
JULY 1999

G A M E D E V E L O P E R M A G A Z I N E

S hortly after the horrible
shooting at Columbine High
School in Littleton, Colo., I
picked up The Universe and

the Teacup: The Mathematics of Truth
and Beauty, by K.C. Cole. In a chapter
titled “Calculated Risks,” Cole contrast-
ed societal fears about airline safety
whipped up in the aftermath of the
mysterious crash of TWA Flight 800
with society’s seemingly resigned
acceptance that thousands of children
(equivalent to dozens of filled jumbo
jets) die every day from malnutrition
and disease around the world. She mar-
veled at the way we tune to threats that
are “exotic, personal, erratic, and dra-
matic.” And, she noted, that doesn’t
mean we’re ignorant, “just human.”

To many, videogames appear exactly
that: exotic, dramatic, and yes, danger-
ous. David Grossman, an Arkansas State
University professor of military science,
launched a crusade against violent
videogames, and wants to hold them at
least partially responsible for tragedies
like those in Littleton and the 1997
school shootings in Paducah, Ky. He
believes that games like QUAKE not only
influence children, they actually train
them to shoot. “A hundred things can
convince someone to want to take a
gun and go kill,” Grossman said in pre-
pared testimony to a Senate committee
this spring. “But only one thing makes
them able to kill: practice, practice,
practice.” The implication here is that
first-person action games provide skills
necessary to pull off such a shooting.

This is simplistic nonsense. It’s time
for pundits like Grossman to quiet
down until they can submit hard evi-
dence to support such theories. Accord-
ing to the New York Times, Mark Manes
provided Eric Harris and Dylan Klebold
with the TEC DC-9 used in the crime,
and the three of them practiced shoot-
ing in the Colorado mountains prior to
the incident. There is no evidence that
any videogame trained the two killers to
shoot. On the contrary, the facts seem
to indicate that Harris and Klebold had
real practice firing their guns.

As one peels away the layers of these
cases and looks at the details as they
emerge, one finds that these incidents
are not as straightforward as people
such as Grossman would like the public

to believe. As such, I believe that going
after the producers of videogames,
movies, and web sites in court will
prove fruitless. Holding media corpora-
tions accountable for the acts of men-
tally ill minors (as 14-year-old Michael
Carneal pled in the Paducah case) and
adults on antidepressants (as 18-year-
old Eric Harris was) is no solution.
Sadly, it’s just another case of going
after the deepest pockets.

Even if you discount any mental ill-
ness involved, will the deep pockets at
companies such as Activision (one of
the defendants named in the Paducah
case) have to shell out? Some have
pointed to the recent legal victories over
tobacco companies as proof that corpo-
rations can and should be liable for the
consequences of their products. But the
gulf between the real dangers of ciga-
rette smoking and the perceived dangers
of playing videogames (or watching
movies or surfing the web) is vast.
Numerous independent medical studies
have confirmed the link between smok-
ing and cancer. Leaked internal docu-
ments and testimony from former
tobacco company employees acknowl-
edged the culpability of tobacco firms
and helped seal the fate of Big Tobacco.
No such evidence links videogames and
violent behavior. This isn’t a simple case
of cause and effect.

Looking to the future, as games
become more realistic and complicated,
the pleasure of playing videogames may
become harder to understand by those
in society less attuned to this form of
entertainment. They will perceive
videogames as a growing threat as poly-
gon counts grow, color depth increases,
and photo-realistic scenes become nor-
mal. I don’t think that videogames will
be as fortunate as comic books, which
were singled out in the 1950s as a harm-
ful influence on children, and then
gradually became accepted as an
innocuous diversion. Videogames will
always ride technology’s leading edge,
and as such, they’re apt to leave many
paranoid conservatives in their wake. As
an industry, we have to understand
that, and be aware that we’ll be under
the microscope for a long time. ■

G A M E D E V E L O P E R J U L Y 1 9 9 9

2

P L A NG A M E

Searching For Answers
D E V E L O P E R

ON THE FRONT LINE OF GAME INNOVATION

www.gdmag.com

600 Harrison Street, San Francisco, CA 94107
t: 415.905.2200 f: 415.905.2228 w: www.gdmag.com

Publisher
Cynthia A. Blair cblair@mfi.com

EDITORIAL

Editorial Director
Alex Dunne adunne@sirius.com

Departments Editor
Wesley Hall whall@sirius.com

Editorial Assistant
Jennifer Olsen jolsen@mfi.com

Art Director
Laura Pool lpool@mfi.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Jeff Lander jeffl@darwin3d.com
Mel Guymon mel@surreal.com
Omid Rahmat omid@compuserve.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook id Software
Susan Lee-Merrow Lucas Learning
Mark Miller Harmonix
Paul Steed id Software
Dan Teven Teven Consulting
Rob Wyatt DreamWorks Interactive

ADVERTISING SALES

Western Regional Sales Manager
Jennifer Orvik e: jorvik@mfi.com t: 415.905.2156

Eastern Regional Sales Manager/Recruitment
Ayrien Houchin e: ahouchin@mfi.com t: 415.905.2788

International Sales Representative
Breakout Marketing e: breakout_mktg@compuserve.com
t: +49 431 801703 f:+49 431 801797

ADVERTISING PRODUCTION

Senior Vice President/Production Andrew A. Mickus

Advertising Production Coordinator Dave Perrotti

Reprints Stella Valdez t: 916.983.6971

MILLER FREEMAN GAME GROUP MARKETING

Group Marketing Manager Gabe Zichermann

MarComm Manager Susan McDonald

Marketing Coordinator Izora Garcia de Lillard

CIRCULATION

Vice President/Circulation Jerry M. Okabe

Assistant Circulation Director Sara DeCarlo

Circulation Manager Stephanie Blake

Circulation Assistant Kausha Jackson-Crain

Newsstand Analyst Joyce Gorsuch

INTERNATIONAL LICENSING INFORMATION

Robert J. Abramson and Associates Inc.
t: 914.723.4700 f: 914.723.4722
e: abramson@prodigy.com

CEO/Miller Freeman Global Tony Tillin
Chairman/Miller Freeman Inc. Marshall W. Freeman
President Donald A. Pazour
Executive Vice Presidents Darrell Denny, Galen A.
Poss, Regina Starr Ridley
Sr. Vice Presidents Annie Feldman, Howard I. Hauben,
Wini D. Ragus, John Pearson, Andrew A. Mickus
Sr. Vice President/Development Solutions Group KoAnn
Vikören
Group President/Division SF1 Regina Ridley

Does Sex Sell?

I find your magazine to have way too
many sexual connotations. Are

these adult games only or do they mar-
ket to children, too? Advertisements on
pages 18, 19, 28 and 63 (April 1999) are
very inappropriate. I understand that
sex sells, but isn’t there another way
companies can think of to make a buck
and save our society and children from
negative, wasted energy? Basically, I
was disgusted by the severity of sexual-
ity towards women.

J e n n i f e r D e n n i s

v i a e - m a i l

Imust protest the increasing number
of advertisements that feature scant-

ily-clad women and sexual innuendo
appearing in Game Developer. Looking
back over the last several issues, the
number seems to have jumped sharply
in April.

The game industry has long had a
reputation as a boys’ club which is hos-
tile to women. This reputation has
compromised our ability to attract top
female talent to our companies, and
therefore, to make the best games pos-
sible. Many women developers are
uncomfortable with the blatant appeals
to sexuality which are the stock-in-
trade of our industry’s advertising. This
material now seems to be creeping
from the gamers’ magazines into our
own trade journals, and it sends a dis-
tinct message that women are not
wanted or welcome in this business. I
trust this is not a message that Game
Developer agrees with.

These advertisements are insulting to
our intelligence as developers. No
developer is so foolish as to make tech-
nical purchasing decisions on the basis
of whose ads feature nude women; and
to assume that we would is to charac-
terize us as oversexed and stupid.

As a longtime subscriber to a variety
of trade journals, I assure you that such
material is neither ordinary nor appro-
priate for them. It certainly does not
appear in Electronic Engineering Times,
for example, even though its reader-
ship, like Game Developer’s, is also pre-
dominantly male. I urge you to reject
any more advertising on these themes.

E r n e s t W . A d a m s

E l e c t r o n i c A r t s

R e d w o o d C i t y , C a l i f .

Really, We’re Just Friends

Y our article “Dolby and Aureal:
Contrasts in Audio” (Hard

Targets, May 1999) was interesting
and insightful, and I thank you for
writing it.

I am writing to correct you on one
point you made near the end of the
article: “Dolby then has to look at DTS,
and George Lucas’s THX among other
competitors.” The point I wish to cor-
rect is regarding THX as
a competitor to
Dolby. This is a
common mis-
conception that
THX and Dolby
are competing
technologies, when
in fact they comple-
ment each other.

THX is a
hardware certifi-

cation pro-
gram to
ensure the
best sound
reproduc-
tion, in
other words,

to reproduce
it as close as

possible to the
original. Dolby SR, Dolby Digital, DTS,
and SDDS are sound formats that, if
reproduced on the highest-quality
THX-certified systems, will produce an
unsurpassed quality of audio. You are
correct when you state DTS as compe-
tition to Dolby.

P a u l W i d n e r

v i a e - m a i l

Let Him Who Has Played Sin
Cast the First Stone

I had particular interest in your
Postmortem on Ritual Entertain-

ment’s SIN (March 1999). Indeed, the
column is my favorite in the magazine,
and I was well aware of the horrible
bugs in the initial release of SIN.

In reading the article, I was a little
shocked that so little mention was
made of the bugs on release. At the
very least, they should have been
under one of the “Things That Went
Wrong.” There are a few issues sur-

rounding author Scott Alden’s claims
that disturb me.

First, just how bad is their quality
assurance group? By some reports, the
game took approximately five minutes
to load both between levels and when
restoring a saved game. If the game was
run from the CD auto-play screen, it
ran from the CD instead of the hard
drive, causing save game troubles.
Saved games themselves were enor-
mous — people were losing hundreds

of megabytes from them! There
was also a bug with the

first boss encountered,
which ruined the
encounter entirely for
many people.
These bugs simply

“slipped through”?
Second, there was mention of

the patch, and Activision distributing
free CDs to all who requested them. I
do not feel that was an act of charity,
but an attempt to right a wrong. Some
of the newsgroup chatter hinted at in
the article mentioned an apparent
release agreement with Activision. If
the game was not out by a certain date,
Ritual was to suffer a rather large eco-
nomic penalty. (Presumably, the inten-
tion was to beat HALF-LIFE to market.)
Hence, the game shipped early with
known bugs.

Hearsay? Conjecture? Or swept
under the carpet?

J o s e F e r n a n d e z

v i a e - m a i l

R I T U A L ’ S L E V E L O R D R E S P O N D S :

First, you must realize that no game devel-

oper ever releases bugs intentionally. In the

case of SIN, we worked very long and hard

for almost two years. It seemed to be an

endless crunch time and I nearly had a ner-

vous breakdown from the long-term stress

and time demands. I know this seems like a

dream job, and it is, but I truly almost lost

my mind from SIN. Losing your mind, by the

way, is not fun like some acid trip — it’s

very scary!

Anyhow, you must know that we wouldn’t

just throw something out after all that work.

If it means anything to say this, we are

heartbroken that such a cool game as SIN is

now used as a symbol of what not to do.

There are other reasons for SIN’s demise.

Similar to proofreading your own writing

after you’ve already read it a thousand times,

or taste-testing a meal after you’ve been in

the kitchen all day nibbling the ingredients

h t t p : / / w w w . g d m a g . c o m J U L Y 1 9 9 9 G A M E D E V E L O P E R

5

S A Y S Y O U

Bone to pick? E-mail
adunne@sirius.com. Or write to

Game Developer, 600 Harrison Street,
San Francisco, CA 94107.

B

and smelling the seasonings, you really can’t

effectively and thoroughly verify your own

work. You start to see the forest and not the

trees, and you make too many assumptions

in the fog of familiarity. You need new eyes

to truly test anything. We were counting on

our publisher to do this.

Being a small development team com-

pared to most out there, we also lacked

the person-power to perform complete

testing. We were counting on our publish-

er to supplement this need. Each tribe

member was hurriedly rushing right up

until the very last moment. Burned out and

fatigued, it was like trying to herd a dozen

cats after running a marathon. Remember

the scene in Jaws in which Richard

Dreyfuss is frantically tying a buoy to the

spear gun line and yelling at Robert

Shawn, “Don’t wait for me!” as he aimed at

the approaching shark? That’s what it was

like at the end of SIN. That’s what the end

of most games is like.

We were assured that a large team of

testers would verify the game and make

sure it was valid. When we went beta, we

indeed got a large load of bugs and misbe-

haviors. This list, however, never seemed

to change much other than to get smaller

as we checked off each one. This seems

obvious now and a warning flag should

have gone up, but we were too concentrat-

ed on finishing and burned out from

exhaustion. It all ended with a “No show-

stoppers! We’re going gold!” from the pub-

lisher. We assumed.

Being small also means that we do not

have all the varieties of test platforms

(sound cards, video cards, and so on) to

test across the board. We also tend to

develop on our network where slow load

times are the norm due to pipeline traffic.

We simply do not have the time to burn CDs

and load the game on isolated platforms,

especially towards the end. We were count-

ing on our publisher to do the hardware-

related testing, too.

Please know that we tried very, very hard

to make SIN the coolest game of 1998. It

was the coolest, if not a good second

place. Also know that we did everything

possible to debug the final version and test

every nuance and permutation of game

play. Finally, know that no one is hurt more

by this rush-to-the-shelves calamity than

we are. After having the privilege of work-

ing on such excellent games as DUKE NUKEM

3D and THE SCOURGE OF ARMAGON, it was a

tremendous blow that SIN was not to follow

suit merely for reasons of bad management

and handling.

Should the Hall of Fame
Be the Hall of Games?

I t’s revealing sometimes to glimpse
at what makes people do the

things they do. Often it’s a complex
combination of physical, psychologi-
cal, and yes, spiritual impulses. For
some reason, we in the entertainment
industry seem to want to reveal those
driving influences more than the
average person does. Maybe it’s
because we’re in the business of hav-
ing fun and we think that others
might want to know why we are in
this crazy business. Sometimes they
really do want to know. But I believe
that mostly they don’t.

It’s with these thoughts in mind that
I consider Ernest Adams’s notion of a
Computer Game Hall of Fame
(“Immortality for Game Developers,”
Soapbox, April 1999). While the con-
cept of a Hall of Fame is intriguing, he
told me way more than I wanted to
know. For Ernest, it’s all about immor-
tality. He wants his own pyramid. Well
I have news for you, Ernest. The pyra-
mids may seem immortal, but the
pharaohs never do.

Computer gaming is a relatively
young endeavor compared to other
pursuits. I like the fact that we don’t
have a lot of self-appointed experts in
tweed coats rubbing their chins and
harrumphing about this or that
“important” game in the history of
games. Adams states that the Hall of
Fame “would be a place where the
great games are kept, and talked
about, and studied for the wonder and
truth that they contain. Above all, it
would be a place where their designers
are honored.” Wonder and truth? The
fact is that the games we make are fun
and technically amazing and yes,
worthwhile. But let us not get carried
away and overstate our contribution
to mankind.

Having a place where we can see the
development of computer games — to
see the history of computer gaming
including the designers — is a good
and interesting idea. A place where we
mostly raise monuments to the
builders is less satisfying. I understand
that Mr. Adams lost a friend and I
understand wanting to honor that
friend. I also understand the need for
recognition and love. But I would pre-

fer to honor the achievement much
more than the achievers. After all, as
Shakespeare might have said, the
game’s the thing.

G l e n n O ’ B a n n o n

R a i n b o w S t u d i o s

v i a e - m a i l

I n response to Ernest Adams’s
Soapbox column “Immortality for

Game Developers” (April 1999), com-
puter game museums do exist. Look up
http://www.computerspielemuseum.de
and http://www.trans-japan.com/
vp/bg96.

But the idea is nonsense. Art that
cannot be experienced is void. We
don’t need a museum; we need good
emulators, and we need the greed-
head companies that crack down on
them to figure out a way to let them
thrive. Dani Bunten will be remem-
bered as more than a marginal figure
only if future generations can experi-
ence her games.

G r e g C o s t i k y a n

v i a e - m a i l

E R N E S T A D A M S R E S P O N D S :

“L’homme n’est rien; c’est l’oeuvre qui est
tout,” as Gustave Flaubert observed to

George Sand. (“The man is nothing; the

work is everything.”) Ignoring the author in

favor of the work is the modus operandi of

oh-so-trendy postmodern literary criticism,

and Glenn O’Bannon — his derision for

intellectuals aside — places himself square-

ly in that camp. Call me old-fashioned, then,

but I must disagree. To honor the artist

along with the art is no more than simple

justice, as Greg Costikyan eloquently argues

in his online essay on the subject, which can

be found at http://www.crossover.com/

costik/justice.html. Should we remember

Shakespeare’s plays, but forget

Shakespeare? Remember Mozart’s music,

but forget Mozart? Remember Spielberg’s

movies, but forget Spielberg? That would be

cruelty, indeed.

If those figures are too grand, then try

considering my original model, the Pro

Football Hall of Fame. Can we remember

Walter Payton’s running without remem-

bering Walter Payton, or Dick Butkus’s

tackling without remembering Dick

Butkus? Should we try? The best computer

games are expressions of a guiding vision.

Let us then praise the visionaries along

with their work.

G A M E D E V E L O P E R J U L Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

6

Y O US A Y S

h t t p : / / w w w. g d m a g . c o m J U L Y 1 9 9 9 G A M E D E V E L O P E R

New Products
by Alex Dunne

SurfaceSuite Pro 1.5

SVEN TECHNOLOGIES released version
1.5 of SurfaceSuite Pro, the company’s
3D texture mapping software which
lets you apply 2D images to 3D polyg-
onal, NURBS and patch models.
Version 1.5 adds two significant new
features to the product. The first,
AlphaPaint, lets you paint alpha masks
onto your textured model, giving you
more control over texture blending.
The second addition is PatchWork,
which lets you create a “quilt” of tex-
tures — a single skin — for real-time
polygonal models that you can export
to your game engine.

The new version also supports
Softimage’s .HRC and Rhino’s 3D
model formats, as well as the .PCX
image format. Sven perked up the
product’s interface by adding multiple
keyboard shortcuts and hotkeys, float-

ing windows, automatic layer cre-
ation, and better support for import-
ing materials.

SurfaceSuite Pro supports 3D Studio
Max, Softimage, Maya, LightWave 3D,
and Rhino, among other 3D modeling/
animation environments. The stand-
alone product is priced at $595, and
upgrade discounts are offered.
■ Sven Technologies

Palo Alto, Calif.

(650) 852-9242

http://www.sven-tech.com

Maya 2

ALIAS|WAVEFRONT introduced Maya 2,
the latest version of its 3D animation
and visual effects tool. Perhaps most
important to game developers, the
company improved the modeling tools
— you now have more precise control
over curve and surface geometry, new
tools for smoothing polygonal surfaces,
new texturing tools and the ability to
assign arbitrary data to polygon ver-
tices. With the Maya Unlimited pack-
age, you get more advanced modeling

tools (including sup-
port for subdivision
surfaces) as well as fur
and cloth animation
features.

In the area of char-
acter modeling and
animation, Maya 2
has new deformer
types and automated
skinning capabilities
for faster creation and
easier control of com-
plex characters. The
tool uses a pose-based
approach that lets
you treat a complex
character as a single
entity as you animate
it. Alias|Wavefront
also souped up
Maya’s renderer,

which can speed rendering up by 90
percent in some cases, according to the
company. Maya 2 also supports multi-
threaded batch rendering, too.

Maya Complete 2 is priced at $7,500
and includes modeling, rendering, ani-
mation, dynamics, Artisan and MEL
(the tool’s embedded scripting lan-
guage) features. Maya Unlimited 2
costs $16,000 and includes the features
found in the Complete version, plus
Maya Live, Maya Fur, Maya Cloth and
new advanced modeling features. Both
Maya flavors are available for Windows
NT and IRIX.
■ Alias|Wavefront

Toronto, Ont., Canada

(416) 362-9181

http://www.aw.sgi.com/entertainment

OpenGL for the Macintosh

APPLE recently shipped OpenGL for
Macintosh, further illustrating the way
in which Steve Jobs is shifting Apple’s

focus back towards games. Available
freely from the Apple web site for
download, OpenGL for Macintosh
brings the industry-standard 3D API to
the Mac. OpenGL for Macintosh
requires a PowerPC-based Macintosh
computer with MacOS 8.1 or later. An
iMac or new Power Macintosh G3 is rec-
ommended for accelerated 3D render-
ing. The version available from Apple’s
web site includes libraries to accelerate
rendering on Rage II, Rage Pro, and
Rage 128-based Macintosh systems.
■ Apple Computer

Cupertino, Calif.

(408) 996-1010

http://www.apple.com/opengl

News from the World of Game Development

9

New Products: Sven Technologies
updates SurfaceSuite Pro, Alias|Wave-
front rolls out Maya 2, and OpenGL
arrives for Macintosh. p. 9

Industry Watch: Sega reveals pricing
for Dreamcast, EA hits the billion-dollar
mark, Activision squeaks by, and
Interplay faces red ink. p. 10

Maya 2’s enhancements promise game developers

improved animation features, including new fur render-

ing, as seen on this tiger.

B I T B L A S T S - I N D U S T R Y W A T C H

Industry Watch
by Alex Dunne

DISNEY INTERACTIVE AND NINTENDO
announced a new partnership, which
will introduce Mickey Mouse to the
world of 3D games. Nintendo will
publish a number of Mickey Mouse-
based games for the N64 and the
Game Boy Color, to be developed by
Rare Ltd. Two of the titles will be rac-
ing games for the N64 and Game Boy
Color (coming out in 1999 and 2000),
and the third will be a “Mickey
Adventure” title, slated for release in
2001 on Nintendo’s next console sys-
tem and the Game Boy Color.
Additionally, as part of the agreement,
Disney Interactive will develop multi-
ple titles for the Game Boy Color
aimed at the girl-games market. These
titles will be based upon Disney’s
Beauty and the Beast and Alice in
Wonderland movies.

SPEAKING OF THE GAME BOY COLOR,
Nintendo said that sales of the Game
Boy Color during the first quarter of

1999 averaged 94,000 units per
week, compared to 31,000 in
1998 for the previous Game Boy
unit. Peter Main, Nintendo’s
executive vice president of sales
and marketing, said that since
the launch of the Game Boy
Color in the U.S. last November,
the company has sold more
than two million units.

ATOMIC POWER AT MINDSCAPE.
Mindscape signed a publishing
deal with Atomic Games, which
lets the ‘Scape take over the
successful CLOSE COMBAT series
from former publisher
Microsoft. The deal adds another
strong war game franchise to Mind-
scape’s lineup, which already included
PANZER GENERAL and STEEL PANTHERS. The
next game scheduled for the CLOSE

COMBAT series is slated for release
sometime in the fourth quarter.

ACTIVISION BARELY BEATS ESTIMATES.
Activision’s fourth fiscal-quarter (ending
March 31) profits were a bit better than
analysts had expected, amounting to
$5.2 million, which was an improve-
ment over the $689,000 that the com-
pany earned last year during the same
period. CEO Bobby Kotick credited the
company’s wide array of games for
boosting the company’s market posi-
tion, and indicated that the company
was on the prowl for large acquisition
targets. However, CFO Barry Plaga pre-
dicted Activision would post a loss in
the first fiscal quarter of 1999, as it did
last year.

ARCADE DOWSER. In an attempt to
counteract the shrinking arcade market
and make it easier to bag that increas-
ingly elusive quarry, the loyal arcade
gamer, Midway Games and WMS
Industries launched a web-based data-
base application that tells you exactly
where you can find Midway coin-op
games around the world. This simple
game finder, available on on Midway’s
website (http://www.midway.com), also
lets visitors submit new locations when
they find games. Planning a trip to
Madagascar? Need to satisfy your
CARNEVIL fix while you’re there? Now
you know where go…

MUSIC TO THEIR EARS? Aureal Semi-
conductor, maker of the Vortex2 digital

audio processor and the A3D audio
API, announced financial results for
the first fiscal quarter ending April 4,
1999. Revenues reached $12.6 million,
amounting to a 250 percent increase,
but saw a net loss of $4.1 million (bet-
ter than its $5.5 million loss last year).
What looks most promising is that the
company’s gross margins grew to 34
percent in the first quarter from 22
percent last year, thanks to increased
demand for sound cards based on the
Vortex2.

DREAMCAST PRICING AT LAST. Under-
cutting industry estimates, Sega’s Bernie
Stolar revealed that the the Dreamcast
suggested launch price would be $199.
Additionally, Stolar confirmed that the
U.S. launch date would be September 9,
1999. There will be between 10 and 12
titles available around launch time,
plus more than 20 first-party titles on
track for the year 2000. To date, retail-
ers have placed pre-orders for 30,000
systems, according to Sega.

$109. EA released its fiscal year results.
Two words: banner year. Congratula-
tions go out to Larry Probst and com-
pany, for being the first entertainment
software publisher to top a billion dol-
lars in revenue.

NEWS FROM THE LAND OF RED INK.
Poor Interplay continues to have a
tough time. The company lost $8.28
million in its first quarter, compared to
a profit of $3.1 million a year ago.
Interplay blamed its larger-than-expect-
ed loss on the fact that it hasn’t
released any major titles recently, and
the impact of higher-than-anticipated
product returns. ■

G A M E D E V E L O P E R J U L Y 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

10

Macworld Expo

JACOB J. JAVITS

CONVENTION CENTER

New York, NY
July 21–23, 1999
Cost: $45–$1,195
http://www.macworldexpo.com

Siggraph ‘99

LOS ANGELES CONVENTION CENTER

Los Angeles, Calif.
August 8–13, 1999
Cost: $25–$760
http://www.siggraph.org/s99

UPCOMING EVENTS

CALENDAR

Mindscape is adding the CLOSE COMBAT series to

its arsenal of war games.

b y J e f f L a n d e rG R A P H I C C O N T E N T

It may seem as if this is purely an art
problem, better left to your art staff (see
Artist’s View this month, “Talking
Heads: Hierarchical Animation in Real-
time 3D”). Or, if you are a one-person
development team, at least left to the
creative side of your brain. However,
your analytical side needs to inject itself
in here a bit. This is one of those early
production decisions you read about so
much in the Postmortem column that
can make or break your schedule and
budget. Choose wisely and everything
will work out great. Choose poorly and
your art staff or even your own brain
will throttle you.

Decisions, Decisions

F or the final result, I want a 3D real-
time character that can deliver vari-

ous pieces of dialog in the most con-
vincing manner possible. Thanks to the
information learned last month, I know
I can severely limit the amount of work
I need to do. I know that with 13
visemes, or visual phoneme positions, I
can reasonably represent most sounds I
expect to encounter. I even have a nice
mapping from American English to my
set of visemes. Most other languages
could probably be represented by these
visemes as well, but could require a dif-
ferent mapping table.

From this information I can expect
that if I can reasonably represent these
13 visemes with my character mesh,

then continuous lip-synch should be
possible. So the problem really comes
down to how I construct and manipu-
late those meshes.

Viseme-Based Methods

C ertainly, the obvious method for
creating these 13 visemes is to gen-

erate 13 versions of my character head
mesh, one to represent each viseme. I
can then use the morphing techniques I
discussed in last December’s column
(“Mighty Morphing Mesh Machine,”
December 1998) to interpolate smooth-
ly between different sounds.

Modeling the face to match the
visemes is pretty easy. Once the artist
has the base mesh created, each viseme
can be generated by deforming the
mesh any way necessary to get the
right target frame. As long as no ver-
tices are added or deleted and the trian-
gle topology remains the same, every-
thing should work out great. Figure 1
shows an image of a character display-
ing the “L” viseme, as in the word
“life.” The tongue is behind the top
teeth, slightly cupped, leaving gaps at
the side of the mouth, and the teeth
are slightly parted.

Sounds pretty good so far. Just create
13 morph targets for the visemes in
addition to the base frame and you’re
done. Life’s great, back to physics,
right? Well, not quite yet.

Suppose in addition to simply lip-

synching dialog, your characters must
express some emotion. You want them
to be able to say things sadly, or speak
cheerfully. We need to add an emo-
tional component to the system.

Adding Some Heart to the Story

A t first glance, it may seem that
you can simply add some addi-

tional morph targets for the base emo-
tions. Most people describe six basic
emotions. Here they are with some of
their traits. (See Goldfinger under “For
Further Info” for photo examples of
the six emotions.)

1. HAPPINESS: Mouth smiles open or
closed, cheeks puff, eyes narrow.

2. SADNESS: Mouth cornsers pull
down, brows incline, upper eyelids
droop.

3. SURPRISE: Brows raise up and arch,
upper eyelids raise, jaw drops.

4. FEAR: Brows raise and draw togeth-
er, upper eyelids raise, lower eyelids
tense upwards, jaw drops, mouth cor-
ners go out and down.

5. ANGER: Inner brows pull together
and down, upper eyelids raise, nostrils
may flare, lips are closed tightly or
open exposing teeth.

6. DISGUST: Middle portion of upper
lip pulls up exposing teeth, inner brows
pull together and down, nose wrinkles.

There are variations of these emo-
tions, such as contempt, pain, distress,
excitement, but you get the idea. Very
distinct versions of these six will get
the message across.

The key thing to notice about this
list is that many of these emotions
directly affect the same regions of the

G A M E D E V E L O P E R J U L Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

12

Flex Your Facial

Animation Muscles

L ast month I left off with a nice short list of the visemes I would need to

represent speech realistically. However, now I am left with the not

insignificant problem of determining exactly how to display these

visemes in a real-time application.

When not massaging the faces of digital beauties or doing stunt falls in a mo-cap
rig, Jeff can be found flapping his own lips at Darwin 3D. Send him some snappier
dialogue at jeffl@darwin3d.com.

model as the visemes. If you simply
layer these emotions on top of the
existing viseme morph targets, you can
get an additive effect. This can lead to
ugly results.

For example, let me start with the
“L” sound from before and blend in a
surprised emotion at 100 percent. The
“L” sound moves the tongue up to the
top set of teeth and parts the mouth
slightly. However, the surprise target
drops the jaw even farther but leaves
the tongue alone. This combination
blends into the odd-looking character
you see in Figure 2.

This problem really becomes appar-
ent when the two meshes are actually
fighting each other. For example, the
“oo” viseme drives the lips into a tight,
pursed shape while the surprise emo-
tion drives the lips apart. Nothing pret-
ty or realistic will come out of that
combination.

When I ran into this issue a couple
of years ago, the solution was tied to
the weighting. By assigning a weight or
priority to each morph target, I can
compensate for these problems. I give
the “oo” viseme priority over the sur-
prise frame. This will suppress the
effect that the surprise emotion has
over shared vertices.

Welcome to Muscle Beach

M ost of the academic research on
facial animation has not

approached the problem from a viseme
basis. This is due to a fundamental
drawback to the viseme frame based
approach. In the viseme-based system,
every source frame of animation is
completely specified. While I can speci-
fy the amount each frame contributes
to the final model, I cannot create new

source models dynamically. Say, for
example, I want to allow the character
to raise one eyebrow. With the frames I
have described so far, this would not be
possible. In order to accomplish this
goal, I would need to create individual
morph targets with each eyebrow
raised individually. Since a viseme can
incorporate a combination of many
facial actions, isolating these actions
can lead to an explosive need for
source meshes. You may find yourself
breaking these targets into isolated
regions of the face.

For this reason, researchers such as
Frederic Parke and Keith Waters began
examining
how the face
actually works
biologically.
By examining
the muscle
structure
underneath
the skin, a
parametric
representation
of the face
became possi-
ble. In fact,
psychologists
Paul Ekman
and Wallice
Friesden devel-
oped a system
to determine
emotional
state based on
the measure-
ment of indi-
vidual muscle
groups as
“action units.”
Their system,
called Facial
Action Coding

System (FACS), describes 50 of these
action units that can create thousands
of facial expressions. By creating a facial
model that is controlled via these action
units, Waters was able to simulate the
effect that changes in the action units
reveal on the skin.

While I’m not sure if artists are ready
to start creating parametric models
controlled by virtual muscles, there are
definitely some lessons to be learned
here. With this system, it’s possible to
describe any facial expression using
these 50 parameters. It also completely
avoids the additive morph problem I
ran into with the viseme system. Once
a muscle is completely contracted, it
cannot contract any further. This limits
the expression to ones that are at least
physically possible.

Artist-Driven Muscle-Based Facial
Animation

A nimation tools are not really
developed to a point where artists

can place virtual muscles and attach
them to a model. This would require a
serious custom application that the
artists may be reluctant even to use.

G R A P H I C C O N T E N T

G A M E D E V E L O P E R J U L Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

14

Action	 Muscle Name	 Effect

Raise Inside Brow L/R	 Frontalis Medial portion	 Many Expressions

Raise Outside Brow L/R	 Frontalis Lateral portion	 Many Expressions

Tighten Inside 	 Corrugator Supercilii 	 Anger, Pain, Disgust

Brow Frown 	 + Procerus

	

Eyes Wide L/R	 Levator Palpebrae Superioris	 Surprise, Fear, Shock

Eye Squint L/R	 Orbicularis Oculi 	 Anger, Thought,

	 orbital portion	 Concentration

Eyelid Close L/R	 Orbicularis Oculi palpebral portion	 Blink, Wink

Nostril Flare L/R	 Dilator Naris + Levator Labii 	 Disgust

	 Superioris Alaeque Nasi	

Purse Lips	 Incisivus Labii	 Kiss, Anger, "oo",

		 Whistle

Smile Corner L/R	 Zygomaticus Major	 Smile

Corner mouth down 	 Depressor Anguli Oris + Zygomaticus 	 Sadness

Into Sadness L/R	 Minor + Depressor Anguli Oris +

	 Mentalis

Top Lip Up L/R	 Levator Labii Superioris	 Disgust,

		 Part Lips for Sounds

Lower Lip Down L/R	 Depressor Labii Inferioris	 Part Lips for Sounds

Tighten Lips U/L	 Orbicularis Oris 	 "p", "b", "m",

		 Anger

Jaw Open	 Digastric	 Speaking, Surprise

Jaw Slide L/R	 Masseter	 Slide Jaw L/R

C H A R T 1 . The basic muscle groups involved in facial animation.

F I G U R E 2 . A very surprised “l”

viseme.

F I G U R E 1 . The “l” viseme as seen at

the start of the word “life.”

However, that doesn’t mean that these
methods are not available for game
production. It just requires a different
way of thinking about modeling.

For instance, let me take a look at
creating a simple smile. Biologically, I
smile by contracting the zygomaticus
major muscle on each side of my face.
This muscle connects the outside of the
zygomatic bone to the corner of the
mouth as shown in Figure 3. Contract
one muscle and half a smile is born.

O.K. Mr. Science, what does that
have to do with modeling? Well, this
muscle contracts in a linear fashion.
Take a neutral mouth and deform it as
you would when the left zygomaticus
major is contracted. This mesh can be
used to create a delta table for all ver-
tices that change. Repeat this process
for all the muscles you wish to simulate
and you have all the data you need to
start making faces. You will find that
you probably don’t need all 50 muscle
groups described in the FACS system.
Particularly if your model has a low
polygon count, this will be overkill.
The point is to create the muscle
frames necessary to create all the
visemes and emotions you will need,
plus any additional flexibility you
want. You will probably want to add
some eye blinks, perhaps some eye
shifts, and tongue movement to make
the simulation more realistic.

The FACS system is a scientifically-
based general modeling system. It does
not consider the individual features of
a particular model. By allowing the
modeler to deform the mesh for the
muscles instead of using this algorith-
mic system, I am giving up general
flexibility over a variety of meshes.

However, I gain creative control by
allowing for exaggeration as well as
artistic judgement.

The downside is that it is now much
harder to describe to the artists what it
is you need. You need to purchase
some sort of anatomy book (see my
suggestions at the end of the column)
and figure out exactly what you want
to achieve. Your artists are going to
resist. You had this nice list of 13
visemes and now you are creating more
work. They don’t know what an inci-
sivius labii is and don’t want to. You
can explain that it is what makes Lara
pucker up and they won’t care. You
will have to win the staff over by show-
ing the creative possibilities for charac-
ter expression that are now available.
They probably still won’t care, so get
the producer to force them to do it. I
have created a sample muscle set in
Chart 1. This will give you some groups
from which to pick.

Now I need to relate these individual
muscle meshes to the viseme and emo-
tional states. This is accomplished with
“muscle
macros” that
blend the per-
centages of the
basic muscles to
form complex
expressions.
This flexibility
permits speech
and emotion in
any language
without the
need for special
meshes.

I still need to
handle the case

where several muscles interact with the
same vertices. However, now there is a
biological foundation to what you are
doing.

Certain muscles counteract the
actions of other muscles. For example,
the muscles needed to create the “oo”
viseme (incisivius labii) will counter the
effect of the jaw dropping (digastric for
those of you playing along at home).
One real-time animation package I
have been working with called
Geppetto, from Quantumworks, calls
this Muscle Relations Channels. You
can create a simple mathematical
expression between the two to enforce
this relationship. You can see this
effect in Figure 5.

Now for the Animation

I finally have my system set up and
my models created. It is time to cre-

ate some real-time animation. The
time-tested animation production
method is to take a track of audio dia-
log and go through it, matching the
visemes in your model set to the dia-
log. Then, in second pass, go through it
and add any emotional elements you
want. This, as you can imagine, is pret-
ty time consuming. Complicating the
matter is that there are not many off-
the-shelf solutions to help you out. The
job requires handling data in a very
special way and most commercial ani-
mation packages are not up to the task
without help.

Detecting the individual phonemes
within an audio track is part of the
puzzle that you can get help with.
There is an excellent animation utility
called Magpie Pro from Third Wish
Software that simplifies this task. It can

G R A P H I C C O N T E N T

G A M E D E V E L O P E R J U L Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

16

F I G U R E 3 . The zygomaticus major

muscle will put a smile on your face.

F I G U R E 4 . Pucker up: Incisivus labii

at work.

F I G U R E 5 . W.C. Fields’s jaw is open and then blended with the

“oo” viseme. Image courtesy of Virtual Celebrities Productions

and Quantumworks.

take an audio track and analyze it for
phoneme patterns you provide auto-
matically. While not entirely accurate,
it will at least get you started. From
there you can manually match up the
visemes to the waveform until it looks
right. The software also allows you to
create additional channels for things
such as emotions and eye movements.
All this information can be exported as
a text file containing the transition
information. This in turn can be con-
verted directly to a game-ready stream
of data. You can see Magpie Pro in
action in Figure 6.

Wire Me Up, Baby

W ith all the high-tech toys avail-
able these days, it may seem

like a waste to spend all this time
hand-synching dialog. What about
this performance capture everyone has

been talking
about? There
are many facial
capture devices
on the market.
Some determine
facial move-
ments by look-
ing at dots
placed on the
subject’s face.
Others use a
video analysis
method for
determining
facial position.
For more
detailed infor-
mation on this
aspect, have a
look at Jake
Rodgers’s article “Animating Facial
Expressions” (November 1998). The
end result is a series of vectors that
describe how certain points on the
face move during a capture session.
The number of points that can be cap-
tured varies based on the system used.
However, typically you get from about
eight to hundreds of sensor positions
in either 2D or 3D. The data is com-
monly brought into an animation sys-
tem like Softimage or Maya and the
data points drive the deformation of a
model. Filmbox by Kaydara is designed
specifically to aid in the process of cap-
turing, cleaning up, and applying this
form of data. Filmbox can also apply
suppressive expressions, inverse kine-
matic constraints, and perform audio
analysis similar to Magpie Pro.

This form of motion capture clearly
can speed up the process of generating
animation information. However, it’s
geared much more toward traditional
animation and high-end performance
animation. In this respect it doesn’t
really suit the real-time game develop-
er’s needs. It’s possible to drive a real-
time character by using the raw
motion capture data to drive a facial
deformation model. However, for a
real-time game application, I do not
believe this is currently feasible.

In order to convert this stream of
positional data into my limited real-
time animation system, I would need to
analyze the data and determine what
visemes and emotions the performer is
trying to convey. You need a filtering
method that will take the multiple sam-

ple points and select the viseme or mus-
cle action that is occurring. This is really
the key to making motion capture data
usable for real-time character anima-
tion. This area of research, termed ges-
ture recognition, is pretty active right
now. There is a lot of information out
there for study. However, Quantum-
works’s Geppetto provides gesture
recognition from motion capture data
to drive “muscle macros” as both a
standalone and a plug-in for Filmbox.

Where Do We Go from Here?

B etween viseme-based and muscle-
based facial animation, you can

see that there are a lot of possible
approaches and creative areas to
explore. In fact, the whole field has
really opened up to game development
in terms of opportunities for game pro-
ductions as well as tool developers.
Games are going to need content to
start filling up those new DVD drives
and I think facial animation is a great
way to take our productions to the
next level. ■

G R A P H I C C O N T E N T

G A M E D E V E L O P E R J U L Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

18

• Ekman, P. and W. Friesen. Manual for

the Facial Action Coding System. Palo

Alto, Calif.: Consulting Psychologist

Press, 1977.

• Faigin, Gary. The Artist’s Complete

Guide to Facial Expression. New York:

Watson-Guptill Publications, 1990.

• Goldfinger, Eliot. Human Anatomy for

Artists. New York: Oxford University

Press, 1991.

• Landreth, C. “Faces with Personality:

Modeling Faces That Exude Personali-

ty When Animated.” Computer Graph-

ics World (February 1996): p. 58(3).

• Waters, Keith. “A Muscle Model for

Animating Three-Dimensional Facial

Expression,” SIGGRAPH Vol. 21, N. 4

(July 1987): pp. 17-24.

Facial Animation
http://mambo.ucsc.edu/psl/fan.html

Gesture Recognition
http://www.cs.cmu.edu/~face

Performance Animation Society
http://www.pasociety.org

Magpie Pro
http://thirdwish.simplenet.com

Filmbox
http://www.kaydara.com

Geppetto
http://www.quantumworks.com

FF OO RR FF UU RR TT HH EE RR II NN FF OO

Thanks to Steve Tice of Quantumworks

Corporation for the skull model and the

use of Geppetto as well as insight into

muscle-based animation systems. The

W. C. Fields image is courtesy of Virtual

Celebrity Productions LLC (http://

www.virtualceleb.com) created using

Geppetto. The female kiss image is cour-

tesy of Tom Knight of Imagination Works

(http://www.imaginationworksinc.com).

Acknowledgements

F I G U R E 6 . Magpie Pro simplifies the task of isolating

phoneme patterns in your audio track.

A R T I S T ’ S V I E W

time 3D entertainment.
This month’s article is the first

installment in a series dedicated to
expanding the knowledge base of real-
time facial animation. Over the next
few months, we’ll discuss facial anato-
my and skinning techniques, as well
as phoneme recognition and anima-
tion with linked expressions. We’ll
tackle the problem from the ground
up, and by the end of the process we’ll

have covered all of the steps necessary
to create and animate a speech-driven
human head.

Why Go to the Trouble?

T here is absolutely no logical rea-
son why the actors in today’s real-

time 3D games shouldn’t be able to
smile, scowl, and talk with the player.

The struggle to create a believable vir-
tual world is the struggle to create the
illusion of reality. For any game based
within a virtual environment, the
player’s enjoyment is directly linked
to how immersive that environment
feels. In the ideal case, players will for-
get that they are sitting in front of a
computer screen, and will lose them-
selves for a few hours within the virtu-
al worlds we create. It is incumbent
upon us as developers to use every
means at our disposal to generate this
effect. Facial animation can and will
be one of the most effective tools for
achieving this. When in-game charac-
ters interact with the player through
recognizable facial expressions and
lip-synched spoken dialogue, we will
have taken several steps towards
achieving the perfect virtual world.

Modeling the Head and Face

T he main reason we haven’t been
able to create believable lip-

synched characters has been the ren-
dering engines’ polygon limitation. In
a human head, the skin of the face is
very plastic, in other words, extremely
malleable. In order to achieve this
effect convincingly and without
excessive distortion, the polygonal
densities of the face are required to be
fairly high. As a result of the recent
improvements in rendering and pro-

G A M E D E V E L O P E R J U L Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

20

Talking Heads: Hierarchical Facial

Animation in Real-Time 3D

Until very recently, facial animation was a technique reserved for full

motion video and prerendered cinematics. The continuing advances in

rendering technology and geometry-dedicated processors have opened

the door for animators to use this technique within the realm of real-

Mel has worked in the games industry for several years, with past experience at Eidos and Zombie. Currently, he is working as the
art lead on DRAKAN (http://www.surreal.com). Mel can be reached via e-mail at mel@surreal.com.

F I G U R E 1 . Real-time head and face.

cessing power, and through aggressive
use of level-of-detail models, most cut-
ting-edge engines will now accommo-
date the relatively high density mesh-
es required for facial animation.

For our example we’ll use a human
head, although the basic principles dis-
cussed will apply to almost any face
with the basic bilateral construction
found in humans. The head in Figure 1
has been modeled with sufficient poly-
gons for facial expression, but still low
enough for current engine technology.
Almost all of the head’s 800 or so poly-
gons have been devoted to the areas
surrounding the eyes, nose, and
mouth, where the bulk of facial expres-
sion is displayed. In this case, we’ve
actually gone to the trouble to add the
internals of the mouth, with tongue,
teeth, and cheek surfaces included (this
will be necessary if our character is
going to be speaking close up, in an in-
game cut-scene, for example).

Although this head has been mod-
eled with real-life photographic refer-
ence, which is often the best resource,
Hogarth’s Drawing the Human Head
(Watson-Guptill, 1989), and Faigin’s
The Artist’s Complete Guide to Facial
Expression (Watson-Guptill, 1990) are
two excellent references with more
generalized information.

Why a Skeletal Hierarchy
Instead of Morph Targets?

T he jury is still out on what is the
most efficient method for creating

animated facial expressions. While
generating morph targets can some-
times be faster and often allows fine
tuning of facial animation, taking the
time to build a skeletal system with
linked expressions can save time in
the long run, especially when your
game requires a large number of ani-
mations. In any case, if you’re sold on
using morph targets as your end

result, setting up a skeletal hierarchy
at the beginning can still get you
there because the mesh that’s pro-
duced for each skeletal animation can
then be cloned and used as a morph

target. The bottom line is that your
technique will be determined by two
factors: your engine’s animation sys-
tem, and your animator’s expertise in
the given method.

Expressive Regions of the Face

I n order to set up our hierarchy cor-
rectly, we need to identify the areas

of the head and face that will be ani-
mated. We get most of our informa-
tion about a person’s mood by looking
at two distinct regions of the face. The
highlighted areas in Figure 2 enclose
the upper and lower “active regions”
involved in facial expression. This is

where we will invest the bulk of our
time and energy setting up the hierar-
chy. The upper facial node acts as the
parent to the nodes controlling the
eyes, eyelids, and eyebrows. Similarly,
the lower facial node is the parent for
the nodes of the lower jaw, mouth,
and tongue. Breaking down the hierar-
chy in this way will do two things for
us. First, by compartmentalizing the
areas of facial expression, we have bro-
ken down the problem of facial anima-
tion into smaller, more easily managed
tasks. Second, by creating a preset list
of animations for each region, we will
be able to generate a widely varied set
of facial expressions with relatively lit-
tle effort.

Bone Structure and Facial Muscles

I n order to create the motion of the
human face accurately, a basic

understanding of the underlying mus-
cle and bone structure is needed. Figure
3 shows where each node corresponds
to the mesh, while Figure 4 shows each
node’s relative position in the hierar-
chy. As you can see, with a few excep-
tions, the nodes are bilateral, and lend
themselves to being moved in pairs.

1. THE SKULL. This will serve as the
top node for the hierarchy. Several of

h t t p : / / w w w . g d m a g . c o m J U L Y 1 9 9 9 G A M E D E V E L O P E R

21

b y M e l G u y m o n

F I G U R E 2 . Regions of the face and nodal hierarchy.

The main reason we haven’t been able to
create believable lip-synched characters
has been the rendering engines’ polygon
limitation.

the muscle groups involved in facial
animation are anchored to this bone.
Although this node does not animate
and could be represented by any arbi-
trary shape, it is useful to approximate
the general shape of the skull when
creating a hierarchy, as this serves as
the foundation for and aids in the
placement of subsequent nodes.

2. UPPER EYELID NODE (LEVATOR PALPE-

BRAE). This raises the upper eyelid, as in
a surprise or fear response. Because the
upper eyelid has its own muscle group
and the lower does not, most of the
motion associated with the eyelids
occurs in the upper eyelid.

3. EYE NODE. The mesh of the eyeball
should be separated from the rest of
the face so that it can turn freely with
the node. Also consider placing a con-
straining expression on the eye nodes,
so that they move in concert.

4. LOWER EYELID NODE. The lower eye-

lid is kept open largely by the force of
gravity. This node works in conjunc-
tion with number 9 below.

5. TONGUE NODES. The tongue is an
optional part of the hierarchy,
although if you want to use close-up
shots of the characters, it is a definite
necessity. The muscles of the tongue
are particularly versatile, and are
among the strongest in the body. For

this reason, the full flexibility of this
muscle should be represented by no
fewer than three bones or nodes.

6. THE JAWBONE. Pay particular atten-
tion to the pivot point for this node.
The jawbone is a hinged joint, with the
pivot point located at the extreme rear
point on the bone, where it is hinged
to the skull. The tongue nodes and
most of the lower mouth nodes are
children of this node.

7. THE FRONTALIS. This muscle is
responsible for raising the eyebrows

vertically. A bilateral sheet-like mus-
cle, it is connected to the thick fiber of
the scalp immediately beneath the
hairline, and inserts into the skin
directly under the eyebrows. The
action of the frontalis is seen in such
expressions as surprise, sadness, and
fear, although it also sees action dur-
ing regular conversation since raising
the eyebrow is one of the most com-
mon facial gestures. We often do this
in concert with or in place of hand
gestures during normal speech.
Although this muscle can be repre-
sented by a single node, many people
have control over the individual sec-
tions of the frontalis, enabling them
to raise one eyebrow, while lowering
the other (the “Spock” eyebrow). For
this reason, there are two nodes, one
for each side of the face.

8. THE CORRUGATOR. This muscle
group, also known as “the scowling
muscle,” is actually comprised of two
muscles, the corrugator and the pro-
cerus. These muscles anchor to the
skull at the top of the nasal cavity, and
at the inside corners of either eye sock-
et. The basic function of the corrugator
is to pull the eyebrows down , while at
the same time bringing them closer
together. Used primarily in conjunc-
tion with the frontalis, this muscle is

A R T I S T ’ S V I E W

G A M E D E V E L O P E R J U L Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

22

F I G U R E 3 . Nodal placement.

For any game based within a virtual
environment, the player’s enjoyment is
directly linked to how immersive that
environment feels.

associated with the acts of crying,
scowling, and extreme concentration.

9. ORBICULARIS OCULI. This is a large
muscle group made up of concentric
rings of muscle tissue, totally encircling
the eye and extending into the cheek.
As this muscle contracts, it tends to
squeeze the eyes shut while at the same
raising a good portion of the skin of the
cheek. This muscle sees action whenev-
er we squint, laugh, or smile, and is the
primary operator in expressing pain.
Although this muscle group can be
approximated by two separate nodes (as
in Figure 3), a single spherical node
encompassing the eye can also be used.
In that case, scaling the node down in
the x, y, and z axis would approximate
the contracting of the muscle group.

10. LEVATOR LABII SUPERIORIS. Also
called the “sneering muscle,” this mus-
cle group uses a three-point anchorage
spanning from the bottom edge of the
eye socket to the lower ridge of the
cheekbone. The muscles converge to a
single point and insert into the skin
just above the upper lip. Contracting
this muscle tends to raise the upper lip
towards the nostrils. In the real world,
this muscle seldom sees action, except
when expressing disgust, disdain, or
loathing. We approximate it here by
using a single node, which for us will
be additionally useful in properly shap-
ing the skin of the cheeks over several
different expression groups.

11. ORBICULARIS ORIS. This is a banded
group of muscles just under the surface

of the upper lip, which is anchored at
each end by the muscles at the corners
of the mouth. Also called the “lip
tightener,” this muscle works in con-
junction with the levator labii superioris
to create the expressions of disdain
and loathing. It is also used for pursing
the lips, as when someone experiences
deep thought or concentration.

12. ZYGOMATICUS MAJOR, RISORIUS/
PLATYSMA, AND THE TRIANGULARIS. These
three muscle groups are responsible
for pulling the corners of the mouth
up, out, and down, respectively.
Approximated here by the action of a
single node, these muscle groups are
active over a range of expressions,
from the exclamation of joy and plea-
sure, to the extreme stress of pain or a
tragic loss. To effectively mimic the
action of these muscles, it is necessary
to incorporate most of the nodes in
the lower region of the face. Test this
out by smiling broadly or frowning
severely, and you will see just how
much real estate this muscle affects.
This will also be one of the most
active nodes, since for any speech or
mouth movement, this node will be
used to approximate the motion at
the corners of the mouth.

13. DEPRESSOR LABII INFERIORIS AND THE

MENTALIS. The combined action of these
two muscles tends to pull the lower lip
down (as during speech), or to push it
upwards (giving a pouting expression).
Here again, the opposing motion of
two separate muscle groups can be
approximated by a single node.

Wrap Up

Now that we’ve identified the major
facial muscle groups and created our
hierarchy, it’s time to apply the skeletal
structure to the mesh, and weight the
facial vertices appropriately. The last
step will be to set up a lip-synching
table and expression list, and from
there we’ll be able to start animating.
That’s where we’ll pick up next month.

For more information about facial
animation from a programmer’s per-
spective, please review Jeff Lander’s
columns, “Read My Lips: Facial
Animation Techniques” (Graphic
Content, June 1999) and “Flex Your
Facial Animation Muscles,” which
appears in this month’s issue of Game
Developer. ■

h t t p : / / w w w . g d m a g . c o m J U L Y 1 9 9 9 G A M E D E V E L O P E R

23

F I G U R E 4 . Each node’s relative position in the hierarchy.

A R T I S T ’ S V I E W

G A M E D E V E L O P E R J U L Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

24

In May’s column, “See Jane Walk,” we examined character

animation techniques used in the industry, focusing partic-

ular attention on motion capture. Until very recently,

motion capture animation in Softimage was a painfully rig-

orous exercise that limited animators to using a skeletal hierar-

chy based on a nodal constraint system. In layman’s terms, the

skeleton which the motion capture data fit onto was not neces-

sarily the same type of skeleton which animators preferred to

use while animating. The mo-cap skeleton had to match the data

exactly, or the animation wouldn’t work. Subsequent data

manipulation on a mo-cap skeleton often proved restrictive, so

that mixing modes of classical animation with mo-cap was prob-

lematic at best. Thanks to the team at House Of Moves, mo-cap in

Softimage just got a whole lot easier.

Taylor Wilson, the CTO of the Los Angeles-based motion cap-

ture studio, has spearheaded a technique dubbed Dominatrix,

which works to separate the motion data from the skeletal hier-

archy; in essence, this technique frees up the animator to use

whatever style of skeleton with which he or she feels most com-

fortable. For example, say you want to use motion capture data

for your character, but you’ve already started animating using

another method. With the previous restrictions in Softimage (and

most other animation tools), you would have to scrap all your

previous work in favor of the mo-cap skeleton which matched the

mo-cap data. Now, with Dominatrix, you can combine previously

recorded motion capture data with other forms of character ani-

mation without ever having to change your skeleton.

How Does It Work?

T he process is extremely simple. You merely provide

House Of Moves with your character’s skeleton (sub-

mitted in a Softimage .HRC file), and they do the rest.

The motion capture data, originally stored in the

Acclaim format, is washed through a set of proprietary tools

which correct for any differences in proportion, orientation, and

number of nodes between the standard Acclaim skeleton and your

character’s skeleton. Then the data is mapped onto your charac-

ter’s skeleton, and saved out as a Softimage .ANI file. Dominatrix

can also generate IK constraint information to drive any of the

limbs of your character. (This is in place of or in addition to using

tradition positional/rotational keys at each joint.) The level of

customization possible allows you to set up your character pretty

much any way you want, with the simple restriction that the char-

acter’s skeletal hierarchy has the same parenting relationships as

the mo-cap skeleton. This is illustrated in Figure 1, which shows

several humanoid skeletons all sharing the same hierarchical

relationship (two arms, two legs, a torso, and so on). Note that

the limbs of each skeleton are different in length (some have long

arms, some short) and that the number of nodes in any given limb

can differ between characters (the War Giant character, for exam-

ple, has four nodes in his leg whereas the human character has

only three). Dominatrix can accommodate all of these skeletons

with the same set of motion capture data.

Since this is something I had to see for myself, I opted for a

test run of Dominatrix using DRAKAN’s main character, Rynn. Her

Softimage skeleton is chock full of extra nodes in her chest,

arms, and legs, and doesn’t match up very closely to the Acclaim

skeleton. Within a few days of sending off the Softimage skele-

ton to House of Moves, I received several martial arts animation

files (see Figure 2) which had been mapped onto the character.

When I imported these onto Rynn’s skeleton they worked flaw-

lessly, and I have to say it was the least painful experience with

motion capture I’ve ever had. The technique is called Dominatrix,

and it’s available (at present, exclusively) from House Of Moves

(http://www.moves.com). —Mel Guymon

Technology Update: Dominatrix for Softimage

F I G U R E 2 . DRAKAN’s main character performing a martial

arts move.

F I G U R E 1 . Multiple Softimage skeletons.

H A R D T A R G E T S

and take a big bite of the pie. In April,
when Mpath decided to go public, I
had a chance to think some more
about the issues facing the server side
of the game business. There are some
sobering lessons to be learned from
Mpath, not only about online gaming,
but also about what it takes — beyond
games — to make it in cyberspace. If
you look closely at Mpath’s strategy
you’ll find that it could almost form
the foundation of a big publisher, such
as Electronic Arts, going wider than its
core demographic, perhaps into the

realms occupied by the really big fish,
such as Disney Online.

The Online Gaming Business Model

M path was founded in January
1995. The company states as its

business practice that it operates and
licenses live community Internet sites
to such companies as SegaSoft
Networks. Mplayer.com is the compa-
ny’s low-latency gaming platform, or
live community as it is called, that

they deployed with the help of PSINet
in late 1995. In January 1999 the com-
pany launched HearMe.com, its sec-
ond live community site. While most
game developers are familiar with
Mplayer.com, they may not know as
much about HearMe.com.
HearMe.com currently consists of
seven live audio communities, making
live audio interaction available to peo-
ple whose interests extend beyond
entertainment. Mpath managed to
raise approximately $34.9 million
between its inception and the end of
1998 through the sale of equity securi-
ties to CSK, SegaSoft’s parent compa-
ny, and various venture capital (VC)
and strategic partners. In January
1999 the company raised an addition-
al $20 million through VCs to prepare
for going public. That’s a big chunk of
change, but Mpath hoped to raise over
$68 million from its initial public
offering (IPO).

Being an online contender requires a
big investment, even in the gaming
niche that Mpath has carved for itself,
but their long term strategy seems to
indicate much more. The company
derives its revenues from two business
units, Live Communities and Mpath
Foundation. Live Communities generate
advertising revenues, and this includes
advertisements targeting the key demo-
graphics at Mplayer.com and
HearMe.com. Mplayer.com consumers
are predominantly male. In sports and
game player communities, more than
90 percent of the participants are male,
and the people within those communi-
ties are typically between the ages of 13
and 50. However, approximately 40 per-
cent of the participants in classic games
and the casino community are women.
The people within these communities
are typically between the ages of 25 and
50. As for HearMe.com, currently more

G A M E D E V E L O P E R J U L Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

26

Mpath, HearMe and Mplayer

I remember talking to an Electronic Arts executive at Intel’s Pentium III launch

this past March. He was both roused by his company’s plans in the online

gaming market, and very self-conscious. I wondered if he was nervous about

the prospects, or whether he was concerned that no one else would jump in

Omid Rahmat is the proprietor of Doodah Marketing, a digital media consulting firm.
He also publishes research and market analysis notes on his web site at
http://www.smokezine.com.

1996 1997 1998

Net Revenues: Live Communities	 9.7%	 25.2%	 37.6%

Foundation	 90.3	 74.8	 62.4

Total revenues	 100	 100	 100

Cost of net revenues: 	 	 	

Live Communities	 28.2	 66.3	 27.7

Foundation	 72.6	 22.7	 9.8

Total cost of revenues	 100.8	 89	 37.5

Gross profit (loss)	 (0.8)	 11	 62.5

Operating expenses: 	 	 	

Research and development	 n/m	 89.3	 39

Sales and marketing	 n/m	 253.2	 97.8

General and administrative	 n/m	 104.2	 40.8

Stock compensation	 n/m	 61.5	 32.4

Write-off of acquired intangibles	 n/m	 —	 —

Total operating expenses	 n/m	 508.2	 210

F I G U R E 1 . Mpath’s statement of operations data for the fiscal years indicated as

a percentage of total revenues. n/m means “not material.”

than 40 percent of the participants are
women, and its members are typically
between the ages of 13 and 55.

Mpath Foundation is the licensing
and services arm of the company. In
1998, CSK Sega, Sony and Electronic
Arts accounted for 23, 12 and 10 per-
cent of total revenues respectively for
Mpath Foundation. In 1997, CSK Sega
and Sony accounted for 35 and 11 per-
cent of total revenues respectively.
Combine both Live Communities and
Mpath Foundation, and the business
model for Mpath is simple. The compa-
ny created Mplayer.com, and now
HearMe.com, to showcase the applica-
tion of its technology, and to put up a
barrier to market entry for other parties
interested in competing with so-called
live communities. There’s a growing
mesh of third parties that tie in with
Mpath’s live communities, whether
they be advertisers, vendors who have
products that sell directly through
Mpath operations, or magazines and
portals that link to Mpath’s demo-
graphics. Mpath Foundation then takes
the technologies that make all this
happen, and applies them to other

places on the web. POP.X is the prod-
uct that Mpath Foundation sells, a
toolkit for enabling live communities.
And here is where it gets interesting,
and where the lessons emerge.

Mpath is, like most Internet compa-
nies, primarily interested in growth.
This means pushing up memberships
and subscriptions. In order to do that,
the company needs content from third
parties, and that makes for more enter-
taining reasons to build an audience.
Furthermore, Mpath is also putting a
lot of money into research and devel-
opment of key technologies that will
better manage its communities, and
streamline the low-latency web enter-
tainment experience.

Growth Maxims

M path Foundation consists of a
growing list of online entertain-

ment companies, including CSK Sega,
Electronic Arts, Fujitsu, GTECH, and
LG Internet. The Mplayer.com service
now comprises three active communi-
ties built around common interests,

and offers more than 100 of the most
popular online multiplayer games.
According to Mpath’s internal compa-
ny reports, total usage time on
Mplayer.com exceeds 200 million user-
minutes per month as of January 1999,
compared to 67 million user-minutes
per month back in January 1998.
Mplayer.com has become the tenth
largest Internet site in terms of total
usage time per month, according to the
company’s own usage data.

The opportunities for Mpath are
extensive. The technology, the fact
that they are growing beyond online
gaming (a feat that some of their more
esoteric competitors have failed to
negotiate), and the general branding of
the company’s products all have
helped the company achieve a leader-
ship role. However, with almost two-
thirds of their revenue coming from
their technology licensing and services,
and advertising and subscriptions
being very speculative means of mak-
ing a profit on the Internet, Mpath
faces some challenges.

First of all, there is the ULTIMA

ONLINE franchise model. It’s worked for

h t t p : / / w w w . g d m a g . c o m J U L Y 1 9 9 9 G A M E D E V E L O P E R

27

b y O m i d R a h m a t

Electronic Arts, and it means that pub-
lishers are willing to risk some effort
and cash in order to create their own
live communities. Being game develop-

ers at heart means that these publishers
will probably want to build the server
technologies themselves, and tailor
them to specific gaming experiences

and genres. In other
words, the one-size-fits-
all approach may not be
the ideal way to go for-
ward. Of course, Mpath
also makes a good acqui-
sition target for a com-
pany that wants to get a
head start, and despite a
very successful IPO, the
volatility of Internet
stocks could have an
impact on the future
growth of the company.

The real lesson to be
learned from Mpath is
that in order to succeed
in the online world you
have to juggle both your
investment in sales and
marketing to draw traffic
and your spending on
research and develop-
ment to put up technolo-
gy barriers to competi-

tion. These technology barriers are
becoming increasingly difficult to main-
tain, relying as they do on similar objec-
tives having to do with managing and
maintaining online communities.
Everyone wants to trap the consumer
on their site and keep them there. As for
spending lots of money to get traffic,
that depends on content. Otherwise,
your customer has to do very little in
order to go somewhere else. Point, click,
and carriage return is about all it takes.
And that’s the best news that smaller
developers have heard in a long time.
Building communities around content,
developing a franchise, and creating
multiple revenue streams are all within
the reach of any Internet savvy develop-
ment group. As higher production costs
raise the barriers to entry in the retail
game market , and a handful of publish-
ers control distribution , the online
world offers the biggest means of access
to the game enthusiast. The trick is
keeping the consumer from turning the
page, but isn’t that the problem for
every creative venture? Keep the audi-
ence coming back for more. Now go fig-
ure out how. ■

H A R D T A R G E T S

G A M E D E V E L O P E R J U L Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

28

19961995 1997

Net revenues: Live Communities	 $ —	 $12 	 $686 	

Foundation	 — 	 112	 2,041	

Total revenue	 — 	 124	 2,727	

Cost of net revenues:	 	 	 	

 Live Communities	 —	 35	 1,808	

Foundation	 —	 90	 620	

Total cost of revenues	 — 	 125	 2,428	

Gross profit (loss)	 — 	 (1)	 299	

Operating expenses: 	 	 	 	

Research and development 	 1,502	 5,261	 2,436	

Sales and marketing	 171	 3,937	 6,906	

General and administrative 	 746	 2,877	 2,841	

Stock based compensation 	 34	 383	 1,676	

Write-off of acquired intangibles	 —	 12,876	 — 	

Total operating expenses. 	 2,453	 25,334	 13,859	

Loss from operations	 (2,453)	 (25,335)	 (13,560)	

Interest and other income

(expense), net	 99	 291	 (93)	

Loss before provision

for income taxes	 (2,354)	 (25,044)	 (13,653)	

Provision for income taxes 	 (1)	 (1)	 (1)	

N ($2 355) ($25 045) ($13 654)

F I G U R E 2 . Statement of operations (in thousands of

dollars) from January 9, 1995, to year ending

December 31, 1998.

B Y B E R N D K R E I M E I E R

ou have heard of Java. Actually, you probably have had a hard time trying to escape the

hype surrounding it since 1995. There are, however, compelling reasons to use Java in

shrink-wrapped games. Two major options that have recently been

examined by professional game developers are using Java as your

scripting language, and using Java for safe run-time downloadable code

that gets executed on the client. In both cases, it is the interface to native

code that you end up dealing with the same glue that is required to make Java

work on your PC in the first place. If using a portable, standard, object-oriented

programming language with built-in security within your game sounds appealing,

then you should become acquainted with the Java Native Interface (JNI), which is your

tool to write “dirty” Java — Java code that is tightly integrated with your native code.

31

h t t p : / / w w w . g d m a g . c o m J U L Y 1 9 9 9 G A M E D E V E L O P E R

Bernd Kreimeier is a physicist, a writer of novels and articles, and a coder. Currently living in Ireland, he is doing con-
tract work on Java for games, and working on Warped Space, his own game design. This gun for hire — contact
bk@gamers.org.

There is an abundance of information
about “pure” Java, and this is not the
place to explain all the actual and
alleged advantages of Java technology.
Unfortunately, many of the highly
touted “pure” solutions quietly omit
the sophisticated native machinery at
work under the hood. Instead of look-
ing at game applets running in web
browsers, this article sizes up possible
real-world uses for Java, and looks at
the ways some game developers are
already using Java for their titles.

A Brief Recap of Virtual Machines

B riefly, here are the key compo-
nents that are relevant to this dis-

cussion of Java:
JAVA BYTECODE. This is pseudocode for a
stack-based processor described in the
Java specification. Valid bytecode has to
satisfy a lot of requirements, but if you
really wanted to, you could actually
write it by hand with a decent hex edi-
tor and the specifications.
THE JAVA VIRTUAL MACHINE (JVM). Java CPUs
have not yet conquered the market, so
software must translate Java instructions
into the language the PC hardware can
understand. The JVM is a multithreaded
program for your operating system, sup-
plied from various vendors, that exe-
cutes Java bytecode and maps bytecode
to native instructions. The Java specifi-
cation places few restrictions on the
actual implementation of a JVM. You
can find Open Source JVMs on the
Internet, or even write your own clean-
room implementation. You can also get
the sources of Sun’s reference Java
Development Kit (JDK) and negotiate a
license for commercial use.
THE JAVA PROGRAMMING LANGUAGE. This is an
object-oriented language, designed
with a subset of C++ in mind. It has
run-time bounds checking, it is restrict-
ed in terms of memory access and han-
dling, and it has simplified inheritance
patterns. The language features an
overwhelming inflation of extension
APIs and core classes.

It is important to understand that
these three components are entirely
separate. A JVM will happily execute
valid bytecode that was not generated
from Java source — for instance, from a
compiler that maps a language like
Scheme to bytecode. You could also
implement a simplified virtual machine

that skips validation and executes byte-
code no compliant JVM would accept,
or create a virtual machine that has no
garbage collector thread at all. In addi-
tion, there are compilers that generate
native code from Java source files —
you don’t need a JVM to write an appli-
cation in Java. From the “amusing

avenue of hand-tuned virtual assem-
bly” (as John Carmack of id Software
referred to virtual CPUs) to using a JVM
without ever coding in Java (converters
mapping C or C++ subsets to Java are
feasible), all your tampering needs can
somehow be addressed.

A lot of confusion originates from dis-

G A M E D E V E L O P E R J U L Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

32

D I R T Y J A V A

JNI handle JNI signatureJava Class name

*	 There is no java.lang.Array class, so JNI's jarray has no real equivalent in Java, just like jmethodID,

	 jfieldID or jvalue.

† There is no jstringArray, so arrays of Strings map to the jobjectArray handle. So do arrays of Class,

	 Throwable and any other subclass of Object, as well as mixed arrays and arrays of arrays.

java.lang.Object 	 jobject 	 Ljava/lang/Object

 	 java.lang.Class 		 jclass 	 Ljava/lang/Class

 	 java.lang.String 	 jstring 	 Ljava/lang/String

 	 java.lang.Throwable	 jthrowable	 Ljava/lang/Throwable

 	 N/A *			 jarray 	 N/A *

 	 java.lang.Object[]	 jobjectArray 	 [Ljava/lang/Object

 	 java.lang.String[]	 jobjectArray	 [Ljava/lang/String †

 	 boolean[] 	 jbooleanArray	 [Z

 	 char[] 		 jcharArray	 [C

 	 byte[]		 jbyteArray 	 [B

 	 short[] 	 jshortArray 	 [S

 	 int[] 	 jintArray	 [I

 	 long[] 		 jlongArray	 [L

 	 float[]		 jfloatArray	 [F

 	 double[]		 jdoubleArray	 [D

F I G U R E 2 . JNI visible class tree.

 JNI Name Java JNI SignatureValues/Size

 	 boolean 	 jboolean 	 JNI_TRUE /	JNI_FALSE 	 Z

 	 byte 	 jbyte 	 signed	 8 bits 	 B

 	 short 	 jshort 	 signed 	 16 bits	 S

 	 int 	 jint 	 signed 	 32 bits	 I

	 long 	 jlong 	 signed 	 64 bits	 J

 	 float 	 jfloat 	 IEEE 754 	 32 bits 	 F

 	 double 	 jdouble 	 IEEE 754	 64 bits 	 D

 	 char 	 jchar 	 Unicode* 	 16 bits 	 C

 	 void 	 void 	 N/A 	 V

* The char data type is the only unsigned integral type available in Java. It is interpreted

as 16bit Unicode, and mapped from/to UTF-8 encoding in I/O translations, but it is

expanded to int for arithmetic operations, and all integral arithmetic operations

are available.

F I G U R E 1 . JNI built-in data types.

cussions that fail to distinguish the vari-
ous components of Java technology. All
of these are required parts of any JDK,
however. The only JDK that is actually
called JDK is the reference implementa-
tion provided by Sun Microsystems for
Solaris and Win32, and its licensed
ports to other platforms.

The concept of a virtual machine for
game scripting is not new, and not
restricted to Java. John Carmack
recently decided to use a custom virtu-
al machine and bytecode created by a
modified C compiler (LCC by Fraser
and Hanson) for id’s upcoming game,
QUAKE 3: ARENA. Carmack once pointed
out that game coders “have more
urgent things to do than design lan-
guages.” Ironically, he is now engaged
in designing his own virtual machine
and native interface. Technologies like
Java’s just-in-time compilation and
HotSpot optimization originate in the
Java technology mainstream, and they
are powered by more resources than a
single game company could ever com-
mand. If you can make Java work for

your game, then you will benefit from
this momentum.

Talking to the Natives

G ame coders usually do not trust
cross-platform APIs based on lay-

ers of abstraction. Interpreted bytecode
does not typically appeal to an indus-
try that still counts on assembly to get
a performance edge. Windows-based
games sell, period, and portability is
not really an issue.

Compare this to the holy grail of “100
percent pure Java.” Mainstream Java
technology is seemingly meant for tiny
“gamelets,” not serious games. Besides,
despite the bloat, there are bits and
pieces missing from the Java core class-
es: access to certain devices and system
services is simply not available (and
might never be, for design and security
reasons), and politics sometimes gets in
the way (witness the lack of Java
OpenGL bindings). However, if you take
a closer look, it turns out that there is

always native code at the very heart of
all that “pure Java”: there is a JVM writ-
ten in native code, and core classes part-
ly implemented as native code. Here
reigns the Java Native Interface, gluing
together Java and native C/C++ code,
and it is the key to combining your
native code with Java technology.

JNI is part of the Java specification,
and it’s a mandatory part of all Java
implementations. Sun was recently
granted a court injunction forcing
Microsoft to add JNI to the Microsoft
Java implementation. Ideally, .DLLs
and binaries using JNI should be byte-
compatible for a given platform. The
1997 JNI specification is available
online, and there are also books on the
subject, so this article includes only a
brief summary of it before we get into
its applicability in games.

The first task JNI must solve is getting
the JVM and user-written native code to
agree on built-in types and memory lay-
out to exchange data (see Figure 1).
Only some of the core classes are repre-
sented for the native code (see Figure 2)
— most of them arrays of the built-in
types.

What about jclass and jobject? JNI will
not hand you the memory layout of a
Java object, but it must provide you a
handle. It even preserves the relation-
ship between java.lang.Object and
java.lang.Class. A jclass object can be cast
to jobject safely in any JNI that complies
to the Java specification (non-compliant
implementations have been found). JNI
is foremost aimed at C (the C++ bind-
ings are just inlined wrappers), and no
support for object-oriented program-
ming on the native side is offered. With
the exception of Throwable, String, and
arrays, all classes have to be squeezed
through the jobject and jclass represen-
tation. Arrays of arbitrary classes
(including String) will always be mapped
to jobjectArray. JNI defines JNI_FALSE/TRUE,
a jvalue union type, and a jsize for your
convenience.

Further, handles have access to fields,
and also call methods of classes and
objects. It might look like java.lang.-
reflect.Field and java.lang.reflect.Method
are the Java equivalents to JNI’s jfieldID
and jmethodID, but JNI predated the
Reflection API, and actual reflection
support was added only to the latest JNI
revision.

Caching field and method IDs is a
good idea, as retrieval involves a string

h t t p : / / w w w . g d m a g . c o m J U L Y 1 9 9 9 G A M E D E V E L O P E R

33

// Java class, server-side Game Logic scripting.

package somegame;

class ScriptEngine {

// This uses native error() callback.

public static void init() {..}

...

public static native void error(int code);

}

#include <jni.h>

// Native error callback provided to Java.

extern void SV_ErrorScriptEngine(jint i);

JNINativeMethod svSE = {“Java_somegame_ScriptEngine_error”,”(I)V”, SV_ErrorScriptEngine };

// Native function to set up scripting module.

void SV_InitScriptEngine(JNIEnv* env) {

jclass clazz = NULL;

jmethodID method = NULL;

jint err;

// Lookup class, loads the class if not yet done.

clazz = (*env)->FindClass(env, “somegame.ScriptEngine”);

if (clazz != NULL) {

// Register native method, returns zero on success.

err = RegisterNatives(env, clazz, &svSE, 1);

// Lookup Java methodID.

method = (*env)->GetStaticMethodID(env, clazz, “init”, “()V”);

}

// Handle errors.

...

// Call static method.

(*env)->CallStaticVoidMethod(env,clazz,method);

}

L I S T I N G 1 . Native code making use of Java.

lookup. Be warned that caching can get
tricky in applications with multiple
threads and class loaders. You will have
to keep an eye on the garbage collector
as well — without a strong reference
acquired by NewGlobalRef(), the garbage
collector might remove the object your
native code is still referring to.
Likewise, dangling references not
removed by DeleteGlobalRef() can keep
obsolete Java objects from being col-

lected. Use DeleteLocalRef() to avoid
accumulating temporary references
within loops. JDK 1.2 offers limited
support for weak references, too.

Within your native code, all will
revolve around the JNIEnv interface
function table — your door to the Java
side. It provides methods to handle ref-
erences, create objects, load classes,
access fields and call methods. Further,
you get utility functions to iterate

arrays, throw exceptions, and perform
monitoring to make the native code
threadsafe. Finally, an executable can
also register functions as native meth-
ods, making code known to the JVM
without dynamic linkage.

Listing 1 is a small example showing
how native code can use Java to get
things done, and how a native callback
is registered with the JVM. Listing 3,
discussed later on, does the opposite: it
shows how Java calls native code.

It is tempting to use static (class)
methods, as you do not have to handle
an object in addition to the class. In
many cases this is absolutely sufficient
— servers will likely not run two script
engines in parallel. In many other cases
though, this leads to bad object-orient-
ed design on the Java side.

Double Indirection: The Catch-22

T here have been competing native
interface APIs proposed, most

notably Microsoft’s Raw Native
Interface (RNI). The problem with RNI is
that it exposes the underlying operating
system and JVM implementation,
which makes it impossible to port to
another VM.

In some ways, the problem with JNI is
that it does not expose the VM imple-
mentation. JNI makes you go through
pains to ensure that native code never
gets to see how Java objects are laid out
in memory. Consequently, the native
code has to deal with indirections every
step along the way, many of them ulti-
mately leading to table and string
lookups. This is not good for application
performance. See the example in Listing
2, where we pass command line argu-
ments from Java to C, which involves
references, arrays, and conversion to
UTF-8 (the canonical two-byte Unicode
encoding used by Java).

Tools such as javah generate C header
files containing proper function proto-
types (name and signatures) from a Java
class. These tools are already Unicode-
aware, thus using underscores and
other special characters in Java method
and class names can lead to surprising
results. The code in GAME.DLL will be
linked to the class by the JVM by call-
ing java.lang.System.loadLibrary(“Game”)
automatically.

The example in Listing 2 implements
a minimal Java wrapper around native

G A M E D E V E L O P E R J U L Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

34

D I R T Y J A V A

// Minimal Java control code wraps legacy engine.

package somegame;

class GameMain {

protected static native int nativeMain(String[] args);

public static void main(String[] args) {

int ret = nativeMain(args);

...

}

static { System.loadLibrary(“Game”); }

}

// Handing over the arguments to native code.

// This code will be put into the Game.DLL.

#include <jni.h>

extern int gameMain(int argc, char** argv);

JNIEXPORT jint JNICALL

Java_somegame_GameMain_nativeMain (JNIEnv* env, jclass cls, jobjectArray jargv) {

jint res;

jint argc;

jint i;

jboolean isCopy;

jstring jstr;

jsize len;

const char* cstr;

jargc = env->GetArrayLength(jargv);

for (i = 0; i<argc; i++) {

jstr = (jstring)(*env)->GetObjectArrayElement(env,jargv,i);

cstr = (const char*)((*env)->GetStringUTFChars(env, jstr, &isCopy));

// We copy - we have to release, and we don’t want to accumulate local references.

argv[i] = (char*)malloc(strlen(cstr)+1);

strcpy(argv[i], (const char*)cstr);

// Did the JVM copy as well?

if (isCopy == JNI_TRUE) {

(*env)->ReleaseStringUTFChars(env, jstr, cstr);

}

// Clear local reference.

(*env)->DeleteLocalRef(env,jstr);

}

// Call our main() now.

res = (jint)gameMain((int)argc, argv);

// Release allocated memory.

for (i=0; i<argc; i++) {

free(argv[i]);

}

// Return to Java.

return res;

}

L I S T I N G 2 . Passing Arguments from Java to C.

legacy code. Given all the implicit and
explicit copying, we somehow seem to
have come full circle: to get rid off some
portability-related Java overhead, we
decided to use native code, only to find
out that the JNI design hampers the
interaction between Java and native
code to ensure portability. Now what?
Well, there are basically two ways left to
increase performance:

1. Brute force. You could switch
tools and compile to native code. If
you pursue this option, make sure
your Java compiler supports JNI as
well, and that it doesn’t just compile
pure bytecode.

2. Smart design. You could accept
the limitations of the JNI, and design
your native and Java modules in a
way that streamlines the interface
between them.

Mind you, your native code by itself

will be as fast as it gets. It’s only the
transfer of parameters and results back
and forth that, inside an inner loop, in-
curs significant performance penalties.

The Invocation API

N ow that you have seen some
means to glue Java and native

code together, where does a game
developer actually get access to the
virtual machine? The common answer
is the Invocation API. The Invocation
API allows you to embed the JVM into
your native applications. It provides
the means by which you can retrieve
an existing JVM attached to your
application, or launch one with prop-
er configuration settings. Listing 3
shows how to invoke the JVM in an
application, using JDK 1.2. You can

use code like that shown in Listing 1
to get Java classes loaded and execut-
ed. If you do not want to encapsulate
native method code into .DLLs, then
your application can use the JNI func-
tion RegisterNatives() to make native
functions from the executable known
to the JVM. That way your game
would ship without any .DLL.

Most JVM and compiler implemen-
tations fully support JNI, as it is need-
ed to handle cleanly implemented
core classes. (Interestingly, even Sun’s
own JDK does not always use JNI
internally.) But the Invocation API
was sometimes omitted from JDK
ports and third-party JVMs. If you
want to use the Invocation API, make
sure your tools and targets support it.

Worse still, some JDK ports support
Invocation, but do not do so properly
(including some revisions of Sun’s own
Solaris reference implementation).
Invocation requires threadsafe .DLL
handling, which is not always granted
(for instance, in some Solaris and Linux
revisions). If the dynamic linking is not
threadsafe, your application will suffer
spurious errors during startup.
Furthermore, the official Java specifica-
tion now sanctions limitations of the
reference JDK that affects DestroyJavaVM().
It is not possible to destroy a JDK JVM.
Consequently, you can’t invoke anoth-
er one from the same application —
multiple JVMs, whether subsequent or
in parallel, are not possible. Once you
lose your JVM for whatever reason,
your application must terminate. Fortu-
nately, most of the other pitfalls were
smoothed out last year.

In Listing 3, ignore the JVM handle,
which you can always retrieve by call-
ing the JNI function GetJavaVM(). A more
flexible approach to invoke the JVM
calls GetCreatedJavaVMs() first to check
whether a JVM already exists, and uses
AttachCurrentThread() to make itself
known if one is found. The question
is, do you really have to invoke the
JVM this way?

Two Architectures: Embedded Java
and Encapsulated Native Code

H ow you choose to obtain the JVM
for your game is, in all likelihood,

the most important decision you have
to make when rigging up a Java-based
game project. To a C coder, invocation

h t t p : / / w w w . g d m a g . c o m J U L Y 1 9 9 9 G A M E D E V E L O P E R

35

// JDK 1.2 Invocation example

#include <jni.h>

// Setting some standard options.

extern jint JNICALL Printf(FILE *f, const char *fmt, va_list args);

extern void JNICALL Exit(jint code);

extern void JNICALL Abort(void);

#define NOPTIONS = 5;

JavaVMOption OPTIONS[5] =

{

{ “classpath”, (void*)”C:\\java\lib\classes.zip; D:\Game\classes” },

{ “verbose”, (void*)”jni,gc” },

{ “vfprintf”, (void*)Printf },

{ ”exit”, (void*)Exit },

{ “abort”, (void*)Abort }

};

// Create a JDK 1.2 JavaVM as desired.

JNIEnv* SV_InitJavaVM(JavaVMOption* options, jint nOptions) {

JavaVMInitArgs vm_args;

JavaVM* vm_handle; // not preserved

JNIEnv* env; // return to caller

jint ret;

// Request version 1.2

vm_args.version = JNI_VERSION_1_2;

ret = JNI_GetDefaultJavaVMInitArgs(&vm_args);

if (ret==0) {

vm_args.options = options;

vm_args.nOptions = nOptions;

vm_args.ignoreUnrecognized = JNI_TRUE;

ret = JNI_CreateJavaVM(&vm_handle, &env, &vm_args);

if (ret==0) {

return env;

}

}

... // error handling

}

L I S T I N G 3 . How to invoke the JVM in an application using JDK 1.2.

might seem a natural choice. This
architecture is known as embedded
Java. Your application is linked to a
.DLL that provides a JVM, which hap-
pily lives and dies within your applica-
tion, completely at your disposal. It
looks like this:
// Engine piggy-backed with JVM or

// Engine retrofitted with JVM

// Set options, possibly parsing commandline.

nOpt = SV_GetOptions(&options,argc,argv);

// Invoke JVM, get script engine started.

SV_StartVM(SV_InitJavaVM(options, nOpt));

// Start the actual game.

return gameMain(argc, argv);

On the other hand, if you write a
pure Java game, or use the
somegame.GameMain class shown in Listing
2, then some other application loads
the JVM and hands it the Java bytecode
of your game. This scenario is used
when a web browser runs “gamelets”,
for example, or when JDK’s java loads
an executable .JAR file. Whether your
game uses native code or not, you do
not have to concern yourself with
invocation if the main loop is written
in Java. Native method code will be
encapsulated in Java classes, as long as
the .DLLs required are loaded in time.
It does not look like much of a differ-
ence, but choosing one or the other
might have a huge impact on your
project.

Embedded Java: A Natural Choice?

L et’s look at an example that I call the
“QUAKE 3 scenario.” Your team has

nearly finished a game engine written in
C or C++. The game has a large and sta-
ble legacy code base that you don’t want
to tamper with, yet there is a clear-cut
need that Java might address, such as a
new server-side scripting language, or
support for client-downloadable code. In
short, you want to retrofit an existing
application with a Java component.

The history of the QUAKE engine is a
great example. QUAKE featured a custom
scripting language (QuakeC), QUAKE 2
introduced a server-side .DLL
(GAME.DLL), and some QUAKE engine
offspring now deploy client-side .DLLs.

Embedding is possibly the best
answer in all cases where you have to
deal with C legacy code that is not
implemented in an object-oriented fash-
ion. The JVM is just another device that
is initialized, configured, started and

shut down again. There are some restric-
tions (for instance, you cannot restart
the JVM once it has shut down), but in
general, all you do is provide raw data
(bytecode) to the embedded JVM much
the same way you’d feed .WAV files to a
sound device. If you do not want to use
.DLLs at all, embedding is your solution.
You also get a lot more control over the
JVM that is used by your game. Ship-
ping a Java Runtime Environment (JRE)
with an embedded solution might save
you support and maintenance
headaches. It might also address some
reverse engineering, tampering and
cheating issues.

If embedded Java is used, either C
control code executes Java methods on
the JVM which return the data, or the
Java code in turn calls native methods
to write back. You could have Java
threads run in parallel to your applica-
tion, but debugging an application that
moves back and forth between native
and Java execution stack frames can be a
challenge to you and your tools — mul-
tiple threads will make it even tougher.

What problems are specific to using
an embedded JVM? Some have already
been mentioned, such as negligence or
outright omission of the Invocation API

from some Java implementations, and
potential problems you might face
when falling back on compiling Java to
native code. All of these problems can
be overcome one way or the other, how-
ever. The real danger might be much
more subtle.

Your legacy code has a certain design
— possibly not object oriented at all if
you used C, or possibly an object-orient-
ed design that maps badly to Java if you
used C++ excessively (if you made use of
templates and/or multiple inheritance).
In these cases, taking a single compo-
nent of your game (for instance, the
server-side game logic) and converting it
to Java could introduce bugs and errors
in formerly stable and tested code.
Worse still, through JNI the design used
in native code will proliferate into Java
code, resulting in badly designed Java
code. For example, if you never handle
objects (see Listing 1 and its use of class
methods), it is unlikely that you are
using an object-oriented design. Legacy
code tends to share memory using
pointers for speed and convenience,
which is not possible with JNI. You have
to think hard and make judicious cuts
to get a lean interface between Java and
native code. High levels of abstractions

G A M E D E V E L O P E R J U L Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

36

D I R T Y J A V A

W ritten by Billy Zelsnack

during his days at

Rebel Boat Rocker,

PRAX WAR was destined

to be the first major game to use Java for

most of its code. With the exception of a C

renderer, the PRAX WAR engine was written

entirely in Java. Zelsnack explained the

game this way: “We use JDK and JNI. The

game itself starts from Java. I use Java as

controller code for C. Java is very good at

calling C code, but [it is] not necessarily as

clean the other way around.” The design

kept raw data (such as textures and

sounds) on the native side, but made

them accessible to Java as needed. Billy

Zelsnack found few problems with the

core classes (at one point, UDP network-

ing performance was an issue), and found

no problems with the most feared Java

component, the garbage collector. The

engine used just two threads — one

thread that listened for incoming packets,

plus the main loop itself.

Unfortunately, Rebel Boat Rocker’s

publisher, Electronic Arts, decided earlier

this year to cancel the project, stating that

the game had “missed its technology win-

dow”. If Electronic Arts had had the kind

of faith in Rebel Boat Rocker that Sierra

has shown in Valve Software, we might

have found that their assessment was

straight to the point — maybe Prax War

missed its technology window by being

too early.

Zelsnack summed up his Java experi-

ence up this way: “Java opened up possi-

bilities for the product that could not have

been realized without its power. It was

one of the things I was most excited about

and proud of.”

Java wraps native code in PRAX WAR

implemented as abstract base classes
and interfaces usually work best: the
more details you hide, the better JNI
will work for you.

Consider handling structured data on
both sides of JNI, such as that used for

collision handling. Collision response is
part of the game logic (does the player
take damage, bounce, or die?) and is thus
handled in the Java code in our example.
Collision detection might be performed
within the scene representation that is

also used by the rendering code —
almost surely native code you want to
keep. In this scenario, your Java game
logic might call native code to trace an
object’s movement through the scene.

This is where the level of abstraction is
relevant. Take the QUAKE 2 representa-
tion of a vector in 3D space: float[3]. In
Java, this is best represented as a class
with float x,y,z fields. This avoids array
bounds checking overhead, and frees us
from worrying whether JNI pins or
copies the array. For objects that small
and likely to have all their fields accessed,
the simplest way to pass them back and
forth is to unfold them on the stack as
primitive data types, much the same they
would be flattened for serialization.

This solution is more the exception
than the rule, however. In general, it
pays off to hide as much detail as possi-
ble on both sides. The game logic does
not need to know whether axis-aligned
bounding boxes or spheres are used for
collision detection, it only has to initi-
ate updates to position and size. For the
actual trace in native code, it is irrele-
vant whether a given entity within the
bounding volume is a player, a mon-
ster, or a fireball.

Using a high level of abstraction on
the Java side by sticking to abstract base
classes and interfaces makes retrieving
and caching method IDs in your native
code much easier, since all objects with-
in an inheritance tree will share the
same signatures. You might find it safer
to cache field and method IDs in class
descriptor structs or C++ objects. Field
access is more efficient, but exposes the
internal implementation of your Java
objects. JNI methods like GetFieldID and
GetFloatField can be used instead of, say,
GetMethodID and CallFloatMethod to access
instance fields directly.

You pass references as jobject handles
instead of pointers to make Java data
accessible to native code. The reverse is
not possible: neither C structs nor C++
objects are visible to Java. You can
address C++ objects or C structs with jint
handles on the Java side, using more
(hash table look-up) or less (typecast)
safe ways to retrieve the effective
address. A proxy class would then wrap
native methods with public accessors,
like that sketched out in Listing 4.

Of course, if you want to avoid
switch statements in the native
method, or you want to wrap C++
accessor methods instead of exposing

h t t p : / / w w w . g d m a g . c o m J U L Y 1 9 9 9 G A M E D E V E L O P E R

37

package jni;
class Proxy {
/** Handle to retrieve C++ object, native side. */
private final int handle;
/** Native LUT/constructor. */
private static final native int newNative();
/** Constructor, gets/creates a handle to a native object. */
public Proxy() {
handle = newNative();

}
/** Simplified fieldID. */
private final int SOME_FIELD = 1;
/** Accessor hiding the simplified retrieval. */
public final float getSomeField() {
return getFloat(handle, SOME_FIELD);

}
/** Method that saves us many retrieval() functions. */
private final native float getFloat(int handle, int field);

}
// Minimal C++ object, and JNI glue.
class NativeObject {
public: NativeObject(jobject owner) {
this.owner = owner;

}
public: jobject getOwner() {return owner;}
public: float someField;
public: jobject owner;

};
#include <jni.h>
extern jclass InvalidProxyOwnerException;
extern jclass InvalidFieldIndexException;
// extern “C” implied
JNIEXPORT jint JNICALL Java_jni_Proxy_getFloat
(JNIEnv* env,
jobject owner)
{
return (jint) (new NativeObject(owner));
}
JNIEXPORT jfloat JNICALL Java_jni_Proxy_getFloat
(JNIEnv* env,
jobject owner,
jint handle,
jint field)

{
// Truly dirty. Trust on blank finals.
NativeObject* obj = (NativeObject*)handle;
if (obj->getOwner() != owner)
(*env)->ThrowNew(env, InvalidProxyOwnerException, “access attempted by non-owner”);

switch(field) {
// Enums to be kept in sync manually...
case 1: return obj->someField;
default:
(*env)->ThrowNew(env,InvalidFieldIndexException,

“access attempted by non-existing field”);
}

}
}

L I S T I N G 4 . Java Proxy for a C++ object.

fields, you could also implement the
public Java accessor as a native method.
Incidentally, maintaining the same set
of enums in Java and native code is one of
the problems that does not yet seem to
have an elegant solution. If you are
using a look-up table to retrieve point-
ers for handles, the jobject argument
might already be sufficient.

A native proxy implemented as a C++
object or C struct could cache a global
jobject reference along with method IDs
and field IDs. Caching actual game
data inside native code means that
your proxies have to be kept synchro-
nized with the master objects, or you
will end up with consistency errors
that are very difficult to track down.

Alternatively, you could encapsulate
the results or take a snapshot of a
native object’s state in a new Java
object created in native code, using the
JNI function NewObject() to call a Java
constructor. This approach works even
better if your native and Java modules
communicate by passing event descrip-
tor objects to a queue.

Encapsulated Native: A Magic Bullet?

I f you go down the road of Java con-
trol code, be prepared to throw out

legacy code whenever necessary.
Encapsulation means dividing and split-
ting your code base into tiny pieces —
heaven if you are at liberty to design
from scratch, hell if you have to handle
code that is just sticking together. If you
can’t isolate native code modules and
wrap them with Java classes, then there
won’t be a secure migration path.
Handling a native legacy code base
might well take more time than gutting
it and starting from scratch. If you con-
sider abandoning C/C++ as your main
language, an encapsulation architecture
is definitely the way to go.

Java and JNI will always have some
performance disadvantages that make
them unsuitable for time-critical inner
loops. However, it can be very efficient
write your control code in Java (which
can account for up to 90 percent of a
game’s total code base) even though that
often takes up less than 10 percent of
the overall processing time — especially
for games that make the CPU spend half
of the time in an OpenGL driver. This
was the reasoning behind the PRAX WAR

architecture that Billy Zelsnack imple-

mented at the now defunct game devel-
opment studio, Rebel Boat Rocker (see
sidebar, “Java wraps native code in PRAX

WAR”). There are only a few areas in
which native code is really needed, such
as managing raw data (textures and

sound resources, for example), and ren-
dering. Collision detection might best be
done in native code shared with the ren-
derer. Collision response, however, is a
natural part of high-level game logic. In
some cases, the lackluster performance

G A M E D E V E L O P E R J U L Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

38

D I R T Y J A V A

ohn Carmack considered using

Java in id’s games for quite some

time, ever since he announced that

the company was leaning towards

client-downloadable code for the

Trinity project. “The QA game architecture

so far has two separate binary .DLLs: one

for the server-side game logic, and one for

the client side presentation logic.” Games

that licensed the Quake 2 engine, notably

HALF-LIFE and HERETIC 2, also wound up

using client side .DLLs. However, with the

hacking attacks on QUAKE 2 servers in

mind, Carmack states that, “While it was

easiest to begin development like that,

there are two crucial problems with ship-

ping the game that way: security and

portability. If we were willing to wed our-

selves completely to the Windows plat-

form, we might have pushed ahead, but I

want QUAKE 3: ARENA running on every plat-

form that has hardware-accelerated

OpenGL and an Internet connection.”

His solution: “I had been working

under the assumption that Java was the

right way to go, but recently I reached a

better conclusion. The programming lan-

guage is interpreted ANSI C. The game

will have an interpreter for a virtual RISC-

like CPU.” UNREAL followed a similar

approach: companies that license the

engine can opt to use compiled C or C++

code, and interpreted UnrealScript is

available for homebrew scripting.

The advantages of using a C or C++

subset for your VM are obvious when it

comes to handling legacy code.

Ironically, it was Java portability prob-

lems that led id to develop the QUAKE 3

custom VM. Sun’s promise of “write once,

run anywhere” did not hold for the

Invocation API on important server plat-

forms, so Carmack decided to abandon

the embedded JVM he had planned to

use. “My ideal situation,” he stated,

“would be to include the interpreter in

the QUAKE3.EXE, and just treat class files

as data to be loaded and dealt with like

anything else.” Unfortunately, while this

solution works fine on Win32 platforms,

this was not guaranteed for Linux, OS/2,

or even Solaris. “Having made the deci-

sion to do my own interpreter, I feel much

more at ease not having to rely on anyone

else’s external code. When it comes

around to the next development cycle, I

will make the Java decision again.” As for

embedding: “We are still working with

significant chunks of an existing code

base. If I did want to go off and start

fresh, I would likely try doing almost

everything in Java.”

id Abandons Java for QUAKE 3: ARENA

J

of Java core classes might force you to
replace them with your own custom Java
code, or even use some native code
instead. In the end, you will have a few
cleanly separated native code modules
you can optimize to your heart’s con-
tent, controlled by robust Java code. The
object-oriented design propagates top-
down into your native code, which
should be another benefit.

The Holy Grail: 100 Percent Pure
Java

S upporting the multitude of
Internet server platforms (Solaris,

Linux and other UNIX flavors, OS/2,
and Windows NT) has become
increasingly important for multiplayer
games. Presuming the existence of
decent Java networking core classes
and acceptable performance of Java-
based scene lookup and collision
detection code, a dedicated server
implemented entirely in Java is an
attractive possibility — portable by
default and, in the absence of JNI, eas-
ily compiled to native code.

Portability issues are not as pressing
for clients, the majority of which are
Win32-based. At the same time, a real
need for native code might only be
found for the client, which is pushing a
lot of raw data (textures and sounds)
from local disk to local memory to
native driver code. Unfortunately, only
a few games, such as id’s experimental
QUAKEWORLD release, have separated
the client and server completely.
Consequently, a dedicated Java server
means a separate code base that partly
duplicates the shared client/server
sources. Dedicated servers have become
quite common recently, but in the
long run, the code duplication is not
acceptable. Automated Java-to-C or C-
to-Java conversion might offer a tem-
porary workaround only.

Ultimately, shipping a client written
in Java will require decent Java bind-
ings around reliable, cross-platform
APIs, and these are nowhere to be
found. Java does not have official
OpenGL bindings, there is not even a
portable native API for 3D sound, and
the politics surrounding Sun’s propri-
etary Java3D scene graph API doesn’t
help matters. For the foreseeable
future, commercial games will not be
feasible without JNI and native code.

Q2Java Today: What’s Next?

F ew games (Red Storm Entertain-
ment’s POLITIKA is among them)

have shipped with Java built into
them, but if you want to see a full-sized
example of an embedded Java VM run-
ning QUAKE 2 deathmatch right now,
you should visit the Q2JAVA web site at
http://www.planetquake.com/q2java.
Q2JAVA, orginally by Barry Pederson, is
a cooperative open source implementa-
tion of the QUAKE 2 multiplayer game
logic and works with the native QUAKE

2 executables on Windows 95/98/NT,
Linux and (as a dedicated server)
Solaris.

This article has introduced the two
major roads to using Java for your game,
though admittedly, a lot of details have
been omitted and major issues (like
security) were not touched upon.

However, Gamasutra.com is hosting
more of my Java game development
articles, including a web version of this
article that includes an annotated list of
references. ■

h t t p : / / w w w . g d m a g . c o m J U L Y 1 9 9 9 G A M E D E V E L O P E R

39

I n a recent developer update,

Nihilistic’s Director of Tech-

nology, Robert Huebner, stated:

“I’ve always been rather anti-

Java; all the Internet hype surrounding

the language was overwhelming. But

after examining the language further, it

was clear that it makes an ideal scripting

language for games. The embedded Java

API allows us to provide our designers

with a subset of the Java environment,

and the JNI interface allows us to pro-

vide hooks from the Java Virtual Machine

(JVM) directly into the game engine.”

The new Java-based system will replace

a custom compiled language, COG, that

the team used in its previous title, JEDI

KNIGHT: DARK FORCES 2. According to

Huebner, “The JVM is a lot faster than

the systems we wrote ourselves; their

kernel is more heavily optimized, the

available Java compilers produce much

more optimized object code, and the

newest JVM systems include just-in-time

(JIT) compilation to native instructions

as a standard feature. And since the lan-

guage is so much richer than our previ-

ous C-subset, it gives the designers a

much wider range of possibilities.”

Because Nihilistic is developing primari-

ly for Windows, it is able to apply solu-

tions that were not feasible for id

Software’s multi-platform QUAKE 3:

ARENA strategy.

Embedded Java in VAMPIRE: THE MASQUERADE

• See the JNI specification at:

http://java.sun.com/products/jdk/1.2/

docs/guide/jni/index.html

http://java.sun.com/products/jdk/1.1/

download-pdf-ps.html

• See Rob Huebner’s 1999 GDC slides at:

http://www.nihilistic.com/GDC99/Java.

• Gordon, Rob, et al. Essential JNI: Java

Native Interface. Prentice Hall Computer

Books, 1998.

• See the extended version of this arti-

cle on Gamasutra.com, which includes

further links and resources.

FF OO RR FF UU RR TT HH EE RR II NN FF OO

That was last month. The purpose of this article is to take
what we learned last month and delve into optimization
strategies and algorithms so that our slow, straightforward
code can become fast (but still straightforward) code.

This article ends with a more interesting demo than last
month’s — a terrain system of Bézier patches. Therefore, this
article presents information that bridges last month’s infor-
mation and this month’s terrain system. We’ll find a better
patch tessellator, quickly talk about terrain light map genera-
tion and why it’s a good idea, and finally talk about putting
patches together to form the terrain and the bevy of compli-
cations that accompany it.

Central Difference Tessellation

A t the end of the last article, I created a demo of a single
Bézier patch, tessellated uniformly, bright red, that

spun around at a woeful frame rate. Certainly, this was
nothing you could use to build a robust application. The
computations involved for just that one patch included 32
cubic function evaluations, 32 quadratic function evalua-
tions, two vector normalizations, a vector cross product, and
OpenGL lighting for each point. We can do two things to
speed that up: do less work per point, and, even more
importantly, calculate fewer points.

Perhaps the worst sin of my naïve implementations was
the patch tessellator, UniformPatchTessellator. It just calculated
a ten-by-ten grid of points on the patch. It calculated each
point explicitly and just about as slowly as it could. If we can
devise a better patch tessellator, we’re a long way towards a
truly useful implementation.

There are better tessellation algorithms out there, and I’ll
discuss one particular algorithm that I’ve used to make these
Bézier patches really crank: central differencing. One form of
the central differencing algorithm is mentioned in Watt and
Watt’s Advanced Animation and Rendering Techniques

G A M E D E V E L O P E R J U L Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

40

S U R F A C E SC U R V E D

Optimizing
Curved
Surface
Geometry

n my article last month, I covered the

basics of curved surfaces, including

Hermite curves, Bézier curves, and Bézier

surfaces. I warned that the implementa-

tions would be straightforward and naïve,

and therefore slow.

B y B r i a n S h a r p

When Brian’s not coding up a storm or sleeping through meet-
ings at CogniToy, he’s filling up otherwise useful pages of the
magazine with his nonsensical ramblings. Keep him busy by
writing to him at brian_sharp@cognitoy.com with questions or
comments or else he might find the time to write again.

II

Rounded landscapes like this can be rendered quickly using

Bézier patches.

(Addison-Wesley, 1992), but this version is modified signifi-
cantly from the one they present.

The fundamental mathematical construct used in central
differencing is the Taylor polynomial. A Taylor polynomial
of a function is a polynomial that approximates that func-
tion near a certain point. So, let’s say you’ve got a sine curve,
and you start atop a peak of the curve. Then, you can form
polynomials that look like a sine curve near that peak. As
the polynomial becomes more and more complex, it looks
more and more like that sine curve. The formula for the
Taylor polynomial of a function h(x) near a parameter u is:

where hi is the ith derivative of h.

Then, in practice, you pick some limit other than infinity
for the summation, and you get an approximation of the
function — the higher the limit, the better the approxima-
tion. However, in our case, we’re dealing with cubic func-
tions. Therefore, any derivative after the third will be zero,
so it’s pointless to make the upper bound anything higher
than three. So, if our cubic function is h(x), its Taylor poly-
nomial will look like this:

Eq. 1

You’ve probably noticed by now that all this does is take
one cubic polynomial and give us another cubic polynomial.
You’re probably wondering what that does for us. This is
where central differencing takes over. The idea behind cen-
tral differencing is that, given information about the end-
points of a curve segment, we’d like to be able to find the

midpoint. That way, we can then recurse on both sides of
the midpoint and find their midpoints, and so on, until we
have our curve.

Rather than keep you hanging, I’ll mention the process
right now and go through the derivation of it afterwards. If
we have two points along the function h(x), say h(a) and
h(b), and we want to find the point halfway between h(a)
and h(b), or h((a+b)/2), we do the following. First, we aver-
age h(a) and h(b), which gives us just a point on the line
between them.

Next, we take h’’(a) and h’’(b), the second derivative of h
at a and b. We average them to find the second derivative
at the midpoint, h’’((a+b)/2). We also find du, which is half
the parameter distance between h(a) and h(b), or (b-a)/2.
Then, we compute –du2 *h’’((a+b)/2) / 4. We add that to the
averaged point we found above, and that’s our point. The
pseudo-code for this process is shown in Listing 1.

Central Differencing: The “Why”

S o we’ve established that central differencing is a better
way to tessellate a patch. Now we need to choose some

values so that the Taylor polynomial makes this work. We’ll
call the midpoint h(u), and du is the distance from the mid-
point to an endpoint. That makes the first endpoint h(u-du),
and the other endpoint h(u+du); Figure 1 shows an example
curve. From that, we can evaluate the Taylor polynomial as
though we were solving for the endpoints, given the mid-
point. That gives us the following two equations:

Eq. 2

Eq. 3
In Equation 3 we can pull the negative sign out of the –du

terms on the right side, giving use these two equations:

Eq. 4

Eq. 5

h u du h u du h u
du

h u
du

h u() () (()) ()
()

()− = + − ′ + ′′ + − ′′′
2 3

2 4

h u du h u du h u
du

h u
du

h u() () (()) () ()+ = + ′ + ′′ + ′′′
2 3

2 4

h u du h u du h u
du

h u
du

h u() () (())
()

()
()

()− = + − ′ + − ′′ + − ′′′
2 3

2 4

h u du h u du h u
du

h u
du

h u() () (()) () ()+ = + ′ + ′′ + ′′′
2 3

2 4

h u du h u du h u
du

h u
du

h u() () (()) () ()+ = + ′ + + ′′ + ′′′
2 3

2 4

h u du
du
i

h u
i

i

i

()
()

!
()+ =

=

∞

∑
0

h t t p : / / w w w . g d m a g . c o m J U L Y 1 9 9 9 G A M E D E V E L O P E R

41

CentralDifference(h(a), h''(a), h(b), h''(b))
{
// Get the midpoint parameter value.
mid = (a+b)/2;

// Get the midpoint of the line between
// h(a) and h(b)
avgPoint = (h(a) + h(b)) / 2;

// Find the second derivative of
// h((a+b)/2). Since the second
// derivative is linear, we can
// just average them.
h''(mid) = (h''(a) + h''(b)) / 2;

// Find du, the distance from h(a)
// to h((a+b)/2).
du = (b-a) / 2;

// Now h(mid) is this next term
// plus avgPoint.
secondTerm = -(du*du)*h''(mid)/4;
h(mid) = avgPoint + secondTerm;

return h(mid) and h''(mid)
}

L I S T I N G 1 . This code takes two points on a cubic curve and

the second derivatives of the curve at those points and finds

the midpoint and its second derivative.

f (u-du)

f (u)

f (u + du)

F I G U R E 1 . The parameters used in the Taylor polynomials

for central differencing.

Equations 4 and 5 by themselves do not give us enough
information to solve for the midpoint h(u), but we can reduce
them to a single nice equation just by adding them together.

Eq. 6
The positive du and negative du terms cancel out, which is

why we have such a nice equation. However, we don’t want
to solve for the endpoints — we need the midpoint.
Rearranging the equation we get:

Eq. 7
Dividing through by 2 and breaking things up, it becomes:

Eq. 8

That first big fraction on the right side of the equation is
just the average of the two endpoints. That’s easy enough to
find because we’re assuming we have whatever information
we need about the endpoints. The second fraction on the
right side is a little harder, though. It depends on the second
derivative at the midpoint. Can we get that from the end-
point? Well, note that the second derivative is just a linear
equation. That’s easy enough to find from the endpoints; we
can just average the second derivatives of h at the endpoints,
and we’ve got it:

Eq. 9

Now, throwing that back into equation 8, we’ve got:

Eq. 10
That’s a mouthful, but that’s it. What that says is that we

can find the midpoint by averaging the endpoints and
adding on a weighted average of the endpoints’ second
derivatives. Since we know we can find the midpoint’s sec-

ond derivative (we just did it in Equation 9) we’ll have
enough information when we’re done to recurse and find
the rest of the curve.

That’s just for a curve, though, as h is only a function of
one variable. We want do this for patches, which are func-
tions of two variables. But before we move on, we should
take note of an interesting property of the central difference.

Nonlinearity

I n Equation 10, we find the midpoint by averaging the
endpoints and adding on the other term, the weighted

second-derivative term. What’s interesting is that if that
second term is 0, then it means that the midpoint lies on
the line between the endpoints. Therefore, we’ll refer to
that second term as the nonlinear term of the central differ-
ence — it determines how far the midpoint is from the
line between the endpoints.

As you might suspect, this is a great heuristic that we
can use to decide how far to tessellate a curve. We just set
a certain threshold, and when the magnitude of the non-
linear term is below that threshold, we stop recursing and
return. Therefore, we’ll have much more detail in very
curved areas, and not nearly as much detail in the less
curved areas. This is a perfect way to save detail for the
parts of the curve that need it. We’ll use the nonlinear
term later on when we put together heuristics for our
patch tessellation.

Central Differencing Revisited

W e’ve derived enough to tessellate a curve with cen-
tral differences. Now we need to figure out how to

tessellate a patch with central differences. As it turns out,
central differences in two dimensions are slightly harder
than the one-dimensional variety. So, we describe our
problem again. This time, we want to be able to take infor-
mation about four corner points on a patch and find the
same information about the midpoints between the cor-
ners and also the center point. An illustration of this is
Figure 2.

Looking at the illustration, it’s clear that if we can find
the midpoints of this one level given the corners, we can
recurse within each of the four smaller squares using the
same method, and so on, until we have our patch. Now, we
aren’t sure exactly what information we need at the corner
points, so let’s see what it would take to find the other five
points.

The u-midpoints can be generated using the one-dimen-
sional central differencing. We can ignore v, since it stays
constant, and use the endpoints and their second deriva-
tives with respect to u to find the u-midpoints and their
second derivatives with respect to u.

The v-midpoints can be generated the same way. We can
ignore u and use the endpoints and their second deriva-
tives with respect to v to find the v-midpoints and their
second derivatives with respect to v.

To keep this all straight, it’s useful to keep track of what
information we have for which points:

h u
h u du h u du du h u du h u du

()
() () (() ())= + + − − ′′ + + ′′ −

2 4

2

′′ = ′′ + + ′′ −
h u

h u du h u du
()

() ()
2

h u
h u du h u du du h u

()
() () ()= + + − − ′′

2 2

2

2 2h u h u du h u du du h u() () () ()= + + − − ′′

h u du h u du h u du h u() () () ()+ + − = + ′′2 2

G A M E D E V E L O P E R J U L Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

42

C U R V E D S U R F A C E S

corner

corner

corner

corner

v-midpoint

v-midpoint

u-midpoint

u-midpoint

u

v

F I G U R E 2 . One level of recursion in central difference

patch tessellation.

Before we worry about finding the center point, we should
make sure the u-midpoints and the v-midpoints are complete.
That is, if we want to recurse, we need to make sure that we
end up with the same exact information at the new points as
we got from the corner points. Otherwise, that information
won’t be available to the four smaller squares when we try to
recurse. So, the objective is to find the second partial deriva-
tive of f with respect to v at the u-midpoints, and the second
partial derivatives in u at the v-midpoints. However, it’s not
clear quite how we do this, since the one-dimensional central
differencing doesn’t say anything about how to interpolate a
variable of v along u or vice-versa. A clue comes from the
equation of the Bézier patch:

Let’s find the second partial in v along u first. We must find
the second derivative of the patch with respect to v. From the
above equation, we’d have:

Now, the basis function with respect to u, B(u), is a cubic.
Since it’s untouched, we can see that the second derivative of
the patch with respect to v is a cubic function in u. If we have
any cubic in u, we can interpolate it in the u direction using
the one-dimensional central differencing.

In this case, then, the function we’re interpolating is the
second derivative with respect to v:

So, we can interpolate g(u) if we have g(u) at the endpoints
and g’s second derivative with respect to u at the endpoints.
That means that to get the second partial derivative in v at the
u-midpoints, the corner points need this data:

The corners already have the first value, the second deriva-
tive with respect to v. We have to add the second one, the sec-
ond partial derivative with respect to u of the second partial
with respect to v.

Now we’ve got the second partials in v at the u-midpoints.
We can easily find the second partials in u at the v midpoints
in the same way if we just swap the variables. So, the second
partial in u is a cubic function in v, so we can find it by adding
the following to the corner points:

Again, the corners already have the first item. Also, we can
switch the partials around, so:

Eq. 11

Finally, we note that this term is a linear function of u and
v, so we can get it at the u-midpoints and the v-midpoints just
by averaging the values from the corner points.

Therefore, we have all the information we need in the cor-
ners, and we can get that information back at the u-midpoints
and v-midpoints. Just to keep track, here’s what we’re up to:

Now, we just have to fill in the center point, and we’re
done. (Don’t worry, we’re almost there.)

Referring back to Figure 2, the center point can be derived
from the u-midpoints just as each of the v-midpoints was
derived from its two corner points. So we use the u-midpoints
and their second partials in v to find the center point and its
second partial in v. Then, we can get the center’s second par-
tial in u by averaging the v-midpoints’ second partials in u.
Finally, we can get the center point’s final value, the second
partial in v of the second partial in u (the value from Equation
11) by averaging the values from the v-midpoints.

We’re done! It took a while, but we finally have all the
information for all the points:

Therefore, given four corner points with those five values,
we can create the u-midpoints, v-midpoints, and center point
with the central differencing. From there, we can recurse into
the four smaller squares formed by the new points to contin-
ue tessellation. Pseudo-code for doing this is shown in Listing
2. We start by explicitly computing this information for the
four patch corner points, and then recurse. That’s great, but
there’s still something missing. We’ve proved the recursive
step, but we don’t have a base case. When do we know we’re
done? How far do we recurse?

Recursion Heuristics

W e already mentioned a very powerful tool for deciding
when to stop recursing. The nonlinearity term from

the central differences is an estimation of how curved the sur-
face is at the spot we’re tessellating. We can use the nonlinear-
ity terms from the generation of the midpoints to determine,
then, the curvature of the subpatch we’re working with. Then,

corners f u v
f u v
u

f u v
v

f u v
u v

u mids f u v
f u v
u

f u v
v

f u v
u v

v mids f u v
f u v
u

→

− →

− →

(,),
(,)

,
(,)

,
(,)

(,),
(,)

,
(,)

,
(,)

(,),
(,)

,

∂
∂

∂
∂

∂
∂ ∂

∂
∂

∂
∂

∂
∂ ∂

∂
∂

2

2

2

2

4

2 2

2

2

2

2

4

2 2

2

2

∂∂
∂

∂
∂ ∂

∂
∂

∂
∂

∂
∂ ∂

2

2

4

2 2

2

2

2

2

4

2 2

f u v
v

f u v
u v

center f u v
f u v
u

f u v
v

f u v
u v

(,)
,

(,)

(,),
(,)

,
(,)

,
(,)→

corners f u v
f u v
u

f u v
v

f u v
u v

u mids f u v
f u v
u

f u v
v

f u v
u v

v mids f u v
f u v
u

→

− →

− →

(,),
(,)

,
(,)

,
(,)

(,),
(,)

,
(,)

,
(,)

(,),
(,)

,

∂
∂

∂
∂

∂
∂ ∂

∂
∂

∂
∂

∂
∂ ∂

∂
∂

2

2

2

2

4

2 2

2

2

2

2

4

2 2

2

2

∂∂
∂

∂
∂ ∂

2

2

4

2 2

f u v
v

f u v
u v

center nothing

(,)
,

(,)

→

∂
∂ ∂

∂
∂ ∂

4

2 2

4

2 2

f u v
v u

f u v
u v

(,) (,)=

∂
∂

∂
∂ ∂

2

2

4

2 2

f u v
u

f u v
v u

(,)
,

(,)

∂
∂

∂
∂ ∂

2

2

4

2 2

f u v
v

f u v
u v

(,)
,

(,)

g u
f u v
v

()
(,)= ∂

∂

2

2

p B u
d B v

dvij i
j

ji

3
2 3

2
0

3

0

3

()
()

==
∑∑

p B u B vij i j
ji

3 3

0

3

0

3

() ()
==
∑∑

corners f u v
f u v

u
f u v

v

u mids f u v
f u v

u

v mids f u v
f u v

v
center nothing

→ ∂
∂

∂
∂

− → ∂
∂

− → ∂
∂

→

(,),
(,)

,
(,)

(,),
(,)

(,),
(,)

2

2

2

2

2

2

2

2

h t t p : / / w w w . g d m a g . c o m J U L Y 1 9 9 9 G A M E D E V E L O P E R

43

given some threshold, if the magnitude
of the nonlinearity terms for all the
midpoints was less than the threshold,
we’d just leave the subpatch as the two
triangles formed by the corners and
return. So if the threshold is very high,
we end up with a very low-detail patch
of just two triangles. If the threshold is
too low, the patch is extremely detailed,
which will look good but run slowly.
Hence, picking a good threshold value is
just a matter of testing, and would be a
good candidate for an options screen for
the game player.

However, just because a surface is
very curvy doesn’t mean we want it to
continue tessellating. If the surface is
50 miles away from the camera and
occupies a three-by-three block of pix-
els on the screen, we’d rather it be very
low detail. However, if we zoomed in
with a sniper rifle (think GOLDENEYE) to
look at that terrain, it might be 50
miles away, but might now occupy a
200-by-200 block of pixels, in which
case we’d like it to tessellate quite a bit.
So, we need a way to add distance and
field-of-view angle into our heuristic,
and we’d like it to be fast. Ideally, we’d
like to know how big the nonlinearity
vector is in pixels.

Here’s a good, albeit rough, heuristic.
Consider the camera frustum. The non-
linearity vector lies roughly in some
slice of the frustum perpendicular to
the screen (see Figure 3). Let’s say we
can figure out how wide, in pixels, that
slice of frustum is. Then the ratio of the
magnitude of the nonlinearity vector
to the width of the frustum slice is the
(very rough) size of the nonlinearity in
screen space, expressed as a percentage
of the screen width. For instance, if the
patch was so curvy that the nonlineari-

ty vector stretched all the way across
that slice of frustum, the ratio would
be 1. More likely, the nonlinearity vec-
tor will be something relatively small,
and the ratio will be something like
0.002, which is 0.2 percent of the
screen, equal to about five pixels in a
640×480 screen display.

However, to do this, we still need to

find the width of that frustum slice.
So first we take the vector from the
eye to a point near the nonlinearity
vector, like one of the corner points.
Call that vector d, for distance. Next
we need the field-of-view angle, and
then we’re all set to do a little
trigonometry. Referring to Figure 4,
we know one angle of the triangle,
and d is one of the legs, so the other
leg is half the width of the frustum
slice. So that leg’s length is d *
tan(fov/2). Double that, and we have
the width of the frustum slice. Then
take the ratio of the nonlinearity vec-
tor’s magnitude to the frustum slice
width, and we have our heuristic.

Keep in mind that all of this is very
rough. Since it’s all about the visual
quality, all of these heuristics are very
open to tweaking. For instance, in my
terrain demo, I decided that I cared
more about detail of terrain close to
the camera than far away, so I squared
the distance attenuation part so it fell
off faster and I could devote more tri-

G A M E D E V E L O P E R J U L Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

44

C U R V E D S U R F A C E S

// Find the midpoints and center point given these four corners. Any point has four
// values, u0v0 is the point (the zeroth derivatives w/ respect to u and v, u2v0
// is the second partial in u, u0v2 is the second partial in v, and u2v2 is the
// second partial in u of the second partial in v.
DifferencePatch(c0, c1, c2, c3)
{
// Here are the points we're trying to find.
points umid0, umid1, vmid0, vmid1, cen;

// Find the u-midpoints' u0v0 and u2v0 through Central Differencing.
umid0.u0v0 and umid0.u2v0 = CentralDifference(c0.u0v0, c0.u2v0, c1.u0v0, c1.u2v0);
umid1.u0v0 and umid1.u2v0 = CentralDifference(c2.u0v0, c2.u2v0, c3.u0v0, c3.u2v0);

// Find the v-midpoints' u0v0 and u0v2 through Central Differencing.
vmid0.u0v0 and vmid0.u0v2 = CentralDifference(c0.u0v0, c0.u0v2, c1.u0v0, c1.u0v2);
vmid1.u0v0 and vmid1.u0v2 = CentralDifference(c2.u0v0, c2.u0v2, c3.u0v0, c3.u0v2);

// Find the u-midpoints' u0v2 and u2v2 through Central Differencing.
umid0.u0v2 and umid0.u2v2 = CentralDifference(c0.u0v2, c0.u2v2, c1.u0v2, c1.u2v2);
umid1.u0v2 and umid1.u2v2 = CentralDifference(c2.u0v2, c2.u2v2, c3.u0v2, c3.u2v2);

// Find the v-midpoints' u2v0 and u2v2 through Central Differencing.
vmid0.u2v0 and vmid0.u2v2 = CentralDifference(c0.u2v0, c0.u2v2, c1.u2v0, c1.u2v2);
vmid1.u2v0 and vmid1.u2v2 = CentralDifference(c2.u2v0, c2.u2v2, c3.u2v0, c3.u2v2);

// Now we just have to find the center point. Find it from the midpoints.
cen.u0v0 and cen.u2v0 = CentralDifference(vmid0.u0v0, vmid0.u2v0, vmid1.u0v0,
vmid1.u2v0);

cen.u0v2 and cen.u2v2 = CentralDifference(umid0.u0v2, umid0.u2v2, umid1.u0v2,
umid1.u2v2);

// We're done!
}x

L I S T I N G 2 . This code takes four patch corners and a number of derivatives at those

corners and finds the midpoints and center points.

nonlinearity

vector

F I G U R E 3 . The nonlinearity vector

lies roughly in a slice of the frustum.

d

eye

width of frustum slice
nonlinearity

vector

fov/2

2

F I G U R E 4 . The trigonometric deriva-

tion of the width of the frustum slice.

angles to the patches up front. In addi-
tion, while it’s possible to sit down and
hash out the ideal threshold value for
different performance levels, you’ll
probably have more luck (and spend
less time) just making the threshold
modifiable at run time and tweaking it
to suit your needs.

Filling in the Cracks

O ne of the dark secrets of this
dynamic tessellation that we

haven’t mentioned is that it causes
cracking in the patch. When two sub-
patches that share an edge are tessellat-
ed differently, there will be a hole
between them, as shown in Figure 5. In
practice, the cracking is very evident
and distracting, so it can’t just be
passed off as an acceptable visual glitch.

At first glance, one might be tempted
to go with a naïve fix, like just filling the
cracks with triangles. The problem is, if
the higher-detail surface is, say, two lev-
els of detail higher, the hole won’t be
triangular, but pentagonal. It turns out
that it’s easier and faster to fix the cracks
in a better way than that.

Cracking is caused when subpatches
that share an edge are of different lev-
els of detail. Therefore, the fix for the
problem is to make it so that shared
edges are always at the same level of
detail. In my terrain demo, I use a post-
pass over the vertices to accomplish
this. For each patch, I check to make
sure that the edges of its four subpatch-
es are of the same level of detail. If one

of them isn’t at the same level of detail,
I fix it by collapsing the middle vertex
of the higher-detailed edge into the
corner, as in Figure 6. Then I recurse on
the four subpatches. While this does
require another pass over the data, it
works surprisingly well.

Now that we are tessellating patches
dynamically with no cracking, we’re
getting closer. But we’re not there yet.
As far as we know, the patch is still a
flat, unlit color. Next, we’d like to make
it look a bit better.

Textures and Light Maps

O ne of the best ways to improve
the visual quality of a patch is

through texturing and lighting. The
first thing we need are texture coordi-
nates so we know how to place the tex-
ture onto the patch. The simplest
approach, sufficient for many purposes,
is just to use the patch (u,v) as the tex-
ture coordinates. We can get these easi-
ly from the central difference tessella-
tion by averaging the (u,v) of the
corners to get those of the midpoints
and center point.

Given those, it’s easy to drop a tex-
ture onto the patch. We just toss a ter-
rain texture of choice at OpenGL, and
then use the patch (u,v) at each point as
texture coordinates. This maps the tex-
ture directly across the surface. But a

texture with no lighting still doesn’t
look very good.

It might be tempting to use OpenGL’s
lighting as we did with the
UniformPatchTessellator. However, there are
a number of reasons not to do this. For
one, finding the normal to the surface
at each point requires a fair amount of
work, including the two vector normal-
izations and cross product. Furthermore,
the central differencing is already com-
plicated enough without having to
interpolate the normals. And there’s
one more reason not to use OpenGL
lighting: OpenGL’s per-vertex lighting
makes the dynamic tessellation of our
terrain very obvious. When the detail
level of the terrain changes, the lighting
shifts disturbingly, and when the poly-
gon count in the terrain is low, the
lighting looks stretched and linear from
the Gouraud shading.

The solution is to use light maps. (For
a more thorough discussion of light
maps, see “Multitexturing in DirectX 6
by Jason Mitchell et al. [September
1998]). Light maps are handy not only
because they not change with the tes-
sellation, but they also actually give the
illusion of more detail. Even if the sur-
face is made of two triangles, the light
map still depicts smooth, curved light-
ing playing across the curves that aren’t
really there.

In my terrain demo, I didn’t particu-
larly want to pre-calculate my light

h t t p : / / w w w . g d m a g . c o m J U L Y 1 9 9 9 G A M E D E V E L O P E R

45

F I G U R E 6 . By collapsing the center vertex into the corner, the cracking is fixed.

High-detail subpatch

Open hole between

subpatches

Low-detail subpatch

F I G U R E 5 . An edge shared by sub-

patches at different detail levels

exhibits an open triangular hole. The

z value of the extra point in the red

patch doesn’t line up with the blue

patch’s edge.

F I G U R E 7. Terrain Texture * Terrain Light Map = Lit Terrain.

maps, and I didn’t want to implement
my own lighting model, either.
Therefore, I found a handy solution that
generates fairly good-looking results:
OpenGL feedback mode.

The idea here is that at patch cre-
ation time, we want to sample the
lighting at a number of points evenly
spaced across the surface, and use their
lit colors as texels in a light map. It
turns out that even a fairly small light
map will look just fine. Since we want
the points evenly spaced, we’ll use
UniformPatchTessellator again to generate
an 8×8 grid of points the slow way,
light them, and build a texture out of
it. The code for this is shown in Listing
3. The process is surprisingly fast — a
single patch’s light map takes around 2
or 3 milliseconds to generate and
upload to OpenGL.

Figure 7 shows the end product. We
have the textured pass, the lit pass, and
when combined, the textured and lit
patch. Quite an improvement, indeed.
If I’d promised a terrain system, though,
a single patch is hardly sufficient. We
need to take this good-looking patch
and somehow come up with a way to
define an entire landscape.

Multiple Patches

M aking terrain out of multiple
patches doesn’t sound like any-

thing monumental. After all, we could
just create a five-by-five grid of patches
and draw them. Unfortunately, albeit
not surprisingly, it’s not that easy.

The first and most obvious problem is
that if we just generate a 4×4 grid of ran-
dom control points for each patch, the

G A M E D E V E L O P E R J U L Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

46

C U R V E D S U R F A C E S

P2

P3

Po

P1

F I G U R E 8 . For the curves to connect

smoothly, their endpoint tangents

must both point in the same direction.

// We want a huge projection so that it won't clip anything, and we want
// it orthographic to save on transformation cost.
::glMatrixMode(GL_PROJECTION);
::glLoadIdentity();
::glOrtho(-10000, 10000, -10000, 10000, 1, 20000);

::glMatrixMode(GL_MODELVIEW);
::glLoadIdentity();
::gluLookAt(0,0,10000, 0,0,0, 1,0,0);

::glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Position the light.
::glEnable(GL_LIGHTING);
float position[] = {20.0f,0.0f,5.0f, 0.0f};
::glLightfv(GL_LIGHT0, GL_POSITION, position);

// Tessellate our patch.
generatePoints(size, controls, basesU, basesV);

// Kick OpenGL into feedback mode and render the patch.
float* feedBuffer = new float[size * size * 8];

::glFeedbackBuffer(size * size * 8, GL_3D_COLOR, feedBuffer);
::glRenderMode(GL_FEEDBACK);

::glColor3f(1, 1, 1);
::glBegin(GL_POINTS);
for (int v = 0; v < size; v++)
{
for (int u = 0; u < size; u++)
{
::glNormal3fv(norms + (u + (v*size))*3);
::glVertex3fv(verts + (u + (v*size))*3);

}
}
::glEnd();

// Read the data out of the buffer.
int count = ::glRenderMode(GL_RENDER);

int texPos = 0;
float* texData = new float[3 * size * size];

for(int x = 0; x < count; x++)
{
if (feedBuffer[x] == GL_POINT_TOKEN)
{
texData[texPos + 0] = feedBuffer[x + 4];
texData[texPos + 1] = feedBuffer[x + 5];
texData[texPos + 2] = feedBuffer[x + 6];

texPos += 3;
x += 7;

}
else
{
std::cout << "ERROR parsing feedback buffer array." << std::endl;
delete[] texData;
return 0;

}
}

Continued on p. 47.

L I S T I N G 3 . This code uses UniformPatchTessellator and OpenGL feedback mode to

make a light map for the terrain.

patches will line up in x and y, but the z
values of patches along shared edges
will have nothing to do with each
other. The terrain will have gaping
holes where patches touch.

We could make sure that the patches
share the same edge points so that there
wouldn’t be any surface breaks between
them.However,that’s still insufficient —
the Bézier patch representation doesn’t
guarantee anything about continuity
between patches. We have to manually
make sure that we preserve a number of
conditions or else the seams between
patches will likely be sharply discontin-
uous, not at all like real terrain.

Continuity Conditions

W e need to ensure that the tan-
gent vectors of patches along

shared edges are the same, so that the
terrain will look smooth, even between
patches. A property of Bézier patches is
that the tangent vectors at the edge
points are defined by the edge control
points and the control points one level
in. So the tangent vector in the u direc-
tion at the upper-right corner is the vec-
tor through the corner point from the
point one to its left.

To preserve continuity between
patches, we need to ensure that the for
every control point along a shared edge,
the tangent vectors are the same. The
three points involved in those two tan-
gents consist of the control point itself,
plus the control points to either side of
it. If we make sure that those three

points lie on a line, we know that our
terrain will be smooth.

Figure 8 shows an example of this
concept. The tangent vectors of the
joining curves pass through the two
nearest control points of each curve. If
we don’t want a crease between the
curve, both tangent vectors have to
point in the same direction.

The terrain demo generates evenly
spaced x and y values for a grid of con-
trol points. Then I generate z values
using a fractal terrain algorithm. After
that, I do a post-pass on the points to
move some of them to make sure that
this condition holds.

It’s true that this continuity scheme is
pretty limiting. For instance, if you have
a patch surrounded by other patches, its
entire border and all the points one in
are completely defined by the other
patches. That’s every point in the patch!
If we think of the terrain as a chess-
board, where each square is a patch,
then after we define all the black-square
patches, the white-square patches are
already completely defined. This does
mean that it’s harder to have very local
control over the terrain, but it’s still
quite possible to make nice-looking ter-
rain. There are different, more relaxed
continuity conditions, but they’re more
complex than what I’ve discussed. A
description of these conditions can be
found in Faux and Pratt’s book in the
references at the end of this article.

With this implemented, we can gen-
erate an array of control points and
make patches from it, and know that it
won’t have any sharp seams or visible

edges. Hypothetically, this could be a
complete terrain system: a large array of
textured, lit patches. What we haven’t
yet discussed though, are the speed con-
siderations. If we leave it like this, we’ll
be drawing every patch, even those off-
screen, and while the tessellation and
drawing are fast for a single patch, if
we’re drawing a couple hundred patch-
es, the frame rate will be abysmal. We
need some way of drawing only those
patches that are visible.

Camera Frustum Culling

L ast month, I mentioned that the
convex hull of a Bézier patch’s con-

trol points is a good bounding volume
for the patch. Therefore, if we make a
bounding box out of the control points
by taking the minimum and maximum
x, y, and z values, we can use the
bounding box to cull the patch. We still
need a way to tell whether the box is
inside the camera frustum, though.

For my terrain demo, I use an object,
ClipVolume, that takes information about
the camera and builds six Plane objects
out of it: the left, right, bottom, top,
near, and far planes. Planes are capable
of telling you whether a point is inside
or outside of them. Therefore, if all the
points of a bounding box are outside
any one of the planes, the box is com-
pletely outside the frustum. So, at the
beginning of the frame, I build a
ClipVolume out of the camera by running
through the patches and testing their
bounding boxes against the ClipVolume.
Those that pass are drawn.

It’s simple, and definitely an
improvement, but it’s still not fast
enough. The problem is that we have
to touch every patch in the terrain
each frame, so if we have an N×N grid
of patches, the running time of our
culling is O(N2). That’s not ideal,
because we don’t want the number of
patches to heavily affect the frame rate.
We need a way to find the visible
patches without testing every single
patch’s bounding box.

Quadtree Terrain Storage

A s luck would have it, there are a
number of ways to do this. I used a

quadtree data structure for the terrain
demo. A quadtree is a tree where each

h t t p : / / w w w . g d m a g . c o m J U L Y 1 9 9 9 G A M E D E V E L O P E R

47

// Make it into a texture.
unsigned int texNum;
glGenTextures(1, &texNum);
glBindTexture(GL_TEXTURE_2D, texNum);

// Set the tiling mode. We don't want lightmaps to repeat, or we get odd borders.
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);

// Set the filtering.
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);

gluBuild2DMipmaps(GL_TEXTURE_2D, 3, size, size, GL_RGB, GL_FLOAT, texData);

delete[] texData;

return texNum;

L I S T I N G 3 . (continued from page 46.)

node has four branches. In this case, the
patches are the leaf nodes. Then, the
nodes at the next level of the tree each
contain a 2×2 group of patches. They’re
contained in 2×2 groups by the nodes at
the next higher level, and so on.
Eventually, we have our top node,
which holds the whole tree.

Each node contains a bounding box,
which is the box that contains all of its
sub-nodes. This makes it easier for us to
cull the terrain. We start at the top
node, and if it’s within the frustum, we
recurse on each of its four branches. If
any node is ever outside the frustum, we
just return and don’t bother considering
any of its sub-nodes, as they’re all out-
side the frustum, also. This way, we can
reduce our running time for culling an
N×N grid of patches to O(lgN), which is a
pretty tremendous win over O(N2).

To build one of these structures, we
start with the patches, the leaf nodes.
They have their bounding boxes. Then,
out of each 2×2 block of patches, we
build a higher-level node. The node’s
bounding box is the box that contains
each of the patches’ bounding boxes;
we just take the minimum and maxi-
mum x, y, and z from each of the four
boxes to form its box. Once we have all

of those second-level nodes, we use the
same algorithm to generate third-level
nodes from 2×2 blocks of second-level
nodes. We continue until we only have
one node, and that’s our top node.

Now we’ve got a smooth, textured,
lit terrain culling quickly against the
camera and drawing correctly. We’re
almost done. There’s one last glitch
that we have to take care of.

Crack Fixing Revisited

W e fixed the cracking that occurs
within a patch, but unfortu-

nately, cracking also occurs along the
edge between two patches when one
patch is tessellated to a different level
from the other. Fortunately, inter-
patch cracking is the same kind of phe-
nomenon as the internal patch crack-
ing, and we can use the same approach
to fix it. When we’ve finished tessellat-
ing the patches we can see, we just
have each patch check its right and
bottom edges against the patches that
share those edges.

There is a catch, though. We have to
make sure that we fix the inter-patch
cracking before we do the internal
patch crack fixing. The reason for doing
so is a little confusing at first. We know
that when we do the inter-patch crack
fixing, we can collapse edge vertices
into other edge vertices. We also know
that when we fix the internal patch
cracking, we can collapse non-edge ver-
tices into either other non-edge vertices
or potential edge vertices. We know
that internal crack fixing will never
move an edge vertex, but it may col-
lapse a vertex into an edge vertex. On
the other hand, inter-patch crack fixing
does move edge vertices.

What does this mean? Imagine an
arbitrary vertex on the edge of a patch.
We’ll call it V. If we fix the internal
cracks first, we might collapse a vertex
into V. Now when we fix the inter-
patch cracks, we might collapse V into
something else. When we do this, we
leave the vertex that was collapsed
into V hanging where V no longer is.
This warps the patch and stretches a
visible hole in the patch.

If we fix the inter-patch cracks first,
we’ll collapse V into a corner. Then,
when we fix the internal cracks and we
collapse that vertex into V, it will get
sent to V’s new, correct location.

Things Yet to Be Optimized

T his explanation is certainly more
difficult than the material present-

ed in last month’s article. Nonetheless,
we’re done. The terrain demo uses all of
the things we’ve discussed, from central
differencing, texturing, lightmapping,
and crack fixing to quadtree storage
and camera culling. What’s more, it
looks good and runs fast.

That’s not to say that it’s done.
There’s still plenty of work left to be
done with the terrain system. For
instance, the central differencing
threshold can cause abrupt “popping”
when the camera gets close enough to
merit a higher level of detail. Perhaps
a system where the change was grad-
ual, using two thresholds, one where
the detail began changing and one
where it was done changing, could
help. Linearly interpolating the size of
the nonlinearity vector over that peri-
od would prevent abrupt changes in
the terrain.

Another aspect to work on is code
optimization. While the algorithms
themselves are fairly fast, the code is
written to be legible instead of speedy.
Hand-tuning some of the functions,
such as the CentralPatchTessellator’s
tessellation function, could speed up
the process.

Furthermore, the current system is a
bit of a memory hog. It uses 2D arrays
for all the terrain, even though much of
the data is unused, depending on the
level of the tessellation and how much
of the terrain is visible at any given
time. A better memory management
system could speed the system up by
increasing cache coherency, and allow
larger terrain sets within reasonable
memory limits.

Of course there are aesthetic
improvements and expansions that are
begging to be made — a physics sys-
tem, some wildlife, or some ponds
would add quite a bit. The code is
available from my web site (see the ref-
erence at left), and I invite all those
who are interested to download it and
make any improvements they can
think of.

Hopefully, between last month’s arti-
cle and this one, I’ve given a solid intro-
duction to one of the Next Big Things
in 3D game engines. Send questions,
comments, or cool modifications to my
code, to me via e-mail. ■

G A M E D E V E L O P E R J U L Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

48

C U R V E D S U R F A C E S

• Farin, Gerald. Curves and Surfaces for

CAGD, A Practical Guide. New York:

Academic Press, 1997.

• Faux, I.D. and M.J. Pratt.

Computational Geometry for Design and

Manufacture. Chichester, UK: Ellis

Horwood, 1979.

• Garland, Michael and Paul Heckbert.

“Surface Simplification Using Quadric

Error Metrics.” Proceedings of SIG-

GRAPH (1997): pp. 209-216.

• Mortenson, Michael E. Geometric

Modeling. New York: Wiley Computer

Publishing, 1997.

• Watt, Alan and Mark Watt. Advanced

Animation and Rendering Techniques:

Theory and Practice. New York: ACM

Press, 1992.

• Thanks to Crack.com for releasing the

full source, music, and texture library

from their last project, GOLGOTHA.

• The terrain texture from Figure 7 was

used from the GOLGOTHA textures.

The full source to the terrain demo is

available from my web site at

http://www.cs.dartmouth.edu/

~bsharp/gdmag.

RR EE FF EE RR EE NN CC EE SS

HIEF: THE DARK PROJECT is one of those games that

almost wasn’t. During the long struggle to store

shelves, the project faced the threat of cancellation twice. A

fiscal crisis nearly closed the doors at Looking Glass. During

one seven-month span, the producer, project director, lead

programmer, lead artist, lead designer and the author of our

renderer all left. Worse still, we felt a nagging fear that we might make a

game that simply was not fun. But in the end, we shipped a relatively

bug-free game that we had fun making, we were proud of, and that we

hoped others would enjoy.

The Concept

T he THIEF team wanted to create a first-person
game that provided a totally different gaming

experience, yet appealed to the existing first-person
action market. THIEF was to present a lightly-scripted
game world with levels of player interaction and
improvisation exceeding our previous titles. The
team hoped to entice the player into a deep engage-

G A M E D E V E L O P E R J U L Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

50

b y T o m L e o n a r d

Postmortem:
Looking GlassÕs
THIEF: THE DARK PROJECT

P O S T M O R T E M

Tom Leonard was the lead programmer for THIEF: THE DARK PROJECT, writing the AI and core architecture
of the game. He lives in the Boston area. Tom has been at Looking Glass for three-and-a-half years, prior to
which he spent seven years working on C++ development tools at Zortech and Symantec. He is currently
working on next-generation technologies, and can be reached at toml@lglass.com.

TT

51

h t t p : / / w w w . g d m a g . c o m J U L Y 1 9 9 9 G A M E D E V E L O P E R

ment with the world by creating intelligible ways for the
world to be impacted by the player.

The central game mechanic of THIEF challenged the tradi-
tional form of the first-person 3D market. First-person shoot-
ers are fast-paced adrenaline rushes where the player possess-
es unusual speed and stamina, and an irresistible desire for
conflict. The expert THIEF player moves slowly, avoids con-
flict, is penalized for killing people, and is entirely mortal. It
is a game style that many observers were concerned might
not appeal to players, and even those intimately involved
with the game had doubts at times.

The project began in the spring of 1996 as “Dark
Camelot,” a sword-combat action game with role-playing
and adventure elements, based on an inversion of the
Arthurian legend. Although development ostensibly had
been in progress on paper for a year, THIEF realistically began
early in 1997 after the game was repositioned as an
action/adventure game of thievery in a grim fantasy setting.
Up to that point we had only a small portion of the art,
design, and code that would ultimately make it into the
shipping game. Full development began in May 1997 with a
team comprised almost entirely of a different group of peo-
ple from those who started the project. During the following
year, the team created a tremendous amount of quality code,
art, and design.

But by the beginning of summer in 1998, the game could
not be called “fun,” the team was exhausted, and the project
was faced with an increasingly skeptical publisher. The
Looking Glass game design philosophy includes a notion that
immersive gameplay emerges from an object-rich world gov-
erned by high-quality, self-consistent simulation systems.
Making a game at Looking Glass requires a lot of faith, as such
systems take considerable time to develop, do not always
arrive on time, and require substantial tuning once in place.
For THIEF, these systems didn’t gel until mid-summer, fifteen
months after the project began full development, and only
three months before we were scheduled to ship.

When the game finally did come together, we began to
sense that not only did the game not stink, it might actually
be fun. The release of successful stealth-oriented titles (such as

METAL GEAR SOLID and COMMANDOS) and more content-rich
first-person shooters (like HALF-LIFE) eased the team’s concerns
about the market’s willingness to accept experimental game
styles. A new energy revitalized the team. Long hours driven
by passion and measured confidence marked the closing
months of the project. In the final weeks of the project the
Eidos test and production staff joined us at the Looking Glass
offices for the final push. The gold master was burned in the
beginning of November, just in time for Christmas.

In many ways, THIEF was a typical project. It provided the
joys of working on a large-scale game: challenging problems,
a talented group of people, room for creative expression, and
the occasional hilarious bug. It also had some of the usual
problems: task underestimation, bouts of low morale, a
stream of demos from hell, an unrealistic schedule derived
from desire rather than reality, poor documentation, and an
insufficient up-front specification.

However, THIEF also differed from a number of projects in
that it took risks on numerous fronts, risks that our team
underappreciated. We wanted to push the envelope in
almost every element of the code and design. The experi-
mental nature of the game design, and the time it took us to
fully understand the core nature of that design, placed spe-
cial demands on the development process. The team was
larger than any Looking Glass team up until then, and at

Looking Glass Studios Inc.
Cambridge, Mass.
(617) 441-6333
http://www.lglass.com

Release date: December 1998
Intended platform: Windows 95/98
Project budget: Aproximately $3 million
Project length: 2.5 years
Team size: 19 full-time developers. Some contractors.
Critical development software: Microsoft Visual C++ 5.0,

Watcom C++ 10.6, Opus Make, PowerAnimator, 3D Studio Max,
Adobe Photoshop, AntimatorPro, Debabilizer, After Effects,
and Adaptive Optics motion-capture processing.

THIEF: THE DARK PROJECT

Stealth is one of your best weapons in THIEF. The game’s designers made sure that expert players would have to make effec-

tive use of silent weapons such as the blackjack and the bow and arrow.

times there seemed to be too many
cooks in the kitchen. Reaching a point
where everyone shared the same vision
took longer than expected. A philoso-
phy of creating good, reusable game
engine components created unusual
challenges that didn’t always fit well
with schedule and demo pressures. The
many risks could have overwhelmed
the project, if not for the dedication,
creativity, and sacrifices of the team.

Throughout the life of the project,

more than 50
people worked in
one way or anoth-
er on THIEF —
some as part of
the “Camelot”
project, others as
part of the
Looking Glass
audio-visual and
technology sup-
port staff, some as
helpful hands
from other
Looking Glass
projects. The core
team consisted of

a number of veterans
of previous Looking Glass titles
(UNDERWORLD I and II, SYSTEM SHOCK,
FLIGHT UNLIMITED, TERRA NOVA, BRITISH

OPEN CHAMPIONSHIP GOLF, and the
unpublished STAR TREK: VOYAGER), as
well as some new industry arrivals. The
project had a number of very talented
people and strong wills. Although it
took some time for the team to unite as
a tight-knit creative force, the final six
months were incredibly productive,
spirited, and punishingly fun.

What Went Right

1.DESIGNING DATA-DRIVEN TOOLS. Our
experience on previous titles

taught us that one of the impediments
to timely game development is the
mutual dependence of artists, designers,
and programmers at every development
stage. One of the development goals for
the Dark Engine, on which THIEF is
built, was to create a set of tools that
enabled programmers, artists, and
designers to work more effectively and
independently. The focus of this effort
was to make the game highly data- dri-
ven and give non-programmers a high
degree of control over the integration
of their work. Media and game systems
were to be easily and intuitively
plugged in and edited by the team
members responsible for their creation,
without requiring the direct involve-
ment of programmers.

The Dark Object System stood at the
heart of our strategy. Primarily
designed by programmer Marc “Mahk”
LeBlanc, the Object System was a gen-
eral database for managing the individ-
ual objects in a simulation. It provided
a generic notion of properties that an

52

P O S T M O R T E M

object might possess, and relations that
might exist between two objects. It
allowed game-specific systems to create
new kinds of properties and relations
easily, and provided automatic support
for saving, loading, versioning, and
editing properties and relations. It also
supported a game-specific hierarchy of
object types, which could be loaded,
saved, and edited by designers.
Programmers specified the available
properties and relations, and the inter-
face used for editing, using a set of
straightforward classes and structures.
Using GUI tools, the designers specified
the hierarchy and composition of game
objects independent of the program-
ming staff. In THIEF there was no code-
based game object hierarchy of any
kind.

Although the implementation of the
system was much more work than we
expected, and management of the
object hierarchy placed significant
demands on lead designer Tim
Stellmach, it turned out to be one of
the best things in the project. Once
the set of available properties and rela-
tions exposed by programmers was
mature, the Object System allowed the

designers to specify most of the behav-
iors of the game without scripting or
programmer intervention. Addition-
ally, the relative ease with which vari-
ables could be made available to

designers in order to tweak the game
encouraged programmers to empower
the designers thoroughly.

The second major component of our
strategy was our resource management

53

Hand-to-hand combat is sometimes necessary.

system. The resource management sys-
tem gave the game high-level manage-
ment control of source data, such as
texture maps, models, and digital
sounds. It helped manage the game’s
use of system memory, and provided
the data flow functions necessary for
configuration management.

Looking Glass’s previous resource
management system provided similar
functionality, but identified resources
by an integer ID and required a special
resource compilation step. This tech-
nique often required recompilation of
the game executable in order to inte-
grate new art, and required that the
team exit the game when resources
were published to the network. The
new system referred to a resource by its
file name without its extension, used a
file system directory structure for
namespace management, didn’t leave
files open while working, and required
no extra compilation step. Developers
simply dropped art into their local
data tree and started using it. To
expose art to the rest of the team, lead
artist Mark Lizotte just copied art into
the shared project directories.
Compound resources were treated as
extensions to the file system and were
built using the standard .ZIP format.
This allowed us to use off-the-shelf
tools for constructing, compressing,
and viewing resource files. The system
facilitated content development by
allowing programmers, artists and
designers to add new data to an exist-
ing game quickly.

The data-driven approach worked so
well that through much of our devel-
opment, THIEF and SYSTEM SHOCK 2
(two very different games) used the
same executable and simply chose a
different object hierarchy and data set

at run time.

2.SOUND AS A GAME DESIGN FOCUS.
Sound plays a more central role

in THIEF than in any other game I can
name. Project director Greg LoPiccolo
had a vision of THIEF that included a
rich aural environment where sound
both enriched the environment and
was an integral part of gameplay. The
team believed in and achieved this
vision, and special credit goes to audio
designer Eric Brosius.

As an element of the design, sound
played two roles in THIEF. First, it was
the primary medium through which
the AIs communicated both their loca-
tion and their internal state to the
player. In THIEF we tried to design AIs
with a broader range of awareness than
the typical two states that AIs exhibit:
“oblivious” and “omniscient.” Such a
range of internal states would be mean-
ingless if the player could not perceive
it, so we used a broad array of speech
broadcast by the AIs to clue in the play-
er. While very successful for humanoid
AIs, we feel the more limited express-
ibility of non-human creatures is the
heart of why many customers didn’t
like our “monster levels.”

Second, the design used sounds gen-
erated by objects in the game, especially
the player, to inform AIs about their sur-
roundings. In THIEF, the AIs rarely
“cheat” when it comes to knowledge of
their environment. Considerable work
went into constructing sensory compo-
nents sufficient to permit the AIs to
make decisions purely based on the
world as they perceive it. This allowed
us to use player sounds as an integral

part of gameplay, both as a way that
players can reveal themselves inadver-
tently to the AIs and as a tool for players
to distract or divert an AI. Moreover, AIs
communicated with each other almost
exclusively through sound. AI speech
and sounds in the world, such as the
sound of swords clashing, were assigned
semantic values. In a confrontation, the
player could expect nearby AIs to

G A M E D E V E L O P E R J U L Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

54

P O S T M O R T E M

Concept sketch of Hammer.

Concept sketch of a burrick.

become alarmed by the sound of com-
bat or cries for help, and was thus
encouraged to ambush opponents as
quietly as possible.

In order for sound to work in the
game as designed, we needed to imple-
ment a sound system significantly
more sophisticated than many other
games. When constructing a THIEF mis-
sion, designers built a secondary
“room database” that reflected the
connectivity of spaces at a higher level
than raw geometry. Although this was
also used for script triggers and AI
optimizations, the primary role of the
room database was to provide a repre-
sentation of the world simple enough
to allow realistic real-time propagation
of sounds through the spaces. Without
this, it is unlikely the sound design
could have succeeded, as it allowed the
player and the AIs to perceive sounds
more as they are in real life and better
grasp the location of their opponents
in the mission spaces.

3.FOCUS, FOCUS, FOCUS. Early on, the
THIEF plan was chock full of

features and metagame elements: lots
of player tools and a modal inventory
user interface to manage them; multi-
player cooperative, death-match and
“Theft-match” modes; a form of player
extra-sensory perception; player capaci-
ty to combine world objects to create
new tools; and branching mission
structures. These and other “cool
ideas” were correctly discarded.

Instead, we focused in on creating a
single-player, linear, mission-based
game centered exclusively around
stealth, with a player toolset that fit
within the constraints of an extension
of the QUAKE user interface. The notion
came into full force with two decisions
we made about seven months before
we shipped. First, the project was
renamed THIEF from the working title
“The Dark Project,” a seemingly minor
decision that in truth gave the team a

concrete ideological focus. Second, we
decided preemptively to drop multi-
player support, not simply due to
schedule concerns, but also to allow us
as much time as possible to hone the
single-player experience. In the end,
some missions didn’t achieve the
stealth focus we wanted, particularly
those originally designed for “Dark
Camelot,” but the overall agenda was
the right one.

4.OBJECTIVES AND DIFFICULTY. One of
the THIEF team’s favorite games

during development was GOLDENEYE on
the N64. We were particularly struck
by the manner in which levels of diffi-
culty were handled. Each level of diffi-
culty had a different overlapping set of
objectives for success, and missions
were subtly changed at each level in
terms of object placement and density.
Relatively late in the development of
THIEF, we decided such a system would
work well in our game. Extending the
concept, we added a notion that as dif-
ficulty increased, the level of toleration
of murder of human beings decreased.
We also allowed players to change
their difficulty level at the beginning of
each mission. The system was a success
in two ways. First, it made clear to the
player exactly what “difficulty” meant.
Second, it allowed the designers to cre-
ate a very different experience at each
level of difficulty, without changing
the overall geometry and structure of a
mission. This gave the game a high
degree of replayability at a minimum
development cost.

5.MULTIPLE NARROW-PURPOSE SCRIPT-
ING SOLUTIONS. Although the

Object System provided a lot of flexibil-
ity, we also needed a scripting language
to fully specify object behaviors. Rather
than create a single all-encompassing
scripting system, we chose to develop
several more focused tools for script-
ing. This tiered scripting solution
worked well.

In creating our core “high-end”
object scripting technology, we want-
ed to allow designers with moderate
programming skill to create complex
object behaviors easily. Scripts were
event-driven objects attached at run
time to game objects, and contained
data, methods, and message handlers.
The game provided a selection of ser-
vices to allow the script to query the
world state and the game object state,
and also to perform complex tasks.
Our goal was to create a scripting lan-
guage that offered source-level debug-
ging, was fast, and was dynamic. The
solution was essentially C++ in .DLLs,
compiled by the C++ compiler, using a
combination of classes and preproces-
sor macros to ease interface publish-
ing, handle dynamic linking, and pro-
vide designers a clear programming
model. Though used by both program-
ming-savvy designers and program-
mers, the fact that it was a real pro-
gramming language prevented
widespread use by all of the designers.

Most designers were interested in
customizing AI behaviors. For the AI
we created a simpler scripting system,
“Pseudo-scripts,” that were implement-
ed as properties within the Object
System. Pseudo-scripts took the burden
of coding scripts off of the designers.
The AI provided a stock set of triggers,
such as “I see the player near an
object” or “I see a dead body”; the
designer provided the consequence of
the trigger. Each Pseudo-script was
edited in a dialog box presenting para-
meters to tweak the “if” clause of the
trigger, and space for a list of simple,
unconditional actions to perform
when the trigger fired. In this way, the
custom behavioral possibilities of the
AI at any moment were described by
the aggregate of Pseudo-scripts that
were attached to that AI. This approach
had three benefits. First, it was simple
enough so that designers with no pro-

G A M E D E V E L O P E R J U L Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

56

P O S T M O R T E M

gramming experience were comfort-
able using it. Second, it narrowed the
range of triggers a designer could use to
a good pre-selected set, rather than giv-
ing them an open-ended system that
might not have worked as well. Finally,
when and how to evaluate AI triggers, a
potential run-time expense if not care-
fully constructed, could be custom
built by a programmer.

The final scripting system built into
THIEF was the Tagged Schema system.
When the game required motions and
sounds, it requested them as concepts
modified by optional qualifiers, rather
than directly. For example, an AI who
had just heard the player would
request the concept “moderate alert,”
qualified with an optional tag like
“+sense:sound.” A potential set of
resources was then chosen using a pat-
tern matcher; in this example, it would
choose all samples in that AI’s voice
expressing a generic “something’s not
right,” all samples expressing “I heard
something fishy,” but no samples
expressing “I saw something fishy.”
From this set, the specific resource was
then chosen using a weighted random
selection. The tables used were speci-
fied by the designers using a simple
language. Specifying motion and
sound selection this way, designers cre-
ated an interesting variety of random-
ized environments and behaviors with-
out changing the code of the game.

What Went Wrong

1.TROUBLE WITH THE AI. If one thing
could be called out as the reason

THIEF’s gameplay didn’t come together
until late in the process, it would be
the AI. The AI as a foil to the player is
the central element of THIEF, and the AI
we wanted wasn’t ready until late in
the spring of 1998. As lead programmer
and author of the final AI, I take full

responsibility for that.
The original AI for THIEF was

designed by another programmer
before the requirements of the revised
stealth design were fully specified. Six
months after it was begun, the project
director and overseer of the system left
the team, and the most of the program-
ming staff was temporarily reassigned
to help ship another game that was in
trouble. During the following months,
development on that AI continued
without any oversight and without a
firm game design. Soon after, the pro-
grammer working on the AI also left.
While the core pathfinding data struc-
tures and algorithms were basically
sound, the code that generated the
pathfinding database was extremely
buggy. The design of the AI decision
process was geared towards an action
fighting game requiring little designer
customization, rather than a stealth
game that needed much more cus-
tomization. Even worse, the high-level
decision process in the AI had drifted
away from a rigorous design and the
code was extremely brittle. The whole
situation was a disaster.

These might not have been serious
issues, except for one key mistake: I
didn’t realize the depth of the problem
quickly enough, and despite concerns
expressed by programmer/designer
Doug Church, I didn’t act fast enough.
I think highly of the programmer
involved with the initial AI and wanted
to avoid the natural but often misguid-
ed programmer reaction within myself
that I should just rewrite it my way. So,
I took the position that, while buggy,
the system as a whole was probably
sound. Several months and many
sleepless nights later, I concluded that I
had been sorely mistaken.

By November 1997, I had the basics
of a new design and began working on
it. But all work had to stop in order to
pull together an emergency proof-of-

concept demo by the end of December
to quell outside concerns that the team
lacked a sound vision of the game. This
turned into a mid-January demo, fol-
lowed by an early February publisher
demo, followed by a late February
make-or-break demo. During this time
the only option was to hack features as
best we could into the existing AI.
While better than losing our funding,
constructing these demos was not good
for the project.

In the end, work on the new AI didn’t
begin until mid-March. Despite the fact
that our scheduled ship date was just six
months away, we threw away four-fifths
of our existing AI code and started over.
After a hair-raising twelve-week stretch
of grueling hours, the AI was ready for
real testing. Had I committed to a
rewrite two months earlier the previous
autumn, I believe the AI would have
been ready for real use three to five
months sooner.

2.AN UNCERTAIN RENDERER. The pro-
ject was started because of the

renderer, rather than the reverse. The
basic core of the renderer for THIEF was
written in the fall of 1995 as an after-
hours experiment by programmer Sean
Barrett. During the following year, the
renderer and geometry-editing tools
were fleshed out, and with “Dark
Camelot” supposed to ship some time
in 1997, it looked like we would have a
pretty attractive game. Then, at the
end of 1996, Sean decided to leave
Looking Glass. Although he periodical-
ly contracted with us to add features,
and we were able to add hardware sup-
port and other minor additions, the
renderer never received the attention it
needed to reach the state-of-the-art in
1998. The possibility that we might not
have a point programmer for the ren-
derer weighed heavily on the team.
Fortunately, Sean remained available
on a contract basis, and other members
of the team developed sufficient

h t t p : / / w w w . g d m a g . c o m J U L Y 1 9 9 9 G A M E D E V E L O P E R

57

knowledge of the renderer so that we
shipped successfully. In the end, we
shipped a renderer appropriate for our
gameplay, but not as attractive as other
high-profile first-person titles.

This may prompt the question of
why we didn’t simply license a render-
er. When the project started a few
months into 1996, the avalanche of
QUAKE licenses hadn’t really begun
and UNREAL was still two years away.
By the time licensing was a viable
choice, the game and the renderer
were too tightly integrated for us to
consider changing.

3.LOSS OF KEY PERSONNEL AMID CORPO-
RATE ANGST BEYOND OUR CONTROL.

Midway through 1997, THIEF was just
starting to gather momentum. We
were fully staffed and the stealth design
was really starting to get fleshed out.
Unfortunately, Looking Glass’s finan-
cial situation was bleak. Few emotions
can compare to the stress of heading to
work not knowing who might be laid
off, including yourself, or whether the
doors would be locked when you got
there. The company shed half of its
staff in a span of six months, and while
the active teams tried to stay focused, it
was hard when one day the plants were
gone, another day the coffee machine,
then the water cooler.

Some of the THIEF team couldn’t
continue under these conditions. We
lost two programmers, including the
former lead programmer, and a
designer. When we were forced to
close our Austin office, we lost our
producer, Warren Spector, as well as
some programmers who made valu-

able technology
contributions to
our engine. All of
these individuals
are now on Ion
Storm’s DEUS EX

team. Although it
took some
months to fully
restore the spirit
of the rest of the
team, we held
together and the
company eventu-
ally rebounded.
Perhaps it
bestowed a sto-
icism that comes
from knowing
that however bad

things might seem, you’ve already seen
worse.

4.UNDERVALUED EDITOR. One of the
boils never lanced on the pro-

ject was our editor, Dromed. Although
it was sufficiently powerful and pro-
vided the essential functionality we
needed to ship the game, Dromed was
a poorly documented and sometimes
disagreeable editor. Dromed was first
developed as a demonstration editor
when the target platform of the game
was DOS. As a demo, it never received
the kind of formal specifications and
designs one would expect for the cen-
tral experience of the design team. As a
DOS application, it lacked the consis-
tent and relatively easy-to-use user-
interface tools of Windows. An early
mistake was our failure to step back
and formally evaluate the editor, and
then rebuild it based on our experi-
ence constructing the demo editor. We
also should have designed a proper
editor framework, and hired a dedicat-
ed Windows user-interface program-
mer to support it through develop-
ment. In retrospect, the time lost
cleaning up the editor probably would
have been saved on the back end of
the project.

5.INADEQUATE PLANNING. Although it
is a cliché in the software

industry to say our scheduling and
budget planning were woefully inade-
quate, the THIEF project suffered greatly
from this malady. There were several
elements to our deficient planning.

During “Dark Camelot,” and continu-
ing through the first half of THIEF, we
staffed the team before the design and

technology was sufficiently mature. In
THIEF, this led us to rush towards finish-
ing the design, when we didn’t necessar-
ily understand the design and technolo-
gy. With insufficient specifications of
both the code systems and mission
designs, we ended up doing lots of con-
tent that was essentially wrong for the
game we were making. Code was written
and spaces were built that weren’t well
directed towards the goals of the project.

To make matters worse, we failed to
reassess core scheduling assumptions
carefully once the schedule began to
slip. Captives of a series of unrealistic
schedules, we didn’t leave enough
time for the sort of experimentation,
dialogue, and prototyping a project
like THIEF needs. Late in the winter of
1998, many of our scheduling mis-
takes had been corrected. Still, during
the remainder of the project, the lega-
cy of our earlier missteps required cut-
ting missions that relied on technolo-
gy we didn’t have, and reworking
missions not focused on the core
gameplay.

Stepping Back from the Project

T HIEF was constructed as a set of
appropriately abstract reusable

game components designed for creat-
ing object-rich, data-driven games.
Although increasing the cost of devel-
opment, this approach allowed
Looking Glass to leverage various tech-
nologies across disparate types of
games, from the first-person action
game SYSTEM SHOCK 2 to our combat
flight-simulator FLIGHT COMBAT. In our
next-generation technology, some of
the systems, such as the AI and the
Object System, will merely be revised,
not rewritten. We intend to continue
with this development philosophy in
our future games.

The next time around, our approach
to constructing the engine will differ.
The engine will be scheduled, staffed,
and budgeted as a project in its own
right. The editor will be treated as more
of a first-class citizen than was the case
in THIEF. Finally, a content develop-
ment team will not be geared up until
the technology is sufficiently mature to
allow for an informed game design
process.

Oh, and we’ll get our schedules
right — really. ■

G A M E D E V E L O P E R J U L Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

58

P O S T M O R T E M

One of the featureed weapons is the fire arrow.

nursery rhyme, except that I was not
short and stout, I was hot, steaming and
pissed off. At one of the audio sessions,
a well-respected audio designer began
his presentation in a room full
of budding young produc-
ers with the classic, “I’m
an audio guy and get
no respect in this
industry” inferiority
complex. I’ve caught
myself falling into
this same trap in
meetings and
such, but
propagating

this

impression
throughout the
gaming community is a big mis-
take. We need to be proactive
contributors to our community.
We need to assert confidence and power
if we are going to be respected as equals.

There are three major stereotypes
that are keeping us down, yet we regu-
larly embody them in public:
THE “AUDIO GUY.” I am sick of people
referring to themselves as the “audio
guy.” When I think of an “audio guy,” I

think of someone who crawled off of
the Van Halen 1984 tour. After destroy-
ing the remainder of his hearing doing
live sound to support his cocaine habit,
he landed a “day job” in the videogame
industry. As you laugh, keep in mind
that these people do

exist in
our industry and they are

all around you. (Oh, and by the way,
we’re not all guys. While the traditional
linear media post-production scene has
been a pickle convention for some time
now, the videogame industry contains
some of the most talented female audio
professionals in the world.)

At a GDC audio session, I asked a
question that made some people
uncomfortable. I wanted to know why
all current audio tools are designed with
control surface metaphors that were
innovated in or before the late 1950s
(such as volume sliders, piano rolls,
knobs, and VU meters). An “audio guy”
actually had the audacity to tell me after
the session that “you young guys just
need to sit back and wait your turn.” I
think that his main fear was that he will
someday have to become part program-
mer and part audio guy. The truth is, he
better, because the videogame of the
future will demand complex and innov-
ative audio systems that can’t be

designed by mere “code guys,”
because they don’t understand
the subtleties of audio design like

he does. But unless he knows
how to implement those ideas

himself, he will be back
behind the mixing board

faster than you can say,
“More vocals in the

monitor please.”
THE MUSICIAN. At another ses-

sion, one well known fig-
ure within our community

(who referred to himself as
“The Almighty”)

addressed a room of
more than 100 audio profession-
als as “musicians.” I’m all for

making music, but let’s face it,
music is only a small part of what
goes into a game these days. Now, I

understand that there are many people
who represented themselves to their
current employers as “computer
experts” because they were wizards with
the musician’s equivalent to a writer’s
word processor, the MIDI sequencing
program. I also understand that some
people fancy themselves rock stars
because they make a good living by
orchestrating hundreds of little black
boxes to do exactly what they want,
when they want them to, and crank out
the epic soundtrack to “Syncopation 2,
The Aural Equivalent to Chinese Water
Torture.” However, most of us down
Continued on page 63.

G A M E D E V E L O P E R J U L Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

64

b y M a t t J o h n s t o nS O A P B O X

Don’t Call Me “Audio Guy”

W hile attending the recent Game

Developers’ Conference in San

Jose, I left each audio session feel-

ing like the little teapot in that

Computer gaming since 1983 and a charter member of the Ted Nugent Bowhunting
Association, Matthew Lee Johnston is now a Senior Audio Designer at Microsoft. He
can be reached at mattj@microsoft.com

Illu
s

tra
tio

n
 b

y
 P

a
m

e
la

 H
o

b
b

s

Continued from page 64.

here on planet Earth are also responsible
for the other 80 percent of a game’s
audio, which includes the dialogue,
sound effects, interface feedback, and
so on. The longer we promote our-
selves as musicians, the harder it’s
going to be for us to work our way into
the upper ranks of the team, which is
where we must be if we are going to
push audio design through to the next
level. We need to be technologists,
innovators, and sonic architects, not
bong-smoking, noodle-headed, elec-
tronic music geeks.
THE HOLLYWOOD BIG WIG. There is also a
large number of linear media post-
production sound designers who work
amongst us. While many of these profes-
sionals are extremely talented when it
comes to complementing a fixed asset,
like a film, with sound effects, dialogue
and music, they have limited expertise in
creating an interactive soundscape.
Programmers spend a great deal of time

thinking universally about all aspects of
the world they will be creating, and we
also need to think well beyond the sonic
content we create.

There was at least one GDC session per
day that was sprinkled with a heaping
dash of crow about how the “sound
design didn’t turn out like I wanted it
to.” The audio professionals always point
their fingers at the programmers and pro-
ducers for this shortcoming, which
seems like a pathetic cop-out to me.
When was the last time you provided a
code sample with your spec? Every piece
of media on your list should have a com-
plete description of how it interacts with
all of its dependencies: user input, artifi-
cial intelligence, and so on. Leave no
stone unturned, do your damn home-
work, take control of your world because
if you don’t, no one will. Waxing ecstatic
about design concepts without being
able to provide the developer with con-
crete examples of how it can be imple-
mented is negligent and can be offensive

to someone who has spent the last year
thinking about everything but the audio.
Educate yourself on basic programming
concepts, understand the relationship
between the sound in the game and
everything it touches, and be a diplomat
when it comes to working with the rest
of the team, because they are holding
your design in their hands.

I believe that we are only as influential
as we want to be, because audio program-
ming can be the most emotional and
subliminal (read: core) information a
videogame can deliver. However, if we
continue to play the role of the “audio
guy,” we will constantly be ruled by pro-
gram managers, producers, and develop-
ers, who all consider themselves to be
critical to the product’s success. If you
start showing up to the table with the
right cards in your hand, I can guarantee
that your budget will grow, you’ll break
more bread, and the end product will
bear a much greater resemblance to your
original version. ■

S O A P B O X

63

	back:

