
JULY 2000

G A M E D E V E L O P E R M A G A Z I N E

G A M E P L A N✎

L E T T E R F R O M T H E E D I T O R

I ’ve yet to meet someone who
doesn’t have a strong opinion
when it comes to the copyright
cage match pitting Hasbro against
eGames, Webfoot, MVP Software,

and Xtreme Games. Not surprisingly,
many small developers have been vocal in
their support of the defendants.

If you’re rooting for the underdogs in
this case, don’t blame me for saying this,
but I think Hasbro will win.

I don’t think that either side is inherently
evil. Hasbro claims that the defendants
“blatantly copied” Hasbro’s CENTIPEDE,
TETRIS, MISSILE COMMAND, and ASTEROIDS,
among others. The defendants claim they
improved on the original games to the
extent that they’ve developed entirely new
games. This case once again calls into ques-
tion the extent to which you must evolve a
game concept in order for it to be legit.

Software copyright law leaves judges a
lot of room for interpretation. A judge
looking at the Hasbro case would proba-
bly focus on three questions to determine
whether copyrights have been violated:

1. Did the defendants add something
of value to the original games so as to
transform them into something new and
different?

2. How much of the original work was
taken by the defendants? What parts of the
games in question were copied from the
original? It doesn’t have to be a lot, either
— copying even a small portion of a game
may be illegal if the court determines that
it’s taken from the “heart” of the original.

3. What’s the effect on the potential
market for the original game? A judge
would consider whether the games in ques-
tion deprived Hasbro of income or under-
mined a new or potential market for the
copyrighted game.

Given this litmus test of the defendants’
games, the judge will probably examine
first question most deeply. The prosecution
will have to prove that not enough value
was added to the games in question so as
to make them derivatives of the originals.

Hasbro will also cite the legal precedent
set by Atari Inc. v. North American Philips
Consumer Electronics Corp., 672 F.2d 607
(7th Cir. 1982). In this case, Atari took

Philips to court for releasing K.C. MUNCH-
KIN, which Atari said was too similar to
PAC-MAN. Initially Philips was victorious
in court, but ultimately it lost on an
appeal. The Seventh Circuit ruled that
K.C. MUNCHKIN violated Atari’s copyright,
stating that the audio-visual screen display
copyright had been violated, regardless of
the originality of the source code.

Some who support eGames and the rest
of the defendants point to the Lotus v.
Borland case of 1995, in which Borland
was allowed to copy the look of the Lotus
1-2-3 menu structure in its own spread-
sheet, Quattro Pro. The court stated in the
ruling that a menu command hierarchy
was a “method of operation,” which was
exempted from copyright law. I don’t think
that Lotus v. Borland will be a strong
enough precedent to save the defendants,
however. A menu interface just is one small
part of an application not at the heart of
the product, and Hasbro is arguing that
the defendants went beyond that.

Whether or not Hasbro is victorious, the
company has reopened a can of worms and
it’s going to be up to a judge — possibly
someone with little or no game play experi-
ence — to decide where the line is drawn
between innovative and derivative game
design. This case is yet another indication
that our industry is big business, and how
risky it is becoming to be an independent
developer. And maybe that’s what this case
is really about: a big company flexing its
muscles to frighten away upstarts.

Adios Mel, Welcome Lisa. Our Artist’s
View columnist, Mel Guymon, has decided
to move on from the pages of Game Devel-
oper, and we wish him all the best. In his
stead, we welcome Lisa Washburn of Vec-
tor Graphics, who will be sitting in for a
couple of issues as our guest columnist.
Check out her column on page 19.

Welcome Back,
K.C. Munchkin

C
Let us know what you think. Send

e-mail to gdmag@cmp.com, or write to

Game Developer, 600 Harrison St.,

San Francisco, CA 94107

w w w . g d m a g . c o m

D E V E L O P E R

ON THE FRONT LINE OF GAME INNOVATION

600 Harrison Street, San Francisco, CA 94107
t: 415.905.2200 f: 415.905.2228 w: www.gdmag.com

Publisher
Jennifer Pahlka jen@mfgame.com

EDITORIAL

Editorial Director
Alex Dunne adunne@sirius.com

Managing Editor
Kimberley Van Hooser kvanhoos@sirius.com

Departments Editor
Jennifer Olsen jolsen@sirius.com

News & Products Editor
Daniel Huebner dan@mfgame.com

Art Director
Laura Pool lpool@cmp.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Jeff Lander jeffl@darwin3d.com
Lisa Washburn article@vectorg.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook Verant Interactive
Susan Lee-Merrow Lucas Learning
Mark Miller Group Process Consulting
Paul Steed id Software
Dan Teven Teven Consulting
Rob Wyatt Microsoft

ADVERTISING SALES

National Sales Manager
Jennifer Orvik e: jorvik@cmp.com t: 415.905.2156

Account Executive, Silicon Valley, Western Region & Asia
Mike Colligan e: mcolligan@cmp.com t: 415.356.3486

Account Executive, Northern California
Susan Kirby e: skirby@cmp.com t: 415.356.3406

Account Executive, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 415.905.2323

Sales Associate/Recruitment
Morgan Browning e: mbrowning@cmp.com t: 415.905.2788

ADVERTISING PRODUCTION

Senior Vice President/Production Andrew A. Mickus

Advertising Production Coordinator Kevin Chanel

Reprints Stella Valdez t: 916.983.6971

MILLER FREEMAN GAME GROUP MARKETING

Marketing Manager Susan McDonald

Product Marketing Manager Darrielle Sadle

Field Marketing Manager Jennifer McLean

Marketing Coordinator Scott Lyon

CIRCULATION

Vice President/Circulation Jerry M. Okabe

Assistant Circulation Director Kathy Henry

Circulation Manager Stephanie Blake

Circulation Assistant Kausha Jackson-Crain

Newsstand Analyst Pam Santoro

INTERNATIONAL LICENSING INFORMATION

Robert J. Abramson and Associates Inc.
t: 914.723.4700 f: 914.723.4722
e: abramson@prodigy.com

CORPORATE
President & CEO Gary Marshall
COO/Corp. President, Business Tech & Channel John Russell
President, Business Technology Group Adam Marder
President, Specialized Technology Group Regina Ridley
President, Channel Group Pam Watkins
President, Electronics Group Steve Weitzner
General Counsel Sandra L. Grayson
Vice President, Creative Technologies Johanna Kleppe
General Manager, CMP Game Media Group Greg Kerwin

Game Developer
magazine is

BPA approved

W W W . C M P G A M E . C O M

w w w . g d m a g . c o m 5

Z
F R O N T L I N E T O O L S

W H A T ’ S N E W I N T H E W O R L D O F G A M E D E V E L O P M E N T | d a n i e l h u e b n e r

NVIDIA INTRODUCES GEFORCE 2 GTS

N vidia is working overtime to maintain its lead in the
graphics processor race with the release of the new

GeForce 2 GTS processor. At the heart of Nvidia’s new chip is
the Nvidia Shading Rasterizer, a new technology that enables
advanced per-pixel shading. The technology has the ability to
process seven pixel operations in a single pass simultaneously

on each of the four pixel pipelines. The Nvidia Shading Rasterizer also
allows for per-pixel control of color, shadow, light, and other visual
components. The GeForce 2 GTS delivers up to 1.6 gigatexels per sec-
ond and supports up to 128MB of double-data-rate frame buffer mem-
ory. The chip also includes a new high-definition video processor.

TESTAROSSA’S VROOM

T estarossa has released version 1.1 of
Vroom, an application that uses an

advanced biomechanical model to define
behavioral rules of human motion and auto-
matically perform complex operations based
on these rules. The system allows multiple
users to work on different assets at the same
time, so that animation can commence
before a model or skeleton is finished.
Vroom supports retargeting animation data
from one skeleton to another, updating
motions to a new skeleton hierarchy, nor-
malizing the data to a common reference
pose, aligning and rotating motions along
one direction, creating motion loops and
transitions, creating mirror motions, and
converting between file formats. Vroom is a
stand-alone program for Windows NT/2000
and IRIX with prices starting at $3,250.

VROOM 1.1 | Testarossa |
www.toolsinmotion.com

GEFORCE 2 GTS | Nvidia | www.nvidia.com

STEINBERG ADDS CUBASE VST 5 TO THE MIX

S teinberg has updated its Cubase music production series, giving the system a com-
plete graphic makeover for version 5.0 and adding new features to enhance usabili-

ty and sound quality. Users of the top-of-
the-line Cubase VST/32 can take advan-
tage of 32-bit floating-point files for
recording, output, and mixdown, as well
as analog sound with Steinberg’s True Tape
process. Also new for this version are the
Linear Time Base system for precise MIDI
timing, a new FX and plug-in system, and
the InWire Studio for online collaboration.
Cubase is available for both PC and Mac-
intosh platforms.

CUBASE VST 5.0 | Steinberg |
www.steinberg.net

RADEON 256 | ATI Technologies |
www.ati.com

NEW OPENML STANDARD

A collective of industry leaders is lend-
ing its expertise to the creation of a

standard API for graphics, video, and
audio media devices. The standard, called
OpenML, offers a standard technique for
input and output of audio and visual data
in an effort to increase application porta-

bility across
operating sys-
tems and CPU
architectures.
The API also

offers extensions to OpenGL to handle
compositing of multiple graphics and
video streams. The Khronos Group, whose
members come from companies including
3dfx, Discreet, ATI, SGI, and IBM, is lead-
ing the development.

OPENML | The Khronos Group |
www.khronos.org

ATI LAUNCHES RADEON

N o longer content with cleaning up in
the laptop and Macintosh markets,

ATI is shooting for the top with its most
powerful graphics processor ever. Dubbed
Radeon 256, the chip is built on a trio of
new technologies: the Charisma Engine
for geometry processing, Pixel Tapestry
for rendering, and Video Immersion for
digital video. Radeon 256 also boasts sup-
port for animation features such as
advanced vertex skinning and keyframe
interpolation. The chip delivers 1.5 giga-
texels per second, and includes support
for twin Radeon 256 chips on a single
card using ATI’s MAXX multi-ASIC tech-
nology. Radeon supports up to 128MB of
double-data-rate memory at 200MHz and
uses Hyper Z technology to boost effec-
tive memory bandwidth by 20 percent,
enabling the Radeon 256 to access 8GB
per second of effective memory band-
width. The Radeon 256 is scheduled to
begin appearing on boards sometime this
summer.

6 j u l y 2 0 0 0 | g a m e d e v e l o p e r

I N D U S T R Y W A T C HJ

Take-Two Finds G.o.D. Gathering of
Developers is promising to retain its devel-
oper-focused business operations despite
becoming a wholly owned subsidiary of
Take-Two Interactive. Under the terms of
the deal, G.o.D. will operate autonomously
and continue to handle its properties and
games in North America. The arrangement
gives Gathering better access to Take-Two’s
extensive European and North American
distribution network while Take-Two gains
Gathering’s top-end PC and console game
catalog. The two companies have been
working together since Gathering’s found-
ing in 1998, when Take-Two provided part
of the company’s initial funding. That rela-
tionship expanded in 1999 when Take-Two
took a minority stake in G.o.D. Take-Two
has signed a five-year contract with Gather-
ing CEO Mike Wilson and a three-year
deal with president Harry Miller to keep
them on in their current positions, and
Gathering’s management will stay in place
to continue the development of the compa-
ny’s catalog. Financial terms of the acquisi-
tion were not disclosed.

Activision Cans Expert. Though the
company is expecting strong revenue and
earnings growth in its 2000 fiscal year,
Activision is taking some aggressive restruc-
turing steps. As part of its reorganization,
Activision is folding budget games sub-
sidiary Expert Software into its other value
line, Head Games. The consolidation
includes the cancellation of all of Expert’s
ongoing projects as well as the termination
of its entire workforce and the closure of
Expert’s Miami headquarters. Activision is
also looking to discontinue non-core prod-
uct lines in order to focus its product range
on titles with online or next-generation con-
sole potential. Activision expects approxi-
mately $66 million in pretax charges related
to the restructuring. The company is taking
defensive measures to ward off any unwant-
ed takeover bids as it undergoes this reor-
ganization by enacting a stockholder rights
measure. The plan grants shareholders addi-
tional stock or compensation at a rate
roughly double their current holdings, but
with the new rights kicking in only if some-
one makes a move to acquire 15 percent or
more of the company. Those already hold-
ing stakes of better than 15 percent do not
trigger the rights plan.

Sega Promotions. Sega of America has
promoted several key executives as it moves
into a critical stage of its Dreamcast strate-
gy. Chief among the changes is Peter
Moore’s promotion to the position of presi-
dent and COO. Moore had previously
served Sega as vice president of marketing.
In his new role, Moore is responsible for
directing Sega’s console and online gaming
business in North America. Sega also pro-
moted Shinobu Toyoda, one-time president
of Sega’s PC games division, to the position
of executive vice president of content strate-
gy in charge of Sega’s game lineup. Chris
Gilbert moved to the role of executive vice
president of sales, marketing, and opera-
tions, while Neal Robison has been promot-
ed to vice president of third-party licensing.

Nintendo Under Investigation. The
European Union Commission is looking
into possible Nintendo price fixing. The
EU’s Competition Commission believes
Nintendo and its European distribution
partners, Linea GIG SpA, Itochu Corp.,
Concentra LDA, Bergsala AB, Nortec SA,
CD-Contact Data GmbH, and John
Menzies PLC, acted as a cartel to divide up
the European market and stifle competition.
The commission believes that the group’s
actions wiped out parallel trade between EU
nations and resulted in product price differ-
ences of as much as 100 percent from one
country to another. The commission can
impose fines as high as 10 percent of the
company’s annual global turnover. Sega,
meanwhile, is the focus of a probe by the
United States International Trade Commis-
sion into whether memory chips used in the
Sega Dreamcast console violate patents held
by Rambus. Rambus asked the trade com-

mission to investigate in March when it
filed an infringement suit naming Sega and
Hitatchi, asking that the trade commission
block imports of the contested chips.

Chipmakers Can’t Slow Down. The
graphics acceleration landscape continues
to change, as 3Dlabs issued up to 3.69 mil-
lion common shares to acquire Intergraph’s
Intense 3D accelerator division. 3Dlabs will
pay up to $25 million in additional stock
or cash if Intense 3D meets certain per-
formance marks, and the company will
continue to provide graphics accelerators
for Intergraph’s product range. 3Dlabs con-
siders the Intense 3D product line to be
complementary with its own offerings and
has no plans to discontinue products or
reduce the workforce at Intense 3D’s
Huntsville, Ala., headquarters.

Meanwhile, long-time laptop graphics
chipmaker Neomagic is following S3’s lead
by eliminating its PC chip business to
focus on the emerging market in Internet
appliances. The company is setting its
sights on developing technologies for
MPEG-4 video, broadband wireless com-
munications, and Internet system integra-
tion. Organizational changes there include
the elimination of two departments and
addition layoffs resulting in a 35 percent
reduction in Neomagic’s workforce. q

NATIONAL CONFERENCE ON
ARTIF IC IAL INTELLIGENCE

LOCATION TBD
Austin, Tex.
July 30–August 3, 2000
Cost: $605 (member and student

discounts available)
www.aaai.org

LINUX WORLD
SAN JOSE CONVENTION CENTER

San Jose, Calif.
August 14–17, 2000
Cost: $25–$795 (early-bird rates

available)
www.linuxworldexpo.com

U P C O M I N G E V E N T S

CCAALLEENNDDAARR

T H E B U Z Z A B O U T T H E G A M E B I Z | d a n i e l h u e b n e r

Take-Two’s acquisition of G.o.D. will add the
upcoming three-game BLAIR WITCH series to
Take-Two’s bottom line.

W hen I was 15 and learn-
ing the piano, I wanted
to play the Peanuts
theme “Linus and

Lucy” with both hands, but I just didn’t
have the chops. That song was the very
first thing I recorded when I bought my
first sequencer. I added the left and right
hand melodies one track at a time to cre-
ate the Peanuts song in all its glory. I felt
like I had actually played it with my own
two hands. The feeling was unforgettable
— I could now play anything I could
imagine. Then the first version of Studio
Vision arrived where you could actually
record four tracks of audio right into the
sequencer. My first attempt at using this
innovative software was experimental but
everyone that was in the studio knew the
possibilities. Just seeing that audio wave-

form on the same screen as those MIDI
tracks boded great things to come.

Since then there have been many mile-
stones in sequencer technology, each
expanding what musicians and nonmusi-
cians alike can accomplish with patience
and know-how. Cakewalk’s Pro Audio
has become one of the most popular
sequencers on the market, and version 9
packs a lot of punch.

The Basics

P ro Audio 9 follows a long line of
successful and popular versions of

this PC MIDI and audio sequencer. It is

versatile and feature-packed to the hilt,
and easily recognizes most of today’s
common audio hardware and sound
cards, with special support for Yamaha’s
DSP factory and Sonorus’s STUDI/O
cards. Up to 128 virtual tracks can be
recorded at 16, 18, 20, 22 and 24 bits,
with sampling rates up to 96kHz. And
thanks to Pro Audio 9’s new Wave Pipe
technology you can use up to 128 real-
time audio effects, like a vintage amp sim,
four-band parametric EQ, and tons of
delay-based effects.

Installing the software is simple enough,
although getting it to work with my MIDI
hardware was problematic. It took a cou-
ple of hours of configuring, reinstalling
drivers, uninstalling drivers, querying tech
support at Opcode (I use a Studio 64
XTC for my MIDI interface) and Cake-
walk, and searching online resources
before the software and hardware finally
jelled, at which point it was easy to get up
and running. This is really no fault of
Cakewalk’s, but they could have included
more in-depth help for a larger variety of
setups. Anyone using a serious rig with
four or more MIDI devices and an inter-
face other than the sound card might not
find the help they need.

Walking the Walk

T he program interface is classic Win-
dows, with an army of toolbars, key

commands, and right-click pop-up dialog
menus that can control virtually everything
in Pro Audio 9. There are a number of
views available for recording, editing and
mixing. The main Track view is divided
into the Track pane, where initial settings
like Mute, Solo, Record-Enable and Track
Number are incorporated, and the Clip
pane, which shows the song in a horizon-
tal timeline and includes MIDI and audio
overviews. The Console view is your virtu-
al mixing board, with faders, patch points
for effects, and just about anything else
you would expect a real mixing board to
include. The Piano Roll view, resembling a
2D piano, is an easy view in which to edit
note placement, velocity, and controller

9

A U T H O R ’ S B I O | Gene Porfido spends most of his waking hours buried under a pile of
computers and musical instruments. When he manages to dig free, he can be found on his
Harley searching San Francisco for a real East Coast–style pizza joint.

XXT H E S K I N N Y O N N E W T O O L S

P R O D U C T R E V I E W

Cakewalk
Pro Audio 9

b y g e n e p o r f i d o

The basic Pro Audio 9 window look: toolbars across the top, the main global track display, and a styl-
ish 3D mixing console on the bottom.

w w w . g d m a g . c o m

XP R O D U C T R E V I E W

10 j u l y 2 0 0 0 | g a m e d e v e l o p e r

information. The Staff view shows your
composition in musical notation, and is a
great tool for printing and handing out
sheet music to fellow musicians during a
gig. There’s also the Audio view, which
displays audio tracks in their waveform to
allow most audio editing and arranging.
The List view lets you get down to very
detailed and specific editing of most
parameters. Each of these views provides
vertical and horizontal zoom tools for
quick adjustment. You can also save the
views as layouts that reappear exactly as
you set them up.

Pro Audio 9 also provides windows that
perform special functions including tempo
and time-signature changes, markers,
SYSX to control SYSX (system exclusive)
messages, Studio Ware (virtual templates
of your MIDI gear), a large time readout
called Big Time, a video import, and a
lyric view. All of these different views and
windows contribute to the power of the
software and make it highly customizable
to fit individual tastes.

Cutting the Cake

R ecording MIDI and audio are
extremely easy in Pro Audio 9. On

each track you can select input/output
source, instrument, port, patch, and just
about anything that’s configurable on a
micro level. Setting up tempo, punch
in/out recording, loops, multiple channels,
channel mutes, and solos are all straight-

forward. You can record in real time or in
Step (pattern) mode, whichever suits your
style. You can use clips (prerecorded snip-
pets of MIDI and/or
audio) by drag-and-
drop or cut-and-paste,
and you can link all of
your clips so that any
change made to one
clip will happen to all
of them.

Arranging and editing
your tracks after record-
ing is also intuitive and
again the options are
many. Markers can be
added anywhere in the
song, named according-
ly, and accessed via key
commands or toolbar
icons with ease. MIDI effects such as arpeg-
giator, echo, filtering, and transposing are
accessible via pop-up menus. Time Stretch
and Shrink, which allow you to fit a section
or sequence to a specified time or length,
are great post tools for that one track that
hangs a half-second past fade. Tell Pro
Audio 9 you need to fit it within a certain
time frame and it will do the rest. Audio
tracks can also be changed by as much as
400 percent or as little as 25.

Quantizing is powerful and precise in
Pro Audio 9. The resolution can be set to
any note value and can be offset anywhere
across a grid (adding or deleting, for exam-
ple, five ticks in one measure) to shift the

track in any direction.
You can even set
parameters like
Strength, Swing, and
Window, which all
effect which notes
get quantized and
by how much.
Groove quantizing
lets you apply an
imported or con-
structed groove to
any part of your
song. Want to be on
top of the beat, or a
tick behind with
every third kick
drum? Set up a
groove, apply it to
the track, and start

grooving. There’s also an option called Fit
Improvisation that will create a tempo map
without changing the feel or performance,

for those times when you have a
killer idea and want to lay
it down without setting up
a tempo or time signature.

Drum sequencing and
editing are greatly
enhanced through the
Session Drummer MIDI
plug-in. Much like a regu-
lar drum machine, pat-
terns and parts can be
selected and edited with
ease. Because it accepts
standard MIDI files, dif-
ferent styles and patterns
can be created and used in
any song. Also new for Pro

Audio 9 is the Style Enhancer, another
MIDI plug-in that adds feels to existing
tracks. There are many styles and each is
available for multiple instruments, which
can greatly enhance a track with a feel
you might not be familiar with.

Out of the Oven

R ecording and editing was easy, and
the program was stable as long as I

didn’t have any other programs running. I
have a 400MHz Pentium II with 96MB of
RAM, so bumping up to at least 128MB
would help. There are a ton of extras,
like the pile of MIDI songs covering every
musical style imaginable. The plug-ins are
also good, especially the Session Drum-
mer and Style Enhancer, and can help
inspire you when your creativity is run-
ning low. They are also great tools for
seeing how a song is written, or how
using controllers for pitch bend or other
“feel” things are done. SYSX control is
well implemented, allowing you to load
patches on all your gear every time you
open a sequence. Once you learn how to
set up your synths through SYSX com-
mands, you can save a lot of time by
avoiding having to load all of your pre-
sets by hand.

With MIDI/audio integration, you can
automate nearly everything. Stop and
start anywhere in the track, and there’s
your mixer, built right in, with good qual-
ity effects and incredible control.

One possible working setup, showing the mass of toolbars across the top,
the mixing console and piano roll view, and notation across the bottom.

XXXXX

XXXX

XXX

=XX

X

excellent

very good

average

fair

don’t bother

Punching in and out of a guitar or vocal
track is painless and automatable, and
mistakes such as hand noise or hum can
be edited and fixed in seconds. Pro Audio
9 has lots of interesting plug-ins, too, like
the vintage amp sim, reverb, and the
usual flangers and choruses. While it has
its share of editing tools, there’s support
for an external editor (Sound Forge XP is
included) to make professional editing a
snap. There’s even a way to turn audio
information into MIDI note information
on monophonic tracks, which can then be
treated like any other MIDI track. The
bottom line is, Pro Audio 9 integrates
audio with MIDI quite well and includes
some great tools to manipulate it with.

My main complaints are the window
clutter and dull Windows interface.
There’s a lot of stuff going on and it’s
very busy, but they might have achieved
the same level of control with a more
streamlined interface. While the appear-
ance is color-customizable, you’re still
stuck with a mundane interface. Looking

pretty doesn’t get the job done any better,
but it can definitely inspire greatness.
How many times have you been turned
on to a piece of gear because it looked
cool or had some crazy colored lights? It
would have been nice if the Console
view’s appearance had been reflected
throughout the whole program. But in
light of the program’s functionality, the
aesthetics are trivial: If it works, don’t
break it. And Pro Audio 9 works.

Other than these few minor UI com-
plaints and technical-support shortcom-
ings, Pro Audio 9 is everything it aims to
be and certainly deserves its popularity.
While there’s not enough here to make
me abandon my Mac, Pro Audio 9 would
be my first choice for a top-notch PC
sequencer. For the professional who needs
to tailor his or her tracks with fine detail,
this is a software package that can handle
any project with great flexibility, strong
performance, and the support of a num-
ber-one seller, so you can have your cake
and eat it too. q

STATS
CAKEWALK

Cambridge, Mass.
(888) CAKEWALK or (617) 441-7870
www.cakewalk.com

PRICE: $429
SYSTEM REQUIREMENTS: 200MHz Pentium II,

64MB RAM for Windows 95/98; 300MHz
Pentium II, 128MB RAM for Windows NT.

PROS
1. Easy setup for audio and MIDI with your

PC’s sound card.
2. Excellent collection of MIDI files, song

styles, and tutorials; good plug-ins for
MIDI and audio.

3. Extensive online support through news-
groups and users’ groups.

CONS
1. Boring interface; extremely cluttered

toolbars.
2. Lack of assistance in setting up external

MIDI interfaces and complicated MIDI
studios.

3. Poor e-mail support.

PRO AUDIO 9 XXXX

w w w . g d m a g . c o m 13

A s a kid who grew up on
1970s television, I was fasci-
nated by the amazing
advances in science shown
to me every night. I watched

the government establish a moon base on
Space 1999 and Leonard Nimoy telling me
aliens may have built Stonehenge on In
Search Of.... I also knew that if you were
important, good looking, and in a terrible
accident, the government could rebuild you
and make you better than you were, like in
The Six Million Dollar Man. A lot of kids
my age were fascinated with the idea of
bionics. I am sure the boys at least pon-
dered Lindsay Wagner and the implications
of a bionic woman.

Here we are in the year 2000. Alas,
1999 came and went without a moon
base. We still have no real idea how any-
one could have built Stonehenge. However,
it is starting to look like bionics may
become a reality. The idea of stimulating
nerve cells with electrical impulses has gen-
erated a lot of possibilities for treating
physical disabilities. For example, cochlear
implants have become a promising treat-
ment for some types of deafness. More
recently, Christopher Reeve’s high-profile
struggle with paralysis has opened many
eyes to the possibilities of electronic stimu-
lation of muscle tissue for locomotion.

Bionic Animation

W hen it comes to animation, we are
still in the fairy tale days. Our

characters are like Pinocchio. We control
them by pulling on the limbs and bones
directly, much as a puppeteer controls his
marionette. Creating realistic-looking ani-
mation this way is very much an art.
However, if we were to move a character
by simulating the actual physical mecha-
nisms that make a real person move, we
would get realistic animation automati-
cally. At least that’s the theory. In prac-
tice, controlling a character through a
physiological simulation would be a

major challenge. However, that doesn’t
mean we can’t experiment with new tech-
niques for locomotion.

Recently, I decided that I wanted to ani-
mate a dolphin. My typical approach
would be to create a polygonal model and
embed a simple skeletal system within the
object which would be used to animate it.
I could then create a set of animations to
cause the dolphin to look like it was swim-
ming and turning. However, this type of
animation would not allow the dolphin to
react to situations such as obstacles and
changes in water flow. So I thought it
would be interesting to attack the problem
as a physical simulation.

Last month (“In This Corner... The
Crusher!” June 1999), I used a mass-and-
spring system to manipulate a free-form
deformation lattice. Now, a dolphin is not
exactly a soft-body object, since it has an
internal rigid skeleton. However, dolphins

do move in a very fluid and soft manner.
Demetri Terzopoulos has written about the
use of a spring system to create artificial
fishes (see For More Information section),
so it seemed like a promising approach.

Building an Artificial
Dolphin

I start with my dolphin mesh as you can
see in Figure 1a. From this model, I cre-

ated a low-level physical representation of
the dolphin shown in Figure 1b. This con-
trol mesh represents the basic surfaces
that I will need for the physical simula-
tion. The key pieces are the tail fluke,
which will provide the basic propulsion,
as well as the dorsal and pectoral fins,
which will keep the model from turning
over while locomoting.

In order to create the physical simula-
tion, I need to take this control mesh and

The Six Million Dollar Dolphin
Virtual Bionic Characters

A U T H O R ’ S B I O | When not out hanging with the dolphins at the beach near his home,
Jeff can be found at Darwin 3D thinking about the waves. Knock him off his board with a let-
ter to jeffl@darwin3d.com.

j e f f l a n d e r G R A P H I C C O N T E N T

turn it into a mass-and-spring system. This
is quite easy as I simply convert the ver-
tices in the control mesh into mass points,
and the edges that connect them become
the base springs. In order for the object to
maintain stability, I need to add crossbeam
supports much as I did in the FFD simula-
tion last month. Once this is accomplished,
I end up with a mass-and-spring system
that looks like Figure 2.

If I drop that into my physical simula-
tion with the gravity turned off, it will

float through the simulation space. It will
bounce off any objects or surfaces it col-
lides with, generally acting like a blobby
marine mammal that doesn’t move much.
In order to make the object move, I need
to add some muscles.

Adding the Bionics

T o get things moving, I want to create
some virtual muscles. It seems that

they should be positioned in place of some
of the existing structural springs in the
object, so let me take a minute to review
the mathematics of these springs. The
springs in the simulation are a combina-
tion of a linear spring force and a damping
force as defined by Hook’s spring law.
This formula relates a spring force, f,
between two particles, a and b.

The stiffness of the spring is defined by
the spring and damping coefficients, ks and
kd. The value l is known as the rest length
of the spring. This defines the desired dis-
tance between the two particles as set in
the initial mesh. This rest length is the key
to creating a virtual muscle. If I were to
dynamically decrease the rest length of a
spring, it would begin to contract, causing
a force that brings the two particles
together.

I can define a maximum contraction
amount for each muscle. For example, I
may want a muscle to contract to 50 per-
cent of its rest length. The maximum con-
traction becomes 0.5 times the rest length.
I can then use a percentage in the range of
0 to 1 as an activation value to make the
muscle go from rest to the 50 percent
length target.

Figure 3 shows the control mesh with
some springs activated as muscles,
marked in dark orange. The first frame
shows the start of the simulation, then
the muscles start contracting to create the
second frame.

Controlling the firing of the muscles is
a job for some form of primitive AI sys-
tem. A dolphin swims by contracting
muscles that cause the animal to arch its
back in an alternating up-and-down
motion. I can simulate this by first con-
tracting the muscles along the top and
then the muscles along the bottom. This
is most easily accomplished with a sine
wave that is scaled into the range of 0 to
1. I then offset the phase of the two sets
of muscles by 180 degrees. That way,
while the top muscles are contracting, the
bottom muscles are relaxing. I can con-
trol the speed of contraction by increas-
ing the wave frequency.

Moving Through the
Water

T he use of this primitive brain to cause
muscles in the simulated dolphin to

contract achieves the effect of making the
dolphin bend back and forth. However, it
does not really move anywhere in the sim-
ulated environment. That’s because there

f k l r k
l l

l
l
l

f f

l a b

l v v

a s d

b a

a b

= − −() + −











= −

= −

= −

˙

˙

j u l y 2 0 0 0 | g a m e d e v e l o p e r14

G R A P H I C C O N T E N T

FIGURE 2 (top). The dolphin’s mass-and-spring
system.
FIGURE 3 (bottom). The muscles in action.

FIGURE 1A (left). The dolphin mesh we start out with.
FIGURE 1B (right). The control mesh we’ll use in our simulation.

are no forces actually causing any propul-
sion. The key to making the dolphin swim
through the water is hydrodynamics. I
need the movement of the dolphin’s tail
fluke to displace virtual water and cause
forward motion.

You can see how this happens in Figure
4. Vector n is the normal to the surface of
the control mesh. Since the positions and
velocities for all nodes in the control are
calculated in the simulation, I can examine
directly the velocity vectors of each node
in the system, for example va and vb. For
each triangle in the control mesh, let me
use the formula

where A is the area of the control triangle
being tested. As you can see, if the veloci-
ty of a particle in the control mesh is
moving in the direction of the surface
normal, I will get the maximum force on
that node. The force is divided by three,
since three nodes make up a control tri-
angle. If the velocity vector is either
pointing in the opposite direction from or
tangential to the sur-
face, no displace-
ment force is creat-
ed. This is exactly
the behavior that I
want.

However, I need to
determine the surface
area of the control
mesh triangles quick-
ly. Since the object is
a soft body, the posi-
tions of the control
mesh vertices change
during the simula-
tion. I will also need
to calculate the sur-
face normals for
each triangle.

A very common
3D graphics opera-
tion is calculating the
normal to a triangle
by using the cross
product of the two
vectors that make up
the triangle. How-
ever, another key
benefit of the cross

product is that the magnitude of the cross
product of two vectors is equal to the area
of the parallelogram that the vectors
describe, as you can see in Figure 5.

So the area of the triangle is equal to
half the magnitude of the cross product.
That means I can rapidly calculate the nor-
mal of a triangle as well as get the area of
the triangle by using the cross product.

I can use this information to calculate
the normals and the area at each control
triangle and apply the hydrodynamic
force to each control vertex. The dolphin
now swims forward and the aerodynamic
design of the control mesh automatically
serves to keep the dolphin upright. In
fact, I can even use this aerodynamic
capability to control the direction the dol-
phin swims.

Controlling the Animal

Dolphins move by subtly changing the
direction their tail is moving as well

as changing the direction of their head
and the attitude of their pectoral fins. I
can control my virtual dolphin the same

f
A n v n

= −
•()











min ,0
3

w w w . g d m a g . c o m 15

a

bc

A = | ac x bc |

FIGURE 4 (top). The dolphin in motion.
FIGURE 5 (bottom). Area of a parallelogram.

va

n vb

16

G R A P H I C C O N T E N T

way. Direction-control muscles can be
activated on the neck and pectoral fins to
guide the steering of the dolphin much in
the way that one might maneuver a
radio-controlled glider. These same con-
trols can also be used to adjust the pitch
of the pectoral fins, causing the dolphin
to swim lower or higher in the water col-
umn. I have found that these muscles
need only contract very slightly to affect
the animal’s direction.

In his paper, Demetri Terzopoulos
describes using a learning system to opti-
mize the motor-control parameters to
achieve goals like maximum speed efficien-
cy. I did not experiment with any learning
algorithms for the dolphin, choosing
instead to tune the parameters by hand. I
think a learning system would greatly
improve the performance and it’s some-
thing I would like to investigate further in
the future.

These low-level steering controls could
be combined into high-level behaviors to
achieve things such as schooling and
threat-avoidance among multiple synthet-
ic dolphins. It’s clear that many of these
techniques can be applied directly to real-
time game simulations.

Final Display

Once the dolphin is moving with the
muscle system, I want to render it. I

could just render the control mesh direct-
ly, though it is not very interesting visual-
ly. However, the control mesh can be used

to determine the position of the
bones in the animal. I position
bones at key locations along the
animal’s spine and use the posi-
tion of the control mesh to deter-
mine the orientation of the
bones. These bones are weighted
to the display mesh based on
proximity and the mesh is ren-
dered using the same matrix
deformation system that I used in
the FFD demonstration last
month. This gives me a visually
detailed render model that is ani-
mated using the simple control
mesh.

Other Creatures

I also spent some time designing other
creatures. Instead of a swimming animal,

I created a four-legged walker, which you
can see in Figure 6. This creature makes use
of a friction model to move itself forward.
However, the control sequence for the mus-
cles on this creature is much more compli-
cated than for the dolphin. I had a very
hard time producing any gaits besides a
simple walk. This is a case that would bene-
fit greatly from an automatic learning sys-
tem for the animation sequencer.

It’s relatively easy to create a creature in
a modeling package and bring it into the
simulation. Attach a few springs and mus-
cles, and away it goes — usually collaps-
ing into a heap of vertices on the floor.
However, achieving a stable object is pret-
ty easy. The tricky bit is coming up with a
locomotion algorithm that works as well
in practice as it did when you thought it
up. I would like to try a slithering gait
based on directional friction as Gavin
Miller described in his research on snakes
and worms (see For Further Info). It
seems like that would look very interest-
ing in a real-time game and I’m confident
the performance would be much better
than the 30 seconds per frame that Miller
needed when he did his work in 1988.

Other Methods

R ather than using the soft-body mus-
cle-based technique for animating the

characters, I could have driven the skele-
ton of the dolphin directly. In place of

using springs as muscles, I could have used
torques to dynamically change the orienta-
tion of each joint in the character. That
would have probably simulated how an
actual dolphin moves more accurately, but
that would have required me to use a fair-
ly complex articulated body solver to
determine the dynamics of the system. If
you are interested in pursuing that direc-
tion for dynamic animation, I suggest you
check out Jessica Hodgins’ and Chris
Hecker’s presentations from this year’s
Game Developers Conference. That mate-
rial will get you going with a hopper at
least, if not an articulated dolphin.

For now, play around with the muscle
simulator and see what you can create.
This application can be greatly improved
by creating a more robust controller UI.
The control parameters could also be
optimized through the use of a learning
technique as I mentioned above. Get
started by grabbing the source and appli-
cation off the Game Developer web site,
www.gdmag.com. q

j u l y 2 0 0 0 | g a m e d e v e l o p e r

B Terzopolous, Demetri, Xiaoyuan Tu, and

Radek Grzeszczuk. “Artificial Fishes:

Autonomous Locomotion, Perception,

Behavior, and Learning in a Simulated

Physical World.” Artificial Life Vol. 1, No. 4

(December 1994): pp. 327–351.

B Miller, Gavin S. P. “The Motion Dynamics of

Snakes and Worms,” Computer Graphics

Vol. 22, No. 4 (August 1988): pp. 169–173.

B Hecker, Chris. “Simulating a Locomoting

Character.” Game Developers Conference

2000. Go to www.d6.com/users/checker/

index.html for more information.

B Hodgins, Jessica. “Controlling a Locomoting

Character.” Game Developer’s Conference

2000. Go to www.gvu.gatech.edu/

~jessica.hodgins/ for more information.

SODACONSTRUCTOR
www.sodaplay.com/constructor/index.htm

This is a cool application on the web that quite

a few of you have written me about. It allows

you to create a simple 2D mass-and-spring

object and animate it using muscles in a nice

Java interface.

F O R M O R E I N F O R M AT I O N

FIGURE 6. The walker. This creature relies on friction to
propel itself.

M orphing between 3D
objects is not all that
new to computer graph-
ics. If you have seen
even one big-budget,

blockbuster Hollywood movie in the last
five years you have seen 3D morphing in
action. However, the technique holds
exciting new possibilities for those of us
working with real-time 3D graphics. As
gaming technology closes the gap between
prerendered movies and real-time 3D, we
will see morphing used for special effects
and magical transformations more often.
As artists continue to experiment more
with mor-
phing, new
problems
and tech-
niques are
sure to
come up.
This article
will explore
one such
problem,
morphing
between
objects that
have different numbers of vertices, and
the techniques that came out of working
around it.

In games today, the most prevalent use
of morphing is for bringing characters to
life through facial animation and lip-
synch. This is done by creating morph
targets of the character smiling, frowning,
mouthing different phonemes, and so on,
and morphing between them. This is a
relatively easy process for an artist to set
up, at least from the point of view of get-
ting the morphing to happen. However,
animating it and making it believable is a
whole other art form, and the subject of
another article. In its most basic form, the
procedure for setting up a character
model for morphing lip-synch is as fol-
lows. First, make as many clones of the

object as there are morph targets. Next,
carefully adjust the key vertices on each
new model to form different phonemes
and expressions. Finally, animate the
model, morphing between the targets.
Animation is usually set up with the help
of a morphing utility that allows you to
assign each morph target to a separate
channel and animate a blend between sev-
eral targets. 3D Studio Max 3 ships with
a modifier called Morpher that works in
this way.

The above example, with the same
number of vertices in an identical order, is
the simplest scenario for creating a

morph. By
using a
clone of
your object
for each
morph tar-
get you are
ensuring
that the
morph will
work, but
what if you
want to use
morphing

for something other than lip-synch? What
if you need to morph between two or
more separate objects that were created
independently of each other and have dif-
ferent vertex and polygon counts?

Enter the party girl and the beast (Fig-
ure 1). Is it possible to take a 1,770-poly-
gon, 921-vertex model of the party girl
and morph it into a 1,068-polygon, 536-
vertex gorilla head? I explored several
possible ways to accomplish this with 3D
Studio Max (other 3D packages will most
likely have similar tools). But before we
get ahead of ourselves, let’s start with
some basics about morphing.

Morphing Basics

In simplest terms, morphing is the
process of taking one shape and trans-

forming it into a different one. In the
world of 3D object creation, there are two
basic requirements for setting up polygon-
based models for morphing. The first is
that all the objects that are going to be
used for the morph must have the same
number of vertices in each piece of geome-
try. The second is that the vertices in each
model must be arranged in the same order,
which I will refer to as surface order.

Why is this? Behind the magic of morph-
ing is a software algorithm that takes the
physical features of one object (Object A)
and gradually transforms them into the fea-
tures of another object (Object B). Obvi-
ously, a computer doesn’t understand
which of Object A’s features correspond to
which of Object B’s, so we have to specify
that explicitly. Giving an object’s vertices a
specific number that has a corresponding
number in the object that it is morphing
into accomplishes this. The computer then
knows to move Object A’s vertex 20 to ver-
tex 20 on Object B. If A’s vertex 20 is in
the upper-right corner of the model and B’s
vertex 20 is in the lower-left corner, then
Object A will appear to flip upside down as
it changes into Object B. If there are more
vertices in Object A than in Object B, you
will not be given the option of morphing at
all. This is why the lip-synch example
above works so well. By taking clones of
the original model and simply moving ver-
tices around, being careful not to add or
delete any, you are ensuring that the mod-
els will all have the same vertex count and
surface order. Your character will spring to
life and the morphing will work right away.

This brings us to our current dilemma of
morphing between the human and the

Beauty and the Beast
Morphing Mayhem

w w w . g d m a g . c o m 19

A U T H O R ’ S B I O | Lisa Washburn has successfully morphed back into her real job, run-
ning her RT3D art production company Vector Graphics (www.vectorg.com). Send comments
and questions to article@vectorg.com.

FIGURE 1. Morphing a woman’s head into a gorilla’s presents a formi-
dable challenge because of their different vertex and polygon counts.

l i s a w a s h b u r n A R T I S T ’ S V I E W

gorilla head. As the models stand now, we
do not have the option of morphing them.
Before we begin looking at how we can
make these two objects morph, let’s take a
closer look at the models.

The gorilla head model — let’s call him
Bobo — consists of four separate pieces of
geometry. There is a separate sphere for
each eye, a piece for the lower jaw, and
then the bulk of the head. For the sake of
simplicity, I’m only going to morph the
bulk of the head, which as I mentioned
before has 536 vertices and 1,068 faces.
The human female head, which we will
name Vivian, is all one piece of geometry
with 921 vertices and 1,770 faces.

So what are our options? To be able to
morph, we must first rebuild the models so
that they have the same vertex count. If you
are starting as I am with models that have
already been textured and mapped, this isn’t
the best news, as you will have to re-create
the mapping. If you are using Max and you
haven’t collapsed the object’s modifier
stack, simply make a clone of the original
model, hide it, and use it later to acquire
the mapping information. There are four
different procedures that we’ll try in order
to rebuild the models so they share the
same number of vertices in the same order.

Cloning

T he first and most obvious procedure is
to clone one of the objects and

rearrange the vertices until they match the
other object’s. As long as you don’t divide
any edges or weld up any vertices, you are
guaranteed a model that will morph. This
works very well for objects that are similar
in shape, size and vertex count, like the lip-
synch example mentioned above. However,
for radically different models, particularly
those with very high polygon counts, this
can be an extremely tedious, time-consum-
ing, and messy operation. To apply this to
my example I cloned Vivian, who has the
higher vertex count. After scaling the model
up to be a bit bigger than Bobo’s head, I
began using Max’s 3D Snap tool to snap
vertices into place. After I got four or five
into place, I began to realize that I would
have to do this 921 times! Then, I would
have to turn edges and deal with where to
put the extra vertices. Even if I used Bobo’s
head as the clone, I would still have to

move 536 vertices by hand. This is clearly
not an elegant solution. What if I had 100
models that I needed to morph? What if the
models were 30,000 vertices each? There
must be an easier way.

Shrink Wrap

T he next option came out of a brain-
storming session with some colleagues

on possible ways of automating the cloning
option above. How could we maintain the
vertex count and surface order that results
from cloning the object, yet not have to go

through the tedious effort of moving each
vertex manually? Shrink-wrapping popped
into the conversation. What if you had an
object, for example a sphere, that you could
shrink wrap onto other objects? If you took
clones of the same sphere and wrapped
them around different objects, theoretically
you would be able to make perfect copies of
your original objects with the same vertex
count, and therefore be able to morph
them. Several 3D packages already have a
similar tool. In Max it’s called Conform and
works by projecting the vertices of one
object onto the surface of another. You are
given a couple of choices on what direction
you want the vertices to be projected. Max
also has a Conform Space Warp, but the
Conform compound object is more applica-
ble to what we are trying to do.

There are two different ways to approach
a procedure like the Conform tool. One is
to create an object independent of the mod-
els that you are interested in morphing,
making a clone for each model, and then
conforming each independent object to a
different original model. The main advan-
tage to this technique is that you can con-
trol the number of vertices in the final
object. If neither of your original models
has the vertex and polygon count that you
need for the final objects, then this tech-
nique can get you the numbers that you
need. To test this out on my two heads, I
created a sphere of 482 vertices and 960
faces and then cloned it. I then selected
Bobo’s head, aligned and centered the pivot
point, and did the same to Vivian’s head. I
then aligned a sphere to each of the original
objects and scaled them to be a bit larger
than the models that they would be con-
forming to. I generated the conform objects
using the Along Vertex Normals option and
was struck by two things. The first is that
the Conform tool has a bug that occasional-
ly combines the original model into the con-
form object. The other is that the resulting
model was blobby and missing the details
that I had so carefully modeled into my
faces, as you can see in Figure 2. I was able
to get around the bug by clicking the Hide
Wrap-To Object under Update and setting
the Standoff Distance under the Wrapper
Parameters to 50 and then back to 1. The
blobbiness problem was not so easy to get
around, however. Theorizing that the prob-
lem might have been caused by the sphere

j u l y 2 0 0 0 | g a m e d e v e l o p e r20

FIGURE 2. Sphere conform results for Vivian
(top) and Bobo (bottom), showing the original
model, the low-resolution results, and the high-
resolution results.

A R T I S T ’ S V I E W

having fewer vertices than the object that it
was conforming to, I replaced the 482-ver-
tex sphere with a 3,282-vertex one. This
worked well for Bobo’s head with the Con-
form object, even getting the modeled nos-
trils. The result for Vivian’s head, though,
wasn’t much of an improvement over the
lower-resolution sphere. The detail in her
mouth and nose are completely gone.
Another issue to take into account is that
Vivian had originally been modeled with
vertices placed in key facial muscle loca-
tions for lip synch and facial animation.
This setup is completely missing from the
uniform mess of the Conform compound
object. Ultimately this technique did morph,
and might be useful for objects that don’t
have a lot of detail. Still, the resulting mod-
els were not close enough to the originals
for my purposes.

Another way to use the Conform tool is
to make a clone of one of the original mod-
els and wrap it onto the other model. I tried
this first by making a clone of Bobo’s head,
aligning it to cover Vivian’s head complete-
ly, and clicking the conform button. The
resulting model was very strange, as you
can see in Figure 3. Some of the details of

the original model, such as the vertices that
make up the nostrils of Bobo’s nose, were
still preserved in the new model, simply
having been flattened out and pushed into
the shape of Vivian’s nose. Working in the
opposite direction, Vivian into Bobo, pro-
duced the same strange results. Although
the conform or shrink-wrap concept has
potential, its execution needs to be more
specific. There needs to be a more intelli-
gent way of figuring out where the vertices
should go when they wrap to the second
object.

Cross Section

A nother rebuilding option that came
out of our brainstorming session was

the use of cross sections. What if we had a
black box that would take each model, slice
it into a specific number of cross sections,
normalize the number and order of the ver-
tices on each cross section, and regenerate
the model? This would allow us to create a
number of models that have a set number
of vertices in a set order. I set about figuring
out how to do this in Max.

Cutting the model into cross sections was
a piece of cake with Max’s Section

Object. Basically the Section
Object is a rectangular plane that
you move and rotate to where
you want to generate a cross-sec-
tional spline. You then hit the
Create Shape button under the
Modify panel and you get a 2D
outline of your model at the point
through which the Section Object
was slicing. This is illustrated in
Figure 4. The next question is
how to take the cross section
shapes and normalize the vertex
count and order. This took a lot
of searching through Max plug-in
sites on the web, but I finally
found a plug-in called Hspline
from Habware (www.habware.at/
duck3.htm). This shareware plug-
in allows you to normalize the
segments of the spline either by
the number of segments or by seg-
ment length. By selecting all the
splines and applying Hspline, you
generate a set of shapes that all
have the same number of vertices
and all the vertices will be evenly

spaced apart, which you can see in Figure 5.
By creating the same number of Section
Objects for each model that you want to
morph, and with each Section Object hav-
ing the same number of vertices, you will be
creating models that will be able to morph.

The next issue is generating a model from
the new splines. Searching through Max
again I came up with the Cross Section
modifier. This modifier generates a spline
skeleton or cage by connecting the vertices
of different shapes in the same object. It is
also dependent on vertex number and order,

j u l y 2 0 0 0 | g a m e d e v e l o p e r22

FIGURE 3. Conforming a clone. This technique produced some
odd-looking results, but still has promise for the future.

FIGURE 4 (top). The Section Object.
FIGURE 5 (bottom). Normalized spline with ver-
tex numbers.

A R T I S T ’ S V I E W

so the Hspline plug-in was a real lifesaver
for this part of the procedure as well. Hav-
ing the same number of vertices on each
spline makes the Cross Section modifier
work much more smoothly.

One tip for using the Hspline to facilitate
the Cross Section modifier is to go through
each spline and check for three things. First,
verify that there is indeed the number of
vertices on each spline that you dialed in, as
sometimes Hspline puts an extra vertex on
top of the first vertex. Second, make sure
that the order of the vertices goes in the
same direction for each spline. If the order
of vertices is clockwise on one spline and
counterclockwise on the next, the Cross
Section modifier will create a twisted spline
cage. To access the vertex numbers in Max,
select the spline, go to Sub-Object > Dis-
play, and click the box that says Show Ver-
tex Numbers. To reverse the order of the
vertices, go to Sub-Object > Spline and hit
the Reverse button. The third thing to look
for is whether the number-one vertex is in
approximately the same location for each
spline. Cross Section uses the vertex num-
bers to connect vertices, so if the first vertex
on each spline is in a different place you’ll
again end up with a twisted spline cage.

Before you apply the Cross Section modi-
fier, you have to attach the splines within
each object. This is very important, as the
order in which you attach the splines to
each other determines the surface order of
the vertices in the object. For example, if
you attach the splines from bottom to top
in Object A, and top to bottom in the
Object B, when you go to morph A into B
the model will turn upside down. If you
attach both models top to bottom, then the
model will remain right side up. A quick

warning here is that if you attach the
splines in a haphazard order, for example
you attach the first to the third, then to the
second, then to the fifth, and so on, the
Cross Section modifier will generate a cage
that follows that order, generally resulting
in a twisted mess.

After you apply the Cross Section modifi-
er, which gives you the spline skeleton, the
next step is to apply a Surface modifier. The
Surface modifier generates a patch skin
based on the vertices in the spline skeleton.
Taken together, the Cross Section and Sur-
face modifiers are referred to as Surface
Tools in Max. The nice thing about the sur-
face modifier is that it generates a patch
object that gives you the option of dialing
up or down the steps in the Patch Topology.
This increases or decreases the complexity
and ultimately the face count of the model.

I tried this procedure with two simple
shapes and it worked beautifully, so the
concept is correct. Does it work for models
as detailed as Vivian and Bobo? In a word,
no. Basically, I had the same problem with
the rebuilt model with this procedure as I
had with the Conform tool — the resulting
model is not close enough to the original,
as you can see in Figure 6. Also, this proce-
dure requires a lot of tweaking and manip-
ulation of the splines to get the Cross Sec-
tion tool to create a spline cage that is not
severely twisted and therefore unusable.
This brings us to the fourth option.

Plug-ins

S urprisingly, I found no commercially
available Max plug-ins to accomplish

this task. I did find one shareware plug-in,
but it was very difficult to set up and did-

n’t work in the end. I posted to several
mailing lists asking if anyone knew of any
and didn’t get a single response. Obviously
there is a need waiting to be filled (hint to
those of you more industrious readers out
there). If I were writing a wish list for this
plug-in, I would want something that cap-
tures, as close as possible, the original
location and placement of the vertices on
the original model, as well as allows mor-
phing of mapping coordinates. A tall order
perhaps, but it never hurts to ask.

Where We Stand

S o can a wild-eyed party girl from the
wrong side of the tracks mutate into

a snarling beast? In a nutshell, not quite
yet. Morphing between two independent-
ly created, highly detailed character mod-
els with different vertex counts is not an
easy task. It’s possible if your models are
simple shapes and you don’t have a lot of
specific detail that you need to preserve.
Many models that you might want to
morph do fall into this category, for
example a sack of gold into a sword, or
one type of car into another. Even morph-
ing Bobo’s head into a less detailed char-
acter would have worked with the shrink
wrap technique.

However, rebuilding models that are
highly detailed and need to have vertices in
specific places (for example if you need to
create the effect of facial muscles for lip-
synch, like with Vivian) is still difficult to
automate. We need a tool that automates
and streamlines this procedure. Imagine the
story line possibilities of being able to
morph easily between characters in a game,
characters and other objects (such as cars,
dinosaurs, or dust clouds), or into a char-
acter from a different game altogether.
Think about the production time you
would save if you could take a commercial-
ly modeled object and morph it with one
you created. The possibilities are endless,
and hopefully just around the corner. q

j u l y 2 0 0 0 | g a m e d e v e l o p e r24

FIGURE 6. Left: Original model modeled in wireframe. Center: Cross-sectional splines of the head.
Right: Initial results of Cross Section modifier.

Special thanks to Michael Hultner of Anatomix

(www.anatomix.com) and Kent Suzuki of Right

Brain Electronics (www.rightbrainelectronics.com)

for helpful discussions during the preparation of

this article.

A C K N O W L E D G E M E N T S

A R T I S T ’ S V I E W

Go with

j u l y 2 0 0 0 | g a m e d e v e l o p e r26

A U T H O R ’ S B I O | When he’s

not sitting around radiating potential, Brian’s probably

busy furthering the secret OpenGL agenda. Either

that, or he’s likely doing the same thing he does

every night, Pinky — trying to take over the

world. Send preemptive bribes and/or

tribute to brian@maniacal.org.

the f low :

I M P L I C I T S U R F A C E S b r i a n s h a r p

w w w . g d m a g . c o m 27

Improving Fluid
Rendering Using

Implicit Surfaces

Illustration by Spencer Lindsay.
Created with RealFlow In 3D Studio Max

M
aybe it’s just me, but it
seems like games have
always had something of a
love-hate relationship with
fluid. We’ve been using

water, lava, and the like for a very long time. For
many years, games such as ULTIMA UNDERWORLD

had 3D-rendered water and lava — rendered as
flat, textured planes. At the time, that was an
impressive part of a very impressive engine.
Today, that engine is objectively obsolete, having
laid the initial groundwork for today’s flashiest
polygon-pushers.

j u l y 2 0 0 0 | g a m e d e v e l o p e r28

In spite of other advances in game tech-
nology, however, the flat-plane approach
to water has remained fairly unchanged.
Perhaps today the water plane is drawn
transparently using an innovative blend
mode. Perhaps it’s broken into more poly-
gons and jiggled up and down a bit. But
the underlying technology (or lack thereof)
has been the same since the advent of real-
time 3D game engines.

It’s a bit of a pet peeve of mine, because
more advanced fluid rendering opens up
the door to some very cool game-play
dynamics. How great would it be if in a
3D real-time strategy game you could
flood an enemy base by diverting a river
through their valley? Or if your opponent’s
base were hydroelectrically powered and
you built a dam upstream to cut off the
river flow, shutting down his power? These
are the kinds of advanced interactions that
a jiggly plane just can’t offer.

So this month and next, I’ll take a stab
at describing one technique for advanced
fluid rendering for games. Note that I’m
not the only person who wants better
water: Jeff Lander has written a few
columns on fluid flow, including overviews
of the Navier-Stokes equation and various
simplifications thereof (“A Clean Start:
Washing Away the Millennium,” Graphic
Content, December 1999, and “Research
on the Rhine: Reflections on Water Simu-
lation,” Graphic Content, January 2000).
Rather than build off of that work,
though, I’m using a different technique, a
surface representation known as implicit
surfaces.

Implicit What?

A n implicit surface can be succinctly
described as an isosurface of a real-

valued 3D function. If that doesn’t make it
crystal clear, perhaps an example will help.
Imagine a hot coal sitting on the ground,
radiating heat outwards. In this case, tem-
perature is our real-valued 3D function: at
every point in a 3D space (the room the
coal is in), the temperature is a real num-
ber — what your programming language
of choice might call a float.

If you pick a specific temperature value
— say, 90 degrees Fahrenheit — and paint
every molecule at that temperature bright
red, you’ll end up with a surface that looks
something like a spherical shell around the
coal. The higher the temperature you pick,
the closer that surface will be to the coal.
That’s an implicit surface, and the temper-
ature you choose is the isovalue. Figure 1
shows a number of the isosurfaces in 2D.

The name “implicit surface” is then fair-
ly straightforward. It’s a surface because
it’s a surface, of course, and it’s implicit
because we don’t have an explicit parame-
terization for it; the 3D function and the
isovalue imply where the surface is.

And These Are Good
For What?

G ranted, it’s not immediately obvious
what you’d use these isosurfaces for.

After all, how many useful real-valued 3D
functions are just sitting around waiting
for you to slap an isovalue on them? It’s
worthwhile, then, to take a look at what
isosurfaces are used for in graphics.

One use of implicit surface rendering is

in medical visualization. Data from an
MRI scan, for example, provides a sam-
pled 3D function of intensity values over
some tissue. The various intensity values
highlight types of tissues. For example, one
might best highlight bone, whereas another
might depict cartilage particularly well.
Clearly, I’m glossing over quite a bit here.
Figure 2 shows a human cortex rendered
with implicit surfaces from MRI data. For
more information on that specific applica-
tion, see the For More Information section
at the end of this article for Paul Bourke’s
web site address. Another use of implicit
surfaces is often referred to as “blobby
modeling.” This is the form of implicit sur-
face modeling that’s common to many 3D

FIGURE 1 (top left). A hot coal radiates heat.

Three different isosurfaces are labeled by tem-

perature. FIGURE 2 (bottom left). A human cor-

tex rendered using implicit surfaces (image

courtesy of Paul Bourke). FIGURE 3 (top right).

A character modeled using metaballs/blobby

modeling in Organica (image courtesy of

Impulse Inc.). FIGURE 4 (bottom right). Fluid

flow rendered using implicit surfaces by Real-

Flow (image courtesy of Next Limit / RealFlow).

I M P L I C I T S U R F A C E S

modeling packages, and it also goes by
monikers such as “metaballs” or “blobs.”
The basic idea is to define the implicit
function with primitives such as points,
lines, boxes, and other geometric shapes.
These primitives radiate potential similar
to the coal radiating heat. That way, when
you place two primitives near each other,
their potential fields sum and the surface
flows smoothly between them. This out-
come tends to produce organic or cartoony
results, and indeed it is good for modeling
things such as organic or balloon charac-
ters and clay figures. Figure 3 shows an
example of a character modeled in
Organica (see the For More Information
box to find details on Organica).

The final use of implicit surfaces is fluid

modeling, which is, not coincidentally, the
focus of this article. The idea is to model
fluid flow through molecular interaction.
Using a reduced number of molecules, you
treat each molecule as a point primitive in
the implicit function, just as you would
point primitives in blobby modeling. That
way, the molecules generate an implicit
function. If you pick an isovalue that pro-
duces a surface of the desired volume and
move the points around using some physi-
cal model of molecular interaction, then
voilà! The technique also scales quite well
— turning up the number of molecules
and tightening the isovalue in on the sur-
face will produce a higher-quality approxi-
mation of the surface. There’s an excellent
non-real-time tool available called Real-
Flow, shown in Figure 4. Clearly, since
this fluid rendering is non-real-time, the
number of molecules can be cranked up
quite a bit.

Hopefully that’s enough to convince you
that implicit surfaces are useful enough to
merit a closer look. Now that you have a
general overview, let’s dig into the specifics
of our implicit surface model.

The Implicit Function

D etails, details... I’ve mentioned how
all these points “radiate potential”

and how the potential “sums” to produce
smooth surfaces, but I haven’t described
exactly how it’s going to happen. So, I’ll
describe the process step by step to try to
keep everything straight.

To start with, one thing that may cause
confusion is the concept of “potential”

radiating from these molecules. Just what
is potential? Well, it’s really a unitless
value and doesn’t represent a meaningful
quantity such as pounds or liters, so per-
haps an analogy might help. Think of the
molecules as radiating some matter — say,
dust — outwards. The dust is very concen-
trated near the molecule, but as we move
away from the molecule, the dust thins out
and is much less dense. In this scenario,
the potential at a certain distance from the
molecule is just the density of the dust.
Figure 5a shows a 2D version of this.
From there, it makes sense that when we
put two molecules near each other, their
density fields add up, producing a thicker
dust cloud between them, as illustrated in
Figure 5b.

However, I haven’t specified at exactly
what speed the dust thins as it moves away
from the point. How to decide? Well, we
can use any function we want; it’s just a
question of whether it fits our needs. Our
only real need is for it to look good, which
entails a number of things. We want the
fall-off to be at least C0 continuous, of
course — that is, it shouldn’t have any
abrupt changes in value — or else the sur-
face might not be smooth or it might even
have open holes.

Since liquids are noncompressible, the
ideal fall-off function would preserve vol-
ume. This means that if we have two mol-
ecules, the surface produced when they’re
far away from each other should have the
same volume as the surface produced
when they’re near each other. Unfortunate-
ly, this is really hard to do in practice. In
fact, there’s no single fall-off function that
will do this for us. Therefore, you should
pick a function that keeps the surface vol-
ume from changing too abruptly.

There’s actually a fair amount of
research that’s been done in this area and a
number of suggested fall-off functions
from various authors, but I’ve chosen to
eschew the well-traveled path and just
make up a function that looks O.K. Given
some distance d away from the molecule,
the value is equal to:

potential d
d

() = −





max ,0
1

1
2

0.0 0.5 1.

po
te

nt
ia

l v
al

ue

distance from molecule

w w w . g d m a g . c o m 29

FIGURE 5A (top left). A single molecule radiates

potential outwards. FIGURE 5B (top right). Two

molecules radiate potential; the potential fields

sum where they overlap. FIGURE 6 (above). The

potential function, (1/d2) – 1. Past a distance of

1.0 the value is clamped to 0.

A graph of this function is shown in
Figure 6. This function has a number of
desirable characteristics. The first is that
while it does require a division, it uses the
distance squared, which you can get from
a vector without a square root. (You’ll be
evaluating this function so many times at
run time that these kind of low-level
details really are significant.)

Another benefit of this function is that
the potential clamps to 0 at a fixed dis-
tance of 1.0 from the molecule. This
means that the molecule only influences
the area within a distance of 1.0 and after
that it doesn’t have any effect. In next
month’s article, I’ll explain exactly how
handy this is, as it allows us to partition
the molecules spatially, greatly simplifying
the job of evaluating the implicit function.

To generalize the function for a single
molecule to a multi-molecule surface, we
have to change the arguments a little. Let
p be the point in space for which we want
to evaluate the implicit function. Then let
ci be the location of the ith molecule
(where the total number of molecules is n).
Then, the value of the function at p is:

In case you read code more easily than
math, the equivalent pseudocode for that
function is shown in Listing 1.

That’s it for the implicit function. The
only remaining part of the implicit sur-
face representation I haven’t discussed yet
is the isovalue, and for good reason:
there’s not really much to it. Just pick a
value, and if the resulting surface doesn’t
look good enough, pick some other value.
Higher isovalues will tighten the surface
in on the molecules, making the surface
seem to have a lower surface tension.
Lower isovalues will expand the surface
away from the molecules and make it
look like it has a higher surface tension.
Of course, the higher the isovalue, the
more molecules it takes to produce a sur-
face of a given volume, so the trick is in
finding a good compromise somewhere in
between.

Rendering

S o far, I’ve covered enough information
that if someone handed you a bunch

of molecules, you could evaluate the
implicit function defined by those mole-
cules at various points in space. That’s
wonderful, but it doesn’t help much with
the real task at hand, which is rendering
isosurfaces of that implicit function.

There are ways to raytrace implicit sur-
faces directly; packages such as POV-Ray
(www.povray.org) yield pixel-perfect ren-
derings of the surfaces. Unfortunately for
us, though, consumer-level 3D hardware
isn’t quite up to the level of real-time ray-
tracing, or even automatically scan-con-
verting implicit surfaces. Therefore, we
need a way to convert our implicit surface
into primitives that the hardware can
understand, namely triangles.

There are a few different algorithms for
doing this. One starts with a rough shell

that contains the surface
and subdivides the shell
until it conforms to the
surface within some
particular error thresh-
old. My experience with
subdivision surfaces
suggests that the subdi-
vision process would be
prone to lots of memo-
ry-thrashing and diffi-
cult to optimize.
Furthermore, maintain-
ing all the connectivity
information to subdi-
vide a mesh is a lot of
confusing, bug-prone

bookkeeping work. I wasn’t too eager to
try that again, so I went with the other
common method of implicit surface tessel-
lation, marching cubes.

Deriving the Vertices:
Marching Cubes

T he idea behind marching cubes is fairly
straightforward. After finding a

bounding box for the entire surface, break
that box into a bunch of smaller boxes to
create what we’ll call “cubelets.” March
through the cubelets (hence the name
“marching” cubes), and for each one poly-
gonize the portion of the surface inside that
cubelet. The result is a polygonal approxi-
mation of the entire implicit surface.

That’s just an overview, and clearly it’s
not much of an algorithm if it doesn’t also
specify how to polygonize the surface
inside each cubelet. To do that, you can
evaluate the implicit function at each ver-

potential p
c pii

n

() =
−

−










=
∑max ,0

1
1

2
0

j u l y 2 0 0 0 | g a m e d e v e l o p e r30

FIGURE 7. Example cubelet configurations and resulting polygonizations. Green vertices are
inside the surface, red are outside.

LISTING 1. Pseudocode to calculate the potential value at a point
given a number of molecules.

potential(Point p)
{

float totalValue = 0

foreach molecule
{

float distance = distanceFrom(molecule center, p)
float contribution = (1 / distance^2) - 1
if contribution > 0

totalValue += contribution
}

return totalValue
}

I M P L I C I T S U R F A C E S

tex, which gives you a floating-
point value for each vertex.
Given those point values and
the isovalue of the surface we’re
trying to find, you can classify
each vertex as either on/inside
the surface or outside the sur-
face (treating on and inside as
the same thing). This is done by
checking the function value at
the vertex against our isovalue
— if the vertex value is less than
the isovalue, it’s outside the sur-
face; otherwise, it’s inside the
surface. This determines how
you polygonize the cube: the tri-
angulation inside the cubelet
needs to separate the interior
vertices from the exterior ver-
tices. Figure 7 shows example
polygonizations for cubes with one, two,
and four vertices inside the surface.

Determining the polygonization that
corresponds to a given configuration of
vertices is somewhat time-consuming.
Luckily, there aren’t that many of them.
Each vertex of the cube can be either in or
out of the surface, which we can represent
with a single bit. There are eight
vertices in the cube, which brings us
to a total of eight bits needed to
represent the surface configuration
completely. That means that there
are 256 different possible cubelet
configurations, which can be stored
easily in a lookup table.

From the lookup table, you can
determine along which cube edges
you need to create vertices, and how
to connect those new vertices
together into triangles. What the
lookup table doesn’t tell you,
though, is where along each edge to
put a vertex. Figure 7 simply places
the vertices halfway along each
edge, but clearly if it were always
done that way it wouldn’t look very
good, especially as the surface ani-
mated — vertices would snap all the
way from the center of one cubelet
to the center of the cubelet next to it
as the surface moved through space.

In practice, you linearly interpolate, or
lerp, between the corners of an edge in
order to find the new vertex. For an edge,
e, you have endpoints v0 and v1. Also, you
have the value of the implicit function at
each of those vertices, so v0 has a corre-
sponding floating-point value p0 and v1 has
p1 (p for potential). Then there is the iso-

value t (for threshold). To find
the new vertex, do the following:

ratio = (p1 – t) / (p1 – p0)
newVertex =

ratio * p0 + (1 – ratio) * p1

This is the simple linear interpo-
lation between the two endpoints
and the result is our new vertex.
Intuitively, if p1 is lying right on
the surface (so p1 equals t), the
ratio value is 0, and the new ver-
tex is at 0 * p0 + 1 * p1, or p1,
just as it should be. If p0 lies
directly on the surface, the ratio
is 1, and the new vertex is at
1 * p0 + 0 * p1, or p0, also as it
should be.

You may be thinking to your-
self, “This marching cubes stuff
is terrible! The surface isn’t going

to look smooth at all if each cubelet just
produces a couple of triangles!” And that’s
true if you don’t use enough cubelets. If
the surface does some involved twists and
turns inside a single cubelet, they’ll be lost
due to undersampling. It definitely takes a
large number of cubelets to produce a
good-looking surface, which is one of the

reasons it’s so important that the
cubelet polygonization be very fast.
Pseudocode for the whole process
of polygonizing a cubelet is shown
in Listing 2.

Deriving the
Normals

T he marching cubes pass has
created vertices and faces for

the mesh but if you want to light
or environment-map them, you’ll
need normals as well. One possible
way to do that is to actually differ-
entiate the implicit function and
find the gradient vector at each ver-
tex; the gradient of the function is
the surface normal at a vertex. Un-
fortunately, there are a few prob-
lems with that.

First, our implicit function isn’t
actually differentiable. Recall that
I said you need to clamp the fall-

polygonizeCubelet(vertices[8])
{

unsigned char config = 0
for n = 0 to 7
{

if vertex[n] is outside the surface
set bit n of config to 1

(otherwise leave it as 0)
}

for each edge in edgesNeedingVertices[config]
linearly interpolate to find the vertex on that edge

for each triplet of triangle indices in triIndices[config]
create a new triangle from those indices using the
new linearly interpolated edge vertices

}

LISTING 3. Pseudocode to calculate both the potential value

and color at a point given a number of molecules.

potential(Point p)
{

float totalValue = 0
Color finalColor = Black

foreach molecule
{

float distance = distanceFrom(molecule center, p)
float contribution = (1 / distance^2) - 1
if contribution > 0
{

totalValue += contribution
finalColor += contribution * molecule color

}
}

// Normalize the color
finalColor /= totalValue

return totalValue and finalColor
}

w w w . g d m a g . c o m 31

LISTING 2. Pseudocode to polygonize an implicit surface inside a

single cubelet.

off function to 0 in order to limit each
molecule’s range. That clamp to 0 is a
first-order discontinuity: the function was
pointing downwards a bit, and we
clamped it to a point directly out along the
horizontal axis. This means that the first
derivative of the implicit function isn’t
continuous, and you may end up with
some odd artifacts if you try to treat it as
though it were.

Furthermore, even if the function were
differentiable, the task of actually finding
the gradients is very slow, as it would
require that we walk through the mole-
cules again for each normal. Instead, I’ve
had good results just making a post-pass
over the triangles and averaging the facet
normals to generate vertex normals.

This system certainly isn’t perfect. First,
the polygonization can often produce tri-
angles of very different sizes, placing some
large triangles next to thin slivers. Second,
because we’re only interpolating the ver-
tices linearly along cubelet edges, the ver-
tices aren’t necessarily exactly on the sur-
face — they are just pretty close. This is
because linear interpolation is only 100
percent correct when the function you’re
interpolating is itself linear, which our
implicit function isn’t. The result is that
the face normals might have slight errors
compared to those that have face vertices
lying on the surface itself.

Averaging the face normals can there-
fore introduce some artifacts, and indeed
the final surface usually shows a very faint
rippling throughout the normals, presum-
ably from these problems. It’s not very
noticeable, though. I’ve tried various
weighting schemes, weighting the face nor-
mals so that larger faces contribute more
to the vertex normals, or alternately so
that smaller faces contribute more, but in
the end, weighting all faces equally pro-
duced the best visual results.

Deriving the Colors

T here are two parts to vertex colors.
You get vertex colors from per-vertex

lighting, which is straightforward since
you have the vertices and normals around.

However, there’s also the question of
underlying surface color — for blood, for
instance, we’d want the surface to be red.
So far, I’ve managed to get by with a single
color for the entire surface. It would be
possible, though, to give each molecule a
color. During tessellation, whenever evalu-
ating the implicit function, I’d track the
contribution of each molecule to the
implicit value and sum up each of their
colors scaled by their contribution. At the
end, I’d normalize the color, which pro-
duces the final color. When lerping new
vertices, the colors would be lerped along
with the position.

This could be useful for a variety of
effects. For instance, in an area of river
rapids, you could start molecules as clear
and dark blue, and move them slowly
towards opaque and white every time they
collide with something, all the while fading
them back to clear blue over time. That
way, very turbulent areas would look like
frothy, white rapids, whereas the calmer
water would be clear and tranquil.

Of course, this comes at a cost. Whereas
finding the normals takes O(V+F) time

where V is the number of vertices and F is
the number of faces, this process could
potentially take O(VM) time where V is the
number of vertices and M is the number of
molecules. This happens if all the molecules
are clustered together; since every molecule
contributes to every vertex, finding the
color involves doing work for every mole-
cule on a per-vertex basis. Listing 3 is a
modified version of Listing 1, which also
calculates interpolated molecule colors.

Deriving the Texture
Coordinates

A t first thought, it seems silly to think
that any current game engine would

ever render nontextured objects. These
days, everything’s textured, usually multi-
ple times. But it’s not immediately obvious
how to apply a texture to an implicit sur-
face. The vertices are generated completely
dynamically, and furthermore, the surface
topology may change entirely from one
frame to the next.

Of course, this makes sense intuitively
— we’re modeling fluid. How would you

j u l y 2 0 0 0 | g a m e d e v e l o p e r34

FIGURE 8. An example implicit surface. A: The molecule points. B: The polygonized surface in wire-

frame. C: The lit, smooth-shaded surface, with vertex normals drawn. D: The lit, smooth-shaded,

environment-mapped surface.

I M P L I C I T S U R F A C E S

apply a texture to a fluid? You certainly
can’t shrink-wrap a texture onto a river in
the same way you usually think of apply-
ing textures in modeling packages. The
closest technique to standard, artist-speci-
fied texture coordinates is found in Peder-
sen’s “Decorating Implicit Surfaces” (see
For More Information). He succeeds to
some extent, but the work is distinctly non-
real-time and not particularly compatible
with moving surfaces.

That’s not to say that we can’t texture
implicit surfaces at all. We just can’t apply
textures to them in an editor and load them
in with the game. We can, however, envi-
ronment-map the surfaces, which uses their
normal vectors to generate texture coordi-
nates; I’ve had very good results using
spherical environment maps to simulate
static reflections. Other possibilities are pro-
jective shadows and lighting — a river flow-
ing under a tree could have a shadow map
projected down onto it, which is to say that
it generates texture coordinates based on
the vertex positions. There are other possi-
bilities, too — refraction, bump mapping,
and many more. Certainly, between all the
possible dynamic texturing effects, slather-

ing the obligatory three or four textures (at
least) should be no problem at all.

Taking a Breather

W e’ve made a fair amount of head-
way in this article. At this point,

you should know how to define an implicit
surface using a bunch of points and the
fall-off function given earlier. You should
also be able to polygonize the surface with
a brute-force marching cubes algorithm,
brute force meaning that you sample every
single cubelet in the surface’s bounding box
regardless of whether it contains the sur-
face or not. You should be able to find the
mesh vertices, and for each vertex find a
normal and a color, and furthermore you
should be able to generate an assortment of
texture coordinates using OpenGL texture-
coordinate generation or some other simi-
lar technique. You can also move the points
around but we haven’t covered the physics
system yet, so the resulting animation
might not look much like fluid.

Along with the physics system, other
things I haven’t dealt with include optimiza-
tion: the brute-force marching cubes algo-
rithm is painfully slow, as the vast majority
of the cubelets it samples are empty and
therefore end up wasting your time and
effort. For now, a teaser for next month’s
article: Figure 8 shows a number of render-
ings of an example implicit surface.

Next month we’ve got a lot more ground
to cover. We’ll start off with a quick review
of algorithm analysis theory. Armed with
that, we’ll go on to look at optimizations
and enhancements you can make to the tes-
sellation system to coax it to run at an
acceptable speed. We’ll discuss the physics
system so that you can move the molecules
around in a believable and aesthetically
pleasing way. From there it’s on to a dis-
cussion of the demo, from a development
walkthrough to a brief code guide for
some of the stickier parts.

When we finally finish, we’ll have a
fully featured demo complete with source,
binaries, and stunning programmer art-
work. Until then, get a head start by
browsing through the publications in the

References section, searching the web for
more information, or even better, coding
up a renderer of your own. q

F O R M O R E I N F O R M AT I O N

WEB SITES
Author’s web site
www.maniacal.org

Paul Bourke
www.swin.edu.au/astronomy/pbourke

ACM Digital Library
www.acm.org/dl

Organica
www.coolfun.com/html/organica.html

POV-Ray
www.povray.org

RealFlow
www.realflow.com

PAPERS
(All available at the ACM Digital Library web site)

Bloomenthal, Jules, and Keith Ferguson. “Poly-

gonization of Non-manifold Implicit Sur-

faces.” Proceedings of Siggraph ‘95.

pp. 309–316.

Desbrun, Mathieu, and Marie-Paule Gascuel.

“Animating Soft Substances with Implicit

Surfaces.” Proceedings of Siggraph '95.

pp. 287–290.

Froumentin, Max, and Eric Varlet. “Dynamic

Implicit Surface Tessellation.” Proceedings

of the ACM Symposium on Virtual Reality

Software and Technology 1997. pp. 79–86.

Pedersen, Hans Køhling. “Decorating Implicit

Surfaces.” Proceedings of Siggraph '95.

pp. 291–300.

BOOKS
Cormen, T., C. Leiserson, and R. Rivest. Intro-

duction to Algorithms. Cambridge, Mass.:

M.I.T. Press, 1998.

Bloomenthal, Jules, and others. Introduction

to Implicit Surfaces. San Francisco, Calif.:

Morgan-Kaufmann, 1997.

w w w . g d m a g . c o m 35

Some additional examples of implicit surfaces in

action.

S TAY T U N E D F O R PA R T 2 I N N E X T M O N T H ’ S
I S S U E .

L ast month we discussed some
of the performance issues fac-
ing AGE OF EMPIRES II: THE

AGE OF KINGS (AOK). I
described some of the tools

that we used at Ensemble to collect that
data, including Intel’s VTune, NuMega’s
TrueTime, and our own profiling code. In
this concluding article, I’ll describe how to
improve performance by effectively using
performance tools and instrumentation.
We’ll also look at general types of prob-
lems we encountered as we optimized AOK
which can affect any game. Then we’ll
wrap things up by taking a look at the last
bastion of getting a game to run on the
minimum platform when all else fails: scal-
able features.

The Seven Deadly
Performance Sins

A ll the performance problems AOK
encountered fell into one or more of

seven general categories. These problems
ranged from executing dead code to ineffi-
cient code and they can affect any game.
Let’s take a look at these categories.
1. Executing dead or superfluous code.
Over the course of a long development
cycle, a lot of code-based functionality is
created, changed, and/or discarded. Some-
times discarded or superceded functionali-
ty is not removed from the game and con-
tinues to be executed. While it’s a waste of
effort to optimize code that should be
removed in the first place, it can be diffi-

cult to determine whether a few lines of
code, a function, or an entire subsystem is
going unused.

One feature we had envisioned for AOK
was renewable resources, so natural
resources such as trees would increase over
time if they weren’t depleted. After play-
testing the game, we found that this feature
would often cause a game to last indefinite-
ly, so we eliminated it. Later, when profil-
ing game performance, we discovered that
not all of the code had been removed —
the code that controlled tree regrowth
appeared at the top of our profiler’s func-
tion list, and we quickly removed it.

Unfortunately, superfluous code is not
always so easily found, and often it’s only
when the code gets executed enough that
you spot it on a profiling list. Such was the
case with another problem also related to
the trees in our game.

In our derived unit hierarchy of classes
(described in last month’s article), we easily
added new units to the game by deriving
new classes in the hierarchy. This hierarchy
also is powerful in that functionality can be
added or changed in a single place in the
code to affect many different game units.
One such change inadvertently added line-
of-sight checking for trees, which is unnec-
essary since trees are not player-controlled.
This was not an obvious performance prob-
lem and it was found only through logging
data and stepping through code while trying
to make the line-of-sight code faster.
2. Executing code too much. Trees, wall
segments, and houses were often indicators

of general performance issues in AOK,
given the large amount of them on maps
— some AOK maps contain more than
15,000 trees. In order to process these
units quickly, we created shortcuts in vari-
ous derived functions within the unit hier-
archy to avoid unnecessary unit process-
ing. This became very complicated in some
circumstances, since the computer player
uses walls and houses as part of their line
of sight. If it weren’t for the differences
between the way computer and human
players used these units, the wall and
house special processing would have been
simpler. But the player’s ability to use the
buildings to scan for enemies made our AI
processing simpler and more effective.

Pathing was another system that we
spent a lot of time optimizing so that it
wouldn’t execute for too long. To do this,
we capped the number of times the path-
finding system could be executed to a fixed
number of iterations per unit per game
update. When trying to optimize a pathing
system by capping its execution, you have
to balance the desire to limit CPU usage
with the desire to not make players think
the units exhibit dumb behavior when
instructed to move or attack. This forced us
to tweak the game a great deal to achieve
the right balance between playability and
speed, but that’s often the trade-off you face
when optimizing a game.

We tried a variety of caps to optimize
the pathfinding system, and it was deter-
mined that at five or more pathing
attempts, units attempting to retarget were

Profiling, Data Analysis, Scalability,
and Magic Numbers, Part II

Using Scalable Features and Conquering
The Seven Deadly Performance Sins

j u l y 2 0 0 0 | g a m e d e v e l o p e r36

P R O F I L I N G & A N A L Y S I S h e r b m a r s e l a s

A U T H O R ’ S B I O | Herb Marselas currently works at Ensemble Studios. He helped out on AGE OF EMPIRES II: THE AGE OF KINGS. Shhhh!
Please don't tell anyone he's working on a secret 3D-engine project called [deleted]. Previously, he worked at the Intel Platform Architecture
Lab where he created the IPEAK Graphics Performance Toolkit. You can reach him at hmarselas@ensemblestudios.com.

the most responsive to the player. Five
attempts were too many for the minimum
platform, and we decided that two pathing
attempts were too few based on the results
of play-testing. We ultimately decided to
cap the number of pathing attempts at
three, once again based on our desire to
balance playability with usability.

We also placed execution caps on other
systems to improve performance. These
included the number of pathing attempts
made by a player’s units, the amount of
time the computer player could spend
thinking during each game update, and the
number of targets a unit could look for
when retargeting.
3. Using inappropriate algorithms. While
the pathing system in AGE OF EMPIRES was
a good general purpose system, it broke
down in some specific circumstances (as
discussed last month). Also, there were
new performance issues raised by AOK,
including a larger number of units and
larger maps to path across.

We could have continued to attempt to
optimize the single-pathing system, but it
was obvious from the work performed on

AOE that enough requirements had
changed so that the algorithm could no
longer stand on its own. What had been a
good algorithm for AOE had become an
inappropriate algorithm for AOK due to
new and changing pathing requirements.

The AOE pathing system was used to
path units from one general area to anoth-
er over short distances in AOK. New
pathing systems were added to path units
quickly across the game map and to path
units accurately within short distances.
Also, as part of the new pathing system, a
new unit obstruction manager (see Pottin-
ger in the For More Information section)
was added for detecting unit collisions
during pathing.
4. Encountering exceptional data. Built for
efficiency from the start, the unit obstruc-
tion manager surprised us when it was iden-
tified by our performance profilers as one of
the top problems. After reviewing the code
to look for obvious (or not obvious) prob-
lems, we added instrumentation code that
catalogued how units and their locations
were stored within the quadtree.

With this logging code in place, we

quickly saw that the majority of units
placed in the quadtree ended up being not
in the leaf nodes, but higher up in the
quadtree branches. We also discovered that
units touching the edge of a tile were inter-
preted as spanning two tiles, which caused
performance problems. By bumping units
back onto the proper tiles, we immediately
saw a 300 percent performance boost in
obstruction manager performance.

This code, as is most code, was written
based on assumptions about the data. Pro-
grammers assume that the data processed
by a function is of a certain type and will
fall within certain limits or into certain
sets. When data fell outside these expecta-
tions, our algorithm — which would oth-
erwise have performed well — was identi-
fied as a performance problem.

Some sections of the game were instru-
mented from the very outset of develop-
ment to help diagnose data processing
problems that arose frequently in those
sections of code. The unit AI, for instance,
contained conditional #define statements to
log approximately 50 different sets of per-
formance information. These performance

w w w . g d m a g . c o m 37

TOP. Briton Dark Age, Castle Age, and Post-Imperial Age towns. Western European building set.
BOTTOM. Viking Dark Age, Castle Age, and Post-Imperial Age towns. Eastern European building set.

monitors could be used alone or in various
combinations to help resolve performance
issues related to data processing.
5. Inefficient memory usage. Poor per-
formance can be caused by data structures
that are not cache-line aligned, random
access to main memory, using too much
memory, allocating memory, and data
dependencies. In AOK, memory problems
could be especially severe since multiplayer
games can last six hours or more, during
which time tens of thousands of units can
be created and destroyed.

Many data structures in performance-
critical areas were compacted to fit in mul-
tiples or fractions of cache lines to improve
memory access. There were also other
areas that could have been improved by re-
arranging data in structures of arrays, or
streams (see For More Information sec-
tion), but this would have made the code
even more complicated.

To analyze and improve the memory
usage of AOK, we used a number of differ-
ent tools. The first tool that was a tremen-
dous help was the set of Windows NT per-
formance counters, which we used to
examine memory statistics quickly. The
NT performance counters provided a wide
array of data about an application, includ-
ing processor, process, memory, and net-
work statistics. In the case of AOK, the
most important memory statistic was
Private Bytes, the amount of nonshared
memory allocated for the AOK process.

By sampling the memory footprint at
specific intervals, we created a general
picture of the game memory footprint
(Figures 1a and 1b). Since the game’s
memory requirements are effectively the
same across Windows NT and Windows
98, the NT performance counters helped
us examine how memory was used during
a four-player game on the minimum spec-
ified player’s system. This was key to
helping us determine if AOK would fit
within the minimum target memory size
of 32MB.

Given the minimum system game
requirements (Figure 2), we estimated that
a game should typically last about 45 to
60 minutes. In the four-player game exam-
ple shown in Figure 1a, about 21MB of
memory was allocated by the game upon
start up. Thirty minutes into the game,
memory usage rises to around 23MB.

In contrast, look at the memory footprint
of the eight-player game shown in Figure
1b. The addition of more players to the
game requires more memory for their data
at startup, as well as more memory to sup-
port the larger game map. The amount of
memory consumed continues to grow dur-
ing the game as more units and buildings
are created until a plateau is reached. After
reaching that plateau (not shown), the
memory footprint starts tapering back
down. The receding memory footprint
occurs as players and units are defeated.

While these high-level memory statistics
from the NT performance counters are
quick and useful, often it’s necessary to
drill down to see which specific functions
are allocating memory. To get that infor-
mation, we created a simple memory
instrumentation system to track memory
allocations (see Listing 1, pages 42–43).
The memory allocation code tracked allo-
cations and de-allocations by memory
address, number of bytes requested, and
file name and line number of the actual
function call. It also provided a running
count of the number of allocations and de-
allocations, and the bytes of memory allo-
cated in each game update loop.

The sheer number of memory allocation
schemes used in AOK complicated our
memory analysis. AOK uses the C++ new

and delete operators; C library malloc, free,
and calloc functions; and Win32
GlobalAlloc, GlobalFree, LocalAlloc, and
LocalFree functions. In the future, we will
be actively restricting ourselves to a subset
of these functions.

To reduce memory fragmentation and
eliminate overhead caused by allocating
and de-allocating memory, memory pool-
ing was used in many subsystems. While
this significantly increased performance, it
did create problems when trying to fix
bugs where code referred to recycled data.

In an attempt to improve performance
further, we utilized MicroQuill’s SmartHeap
to manage memory in release builds. (We
were unable to use it in debug builds due to
incompatibilities with interactive debug-
ging.) In the final analysis, the performance
benefit of SmartHeap over the standard
heap manager wasn’t clear to us, due to the
efforts we made to reduce and pool memo-
ry allocations.

After profiling performance and memo-
ry usage, it turned out that the most per-
formance-limiting factor in AOK could be
the Windows 95/98 virtual memory sys-
tem. Unlike Windows NT/2000, Windows
95/98 doesn’t require or configure a fixed-
size swap file for virtual memory. To make
matters worse, the swap file can grow and
shrink as a program runs. An expert user

j u l y 2 0 0 0 | g a m e d e v e l o p e r38

FIGURE 1A. Four-player game memory usage over time.
FIGURE 1B. Eight-player game memory usage over time.

4 Player
Starting

8 Player
Starting

8 Player
30 minutes

8 Player
60 minutes

4 Player
30 minutes

 40

 35

 30

 25

 20

 15

 10

 5

 0

����

M
em

or
y

(M
B

)

Figure 1A Figure 1B

P R O F I L I N G & A N A L Y S I S

can create a swap file of fixed size, but it’s
not something the vast majority of users
can do or should have to worry about.

AOK relies on the virtual memory sys-
tem to handle the growing footprint of
game data over time within the game. It
also uses multiple read-only memory-
mapped files to access game graphics and
sounds residing in large aggregated
resource files. These memory-mapped files
ranged in size from 28MB to 70MB. Since
the amount of virtual memory available
can vary so widely on a user’s Windows
95/98 system, this ended up being the
number one AOK performance issue
beyond our control. It should be noted
that this virtual memory problem didn’t
effect every minimally configured system.
Virtual memory problems in Windows
95/98 seemed to occur just on certain sys-
tems, even when identically configured sys-
tems performed with little or no problem.
6. Inefficient code. Rewriting inefficient
code is likely the most well known perform-
ance optimization, but it was typically the
last resort to fix our performance problems.
In many cases, the performance problem
was resolved by identifying and fixing one
of the previously mentioned deadly sins.

The easiest place to attempt to improve
inefficient code is with the compiler opti-
mization settings. Due to the size of AOK,
we chose to compile release builds with the
default “maximize speed” setting for all
modules. This may cause some code bloat
(since speed is favored over size), but in
general it’s a good choice. We chose not to
use “full optimization” since we’ve seen
few programs that could run after using it.

Since shipping AOK we’ve been looking
at the performance benefits of compiling
with “minimize size” and then using #pragma
(or module settings) to optimize specific
hotspots for speed. This seems to be a bet-
ter trade-off than just using the single speed
optimization setting for everything.

In AOK we chose to use the “only
_inline” option in Visual C++, instead of
inlining “any suitable” function. This let
us choose which functions to inline based
on their appearance in the profile list.
Inlining any suitable function would most
certainly increase the code size and lead to
slower performance.

Using an alternate compiler, such as
Intel’s C/C++ compiler, to optimize one or

more performance-intensive modules is
also another way to realize some addition-
al performance gains. We decided against
this for AOK, however, because of the risk
associated with changing compilers (or
even compiler versions) near the ship date.
7. Other programs. One of the greatest
strengths of Microsoft Windows is its abil-
ity to preemptively run multiple programs
at the same time. However, it can be a
huge drawback when programs that the
user is unaware of take CPU time away
from a game or cause the game to lock up.
For instance, during the play-testing phase
of AOK’s development, we received reports
of problems that we couldn’t reproduce on
our own systems. Sometimes these issues
were caused when the game entered an
unstable state, but often other programs
running in the background on the tester’s
computer caused the reported problems.

Virus scanners and other programs
spontaneously running in the background
while a tester was playing AOK were the
most widespread cause of externally
induced performance problems. Unfortun-
ately, there’s no way to easily and ade-
quately interrogate a player’s computer
and warn them about potential problems
that other programs can cause.

The most severe issue related to other
programs involved the Windows Critical
Update Notification. Play-testers sometimes
reported input lock ups during game play
for no apparent reason. We accidentally dis-
covered that when AOK was in full-screen
mode, the Critical Update Notification
could pop up a dialog box behind AOK.
This would take the focus off AOK and
make it appear to players as if the game had
stopped accepting input. Changing AOK to
handle situations like this was relatively
easy once the problem was identified. Other
applications likely cause similar behavior to
occur, but it’s only by trial and error that
these problems are identified.

Better Performance Via
Scalable Features

W hen we had finally squeezed as
much performance as we could out

of AOK for the minimum platform, we

w w w . g d m a g . c o m 39

Dark Age village.

FIGURE 2. AOK minimum system
game specifications.

• 4 players; any combination of human
and computer players

• 4-player map size
• 75-unit population cap
• 800×600 resolution
• Low-detail terrain graphics quality*

*added as part of scalability effort

were still left with a performance deficit in
the area of terrain drawing. We couldn’t
make the feature optional since players
need to see the terrain, yet we couldn’t
make it any faster, either. The only alterna-
tive was to provide different implementa-
tions of terrain drawing or different levels
of terrain detail.

We decided to offer three different ter-
rain detail settings: a fast algorithm with
low detail for the minimum platform, a
medium detail (but slower) one for mid-
range platforms, and a high detail (slower
still) for high-end platforms. This allowed
AOK to run on a lower minimum plat-
form, but still give the user on the high
end additional visual quality to look for-
ward to. This was a tactic used for a num-
ber of features in AOK.

Scalable features least likely to confuse
the player are those that fit directly into
the context of the game, such as the num-
ber of players or the game map size. In
total, there were six scalable features, four
of which fit the game context. In the game,
these are not called “scalable features,”
but “game options” (Figure 3). These
options are as follows:
Number of players. The simplest scalable
feature within AOK is the number of com-
puter-controlled or human opponents or
allies that a person chooses play with,
which is up to eight players per game. The
more players, the higher the performance
required by each player’s system. Up to four
human or computer-controlled players can
play on a minimum-specified system.
Map size. Related to the number of players
is the size of the map. The map size is
expressed in terms of numbers of players
(for example, two-player map, four-player
map, and so on). The number of players
supported by a specific map size was deter-
mined by the distance that our game
designers felt should be between player
starting positions. But map size is inde-
pendent of the number of players, so you
can have a two-player game on a big eight-
player map. This gives players the choice
to accept our recommendations, space
themselves out further, or squeeze in
tighter. Based on our choice of four players
for the minimum platform, the default
map size is for four players.
Population limit. The unit population cap
sets the maximum number of units the

player can build during a game. By default,
this value is 75, but it can range between
25 and 200 units. Again, the user does not
see this as scalability, but as a tweakable
option for creating the perfect game. We
chose to make 75 units the default popula-
tion cap because game performance on the
minimum platform degrades too much at
the next higher population limit.
Different artwork. In addition to these
scalable game options is also an implied,

but generally unrealized, scalability in
AOK’s art assets. Each of the 13 civiliza-
tions in AOK is assigned to one of four sets
of building art. Each building art set repre-
sents the area of the world where the civi-
lization is from. For example, the Japanese
use the Asian building art set and the
Britons use the Western European building
art set. There are also Eastern European
and Middle Eastern art sets. These art sets
not only have their own styles, each also

j u l y 2 0 0 0 | g a m e d e v e l o p e r40

NUMBER OF PLAYERS: 2 to 8, in any combination of human or computer

SIZE OF MAP: 2 to 8 player sizes and “giant” size

UNIT POPULATION CAP: 25 to 200 units per player

CIVILIZATION SETS: Western European, Eastern European, Middle Eastern, Asian

RESOLUTION: • 800×600

• 1024×768

• 1280×1024

THREE TERRAIN DETAIL MODES: • High detail — multi-pass, anisotropic filtering, RGB color

calculation

• Medium detail — multi-pass, fast lower-quality filtering, RGB

color calculation

• Low detail — single pass, 8-bit color lookup

FIGURE 3. Game play and feature scalability.

Briton Wonder fortified by bombard cannon towers.

P R O F I L I N G & A N A L Y S I S

has different styles of buildings for each of the four evolutionary
ages in AOK: Dark Age, Feudal Age, Castle Age, and Imperial
Age. In other words, an Asian Dark Age house looks different
from an Asian Feudal Age house, or an Asian Castle Age house.

This “upgrade” of buildings within each art set as the ages
progress creates an interesting memory allocation curve. In the
beginning of the game, all the players use the Dark Age version
of their particular art set. As the game progresses, players
advance through the ages at different rates. Since the advance-
ment to the next Age causes the building style to change for the
player, new art must be loaded and displayed. This increase in
memory allocation continues until all players again reach the
same age.

Assuming all players start in the Dark Age and survive to the
Imperial Age, the memory allocation exhibits bell curve behavior.
The worst case is when there is a player in each of the four Ages
at the same time, which sometimes happens in the middle of a
game. If all the players in an eight-player game select civilizations
from different art sets, they use at least twice as much memory as
if they had chosen civilizations from the same art set.
Display resolution. This, along with the terrain detail (which is
explained in a moment), is one of two scalability options within
AOK that is outside the scope of the game’s design concept. The
default display resolution is 800x600, and can scale up to
1280x1024. Again, the lowest resolution was chosen for the mini-
mum system.
Terrain detail. A terrain detail setting was introduced to reduce
the amount of processor time required to draw 2D isometric ter-
rain on slower computers by reducing the visual quality. Three
levels of terrain detail are provided. The terrain highest detail set-
ting uses multiple rendering passes, anisotropic filtering, and RGB
color to bring out the best detail. The medium-detail setting
replaces anisotropic filtering with a lower quality but faster filter;
the low-detail setting uses flat shading and an eight-bit color
lookup table similar to the terrain in the original AOE. No matter
which terrain detail setting is used, the final display output only
uses 256 colors.

The choice of which level of terrain detail to display is made
automatically by AOK the first time it runs. Since all rendering is
performed on the CPU, this decision is made quickly by using a
test that gauges the CPU speed. Players can change the setting
later using an in-game menu.

Unfortunately, scalable features that fall outside of the game
design (such as the last two options above) are less likely to be
understood by players. This lack of understanding can lead play-
ers to change settings, resulting in a negative impact on their game
experience without them realizing what they did, and leave them
unable to restore the original settings.

Key Lessons

A fter analyzing and improving the performance of AOK, our
team learned some essential lessons that we hope to use to

improve the quality and performance of our future products.
We hope it will improve your future games, as well. These
lessons are:

j u l y 2 0 0 0 | g a m e d e v e l o p e r42

LISTING 1: A simple memory instrumentation system from AOK.

//==
// memory.h header
//==
extern "C"
{
void *mymalloc(size_t size, const char *pfilename, const long
dwline);
void myfree(void *memblock, const char *pfilename, const long
dwline);
};
//==
#ifdef _INSTRUMENTMEMORY
#define malloc DEBUG_MALLOC
#define free DEBUG_FREE
#endif

#define DEBUG_MALLOC(size) mymalloc(size, __FILE__, __LINE__)
#define DEBUG_FREE(block) myfree(block, __FILE__, __LINE__)
//==
#ifdef _INSTRUMENTMEMORY
void MemoryInit(void);
int MemorySave(void);
void MemoryUpdate(void);
#else
#define MemoryInit
#define MemorySave
#define MemoryUpdate
#endif
//==
// eof: memory.h
//==

//==
// memory.cpp
//==
#include <windows.h>
#include <stdio.h>
#include <io.h>
// !!! DO NOT include memory.h header file here !!!
//==
static FILE *pmemfile, *pupdatefile;
static bool binitialized = false;
//==
static DWORD gdwAllocCount;
static DWORD gdwByteCount;
static DWORD gdwDeletions;
static DWORD gdwFrameCount;
//==
void MemoryInit(void);
//==
void MemoryUpdate(void)
{

if (pupdatefile)
{

fprintf(pupdatefile, "%lu\t%lu\t%lu\t%lu\n",
gdwFrameCount, gdwAllocCount, gdwDeletions,

gdwByteCount);

P R O F I L I N G & A N A L Y S I S

• Obtain objective performance information.
• Don’t leave performance issues until the code’s completely

done. Work to improve it throughout the course of the project.
• Don’t fall prey to the Seven Deadly Performance Sins.
• Create a saved game, scenario, and/or recorded game system

to capture performance workloads.
• Make performance statistics easy to collect, see, and use.
• If performance statistics aren’t easy to use, they won’t be

used.
• Set performance targets. If you don’t know how far you

should go, how do you know when you’ve gotten there?
• Use a single memory allocation scheme.
• When all else fails, create scalable versions of features. q

w w w . g d m a g . c o m 43

ACKNOWLEDGEMENTS

Creating and optimizing AOK was a team effort. I’d like to thank the AOK

team, and specifically the other AOK programmers for their help in get-

ting the details of some of that effort into this paper. I’d also like to

thank everyone at Ensemble Studios for reviewing this paper.

F O R M O R E I N F O R M AT I O N

Ensemble Studios
www.ensemblestudios.com

Intel VTune and C/C++ Compiler
developer.intel.com/vtune

MicroQuill HeapAgent and SmartHeap
www.microquill.com

NuMega TrueTime
www.numega.com

Performance Analysis and Tuning

Baecker, Ron, Chris DiGiano, and Aaron Marcus. “Software Visualization

for Debugging.” Communications of the ACM (Vol. 40, No. 4): April

1997.

Marselas, Herb. “Advanced Direct3D Performance Analysis.” Microsoft

Meltdown Proceedings, 1998.

Marselas, Herb. “Don’t Starve That CPU! Making the Most of Memory

Bandwidth.” Game Developers Conference Proceedings, 1999.

Pottinger, Dave. “Coordinated Unit Movement.” Game Developer

(January and February 1999).

Shanley, Tom. Pentium Pro and Pentium II System Architecture, 2nd ed.

Colorado Springs, Colo.: Mindshare Inc., 1997.

gdwDeletions = 0;
gdwAllocCount = 0;
gdwByteCount = 0;
gdwFrameCount++;

}
} // MemoryUpdate
//===
extern "C" void *mymalloc(size_t size, const char *pfilename,
const long dwline)
{

RGEMemoryEntry entry;
gdwAllocCount++;
gdwByteCount += size;
void *p = malloc(size);
if (!binitialized)

MemoryInit();
if (pmemfile)

fprintf(pmemfile, "malloc\t0x%X\t%ld\t%s\t%ld\n", p, size,
pfilename, dwline);

return p;
} // mymalloc
//===
extern "C" void myfree(void *memblock, const char *pfilename,
const long dwline)
{

RGEMemoryEntry entry;
gdwDeletions++;
if (!binitialized)

MemoryInit();
if (pmemfile)

fprintf(pmemfile, "free\t0x%x\t\t%s\t%ld\n", memblock,
pfilename, dwline);

free(memblock);
} // myfree
//===
void MemoryInit(void)
{

if (binitialized)
return;

pmemfile = fopen("c:\\memory-alloc.txt", "wb");
pupdatefile = fopen("c:\\memory-update.txt", "wb");
if (pmemfile)

fputs("type\tptr\tbytes\tfilename\tline\n", p);
if (pupdatefile)

fputs("frame\tallocations\tdeletions\ttotal bytes\n", p);
binitialized = true;

} // MemoryInit
//===
int MemorySave(void)
{

fclose(pmemfile);
fclose(pupdatefile);
pmemfile = 0;
pupdatefile = 0;
return 0;

} // MemorySave
//===
// eof: memory.cpp
//===

W hen Nihilistic Soft-
ware was founded
in 1998, there were
only two things we
knew were certain.

The first was that we wanted to form a
company with a small number of very
experienced game developers. The second
was that we wanted to make a killer role-
playing game.

Nihilistic got started without much fan-
fare, just a few phone calls and e-mails.
After finishing work on JEDI KNIGHT for
LucasArts, the core team members had, for
the most part, gone their separate ways
and moved on to different teams or differ-
ent companies. About eight months after
JEDI KNIGHT shipped, various people on the
original team began to gravitate together
again, and eventually formed Nihilistic just
a few exits down Highway 101 in Marin
County, Calif., from our previous home.

Having moved into our new offices and
bolted together a dozen desks from Ikea,
our first project was to build a 3D RPG
based on White Wolf’s pen-and-paper fran-
chise, Vampire: The Masquerade. Before
linking up with Activision as our publisher,
Nihilistic president Ray Gresko already
had a rough design and story prepared for
an RPG with similar themes and a dark,
gothic feel. After Activision approached us
about using the White Wolf license, we
adapted parts of this design to fit the
World of Darkness universe presented in
White Wolf’s collection of source books,
and this became the initial design for
REDEMPTION.

Because of our transition from first- and
third-person action games to RPGs, we
approached our first design in some unique
ways. Many features that are taken for

granted in action games, such as a rich true
3D environment, 3D characters, and the
ability for users to make add-ons or modi-
fications, were reflected in our project pro-
posal. We also adopted many conventions
of the FPS genre such as free-form 3D
environments, ubiquitous multiplayer sup-
port, and fast real-time pacing. To this we
added the aspects of traditional role-play-
ing games that we found most appealing:
a mouse-driven point-and-click interface,
character development, and a wide variety
of characters, items, and environments for
exploration.

Using the White Wolf license also meant
that our users would have high expecta-
tions in terms of story, plot, and dialogue
for the game. It’s a role-playing license
based heavily around dramatic storytelling,
intense political struggles, and personal
interaction. Fans of the license would not
accept a game that was mere stat-building
and gold-collecting.

In keeping with our basic philosophy,
we built up a staff of 12 people over the
course of the project’s 24-month develop-
ment cycle. The budget for the game was
fairly modest by today’s standards, about
$1.8 million. The budget was intentionally
kept low for the benefit of both Nihilistic
and our publisher. We wanted our first
project to be simple and manageable,
rather than compounding the complexities
of starting a company by doing a huge
first project. Also, we were looking to
maximize the potential benefits if the
game proved successful. For its part,
Activision was new to the RPG market
and was testing the waters with RPGs and
the White Wolf license in particular, so
they probably considered the venture fair-
ly high risk as well.

Nihilistic Software’s
VAMPIRE: THE MASQUERADE — REDEMPTION

j u l y 2 0 0 0 | g a m e d e v e l o p e r44

G A M E D A T A
PUBLISHER: Activision

FULL TIME DEVELOPERS: 12
CONTRACTORS: 8

BUDGET: $1.8 million
LENGTH OF DEVELOPMENT: 24 months

RELEASE DATE: June 2000
PLATFORMS: Hardware-accelerated PC

HARDWARE USED: Intel and AMD PCs,
Nvidia and 3dfx 3D accelerators

SOFTWARE USED: Alias|Wavefront Maya,
Photoshop, QERadiant,

Visual C++
TECHNOLOGIES: 3D skinned characters,

continuous level-of-detail,
custom-built 3D engine,

MP3 audio compression,
lip synching

LINES OF CODE: 300,000 for game,
66,000 lines of Java for scripts.

P O S T M O R T E M r o b e r t h u e b n e r

A U T H O R ’ S B I O | Robert Huebner is a co-founder and lead programmer at Nihilistic
Software, an independent game developer located in Marin County, Calif. Prior to working on
VAMPIRE: THE MASQUERADE, he contributed to several other game projects including JEDI

KNIGHT: DARK FORCES 2, DESCENT, and STARCRAFT. Robert is on the advisory board for the
Game Developers Conference and has presented a number of sessions there, as well as at
Siggraph and E3.

w w w . g d m a g . c o m 45

ABOVE. Professional conceptual art, such
as this rendering of Alessandro Giovanni
by contractor Patrick Lambert, helped the
characters evolve as the art design took
shape.

Development started around April
1998. When we began, we examined sev-
eral engine technologies available, such as
the Unreal engine and the Quake engine,
but ultimately decided against licensing
our engine technology. The game we envi-
sioned, using a mouse-driven, point-and-
click interface, had a lot more in common
with games such as STARCRAFT than even
the best first-person engines. We decided
to create a new engine focused specifically
on the type of game we wanted to create,
and targeted 3D-accelerated hardware
specifically — bypassing the tremendous
amount of work required to support
nonaccelerated PCs in a 3D engine. As an
added benefit, the company would own
the technology internally, allowing us to
reuse the code base freely for future proj-
ects or license it to other developers.

What Went Right

1.Letting the artists and design-
ers pick their tools. With such a

small team and tight budget, boosting the
team’s efficiency was our primary focus.
If bad tools or art paths slowed down
progress in the art or level design depart-
ments, we would have no chance of hit-
ting our milestones. When we started to
map the development project, the pro-
grammers gravitated toward using a
package such as 3D Studio Max for both
art and level design. Our
argument was that doing
everything in a single pack-
age would increase porta-
bility of assets between lev-
els and art, and save the
company money by licens-
ing a single, relatively inex-
pensive tool. Thankfully,
however, our leads in these
areas strongly objected to
this plan. They argued for
allowing each department
to use the tools that
allowed them to do their
work most efficiently. This
single decision probably
accounted for more time
saved than any other.

The level designers cited
QERadiant as their tool of
choice, since most of them

had previously done work with id Soft-
ware on QUAKE mission packs. id was gen-
erous in allowing us to license the
QERadiant source code and modify it to
make a tool customized to our 3D RPG
environments. Because QERadiant was a
finished, functional tool even before we
wrote our own export module, the level
designers were able to create levels for the
game immediately, even before an engine
existed. And since QERadiant stores its
data in generic files that store brush posi-
tions, the levels were easily tweaked and
re-exported as the engine began to take
shape. If the level designers had spent the
first six months of the project waiting for
the programmers to create a level editing
tool or learning how to create levels in a
3D art tool, we would not have been able
to complete the more than 100 level envi-
ronments in 24 months with just three
designers.

On the art side, lead artist Maarten
Kraaijvanger lobbied hard for the adop-
tion of Alias|Wavefront tools for 3D art.
We tried to convince him that a less
expensive tool would work just as well,
but in the end we decided to allow the art
department to use what they felt would be
the most efficient tool for the job. Since
Maya was just being released for Windows
NT at that time, the costs of using that
toolset were not as great as we feared, and
it allowed the artists the produce an

incredible number of 3D art assets for the
project. During the 24 months of the proj-
ect, an art department of four people pro-
duced nearly 1,500 textured models, a
mind-boggling figure using any tool.

2. Small team, one project, one
room. When we started Nihilistic,

we had a theory that a small number of
highly experienced developers would be
able to produce a title more efficiently
than a larger team with fewer battle scars.
In my experience, successfully delivering a
game is less about what you do and more
about what you choose not to do. Most
games that ship late do so because the
development team went down one or more
“blind alleys” — development ideas or
strategies that for whatever reason didn’t
pan out, and the work done in that direc-
tion is lost. As a small team on a tight
budget, we could not afford to lose valu-
able time on these diversions. Experienced
team members have the wisdom to look
down a particular path and recognize
when it’s a likely dead end.

Developers that have shipped commer-
cial titles also know when “enough is
enough,” so to speak. There is a rampant
problem in this industry of feature creep,
when games end up trying to be all things
to all people, and wind up taking four
years to complete. Seasoned developers
know that shipping a title is all about

compromise. Any title that
goes out the door could
always be “just a little bet-
ter” and developers, ever
the perfectionists, are never
fully satisfied with the box
on the shelf. Creating a suc-
cessful game that ships on
time requires the discipline
to draw that line and move
on to the next challenge.

We also knew that we
wanted an office environ-
ment where all the team
members were in a single
room without any walls,
doors, or offices whatsoev-
er. This didn’t really seem
like a radical decision —
many of us got our start
working for teams that
operated like this — but it

j u l y 2 0 0 0 | g a m e d e v e l o p e r46

P O S T M O R T E M

Locations included both interior and exterior cityscapes, allowing dramatic situa-
tions such as this battle atop a clock tower in medieval Prague.

seems like these sorts of companies are
becoming less and less common in today’s
industry. My first game job was working
at Parallax (now Volition) software. We
were eight people sitting along one wall of
a narrow office space in Champaign, Ill.
Even the original DARK FORCES develop-
ment team was sequestered in a one-room
studio in a building separate from most of
the other LucasArts teams. This type of
environment doesn’t just foster, but rather
forces communication between all parts of
the team. For instance, a programmer can
overhear a discussion between two artists
about how to proceed with something and
be able to jump in with an answer that
will save the project days or months of
work. This sort of thing happens on a
daily basis; artists correct missteps by the
technology team before they are made, a
level designer can immediately show a bug
to a programmer, and so on. Each of these
incidents represents hours or days of proj-
ect time saved. In an office environment
with walls and doors, most of these situa-
tions would go unnoticed or unaddressed.

3. Using Java as a scripting
engine. We knew from the start

that allowing the user community to edit
the game was an important part of the
design. After working in the first-person
action-game market, we saw the benefits
of supporting the user community and
wanted to carry this idea over into role-
playing games, where it is not the norm. A
built-in scripting system makes a game
engine much more extendable by fans. In
JEDI KNIGHT, we created our own cus-
tomized game language called COG. Cre-
ating COG took a lot of effort from the
development team; several months of work
went into creating the compiler, testing the
generated code, and implementing the run-
time kernel used to execute the scripts. The
end result was worth it, but it cost a lot in
terms of time and resources to pull it off
(for more about COG, see my article,
“Adding Languages to Game Engines,”
September 1997).

When starting VAMPIRE, we looked for
ways to incorporate a scripting engine
more easily than creating our own from
scratch yet again. There were several
scripting systems we examined and tested.
At about that time, another game develop-

w w w . g d m a g . c o m 47

TOP. The ambitious design included parties of up to four 3D characters, each with interchangeable
weapons and armor.
BOTTOM. A set of four interactive 3D head models at the bottom of the screen are skinned and ani-
mated in real time to give lifelike status for each party member.

ment company, Rebel Boat Rocker software, was getting a lot of
attention for its use of Java technology. After exchanging a few
e-mails with lead programmer Billy Zelsnak, we decided to give
Java a try. Up to this point I knew very little of Java, and had
largely dismissed it as a language suitable only for making icons
dance on a web page and the like.

After a crash course in Java, we did a few simple tests incorpo-
rating it into our game engine. It passed each one with flying col-
ors. In a matter of a few weeks, we had solved the major chal-
lenges involved in interfacing a standard, freely distributable Java
virtual machine to our 3D RPG engine. From that point on, the
only maintenance required was to add new native functions to the
scripting language, which we did whenever we added new engine
functionality that we wanted exposed to the script writers. We
also trained several designers in the use of the scripting language,
and they started creating the hundreds of small scripts that would
eventually drive the storyline of the game.

Ever since those initial tests, I kept waiting for the other shoe
to drop, so to speak. I expected to come to work one day and
find out that the Java thread was chewing up 100MB of RAM or
eating 50 percent of the CPU time, but amazingly, the system was
trouble-free throughout development and never became a signifi-
cant resource drain. If for some reason we had hit a dead end
with the Java system late in the project, it would have easily
taken three to four months to get back on track using a different
scripting technology. In the end, the gamble paid off. We saved
months of programmer time that would have otherwise been
devoted to creating a scripting environment, and the result was a
system significantly more efficient and robust than any we could
have created ourselves.

4. Storyteller mode. Throughout the project, the design
slowly took shape through a series of meetings that

involved the entire staff. Each new design element was presented
to the group and subjected to a (sometimes heated) discussion.
This process of open discussion and free exchange of ideas result-
ed in a lot of the most interesting design aspects of the game.

It was in one of our earliest design meetings that we came up
with the idea of developing the multiplayer aspect of the game
not as a typical deathmatch or cooperative system, but rather to
create a “storyteller” or “dungeon-master” system. The idea was
inspired by the venerable text-based multi-user dungeon (MUD)
games that date from a calmer time in the history of the Internet.
Many of us at Nihilistic had played MUDs in college, often to the
detriment of our studies. One thing that made MUDs so appeal-
ing was the ability for “wizards,” high-ranking users of the
MUDs, to manipulate the game environment and create virtual
adventures for the players in real time. The Vampire license from
White Wolf emphasizes the role of the “storyteller,” or moderator,
so we felt the time was right to take this style of play out of the
college computer lab and into a commercial RPG.

Implementing the storyteller system turned out to be fairly sim-
ple from a technology standpoint. Most of the basic functionality
for a storyteller game is identical to what would be required in a
traditional client/server multiplayer game. The added cost was
mostly in the area of design and the user interface. It took a bit of
experimentation and redesign to arrive at an interface that was
powerful enough to run games as a storyteller without being
overly confusing to the novice player. The UI work included new
interface panels with lists of objects, actors, and other resources,
and a few buttons to manipulate the selected resources. Our over-
all design goal for the user interface was to ensure that important
functionality was accessible using only the mouse, and all key-
board functionality represented only “advanced” controls such as
hotkeys and shortcuts. Even though the storyteller system is
something used primarily by advanced players, we wanted to pre-
serve this design goal, which meant quite a bit of extra UI work
to make a mouse-driven interface powerful enough to drive a
storyteller game.

In the end, the storyteller feature ended up being one of the
gems of the game design, and resonated with both the press and
gamers alike. Activision made good use of the feature in their PR
and marketing campaigns, and we hope the expandability and
storyteller aspects of the game will give the game an increased
shelf life.

5.Using experienced contractors. One problem with
our strategy of using a small core team is that we couldn’t

possibly cover all the aspects of designing a commercial game with
just 12 people. Instead, we relied heavily on external contractors
for certain key aspects of the game.

Sound was one area where we made use of external talent. Our
colleagues from LucasArts referred Nick Peck to us, based on his
excellent work on Tim Schafer’s GRIM FANDANGO. Nick ended up
not only supplying us with sound effects, but also working on
some of the additional voice recording and ambient loops. For
our music, we teamed up with Kevin Manthei who scored the

j u l y 2 0 0 0 | g a m e d e v e l o p e r48

P O S T M O R T E M

Dark Ages portion of the game, and with Youth Engine, a local
duo, for the modern-day tracks.

Even in the conceptual stages, we used external artists to help
us sketch and visualize the game. Peter Chan was the lead con-
ceptual artist for JEDI KNIGHT and had subsequently become an
independent contractor. His work in the first months of the
project was key in establishing the look of the game’s environ-
ments. We also worked with Patrick Lambert for character con-
cepts and he delivered incredibly detailed full-color drawings
that really brought the characters to life for the modelers and
animators.

Perhaps the most critical external relationship was with
Oholoko, a small startup spun off from Cyclone Studios. We
hired them to do our cinematic sequences that introduce the story
and provide the endings. While starting the project, we met with
several firms specializing in computer animation, but pretty much
across the board their rates were well beyond our budgets for that
part of the game. It seems that the high demand for computer ani-
mation from movies and television has driven the larger firms’
prices beyond the reach of typical game budgets. By working with
a smaller, less established company, we were able to get more
bang for our buck in our cinematics, and the results proved to be
of the highest quality.

What Went Wrong

1.Overly ambitious design. In retrospect, we were in
some ways our own worst enemy. Many of the team

members had wanted for some time to do a really huge, ambi-
tious role-playing game. When we actually started the project
and had a budget and schedule, we probably weren’t realistic
about how long RPGs typically take to develop, especially one
that travels to four different cities across an 800-year timeframe.
We were very reluctant to make big cuts in the design, such as
cutting one of the two time periods or removing the multiplayer
aspect. Because of this, we eventually had to make the decision
to miss our first scheduled release date of March 2000. We also
cut back on our plans to release an interactive demo some
months before the game and scaled back the scope of the multi-
player beta.

Fortunately, by expanding the schedule a few months (from
March to June), we were able to preserve almost all the elements
from the initial design. But to accomplish this, the art and design
departments really had to work above and beyond the call of duty
for an extended period of time.

We did cut back a bit in the area of multiplayer by removing
the ability to play through the entire single-player scenario coop-
eratively as a team, and instead replaced that with two smaller,
custom-made multiplayer scenarios using levels and art from the
single-player game. Part of this was because we did not plan
properly for multiplayer when making some of the Java scripts
that drive the single-player game. If the multiplayer game had
been functional earlier in the schedule, the single-player game
scripts might have been written from the start to be “multiplayer
friendly” and we could have shipped more multiplayer content in
the box.

2.Prototyping with a proprietary API. When we started
developing the 3D engine for the game, which we named

Nod, the 3D API landscape was quite a bit different from how it
is now. We decided to use Glide as an initial prototyping API with
the belief that it would be a more stable platform and avoid the
complexities of supporting multiple hardware through a more
general API until we had solidified the engine a bit. However,
once we had a basic, functional engine running under Glide, the
programmers’ attentions turned toward game play and functional-
ity rather than switching the graphics engine to a more general
API such as Direct3D or OpenGL.

Because of this “if it ain’t broke” mindset, we expanded our
support beyond Glide fairly late in development. At the first pub-
lic showing of the game at E3 in 1999, we were still basically a

w w w . g d m a g . c o m 49

ABOVE. Characters were created with a budget of between 1,000 and 3,000
triangles. Boss characters, such as Ahzra the Tzimisce Elder were gener-
ally the most complex.
OPPOSITE PAGE. All of the more than 100 3D characters, such as Lucretia,
a Setite priestess, were modeled and animated by hand by a team of four
artists using Maya.

Glide-only game, which meant we couldn’t
demonstrate the game in 32-bit modes or
support some features not present in Glide
at the time.

The extensive use of Glide also gave us
some unrealistic performance estimates for
other hardware. Since Glide allows low-
level access to things like texture-memory
management, we spent significant time
writing our own optimized texture manag-
er. When we switched to Direct3D, most
of this work had to be discarded. Since
Glide allows more flexible vertex formats
than Direct3D, some of our underlying
data structures needed to be changed,
which meant re-exporting hundreds of lev-
els and models. We were making low-level
architectural engine changes at a stage
when the engine should have been pretty
much locked down. Also, because we
switched late in our development schedule,
we probably didn’t spend as much time as
we should have on compatibility testing
with a wide variety of hardware. In retro-
spect, we should have switched to
Direct3D or OpenGL several months earli-
er in the development schedule.

3. Pathfinding difficulties. One
problem we identified early in the

development process was the problem of
pathfinding. Navigation of variably-sized
characters through a completely free-form
3D environment is one of the most diffi-
cult problems I’ve had to tackle as a game
programmer. Unit navigation is hard
enough when you have a flat 2D plane or
restricted 3D environment, but in an envi-
ronment where the level designers are free
to make stairs, ramps, or any other 3D
construct you can imagine, the problem
becomes exponentially more difficult. My
natural tendency when presented with
such a sticky problem is, unfortunately, to
make it good enough for the early mile-
stone and demo builds, and then just “deal
with it later.” Unfortunately, “later”
quickly became “now,” and “now” turned
into “yesterday.”

We should have tackled this problem
much earlier, before the levels were near
completion. We should have worked with
the level designers to come up with a set of
restrictions for their levels, or some addi-
tional tagging in the editor to specify to
the engine where characters should and

should not move. Instead, the only hints
from the level-design tool were “walka-
ble” floor flags, but little or no special
marking of walls, cliffs, and other pathing
hazards. Since we waited too long to
address the problem, better solutions such
as walk boxes or walk zones would have
taken too long to retrofit into the more
than 100 levels already in the can. Instead,
we spent weeks making small iterative
fixes to the system to hide the most
extreme errors and turn what was an “A”
bug into a “B” or “C” level problem.

4. Feature and data timing. This
is a fairly common problem in

games I’ve worked on, and VAMPIRE was
no different. The technology team typically
looks at the development schedule and
schedules that entire block of time to
achieve a certain feature set. Often, howev-
er, new engine features get added too late
in the schedule to be utilized fully by the
designers and artists. This happened several
times during VAMPIRE. Some of the more
interesting special effects, for example,
were added only a few weeks before the
data was to be locked down for final test-
ing. Other features that we added couldn’t
even be implemented extensively. For

example, we added a more flexible shader
language so late that only one to two per-
cent of the surfaces in the game were able
to take advantage of it. Some features that
we had originally planned for the engine,
like bump mapping and specular lighting,
were cut completely from the initial release
because there was insufficient time both to
complete the feature and to create art to
drive it. We softened the blow somewhat
by moving some of these features to a
planned patch, which would add them
later if the game proved successful.

Unfortunately there are very few pro-
gramming tasks that don’t require some
sort of artist or designer input to find their
way into the finished product, so unless
programmers spend the last six months of
the project doing nothing but fixing bugs,
some of this is inevitable. We can justify it
to a degree by looking toward the likely
sequel or add-on projects as a way to take
advantage of some of the engine work that
was underutilized in the original title.

5. Self-restraint. As the project
was drawing to a close, we found

that we ended up with a bit “too much
game,” as someone put it. From the start,
we decided to author our data for a high-

j u l y 2 0 0 0 | g a m e d e v e l o p e r50

P O S T M O R T E M

Real-time continuous level of detail allowed models to appear highly detailed in close-ups without
sacrificing speed in longer shots.

end platform, so we’d have a good-looking
game at the end of the 24-month schedule,
and also because it’s much easier to scale
art down than up. Unfortunately, we never
really started to rein in our art and design
teams when we should have near the mid-
dle of the project. Instead, we continued to
add more and more resources to the proj-
ect, resulting in a minimum installation
footprint of about 1GB.

We authored all our textures in 32-bit
color and then scaled them down at load
time for 16-bit cards. Our models were
also extremely detailed (1,000 to 2,000 tri-
angles each, on average) and relied on
automatic level-of-detail algorithms to
scale them down for slower machines. We
lit our levels with relatively high light-map
resolutions. All of this made the game look
great on high-end systems but it meant the
game was fairly taxing on low- to mid-
range systems. In the end, the game just
barely fit on two CD-ROMs.

We had originally planned to include
both 16-bit and 32-bit versions of the
game textures and allow players to choose
which version to install, but after all the
art was completed there was no room on
the CD for more than one version.

Likewise for sounds: we wanted to include
multiple quality levels but space prevented
this. We actually compressed most of the
voice samples with MP3 and had to
remove several sounds from the game in
order to fit it on two CDs.

In the end, our game looked gorgeous
but had difficulty running on machines
with less than 128MB of RAM — and
even then, it used a fair amount of space
on a swap drive. This glut of resources will
also make it more difficult if we choose to
port the game to a more limited console
environment.

At Last, Redemption

F or the first project from a new devel-
opment startup, I can’t imagine how

things could have gone much better than
they did, except perhaps if we could have
avoided shipping it the same year as
DIABLO 2. As a company, we managed to
accomplish the three most important
things in this business: not running out of
money, not losing any team members, and
actually shipping the product. Our pub-
lisher remained committed to the project
throughout its life cycle, and even

increased their support as the project con-
tinued to take shape.

The course of development was amaz-
ingly smooth, with very few surprises or
conflicts along the way. In this industry,
you can almost bet that at some point in a
two-year development cycle something
traumatic will happen to either the devel-
opment team or its publisher, but for us
the waters were remarkably calm. About
the most exciting thing to happen during
development was when we lost our entire
RAID server while attempting to add driv-
ers to it, resulting in the loss of a few
months’ worth of archived e-mails.

Our good fortune allowed the team to
focus strictly on the game and prevented
distractions from outside the company.
Also, keeping our company focused on just
one title and resisting the frequent tempta-
tion to take on more work and more staff
allowed everyone to be on the same team
with little or no secondary distractions.

Hopefully, by avoiding feature creep
and a four-year “death march” kind of
ending to this saga, we can avoid a lot of
the burnout that we have seen and often
experienced on other teams. By maintain-
ing links with both the fan community
through our web board, and with the
developer community at large by attend-
ing shows like GDC, E3, and Siggraph,
our team was able to keep a positive atti-
tude and high energy level throughout the
schedule. We remain convinced that small
development teams with a single-title
focus are the best way to ship quality
titles consistently, so our plans moving
forward are to staff up gradually from 12
to perhaps 16 people over the next few
months and embark on our next two-year
ordeal a little older, a little wiser, and just
a tiny bit larger. q

w w w . g d m a g . c o m 51

The game’s story unfolds mainly via in-game cutscenes. The excellent models allowed for the cre-
ation of intricate details such as individual fingers, which helped make these scenes feel like pre-
rendered cinematics.

j u l y 2 0 0 0 | g a m e d e v e l o p e r56

S O A P B O X d o u g l a s l o w e n s t e i n

Fighting a War
Without an Army

“I t shall be illegal to sell, loan,
or exhibit to a minor any pic-
ture photograph, drawing,
sculpture, videogame, motion
picture film or similar visual

representation or image, book, pamphlet,
magazine, printed matter, or sound record-
ing containing explicit sexual or violent
material or detailed verbal descriptions or
narrative accounts of explicit sexual or
violent material which predominantly
appeals to prurient interests, is patently
offensive to prevailing community stan-
dards, and is utterly without redeeming
social importance for minors.”

Sound like something out of a repressive
totalitarian state? It’s not. It’s an excerpt
from an amendment offered on the floor of
the U. S. House of Representatives last
spring by House Judiciary Committee chair-
man Henry Hyde (R-Ill.). The amendment
was decisively defeated, but left many of us
in the videogame industry rather chilled.

How about this: a bill to prohibit the
sale or rental of any videogame rated
Mature or Adult Only to people under 17,
and to prohibit the admission of people
under 17 to businesses in which restricted
games are shown or displayed. In other
words, no one under 17 could enter Wal-
Mart if a copy of QUAKE were on the shelf.

That’s what a bill proposed in Minnesota
would accomplish. The Interactive Digital
Software Association and its allies barely
defeated this bill in committee on a 6-6
tie vote.

Back in January, President Clinton used
his State of the Union address to call on
Congress to enact a bill introduced by Sen-
ator and former Republican presidential
candidate John McCain (R-Ariz.) to require
all entertainment industries to develop a
common rating system, or else. The “or
else” is that the federal government would
create such a system and then subject
retailers to criminal sanctions for failing to
enforce these government standards.

And presently, the Federal Trade Com-
mission is halfway through an investigation
into the marketing practices of all the enter-
tainment industries. It has issued extensive
and massive document requests to nearly a
dozen companies in our industry alone.

These are flush times indeed for the
entertainment software business. Record
U.S. sales of $6.1 billion in 1999, new
hardware systems launching in the U.S.
this year and next, Newsweek cover stories
on the Playstation 2, conferences on the
industry’s impact on popular culture at
M.I.T., there’s even a new interdisciplinary
Gaming Studies program at the University
of California at Irvine,

the first step toward a “major” in gaming.
But it’s a time of great peril as well. The

by-product of our success in establishing
the industry’s economic and cultural
importance is greater visibility than ever
before. In short, we’re no longer flying
below the radar — we’re in the line of fire.

Now we’ve arrived at a point where leg-
islation is currently pending in no fewer
than six states: New York, New Jersey,
Pennsylvania, Minnesota, Tennessee, and
West Virginia. Last year, nine states enter-
tained 17 different videogame violence bills.

The IDSA has met these political chal-
lenges aggressively and, to date, successful-
ly. But I will tell you that it has not been
easy and one of the most significant handi-
caps we face is the utter lack of involve-
ment of many of the companies and indi-
viduals that make up our industry.

No matter how many times and how
thoroughly the IDSA testifies and lobbies
before Congress, there is no stronger voice
than that of the constituent. Your voice as
game developers does count and it is time
for your voice to be heard. It doesn’t mat-
ter whether you’re in San Jose, Raleigh,
Boston, or Austin, what’s going on inside
the Beltway and in far-off state legislatures
will affect your business and your craft

continued on page 55

illustration by Lisa Ringnalda

sooner or later. Many outside the game
industry are not aware of the complexity of
game development nor the industry’s role
in driving technology, and this includes
politicians and the media. Educate them.
Let them know what you do, why you do
it, and why you think it’s important.

From writing a letter to the editor of

your local paper to contacting your mem-
bers of Congress, what may seem to be the
smallest personal action will have an effect
on Capitol Hill and state legislatures
across the country, and go a long way
toward establishing our industry as an
important social, cultural, and political
force in the 21st century.

You can also help this cause by making
sure that your products are rated by the
Entertainment Software Rating Board and
that your advertisements follow the stan-
dards set out by the ESRB’s Advertising
Review Council. These programs ensure
that parents have the information they
need to make appropriate game purchasing
decisions, and that advertisements are
designed and published or aired responsi-

bly. Participating in these programs sends
the message out that your company, like
hundreds of others in the industry, is act-
ing in the best interests of consumers.

All of you have a stake in the success
of this grassroots campaign. Without
your involvement, we run the risk of con-
tinuing to be seen as a peripheral part of
the entertainment industry, not the
increasingly dominant player we actually
are. I know this will take some time and
effort, but it will be well-spent and pay
long-term dividends. q

S O A P B O X

A U T H O R ’ S B I O | Mr. Lowenstein has
served as president of the Interactive Digital
Software Association since its creation in
June 1994.

continued from page 56

R E S O U R C E S

Interactive Digital Software Association
www.idsa.com or e-mail Jeff Woodbury at
jeff@idsa.com for information

International Game Developers Association
(formerly the Computer Game Developers Association)
www.igda.org

Adaboy 17

AICS 53

Ascension Technology 8

Cinram 54

Conitec 55

Dice.com 52

Havok.com C2

Hewlett-Packard 23

IBooks.com 12

LIPSinc 11

Midway 52

Motek 3

Multigen-Paradigm 4

Newtek 18

Numerical Design Ltd. C3

RAD Game Tools C4

Rainbow Studios 53

Seneca College 54

SN Systems 21

Vancouver Film School 53

Viewpoint Digital 7

A D V E R T I S E R I N D E X

C O M PA N Y N A M E PA G E C O M PA N Y N A M E PA G E C O M PA N Y N A M E PA G E

	01july cover
	02gameplan
	05frontlin
	06indwatch
	09prodrev
	15graphic
	19artview
	26f-sharp
	36f-marsel
	44postmort
	56soapbox

	return:

