rendering application, Terragen. In addition to streaming
lightmaps, a matching sky dome video texture is streamed.

Animating sequences of illumination maps presents us with
considerable storage and bandwidth challenges. For example, a
typical day/night cycle of 1,000 frames at 512�512�32-bit reso-
lution would require 1GB of data. This replaces the task of cal-
culating sophisticated lighting models in real time with the task
of performing efficient playback of streaming compressed video

DVD
Stream

Uncompressed
Frame Buffer

Lightmap
 Frame

IOP

IPU

GS
Interpolated

Lightmap

Stream
Buffer

Compressed
Frame Buffer

FIGURE 11 (left). Scene from EARTH AND BEYOND showing the analytical terrain lighting. FIGURE 12 (top right). Lightmap + skybox — a single frame from a
video-based illumination map (VBIM) sequence. FIGURE 13 (bottom right). PS2 video-streaming implementation.

40

onto textures in 3D. Let’s proceed with how this can be achieved
on current hardware.

Video-streaming hardware implementation on Playstation 2. For
our upcoming PS2 game, PIRATES OF SKULL COVE, we have the lux-
ury of an image processing unit (IPU), which is a processor dedi-
cated to accelerating the decompression of video data. Impor-
tantly, this relieves the CPU entirely of the burden of terrain-light-
ing calculations, freeing it up to concentrate on game simulation.

Figure 13 depicts the data flow of a single frame of the anima-
tion from a compressed video stream stored on DVD to the final
rendered lightmap.

Concurrently with the application, compressed frames are
streamed into the stream buffer in system memory, using the IO
processor (IOP), in much the same way as sound or DVD video is
transferred. Once a frame has been fully loaded into the stream
buffer, it is copied into the compressed frame buffer, and the next
frame begins to load immediately. Compression is necessary to
reduce the data rate to within the required limits of DVD media.

The first decompression stage occurs in the IPU, where it
processes each frame to produce an uncompressed frame in sys-
tem memory suitable for upload to video memory. Blending the
new frame with the previous one provides the second stage of
decompression. This frame interpolation method occurs through
the use of the Graphics Synthesizer (GS) and is performed in place
by using a frame buffer motion-blur technique to reduce VRAM
use (see “Real-Time Full Scene Anti-Aliasing for PCs and
Consoles” under For More Information). This second decompres-
sion stage is important for a number of reasons:
• It acts as a form of temporal antialiasing between compressed

frames, which reduces the number of full frames required for
smooth animation.

• The interpolation of frames avoids sudden changes when the
looping video jumps to the beginning of the sequence.

• If DVD streaming is held up for any reason, the frame interpola-
tion process will continue unhindered. When the next frame is
finally loaded, the same interpolation process will produce
smooth “catch up” frames and resume the video sequence
as normal.
We can see the results of the PS2 implementation for PIRATES OF

SKULL COVE in Figure 14.
Video-streaming implementa-

tions on PC. On the PC, we have
an implementation which decom-
presses the video stream using
publicly available software codecs
through the DirectShow API. In
addition to the performance and
quality trade-offs of the various
software codecs, the main consid-
eration here is to perform decom-
pression into a system memory
buffer and perform double-
buffered uploads to video memo-
ry to avoid stalls. Two frames
from this implementation can be
seen in Figure 15, and a time-

lapse video is also available on the Game Developer web site at
www.gdmag.com.

Hardware-accelerated playback of compressed videos also
exists on current PC graphics cards. However, issues with expo-
sure in APIs and hardware conflicts with 3D acceleration are cur-
rently blocking an attractive low-bandwidth solution where video
data is decompressed directly in video memory. Another possibili-
ty is uploading compressed textures. This will reduce bandwidth
to the card but not as much as a video stream would.

Illumination map generation vs. real image capture. Ideally, we
would capture video-based illumination maps from real video cam-
era footage. One idea for capturing the light field of a real terrain is
to place light sensors at regular intervals in a grid at ground level.
Another is to extract this information from geostationary satellite
image data. Realistically, the logistical problems of setting up these
situations make the real image capture method entirely impractical

j u l y 2 0 0 1 | g a m e d e v e l o p e r

T E R R A I N L I G H T I N G

FIGURE 14. Video-based illumination maps in the PS2 game PIRATES OF SKULL COVE.

FIGURE 15. Video-based illumination maps on PC.

w w w . g d m a g . c o m 41

for game production. Although sky dome/box capture is less prob-
lematic, it is just too time consuming to wait for the perfect sunset
or the perfect storm. An artist-generated illumination map and sky
box could produce the same results in minutes given sufficiently
sophisticated rendering tools.

Future directions. With the increased realism of terrain lighting,
objects that are placed in this environment must also match the
local lighting conditions. Potential solutions range from sampling
the terrain illumination map directly beneath the object to stream-
ing irradiance environment maps along with the illumination maps
(see Ramamoorthi and Hanrahan under For More Information for
more on irradiance environment maps).

Controlled changes in weather conditions could be simulated
by branching to alternative video streams. The frame interpolation
method would permit smooth transitions between these states.

Using video-based illumination maps in terrain rendering is
just one application of video-based rendering in games. With suf-
ficient future hardware support a range of applications will open
up for games, such as video-based impostors (see Wilson under
For More Information).

In some cases, the sequence of lightmaps as a function of time
can be represented by a polynomial texture map (see Malzbender,
Gelb, and Wolters under For More Information). This is a prom-
ising direction, since the entire sequence can be stored as a small
number of coefficients per texel and calculated quickly every
frame. This could be useful for other applications of video-based
illumination maps as well.

New Directions

B oth methods presented here enable outdoor scenes to come
closer to the ideal of photorealism by capturing the complexi-

ty of the outdoor lighting environment. The analytical method
comes close to the quality of global illumination methods while the
quality of the video-based rendering method can go as high as you
want it to by using whatever offline renderer you like — raytracing,
radiosity, photon maps, even real captured movies.

The preprocessing requirements differ between the two methods.
The analytical method can perform preprocessing in seconds on a
PC and takes up a few megabytes of data. The video-based render-
ing method can take hours or (in theory) days based on the quality
desired, though the use of rendering farms can definitely cut down
on the time needed. With the video-based method, the preprocessed
data is a video stream, the size of which will vary based on the res-
olution, frame rate, and codec used.

Since both methods rely heavily on preprocessing, they work
best with static scenes. The analytical method can support local
changes in geometry by redoing the preprocessing for the terrain
region affected by the change. For this to be practical, the affected
region should be a very small part of the total scene.

Both methods are examples of new directions in real-time ren-
dering. Increased programmability in hardware will enable us to
perform sophisticated global illumination calculations analytical-
ly. Video-based rendering and lighting can be used to produce
movie-quality effects in real time, and we will be able to use the
results of movie production methods in our games. q

A C K N O W L E D G E M E N T S

We would like to thank ATI and Nvidia for supplying us with hardware

for experimentation and demos, and Hector Yee for his help on the

analytical method implementation.

F O R M O R E I N F O R M AT I O N

SOFTWARE
Terragen
www.planetside.co.uk/terragen
Free to download for noncommercial use. Commercial use is permitted for
registered users.

REFERENCES
Debevec, P. “Pursuing Reality with Image-Based Modeling, Rendering, and

Lighting.” Keynote presentation at the Second Workshop on 3D Structure from
Multiple Images of Large-Scale Environments and Applications to Virtual and
Augmented Reality (SMILE2), Dublin, Ireland, June 2000.
www.debevec.org/Publications

Heidrich, W., K. Daubert, J. Kautz, and H.-P. Seidel. “Illuminating Micro Geometry
Based on Precomputed Visibility.” Computer Graphics (Proceedings of SIGGRAPH
2000), July 2000: 455–464.
www.cs.ubc.ca/~heidrich/Papers/index.html

Hoffman, N., and K. Mitchell. “Real-Time Photorealistic Terrain Lighting.” 2001 Game
Developers Conference Proceedings, March 2001: 357–367.
www.gdconf.com/archives/proceedings/2001/prog_papers.html

Max, N. L. “Horizon Mapping: Shadows for Bump-Mapped Surfaces.” The Visual
Computer Vol. 4, No. 2 (July 1988): 109–177.

Malzbender, T., D. Gelb, and H. Wolters. “Polynomial Texture Maps.” To appear in
Computer Graphics (Proceedings of SIGGRAPH 2001), August 2001.
www.hpl.hp.com/ptm

Mitchell, K. “Real-Time Full Scene Anti-Aliasing for PCs and Consoles.” 2001 Game
Developers Conference Proceedings, March 2001: 537–543.
www.gdconf.com/archives/proceedings/2001/prog_papers.html

Ramamoorthi, R., and P. Hanrahan. “An Efficient Representation for Irradiance
Environment Maps.” To appear in Computer Graphics (Proceedings of SIGGRAPH
2001), August 2001.
http://graphics.stanford.edu/papers/envmap

Schödl, A., R. Szeliski, D. Salesin, and I. Essa. “Video Textures.” Computer Graphics
(Proceedings of SIGGRAPH 2000), July 2000: 489–498.
www.gvu.gatech.edu/perception/projects/videotexture

Sloan, P.-P., and M. F. Cohen. “Interactive Horizon Mapping.” Rendering Techniques
2000 (Proceedings of the Eleventh Eurographics Workshop on Rendering Work-
shop), June 2000: 281–298.
www.research.microsoft.com/~cohen

Stewart, A. J. “Fast Horizon Computation at All Points of a Terrain with Visibility and
Shading Applications.” IEEE Transactions on Visualization and Computer Graphics
Vol 4, No. 1 (March 1998): 82–93.
www.dgp.toronto.edu/people/JamesStewart/papers/tvcg97.html

Stewart, A. J., and M. S. Langer. “Towards Accurate Recovery of Shape from
Shading under Diffuse Lighting.” IEEE Transactions on Pattern Analysis and
Machine Intelligence Vol. 19, No. 9 (Sept. 1997): 1020–1025.
www.dgp.toronto.edu/people/JamesStewart/papers/pami97.html

Wilson, A., M. C. Lin, D. Manocha, B.-L. Yeo, and M. Young. “A Video-Based
Rendering Acceleration Algorithm for Interactive Walkthroughs.” Proceedings of
ACM Multimedia, October 2000.
http://woodworm.cs.uml.edu/~rprice/ep/wilson

Game Developer’s

Salary
Survey

j u l y 2 0 0 1 | g a m e d e v e l o p e r42

S A L A R Y S U R V E Y j e n n i f e r o l s e n w i t h j i l l z i n n e r

H ow much money should you expect to make as a game
developer? How does $61,403 sound? That was the
average of all 1,801 people who responded to salary
information in a survey conducted of Game Developer
magazine subscribers, Gamasutra.com members, and

Game Developers Conference attendees.
With the help of research firm Market Perspectives, we sent e-mail to

Game Developer magazine subscribers in July 2000 inviting them to
participate in our survey and received 919 responses. Last November,
we e-mailed invitations to all Gamasutra.com members to take the sur-
vey online and received 1,953 responses. Then, in March 2001, 1,797
GDC attendees took the survey on-site at computer terminals. Not all
developers who participated in the survey answered the salary-related
questions, which is why the total sample reflected in the data presented
in the following pages, 1,801, is smaller than the total number of
respondents. Besides cases where salary data was omitted from surveys,
we also excluded cases where the salary was given at less than $10,000
or greater than $300,000 or where there was text entered in the salary
box that did not represent a salary figure.

The sample represented in our salary survey can be projected to the
game developer community with a margin of error of plus or minus 2.29
percent at the 95 percent confidence interval. That means that with the
number of respondents in our sample, we can say with 95 percent certain-
ty that the statistics would stay consistent across the entire population.

Another thing we can’t measure with these numbers is developers’ job
satisfaction. If you make $60,000 per year and work 40-hour weeks,
your average hourly rate for the year is $28.85. However, if you work
40-hour weeks for eight months of the year and 80-hour weeks for four
months of the year, your average hourly wage for the course of the year
ends up being $21.63, which is equivalent to $45,000 per annum for
someone who works straight 40-hour weeks at that rate for the whole
year. If there’s anything driving game developers to endure yet another
crunch mode and bear the burden of time spent away from home and
loved ones, it’s the satisfaction they get from contributing technical
sparkle, artistic flourish, or innovative gameplay while bringing a unique
form of entertainment to a wider audience. To say nothing of the sheer
joy many developers take in actually getting paid to do something they’d
gladly stay up all night in their spare room doing on their own time.

w w w . g d m a g . c o m 43

H o w d o e s y o u r
s a l a r y s t a c k u p ?

J E N N I F E R O L S E N | Jennifer is the senior editor of Game Developer and Gamasutra.com.
J I L L Z I N N E R | Jill has been a recruiter for 25 years and has been specializing in the com-
puter games industry for almost 10 years. She is the president of Premier Search Inc., based in

Nevada. Her e-mail address is jillz@ix.netcom.com.

J E N N I F E R O L S E N | Jennifer is the senior editor of Game Developer and Gamasutra.com.
J I L L Z I N N E R | Jill has been a recruiter for 25 years and has been specializing in the com-
puter games industry for almost 10 years. She is the president of Premier Search Inc., based in

Nevada. Her e-mail address is jillz@ix.netcom.com.

PROGRAMMING

W ho is a programmer? Our survey considered a “pro-
grammer” to be a person who described themselves

as an engine programmer, AI programmer, tools program-
mer, hardware engineer, network programmer, or simply a
programmer. It also includes people who have been around
long enough to have the title of senior programmer as appli-
cable to any of these job titles. A lead programmer is under-
stood to be someone who is responsible for managing a
team of other programmers and scheduling. A technical
director or director of development is someone responsible
for the overall management of a company’s technology deci-
sions and might manage a single team of programmers at a
small company, or a group of leads on various projects at a
larger company.

“Programmers have it the
best, salarywise. Good
games programmers are
extremely rare, and even
mediocre ones are pretty
rare. But a really good pro-
grammer, with a history in
the industry, can command
a huge salary.”

— programmer, California

Clearly, experience pays. It’s
also much harder to hire for. If
you’re looking for a programmer
with at least three years’ game
programming experience, you’ve
already eliminated more than half of the game programmers out there, 54.3 percent, who
have only one to two years’ experience in the industry. You can also expect to pay dearly
for a seasoned lead programmer or technical director with six or more years’ experience.

j u l y 2 0 0 1 | g a m e d e v e l o p e r44

S A L A R Y S U R V E Y

sa
la

ry
years

100K
90K
80K
70K
60K
50K
40K
30K
20K
10K

0K
1–2 3–5 6+

programmer lead programmer technical director

Programming salaries per years of experience and position

All programmers

3.0% female

$70,013
avg. salary

97.0% male

$62,488
avg. salary

gender

Years experience in the industry

technical directorlead programmerprogrammer

52.1%
3–5 yrs

17.1%
1–2 yrs

30.8%
6+ yrs

47.0%
3–5 yrs

16.3%
6+ yrs

36.7%
1–2 yrs

54.3%
1–2 yrs

13.8%
6+ yrs

31.9%
3–5 yrs

What Employers Want P rogrammers are gold. If you’re a programmer

who has published some titles, or can show that

you have made and completed a game, it proves that you can finish what you start. A lot of developers have

problems putting the finishing touches on things. Proving that you can finish what you start is very important

to a potential employer. Many people can’t get a job because they have not completed a game, leading to the

common catch-22 of first-time job-seekers. Lacking a published title, you should at least show a prospective

employer that you can work to create something others have fun playing. Many companies ask developers for

code samples. Your best bet is to have your résumé and a disk with code samples available, preferably code

samples from a working game. — Jill Zinner

55
,4

78

56
,5

39 65
,9

90

62
,3

94

61
,7

75

61
,5

72 69
,1

28

88
,3

58

83
,8

89

Highest salary

$300,000

ART

W ho is an artist? We received salary information from
artists who defined themselves as animators, 3D

artists/modelers, and 2D artists/texturers. We grouped lead
artists and lead animators under the heading of “lead artists,”
people who manage a team of artists and who construct sched-
ules and help establish the artistic direction and feel of a game.
Art directors might fill this same function at a smaller compa-
ny, while at a larger company art directors might oversee a
range of different products or manage the aesthetic of a prod-
uct line with other leads under them.

Unlike in other game development disciplines we looked at
in this survey, artists’ salaries seemed relatively scattered across
years of experience and level of responsibility. This may suggest
that salaries offered to artists are more subjective than salaries

offered to technical people,
whose skills are more quantifi-
able in conventional terms.
Another surprise is that while
artists are widely assumed to
earn less overall than their coun-
terparts on the programming
side of the fence, artists in some
categories are actually com-
manding higher salaries, most
notably at the entry level.

“Salaries are subject to the
laws of supply and demand,
and most people seem to be
mature enough to understand
this and don’t let it become
an interpersonal issue.”

— animator, Washington

Staying competitive. Just as programmers must work to remain on the competitive edge
of technology, so must artists continue to adapt and evolve with changing technology in
game development. For the same reason that programmers stopped doing art when we
exited the 8-bit era, the creative demands on professional artists will continue to mount
as polygon counts, fill rates, and available texture passes increase steadily with every gen-
eration of hardware that hits the street. Demand will no doubt accelerate for artists who
keep up with the latest software and technologies. For an art director awash in demo
reels, artists who can demonstrably manipulate subdivision surface patches, massage
intricate facial-cap data, write time- and labor-saving scripts for a 3D art package, help
construct an effective art path, and communicate productively with their programming,
production, and design teams will no doubt be rewarded for their expertise.

There is also growing demand for art techs. Currently, this position often falls to
whichever programmer on a team has the strongest grasp of art software, or whichever
artist has an unusual proclivity for understanding and applying technology. It is a unique
and increasingly critical combination of skills, one for which experienced art techs can
expect to be compensated well in the years to come, whether they come from the pro-
gramming or art side.

w w w . g d m a g . c o m 45

years
1–2 yrs 3–5 yrs 6+ yrs

artist lead artist art director

Years experience in the industry

lead artistartist

Art salaries per years of experience and position

All artists

gender

60.0%
1–2 yrs

5.0%
6+ yrs

35.0%
3–5 yrs

55.9%
3–5 yrs

16.2%
6+ yrs

27.9%
1–2 yrs

10.4% female

$52,539
avg. salary

89.6% male

$59,612
avg. salary

sa
la

ry

art director

48.8%
3–5 yrs

26.7%
6+ yrs

24.4%
1-2 yrs

100k
90k
80k
70K
60K
50K
40K
30K
20K
10K
0K

57
,0

73

59
,6

84

52
,0

00 66
,8

51

49
,6

84 57
,7

61

58
,0

00 68
,7

27

66
,6

67

Highest salary

$200,000

DESIGN

F or the purposes of this survey, we considered a “designer” to
be a game designer, a level designer, or a writer. In smaller

companies, one person might fulfill such a role, whereas larger proj-
ects or companies might have different people assigned to these spe-
cialized tasks. A lead designer or creative director is someone in
charge of coming up with overall gameplay concepts and overseeing
the design process, writing and maintaining design documents, and
managing a design team to implement their creative vision. For
designers, experience is an important factor in commanding higher
salaries, especially for designers with six or more years’ experience.

“ I was definitely surprised at how little money I was
offered as a starting salary. Luckily I stuck it out, and my

salary grew at a substantial rate.”
— lead designer, Wisconsin

PRODUCTION

F orever fighting off the image of the coffee-cup-toting clip-
board-wielder who leaves work right at the stroke of five,

producers have some of the most eclectic job responsibilities in
game development. For the purposes of our survey, we considered
a “producer” to be anyone who described themselves as a produc-
er, associate producer, or project lead/manager. These people have
a range of functions: planning and managing the QA process, set-
ting up motion capture shoots, communicating with the publisher,
managing the overall flow of game assets, planning localization,
managing the overall project schedule, and essentially doing any-
thing else that will help ensure the game is completed on time.
People who describe their jobs as executive producers typically
have more production experience, or might oversee more than one
product or producer at a time. Often they have come up through
the ranks with steadily increasing responsibility.

j u l y 2 0 0 1 | g a m e d e v e l o p e r46

S A L A R Y S U R V E Y
sa

la
ry

years

90K
80K
70K
60K
50K
40K
30K
20K
10K
0K

1–2 3–5 6+

designer lead designer/creative director

Design salaries per years of experience and position

All design

genderyears experience
in the industry

sa
la

ry

years

90K
80K
70K
60K
50K
40K
30K
20K
10K

0K
1–2 3–5 6+

producer executive producer

Production salaries per years of experience and position

All production

9.0% female
$60,444
avg. salary

91.0% male
$55,723

avg. salary

39.3%
1–2 yrs

21.8%
6+ yrs

38.9%
3–5 yrs

gender

12.4% female
$60,412

avg salary

87.6% male
$67,952

avg. salary

F or a huge percentage of the
game industry, the quality

assurance department is the training ground. Engineers who are self-taught often
come through QA; designers and producers almost always come from that environ-
ment. They start in customer service and work into QA, and then have a choice of
going into development or marketing. If they choose the development path, they
usually choose either design or production.

In the old days, game design almost always came from the programmers, who
taught themselves to program by trial-and-error while pursuing their idea. These

days, though, many designers come from QA or customer service, where they have
to find bugs and work with the developers to fix them. This process, and not recre-
ational programming, brings them into the process of design, and development in
general. Producers typically grow the same way. The QA or customer service person
has to work with the producer who is a liaison to the development team. Pretty
soon this person is assisting the producer and gradually evolves into a full producer
after a few promotions. It’s hard to leave a company while still in QA and find a job
as a producer, designer, or programmer elsewhere. The first promotion almost
invariably must come from within the company. — Jill Zinner

The QA Breeding Ground

54
,2

70

48
,9

91

51
,3

34

57
,0

75

64
,3

59

81
,0

00

65
,6

76

52
,8

75 58
,0

30

58
,2

36 76
,6

96 83
,8

00

years experience
in the industry

18.2%
1–2 yrs

35.0%
6+ yrs

46.7%
3–5 yrs

Highest salary

$200,000

Highest salary:

$160,000

AUDIO

T he audio function in game development is so varied and so
arcane to many other developers, is it any wonder so many

professionals voluntarily assume the simple moniker of “audio
guy”? Audio professionals might be responsible for audio engineer-
ing, sound effects design, musical composition, and working with
the producer recording and editing voice-overs. It has long been
customary for game developers to turn to outside contractors for
their game audio needs, but as more and more companies are tak-
ing on multiple projects, more are finding the benefit of having at
least one full-time audio professional on staff.

Audio is another discipline in which experience clearly pays for
our survey respondents. With experience, you can show not just
your creative talent in a shipping product’s audio, but also demon-
strate through references on past projects that you know what it
takes to get a complicated and very critical job done (often with
varying degrees of direction from producers and designers) in the
invariably tight timeframe required by the project.

“I started working in the game industry 14 years ago.
There was no money back then, we were just kids who
were doing it for fun. So I guess having any salary is an
improvement over those days.”

— sound director, California

j u l y 2 0 0 1 | g a m e d e v e l o p e r48

S A L A R Y S U R V E Y

Audio salaries per years of experience

All audio

genderyears experience
in the industry

3.9% female
$52,500
avg. salary

96.1% male
$57,689

avg. salary

15.7%
1–2 yrs

39.2%
3–5 yrs

45.1%
6+ yrs

sa
la

ry

years

90K
80K
70K
60K
50K
40K
30K
20K
10K
0K

1–2 3–5 6+

44
,6

30

68
,2

00

67
,6

56

Highest salary

$130,000

Dear Professional Game Developers,

If you’re technically astute and have a
way with words, Game Developer mag-
azine needs you. We’re looking for fea-

ture articles on programming (graphics, AI,
networking, and so on), art and animation
techniques, game/level design, audio com-
position and technology, testing and QA,
business/legal issues, and other relevant
subjects. We’re interested in development
on a wide variety of platforms, including

the PC, Macintosh, game consoles, arcade machines, the web,
and handhelds. We also publish Postmortems on completed
games, and Soapboxes on
various issues pertinent to
game developers.

Game Developer is the
game development indus-
try’s community forum. We
reach over 90,000 readers
each month (directly or by
being passed along). Take
this opportunity to share
your hard-earned knowledge with the entire game development
community! Please send your article abstract, outline, or com-
pletely wacky idea to: mdeloura@cmp.com.

Thanks,

Mark DeLoura
Editor-in-Chief
Game Developer

Call for Writers

Download writer’s guidelines from
www.gdmag.com/writguid.htm

Download the editorial calendar from
www.gdmag.com/writguid.htm

Write Soapboxes,
Postmortems, or
feature articles

50 j u l y 2 0 0 1 | g a m e d e v e l o p e r

S A L A R Y S U R V E Y

West
$62,828

South
$53,193

Northeast
$53,227Midwest

$59,685

Texas
$54,222

N. California $69,260
S. California $55,206genderyears experience

in the industry

6.0% female

$61,014
avg. salary

94.0% male
$61,448

avg. salary

19.2%
6+ yrs

39.5%
1–2 yrs

41.3%
3–5 yrs

OTHER TRENDS

T he laws of supply and demand prevail in game development
salaries. Higher salaries generally go to those who require

more specialized skills and hence are harder to hire for, such as pro-
grammers, than in areas where supply exceeds demand, such as in
art and design positions. However, the disparity in pay is not as
gaping as those looking from one side of the fence to the other
might have suspected — only 6.9 percent difference overall between
programmers and artists of all levels of responsibility and years of
experience, and 8.1 percent between programmers and designers.

Realities of supply and demand also help fuel differences in
regional game development salary averages. For example, Northern
California, which hosts a booming high-tech industry with a chron-
ic shortage of skilled technical workers, offers higher salaries than

regions where the competition for available qualified talent is not
as stiff.

Only 6.0 percent of our survey’s respondents were women, and
their salaries were 0.7 percent lower overall than their male coun-
terparts (or 99.3 cents on the dollar). This disparity is far better
than women fare in the national average of just 76.5 cents on the
dollar compared to men in 1999, as reported by the Census Bureau
and the Bureau of Labor Statistics, an arm of the U.S. Department
of Labor.

Who makes what and why is just as controversial in game devel-
opment as it is in other industries. Indifferent economic principles
are at work alongside human desires for equity and fair recognition
for one’s contributions. For many game developers who couldn’t
imagine doing anything else for a living, however, compensation is
just icing on the cake. q

D evelopment teams for mar-
ket-relevant games can

require anywhere from six to 35 people. Many senior people have reached the ceiling
salary for their position. New technology is eliminating some positions, changing others,
and creating new needs. Experienced developers are now finding that they have to make
some serious decisions about their career. They might consider taking less money or
relocating to a different part of the country where the cost of living is more reasonable.

New studios are starting up everywhere, and so jobs are cropping up all over the
country. These small studios work for the big publishers. The publishers are trying to cut
the cost of making their products, so they look to outside developers to make the cost

of making a game more reasonable. The general trend of our industry today is the
migration of all the great talent out into these new studios. Generally, game developers
change jobs about every two years or at the end of a game cycle. Terrific programmers,
sometimes whole teams, get disillusioned with the companies where they work and
strike out to do it on their own. What entices people to make such a career shift? One
factor is that the cost of living is so different all around the country. People who want
to buy a house or raise a family are looking for jobs at game companies where the cost
of living is lower and the pace is slower. Also, many of these outlying studios are trying
to get back to the basics of making games, fostering a culture which seems attractive
to many developers coming from large, corporate environments. — Jill Zinner

Across all game industry

sa
la

ry

70K
60K
50K
40K
30K
20K
10K
0K

al
l

pr
og

ra
m

m
in

g

al
l a

rt

al
l d

es
ig

n

al
l p

ro
du

ct
io

n

al
l a

ud
io

Average salaries by discipline Salary comparison between 1st & 3rd party studios
sa

la
ry

70K
60K
50K
40K
30K
20K
10K

0K

al
l

pr
og

ra
m

m
in

g

al
l a

rt

al
l d

es
ig

n

al
l p

ro
du

ct
io

n

3rd party1st party

Should I Stay or Should I Go?

62
,4

86

58
,4

63

57
,7

91 66
,2

93

57
,4

85 69
,7

00

67
,5

20

60
,4

15

60
,0

71

58
,6

82

59
,1

9669
,7

84

60
,8

15

j u l y 2 0 0 1 | g a m e d e v e l o p e r52

P O S T M O R T E M c h r i s c o r r y

PROJECT EUROPA
LucasArts’

STAR WARS STARFIGHTER

w w w . g d m a g . c o m

W ork on Project Europa — the internal codename for the develop-
ment effort that would eventually metamorphose into STAR WARS

STARFIGHTER — began in earnest in April 1998. A small crew of
programmers, headed up by director Daron Stinnet, began prepro-
duction work on a Star Wars: Episode I PC title that had grand

ambitions. As one of LucasArts’ great unsung talents, Daron had previously led the DARK

FORCES and OUTLAWS teams to much critical and commercial success. Now, following in
the footsteps of Larry Holland’s X-WING games, Europa was to bolster LucasArts’ pres-
ence in the space-combat genre and support the new film franchise. While embracing
much of the X-WING series’s simulation-oriented aesthetic, the team also wanted to deliver
the visceral, sweaty-fingered arcade experience that we were starting to see in early builds
of ROGUE SQUADRON.

During the early months of 1999, a well-known designer who was in the market for a
new lead programmer and lead level designer for his company’s overdue project secretly
approached two members of our team about the possibility of jumping ship. Although
obviously conflicted, the allure of working with a famous industry heavyweight proved
too tempting, and within a few short weeks we had lost our main graphics programmer
and level designer. Shaken but undeterred, we were determined to make the best of a bad
situation, but three months later the project suffered another blow when we lost our sec-
ond graphics programmer.

This was Europa’s darkest hour. The technology development was progressing slowly,
and our inexperienced programming staff was still climbing the C++ learning curve. As
lead programmer, this predicament was largely of my own making. I had joined LucasArts
from outside the game industry, where I was accustomed to a corporate R&D environ-
ment that valued solid engineering and extensible software architecture over quick solu-
tions that were perhaps less elegant or flexible. Now, with little to show but a creaky
Glide-based graphics engine and no graphics programmer, we were at a loss as to what to
do next.

As if things weren’t bad enough, we were also floundering on the game design side of
the fence. Although we had a lot of excellent concept art, few of us had a clear idea about
exactly what type of game we were making. We were painfully starting to discover that
while it is easy to characterize a title as being a cross between ROGUE SQUADRON and X-
WING, it’s another thing completely to describe what that actually means.

At this point two events occurred that I’m convinced saved the project. Our multiplayer
programmer, Andrew Kirmse, who had already proven himself as a remarkably capable
technologist, teamed up with two of our other programmers to create a graphics-engine
“tiger team,” a small subteam dedicated to attacking a single task with unwavering focus.
In just a few months the three of them delivered a brand-new OpenGL-based engine that
was far better than anything we had built previously.

Shortly after the new graphics engine came online we also found the solution to our
game design woes. Tim Longo, who had recently helped complete INDIANA JONES AND THE

INFERNAL MACHINE, joined the team as our lead level designer. The change was immediate
and profound; five other level designers joined the project at about the same time, and
now we had the foundation for a thriving, collaborative design process. Daron worked
with Tim and the other level designers on an almost daily basis, systematically identifying
areas of the game design that were incomplete and working together to come up with con-
crete solutions.

By the end of 1999 the project had performed a 180-degree turnaround, but there was
one more significant twist in the road awaiting us. Sony had turned the game industry on
its ear with the formal announcement of the Playstation 2 that year, and every major
development house was furiously rewriting business plans to accommodate support
for the new platform; LucasArts was no exception. The biggest problem for the
company was that we wanted to have a title close to the system’s launch, and

C H R I S C O R R Y | Chris was the lead programmer on STAR WARS STARFIGHTER. He joined
LucasArts three years ago after a seven-year stint in the “real world” helping to manage large
R&D teams building distributed object-oriented architectures.

G A M E D A T A
PUBLISHER: LucasArts
FULL-TIME DEVELOPERS: Approximately 40 at the

height of production
LENGTH OF DEVELOPMENT: 30 months
RELEASE DATE: February 2001
PLATFORM: Playstation 2
HARDWARE USED: 700MHz Pentium III’s with

256MB RAM, GeForce 256, PS2 tools
SOFTWARE USED: Windows 2000, Microsoft

Visual C++, Metrowerks for PS2,
3D Studio Max, Softimage, Photoshop,
Bryce, Visual SourceSafe, Perl, AfterEffects,
Premiere

TECHNOLOGIES: Eve level design tool,
Miles Sound System, ObjectSpace STL,
Macromedia/Secret Level Flash, Planet
Blue’s Tulip for prerendered cutscene lip-
synching

LINES OF CODE: 301,000 including tools

53

Europa was the only project far enough
along to be a serious candidate. The
thought of throwing the PS2 into the mix
made many people very uncomfortable,
but when we were able to port all of our
nongraphics code in a single 48-hour peri-
od, senior management became convinced.

The rest of the project was an exciting
and manic blur of activity. Early in 2000
we hit the “snowball point,” that period
when all of a sudden the tech falls into
place, the art production paths are running
on all cylinders, and the team is seeing
exciting new gameplay on an almost daily
basis. From then on, STAR WARS STARFIGHT-
ER was indeed like a runaway snowball,
picking up momentum and new features
almost as fast as we could think of them.

What Went Right

1.Good team communication. I’ve
read many Game Developer Post-

mortems that blamed failures on a lack of
communication, so I’m particularly proud
that we got this one right. From the begin-
ning of the project, Daron worked hard to
impress on the programmers that it was
the level designers and artists that would
ultimately secure the success of Europa. As
I became fond of saying, programmers
build the picture frame, but it’s up to the

rest of the team to provide the most
important part, the picture.

To bring this to fruition, the program-
ming team needed to understand as best
we could the way the rest of the team
worked. While Andrew worked with lead
artist Jim Rice and our world-builders to
understand their workflows, Brett Dou-
ville, our AI and mission programmer,
filled a similar role with the level design-
ers. Brett scheduled regular “LD Days”
with each individual member of the level
design staff. This gave each designer the
opportunity to meet with Brett on a regu-
lar basis and show him the specific chal-
lenges and problems that they were tack-
ling in their missions.

Europa periodically had full-blown team
meetings where we could get together and
kibitz about the overall state of the project.
However, the most valuable meetings were
at the subteam level. Both the program-
ming team and the art teams would meet
weekly to discuss the issues of the day, and
each of these meetings would have an
attendee from the other camp — a role we
referred to as the “exchange student.” This
meant that if questions came up in the art
meeting, for example, that required
answers or input from a programmer, there
would always be someone present that
could give an informed opinion. Likewise,

as programmers would discuss issues or
new features in their weekly meeting, the
art or level design representative would be
able to disseminate this information among
the other team members.

Finally, we relied on an internally main-
tained web site as a pivotal communica-
tions tool. We tried to make the site as
comprehensive as possible, organizing
areas along the lines of programming, art,
level design, project management, and so
on. When artists had questions about how
to implement a particular effect, or a level
designer needed a refresher on our class-file
script syntax, there was usually a web page
that they could be directed to that would
answer many of their questions.

2.Project discipline. STAR WARS

STARFIGHTER was a well-organized
project. In the heat of battle it’s all too easy
to let requirement lists and schedules get
lost in the shuffle of the moment. We were
determined not to let this happen. As soon
as our technology began to take shape we
started to follow an iterative process of
milestone planning and execution. These
milestones were typically four to six weeks
in duration, with no milestone extending
longer than eight weeks. Milestones were
also required to demonstrate some visual or
gameplay aspect of the game. As a conse-

j u l y 2 0 0 1 | g a m e d e v e l o p e r54

P O S T M O R T E M

LEFT. The Eve level design tool was a critical part of STAR WARS STARFIGHTER’s success. TOP RIGHT. An example of the statistics that Daron tracked during
the game’s development. BOTTOM RIGHT. A page from the programming section of the STAR WARS STARFIGHTER internal web site.

quence, we had very few milestone tasks
that looked like “complete the Foobar
class”; instead we would have a milestone
task that might read “Explosion smoke
trails,” and the assigned programmer would
know that completing the Foobar class was
an implied requirement. By keeping our
attention focused on a discrete and relative-
ly small body of work, we were able to
avoid the cumulative errors that invariably
creep into longer schedules, while still
allowing for demonstrable progress.

Most of the milestones were driven by
the progress of the technical team. Pro-
grammers were solely responsible for esti-
mating the duration of their tasks. We
would occasionally adjust these estimates
outward but would never change an esti-
mate to be shorter. Tasks were structured
so that the shortest scheduled task was
never shorter than a half-day. Even if a
programmer was certain that a task could
be completed in less than half a day, expe-
rience clearly showed that the time would
be lost elsewhere. Using these simple rules
of thumb, we were consistently able to
build schedules that were fair and accu-
rate. Out of eight scheduled milestones, we
never missed one by more than a handful
of days. Best of all, most team members

completely avoided extended periods of
crunch time. Like most game teams as they
approach their ship date, everyone was
working hard and often into the evenings;
however, this period of time was short,
and we never had to resort to all-nighters.

We also closely managed the process we
used to distribute new binaries to the
team at large. Since most of our develop-
ment occurred on the PC even after mak-
ing the decision to ship on the PS2, it was
important that team members have timely
access to stable builds of the game. We
accomplished this through weekly public
builds. Once a week we would package
and distribute the current code as a full-
blown InstallShield-compiled install. This
provided team members with debug and
production versions of the game, along
with level design tool and art exporter
updates. Predicting that public builds
would become critically important, we
tried to be as ruthless as possible about
maintaining the build schedule. As we got
closer to our ship date, the frequency of
these public builds increased until we
were performing new builds as often as
three times a week. By this point we had a
full-time staff member dedicated to man-
aging the public build process and ensur-

ing that the distributed code met quality
and functionality expectations.

3.A well-executed PC-to-PS2
transition. Making the decision

to move the project to the PS2 could have
been a complete disaster. Yet, despite pay-
ing little attention to portability during the
earliest stages of the project, the Europa
code base was well positioned to make the
jump to the PS2 platform. With the aid of
strong and generally stable development
tools provided by Metrowerks, the core
port went off without a hitch. The biggest
trick was on the graphics side, because this
was clearly where we were most vulnera-
ble. None of our programmers had any
console experience, and none of us was up
to the task of tackling the PS2’s infamous
low-level vector units. Enter LECgl.

LECgl was the brainchild of Eric John-
ston and Mark Blattel, two of LucasArts’
most senior console programmers. They
had recently shipped STAR WARS: EPISODE I
RACER for the N64, and they welcomed the
opportunity to tackle a problem temporari-
ly that was one step removed from the day-
to-day pressures of a project team.
Although Europa was the most immediate
recipient of their efforts, Eric and Mark

w w w . g d m a g . c o m 55

TOP LEFT & TOP RIGHT. These two images depict the design schematics for one of the Lok missions. Level designers made elaborate plans such as
these for every level that appears in the game. BOTTOM CENTER. Early concept art for the mercenary Vana. FAR RIGHT. Storyboard depicting Rhys
Dallow’s ship getting hit.

were never officially on the project. Instead
they worked in a support role, providing us
with regular LECgl library drops and
immediate “on-call” PS2 graphics support.

There was another, more subtle problem
that we had to conquer when we made the
decision to adopt the PS2 as our primary
platform. Most of the team members were
big PC game players, but very few of us
played console games. Intellectually, we
knew that there were huge philosophical
differences in game design between con-
soles and the PC. Much of our original
game design had used the X-WING games
as a conceptual leaping-off point, wander-
ing into the arcade action of ROGUE

SQUADRON only when it suited us. Now
that we were on the PS2 we recognized
that our design priorities needed to be
completely flipped. Instead we would use
ROGUE as our primary point of reference
and work from there, layering on game-
play elements borrowed from X-WING as
needed. As such, I think the final game
demonstrates our successful indoctrination
into the console mindset. We were having
so much fun blowing things up that we
had little desire to start adding simlike fea-
tures to the gameplay experience.

4.Macromedia Flash. As we
approached the end of summer in

2000, we realized that we had a serious
problem on our hands. Despite our best
efforts, we still had not addressed the issue
of our out-of-game user interface. We had
a 2D virtual-page system that we were
using for our HUD (heads-up display)
symbology, and we had always planned to
evolve that into something that could be
used for what we called the “administra-
tive interface.” However, in August, with
the quality assurance department nipping
at our heels and our ship date looming
ominously in the distance, things were not
looking good.

We had heard that a small San Francis-
co–based company named Secret Level
was adapting Macromedia’s Flash technol-
ogy for use in PS2 games. After meeting
with company representatives, we were
excited by the prospect. The Macromedia
content-authoring tools were far more
elaborate than anything we could come up
with in the same time frame. We also sus-
pected that there was a wealth of Flash
authoring expertise available from out-of-
house contractors which would help us
smooth out the work load. Most impor-
tantly, we were very impressed by the
intelligence and games savvy of the Secret
Level staff. When we realized that building
our user interface in Flash would signifi-
cantly ease our localization efforts, we

decided to take the plunge.
Soon afterward we hired a design firm

named Orange Design to help us imple-
ment our administrative interface in Flash.
Orange not only had a ton of experience
with Flash, but they also brought a techni-
cal perspective to the table. We knew that
this technical emphasis would be critical
for working with our programming team
on integration issues.

Integrating Flash into the Europa engine
was not a completely smooth process, how-
ever. Performance in the first-generation
Flash Player was poor (current generations
of the Player are now much faster), and we
had to spend a lot of time integrating the
user interface Flash movie with the core
game systems. That said, the five months
that a single half-time programmer spent
on this task ended up yielding a user inter-
face that was far beyond what we would
have been able to custom-code in the same
period of time.

5.Good debugging systems. Our
programmers built several tools

that greatly helped our pursuit of high-
quality code. One of the most instrumental
was a Windows-only library that provided
detailed stack-tracing information. This
library was largely based on the code and
concepts covered by John Robbins’

P O S T M O R T E M

j u l y 2 0 0 1 | g a m e d e v e l o p e r56

LEFT. Several of the ship models developed for STAR WARS STARFIGHTER. TOP RIGHT. An early screenshot of the Havoc pirate bomber being chased by a
Naboo Starfighter. BOTTOM RIGHT. Screenshot featuring the user interface created with Macromedia Flash.

“Bugslayer” column published in the
Microsoft Systems Journal.

As is standard practice on many games,
we built a custom memory manager that
could detect when the application was leak-
ing memory. However, unlike most imple-
mentations, when our memory manager
detected a leak it could provide a compre-
hensive stack trace of arbitrary depth, lead-
ing directly to the leaking code statement.
This capability represented a significant
advantage over other implementations that
could only provide the immediate location
of the allocation request. If the memory
allocation was being made by the Standard
Template Library (STL) or one of our wide-
ly used utility classes, it was usually not
enough to know what part of the STL or
which one of our utility classes was the cul-
prit. What we really needed to know was
what class called the STL method that
caused the leak. In fact, the leak was usual-
ly several steps up the call chain. Our
stack-tracing library made finding these
cases almost trivial.

We also incorporated stack tracing into
our exception- and assert-handling sys-
tems. When the game encountered a hard
crash, we trapped the exception and gen-
erated a complete stack trace; a similar
process occurred when our code asserted.
This information was initially reported

back to the user in dialog form. However,
we also packaged up this same data and
had the game send the programmers an
e-mail detailing exactly where the prob-
lem occurred. This ended up being an
invaluable tool for us. As a matter of
practice, the Europa programmers got
into the habit of checking the assert mail-
box regularly. In addition to appraising
the current stability of the code, we could
also use this data to spot trends and note
when people weren’t being diligent about
installing new builds.

In the end, we had an exceptionally
smooth QA process because the bugs we
did have were generally easy to track
down and fix. There were no last-minute
“heart attack” bugs that required us to set
up camp and track a single problem for
hours or days at a time. This made life
easier on the programmers, but it also
made things easier for the testing team and
improved morale across the entire project.

What Went Wrong

1. Staffing. As you can probably tell
by now, staffing was easily the

biggest problem the project encountered.
Try as we did to manage staff retention,
the team experienced an alarming amount
of turnover, both in the programming and

art departments. This invariably made life
harder for the people left behind, because
the amount of work remained constant,
but team members could not be replen-
ished as quickly as they were lost.

This also meant that many of the team’s
junior staff members missed out on valu-
able mentoring or experienced spotty
supervision by their leads. On the pro-
gramming team, senior programmers were
so busy that we had little time to train
new team members. This led to a stressful
sink-or-swim mentality which was difficult
for new hires. Even relatively simple quali-
ty-control procedures such as code reviews
were never instituted, since every moment
of every day was dedicated to making for-
ward progress on the game.

The staffing issue continued to dog us
throughout the project. Even after we had
regained some momentum, we still ended
up losing two programmers and a handful
of artists, all to the same online gaming
startup. Although nine programmers con-
tributed to the main code base at one
point or another, the vast majority of code
was written by the core group of four pro-
grammers who stayed with the project to
completion.

2. Initial lack of detailed design.
Europa was always envisioned as

P O S T M O R T E M

LEFT. A schematic for the Naboo Starfighter — one of the only elements in the game that was present in both the original design concept and the final
product. TOP RIGHT. A Naboo Starfighter cruising over an early take on the rolling hills of Naboo. BOTTOM RIGHT. An early version of the Naboo Starfight-
er passing in front of a nebula in deep space.

j u l y 2 0 0 1 | g a m e d e v e l o p e r58

having some sort of Star Wars: Episode I
tie-in. During much of 1998, however, it
was difficult to predict to what degree
Lucas Licensing would allow this to hap-
pen. One of the barriers we encountered
was the intense veil of secrecy that sur-
rounded any Lucas-owned company
involved with the movie property. Some of
us had access to the script and the occa-
sional rough-cut screening, but particular-
ly during the first half of 1998 it was vir-
tually impossible to learn the important
details about the film needed to build a
solid franchise title.

Initially we had assumed that the game
should stay as far away as possible from
the events of the film. Because we were
going to be telling one of the first original
stories set in the time line of the new film,
we had no feeling for where the boundaries
were with respect to planets, characters,
vehicles, and the like. We were intimidated
by the pervasive atmosphere of secrecy and
general sensitivity of the Episode I story
lines; the first game designs described a
pirate war far divorced from the events of
the film. In fact, the Naboo Starfighter was
one of the only elements that could be
found in both the first design and the film.
As this design started to circulate, however,
Licensing contacted the team and explained
that the design contained too many pirate
elements; they wanted the game to contain
more elements from the film. The “moving
target” nature of this exchange ended up
being very disruptive and effectively para-
lyzed the design effort for weeks at a time
as we wandered from idea to idea, wonder-
ing what fit into continuity with the film
and what was straying into areas that we
should keep away from.

The Europa team also had some pretty
big shoes to fill. It didn’t take long for us
to realize that whatever we did was going
to be directly compared to Larry Holland’s
previous X-WING titles. The Totally Games
guys had been making games like for this
for the better part of a decade, and they
had gotten very, very good at it. Game
players could rely on Larry to produce
large, sophisticated games with well-
designed features and compelling game-
play. This success had, in turn, incubated a
dedicated and enthusiastic fan base that
we knew would mercilessly scrutinize STAR

WARS STARFIGHTER. Frankly, we were in a

no-win situation: if we deviated too far
from the Totally Games designs, we risked
disenfranchising some of our most loyal
fans, but we also didn’t want simply to
copy Larry’s last game either. Fortunately,
once we decided to ship on a console, the
design shackles fell away and we were free
to chart our own path. While we realized
that the hardcore X-WING players might
not appreciate STAR WARS STARFIGHTER as
much as the Larry Holland games, they
were no longer our primary audience.

3.Naïve approach to memory
usage. As quickly as we were

able to get Europa up and running on the
PS2, it took the programming team much
longer to fully embrace the creed of the
console programmer. Since Europa was
originally intended to be a PC title and our
programmers only had PC experience, it’s
not surprising that most of the code suf-
fered from a bad case of “PC-itis.” I use
this term to refer to programming prac-
tices that, while potentially portable to a
console, are definitely not console-friendly.
Our approach to memory allocation is a
perfect case in point.

For starters, we relied on the STL for all
of our container classes. On one hand we
benefited from a bug-free and robust set of
standardized collection classes. As an inte-
gral part of the C++ Standard Library, the
STL contains a powerful toolset for gener-
al application development. We’re big fans
of the STL, and for the most part we can’t
imagine working on a project that doesn’t
use it. Unfortunately, depending on what
containers you decide to use, the STL is
notorious for making many small memory
allocations. Our STL container usage was
paralleled by our use of an uncomfortably
large number of ANSI string objects. The
ANSI string class is a great little class that
makes dealing with character strings much
easier than it used to be when we were all
writing code in C. Like most STL contain-
ers, however, excessive use of the string
class also leads to large numbers of small
memory allocations. By the time we decid-
ed to port to the PS2, most of the damage
had already been done.

As I mentioned earlier, our global memo-
ry manager’s original focus had been mem-
ory-leak tracking, but now we needed it to
help with our STL problem. We accom-

plished this by introducing the concept of
bins, which were really just a hierarchy of
fixed-length memory allocators. When the
memory manager received a small memory
request, it could very quickly and efficiently
satisfy the allocation if the size of the
request fell into the range serviced by our
bins. We ultimately relied on the bins for
both rapid memory allocation services and
fragmentation management.

I should also note that we had a pretty
rough time with memory fragmentation.
Going into the PS2 port we suspected that
fragmentation was going to be a problem.
On the PC we had made an effort to gener-
ally clean up after ourselves in ways that
would help reduce fragmentation, but we
never made a concentrated effort to eradi-
cate it completely, because we knew that in
a pinch we could always rely on the PC’s
virtual memory system. One of my jobs
during the last six weeks of the project was
to build debugging systems that would give
us detailed memory maps and then track
down each fragmenting memory allocation
one at a time. It was every bit as unpleas-
ant as it sounds, and I urge those PC devel-
opers making the switch to consoles to take
this lesson to heart.

4.Not enough attention paid to
performance. There is little

question that in the rush to implement fea-
tures and ship the game on time, perform-
ance suffered. Part of this was due to hav-
ing an inexperienced staff, and part of this
was due to the fact that we had ported a
PC code base to the PS2, but in truth most
of us were so preoccupied with one issue
or another that we had little time to revisit
code with an eye toward optimization.

There was a pervasive attitude among
many of us that we could safely ignore
code problems until they showed up as
hotspots on a profiling run. There is some
merit to this strategy, since premature opti-
mization efforts can be more wasteful than
not fixing the code at all. But since profil-
ing can turn up hidden problems in areas
of the code that the team had previously
thought complete or issue-free, it’s impor-
tant to start profiling much earlier than we
did. For example, we had severe perform-
ance problems in our collision detection
systems that we would have identified
immediately if we had profiled sooner. As

w w w . g d m a g . c o m 59

it happened, by the time we realized that
collision detection was working poorly, the
best we could do was apply spot fixes
instead of the large-scale reworking that
the problem actually demanded.

Even after we started a fairly regular
regimen of profiling late in the develop-
ment cycle, we still didn’t do enough of it.
In the end, only one programmer did all of
our profiling, and he was responsible for
making the rounds and pointing out prob-
lems to other members of the program-
ming staff. This was a real shame, because
the Metrowerks PS2 profiler is a very nice
tool, and most members of the team had
uninstalled licenses. I should have made
our developers responsible for profiling
their own code and doing so at a much
earlier stage.

5. Space-to-planet. If there was
anything about the original STAR

WARS STARFIGHTER pitch that met with
widespread enthusiasm, it was the idea of
seamlessly transitioning from planet-side
environments to the depths of space and
back again. Dogfighting close to the planet
surface certainly has its own appeal, but
there is something about the promise of
being able to pull back on the stick and
blast off all the way into space that is sim-
ply very, very cool. This high concept was
so exciting to the team that the original
game pitch featured this idea predominant-
ly. In fact, in many ways this single feature
was to define the game.

Well, it’s a bit of a trick to actually pull
off. First, there were the technical consid-
erations. A planet is big. I mean really,
really big. Even a small planet would
require dynamically creating thousands of
terrain tiles. Although most of these tiles
could be procedurally generated, they
would still need to be created and discard-
ed on the fly; depending on the player’s
location, custom mission-area tiles would
have to be streamed in from the hard disk,
all while maintaining frame rate. Of
course, since we wanted to allow the play-
er to fly absolutely anywhere on the plan-
et, ordering this data on the disk in a
streaming-friendly format was problemat-
ic. We exacerbated the situation by requir-
ing even our lowest-resolution terrain
height maps to be much higher resolution
than they really needed to be. This in turn

made higher theoretical demands on the
streaming and resource systems.

This single feature had introduced a
tremendous amount of technical risk to the
project, and yet we had blindly charged
ahead anyway because of the idea’s inher-
ent coolness factor. The technical issues,
however, did not describe the full extent of
our problems with this feature. Quite
quickly we also came to realize that there
were plenty of game design issues implied
by the space-to-planet concept. For exam-
ple, there was the constant issue of player
craft speed. We felt pretty sure that our
ships should have a top speed of about 450
miles per hour, because dogfighting and
bombing ground targets becomes extremely
difficult if you move much faster. However,
at that speed it would take the player 20
minutes to achieve a low-planet orbit. To
circumnavigate a small planet the size of
the moon could take as long as 16 hours.
Although we were able to brainstorm sev-
eral fanciful solutions to this problem, most
were time- or cost-prohibitive, and all of

our solutions
threatened to
shatter the illusion
that you were in a small fighter craft,
engaged in small, intimate battles.

Back to Earth

S TAR WARS STARFIGHTER finally shipped
in February 2001. While it was a little

bit later than we had initially hoped, we
burned our first set of master disks in mid-
January, within three days of the “realis-
tic” schedule projection that Daron had
made a year earlier. While it certainly has
its flaws, STAR WARS STARFIGHTER repre-
sents the culmination of an effort that
involved almost 50 people, and it is a
product that we are all very proud of. The
lessons leaned over the last few years, both
positive and negative, are already starting
to be used by other LucasArts teams,
ensuring that the project’s legacy will be
with us long after the last copy of the
game has been sold. q

j u l y 2 0 0 1 | g a m e d e v e l o p e r60

P O S T M O R T E M

j u l y 2 0 0 1 | g a m e d e v e l o p e r64

T he subject of games for girls
and women has always been a
lightning rod for controversy.
Some see it as positive outreach
to an untapped 51 percent of

the market; others see it as overzealous fem-
inists looking for a cause to rally behind.
No matter your point of view, the games for
girls issue continues to dog the game indus-
try and likely will for years to come. For
several years I have moderated roundtables at
the Game Developers Conference on whether
we need to make games specifically for girls and
women. This year however, we focused on a different
aspect of the issue: Is the genre dead?

According to the census bureau, roughly 51 percent of the pop-
ulation in this country is female. A 2000 PC Data study found
that 50.4 percent of online game players are women, while the
Interactive Digital Software Association recently reported that
females comprise 43 percent of game players overall. With so
many girls and women playing games, why is there suddenly the
perception that the games for girls genre is near-dead or dying?

Part of the answer may lie in the missteps that the industry has
suffered in this arena, most notably the death of former media
darling Purple Moon and publishers’ struggles to gain market
share even with strongly licensed properties such as Her Inter-
active’s NANCY DREW series. Why is the target audience not
responding well to products designed specifically for their gender?
There are three key reasons.

The fun factor. One thing far too many publishers overlook in
designing “female-friendly” content starts at the base level: good
game design. The road to the discount software bin is often paved
with the good intentions of game developers and publishers seek-
ing to portray females in a positive light. Instead of a fun, engag-
ing game experience, we get self-esteem in a box — uplifting mes-
sages of self-empowerment telling us that girls can do anything, be
anything, and go anywhere.

There have been a variety of studies showing the differences in
the way men and women play games. One notable difference is
the way we tackle obstacles. Confront a female player with an
obstacle and she’ll analyze it, discuss it, and then try to work out
the best solution possible. Confront a male player with the same

obstacle and he’ll
want to break it
down as quickly as
he can and then
move on to the
next challenge.

We don’t have
to whack girls and
women over the

head with cheery,
upbeat self-esteem

messages. Instead, devel-
opers need to take a look at

the differences in how we play games,
then incorporate them into their game designs

so that both genders enjoy playing. As one person
during the roundtable suggested, “We need to make games for
people, not games for boys and games for girls.”

It’s a man’s world. The fact is that the game industry is still very
much a boys’ club. This is an industry that was founded by males
for males, and in the beginning women were limited to traditional
women’s roles such as human resources, public relations, and the
ever-present booth babe. While women are making strides in pro-
gramming, game design, project management, and marketing, the
glass ceiling has yet to be shattered completely.

Interestingly, one of the laments I heard repeatedly from male
attendees at GDC was that they couldn’t find female game design-
ers, even when they desperately wanted to hire them. Most wanted
to add women designers to their teams to broaden their game’s
appeal to women but, sadly, were unable to find enough applicants
to fill even one or two positions.

We as an industry need to do more to encourage women to take
jobs as game designers, programmers, and producers. The more we
can incorporate a woman’s point of view into our games, the more
likely we are to attract women players. As Will Wright, the creator
of THE SIMS, noted, “I don’t think there’s a magic game design for-
mula to appeal to women. The only way it’s going to turn around
is when you get more women in game design.”

Software stores: enter at your own risk. One of the factors that is
highly overlooked when it comes to attracting female players is the
way games are presented by publishers, retailers, and the game

continued on page 63

S O A P B O X m e l i s s a f a r m e r

Going . . .
Going . . .

Gone?

Games
for Girls

Illustration by Claudia N
ew

ell

S O A P B O X

press. I recently conducted a nonscientific poll of my women friends
on this issue. Unfortunately, what I found was not surprising; here
is a sampling of some of their comments:

“I hate going into software stores. If I go to Electronics Bou-
tique, I’m almost always the only woman in the store unless it’s
somebody’s mother looking for her kid.”

“Software stores creep me out.”
“I am so tired of the ads in the game magazines. It’s either

chicks with huge chests and a big gun or junior high school toilet
humor. It’s like some kind of cut-down version of Playboy.”

The way we market and advertise our games is key in the
female market. Product packaging and in-store advertising are
targeted at the male populace rather than being gender-neutral
— highly rendered, hypersexualized images of women are very
common on box fronts and collateral such as posters and
standees. Game magazines are notorious for ads filled with vio-

lence, gratuitous sexual innuendo, and puerile humor.
Bearing in mind that a recent IDSA study showed that women

are responsible for nearly half of the games purchased in the U.S.
today, how can we as an industry expect girls and women to feel
included when most of the tools we use to sell our games cater to
men? Software stores and game magazines remain hostile territory
for many women, effectively locking them out as part of the game-
buying public. Until publishers, retailers, and the media rethink
how they present games to women, women will continue to take
their considerable spending power elsewhere.

Every year I expect to be giving my “games for girls” roundtable
for the last time, thinking that people must be tired of hearing me
beat the same old drum. However, I have realized that until the
industry matures into one that openly welcomes game developers
and players of both genders, this will remain a hot-button issue. As
much as I love speaking at GDC, I still hope that next year is the
last year we have to talk about this subject. q

M E L I S S A F A R M E R | Melissa is a longtime veteran of the game industry and has worked for companies including Stormfront Studios,
Titus Games, and TalonSoft Inc. Melissa is a former writer for GrrlGamer magazine and served as the executive director for the Computer
Game Developers Association. She is currently the product marketing manager for UNREAL TOURNAMENT at Infogrames Inc.

continued from page 64

w w w . g d m a g . c o m 63

	04gameplan
	06saysyou
	08indwatch
	10prodrev
	18profile
	21graphic
	27artview
	32f-hoffma
	42f-olsen
	52postmort
	64soapbox

	return:
	cover:

