
JULY 1998

G A M E  D E V E L O P E R  M A G A Z I N E



I returned from the CGDC in
Long Beach about 48 hours ago.
I’m fairly sure that my hat size
increased by at least an inch over

the course of the week, due in equal
parts to the large amount of informa-
tion absorbed by my brain and the after
effects of hangover-induced headaches.
With so much going on at the same
time at a large show like the CGDC,
swapping stories afterwards with other
attendees can make you feel like you
spent the week at a completely different
event. Since this column gives me the
opportunity to rant on topics of my
choice, I’ll indulge myself and impart
my thoughts on last week in SoCal.

Project X Ship Date Disclosed

Unbeknownst to VM Labs, who has
kept a tight leash on the release of infor-
mation surrounding its upcoming con-
sole platform, MultiGen apparently let
it slip at the CGDC (or is this a conspira-
cy for more  publicity?) that Project X
will be released this coming Christmas.
Undoubtedly by the time you read this,
much more information about  Project
X will have been revealed at E3. 

More Focus on Physics

Implementing dynamic physics was
covered more at the conference than in
previous years, and the two sessions I
attended were fairly good. Michael
Shantz of Intel gave a particularly good
lecture titled "Physical Modeling for
Games," which provided a solid
overview of the mathematics behind
physical simulation. This session, in
addition to Wu and Hecker's "Physics
Q&A" session, pointed to the need for
much more research in the area of
physics controllers, the low-level brains
that manage physically modeled
characters. 

No Patent for Perry. 

I think I detected an audible, collec-
tive sigh of relief after Dave Perry and

Sax Persson’s session, “MESSIAH: What
You May or May Not Believe.” In the
session, Perry indicated that Shiny
would not, after all, pursue a patent on
the game’s engine. Perry’s Soapbox col-
umn in May on the subject prompted a
number of letters to the magazine (flip
to page 7 to read some of them), but I
haven’t yet heard the reason for his
change of heart on the matter. I’m just
glad that the forces of openness and
information exchange were vindicated,
and that Dave, ever a masterful show-
man, decided against the patent.

Focus Group Lessons 

Each year, Game Developer conducts
focus groups at the show, as so many of
our readers attend the conference. 

This year, we met with artists and ani-
mators on Tuesday, on Wednesday we
spoke with composers and sound
designers, and on Thursday we invited a
group of programmers. We had approxi-
mately 20 people lined up to attend
each focus group, each of whom had
been contacted prior to the show and
confirmed that they would make it to
the focus group. Of course, there’s so
much going on at the show that the
attrition rate for these groups is sizable.
But it was interesting to see where the
highest attrition rates occurred.

On the first day, of the 20 artists and
animators that we had confirmed, only
three showed up. On the second day,
about six of the 20 audio people made
it. On the third day, 11 programmers
out of 20 made it. Was this purely a
coincidence, or is a subtle pattern dis-
cernible here?

Dani Bunten Berry honored. 

Finally, at the Spotlight Awards,
Dani was honored with a lifetime
achievement award. Nobody deserves it
more than Dani, and it was by far the
high point of an incredible evening on
the Queen Mary in Long Beach harbor.
Congratulations, Dani.  ■

G A M E  D E V E L O P E R J U L Y  1 9 9 8

4

P L A NG A M E

Long Beach Decompression
EDITOR IN CHIEF

MANAGING EDITOR

EDITORIAL ASSISTANT

ART DIRECTOR

EDITOR-AT-LARGE

CONTRIBUTING EDITORS

ADVISORY BOARD

COVER IMAGE

PUBLISHER

WESTERN REGIONAL SALES
MANAGER

EASTERN REGIONAL SALES
MANAGER

SALES ASSOCIATE

MARKETING MANAGER

AD. PRODUCTION COORDINATOR

DIRECTOR OF PRODUCTION

VICE PRESIDENT/CIRCULATION

ASST. CIRCULATION DIRECTOR

CIRCULATION MANAGER

CIRCULATION ASSISTANT

NEWSSTAND ANALYST

REPRINTS

CEO-MILLER FREEMAN GLOBAL

CHAIRMAN-MILLER FREEMAN INC.

PRESIDENT/COO

SENIOR VICE PRESIDENT/CFO

SENIOR VICE PRESIDENTS

VICE PRESIDENT/PRODUCTION

VICE PRESIDENT/CIRCULATION

VICE PRESIDENT/ 
SD SHOW GROUP

SENIOR VICE PRESIDENT/
SYSTEMS AND SOFTWARE 

DIVISION

Alex Dunne
adunne@compuserve.com

Tor D. Berg
tdberg@sirius.com

Wesley Hall
whall@mfi.com

Laura Pool
lpool@mfi.com

Chris Hecker
checker@d6.com

Jeff Lander
jeffl@darwin3d.com

Josh White
josh@vectorg.com

Omid Rahmat
omid@compuserve.com

Hal Barwood

Noah Falstein

Brian Hook

Susan Lee-Merrow

Mark Miller

Syrox Ltd.

Cynthia A. Blair
cblair@mfi.com

Alicia Langer
(415) 905-2156
alanger@mfi.com

Kim Love
(415) 905-2175
klove@mfi.com

Ayrien Houchin
(415) 905-2788
ahouchin@mfi.com

Susan McDonald

Dave Perrotti

Andrew A. Mickus

Jerry M. Okabe

Mike Poplardo

Stephanie Blake

Kausha Jackson-Craine

Joyce Gorsuch

Stella Valdez
(916) 983-6971

Tony Tillin

Marshall W. Freeman

Donald A. Pazour

Warren “Andy” Ambrose

H. Ted Bahr 

Darrell Denny 

David Nussbaum 

Galen A. Poss 

Wini D. Ragus 

Regina Starr Ridley

Andrew A. Mickus

Jerry M. Okabe

KoAnn Vikören

Regina Starr Ridley

Miller Freeman
A United News & Media publication

www.gdmag.com



Patent Problems

A s someone who sells intellectual
property, I know that patents are

important. However, I think Dave
Perry did something stupid in his life
and is now trying to shift the blame for
it onto lawyers. I'm not an attorney,
but I will say this to him: stop whining
and do something creative. If Perry
can't tell a good lawyer from a bad one,
that's his fault. I don't know any attor-
ney who will tell you that anything is
patentable.

J o s h  Z u c k e r t

v i a  e - m a i l

I n the May 1998 Soapbox column,
“Patents Are Like Safe Sex,” David

Perry is doing the world a tremendous
disservice by advocating turning our
industry over to the most evil of bot-
tom-feeders — lawyers.

First of all, he’s just plain wrong.
“Patents are more universal and more
respected that copyrights,” he says. As
far as we know, only a few countries
(the U.S. and Japan) allow the patenting
of software; most of the world recog-
nizes only the copyright of software.

Secondly, Perry states that “tessella-
tion as a concept has been around for
ages,” but implies that he is the only
one who has actually done it. Not true;
TRESPASSER, the current major PC title by
DreamWorks Interactive, uses dynamic,
real-time tessellation using wavelet
“shells” for its terrain — this was also
demonstrated at E3 in 1997.

In fact, the entire third part of
“Wavelets for Computer Graphics”
(authors Stollnitz, Deros and Salesin) is
devoted to techniques of mesh com-
pression, tessellation, and deformation.
Numerous SIGGRAPH proceedings not
only describe these techniques, but
demonstrate them through operating
software. Intel’s low-profile 3D render-
ing software (3DR and 3DG) used
dynamic tessellation of spline patches (a
form of compression, really; also quite
deformable) at least three years before
MESSIAH.

So Perry will apply for and perhaps
get a patent for this combination of tes-
sellation, compression and deformation
technology. He may get it because the
lawyers, patent clerks, and judges
involved have absolutely no idea of the
algorithmic concepts involved, and

have no time or inclination to do the
research to find out. Mr. Perry may well
be laying claim to mathematical princi-
ples that belong to the world.

Last August, Sega claimed a patent to
3D tracking cameras. Anybody who uses
a 3D camera that involves “flybys, rota-
tions, dynamic camera angles, and float-
ing cameras” potentially could be sued
by Sega and lose. Why should Sega be
entitled to anything as broad and
inevitable as this? Because they did it
first? We really hope Sega sues Mr. Perry
for using a 3D camera. The list of broad,
public-domain ideas — principles of
nature — that have been abused like
this is large: iterated function systems,
encryption algorithms, compression
algorithms, rendering algorithms, com-
puter mice, and so on.

Where would Mr. Perry be if Michael
Abrash patented the algorithm for sub-
dividing scanlines for perspective cor-
rection (no doubt Mr. Perry uses this
technique for his software render in
MDK and MESSIAH). Where would the
industry be if the Z-buffer; binary spatial
partitions; 3D user interfaces; and mod-
eling, culling, and lighting techniques
were patented? These ideas are at least
as patentable as any technology in
MESSIAH.

Perhaps Mr. Perry is the first to make
extensive use these well-understood and
public-domain ideas in the context of a
3D game engine, but it is only his ego
that suggests he has somehow pio-
neered this technology (perhaps he is
the “Messiah”). Apart from this specific
case of whether or not something can
be patented,
the

real
issue is, should
it? Copyright laws will
ensure MESSIAH will reap the
market value of the software; a
patent is specious at best. 

WOLFENSTEIN, DOOM, and QUAKE all
contain new and possibly patentable
technology; yet id shares its ideas freely.
Why? Perhaps because they are confi-
dent they are not so intellectually
impoverished they cannot generate
more ideas. Perhaps it is because they
themselves rely on ideas developed and

given away by others before them.
Perhaps because DOOM renders
WOLFENSTEIN technologically obsolete,
just as QUAKE does to DOOM; so why not
give it away? The most likely scenario
for Mr. Perry’s patent is that in two
years (or perhaps even two months),
nobody will give a damn about it except
the bottom-feeding lawyer who cashed
Mr. Perry’s check.

In fact, there’s only one good reason
for a patent on an algorithm: to put it
into the public domain and prevent
someone like Mr. Perry from attempting
to milk it.

P a u l  K e e t ,  S e a m u s  B l a c k l e y ,  M a r k

L a n g e r a k ,  M i c h a e l  M o u n i e r ,  S c o t t

P e t e r ,  a n d  R o b  W y a t t

T R E S P A S S E R /

D W I  s o f t w a r e  e n g i n e e r s

D r e a m W o r k s  I n t e r a c t i v e

I ’m writing about the Soapbox col-
umn in the May 1998 issue. Dave

Perry may be a great game designer,
maybe even a legend of game making,
but he obviously had trouble producing
the column for this issue. Seeing the list
of editors in the masthead, I cannot
help but wonder how this little piece
was allowed to get by. I understand a
soapbox is where someone with a bee in
their bonnet gets up and starts shouting
about whatever happens to be on their
mind (the end of the world, morality,
drugs, game producers whose obvious
agenda is shameless self-promotion, and
continuing Usenet flamewars in com-
mercial magazines). Dave apparently
has some things on his mind. It’s just
difficult to figure out what the hell the
point is and why we should care. It’s
obvious that he feels somewhat miffed
that people are criticizing him for

patenting his “real time tes-
selation deformation

and volumetric light-
ing” algorithms,

and that he’s real-
ly jazzed about
his new engine.

However, the
rest of the article is

garbled and point-
less.The column

appears to start as a dis-
cussion of software patents

(interesting for sure) then moves into
an advertisement (“We do 50 quadzil-
lion polygons in real time while rubbing
our bellies and patting our heads; by the

h t t p : / / w w w . g d m a g . c o m J U L Y  1 9 9 8 G A M E  D E V E L O P E R

7

S A Y S Y O U

Got a beef, Daddy-O? E-mail us at
gdmag@mfi.com. Or write to Game
Developer, 600 Harrison Street, San

Francisco, CA 94107.

V



way I can pee farther than you”) and
finally ends up with some advice for
potential patent holders (“You too can
be a millionaire, it’s just that easy”).

I realize that big names sell copy
and Dave Perry is a swinging cat right
now (after all, everyone likes a tan
young man from Southern California),
but software patents deserve more
than this ridiculous piece. Chris
Hecker’s piece in the April issue in the
same column was excellent, well
researched, and interesting. Next time
a big name gives you this kind of crap
article, send it back and getsomeone
with the time and some actual opin-
ions to write a piece worth reading.
Hopefully, next month we won’t see
Brian Hook calling Dave a pansy and
an idiot and then jumping on the
floor and kicking his feet (although a
blow-by-blow actual fight would be
pretty interesting). 

G i d e o n  S t o c e k

S o f t w a r e  D e v e l o p m e n t  E n g i n e e r

L u c e n t  T e c h n o l o g i e s

Problems with Performance Counters

R ob Wyatt’s May 1998 article,
“Building an Inline Performance

Monitoring System,” is very interest-
ing, and I’ve been playing around
with it for awhile. There’s one major
problem however: reading perfor-
mance counter 1 does not work on my
system. Have other people also report-
ed this problem? 

Maybe more people have the same
problem (I hope so). I’m working on
an Intel Pentium 233 MMX with NT
4.0 SP3. Installing the driver went OK.
Performance counter 0 works.

Please keep up the great work you
people do with this magazine.
Altough I don't work in the industry
itself, I enjoy it very much and it is a
great source for performance freaks
such as myself.

P a t r i c k  F r a n t s

T h e  N e t h e r l a n d s

v i a  e - m a i l  

R O B  W Y A T T  R E P L I E S :Your point is very

valid. The installation intruction text file on

the Net mentions that you may have trouble

with timer 0 on Windows 95. The reason I

say this is because all the Windows

95/Windows 98 machines that I used exhib-

ited the same problem, which I attribute to

the operating system. The article was devel-

oped with Windows NT 4.0 SP3 and I had

no problems on any machine; both timers

worked as intended.

This points to something else installed

on your machine that is using the perfor-

mance counters. Maybe VTune? If this does

not fix the problem, I cannot offer any more

help, as I cannot reproduce the problem.

Perhaps another reader can pinpoint the

problem.

Distribution Solutions

A lex, or should I call you Robin
Hood? In May 1998’s Game Plan,

“Is Our Silence Killing Us?”, you raised
a number of great points regarding the
situation with publishers and retailers.
A few months ago a VP at Simon and
Schuster and I were discussing the chil-
dren’s interactive market (as he pro-
ceeded to deflate some of the air in my
bubble). Being very frustrated with the
situation that exists, he related a typi-
cal question from a retail buyer, “Why
should I take a Disney title off the shelf
and put your unknown and unbranded
title its place?”

It’s a tough question to answer.
When there is little room for new
games, even when we know that many
of the established titles are weak in
content, they still hold onto their shelf
space. The answer is basic merchandis-
ing. Instead of an 8”×10”×2” box dis-
played face front and packed next to
other games on three shelves, or on
more shelves with only the side stick-
ing out like a book spine, why not blis-
ter pack the CD-ROM and hang them
on the long straight hooks? Most box
text and art could easily fit on the front
and back of a blister pack while accom-
modating the CD-ROM and possible
the paper paraphernalia normally
included. The retailers would be able to
include more titles in a given area, and
would most likely need more new
titles. I would also suggest that large
publishers package a demo monitor
filled with their titles playing continu-
ously or by consumer selection and
offer a great price on its installation.
Again, merchandising. Keep up the
great work.

M a r l o n  ( a k a  R i m m m e r )

v i a  e - m a i l

I read Alex Dunne’s May 1998 Game
Plan, “Is Our Silence Killing Us?”

and I noticed one major angle you
missed: the Internet. Although distrib-
utors are slowly tightening their grip
on publishers, the number of people
who use the Internet continues to
grow. In the future we may see more
toned-down content on the shelves of
the big distributors, but at the same
time, more risky content will be (or at
least should be) more easily accessible
to the public via the Internet. Of
course, there’s the potential problem of
Internet game censorship by govern-
ments. Hopefully our government and
those of other countries won’t begin
censoring the games one can download
(other than pornographic games —
those are already being censored to
some degree). We need to speak out
about what distributors are doing, but
at least the Internet gives us a chance
to work around the traditional channel
even if we fight to no avail.

B e n  C r u z

v i a  e - m a i l

I read the May 1998 Game Plan “Is
our Silence Killing Us?”, and I

think the free market Alex Dunne
refers to is working just fine. If a dis-
tribution channel doesn’t want to
move your product, you are free to
move it yourself, or find another solu-
tion. The distributor has one purpose
— make a dollar. They are successful
if they can figure out where their cus-
tomer base will spend a dollar. If the
customer doesn’t want buggy, vio-
lent, sexually-explicit games, a smart
retailer won’t bother putting them on
the shelf. If a publisher thinks they
want to sell a product that the distrib-
utor/retailer doesn’t want to sell —
find someone else to sell it. Or start
your own distribution system. But
don’t whine about it. If 7-11 won’t
sell your pornographic mag, find a
store that will, or put it on the ‘Net.
Or maybe we need a mass re-educa-
tion campaign to teach those pesky
Wal-Mart shoppers that they should
ask the store manager to please stock
the right merchandise. The bottom
line is that if your product doesn’t
sell, don’t blame the consumers. Fix it
so it’ll sell. 

M i c h a e l  J o n e s

v i a  e - m a i l

G A M E  D E V E L O P E R J U L Y  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

8

Y O US A Y S



SOFTIMAGE|GDK
SOFTIMAGE INC. just announced the
release of the SOFTIMAGE|GDK (Game
Development Kit), a cross-platform,
C++ developer kit that allows you to
customize the import/export anima-
tion dataflow for SOFTIMAGE|3D. The
GDK is the fourth element in the SOFT-
IMAGE|SDK, which already includes
SAAPHIRE (Softimage Advanced API for
Relations and Elements), the mental
ray Developer’s Kit, and the Channels

Developer’s Kit.
An extension to the existing SDK,

the SOFTIMAGE|GDK is a C++ API that
automatically handles all the details of
accessing and modifying SOFTIM-
AGE|3D data. By handling all the low-
level details of accessing and modifying
plug-in data, the GDK eliminates the
need for you to learn a low-level API.
The SOFTIMAGE|GDK includes power-
ful automatic filtering features such as
Smart Animation Compression and
Key-Frame Filtering. In addition, the
SOFTIMAGE|GDK contains sample

G A M E  D E V E L O P E R J U L Y  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

10

BIT BBBB LLLL
N E W S  F R O M  T H E  W O R L D  

T H E  L E A R N I N G  C O M P A N Y  is set to
acquire PF Magic, the publisher of DOGZ

and CATZ, in exchange for 560,000 newly
issued shares of TLC stock valued at about
$15.7 million total. To date, DOGZ and CATZ

products have sold more than 1.5 million
copies.
D I A M O N D  M U L T I M E D I A  is set to
acquire and Micronics, a supplier of high-
performance motherboards and multimedia
peripherals sold under the Orchid brand, in
a deal valued at approximately $31.6 mil-
lion.  The purchase of Micronics is a signif-
icant entry for Diamond into the business of
manufacturing its own multimedia systems
boards. Interestingly, Diamond intends to
continue the Orchid Righteous 3D brand in
addition to its own Monster 3D brand, giv-
ing the company two Voodoo2-based
cards.  Should be interesting to see how
this pans out.
A N A L Y S T S  I N  J A P A N expect that
Nintendo, Sony, and Sega are going to have
a difficult time this year due to Asian eco-
nomic the troubles, according to a recent
Reuters news item. Masahiro Ono, an indus-
try analyst at Credit Lyonnais Securities,
stated that  “The full impact of the sluggish
economy on sales of videogames will likely
begin to be felt in the current business year
as thickening clouds over the economic
outlook are making parents reluctant to buy
even children’s toys.”
B L I Z Z A R D  recently found itself on the
defense, when it came to light that the com-
pany had been collecting the names and e-
mail address of some of its Battle.net users
without their knowledge or consent. The
problem began when some STARCRAFT play-
ers had difficulties logging in to play the
game. Blizzard collected the information
from players’ registries when their log-ins
failed in an attempt to fix the problem, but
stopped the practice about one week later.
Susan Wooley, a spokesperson for Blizzard,

I N D U S T R Y
W A T C H
I N D U S T R Y
W A T C H

b y  A l e x  D u n n e

Latest in 3D Audio from
Aureal
AUREAL SEMICONDUCTOR INC.
recently released A3D 2.0, the latest ver-
sion of the company’s 3D positional audio
for the PC. The original A3D came out in
1997, and is incorporated into the products
of companies such as Activision, LucasArts,
Electronic Arts, and GT Interactive. There
are currently over 60 developers working
on more than 100 new titles for release in
1998. Additionally, A3D-enabled PC audio
products are available from over 20 sound
card and PC manufacturers, including Dell,
Diamond, NEC, and Turtle Beach.

The new release brings many new fea-
tures, and is fully backward compatible
with A3D. Aureal’s Wavetracing
Technology is the key advancement for
A3D 2.0. Wavetracing recreates the geome-
try of 3D space so that sound waves can be traced in real-time as they are reflected
and blocked by acoustic objects in the 3D environment. Sounds can emanate
from any point in an x, y, or z plane, and then go on to bounce off walls, filter
through doors, and disappear around corners. The technology can also imitate a
sound’s response to various surfaces and environments, such as stucco walls, car-
pet, or deep caverns. Sixteen concurrent sound sources are now available in A3D
2.0, an improvement over A3D’s original eight. Further, A3D 2.0 is designed to
take full advantage of Aureal’s upcoming Vortex 2 chip, and so has increased ren-
dering rates and frequency response of sound sources. Aureal is also introduced an
A3D 2.0 SDK in conjunction with the CGDC. 
■ Aureal Semiconductor Inc.

Fremont, Calif.,

510-252-4245

www.aureal.com



source code designed to be customized,
allowing you to utilize more complex
features without getting all the way
into the nuts and bolts of the API. 

SOFTIMAGE|GDK for SOFTIM-
AGE|3D version 3.7SP1 is compatible
with the current shipping version of
SOFTIMAGE|3D and requires that the
current version of the SOFTIMAGE|SDK
be installed before use. All registered
SOFTIMAGE|SDK developers under
maintenance will be shipped the SOFT-
IMAGE|GDK automatically, unless they
picked up a copy at the CGDC in May.
■ Softimage Inc.

Montreal, Canada

514-845-1636

www.softimage.com

Juice for 3D RPGs
HUMAN SOFT INC. unveiled two
new gaming technologies this spring
for 3D and role-playing games. The
first, SEED, claims to add a fourth
dimension to 3D gameplay through a
new approach to shadows and lighting;
the second, Magic 4s (pronounced
“magic force”), allows players to tackle
obstacles in RPGs without the con-
straints of branched logic.

Human Soft is currently developing a
prototype of a first-person shooter (due
for release in October), in which it
plans to showcase SEED’s technology.
The game, also called SEED, includes
shadows that transform into monsters,

characters that can be seen only in cer-
tain types of light, and puzzles players
solve by aligning shadows with solid
objects. Where SEED adds visual com-
plexity, Magic 4s tackles gameplay in
RPGs. Tasks no longer need to be
accomplished in a prescribed path in
order to achieve a goal. Instead, the
Magic 4s engine takes pre-defined para-
meters of an encounter into considera-
tion (such as the personality of other
players, an obstacle’s material, and so
on), and lets events happen as they
will. Human Soft is developing Chaos
Kingdom, a game designed to demo
the Magic 4s technology.

Developers can license SEED and
Magic 4s engines for Windows 95-host-
ed games.
■ Human Soft Inc.

Budapest, Hungary

650-577-1000

www.humansoft.com

Cheap Motion Capture
POLHEMUS INC. announced the
availability of its new ActionTRAK
motion capture system at the CGDC in
May. 

ActionTRAK claims to be the lowest-
cost, highly-accurate, motion capture
system specifically designed for comput-
er game developers. It’s an entry-level,
eight-sensor and one transmitter
motion capture system for the PC mar-
ketplace running in Windows 95. Like
the FASTRAK, ActionTRAK measures the
position and orientation of electromag-
netic sensors on a performers’ body. The
measurements are in real-time, so they
require a minimum of tweaking in post-
production. Angel Studios, Rainbow
Studios and Sega Enterprises currently
use Polhemus’ motion capture systems. 

A copy of Hash Animation 3D ani-
mation software comes in the system.
■ Polhemus Inc.

Colchester, Vt.

802-655-3159

www.polhemus.com

h t t p : / / w w w . g d m a g . c o m J U L Y  1 9 9 8 G A M E  D E V E L O P E R

11

AAAA SSSS TTTT SSSS
O F  G A M E D E V E L O P M E N T

said the company didn’t know how many
names were collected since they weren’t
kept, and has said that the practice won’t
happen in the future without prior consent.
A T I  S H I P P E D  6  M I L L I O N  graphics add-
in boards last year, according to IDC. That
figure earned it the top spot, just ahead of
second-place finisher Matrox. Diamond,
the top seller in ‘96, fell to third place for
the year.  The entire market for add-in
boards was up 54% over 1995, and totaled
20 million units in ‘97. IDC predicts that
sales will climb roughly 50% over the next
five years to 29 million in 2002. 
M O N O L I T H  H A S  S I G N E D  on a number
of development houses as licensees of its
LithTech game engine. The company
recently announced that Zombie Studios,
Immersive Worlds, eXodite Dimensions and
Evermore Entertainment will use LithTech.
LithTech is still under development, but
Monolith has stated version 1.0 of the
engine will be finished by July 15.
Licensing is $250k per title.
M O R E  S U I T S .  Last month I reported that
SGI filed a patent infringement lawsuit
against nVidia. This month S3 joined in.
S3’s beef with nVidia involves the Riva’s
use of VGA controller circuitry, scaleable
video windows, and the way it mixes video
and graphics data. With nVidia preparing to
go public, there’s speculation that these
lawsuits were timed strategically.
E L E C T R O N I C  A R T S  nearly reached the
$1b in revenue mark for its fiscal year end-
ing March 31. If its current growth rate of
35% is sustained, EA will rake in about $1.2b
next year. Its net income came to $72.6 mil-
lion for the year, up from $51.3 million last
year.
F R E E  C O D E !  The San Francisco-based
game development studio 47-tek, which
recently dissolved, released the full source
code, utilities, and original 3D models to its
last game, TEAM 47 GOMAN. Mark Hirsch,
who was the executive producer of the 3D
fighting game, states that he hopes the phil-
anthropic act will “help out any software or
hardware company that is working with
DirectX.” There are no restrictions for the
use of this code. Find it at  http://www.47-
tek.com/source.htm

Scene from Human Soft’s SEED, a 3D

game showcasing the company’s

approach to shadows and light.



b y  J e f f  L a n d e r G R A P H I C  C O N T E N T

B ut certainly, the interest in parti-
cle systems has something to do

with their ability, more so than any
other computer graphics method, to
create realistic natural phenomena in
real time. William Reeves realized this
all the way back in 1982 and 1983.
When working on Star Trek II: The
Wrath of Khan, he was in search of a
method for creating realistic fire for the
Genesis Demo sequence. Reeves real-
ized that conventional modeling,

which was best at creating objects that
have smooth, well-defined surfaces,
wouldn’t do the trick. The objects that
made up these effects were not made of
easily definable surfaces. These objects,
which he termed “fuzzy,” would be
better modeled as a system of particles
that behaved within a set of dynamic
rules. Particles had been used previous-
ly to create natural effects such as
smoke and galaxies of stars, but were
difficult to control. Reeves realized that
by applying a system of rules to parti-
cles, he could achieve a chaotic effect
while maintaining some creative con-
trol. Thus was born the particle system.

How Does It Work?

A particle system is basically just a
collection of 3D points in space.

Unlike standard geometry objects, par-
ticles making up the system are not sta-
tic. They go through a complete life
cycle. Particles are born, change over
time, and then die off. By adjusting the
parameters that influence this life
cycle, you
can create
different
types of
effects.

Another
key point
regarding
particle
systems is
that they
are chaot-
ic. That is,
instead of
having a
complete-
ly prede-
termined

path, each particle can have a random
element that modifies its behavior. It’s
this random element, called a stochas-
tic process (a good nerd party word),
that makes the effect look very organic
and natural. This month, I’m going to
create a real-time particle system that
will show off the basic techniques as
well as some eye-catching effects you
can create.

The Particle

L et’s start by looking at what prop-
erties are needed in a particle.

First, I need to know the position of
the particle. I’m going to store the pre-
vious position as well, because I also
want to be able to antialias the parti-
cles easily. I need to know the direction
in which the particle is currently trav-
eling. This can be stored as a direction
vector. I also need to know the current
speed at which this particle is traveling
in that direction, but speed can simply
be combined with the direction vector
by multiplication. I’m going to render

h t t p : / / w w w . g d m a g . c o m J U L Y  1 9 9 8 G A M E  D E V E L O P E R

13

The Ocean Spray in Your Face

J udging by the number of times the question comes up in public forums such

as Usenet, particle systems are a pretty hot issue. This may be partially a result

of the phenomenal success of QUAKE, with its use of particles for smoke,

blood trails, and spark falls.

Jeff is a complex particle system at Darwin 3D. E-mail him at
jeffl@darwin3d.com. But beware that his replies are subject to stochas-
tic reliability.

ssttrruucctt  ttPPaarrttiiccllee
{{

ttPPaarrttiiccllee  **pprreevv,,**nneexxtt;; ////  LLIINNKK
ttVVeeccttoorr ppooss;; ////  CCUURRRREENNTT  PPOOSSIITTIIOONN
ttVVeeccttoorr pprreevvPPooss;; ////  PPRREEVVIIOOUUSS  PPOOSSIITTIIOONN
ttVVeeccttoorr ddiirr;; ////  CCUURRRREENNTT  DDIIRREECCTTIIOONN  WWIITTHH  SSPPEEEEDD
iinntt lliiffee;; ////  HHOOWW  LLOONNGG  IITT  WWIILLLL  LLAASSTT
ttCCoolloorr ccoolloorr;; ////  CCUURRRREENNTT  CCOOLLOORR  OOFF  PPAARRTTIICCLLEE
ttCCoolloorr pprreevvCCoolloorr;; ////  LLAASSTT  CCOOLLOORR  OOFF  PPAARRTTIICCLLEE
ttCCoolloorr    ddeellttaaCCoolloorr;; ////  CCHHAANNGGEE  OOFF  CCOOLLOORR

}};;

L I S T I N G  1 .  The Particle Structure.



particles as colored points, so I also
need to know the current color of this
particle and the previous color for
antialiasing. In order to change the
color over time, I’m going to store the
amount of change in color per frame
also. The last piece of information that
I need is the life count for this particle.
This is the number of frames that this
particle will exist before dying.

You can see a data structure for my
particles in Listing 1. If you wished to
make your particle system more com-
plex, it would be very easy to add prop-
erties here. You could animate the size
of the particles by adding a size, the
transparency by adding an alpha com-
ponent to the color. You could further-
more add mass, other physical proper-
ties, or any number of other variables.

The Emitter

T he particle emitter is the entity
responsible for creating the parti-

cles in the system. This is the object
that you would drop around in a real-
time 3D world to create different
effects. The emitter controls the num-
ber of particles and general direction in
which they should be emitted as well as
all the other global settings. The struc-
ture for the emitter is in Listing 2. This
is also where I set up the stochastic
processes that I was talking about. For
example, eemmiittNNuummbbeerr is the average num-
ber of particles that should be emitted
each frame. The eemmiittVVaarriiaannccee is the ran-
dom number of particles either added

or subtracted from base eemmiittNNuummbbeerr. By
adjusting these two values, you can
change the effect from a constant,
steady stream to a more random flow.
The formula for calculating how many
particles to emit each frame is
ppaarrttiicclleeCCoouunntt  ==  eemmiittNNuummbbeerr  ++  ((eemmiittVVaarriiaannccee  **

RRaannddoommNNuumm(())));;

Where RRaannddoommNNuumm(()) is a function that
returns a number between -1.0 and 1.0.

These techniques are also used to vary
the color, direction, speed, and life span
of a particle. The color is a special case
because I want the color to change over
the life span of the particle. I calculate
two randomly varied colors as above
and then divide the difference between
them by the life. This creates the color
delta that is added to each particle each
frame of its life.

I now need to describe the direction
in which the particles should be emit-
ted. We really only need to describe two
angles of rotation about the origin
because the particles are single points in
space, and I’m not concerned with the

spin. Those two angles are the rotation
about the y axis (yaw or azimuth
defined by θ) and the rotation about the
x axis (pitch or inclination defined by
ψ). These angles are varied by a random
value and then converted to a direction
vector for each particle.

The conversion process for generating
this direction vector is pretty easy. It
requires some general 3D rotation tech-
niques and some basic matrix math.

A rotation about y is defined as
x’ = x*cos(θ) + z*sin(θ);
y’ = y;
z’ = -x*sin(θ) + z*cos(θ)
or, in matrix form,

A rotation of about x is
x’ = x;
y’ = y*cos(ψ) - z*sin(ψ);
z’ = y*sin(ψ) + z*cos(ψ)
or

Roty( ) =

cos( ) 0 -sin( )

0 1 0

sin( ) 0 cos( )

θ
θ θ

θ θ

















G R A P H I C  C O N T E N T

G A M E  D E V E L O P E R J U L Y  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

14

ssttrruucctt  ttEEmmiitttteerr
{{

lloonngg iidd;; ////  EEMMIITTTTEERR  IIDD
cchhaarr nnaammee[[8800]];; ////  EEMMIITTTTEERR  NNAAMMEE
lloonngg ffllaaggss;; ////  EEMMIITTTTEERR  FFLLAAGGSS
////  TTRRAANNSSFFOORRMMAATTIIOONN  IINNFFOO
ttVVeeccttoorr ppooss;; ////  XXYYZZ  PPOOSSIITTIIOONN
ffllooaatt yyaaww,,  yyaawwVVaarr;; ////  YYAAWW  AANNDD  VVAARRIIAATTIIOONN
ffllooaatt ppiittcchh,,  ppiittcchhVVaarr;; ////  PPIITTCCHH  AANNDD  VVAARRIIAATTIIOONN
ffllooaatt ssppeeeedd,,ssppeeeeddVVaarr;;
////  PPaarrttiiccllee
ttPPaarrttiiccllee **ppaarrttiiccllee;; ////  NNUULLLL  TTEERRMMIINNAATTEEDD  LLIINNKKEEDD  LLIISSTT
iinntt ttoottaallPPaarrttiicclleess;; ////  TTOOTTAALL  EEMMIITTTTEEDD  AATT  AANNYY  TTIIMMEE
iinntt ppaarrttiicclleeCCoouunntt;; ////  TTOOTTAALL  EEMMIITTTTEEDD  RRIIGGHHTT  NNOOWW
iinntt eemmiittssPPeerrFFrraammee,,  eemmiittVVaarr;; ////  EEMMIITTSS  PPEERR  FFRRAAMMEE  AANNDD  VVAARRIIAATTIIOONN
iinntt lliiffee,,  lliiffeeVVaarr;; ////  LLIIFFEE  CCOOUUNNTT  AANNDD  VVAARRIIAATTIIOONN
ttCCoolloorr ssttaarrttCCoolloorr,,  ssttaarrttCCoolloorrVVaarr;; ////  CCUURRRREENNTT  CCOOLLOORR  OOFF  PPAARRTTIICCLLEE
ttCCoolloorr eennddCCoolloorr,,  eennddCCoolloorrVVaarr;; ////  CCUURRRREENNTT  CCOOLLOORR  OOFF  PPAARRTTIICCLLEE
////  PPhhyyssiiccss
ttVVeeccttoorr ffoorrccee;; ////  GGLLOOBBAALL  GGRRAAVVIITTYY,,  WWIINNDD,,  EETTCC..

}};;

L I S T I N G  2 .  The emitter structure.

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////  FFuunnccttiioonn:: RRoottaattiioonnTTooDDiirreeccttiioonn
////  PPuurrppoossee:: CCoonnvveerrtt  aa  YYaaww  aanndd  PPiittcchh  ttoo  aa  ddiirreeccttiioonn  vveeccttoorr
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
vvooiidd  RRoottaattiioonnTTooDDiirreeccttiioonn((ffllooaatt  ppiittcchh,,ffllooaatt  yyaaww,,ttVVeeccttoorr  **ddiirreeccttiioonn))
{{

ddiirreeccttiioonn-->>xx  ==  --ssiinn((yyaaww))  **  ccooss((ppiittcchh));;
ddiirreeccttiioonn-->>yy  ==  ssiinn((ppiittcchh));;
ddiirreeccttiioonn-->>zz  ==  ccooss((ppiittcchh))  **  ccooss((yyaaww));;

}}
//////  iinniittPPaarrttiicclleeSSyysstteemm  ////////////////////////////////////////////////////////////////////////////////////////////////////////////////

L I S T I N G  3 .  Converting rotations to a direction vector.



Once these two matrices are com-
bined into a single rotation matrix, I
get the following:

Now, since I’m calculating a direc-
tion vector, I need to multiply the vec-
tor (0,0,1) by this matrix. Once the
zeros are all dropped out, I get the final
piece of code in Listing 3.To finalize
the particle motion vector, this final
direction vector is multiplied by the
speed scalar, which is also randomly
modified.

Creating a New Particle

T o avoid many costly memory allo-
cations, all particles are created in

a common particle pool. I chose to
implement this as a linked list. When a
particle is emitted, it’s removed from
the common pool and added to the
emitter’s particle list. While this limits
the total number of particles I can have
in the scene, it also speeds things up a
bunch. By making the particle bidirec-
tionally linked, it’s easy to remove a
particle when it dies.

The code that creates a new particle
and adds it to the emitter is in Listing
4. It handles all the list management
for the global pool and also sets up all
the stochastic settings for the particle.

I chose simply to create each new
particle at the origin of the emitter. In
his SIGGRAPH paper, William Reeves
describes generating particles in differ-

RotMatrix

cos sin sin sin cos

0 cos sin

sin sin cos cos cos

=
−

−

















( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

θ ψ θ θ ψ
ψ ψ

θ ψ θ ψ θ

Rotx

1 0 0

0 cos( ) sin( )

0 sin( ) cos( )

( )ψ ψ ψ
ψ ψ

=
−

















G R A P H I C  C O N T E N T

16

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////  FFuunnccttiioonn:: aaddddPPaarrttiiccllee
////  PPuurrppoossee:: aadddd  aa  ppaarrttiiccllee  ttoo  aann  eemmiitttteerr
////  AArrgguummeennttss:: TThhee  eemmiitttteerr  ttoo  aadddd  ttoo
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
BBOOOOLL  aaddddPPaarrttiiccllee((ttEEmmiitttteerr  **eemmiitttteerr))
{{
//////  LLooccaall  VVaarriiaabblleess  //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

ttPPaarrttiiccllee  **ppaarrttiiccllee;;
ttCCoolloorr ssttaarrtt,,eenndd;;
ffllooaatt  yyaaww,,ppiittcchh,,ssppeeeedd;;

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////  IIFF  TTHHEERREE  IISS  AANN  EEMMIITTTTEERR  AANNDD  AA  PPAARRTTIICCLLEE  IINN  TTHHEE  PPOOOOLL
////  AANNDD  II  HHAAVVEENN''TT  EEMMIITTTTEEDD  MMYY  MMAAXX
iiff  ((eemmiitttteerr  !!==  NNUULLLL  &&&&  mm__PPaarrttiicclleePPooooll  !!==  NNUULLLL  &&&&  

eemmiitttteerr-->>ppaarrttiicclleeCCoouunntt  <<  eemmiitttteerr-->>ttoottaallPPaarrttiicclleess))
{{

ppaarrttiiccllee  ==  mm__PPaarrttiicclleePPooooll;; ////  TTHHEE  CCUURRRREENNTT  PPAARRTTIICCLLEE  
mm__PPaarrttiicclleePPooooll  ==  mm__PPaarrttiicclleePPooooll-->>nneexxtt;; ////  FFIIXX  TTHHEE  PPOOOOLL  PPOOIINNTTEERRSS

iiff  ((eemmiitttteerr-->>ppaarrttiiccllee  !!==  NNUULLLL))
eemmiitttteerr-->>ppaarrttiiccllee-->>pprreevv  ==  ppaarrttiiccllee;;  ////  SSEETT  BBAACCKK  LLIINNKK

ppaarrttiiccllee-->>nneexxtt  ==  eemmiitttteerr-->>ppaarrttiiccllee;; ////  SSEETT  IITTSS  NNEEXXTT  PPOOIINNTTEERR
ppaarrttiiccllee-->>pprreevv  ==  NNUULLLL;; ////  IITT  HHAASS  NNOO  BBAACCKK  PPOOIINNTTEERR
eemmiitttteerr-->>ppaarrttiiccllee  ==  ppaarrttiiccllee;; ////  SSEETT  IITT  IINN  TTHHEE  EEMMIITTTTEERR

ppaarrttiiccllee-->>ppooss..xx  ==  00..00ff;; ////  RREELLAATTIIVVEE  TTOO  EEMMIITTTTEERR  BBAASSEE
ppaarrttiiccllee-->>ppooss..yy  ==  00..00ff;;
ppaarrttiiccllee-->>ppooss..zz  ==  00..00ff;;

ppaarrttiiccllee-->>pprreevvPPooss..xx  ==  00..00ff;; ////  UUSSEEDD  FFOORR  AANNTTII  AALLIIAASS
ppaarrttiiccllee-->>pprreevvPPooss..yy  ==  00..00ff;;
ppaarrttiiccllee-->>pprreevvPPooss..zz  ==  00..00ff;;

////  CCAALLCCUULLAATTEE  TTHHEE  SSTTAARRTTIINNGG  DDIIRREECCTTIIOONN  VVEECCTTOORR
yyaaww  ==  eemmiitttteerr-->>yyaaww  ++  ((eemmiitttteerr-->>yyaawwVVaarr  **  RRaannddoommNNuumm(())));;
ppiittcchh  ==  eemmiitttteerr-->>ppiittcchh  ++  ((eemmiitttteerr-->>ppiittcchhVVaarr  **  RRaannddoommNNuumm(())));;

////  CCOONNVVEERRTT  TTHHEE  RROOTTAATTIIOONNSS  TTOO  AA  VVEECCTTOORR
RRoottaattiioonnTTooDDiirreeccttiioonn((ppiittcchh,,yyaaww,,&&ppaarrttiiccllee-->>ddiirr));;

////  MMUULLTTIIPPLLYY  IINN  TTHHEE  SSPPEEEEDD  FFAACCTTOORR
ssppeeeedd  ==  eemmiitttteerr-->>ssppeeeedd  ++  ((eemmiitttteerr-->>ssppeeeeddVVaarr  **  RRaannddoommNNuumm(())));;
ppaarrttiiccllee-->>ddiirr..xx  **==  ssppeeeedd;;
ppaarrttiiccllee-->>ddiirr..yy  **==  ssppeeeedd;;
ppaarrttiiccllee-->>ddiirr..zz  **==  ssppeeeedd;;

////  CCAALLCCUULLAATTEE  TTHHEE  CCOOLLOORRSS
ssttaarrtt..rr  ==  eemmiitttteerr-->>ssttaarrttCCoolloorr..rr  ++  ((eemmiitttteerr-->>ssttaarrttCCoolloorrVVaarr..rr  **  RRaannddoommNNuumm(())));;
ssttaarrtt..gg  ==  eemmiitttteerr-->>ssttaarrttCCoolloorr..gg  ++  ((eemmiitttteerr-->>ssttaarrttCCoolloorrVVaarr..gg  **  RRaannddoommNNuumm(())));;
ssttaarrtt..bb  ==  eemmiitttteerr-->>ssttaarrttCCoolloorr..bb  ++  ((eemmiitttteerr-->>ssttaarrttCCoolloorrVVaarr..bb  **  RRaannddoommNNuumm(())));;
eenndd..rr  ==  eemmiitttteerr-->>eennddCCoolloorr..rr  ++  ((eemmiitttteerr-->>eennddCCoolloorrVVaarr..rr  **  RRaannddoommNNuumm(())));;
eenndd..gg  ==  eemmiitttteerr-->>eennddCCoolloorr..gg  ++  ((eemmiitttteerr-->>eennddCCoolloorrVVaarr..gg  **  RRaannddoommNNuumm(())));;
eenndd..bb  ==  eemmiitttteerr-->>eennddCCoolloorr..bb  ++  ((eemmiitttteerr-->>eennddCCoolloorrVVaarr..bb  **  RRaannddoommNNuumm(())));;

ppaarrttiiccllee-->>ccoolloorr..rr  ==  ssttaarrtt..rr;;
ppaarrttiiccllee-->>ccoolloorr..gg  ==  ssttaarrtt..gg;;
ppaarrttiiccllee-->>ccoolloorr..bb  ==  ssttaarrtt..bb;;

////  CCAALLCCUULLAATTEE  TTHHEE  LLIIFFEE  SSPPAANN
ppaarrttiiccllee-->>lliiffee  ==  eemmiitttteerr-->>lliiffee  ++  ((iinntt))((((ffllooaatt))eemmiitttteerr-->>lliiffeeVVaarr  **  RRaannddoommNNuumm(())));;

////  CCRREEAATTEE  TTHHEE  CCOOLLOORR  DDEELLTTAA
ppaarrttiiccllee-->>ddeellttaaCCoolloorr..rr  ==  ((eenndd..rr  --  ssttaarrtt..rr))  //  ppaarrttiiccllee-->>lliiffee;;
ppaarrttiiccllee-->>ddeellttaaCCoolloorr..gg  ==  ((eenndd..gg  --  ssttaarrtt..gg))  //  ppaarrttiiccllee-->>lliiffee;;
ppaarrttiiccllee-->>ddeellttaaCCoolloorr..bb  ==  ((eenndd..bb  --  ssttaarrtt..bb))  //  ppaarrttiiccllee-->>lliiffee;;
eemmiitttteerr-->>ppaarrttiicclleeCCoouunntt++++;; ////  AA  NNEEWW  PPAARRTTIICCLLEE  IISS  BBOORRNN
rreettuurrnn  TTRRUUEE;;

}}
rreettuurrnn  FFAALLSSEE;;

}}
//////  aaddddPPaarrttiiccllee  //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

L I S T I N G  4 .  Adding a new particle to an emitter.

G A M E  D E V E L O P E R J U L Y  1 9 9 8 h t t p : / / w w w . g d m a g . c o m



ent ways (see “References”). Along with
a point source, he describes methods
for creating particles on the surface of a
sphere, within the volume of a sphere,
on the surface of a 2D disc, and on the
surface of a rectangle. These different
methods will create various effects, so
you should experiment to find what
works best for your application.

Updating the Particle

O nce a particle is born, it’s handled
by the particle system. The update

routine is in Listing 5. For each cycle of
the simulation, each particle is updated.
First, it’s checked to see if it has died. If
it has, the particle is removed from the
emitter and returned to the global parti-
cle pool. At this time also, global forces
are applied to the direction vector, and
the color is modified.

Rendering the Particle System

A particle system is simply a collec-
tion of points, and so it can be ren-

dered as just that, a set of colored 3D
points. You can also calculate a polygon
around the point so that it always faces
the camera like a billboard. Then apply
any texture you like to the polygon. By
scaling the polygon with the distance
from the camera, you can create per-
spective. Another option is to draw a 3D
object of any type at the position of the
particle.

I took the simple route. I just drew
each particle as a 3D point. If you turn

on antialiasing, the system draws a
gouraud-shaded line from the previous
position and color to the new position
and color. This tends to smooth out the
look at the cost of some rendering
speed. You can see the difference in
Figures 1a and 1b. The first image is a
simple point rendering, and the second
is composed of line segments.

G R A P H I C  C O N T E N T

18

G A M E  D E V E L O P E R J U L Y  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////  FFuunnccttiioonn:: uuppddaatteePPaarrttiiccllee
////  PPuurrppoossee:: uuppddaatteePPaarrttiiccllee  sseettttiinnggss
////  AArrgguummeennttss:: TThhee  ppaarrttiiccllee  ttoo  uuppddaattee  aanndd  tthhee  eemmiitttteerr  iitt  ccaammee  ffrroomm
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
BBOOOOLL  uuppddaatteePPaarrttiiccllee((ttPPaarrttiiccllee  **ppaarrttiiccllee,,ttEEmmiitttteerr  **eemmiitttteerr))
{{

////  IIFF  TTHHIISS  IISS  AA  VVAALLIIDD  PPAARRTTIICCLLEE
iiff  ((ppaarrttiiccllee  !!==  NNUULLLL  &&&&  ppaarrttiiccllee-->>lliiffee  >>  00))
{{

////  SSAAVVEE  IITTSS  OOLLDD  PPOOSS  FFOORR  AANNTTII  AALLIIAASSIINNGG
ppaarrttiiccllee-->>pprreevvPPooss..xx  ==  ppaarrttiiccllee-->>ppooss..xx;;
ppaarrttiiccllee-->>pprreevvPPooss..yy  ==  ppaarrttiiccllee-->>ppooss..yy;;
ppaarrttiiccllee-->>pprreevvPPooss..zz  ==  ppaarrttiiccllee-->>ppooss..zz;;

////  CCAALLCCUULLAATTEE  TTHHEE  NNEEWW
ppaarrttiiccllee-->>ppooss..xx  ++==  ppaarrttiiccllee-->>ddiirr..xx;;
ppaarrttiiccllee-->>ppooss..yy  ++==  ppaarrttiiccllee-->>ddiirr..yy;;
ppaarrttiiccllee-->>ppooss..zz  ++==  ppaarrttiiccllee-->>ddiirr..zz;;

////  AAPPPPLLYY  GGLLOOBBAALL  FFOORRCCEE  TTOO  DDIIRREECCTTIIOONN
ppaarrttiiccllee-->>ddiirr..xx  ++==  eemmiitttteerr-->>ffoorrccee..xx;;
ppaarrttiiccllee-->>ddiirr..yy  ++==  eemmiitttteerr-->>ffoorrccee..yy;;
ppaarrttiiccllee-->>ddiirr..zz  ++==  eemmiitttteerr-->>ffoorrccee..zz;;

////  SSAAVVEE  TTHHEE  OOLLDD  CCOOLLOORR
ppaarrttiiccllee-->>pprreevvCCoolloorr..rr  ==  ppaarrttiiccllee-->>ccoolloorr..rr;;
ppaarrttiiccllee-->>pprreevvCCoolloorr..gg  ==  ppaarrttiiccllee-->>ccoolloorr..gg;;
ppaarrttiiccllee-->>pprreevvCCoolloorr..bb  ==  ppaarrttiiccllee-->>ccoolloorr..bb;;

////  GGEETT  TTHHEE  NNEEWW  CCOOLLOORR
ppaarrttiiccllee-->>ccoolloorr..rr  ++==  ppaarrttiiccllee-->>ddeellttaaCCoolloorr..rr;;
ppaarrttiiccllee-->>ccoolloorr..gg  ++==  ppaarrttiiccllee-->>ddeellttaaCCoolloorr..gg;;
ppaarrttiiccllee-->>ccoolloorr..bb  ++==  ppaarrttiiccllee-->>ddeellttaaCCoolloorr..bb;;

ppaarrttiiccllee-->>lliiffee——;;////  IITT  IISS  AA  CCYYCCLLEE  OOLLDDEERR
rreettuurrnn  TTRRUUEE;;

}}
eellssee  iiff  ((ppaarrttiiccllee  !!==  NNUULLLL  &&&&  ppaarrttiiccllee-->>lliiffee  ====  00))
{{

////  FFRREEEE  TTHHIISS  SSUUCCKKEERR  UUPP  BBAACCKK  TTOO  TTHHEE  MMAAIINN  PPOOOOLL
iiff  ((ppaarrttiiccllee-->>pprreevv  !!==  NNUULLLL))

ppaarrttiiccllee-->>pprreevv-->>nneexxtt  ==  ppaarrttiiccllee-->>nneexxtt;;
eellssee

eemmiitttteerr-->>ppaarrttiiccllee  ==  ppaarrttiiccllee-->>nneexxtt;;
////  FFIIXX  UUPP  TTHHEE  NNEEXXTT’’SS  PPRREEVV  PPOOIINNTTEERR  IIFF  TTHHEERREE  IISS  AA  NNEEXXTT
iiff  ((ppaarrttiiccllee-->>nneexxtt  !!==  NNUULLLL))

ppaarrttiiccllee-->>nneexxtt-->>pprreevv  ==  ppaarrttiiccllee-->>pprreevv;;
ppaarrttiiccllee-->>nneexxtt  ==  mm__PPaarrttiicclleePPooooll;;
mm__PPaarrttiicclleePPooooll  ==  ppaarrttiiccllee;; ////  NNEEWW  PPOOOOLL  PPOOIINNTTEERR
eemmiitttteerr-->>ppaarrttiicclleeCCoouunntt——;; ////  AADDDD  OONNEE  TTOO  PPOOOOLL

}}
rreettuurrnn  FFAALLSSEE;;

}}
//////  uuppddaatteePPaarrttiiccllee  //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

L I S T I N G  5 .  Updating a Particle.

F I G U R E S  1 a A N D  1 b .  1a shows

point rendering and 1b shows a com-

position of line segments.



What Can You Do With It?

O nce you’ve designed your system,
you can start building effects. You

can easily build effects such as fire, water
fountains, spark showers, and others
simply by modifying the emitter proper-
ties. By attaching the emitter to another
object and actually animating  it, you
can create simple smoke trails or a comet
tail.

You can also create even more com-
plex effects by creating a brand new
particle system at the point at which
each particle dies. The Genesis
sequence in Star Trek II actually had up
to 400 particle systems consisting of
750,000 particles. That may be a bit
much for your real-time blood spray,
but as hardware gets faster, who knows? 

Also, my simple physics model could
be greatly modified. The mass of the
particles could be randomized, causing
gravity to effect them differently. A fric-
tion model would force some particles
to slow down while animating. The
addition of local spatial effects, such as
magnetic fields, wind gusts, and rota-
tional vortexes, would vary the particles

even more. Or you could vary the
eemmiittssPPeerrFFrraammee in a cycle over time to cre-
ate a puffing smoke effect.

I’ve seen many other ideas imple-
mented in commercial particle sys-
tems. You can animate the size of the
particle over time to create a dispersing
effect. Add more color key positions
over the particle’s lifetime to create a
more complex look. Another interest-
ing variation is the use of a particle sys-
tem to create plants. By keeping track
of each position over the life of a parti-
cle and then rendering a line through
all those points, you get an object that
resembles a clump of grass. Organic
objects such as this would be difficult
to hand-model convincingly with poly-
gons. Another area for expansion is
collision detection. You could create
particles that bounce off of boundary
objects such as cubes and spheres by
simply reflecting the direction vector
off of the surface.

You can see from these ideas that
I’ve just begun to explore what can be
created with particle systems. By creat-
ing a flexible particle engine, you can
achieve many different effects by mod-

ifying a few simple settings. These flex-
ible emitters can easily be dropped
into an existing 3D real-time engine to
add to the realism and excitement of a
simulation.

The source code and application this
month demonstrate the use of a parti-
cle system. The emitter settings can be
manipulated via a dialog box to create
custom effects. These settings can be
saved to create a library of emitters. Get
the source and application on the
Game Developer’s web site at
www.gdmag.com.  ■

19

Reeves, William T. “Particle Systems —

A Technique for Modeling a Class of

Fuzzy Objects.” Computer Graphics,

Vol. 17, No. 3 (1983): 359-376.

Reeves, William T. “Approximate and

Probabilistic Algorithms for Shading

and Rendering Structured Particles

Systems.” Computer Graphics, Vol. 19,

No. 3 (1985): 313-322.

Watt, Alan, 3D Computer Graphics.

Reading, Mass.: Addison Wesley, 1993.

RR EE FF EE RR EE NN CC EE SS



b y  J o s h  W h i t e A R T I S T ’ S  V I E W

“This hot new technology solution will
cure your blues, dry your tears, and
leave you with exciting new art that
everyone will love! Your whites will be
whiter! Your hues will be brighter! Ask
your programmer to implement it
today! Call 1-900-TEXTURE NOW!!”

As much as I enjoy slamming it, I
actually like hype when it’s based on
something real, and especially some-
thing undiscovered — that’s when I get
really wound up and bubble enthusias-
tically to my tolerant friends. For me,
texture blending fits this description
perfectly. That’s why we’ll spend this
month getting deep inside a cool tech-
nology that is the greatest thing since
UV mapping.

What Is Texture Blending?

T exture blending is the act of com-
bining two textures on a 3D

model. QUAKE lighting, translucent tex-
tures, glowing light-sabers — these are
all examples of texture blends, and I
think they’re only the beginning of the
possibilities. Figure 1 is the example of
texture blending used in the Oldtimer
episode last month. 

Texture blending is really easy to
understand if you separate it from the
3D part. It’s really a 2D effect, so it’s
fair to leave out the 3D for now. 

How Does It Work? Try It and See!

T he best way to understand the use
of blend modes is to try it. It’s easy.

Load up two bitmaps in Photoshop 4 or
some other good paint program and
paste one inside the other. Then change
the blend mode to Subtractive, play
with the transparency slider, invert the
image, and so on. Those features are
very similar to blend modes that many
3D graphics cards and upcoming 3D
APIs support. There are a few examples
in the following illustrations. 

Let’s take a closer look at the tech-
nology behind blending. When you
pasted that second image on top of the
first one, the paint program had two
pixels from which to choose (Figure 2).
Imagine a black box with two inputs
(bitmap A and bitmap B) and one out-
put. Blend modes are the circuitry in
the black box.

The simplest black box is Replace. It
works like this: take bitmap A and out-
put it. Bitmap B is simply ignored. This
is what happens if you just cut and
paste one image on top of another one
(Figure 3). 

A slightly more complicated blend is
Mask, also called transparency, blue
screening, or 1-bit alpha. It’s the same
concept that all of those web GIF
images use. In this blend, bitmap A is
dependent on B. In the black areas of
B, A is ignored, allowing the back-

ground to show through. 
Blending is best understood

by looking at what happens in
a single pixel. For each pixel in
the resulting image, the com-

puter grabs the pixel from A, and then
checks if B is white. If B is white, it uses
pixel from bitmap A. If B is black, it dis-
cards A and doesn’t output anything.

Let’s look at a couple specific exam-
ples. Starting in the upper left corner
(See Figure 4), we can see that bitmap B
is black. That means the green pixel in A
is ignored. B’s lower right corner, on the
other hand, is white. That means the
result will get A’s green pixel. This is
how blending generally works: pixel-by-
pixel, two bitmaps are combined into a
result.

h t t p : / / w w w . g d m a g . c o m J U L Y  1 9 9 8 G A M E  D E V E L O P E R

21

Texture Blending: Hype and Overflow

“I s your artwork a dull, endless stream of 3D triangles and repeated

textures? Do you wish you had something more, something

dynamic and exciting and new, to overlay on this drab land-

scape? Never fear, dear Artist: texture blending to the rescue!”

Josh White runs Vector Graphics, a real-time 3D art production company.
He wrote Designing 3D Graphics (Wiley Computer Publishing, 1996), he
has spoken at the CGDC, and he cofounded the CGA, an open association of
computer game artists. You can reach him at column@vectorg.com.

F I G U R E  1 .  Texture blending combines two

bitmaps.

F I G U R E  2 .  Two-input texture blend-

ing made E-Z.

F I G U R E  3 .  Replace is the most basic

blending “black box.”

F I G U R E  4 .  Simple transparency.



Now that we have a foundation, let’s
look at some specific blend modes in
order to understand how they work. It’s
important to know what they’re actual-
ly doing because some of these blend
modes are really subtle and strange, and
it’s easy to ignore them without this
low-level understanding.

We can divide blend modes into two
categories. The first group I call “2-
input” because those blending modes
accept two images. The second group
uses a third image (usually an alpha
channel) to switch between the first two.

Two-Input Blending Modes

W e’ve already worked though the
easiest examples of simple

blending with the transparency exam-
ple given earlier. Let’s take a look at
something slightly harder: additive
blending. Figure 5 shows the result of
additive blending bitmap A onto B.
Looking at the upper left pixel, we start
with A’s green pixel. It’s definition is
37 percent red, 69 percent green, and
37 percent blue. Bitmap B’s upper cor-
ner is white (RGB of 100 percent, 100
percent, 100 percent). Now, if we add
those together, we get a pixel that’s
137 percent, 169 percent, 137 percent. 

One of the basics of additive blending
is that it can only lighten a texture. If
you have a 50 percent gray wall and
you’re using additive lighting, it’s
impossible to get that wall darker than
50 percent. In practice, this means that
you’ll paint your textures as dark as you
ever want them to be, and then you’ll
use the additive blend map to increase
the brightness to the level you want. 

Painting dim textures is not very intu-
itive, so let’s explore a more commonly
used alternative: subtractive blending.
It’s very similar to additive. We subtract,
instead of adding, each pixel in bitmap
A from bitmap B. Figure 6 shows an
example of subtractive blending

Another example of
subtractive blending was
shown at the beginning
of this article in the ball-
room floor. Subtractive
blending is commonly
used for lightmaps, so
it’s of special interest to
us game artists. It defi-
nitely affects how we
create our textures. For

example, since subtractive blending can
only darken textures, we paint our tex-
tures at their maximum brightness.

Blending Overflow

L et’s go back to that pixel that has
137 percent or more in brightness.

Does that seem a little weird to you? It
should because we just ran smack into
the first major problem in texture
blending. The problem is RGB limits:
pixels have a maximum brightness (100
percent) and a minimum brightness (0
percent). If we attempt to assign a value
higher than the maximum, it’s truncat-
ed to the maximum. That means that
we’re losing data. In this case, the
upper-left half of the image “over-
flowed” and went straight to white,
instead of becoming brightened 

Take a look at Figure 7. It shows
three test-tubes with percentage lines
that represent the minimum and maxi-
mum each color channel can hold.
When the two textures are added, we
see that the test tubes will overflow and
will all get truncated evenly at 100 per-

cent. In our example, we lost the fact
that the pixel should have more green
than red or blue. As a result, our image
has pure white, and we lost the circuit
pattern in that area. 

If we actually want a light, but not
pure white, circuit pattern, we have sev-
eral options. The simplest solution is
creating textures that don’t overflow
when combined. That means we have
to check the pixel RGB levels at the
brightest points and make sure they
don’t add up to over 100 percent.

In our case, we need to lower the con-
trast on bitmap A before we blend it.
That will give us results like Figure 8.
Notice that we can still see the pattern
in the light area. The concept is illustrat-
ed in Figure 9: we can see that the lower
light values allow the pixel to attain
maximum brightness in the green chan-
nel, but the image still has its pattern
visible because the red and blue chan-
nels are not at 100 percent. 

There are other ways to solve this
problem, but they all work similarly. For
example, game programmers can write a
feature that reduces the intensity of the
lightmaps by 50 percent or some other
constant before blending them. The
visual result is the same as if the artist
had adjusted the bitmap’s brightness. 

This article frames overflow as a

A R T I S T ’ S  V I E W

G A M E  D E V E L O P E R J U L Y  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

22

F I G U R E S  5 ,  6  a n d 8 .  Additive blending result, sub-

tractive blending, and the result of additive blending

without overflow. .

F I G U R E  7.  Envisioning pixel “over-

flow.”

F I G U R E  9 .  Avoiding overflow.



A R T I S T ’ S  V I E W

G A M E  D E V E L O P E R J U L Y  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

24

“problem” that you must avoid, but
that’s not correct. There are times when
we want a supersaturated, washed-out
blend, and overflowing the blend by
combining two images works just fine
— there’s no performance penalty or
anything. As long as you understand
why it’s happening, you shouldn’t feel
reluctant to have blend overflow.

Let’s look at the opposite problem:
underflow. This happens when you
attempt to darken a texture past black,
which is easy to do with a subtractive
blend. One of our bitmaps has a 0,0,0
pixel. When we subtract the green pixel
of the circuit, we end up with negative
values. Of course, those are truncated to
zero, and we’re left with pure black. To
avoid this, we could lighten our
grayscale texture until it didn’t com-
pletely annihilate the green texture’s
RGB values when we subtract the two.

Here’s one of the conclusions we can
draw from understanding overflow: we
should rarely use an additive blend
when either bitmap A or B has large
areas of pure white (RGB 100,100,100
percent). Why? Because it’s a waste of
performance. Additive blending can’t
brighten the pure white, so we might as
well just paint it pure white, remove the
second blend texture, and reclaim the
performance. Similarly, if we use sub-
tractive blending, we also rarely use
pure black (RGB 0,0,0) in the image
because, like pure white for additive, it’s
a waste of blending effort.

Overflow isn’t just a problem for addi-
tive and subtractive blending — it’s a
more subtle problem for other modes
because calculating the overflow isn’t as
simple. To understand and predict over-
flow with more complicated blending
modes, we follow the same process: pick
a single pixel, run the calculations (we
added the RGB values in our example),
and see if the resulting RGB values are
within zero to 100 percent.

What’s Blending Good for,
Artistically?

L et’s switch from Gearhead to
Artiste for a minute. If you look

back at the example image we used in
the additive lighting tutorial, you can
see it as a bright light reflecting on a cir-
cuit board. It has that super washed-out
look of a specular highlight, but it’s
covering a large area, as though the cir-

cuit board were a flat mirror surface.
Blending is often used to simulate light-
ing effects that aren’t possible with real-
time lighting, because it provides detail
that is hard to achieve with vertex
lighting (Gouraud or Phong shading).
Vertex lighting can only change value
at each vertex, and since most real-time
models have few vertices on flat areas,
it’s very difficult to cast shadows or get
other cool effects on large flat surfaces.
Blended lightmaps, on the other hand,
are easiest on flat surfaces and are total-
ly separate from the location of vertices. 

There are drawbacks, though.
Lightmaps are nearly impossible to gen-
erate at run time because of the perfor-
mance — essentially, the scene has to be
rendered once for each lightmap. That’s
why most lightmaps don’t update cor-
rectly in real time. Normal dynamic
lighting is a much smaller performance
hit because it only works on vertices
rather than every pixel. It’s still quite a
processing load, but if the game design
calls for moving lights, most developers
implement dynamic vertex lighting.

Obviously, we all want dramatic,
changing lights — flashes of magic,
sudden darkness, a roving search light,
and the ubiquitous glowing missile jet.
That’s why using lightmaps that aren’t
truly dynamic can be very constraining.
There are several workarounds, though. 

First, there’s the QUAKE method of
adding a bright area to a lightmap by
using simple adjustments to the
lightmap value without actually ren-
dering the scene to generate the
lightmap. The drawback here is in the
coding effort. It’s not easy to write the
code that updates a lightmap and,
because it’s a delicate hack, there are
strange limits and a compromised visu-
al look compared to true dynamic
lights (for example, the dynamic lights
may not have falloff or be allowed to
change intensity).

Second, animated texture maps pro-
vide an impressive dynamic lighting
effect, but have a potentially huge
memory usage and a minimal amount
of actual interaction with the 3D envi-
ronment. For example, you can easily
simulate a flickering torch mounted on
a castle wall, and cast long, dramatic
shadows that dance and quiver, but if
the game designer allows the torch to
be removed from the wall, the animat-
ed shadow maps won’t be updated cor-
rectly. The problem is that the shadow

maps must be prerendered, so they
effectively freeze the light’s position.

However, with a few programming
tricks, shadow maps can have some
interaction. It’s quite easy for a pro-
grammer to stop and start an animat-
ing shadowmap, for example. If the
artist paints two lightmaps for the
same surface — one light, one dark —
and the programmer links a light
switch trigger to the animation so that
when the player walks in the room, the
bright lightmap is used, then presto —
dynamic lights. Again, the drawback is
texture memory usage. 

These few examples have only begun
to reveal the mysteries of texture
blending, so we’ll come back to it in a
future column and discuss some of the
more esoteric modes. 

Hey, Where’s the Hype?

Oops — I forgot to pump this arti-
cle full of more exciting hype

about how incredibly wonderful tex-
ture blending is. Don’t worry, I’ll leave
you with another, milder dose here:

There is one hype-ish thing that
bears mentioning: texture blending
will soon become mandatory (if it
hasn’t already by the time this column
gets in your hot hands). Most major
3D graphics cards are implementing it
as a standard feature, and most 1998
3D chips offer blending with virtually
no performance impact. The blending
occurs at the same time as the texture
mapping. This makes texture blending
vastly faster (in terms of frame rate)
than other methods of lighting and
effects. On the API side, there is also
widespread support for blending. Both
DirectX 6 and OpenGL offer texture-
blends conveniently to programmers.
This means that next year, many 3D
game engines will be implementing
texture blending as a standard feature.
It doesn’t take a high-priced consul-
tant to foresee the artist’s role. The
power of texture blending is very
dependent on the artist, and it won’t
be one way. Blending will be a com-
mon question in job interviews, and
portfolios that don’t include blending
will be seen as inadequate. Thus,
before we know it, thorough under-
standing and ingenious use of texture
blending will be an essential job skill
for computer game artists.  ■



b y  O m i d  R a h m a t H A R D  T A R G E T S

Game control devices come in many
shapes and sizes, but there are some
key categories.
KEYBOARDS AND MICE. These add between
$15 and $25 to the cost of building a
PC, and are almost a given with any
new PC purchase. There’s certainly a
guaranteed 100 percent installed base.
6DOF CONTROLLERS. This device has its
origins in the 3D computer-aided
design (CAD) market, but is currently
being championed as the ultimate
controller for first-person action games
because of its three axes and six
degrees of freedom. Spacetec and
Logitech haven’t managed to get their
products mass market approval, proba-
bly because mastering this kind of
device is much more difficult than
mastering a joystick or other input
device. Still, it’s an interesting prod-
uct, and it has a space age feel to it. 
JOYSTICKS.  It’s all in the grip. Most joy-
stick enthusiasts insist on a good
returns policy from the vendor
because until you use a particular
device for a period of time, you don’t
know how reliable or comfortable it
really is. Force-feedback joysticks are
going to push the bleeding edge of
input devices for gamers in the next
eighteen months.
GAME PADS. Familiar to console users,
game pads are finding their way onto
PCs as more “console-like” action titles
show up on the desktop. Blurring the
lines between what’s a PC and what’s a
console game will probably increase
the popularity of game pads. They also
do a pretty good job as dedicated game
controllers.
FLIGHT CONTROLLERS. These input devices
are composed of a combination of joy-

sticks, or flight yokes, and throttles.
Flight controllers come in a variety of
designs and configurations, and for
the enthusiast, they’d better feel like
the real thing.
STEERING WHEELS. If flight sims can have
their own realistic input devices, then
why not racing sims? Hard core gamers
have a number of different input
devices to match the games they play.
The more specialized the controller,
however, the more likely that it’s
going to be very specific to a set of
titles, or even one popular title.

A Market in Flux

T he market for gamers’ input
devices and accessories is in a peri-

od of flux, much like the rest of the PC
industry. In the graphics market, the
changes result from the emergence of a
real-time 3D graphics accelerator base;
in the input market, change is due to
such things as the Universal Serial Bus
(USB) and force feedback. Unlike the
graphics market, the input market
doesn’t gain as much benefit from
original equipment manufacturer
(OEM) sales, with the exception of
standard controllers such as mice. In
simple terms, while PC vendors will
add 3D graphics to their latest offer-
ings to increase their appeal, they
don’t, as a matter of policy, add a joy-
stick or game pad to increase the per-
ceived value of a product. However,

there are a number of smaller PC inte-
grators, such as Media On, that target
the high-end games enthusiast and
provide systems with the latest input
devices and accessories for games.

h t t p : / / w w w . g d m a g . c o m J U L Y  1 9 9 8 G A M E  D E V E L O P E R

25

The Input 

Device Market

T he PC input device market closely mirrors the games market for some obvi-

ous reasons. The more games people buy, the greater their demand becomes

for game pads, joysticks, and the like. Therefore, just as the game market

has shown strong growth in the last few years, so has the input market.

Omid Rahmat works for Doodah Marketing as a copywriter, consultant, tea boy, and
sole employee. He also writes regularly on the computer graphics and entertainment
markets for online and print publications. Contact him at omid@compuserve.com.

1996 2001Market
(in millions)

Joysticks Game 
Pads 

Other 
Types

$160

$0

$10

$20

$30

$40

$50

$60

$70

$80

$90

$100

$110

$120

$130

$140

$150

$80

$154

$12.2

$27

$4
$8

(Source: VDC)

Devices

F I G U R E  1 .  The market for game

input devices on the PC — factory

pricing (source, VDC).



Figure 1 represents the sizing of the
game controller market based on facto-
ry pricing. With margins in the indus-
try at around 45 percent, the joystick
market was probably worth $150 mil-
lion in 1996 in retail sales, or roughly
in the region of 2 million units. By the
year 2001, the expected volumes
should increase much more than rev-
enues as margins decrease and costs
come down for products. With a life
expectancy of about 18 months for the
average joystick, the installed base of
game controllers is probably going to
close in on the 10 million mark by the
year 2001.

USB may help to stir things up.
James C. Barnes, CEO and cofounder
of FP Gaming, was the business unit
manager of Logitech’s Entertainment
and Virtual Reality Division. He has a
fifteen-year perspective on the indus-
try and has this to say about USB:
“Effectively, all input devices will be
replaced over time. The typical tech-
nology leaders are gamers. So, look for
game devices to transition over during
the next year or so. This technology
change will allow many different game
devices to be created as the four-axis,
four-button limitation becomes histo-
ry. Also, hot plug-ins allow the gamer
to switch in and out unique gaming
devices easily. The end result will be
gaming devices with more features and
a proliferation of specialized gaming
devices.”

More interesting from a pure gaming
perspective is force feedback. There are
50-100 games that currently support
force feedback. You can check them at
www.force-feedback.com. Immersion
Corporation has been pioneering the
use of force feedback in the industry,
and has recently received equity
investments from Intel and Logitech
for its efforts. There is every indication
that force feedback will have the same
kind of impact on the PC multimedia
market that audio did. Audio found its
way into the general computing envi-
ronment having really only applied
itself to the games market, but the
mere feature of having a computer
make noise was a great incentive for
non-games PCs to adopt audio as well.

It was a visceral reaction, and force
feedback has that same impact. It’s a
unique sensory experience that may
find its way into novel applications
other than games.

The following companies have
licensed force-feedback technology
from Immersion:

• Logitech
• ThrustMaster
• Happ Controls
• CH Products
• LMP
• ACT Labs
• ANKO (OEM for IBM and Logitech)
• Primax (OEM for big companies

such as Compaq and Nintendo)
• SC&T International
• Interactive I/O
Immersion believes that force feed-

back will proliferate in the market for
input devices very quickly. Ramon
Alarcon, I-FORCE partner program
manager for Immersion, says, “We
estimate that force feedback will pene-
trate 35 percent of the joystick market
within the next 18 months, 65 percent
of wheel market in the next 18
months, and 30 percent of mouse mar-
ket in the next 24 months.”

The Players

T he key to success in the input
devices market is likely to be a

combination of manufacturing skills,
product marketing expertise, and retail
sales power. Quality is a key issue for
devices that can cost anywhere from
$10 to $200, irrespective of the pound-
ing they receive. In addition, input
devices are one of the few computer
accessories that have the level of
sophisticated ergonomic and aesthetic
design that they do. So, not only does
a joystick have to look cool, but it has
to feel like the control of a spaceship.
A look at the leading names in the
game controller market shows that
vendors are following certain trends —
they are partnering or merging into
larger, stronger retail and manufactur-
ing operations; they are expanding the
range of devices they offer from joy-
sticks and game pads to steering

wheels, flight yokes, and other devices
that offer the game player a competi-
tive advantage; and they’re branding
their products aggressively.
ADVANCED GRAVIS. This San Mateo, Calif.-
based company started selling joy-
sticks in 1985. Products are sold by
over 200 distributors and 15,000 retail-
ers in 45 countries. In 1996, Advanced
Gravis became part of Kensington
Technology Group, a computer acces-
sories company owned by ACCO
Brands. ACCO in turn is a subsidiary
of Fortune Brands, home of brand
names such as Jim Beam.
CH PRODUCTS. CH Products is a 20-year-
old, family-owned business that
designs and assembles its own con-
trollers. The founder is a 25-year veter-
an builder of analog joysticks for the
radio control hobbyist and an expert
plane builder and pilot. His son-in-law
is the CEO, a retired former FA-18
pilot. CH is unique among its contem-
poraries in the business because the
company relies on local manufacturing
and design of its products.
MICROSOFT. James Barnes of FP Gaming
puts Microsoft’s positioning in the
input devices market best when he
says, “For the PC game controller mar-
ket, the key player is Microsoft. Then,
there is a battle for second place. The
second-place category consists of
Logitech, Kensington (Gravis),
ThrustMaster, and CH Products.
Microsoft is the newest and strongest
player. Their strengths are technology
leadership, operating-system owner-
ship, and a powerful brand name. Plus,
they have a great development team,
and so far, every product they have
released has been better than its prede-
cessor. Microsoft’s weaknesses? I think
that a lot of people are seeking exactly
that!”
SUNCOM TECHNOLOGIES. Suncom
Technologies Inc. is a wholly owned
subsidiary of Panint Electric Limited
based out of Hong Kong, China. The
company has 21 years of OEM experi-
ence. Their product strengths are in
flight controllers, and the company
possesses vertical manufacturing
capabilities.
THRUSTMASTER. The recognized master
of flight controller joysticks. The com-
pany was founded in 1990 by people
with a background in flight simulators.
This year, the company is moving into
the console market, and is enthusiasti-

H A R D  T A R G E T S

G A M E  D E V E L O P E R J U L Y  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

26

Not only does a joystick have to look cool, but
it has to feel like the control of a spaceship.



cally supporting force feedback. As a
public company, ThrustMaster is
under pressure to compete with
Microsoft, Logitech and InterAct, all of
whom have deeper pockets, and more
retail presence.
INTERACT ACCESSORIES. InterAct
Accessories Inc., is a wholly owned
subsidiary of Recoton Corporation,
which claims over 4,000 consumer
electronics brands. InterAct was found-
ed in 1991 by 23-year-old Todd Hays.
The company is big in the console
business, and entered the PC market in
1995. It has Logitech, Gravis ,and CH
Products firmly in its sights.
QUICKSHOT. QuickShot is a subsidiary of
Tomei International (Holding) Ltd., a
member of the global conglomerate
Semi-Tech Corp., Canada. As of 1998,
QuickShot claims to have sold more
than 42 million game controllers
worldwide, and the market research
firm VDC claims that they are, along
with Logitech and Gravis, one of the
top three joystick producers.
LOGITECH. The king of the hill when it
comes to depth and breadth of prod-
ucts for PC market, Logitech claims to

have the support of 17 of the world’s
20 largest PC makers. Logitech and
Microsoft both have distinctive aes-
thetics and branding colors on their
products.

As long as the game market — and
more particularly, the gamer’s appetite
for titles — keeps growing, all of these
companies have a ready audience.
However, with big names such as
Microsoft, InterAct, Gravis, and
Logitech, all with a strong corporate
presence, competing head to head,
someone has to suffer. It’s all going to
come down to who gets to be the king
of cool, and who comes up with the
best accessories for gamers. It’s a tough
choice, considering the quality of
everyone’s offerings, and considering
how subjective the choice of an input
device is. Therefore, in many ways,
game controllers have never been bet-
ter, and the added edge they can give to
a gaming experience can only get bet-
ter. The business opportunities for
game developers are not so obvious, but
any improvement in the gaming expe-
rience is going to effect the industry’s
bottom line. If the combination of real-

istic 3D graphics and force feedback
provides a form of escapism that noth-
ing else in the home can match —
that’s a good thing for all developers.  ■

27

Advanced Gravis: 
www.gravis.com

CH Products: 
www.chproducts.com

Immersion Corporation
www.force-feedback.com

InterAct Accessories:
www.interact-acc.com

Logitech: 
www.logitech.com

Microsoft: 
www.microsoft.com/products/hard-

ware/sidewinder/

QuickShot:
www.quickshot.com

Suncom Technologies:
www.suncominc.com

ThrustMaster: 
www.thrustmaster.com

FF OO RR   FF UU RR TT HH EE RR   II NN FF OO



G A M E  D E V E L O P E R J U L Y  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

28

I S S U E SL A T E N C Y

A  L O O K  A T
LATENCY IN

NETWORKED GAMES
hose of us developing networked games are less conscious

of latency issues than we should be. Often, this is because

common knowledge has already provided us with convenient

excuses for our problems. When a game feels laggy or behaves

unreliably, well, everybody knows that modems are slow, and

everybody knows the Internet is unreliable, so obviously the game

will suffer.

Here, we will look at the major sources of latency in a net-

worked game. We will show that large portions of this latency are

caused by the game itself or by the nature of serial communica-

tion in a way that is heavily influenced by the game’s behavior. In

B Y  J O N A T H A N  B L O W

TT
Jonathan Blow comes from the West country where the birds sing bass. He does not spell "mipmap" with a hyphen.  Contact him
at jon@bolt-action.com.



h t t p : / / w w w . g d m a g . c o m J U L Y  1 9 9 8 G A M E  D E V E L O P E R

Illustration by Rich Borge



G A M E  D E V E L O P E R J U L Y  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

30

L A T E N C Y  I S S U E S

other words, much of the latency is our
own fault — but that fact gives us the
power to find solutions.

The Method

I n order to analyze latency in a sys-
tematic and concrete way, we will

observe the workings of a specific sys-
tem: a client/server architecture, where
the server is authoritative over the state
of the world. The clients act as win-
dows for viewing that world. The server
frequently tells the clients about the
state of entities in the world (their
positions, velocities, and whatever
else); each client tells the server what
actions its player would like to take,
and the server computes the effects of
these actions on the world. Each client
runs asynchronously from the server
and all other clients; its frame rate is
not locked to the network in any way
(perhaps it uses dead reckoning to
extrapolate moving objects).

Many games’ architectures don’t
quite resemble this scheme (for exam-
ple, peer-to-peer games in which
clients can have authority over world
state), but most of the concepts
explored in this article still apply. 

Some calculations made in this article
are frame-rate dependent, so we must
pick a typical frame rate for a game
client. We will use 20 frames per second
as our typical frame rate. At the time of
this writing, 20 FPS is considered a rea-
sonable frame rate for a 3D game. With
news of the Voodoo2 running QUAKE at
120 FPS, it’s evident that a year or two
from now, 20 FPS may be considered
poor. However, this is not inevitable
since, in the past, developers of PC
games have chosen to increase a game’s
features and graphical punch to the
detriment of frame rate (QUAKE II is
slower than its predecessor). Also, 3D
games tend to follow the technology
curve very closely, so whereas a game
may run at 30 FPS on high-end hard-
ware, it may run at only 12 FPS on the
machines of half the people actually
playing the game. Lastly, we’ve seen
that the conditions of a multiplayer
game, during the times when the user
desires the most responsiveness (such as
in a heavy firefight during a death
match game) tend to be much more
stressful than the conditions during a
single-player game; therefore, the frame

rates that matter will be substantially
lower than the figures reported in
benchmarks. For now, we will stick with
the 20 FPS figure; however, we will be
careful to spell out all the equations we
use to compute lag so that the computa-
tions can be made for any client speed.

Variance

B esides latency, from time to time
we’ll also look at variance, the

amount by which latencies fluctuate.
Having a lot of variance in the system
is bad for several reasons; it makes dead
reckoning more difficult for the com-
puter to perform, and it tends to con-
fuse human reflexes (it’s not too hard
for a person to adapt to a 200ms lag
between action and consequence, but
it is much harder — and more frustrat-
ing — to deal with latencies that fluc-
tuate between 50ms and 300ms).

The statistical notion of variance is
not very intuitive, so we’ll be looking
at the standard deviation of latency,
which is the square root of its vari-
ance. The standard deviation of a vari-
able is how far away we can expect one
sampling of the variable to be from the
mean. We’ll encounter latencies that
fluctuate between two values, llow and
lhigh, but can adopt any value within
that range with equal probability. In
this case, the mean latency is 
0.5*(lhigh + llow). The standard 
deviation is

.
So if our system’s latencies fluctuate
between 50ms and 300ms, the mean is
175ms, and the standard deviation is
about 72ms.

Now that we’ve covered the intro-
ductory material, we’ll proceed in our
analysis of networked games by first
looking at the lag suffered during a sin-
gle-player, un-networked game.

A Single-Player Game

H ow can a single-player game suf-
fer lag? If we think only in terms

of modems and networks, then the
idea makes no sense. But in order to get
a comprehensive look at the concept of
lag, we must look carefully at the way a
single-player game operates.

We’re very familiar with the concept
of frame rate: it takes a game some
amount of time to draw its graphics;
the faster it can do this, the higher its
frame rate. Let’s look at frame rate from
a different angle: if a game is running
at 20 frames per second, it takes one
twentieth of a second (50ms) to draw
each frame. When it’s done drawing
the frame, the player can see the new
state of the world. So, at 20 FPS, once
the game decides what the state of the
world should be (as in, where the play-
er is and in what direction he’s look-
ing), it takes 50ms to communicate this
decision to the player. That 50ms is
lag; but it’s not the only kind of lag
we’ll see in a single-player game.

A typical game might have a loop
structure that looks something like
Listing 1. It’s important to note that,
with respect to the client’s cycle time,
the rendering and movement cycles
(mmoovvee__oobbjjeeccttss(()) and ddrraaww__sscceennee(())) represent
an all-consuming atomic void during
which no input events can be mean-
ingfully processed. If an input event
occurs (the user hits a key, for exam-
ple), then we must wait for movement
and rendering to complete before we
can get back to rreeaadd__iinnppuutt(()) and process
the event. (We could do something
tricky and have rreeaadd__iinnppuutt(()) occur much
more frequently than once per cycle;
this would change the flavor of the lag,
but wouldn’t reduce its overall magni-
tude. We discuss ideas such as this in
the conclusion to this article.)

Our game’s intended audience, game
players, are individuals with free will
and human spirit and all that stuff.
When a player presses a key, it’s an act

3
6









 −( )* l lhigh low

wwhhiillee  ((11))  {{

rreeaadd__iinnppuutt(());; ////  kkeeyybbooaarrdd,,  jjooyyssttiicckk  oorr  wwhhaatteevveerr;;  

////  cchhaannggee  oobbjjeecctt  mmoovveemmeenntt  ppaarraammeetteerrss  bbaasseedd  oonn  iinnppuutt

mmoovvee__oobbjjeeccttss(());; ////  cchhaannggee  oobbjjeeccttss’’  ppoossiittiioonnss  bbaasseedd  oonn  mmoovveemmeenntt  ppaarraammeetteerrss

ddrraaww__sscceennee(());; ////  aallll  tthhee  kk--rraadd  ggrraapphhiiccss,,  dd0000ddzz!!

}}

L I S T I N G  1 .  A typical game loop.



of unpredictable free will; the time of
the keystroke is not related to the inter-
nal operations of the game program. So
if we ask, in which phase of the client
cycle, and when during that phase,
does the keystroke event happen, the
answer is (to a first approximation)
that it can happen at any time with
equal probability.

Now for simplicity, we’ll assume that
the calls to ddrraaww__sscceennee(()) take 100 percent
of the CPU time on the client and that
each call to ddrraaww__sscceennee(()) takes an equal
amount of time. This means that
incoming keystrokes will be evenly dis-
tributed across the execution of
ddrraaww__sscceennee(()). On average, a keystroke
will occur smack in the middle of
ddrraaww__sscceennee(()). So when a keystroke
occurs, we have to wait half a cycle
until we can process the keystroke.
Now we need to move our viewpoint
in response to the input and draw the
new frame, which takes a cycle. That’s
a total of 1.5 cycles of lag in the aver-

age case, though the amount varies
between 1 and 2 cycles.

What does this mean in concrete
terms? When we’re playing a single-
player game, strutting down hallways
blasting Stroggs at 20 frames per sec-
ond, that’s 1,000/20 = 50ms per frame,
which means that it takes the game
50*1.5 = 75ms to visually respond to
our keystrokes, fluctuating between
50ms and 100ms, with a standard devi-
ation of about 14ms.

These numbers should already be set-
ting off warning bells in the analyst’s
mind. An “acceptable” 28.8Kbps
modem connection has a ping time of
about 150ms — that’s the round-trip
time for a ping packet to go to the
machine at the other end of the
modem and then come back. But what
we’re seeing is that, at 20 FPS, which is
typically considered a “responsive”
frame rate, we are faced with 75ms of
lag. So why do modem games feel so
much worse than single-player games

that seem to provide instantaneous
feedback? Several factors contribute to
this discrepancy, but a big component
of the answer is that a networked game
running over a modem with 150ms
ping time will suffer a real latency
much higher than 150ms.

Just for kicks we’ll consider the case
of a single-player game running at 12
FPS. Twelve FPS is not “smooth” ani-
mation, but it’s still a high enough
frame rate to feel responsive. Each
frame takes 1,000/12 = 83.3ms, with a
typical latency of 83.3*1.5 = 125ms,
which is getting pretty darn close to
that 150ms of raw ping time.

So what we’re seeing is that a game
runs in discrete cycles, and those cycles
can cause lag in two different ways.
We’ll call that first half-cycle of waiting
an influence lag, because it’s the delay
between our attempt to influence the
world (by pressing a key) and the time
the influence can occur. We will call
the cycle required to draw the scene an

G A M E  D E V E L O P E R J U L Y  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

32

L A T E N C Y  I S S U E S

T he diagnoses of latency and variance covered in this article consider the optimal case to be one in which the applications

process information in the most efficient order. However, simple mistakes in the organization of a loop structure can make

the situation much worse than we consider.

There are at least three basic operations the game loop has to perform: it must read input from the user, move objects in the world

(including the viewpoint) based on internal simulation (which is influenced by that input), and draw the current state of the world to

the screen.

The order in which we perform these steps will have an effect on the latency in the system. For simplicity, we will assume that the

drawing step takes almost all of the application’s CPU time; the read and move steps will be negligible in comparison.

The extra lag induced in the “Bad” example is obvious in some cases; many people who write single-player games see the problem

and get it right. However, we present this simple case as an illustration of a phenomenon that can occur in a complex system in ways

that are much subtler. 

Loop Structure

while  (1)  {
        read_input();
        move_objects();
        draw_scene();

draw: m0->d0 read: gen i1

Input occurs

draw: m1->d1 draw: m2->d2move: i1->m1 read: gen i2 move: i2->m2

Good
Total lag: 1.5 cycles

Input processed Result visible on screen

while  (1)  {
        move_objects();
        read_input();
        draw_scene();

draw: m0->d0 read: gen i2

Input occurs

draw: m1->d1 draw: m2->d2move: i1->m1 read: gen i3move: i2->m2

Bad
Total lag: 2.5 cycles

Input processed Result visible on screen



observation lag, since it’s the delay
between an event’s occurrence and its
display. These two fundamental types
of lag have different effects on game
play; later, we’ll see that we can some-
times trade one kind of lag for another.

Besides the client frame time, some
other factors can introduce lag, such as
the monitor’s refresh time and the time
that it takes the player’s brain to
process the new information. These are
gray and sticky areas however, and
we’ll avoid them. We’ll be content to
say that our computations yield a con-
servative estimate of lag, and that actu-
al experienced values will be higher. 

Multiplayer, Ideal Communications

N ow we’ll consider the case of a
client/server game, but one with

“ideal communications”: in other
words, a communications link of infi-

nite speed and perfect accuracy. In
this case, the only latencies intro-
duced will be of the cycle-induced
type that we’ve seen for the single-
player game; however, the problem is
now compounded because of the two
communicating entities.

When a player causes input events,
the client must communicate to the
server in order for that player’s input to
affect the world. The server must com-
municate the resulting changes in
world state (due to that player’s actions,
as well as those of other players) to
other clients for display (Figure 1).

In the simplest version of this
scheme, the client would listen to its
own effects on the world in the same
way it would listen to other players’
effects on the world: by hearing the
results from the server. This requires
the client to wait for a full round-trip
before seeing the results of its actions.

To reduce perceived latency of the
player’s own actions, we can have the
client observe its own state requests
and predict their results on the world
without waiting for the server to
process them (Figure 2). Thus, if we
wish, we can make the client respond
to its own events with the same latency
characteristics as in the single-player
game. However, we should be cautious
about this because, as we will see, all
other events in the game are subject to
higher latencies.

Given this client/server game struc-
ture, we can calculate the amount of
latency induced in the system by first
looking at both the client and the serv-
er as isolated components, figuring out
how much latency there is in each
component, and then adding the two
results together. Let’s assume we have a
client running with a main loop that is
similar to that of the single-player
example. This client is subject to the
same input delay as the single-player
game: half a client cycle (we’ll call the
client cycle c, so the influence lag is
0.5c.) After this half a cycle, the client
is able to read the keystroke event and
send it as a message over the network.
As for incoming messages, these are
subject to the same delays as input
devices: they will arrive in the middle
of a draw cycle. At the end of the draw
cycle, the messages will be processed,
which takes 0.5c. Then they must be
drawn, which takes 1.0c. The player
can see the results of the message after
a total of 1.5c of observation lag.

Now we look at the server end: the
server must receive messages from the
client, which will typically arrive some-

G A M E  D E V E L O P E R J U L Y  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

34

L A T E N C Y  I S S U E S

07Blow2.gd

Server

Observation

Observation

Observation

Influence

client C

client B

client A

F I G U R E  1 .  A client sends requested

actions to the server; the server com-

putes the results of those actions and

sends out the results for all clients to

observe.

07Blow3.gd

Server

Observation

Observation

Observation

Influence

client C

client B

client A

F I G U R E  2 .  Like Figure 1, but the

client predicts the results of its own

influence without hearing from the

server (dotted arrow at client A).

07Blow4.gd

1.0s observation
lag (computation)

0.5s influence lag

0.5c influence lag

1.0c observation lag
0.5c observation lag

KeyboardScreen

Client CPU

Server
CPU

F I G U R E  3 .  The stages of lag involved in cycle-inhibited client/server communication. Total lag is 2.0c + 1.5s.



where in the middle of the server cycle
(which we will call s). After 0.5s, the
events can be processed, having an
effect on the world state; therefore the
0.5s is influence lag. It takes 1.0s to
compute the results of the inputs on
world state, after which time the
results are sent to all clients. This 1.0s
is probably observation lag (based on
how the system is constructed).

Let’s sum up this section and put the
events in the proper sequence. On the
client, we first have 0.5c of influence
lag, then 0.5s for the message to get
into the server. Then we have 1.0s of
observation lag, then the response is
sent to the client, which adds an addi-
tional 1.5c of observation lag. The total
is 0.5c + 0.5s of influence lag and 1.0s +
1.5c of observation lag, for a total of
2.0c + 1.5s of general lag. The standard
deviation is 0.29c + 0.14s (Figure 3).

Let’s express this in real-world terms.
Assuming both the client and the serv-
er are running at 20 FPS, that’s 2.0*50 +

1.5*50 = 175ms of lag, deviating by
22ms, easily exceeding the 150ms ping
time we mentioned earlier. Just for
kicks, let’s run these calculations for a
low-end machine running at 12 FPS
(where the server is still running at 20
FPS): 2.0(83) + 1.5(50) = 241ms, deviat-
ing by 31ms. Are we having fun yet?
Next we’ll attach a modem and see
what happens.

Enter the Modem

O ur modem will be an ideal
modem that can transmit bits at a

fixed rate, and aside from that is per-
fect in every way (no line noise, no
overhead in setting up data for trans-
mission, and so on). Our ideal modem
will run at 28.8Kbps. (Yes, modems of
higher speeds such as 33.6Kbps or an
ostensible 56Kbps are common, but
higher speeds are more susceptible to
line noise, causing some serious prob-

lems for real-time games. Rounding
down to 28.8Kbps will also help to
compensate for other interference
effects that this article is not taking
into account.)

So if we’re transmitting data serially
at 28.8Kbps, each bit takes 1/28,800
sec, or 3.47*10-2ms to transmit. We’ll
call this unit of time b. Sending 32 bits
over the modem will take 32*b sec-
onds, or 1.11ms.

A modem is an asynchronous com-
munications device, which means that
some signaling overhead is required to
transmit messages. Typically, the
modem must frame every 8 data bits
transmitted with a start bit and a stop
bit, so that it ends up transmitting 10
bits. So we need to multiply the num-
ber of bits we’re sending from the
application by 10/8 to get the number
the modem is transmitting. 

We’ll want to measure our data in
bytes, and a byte is 8 bits. So we’ll
multiply that 10/8 by 8 to convert
from bits to bytes. So every byte we
send takes 8*(10/8)*b seconds = 10b
seconds ≈ 0.35ms.

If we send a 64-byte message over
our ideal modem, it will take 64* 10b =
22.21ms to get across. Assuming the
message is not useful until the whole
thing is received, this gives us about
22ms of extra lag to add to our previ-
ous computations.

Because it takes time to transmit bits,
if we try to send messages too quickly,
they’ll pool up in their rush to get out.
If our application sends two messages
at the same time, the second message
must wait for the first message to com-
plete before it can begin its journey.
Therefore the second message suffers
further delay; the first went through in
20ms, but the second takes 40ms. Of
course this phenomenon worsens with
the number of simultaneous messages.
We’ll call this situation “message stall.”

Message stall causes latency to
change on a per-message basis; there-
fore it induces variance, even if our
communication line is variance-free.
Figure 4 illustrates the point. 

In A, we send two messages. The first
gets across the line after 20ms; the sec-
ond gets across after 40ms. The aver-
age latency of our state messages is (20
+ 40)/2 = 30ms, deviating by 10ms. In
B, we send four messages. The average
is (20 + 40 + 60 + 80)/4 = 50ms, deviat-
ing by 22ms.

G A M E  D E V E L O P E R J U L Y  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

36

L A T E N C Y  I S S U E S

07Blow6.gd

t = 0 t = 20 t = 40 t = 60

A.

B.

F I G U R E  4 .  When we attempt to transmit messages in rapid succession, the mes-

sages will queue up. This adds latency and induces variance. In A, we have tried

to send two messages at once; it takes 40ms for both to complete. In B, we send

four; it takes 80ms.

07Blow6.gd

t = 0 t = 20 t = 40 t = 60

A.

B.

F I G U R E  5 .  Three messages are sent simultaneously. In A, we send them as sepa-

rate messages. The average latency is 40ms, deviating by 16ms. In B, we package

the messages into a larger unit; the latency is now higher, at 60ms, but the devia-

tion is 0.



This is an important issue. Many opti-
mized networking schemes would like
to send a variable number of messages
each frame, based on what is currently
considered important to the game state.
Nonetheless, varying the number of
messages per frame isn’t a good idea
unless care is taken to compensate for
the consequent extra variance.

When sending several messages to a
client at once, we might choose to pack
them all together into one message and
send them as a unit. In the perfect case
that we’re studying here, this would be
worse than sending them separately.
Because the submessages are processed
as a unit, none of them can be handled
until the entire compound message has
been received. This increases the aver-
age latency. The variance problem may
still exist as well, because compound
messages of different lengths will be
lagged by different amounts (Figure 5).

Modem Guts

O f course, nobody who plays our
game is going to have an angelic

modem. Real modems and real com-
munications lines introduce real prob-
lems. Telephone switches (the routers
of telecommunications land), and all
the other equipment involved in trans-
porting and reproducing a telephone
signal, will induce latency. Line noise
can corrupt messages that we transmit.
Sometimes, even on good phone lines,
noise can come in bursts, causing
blackouts of several hundred millisec-
onds, during which no messages suc-
cessfully get through. Wacky changes
in telephone line voltage can cause
modem byte framing errors, requiring
bytes to be retransmitted.

Error correction and compression
schemes (such as those included in
CCITT v.42bis) can be employed to
combat line noise and increase band-
width. Many of them introduce syn-
chronous communication modes to
eliminate the overhead of start and
stop bits. However, such schemes
introduce problems for real-time
games. They usually packetize data into
multibyte chunks, which increases
latency because a message that ends in
the middle of a modem-generated
packet cannot be processed until the
entire packet is received. Compressing
and uncompressing data requires extra

computation, and much of the other
maneuvering that the modem must
perform also increases latency. An error
correction scheme can resend data in
the case of line noise, but this is usual-
ly not what we want because we aren’t
transmitting stream data (see the dis-
cussion of TCP in the next section);
this retransmission will delay the trans-
mission of further data. We have found
that for the sort of game we are dis-
cussing, in most cases it’s best to turn
off error correction and compression.

In this section, we haven’t done much
to quantify the influence of these effects
on latency; this would be difficult
because the effects vary so much from
situation to situation. For now, we’ll
make ourselves content simply being
aware of these issues and move on.

Protocol Overhead

N ow the excitement really begins!
Any message that wants to travel

on the Internet has to ride inside an
Internet Protocol (IP) packet. In this
section, we’ll talk about the overhead
involved in using IP over modem lines,
as well as the higher-level protocols in
the IP family, TCP and UDP.

The IP packet header contains infor-
mation on the packet size, the source
and destination addresses, and other
transportation and maintenance infor-
mation. The IP header is 20 bytes long
— that’s 20 extra bytes concatenated to
any message we send.

The IP header alone doesn’t provide
enough information, however; it is
only sufficient to describe the source
and destination hosts of a packet, but
not what to do with the packet when it

reaches the destination. For that you
need to use a higher-level protocol
such as TCP or UDP, and if you’re
smart, you won’t use TCP. (Many rea-
sons have been given for why TCP is
not appropriate for real-time applica-
tions. Often, people cite issues such as
the exponential backoff that can cause
excessive retransmission delay. But
there is a much more fundamental rea-
son that is easy to understand. TCP is
an order-preserving, guaranteed-deliv-
ery protocol, meaning all data is deliv-
ered to your application in sequence. If
one small part of the stream gets lost
on the network — say, one byte — all
further incoming data is withheld from
your application until the data loss is
discovered and the missing data is suc-
cessfully retransmitted. This is silly and
harmful if the data is logically indepen-
dent from other information in the
stream. To improve TCP’s real-time
properties, its designers built in facili-
ties such as urgent mode, but that
doesn’t really aid our case.)

So for Internet communication,
unless you want to write your own IP-
family protocol (I definitely don’t — I
have a game to write), UDP is the only
reasonable choice. For the record,
though, TCP packets induce 20 bytes of
overhead in addition to the IP header.

The UDP header is smaller, only 8
additional bytes on top of the IP head-
er, for a grand total of 28 bytes. So if
you transmit 16-byte messages in your
application (small messages to keep
latency down), you’re really transmit-
ting 44-byte UDP packets, or 64 per-
cent overhead. 

Under oppressive conditions such as
this, one might decide to pack multiple
state updates into one UDP packet to

h t t p : / / w w w . g d m a g . c o m J U L Y  1 9 9 8 G A M E  D E V E L O P E R

37

07Blow7.gd

t = 0 t = 20 t = 40

A.

B.

header M1

header M1 M2

M2header

F I G U R E  6 .  Instead of transmitting two messages as two separate UDP packets,

as in A, we can bundle them in one packet, as in B. In B, the message M1 arrives at

its destination later than it did in A, but message M2 arrives earlier.



mitigate the overhead of the UDP/IP
header (Figure 6). But this causes differ-
ent problems. As we’ve already deter-
mined, latency and variance will go up
because none of the state messages can
be processed until the entire packed-up
message has been received (because the
operating system won’t give the mes-
sage to our application). Of course, if
our state messages are very small and
we send them in separate packets, we
end up sending mostly IP headers, and
that does even worse things to our
latency. Clearly, a balance must be
struck between message size and the
number of headers we wish to tolerate.

So now, when computing the laten-
cy of our messages, we’ll add those 28
bytes of UDP and IP overhead. This
overhead is starting to get nontrivial,
so we’ll phrase it as the lag function
ModemLag(n), where n is a quantity of
bytes. Previously, we had
ModemLag(n) = n*10b; now we have
ModemLag(n) = (n + 28)*10b. That’s an
annoying amount of overhead, but
unfortunately, there’s more.

IP is a device-independent protocol
— it tells Internet routers what to do
with a packet once the packet reaches
them. But to transport a packet from
one router to another, you also need a
protocol that lets IP run on the physical
communications layer. For modems,
this is usually PPP (Point-to-Point
Protocol), which maintains the Internet

connection over a modem. As you’d
guess, PPP message frames induce addi-
tional overhead; the overhead would be
8 bytes, except that it’s usually negoti-
ated down to 5 once a consistent con-
nection is established (PPP is all about
the machines on each end of the line
negotiating connection parameters).

For starters, we’ll need to add 5 more
bytes to our previous 28, for a total of
33 (Figure 7). Besides that, PPP uses
ASCII characters 0x7d and 0x7e as sig-
nals of its control protocol, so they
must be escaped whenever they appear
in application data; this is done by pre-
fixing them with 0x7d, effectively dou-
bling those bytes. Furthermore, to pre-
vent problems with communications
middlemen that might misinterpret
ASCII codes 0x00-0x1f as nondata (for
example, as flow-control signals), PPP
can be configured to escape any or all
of those 32 characters, the default
being to escape them all. This configu-
ration is decided during another one of
PPP’s frisky connect-time maneuvers,
the ACCM negotiation.

The upshot is that if your message
content is evenly distributed across
ASCII (for example, random binary
data), you will suffer anywhere from
(2/256)*n to (34/256)*n in extra bytes
transmitted, depending on the ACCM.
(If your data contains a lot of 0s, and
that byte is being escaped, performance
could be a lot worse.)

Carrying on in our tradition of opti-
mism, we will assume that the PPP
ACCM negotiation has turned off
escaping of all bytes but 0x7d and
0x7e. Then we have 
ModemLag(n) = (n + 33)*258/256*10b.
(This isn’t quite right because parts of
the PPP header won’t ever be quoted,
but it’s close enough for hand
grenades.) That factor of 258/256 is
pretty negligible, but we leave it in to
remind ourselves that it could end up
being much higher, especially if we’re
not in control of the circumstances sur-
rounding the dial-up connection. If we
were pessimistic about the ACCM nego-
tiation results, our equation would be 
ModemLag(n) = (n + 33)*290/256*10b.

In other words, the PPP escaping will
cause somewhere between 0.8 percent
and 13.3 percent overhead, depending
on configuration.

Let’s try to get our bearings again by
plugging some real numbers into these
equations. For instance, how long does
it take to send a 64-byte message with
all these overheads?
ModemLag(64) = (97) * 258/256 *10b

= 33.9ms
And what is the fastest that we could

possibly get a message from one end to
another (a 0-byte message)?
ModemLag(0) = (33) * 258/256 * 10b

= 11.5ms
For what it’s worth, PPP provides a

header compression scheme that
compresses the IP and TCP headers of
TCP stream packets to become very
small, eliminating much overhead.
But that only works for TCP. There’s
no good reason why it doesn’t work
for UDP, except that nobody ever
cared enough to do it. So we’re stuck
with this for now.

Second-Order Effects

A side from the major lag-induc-
ing effects that we’ve examined,

there are billions and billions of
weaker effects inhabiting the galaxy.

G A M E  D E V E L O P E R J U L Y  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

38

L A T E N C Y  I S S U E S

07Blow8.gd

USER DATAUDP header
8 bytes

IP header
20 bytes

PPP
footer
3 bytes

PPP
header
2 bytes

F I G U R E  7.  How many licks does it take to get to the center of a datagram?

I t’s common to use the ping utility

to measure round-trip time

between two sites on the Internet.

This utility sends an “echo

request” ICMP packet; ICMP is the

Internet Control Message Protocol, and

its header size (in the case of an echo

request or reply) is 8 bytes. Ping is usual-

ly set to transmit 56 bytes of random data

by default; so, with all the headers includ-

ed (5 bytes PPP, 20 bytes IP, 8 bytes

ICMP), we are transmitting 89 bytes per

ping. PingLag(89) = 89*258/256*10b =

31.1ms. Because the ping is making a

round trip, we multiply this number by

two, getting 62.2ms, which is the time a

ping would take under ideal conditions

over a 28.8Kbps modem. The veteran

Internet user knows that measured num-

bers are usually much higher.

Ping



Sending and receiving data over net-
works involves the operating system
handling the data, which may require
context switches. We may be con-
fronted with bus contention or net-
work-device-instigated delays. If
we’ve got an external modem, our ser-
ial port might have some issues.
Maybe routers on the other end of the
line feel a little bit congested, so they
decide to hold onto our packets for an
extra 25ms, on top of the time it takes
them to process packets normally.
Perhaps some rare interdimensional
phenomenon slows down the speed
of light in a zone near the middle of
the telephone line (maybe they’re
filming a Star Trek episode there or
something). 

All these things and many more will
increase our suffering. Analyzing them
closely is beyond the scope of this arti-
cle because they are so diverse and
unpredictable. However, we may take
comfort in the knowledge that, gener-
ally, their effects will be less drastic
than the phenomena that we’ve
already looked at.

Solutions?

W e’ve looked at delays caused by
the atomic nature of operations

such as rendering, and we’ve looked at
delays caused by serial communication
over a modem. We’ve seen that both
these types of delays are influenced by
the behavior of the game software.

The amount of lag caused by atomic
software operations is high. However,
it’s also dependent on frame time, so if
we can get our clients and servers run-
ning at a very high frame rate, the
problem will go away. However, there
are economic pressures that drive
frame rate down (the need to have
graphics that are more impressive than
those of other games and the need to
pack as many people as possible onto
each server machine). So it will be con-
structive to think of other ways of
eliminating this software-induced
latency. Here, we will present some
ideas and shoot most of them down.

Q:Can we have the client read play-
er inputs more than once per

game cycle? That way, we could detect
input earlier and reduce latency, right?

A:Yes, but no, but yes. Looking at
the simple case of a single-player

game, if we poll for events more often
and update our motion simulator after
each poll, the client can respond to
inputs sooner, thus reducing influence
lag. However, observation lag increases
to pick up the slack, and the total
amount of lag remains the same. There
is a trick that can be exploited, however.
In a client/server architecture, the server
acts as a parallel processor that the
client can farm events off onto while it’s
waiting on its own observation lag. In
an ideal world, an input event such as a
keystroke would cause an interrupt,
immediately stopping our client long
enough for it to put together a packet,
which is sent to the server without
delay. Then the client resumes its nor-
mal processing. This way, we’d elimi-
nate an entire 0.5c of influence lag. On
many platforms, we can’t use an inter-
rupt, so we’d settle for polling several
times per update. Last we checked,
though, reading the joystick on a PC
was so painfully slow that it was a bad
idea to do it even once per cycle.

Q:What if we had a multiprocessing
machine for the client? Could we

use two processors to render scenes in
parallel, issuing them at alternating
intervals and reducing observation lag?

A:Yes, we can reduce lag this way,
but not as much as we might

hope. If we set up two processors ren-
dering frames that are phase shifted
from each other by 50 percent of the
frame time (Figure 8), we can reduce
the amount of time for which an event
has to stall before it can enter a render-
ing cycle. In fact, if the time that it
takes for one processor to render one
frame is c (and therefore, the client’s
display frame time is 0.5c), then we’ve
reduced the expected stall time to han-
dle an event from our original 0.5c
down to 0.25c. However, once the
event enters the rendering process, it
still takes 1.0c to be drawn. Since a
new frame is being issued every 0.5c, it
now takes two frames for each
processed event to become visible, so
observation lag remains the same.
That seems weird, but that’s how this
pipelined stuff goes.

Using this technique, we can elimi-
nate 0.25c of the observation lag
induced on incoming messages (I’m
assuming that we already used the pre-
vious trick to reduce the influence lag
on keyboard messages, so this tech-
nique has no effect on that). However,
alternating the rendering job between

h t t p : / / w w w . g d m a g . c o m J U L Y  1 9 9 8 G A M E  D E V E L O P E R

39

T hroughout this article, we

have assumed a networking

model in which clients and

servers operate independent-

ly in an unsynchronized fashion, without

any network entity waiting on another to

proceed. As we have seen, this assump-

tion leads to added latency, because

messages are received by the clients and

servers at inopportune times.

But there is a more primitive form of

networking known as lockstep. This is

the type of networking used by DOOM and

other early commercial Internet games.

These games typically use no server;

instead each client communicates to all

the others peer-to-peer, and each client

simulates the state of the entire world

privately.

Once per cycle, each client sends a

message to all other clients describing

events that have occurred that cycle.

Each client will pause until it has

received up-to-date messages from all

other clients, at which point it will update

its world state, draw the next frame, and

repeat the cycle.

Under this scheme, each client’s frame

rate is locked to that of the slowest

machine in the game (plus network lag).

But the clients run in a synchronized man-

ner, which means that much of the cycle-

induced lag that we’ve discussed through-

out the article just magically disappears.

In reality, this isn’t appropriate for

most games because first, the player

with the slowest computer makes every-

one else in the game suffer, and second,

real-world communications problems

make everyone in the game use words

such as “suck.” But it’s amusing to think

about.

Lockstep: 
The Ultimate Networking Scheme?



multiple processors may be a tricky
task because many graphics libraries
and device drivers are not threadsafe.
Even if they were, we might end up try-
ing to render two different scenes on
the same accelerator hardware at the
same time, which isn’t going to be a
possibility anytime soon. So if our ren-
dering is fill-limited, this whole idea is
probably a wash.

If we had a rendering cycle that
required some intense scene setup
computation before any polygons were
ever output, we could have one proces-
sor doing the scene setup stuff, then
pass the result to the other processor,
which would do the polygon outputs.
Thus, each processor would always be
doing the same job.

Q:Can we reduce lag on the server
end by sending messages to

clients about events as soon as they
happen? For example, if a rock bounces
off a wall in the middle of our simula-
tion, might we interrupt the simula-
tion to tell clients about the event,
then continue? (This is analogous to
sending out keystrokes immediately
from the client.)

A:This is unlikely because of the
limited bandwidth available for

communicating to the client. With
worlds of any complexity, there will be
too much going on for us to inform
each client of all events. A bandwidth-
optimizing network scheme will look
at events that have just occurred and
decide which are most important for
each client to know about. In order to
compare events to see which are more
important, we need a suitable selection
of events to choose from, which means
we need to wait for those events to
occur. This implies the sort of per-cycle

batch processing that we’ve already
been assuming.

Q:Can’t we reduce all that protocol
overhead that slimes up our

messages?

A:As individual game program-
mers, there’s not much we can

do. One big step would be an extension
to PPP that allows compression of
UDP/IP headers. There is no reason
why PPP can’t just see that we’re
throwing a bunch of UDP packets at
the same destination, then negotiate
away most of the headers as constant.
It looks like we could cut the headers
from 28 bytes to 5 bytes, if we’re will-
ing to play some checksum and length
counter tricks. So if you’re in the posi-
tion to harangue someone working on
PPP standards, bug them about this.

Recommendations

N ow let’s recap the basic ideas that
we’ve looked at in the form of

recommendations for future work:

1.WE SHOULD DESIGN GAMES WITH FRAME

RATES AS HIGH AS POSSIBLE. Even bet-
ter, we should discover brilliant new
computing paradigms that allow us to
write software that isn’t cycle-based.
Polling is bad; event-drivenness is
good!

2.WE SHOULD TAKE PAINS TO HANDLE

EVENTS AS SOON AS THEY OCCUR,
RATHER THAN WAITING FOR CONVENIENT PRO-
CESSING TIMES. If we’re locked into a sys-
tem of cycles and polling, then we
should poll many times per cycle for
important inputs, handling them as
soon as we see them, if possible.

3.WE SHOULD MAKE OUR NETWORK MES-
SAGES SMALL, BUT NOT TOO SMALL.

4.WE SHOULD ATTEMPT TO TRANSMIT

MESSAGES EVENLY OVER TIME. As a
random example, it may be better to
send two updates to a client every serv-
er cycle, instead of four every two serv-
er cycles. Even though the former takes
more bandwidth, latency and variance
will probably be lower.

5.LET’S EXERCISE CARE WHEN DESIGNING

THE FORM OF MESSAGES THAT OUR GAME

WILL SEND MOST OFTEN, THUS ENSURING THAT

THEY WON’T BE TROUBLESOME TO LOWER-LEVEL

PROTOCOLS. Let’s not design messages
that contain bytes such as 0x7d all over
the place, causing PPP to have a fit.  ■

G A M E  D E V E L O P E R J U L Y  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

40

L A T E N C Y  I S S U E S

07Blow9.gd

t = 0 t = 20 t = 40 t = 60 t = 80 t = 100 t = 120 t = 140

Processor 1

Processor 2

frame 3 frame 5

frame 2 frame 4 frame 6

frame 1

F I G U R E  8 .  A two-processor machine runs the client program, with the job of ren-

dering split between the two processors. This allows us to handle incoming mes-

sages a little bit sooner.

For more Internet protocol informa-

tion than you can shake a stick at, see

TCP/IP Illustrated, Volume 1 by W.

Richard Stevens (Addison-Wesley,

1994).

For a plate full of warm statistics

goodness (and some clues about where

that damn

comes from) see

Applied Statistics for Engineers and

Physical Scientists, Robert V. Hogg and

Johannes Ledolter (Macmillan, 1992).

For a simple explanation of modem

start and stop bits, partake thee of Dr.

Joseph Williams’ tasty slides at

http://lamar.colostate.edu/~drj/Async

hronous_Communication.

Thorough documents describing

telecommunications standards can be

obtained, for proper amounts of filthy

lucre, at www.eia.org and www.itu.ch.

3
6

FF OO RR   FF UU RR TT HH EE RR   II NN FF OO



42

forcing you to accept a proprietary
interface standard or a particular lan-
guage or operating system. This
approach is the use of design patterns.

When approaching a problem, an
experienced game developer often tries
to identify past design solutions that
are well-suited to solving it. This limits
developers, though. It forces them
either to choose solutions that worked
well in past projects or to start from
scratch and perhaps re-invent the
wheel. Now imagine that experienced
programmers could describe the salient
features of particular solutions that
they had seen or used in a variety of
problem domains, and that they could
thereby make these solutions available
to each other in a standard format. By
increasing the repertoire of well
thought-out responses to software

design problems, this list would
improve a programmers’ chances of
making optimal decisions. This is the
basic idea and vision behind the design
pattern approach.

A design pattern is a set of objects
with certain roles and responsibilities
in relation to each other. The pattern
is given a name, its common uses are
established, any prerequisites needed
to make it function properly are iden-
tified, and the consequences of using
the pattern (good and bad) are
explained. The pattern is then placed
in a kind of catalog so that other
developers can study the solution and
perhaps adopt it for use in future pro-
jects, much like a book of practical cir-
cuits used in electronics.

How patterns should be document-
ed is the subject of much discussion

by various developers. Some have sug-
gested creating specific language
idioms or ideographic systems to
describe them (such as a Booch dia-
gram), while others have suggested
simple, form-like templates. However
a design pattern is catalogued, once it
is made available, other developers
can examine it, perhaps identify other
uses for it, refine it by making some
adjustments, or simply use it for their
own ends. 

Benefits of Design Patterns

T oday’s projects operate on shorter
or more intense schedules than in

the past, and many times ship dates are
determined by seasonal buying pat-
terns in the target audience. These
pressures often result in games that are
shipped in an incomplete state, miss-
ing promised functionality, or both. So
how can it be at all desirable to saddle

G A M E  D E V E L O P E R J U L Y  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

P A T T E R N SD E S I G N

Design Patterns for Game
Development

b y  S t e v e  S a l k i n

ouldn’t it be nice if you

could build a game out of

familiar pieces, just as a fac-

tory designer might ask for a

conveyor belt or a loading dock?

One approach to software engineer-

ing allows you that familiarity, withoutWW
Steve Salkin is an independent programmer and consultant living in South Carolina.
You can reach him at salkin@mindspring.com.



oneself with another layer of software
design methodology?

One point in favor of design pat-
terns is that any given pattern has
already been evaluated by many other
developers, and these developers
found it to be a clean, elegant, and
extensible solution to some set of
problems. When someone
tries to add some function-
ality in an area they don’t
really fully understand,
they often end up making
serious design errors. If
your team is pressed for
time, taking advantage of
other people’s careful
thoughts on a software
design can save you from a
bad case of “burned fin-
gers.” This is especially
true if you are trying to
build in functionality that
your team is not very
familiar with, such as net-
working or concurrent
processing. Using a design
pattern specific to these
areas can help you achieve
a high-level understanding
of their impact on the rest
of your design, even before
your team has rooted out
the relevant details.
Remember the early ver-
sion of DOOM that flooded
LANs with packets? How
many game companies
have been burned because
they didn’t know enough
about networking when
they tried to build it in?
Using a design pattern that
addressed networking
problems might have alert-
ed id’s programmers to
this packet-flooding prob-
lem in advance.

Better still, the use of
design patterns helps when
new people come onto a
project. Because many design patterns
are now published in books and on the
Internet, their names are quickly
becoming commonplace in program-
ming journals. If your team has used
an Abstract Factory pattern (which I’ll
explain shortly) to handle widgets, and
you have called your class WWiiddggeettFFaaccttoorryy,
someone new to the project can quick-

ly understand what your class does and
what problem it solves. When you
need to add more programmers to your
team, you frequently don’t have much
time to get them up to speed. Using
design patterns increases the pool of
candidates who can hit the ground
running.

Won’t Design
Patterns Slow Things Down?

A nother priority area for game
developers is the execution speed

of the code. Anything that detracts
from the performance or the respon-
siveness of a game must be avoided at

all costs. It’s no secret that many game
developers have shunned object-orient-
ed approaches to programming and
design for precisely this reason.
However, in practice, this is a canard
that deserves to be debunked.

First of all, the greater part of any
design will concern program structures

that are not in the critical
execution path; that is, the
portion of the program in
which the majority of exe-
cution cycles will be spent.
Using object-oriented
design and programming
languages for these less-
critical portions will have
all the benefits normally
associated with such use,
without adversely affect-
ing the responsiveness of
the program. Once a good
design and implementa-
tion has been achieved,
and profiling the result has
identified the performance
bottlenecks, then it’s time
to consider optimizations
such as breaking encapsu-
lation to cache frequently
used data, implementing
various algorithms in
assembly language, and so
forth.

Also, even in these
good times of speculative
execution and pipelining,
the most efficient instruc-
tion sequence is still the
one that’s never execut-
ed. Good design, by
decomposing a problem
along natural structural
lines, reduces the com-
plexity of any problem.
By simplifying your task,
a design pattern frees you
to spend your optimiza-
tion time on the parts of
your program that are
really hard in principle.

Good patterns often begin with an
abstract that provides a short summary
or overview (see “How to Document
Patterns”). This gives readers a clear
picture of the pattern and quickly
informs them of its relevance to any
problems they may wish to solve
(sometimes, such a description is
called a thumbnail sketch of the pat-

h t t p : / / w w w . g d m a g . c o m J U L Y  1 9 9 8 G A M E  D E V E L O P E R

43



tern, or a pattern thumbnail). A pat-
tern should identify its target audience
and explain any assumptions it makes
in regards to the reader.

Your First Pattern: The Singleton

L et’s begin our examination of
design patterns with what must be

the simplest one, the Singleton pat-
tern. The Singleton pattern represents a
class for which there should be only
one instantiating object in the pro-
gram. For example, a SSoouunnddSSeerrvveerr object
that provides a high-level interface for
sound and music functionality to the
rest of the program would, in general,
have only one instantiation, or object.
Access to this one object must be care-
fully controlled to prevent the acciden-
tal instantiation of additional such
objects, but without hampering the
creation and use of the one required
instance.

Another important piece of func-
tionality that is provided in the
Singleton pattern is the availability of
global access to the object. Although
many heads have just begun to shake,
in this case, global availability is a good
thing. First of all, because this pattern
is being used in the context of object-
oriented design, all access to the object
can be tracked simply by building the
tracking into the various member func-
tions. Second, having one global state
object is not equivalent to the burden
imposed by hundreds of independent
global variables, alterations to which
are not easily tracked. Finally, by mak-
ing the interface globally available, a
great many design and debugging
problems involved with carrying point-
ers around in function calls are
removed at a single stroke. If these
arguments leave you unconvinced, I
suggest that in your next design, just
try to see how much simpler some
parts would become on account of this
third point alone.

The Singleton design pattern can be
implemented in C++ as indicated in
Listing 1, in which it is defined as a
set of macros. These macros replace
the normal mechanisms of instantia-
tion with a specific class accessor
method. When this method is first
invoked, it calls the private construc-
tor to create an instance of the class
and keeps this reference in a static

data member. From then on, when
the accessor is called, it simply returns
the original reference.

You’ll probably find this pattern use-

ful in cases in which an object must
have an exclusive control of some
hardware or memory, as in an
InputManager or SoundServer. Other

G A M E  D E V E L O P E R J U L Y  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

44

D E S I G N  P A T T E R N S

W hatever the particu-

lar format your team

or company decides

upon to catalog your

patterns, the following information

should be easily accessible to those who

will browse through your pattern catalog

in the future. Here is a template for docu-

menting your patterns:

• NAME. Use a meaningful name that

allows others to use a single word or

short phrase to refer to the pattern and

the knowledge and structure it describes. 

• PROBLEM. State the problem that the

pattern addresses with respect to its

goals, objectives, and the given context

in which it’s used.

• CONTEXT. This describes the conditions

under which the problem and its solution

often recur, and the solution that the pat-

tern is designed to solve.

• FORCES. What are the motivations for

employing the pattern, and what are the

constraints of the scenario in which it is

used? How do the motivations and con-

straints interact or conflict with one

another? What are the trade-offs when

the pattern is used?

• SOLUTION. What static relationships and

dynamic rules describe how to achieve

the goal? The description may encompass

pictures, diagrams, and text that show

the pattern's structure, its participants,

and their collaborations. The solution

should describe not only static structure,

but also dynamic behavior. The descrip-

tion of the pattern's solution may indicate

guidelines to keep in mind (as well as pit-

falls to avoid) when attempting to imple-

ment the solution. Sometimes, possible

variants or specializations of the solution

are also described. 

• EXAMPLES. You should outline one or

more sample applications of the pattern

that describe the state prior to using the

pattern, and how it solved the problem.

Examples help the reader understand the

pattern's use and applicability. An exam-

ple may be supplemented by a sample

implementation to show one way the

solution might be realized. Easy-to-com-

prehend examples from known systems

are usually preferred. 

• RESULTING CONTEXT. What is the state or

configuration of the system after the pat-

tern has been applied, including any

good or bad consequences or side

effects? Documenting the resulting con-

text produced by one pattern helps you

correlate it with the initial context of

other patterns (a single pattern is often

just one step towards accomplishing

some larger task or project). 

• RATIONALE. How does the pattern work,

why does it work, and why is it “good?”

The solution component of a pattern may

describe the outwardly visible structure

and behavior of the pattern, but the ratio-

nale is what provides insight into the

deep structures and key mechanisms that

are going on beneath the surface of the

system. 

• RELATED PATTERNS. Describe the static

and dynamic relationships between this

pattern and others within the same pat-

tern language or system. Related pat-

terns often share common forces. They

also frequently have an initial or result-

ing context that is compatible with the

resulting or initial context of another

pattern. Such patterns might be prede-

cessor patterns whose application leads

to this pattern; successor patterns

whose application follows from this pat-

tern; alternative patterns that describe a

different solution to the same problem,

but under different forces and con-

straints; and codependent patterns that

may (or must) be applied simultaneous-

ly with this pattern. 

• KNOWN USES. Describe known occur-

rences of the pattern and its application

within existing systems. This helps vali-

date a pattern by verifying that it is

indeed a proven solution to a recurring

problem. Known uses of the pattern can

often serve as instructional examples.

Source: Patterns and Software:

Essential Concepts and Terminology, by

Brad Appleton, which can be found at

www.enteract.com /~bradapp/docs/pat-

terns-intro.html

How to Document Patterns



possible uses would include a Game-
State object, a rendering engine, or a
network connection manager.

Generalize Your Software Design with
the Abstract Factory Pattern

T he Abstract Factory pattern
answers a question that is often

overlooked in the initial phases of
object-oriented design: how can this
program be arranged so as to mini-
mize the code interdependencies
among the various subsystems? This is
just the old problem of hard-coded
constants at a different level. There is
no reason, in principle, why a real-
time 3D shooter’s physics engine, for
example, should be intimately tied to

OpenGL. In practice, when the
physics engine explicitly makes use of
OpenGL data types (or worse), then
the program cannot easily be refitted
to use another rendering API. The
only portion of the game that needs
to be aware of the specifics of the
graphics API is the part that makes the
calls itself. Yet, other parts of the pro-
gram must be able to handle refer-
ences to the various objects involved
and must often be able to instruct the
subsystem to perform various tasks.

Some developers would argue that this
is a moot point, that we should encour-
age interdependence between subsys-
tems, because by designing for the spe-
cific interrelationships, higher levels of
performance can be achieved. Two
points easily counter this argument:

1. The time between a game’s design
phase and its market release makes it
hard to predict which technologies
your game has to support to meet
the checklist of the consumer and
the reviewer. 

2. If the software design is predicated on
a specific technology, then it is very
difficult to test its performance
against other options once a working
product has been developed. Without
empirical results to support one tech-
nology choice over another, all that’s
left is speculation. As a last resort,
once the testing is done, the earlier
design constraints can be violated to
increase performance in critical areas. 
As a solution, the Abstract Factory

provides an abstract class that describes
an interface for making objects or caus-
ing events, together with API or plat-
form-specific subclasses that actually
implement this interface. This is made
possible by providing abstract classes to
encapsulate each type of object that
must be returned, again together with
concrete subclasses that make use of the
actual API or platform-specific elements.
Let’s examine this in the two contexts.

The first step towards the Abstract
Factory is to remove subsystem interde-
pendence by designing an interface
between the calling code and the sub-
system. In the case of a rendering
engine, we might decide that
RReennddeerreerr::::iinniittiiaalliizzee, RReennddeerreerr::::ddrraawwTTrriiaannggllee,
and RReennddeerreerr::::ppaaggeeFFlliipp will suffice. We
create an abstract base class, RReennddeerreerr,
which contains some common data
members and functions and declares
our interface functions as ppuurree  vviirrttuuaall.
Now we can write subclasses
SSooffttwwaarreeRReennddeerreerr and OOppeennGGLLRReennddeerreerr, each
of which implements the interface we
have described. 

So far, this design breaks no new
ground. But then, our example calls for
a particular, or concrete, subclass to be
made available to the rest of the pro-
gram depending on certain conditions.
Somewhere, the decision about which
of these to instantiate must be made.
And further, it is often the case that a
whole collection of similar decisions
must be made based on the same crite-
ria, as in the case of the various GUI
components available on the major
windowing platforms. In this case, we
require a class whose duties are to pro-
vide to these components to the rest of
the program.

G A M E  D E V E L O P E R J U L Y  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

46

D E S I G N  P A T T E R N S

NNaammee::  ssiinngglleettoonn..hh

////  ssiinngglleettoonn..hh

////  CCooppyyrriigghhtt  ((cc))  11999988  bbyy  SStteevvee  SSaallkkiinn..  AAllll  RRiigghhttss  RReesseerrvveedd..  PPeerrmmiissssiioonn  ggrraanntteedd  ttoo  uussee  

////  tthhiiss  ccooddee  ffoorr  aannyy  ppuurrppoossee  aass  lloonngg  aass  tthhee  ccooppyyrriigghhtt  ddeeccllaarraattiioonn  iiss  rreettaaiinneedd..

##iiffnnddeeff  SSIINNGGLLEETTOONN__HH

##ddeeffiinnee  SSIINNGGLLEETTOONN__HH

////  TThhee  ssiinngglleettoonn  ddeeccllaarree  mmaaccrroo  iiss  ttoo  bbee  uusseedd  iinn  tthhee  ccllaassss  ddeeccllaarraattiioonn  ffiillee..

////  NNoottee  tthhaatt  iitt  pprroovviiddeess  iittss  oowwnn  aacccceessss  ssppeecciiffiieerrss..

##ddeeffiinnee  SSIINNGGLLEETTOONN__DDEECCLLAARREE((  ccllaassssnnaammee  ))  \\

ppuubblliicc::  \\

ssttaattiicc  ccllaassssnnaammee  **  IInnssttaannccee((vvooiidd));;  \\

pprrootteecctteedd::  \\

ccllaassssnnaammee(());;  \\

pprriivvaattee::  \\

ssttaattiicc  ccllaassssnnaammee  **  __iinnssttaannccee;;  

////  TThhee  ssiinngglleettoonn  iimmpplleemmeenntt  mmaaccrroo  iiss  ttoo  bbee  uusseedd  iinn  tthhee  ccllaassss

////  iimmpplleemmeennttaattiioonn  ffiillee..  NNoottee  tthhaatt  iitt  ddooeess  nnoott  pprroovviiddee  aann  iimmpplleemmeennttaattiioonn

////  ooff  tthhee  pprrootteecctteedd  ccoonnssttrruuccttoorr  aabboovvee..  YYoouu  mmaayy  hhaavvee  ssppeecciiffiicc  iinniittiiaalliizzaattiioonn

////  ccooddee  ttoo  ppllaaccee  tthheerree,,  ssoo  tthhee  ccaassee  ccaannnnoott  bbee  ggeenneerraalliizzeedd  iinnttoo  aa  mmaaccrroo

##ddeeffiinnee  SSIINNGGLLEETTOONN__IIMMPPLLEEMMEENNTT((  ccllaassssnnaammee  ))  \\

ccllaassssnnaammee  **  ccllaassssnnaammee::::__iinnssttaannccee  ==  00;;  \\

\\

ccllaassssnnaammee  **  ccllaassssnnaammee::::IInnssttaannccee((vvooiidd))  {{  \\

iiff  ((__iinnssttaannccee  ====  00))  {{  \\

__iinnssttaannccee  ==  nneeww  ccllaassssnnaammee;;  \\

}}  \\

rreettuurrnn  __iinnssttaannccee;;  \\

}}  

##eennddiiff  ////SSIINNGGLLEETTOONN__HH

L I S T I N G  1 .  A C++ implementation of the Singleton design pattern.



Let’s take an abstract class
WWiinnddoowwFFaaccttoorryy, whose methods will
include mmaakkeeWWiinnddooww, mmaakkeeSSttaattuussBBaarr,
mmaakkeeBBuussyyCCuurrssoorr, and so on. These will be
declared in terms of other abstract
classes such as WWiinnddooww, SSttaattuussBBaarr, and
CCuurrssoorr. For each of the windowing plat-
forms that we wish to support, we will
implement these abstract windowing
classes, as in WWiinn3322CCuurrssoorr and MMaaccCCuurrssoorr.
Then, to complete the picture, we will
create concrete subclasses of
WWiinnddoowwFFaaccttoorryy, such as WWiinn3322WWiinnddoowwFFaaccttoorryy or
MMaaccWWiinnddoowwFFaaccttoorryy (Figure 1). 

Early in the execution of the pro-
gram, or perhaps at compile time, we
make a decision about which of these
factories is to be instantiated as the
global instance of the WWiinnddoowwFFaaccttoorryy. It
would be an excellent idea to make this
a Singleton, both to keep it from being
created over and over again, as well as
to provide the global point of access
that I explained earlier. Any initializa-
tion required can be done during its
construction, or as a result of a specific
initialize call. From that point on,
although the rest of the code knows
only that it has retrieved a WWiinnddooww from
the WWiinnddoowwFFaaccttoorryy, in actual fact a
MMaaccWWiinnddooww has been retrieved from the
MMaaccWWiinnddoowwFFaaccttoorryy. The ability to add new
platforms from this point on is limited
only by the aptitude of the methods
that you’ve selected for the WWiinnddoowwFFaaccttoorryy
interface and your programmers’ abili-
ty to implement these in terms of the
new native windowing system. 

Bringing Design Patterns into Your
Group

A ssuming that you want to use
design patterns in your company,

team, or project, you may wish to note
a few caveats and tips. Most important-
ly, the strength of this methodology is
as a form of communication. A pattern
encodes a set of relationships and roles,
but only to people who are familiar
with it. Although code that you per-
sonally design may benefit greatly from
your research in this area, the benefit
to your projects will be much greater if
all of your programmers are involved.
To make this happen, it’s best to take
your case to your technical lead pro-
grammer or project manager and have
them endorse the effort to incorporate
this methodology by allocating time,

encouraging study, and purchasing
research and study materials.

Not to be overlooked either is the
degree of assistance that management
can give to the assimilation of design
patterns by simply making it an organi-
zational priority to capture the patterns
already hidden in the company. Once
people have become somewhat familiar
with the concepts and some common
patterns, it’s worth looking at the
expertise that you and your fellow pro-
grammers have achieved over the
course of your careers. Game develop-
ment has its own arcana, as do many of
its subspecialties. The knowledge that
your company’s experienced program-
mers have acquired can be captured in
patterns that they themselves author
and share for review and elaboration.
This has the effect of creating a library
of domain-specific expertise from
which your current and new employ-
ees can learn, and to which they will
hopefully add. Certainly, it is unwise to
overlook this collected insight.

Once your team has made some
headway in this process, you’ll proba-
bly find that the payoffs are worth the
efforts you have made. To continue the
development of game-oriented pat-
terns beyond the source code and per-
sonnel at your company, consider par-
ticipating in pattern discussions on the
Internet and downloading and examin-
ing some of the wonderful source code
that various authors have made avail-
able for the public. Of course, much of
this is legally encumbered for commer-
cial use, but you’re still free to look
through the code and see what
approaches and structures a particular
programmer has devised to handle var-
ious challenges. When you consider
that the source code to some very pop-
ular games can be had in this manner,
it seems wasteful to ignore the lessons
embodied therein.

A number of other patterns have
application to the field of game design.

We've also recently seen the introduc-
tion of “antipatterns,” which represent
common solutions that are deeply
flawed in some way. They therefore
provide a detailed analysis of what not
to do, and why.

Over the course of the last fifteen
years, I’ve read many laments about
how immature our field of computer
engineering is in comparison to its
older siblings. Design patterns seem to
offer the most promise of remedying
that discrepancy then anything hereto-
fore has done.  ■

h t t p : / / w w w . g d m a g . c o m J U L Y  1 9 9 8 G A M E  D E V E L O P E R

47

Gamma, Erich, et al. Design Patterns:
Elements of Reusable Object-Oriented
Software. Reading, Mass.: Addison-Wesley,
1995. This is the “bible” of design pat-

terns methodology and should be read

by anyone interested in using design

patterns at any level.

Rumbaugh, James, et al. Object-Oriented
Modeling and Design. Upper Saddle RIver,
N.J.: Prentice Hall, 1991. By presenting

the Object Modeling Technique (OMT),

this book gives another approach to

describing the relationships between

objects and how these sets of relation-

ships are in fact designs for specific

parts of a program. 

If these books interest you, the Pattern

Languages of Program Design series

from Addison-Wesley is also terrific for

further studies.

http://www.objecthouse.nl/cetus/ oo_pat-
terns.html Cetus Links is a collection of

links to a staggering variety of pattern

and object-oriented design-related

sites. This site is more than worth the

stop for anyone trying to learn more on

the subject.

http://hillside.net/patterns/patterns.html
The Patterns Home Page is another fine

collection of resources and links.

FF OO RR   FF UU RR TT HH EE RR   II NN FF OO

WindowFactory

Win32WindowFactory MacWindowFactory

Cursor

Win32Cursor MacCursor

F I G U R E  1 .  Concrete subclasses of abstract windowing classes.



dealing with many compromises, not the least of which
derived directly from our extremely tight schedule. We
decide early on that the characters in our game would con-
sist of 3D animated hierarchies. We also stipulated that the
characters would consist of one continuous mesh of poly-
gons. This would give a better overall look to the characters
because the movement of the animated mesh would more
closely resemble the way a uniform stretches and moves
over a player’s body. We didn’t have time, however, to cre-
ate the tools necessary to export animated meshes from
our 3D modeling program (3D Studio MAX with Character
Studio). In this article, I will describe how we used tools
previously created for other games to generate the data
needed for what I call the “Poor Man’s Skinning
Technique.”

Because none of the programmers on the project had
experience writing plug-ins for 3D Studio MAX, we decided
that we couldn’t afford the time it would take to come up to
speed on the MAX plug-in API. We did, however, have at
our disposal plug-ins that had been written for previous pro-
jects, but these were only capable of exporting geometry
(vertices and polygons) and animated hierarchies. We were
able to combine these tools to generate animated meshes.
Though the quality of the final skinned animations is not as
good as what is possible with the full power of 3D Studio
MAX and Character Studio, we did obtain very satisfactory
results. In addition, the real-time implementation of Poor
Man’s skinning is more computationally efficient than the
more technically correct Character Studio method.

I’ll assume that you’ve been reading Jeff Lander’s excellent
columns on character animation, so I won’t recount most of
the information that he’s already provided. You should be
familiar with general computer graphics concepts such as
matrix multiplication, vertex transformation, dot products,
and so on, as well as with hierarchical animation techniques
using quaternions and matrices.

G A M E  D E V E L O P E R J U L Y  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

48

T E C H N I Q U E SS K I N N I N G

Poor Man’s
Skinning

omputer graphics, as all of computer sci-

ence, is a field of compromise —

time vs. space, time vs. accuracy, time vs.

visual complexity, and so on. When we

designed our current PC sports title,

NFL GAMEDAY 99, we found ourselves CC
b y  K e v i n  B a c a

Kevin Baca loves playing games almost as much as he loves
making them. But what he really loves most is seeing his
name in print. Kevin can be reached by e-mail at kbaca@sony-
interactive.com. If you have questions, or even better, if you
have answers, drop him a line.

F I G U R E  1 .  A GAMEDAY football player

mesh showing bounding volumes.



I’ll also assume that you have access to some basic export
utilities for your 3D modeling program of choice, or some file
format converters that convert between your favorite 3D
object file format and whatever formats you’re using for your
game. Specifically, you should have a tool that exports 3D
objects and a tool that exports motion hierarchies. If you don’t
have these tools, you should be able to download them from
one of the many game programming sites on the Internet.
Given that, let’s get right to the heart of the technique.

No Bones About It

I n Jeff’s article on skinning (“Skin Them Bones: Game
Programming for the Web Generation,” May 1998), he

describes a technique that uses a hierarchy of bones to
deform a polygon mesh. The motion of the bones in the
hierarchy influences each vertex of the mesh. The amount of
that influence is determined by a weighting factor between
the vertex and a bone. Poor Man’s skinning is similar to this
technique, except that each vertex is attached to exactly one
bone and it receives all of its influence from that bone.

In fact, our technique doesn’t really use bones at all.
Instead, for each limb on a character’s body, we define a
bounding volume that contains all the vertices in the mesh
that make up that limb. We end up with a hierarchy of
bounding volumes that we can then animate using motion
capture data. After computing the transformation for each
node in the hierarchy, we then apply that transformation to
the vertices that are contained in the corresponding bound-
ing volume for that node. Figure 1 shows the bounding vol-
umes placed around the mesh of a football player. The col-
ored objects represent the bounding volumes and the gray
polygons comprise the mesh that we wish to animate. As
you can see, each moving part of the mesh is contained
within a bounding volume that corresponds to a node in the
motion hierarchy.

Old Tricks

T he problem can now be simply stated: given our geome-
try and animation exporters, how do we specify bound-

ing volumes and how do we partition the vertices of the
mesh into the proper volumes?

Most 3D modeling programs, such as 3D Studio MAX and
LightWave 3D, allow you work on different objects within the
same window by placing the objects in separate layers. Each
layer can be locked in order to prevent modeling operations
from affecting the geometry in that layer. Using this feature,
we load our target mesh into one layer and then lock it. In the
next layer, we build a hierarchy of bounding volumes. This
hierarchy must contain the same number of nodes in the
same arrangement as our motion data. Because the volume
layer overlaps the mesh layer, we can visually match up each
volume with the vertices of the corresponding limb (Figure 1).
Recall, however, that the mesh and the volumes are 3D struc-
tures. We must make sure that the vertices are completely
contained within the volume in all three dimensions.

At this point, we dust off our geometry exporters and export

the two layers. In our case, we end up with one file containing
the geometry of the mesh and another file containing a hierar-
chy of 3D objects that represent the bounding volumes.

Group Dynamics

So we now have a mesh of polygons representing our
character and a hierarchy of bounding volumes. The vol-

umes are arranged in such a way that they partition the ver-
tices of the mesh into what amounts to the limbs of the char-
acter. Now we must programmatically determine which

h t t p : / / w w w . g d m a g . c o m J U L Y  1 9 9 8 G A M E  D E V E L O P E R

49

////——————————————————————————————————————————————————————————------

////TThhiiss  ffuunnccttiioonn  rreettuurrnnss  ttrruuee  iiff  vvttxx  lliieess  wwiitthh  tthhee

////bboouunnddiinngg  vvoolluummee  ssppeecciiffiieedd  bbyy  tthhee  aarrrraayy  ooff  ppllaanneess

////iinn  aaBBPP..

////——————————————————————————————————————————————————————————------

bbooooll  iissIInnssiiddee((  ccoonnsstt  VVeeccttoorr  vvttxx,,

ccoonnsstt  PPllaannee  aaBBPP[[]],,

ccoonnsstt  iinntt  nnBBPP  ))

{{

////——————————————————————————————————————————————————————------

////FFoorr  eeaacchh  ppllaannee  iinn  aaBBPP  tteesstt  vvttxx  ttoo  sseeee  iiff  iitt

////iiss  iinn  ffrroonntt  ooff  oorr  bbeehhiinndd  tthhee  ppllaannee..

////——————————————————————————————————————————————————————------

ffoorr((  iinntt  ii  ==  nnBBPP  --  11;;  ii  >>==  00;;  ii——  ))

{{

////————————————————————————————————————————————————--------

////CCoommppuuttee  ddiissttaannccee  ffrroomm  vvttxx  ttoo  tthhee  ppllaannee..

////IIff  iitt  iiss  nneeggaattiivvee  tthheenn  vvttxx  iiss  bbeehhiinndd  tthhee  ppllaannee..

////————————————————————————————————————————————————--------

////————————————————————————————————————————————————--------

////ccoommppuuttee  tthhee  ddoott  pprroodduucctt  ooff  vvttxx  wwiitthh  tthhee  nnoorrmmaall

////vveeccttoorr  ooff  tthhee  ppllaannee..

////————————————————————————————————————————————————--------

ffllooaatt  dd  ==  vvDDoott((  vvttxx,,  aaBBPP[[  ii  ]]..nnoorrmm  ));;

////——————————————————————————————————————————————————----

////SSuubbttrraacctt  tthhee  ddiissttaannccee  ooff  tthhee  ppllaannee  ffrroomm  tthhee  oorriiggiinn..

////——————————————————————————————————————————————————----

dd  --==  aaBBPP[[  ii  ]]..ddiisstt;;

////————————————————————————————————————————————————————

////TThhee  rreessuulltt  iiss  tthhee  ddiissttaannccee  ooff  tthhee  vveerrtteexx  ffrroomm  tthhee

////ppllaannee..  IIff  tthhee  ddiissttaannccee  iiss  ppoossiittiivvee  tthheenn  tthhee  vveerrtteexx

////iiss  iinn  ffrroonntt  ooff  tthhee  ppllaannee..  IIff  tthhee  ddiissttaannccee  iiss  zzeerroo

////oorr  nneeggaattiivvee  tthheenn  tthhee  vveerrtteexx  iiss  bbeehhiinndd  tthhee  ppllaannee..

////————————————————————————————————————————————————————

iiff((  dd  >>  00  ))

{{

rreettuurrnn  ffaallssee;;

}}

}}

rreettuurrnn  ttrruuee;;

}}

L I S T I N G  1 .  Determine if a vertex lies inside a volume.



vertices fall within which volumes and
then place the vertices in discrete
groups corresponding to those volumes.
This will then allow us to transform the
groups of vertices using a motion hierar-
chy, causing the mesh to deform.

Recall that the volumes themselves
are made of polygons. If we assume that
the polygons comprising a volume are
facing outward, then a vertex that lies
“behind” each polygon in a volume can
be said to lie inside that volume. Given
that definition, we must determine, for
each volume, which vertices fall inside
it. Listing 1 contains the code to deter-
mine which vertices fall within which
volumes. One thing that I should men-
tion is that the bounding volumes must
be convex. That is, any line that inter-
sects the volume must intersect it exact-
ly twice (Figure 2a). Figure 2b shows a
nonconvex volume. Determining con-
tainment for nonconvex volumes
proves much more difficult.

Once we’ve determined which ver-
tices belong to which volumes, animat-
ing the mesh involves transforming
each group of vertices by the appropri-
ate transform in the motion hierarchy.

After we’ve transformed the vertices,
we simply draw the polygons.

I’ve provided example code and a
demonstration application — which
you can obtain from www.gdmag.com
— that demonstrates the technique.
The example displays a ball consisting
of several hundred vertices. Each vertex
is contained in one of three vertex
groups, each of which moves indepen-
dently, causing the ball to twist and
bend. The example uses OpenGL,
along with Mark Kilgard’s GLUT utility
library. You can obtain the GLUT
library at http://reality.sgi.com/mjk
/glut3/glut3.html. GLUT provides an
ideal framework for experimenting
with new graphics techniques. It han-
dles all of the low-level dirty work,
including setting up an OpenGL ren-
dering context and managing win-
dows, and makes it very easy to con-
centrate on doing 3D graphics. I highly
recommend becoming familiar with
the library.

Caveats

In addition to using convex bounding
volumes, you need to watch out for a

few other things when using this tech-
nique. First, it’s possible to have a vertex
that falls within more than one volume.
When using animated bones (as in
Lander’s column), it’s perfectly accept-
able to allow multiple bones to influ-
ence a vertex. In fact, if a vertex falls
near a bending joint, it’s usually desir-
able to have all the bones that are near
the joint exert weighted influences on
the vertex. This helps keep the mesh
from folding in on itself. With bound-
ing volumes, however, vertices are influ-
enced in an all or nothing fashion. If a
vertex falls within more than one vol-
ume, it will receive full influence from
both volumes. This will almost certainly
lead to undesirable results because the
final position of the vertex will probably
lie completely outside the boundaries of
the mesh. For this reason, we need to
make sure that each vertex falls within,
at most, one bounding volume. This is
sometimes not possible, however,
because of the stipulation that we must
use convex bounding volumes. In cases
in which a vertex falls inside more than
one volume, we simply assign it to the
volume that occurs lowest in the hierar-
chy. Figure 3 shows the right arm and

shoulder of a character. We can see that
the bounding volumes of the upper arm
and the chest overlap. Using our con-
vention, because the arm is lower in the
hierarchy than the chest, the upper arm
and shoulder vertices would belong to
the arm’s bounding volume.

Another restriction of this technique
is that the polygons that comprise the
mesh must be triangles. The reason for
this is twofold. First, when deforming a
nontriangular polygon, it’s possible for
that polygon to become nonconvex.
Most high-performance rendering
engines cannot properly scan convert a
nonconvex polygon. One of the prop-
erties of triangles is that they can never
be nonconvex. Second, it’s also possi-
ble, under deformation, for a nontrian-
gular polygon to become nonplanar.
This causes problems for backface
culling because it’s impossible to deter-
mine which way a nonplanar polygon
faces. Again, triangles have the proper-
ty of retaining their planarity under
any type of deformation.

The issue of backface culling brings
up another problem. When a polygon
undergoes deformation, its normal vec-
tor will almost invariably change direc-
tion. If you perform backface culling in
object or camera space, as opposed to
screen space, then this can pose a prob-
lem. In the case of rigid 3D objects, we
usually precalculate the normal vectors
of all the polygons. Then, at run time,
we use those normal vectors to perform
backface culling. When we deform a
polygon, however, we must recalculate
the normal before we can perform

G A M E  D E V E L O P E R J U L Y  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

50

S K I N N I N G  T E C H N I Q U E S

F I G U R E  2 a .  The white line intersects

the volume exactly twice.

F I G U R E  2 b .  A line intersecting a

nonconvex volume.

F I G U R E  3 .  The right arm and shoul-

der of the football player mesh.



backface culling. This is added over-
head that we normally don’t have with
rigid meshes.

One final problem involves geometry
folding in on itself when the mesh is
deformed. Our Poor Man’s technique
suffers from this problem much more
than Lander’s weighted bones tech-
nique. Geometry can fold in on itself
when there are not enough vertices to
accommodate bending in the joints
connecting vertex groups. Lander’s
technique allows us to weight the
influences of multiple bones on a sin-
gle vertex. This makes it is possible to
tweak the weights in order to minimize
folding. Our technique doesn’t support
weighted influences and therefore suf-
fers from folding. The only way around
this is to provide more vertices at the
joints between vertex groups.

Improvements

U nder certain circumstances it’s
possible to have nontriangular

polygons in the mesh — and to pre-
compute the normal vectors used for

backface culling — and not suffer any
of the problems outlined previously.
Because the vertices of the mesh are
each contained in exactly one bound-
ing volume, the odds are good that we
will also have several polygons that
are completely contained in exactly
one bounding volume. A polygon that
is completely contained within a vol-
ume will deform only if we apply a
nonsymmetric scale to the volume (a
nonsymmetric scale involves scaling
by a different amount along each
axis). As long as we are performing
symmetric scales, then we can assume
that the polygons that are completely
contained will neither deform nor
change the direction of their normal
vectors. These are called rigid poly-
gons. Only nonrigid polygons, by def-
inition, can deform (thus, the skin-
ning effect). The requirement for
triangles, therefore, applies only to
nonrigid polygons. Additionally, we
can precompute the normal vectors
for all rigid polygons and use those for
backface culling. Note that I inten-
tionally left these improvements out
of the example code because I wanted

to keep it simple and instructive.
In this article, I’ve attempted to give

an example of an alternative skinning
technique that allows us to leverage
our pre-existing graphics tools. That’s a
good thing when operating under tight
schedule constraints. Although the
technique isn’t as flexible or as power-
ful as that described in Jeff Lander’s
May 1998 column, it still provides very
good visual results and is potentially
more efficient at run time. For future
games, we will definitely concentrate
on developing the tools we need for
the weighted bones technique; but for
now, our Poor Man’s skinning is doing
the job.  ■

51

I would like to thank Joe Shoopack
for his role in developing this skinning
process, as well as for providing the fig-
ures for this article. Joe can be reached
at jshoopack@sonyinteractive.com.

Acknowledgements



EST DRIVE is a game, a brand,

and a legacy here at Accolade.

As such, the development team of TEST

DRIVE 4 had its work cut out when

development of the game began in

December 1996. Several years had

elapsed since the last TEST DRIVE title, and

formidable competition had moved into

the TEST DRIVE niche, such as Electronic

Art’s NEED FOR SPEED. Our goal was clear:

re-establish the brand, blow the doors off

the competition, and do it all for a

Christmas 1997 release. 

G A M E  D E V E L O P E R J U L Y  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

Accolade’s TEST DRIVE 4

TT
b y  C h r i s  D o w n e n d

P O S T M O R T E M

52



The Concept

T EST DRIVE caters to the fantasy of
racing cars that you only dream

about, such as the Corvette or Jaguar,
on real city streets. Driving games
appeal to a wide audience, but the core
audience is teenage males who are
anticipating their first car, or just got
their first car. We tried to appeal to
these players with an adrenaline-packed
experience. Once the rush of driving
cars wears off, however, we wanted a
game with depth as well, so we includ-
ed timed races and cups to win. 

Driving games have the potential to
succeed across platforms and across
continents, and we needed that wide
consumer draw. The escalation in prod-
uct development costs in recent years
demands a global and multiplatform
approach to reduce the development
risk and maximize success. As such, we
targeted the PC and PlayStation plat-
forms, and designed the game to appeal to players in North
America, Asia, and Western Europe. The Nintendo 64 was a
serious consideration too, but due to some memory limita-
tions with that console and some business considerations on
our end, we reluctantly decided that supporting that plat-
form would not be cost effective. 

The Team 

A fter a frustrating and fruitless attempt in 1996 to hire
additional development staff to augment our internal

TEST DRIVE team, we postponed our plans to develop the
game. Maybe we set our sights too high, but we couldn’t
entice the people with the experience and track record we
needed to join us (granted, it was a short list of developers
we were going after).

Then, in December 1996, we came into contact with
Pitbull Syndicate, a development company based in
England. It was a chance meeting — a friend of Accolade’s
International Sales Director knew Richard Beston, Pitbull’s
managing director. A meeting was arranged, vital statistics
exchanged, and a letter of intent signed. Pitbull had the
right mix of talent, passion, and track record, including
some members of the DESTRUCTION DERBY team. They had
experience developing games for both the PlayStation and
PC, which matched our target platform choices. We felt that
all things considered, they would give TEST DRIVE 4 the
authenticity and excitement it required. 

Game Design 

W e quickly put together a thorough and complete
game design document and a good technical design

with a series of milestone deliverables spaced about a
month apart, taking into consideration several key market-

ing deliverables that would be needed along the way.
Accolade provided the TEST DRIVE formula: exotic sports
cars, real streets, a clandestine race, and the threats and
hazards offered by normal road traffic, including an occa-
sional police car. Pitbull embellished the formula and sup-
plemented our designs with their own detailed 100-page
design document. Pitbull also wrote their own 200-page
technical design document. The result of all of combined
design efforts was the agreement that Pitbull would lever-
age their own design strengths and give the game an
arcade-like feel based on a solid, pure physics core. The key
design goals were:
• Develop break-through fidelity in driving control (in other

words, cars should steer like real cars).
• Deliver an action-packed experience.
• Create beautiful scenery, paying close attention to detail.
• Build an interactive environment for the races in which

pedestrians react, dogs bark, leaves rustle, and so on.
• Leverage players’ fantasies to race real-world production

sports cars.
• Provide secret cars to reward players for good performance.
• Include a mix of international cars and international loca-

tions to maximize international appeal.
• Provide free additional cars on our web site to fan the

flames in the marketplace after launch.

h t t p : / / w w w . g d m a g . c o m J U L Y  1 9 9 8 G A M E  D E V E L O P E R

Chris Downend is executive producer at Accolade Inc., a lead-
ing publisher located in San Jose, Calif. Chris has been in the
video game industry over 20 years. He joined Atari as a pro-
grammer fresh out of college where he spent 15 years program-
ming and producing arcade and console games. His teams
designed and developed several hits including MARBLE

MADNESS, GAUNTLET, 720, AND STEEL TALONS. 3DO attracted
Chris in 1993 and he spent 18 months there before Accolade
lured him away in 1995. His second major assignment at
Accolade is the topic of this Postmortem.

53

Pitbull’s TEST DRIVE 4 development team crowds the test track.



The “Big Hook”

W e felt that we needed a
big hook that would grab

the player and set us apart from
our competition. That hook
came one day when our associate
producer described the appeal of
old American muscle cars to the
product marketing manager.
With that, an idea was born. We
decided that the game would pit
modern sports cars against the
hottest muscle cars of the ‘60s.
Market research, including focus
groups overseas, confirmed the
strength of the concept, and we
had our “big hook.”

Production

W ith the pieces in place,
production on the game

began. The five programmers
and five artists at Pitbull set
about creating the game, while
Accolade lined up a superior
group of car licenses, evaluated
periodic deliverables from
Pitbull, and contributed to the
design as needed. Accolade and
Pitbull collaborated on selecting
the city settings for the races. 

We wanted to use famous, pic-
turesque, and international
cities in the game, but our deci-
sions were tempered by practical
constraints. We traveled to
prospective cities to photograph
streets and buildings, but in the
end, our tight time frame dictat-
ed some compromises. Our final
choices were:
• San Francisco (which is close

to the Accolade offices) 
• Washington D.C. (close to

Atlanta, Ga., where E3 is held)
• Kyoto, Japan (chosen to

increase the game’s appeal in
Japan, the largest PlayStation
market)

• Keswisk, England (close to the
Pitbull Offices)

• Bern, Switzerland (we needed a
snowy venue for variety and
we needed a European city). 
In June 1997, we arrived at E3

with a sizzling demo and won
the Best Driving Game award at
E3 from GamePen. In July and

August, we delivered playable
demos for the PlayStation.
Pitbull provided some basic test-
ing and QA, and Accolade was
responsible for the bulk of the
testing and bug-hunting. 

In August, we suddenly dis-
covered that our schedule was in
trouble. With six weeks until
code release, only one and a half
tracks out of seven had been
completed for the game. As the
executive producer and the
developer strained to get the
game back on schedule, rela-
tions became strained. Everyone
struggled to cope with the ton of
work to be done in a short
amount of time. 

To make up some time, we
decided to cut one of the tracks,
due to the fact that there was
simply too much to do and too
little time. To compensate, we
decided to add several new cars,
because they were easier to
model and yet still added value.
We also wrote the manual before
the game was finished, making
up some time on our schedule. 

Unfortunately, during this
same period, we lost one of our
vehicle licenses at the last
minute. The car manufacturer’s
board of directors was to
approve our license in time for
us to use the car in the game,
but this European company took
its traditional August holiday, so
it didn’t meet in time to approve
the deal. As a result, we had to
scrap all of the work on that car
— there was no time left for us
to get the O.K. from them before
our code release date. 

One challenge that we faced
during development was the
transition from 2D to 3D graph-
ics cards in consumer PCs, com-
bined with the lack of a stan-
dardized 3D API. During
development, Direct3D was in a
state of flux, and its software ras-
terizer was (and is) hopelessly
slow. We needed a solid software
renderer and rasterizer to pene-
trate the broadest market, but
that meant reduced graphic
fidelity. Pitbull solved this
dilemma by building not only a
custom software renderer and

G A M E  D E V E L O P E R J U L Y  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

54

P O S T M O R T E M



rasterizer, but also a 3Dfx Voodoo ver-
sion of the engine using Glide. 

A key ingredient in TEST DRIVE 4’s
graphics was its streaming technology.
Both the PC and PlayStation versions
had ten-mile-long tracks featuring rich
and varied scenery. The texture buffers
on our target machines couldn’t hold
the entire texture set, so Pitbull wrote a
streaming memory manager to feed
new textures into the texture buffer on
the fly during game play. The down-
side to this approach was that it pre-
vented us from implementing a split-
screen, two-player mode. This decision
created some heated discussions with

the marketing and executive staffs, but
in the end they allowed us to sacrifice
this feature in pursuit of our primary
goal of delivering jaw-dropping beauty.

To their credit, Pitbull never lost
sight of their goals in the face of all of
the challenges that we encountered
during development, and by mid-
September the game was back on track.
They even delivered two-player
PlayStation capabilities via the Sony
Link Cable, and multiplayer LAN play
on the PC. The PlayStation and PC ver-
sions hit retail in North America in
early November 1997, and in Europe in
early December 1997. Our Japan release

lagged a bit due to the much longer
product approval cycles in that coun-
try, but we finally received approval for
manufacture of the Japanese Play-
Station version in January 1998. 

What Worked

T he product has shipped and has
been in the marketplace for a few

months now. The final reviews from
the magazines are in, the sales reports
are being analyzed, and the retail sell-
through surveys by leading market
research firms have been tabulated. So

h t t p : / / w w w . g d m a g . c o m J U L Y  1 9 9 8 G A M E  D E V E L O P E R

55

Design sketches detailing the streets of San Francisco.



far, the results have been fantastic, and
the title is a hit for Accolade. This past
March, Accolade announced that TEST

DRIVE 4 had already sold more than
850,000 units, so we must have done
something right. Here’s where we
feel we excelled.

1.THE DEVELOPMENT PROCESS.
Pitbull is a seasoned, tight,

well-oiled development team.
Everyone on the team knows one
another, their goals for the game
were clear to them, and they felt
they had something to prove. A
good system of checks and bal-
ances via milestone deliverables
allowed the developers in the U.K.
and us at Accolade in the U.S. to
monitor the game’s progress, and
allowed us to detect and resolve
many problems before they grew
too serious. Of course, there were
some larger problems along the way,
but at least we knew about them in time
to correct these situations. 

Overall, the tools that Pitbull used to
create the game worked without any
hitches. Pitbull artists and animators
used Softimage 3D running on
Windows NT workstations to create all
of the race tracks and place all of the
textures. The programmers created a
number of tools for converting
Softimage files into the data formats
they needed for the PlayStation and PC.
The PC version was programmed in C
using Watcom C/C++, and DirectPlay
was used for LAN connectivity.

2.DELIVERING AN ACTION-PACKED EXPERI-
ENCE. Pitbull gets the credit for

meeting this goal. The frame rate, the
speed and sense of motion, the camera
angles, the steering response, and the
opponent AI were all created just right.

Pitbull set the renderer to
vary the screen update
rate based on scene com-
plexity. Most of the time,
it was fixed at 30 FPS.
When calculations
exceeded this frame
update rate, they let the
frame rate drop below
that level by decoupling
screen updates from the
vertical refresh. While
this occasionally caused
frame tears due to mid-
frame updates, these situ-
ations were infrequent

enough so as to be unno-
ticeable. When it did happen, it would
cause pop-ups as the rendering horizon
was reduced. To compensate, well-
placed twists and turns in the road,
overhanging trees, or near-field objects

were used to hide the pop-up effect.

3.BEAUTIFUL VISUALS. Our pursuit of
authenticity meant photograph-

ing real places and using scanned pho-
tos to texture the terrain mesh. Photo
teams traveled to every location: Kyoto;
San Francisco; Wash-
ington, D.C.; Bern;
Munich (Munich was
only in the PC version);
and Keswick. To help the
artists model the cars, we
used die-cast scale models
of all of them and dug up
every printed specification
we could find. Artistic
wizardry allowed us to
model the curves of the
exotic cars with remark-
able accuracy while keep-
ing the polygon count
under 300 per car. 

4.COMPELLING DESIGN. The cars are the
stars in this game, and as such,

our car selection was crucial. You prob-
ably wouldn’t be surprised to know
that official, authentic car licenses that
use the full car brand and logo cost big
money. Compounding that problem is
the fact that other game developers
also compete for car licenses, and in
typical cut-throat business fashion,
some game companies seek exclusive
licenses to lock out competitors. As a
result, Accolade spent well into six fig-
ures to acquire these licenses. 

TEST DRIVE 4 includes ten carefully
chosen cars. Casual players might find
them generally cool, but true car buffs
usually appreciate our choices. Each car
in TEST DRIVE 4 is or was a factory-pro-
duced vehicle that could be bought off
the show room floor for under
$100,000, so they are realizable fan-

tasies. The exception is the XJ-
220; it retailed for $600,000 in
1993, but used versions can be
found today in the $100,000
range. The automobiles that
made our final list include: 
1998 Chevrolet Corvette 
1998 Dodge Viper
1993 Jaguar XJ-220
1998 TVR Cerbera
1995 Nissan 300 ZX Twin Turbo
1966 Shelby Cobra
1969 Chevrolet Corvette ZL-1
1971 Plymouth Hemi Cuda
1970 Chevrolet Chevelle 454 SS

LS-6
1969 Chevrolet Camaro ZL-1

COPO 9560
In choosing the cars, we compared

specifications and made sure we came
up with a balanced selection of vehi-
cles with no single car too weak or too
strong. All the cars on the list have top

G A M E  D E V E L O P E R J U L Y  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

56

P O S T M O R T E M



speeds over 150 MPH and 0-60 MPH
times under five seconds. The truth be
told, the Jaguar XJ-220 could outper-
form the pack, so we had to compen-
sate by destabilizing the handling a
bit. On the other end of the spectrum,
the Nissan 300ZX, even the awesome
twin-turbo version, needed a little
after-market performance upgrade —
but the modifications we made were
ones that are truly available to real
owners of that car. 

5.DATA STREAMING. Data is continuous-
ly streamed off the CD-ROM in the

PlayStation version of TEST DRIVE 4, and
to our knowledge, this is the first use of
data streaming on the PlayStation. It
was a key contribution to the game’s
overall visual fidelity. Textures are
loaded into a limited amount of texture
memory to cover the needs of the next
60 strips of roadway. (A strip is about
four meters wide in physical dimen-
sions, and about 40 strips are visible on
a typical road section.) The game looks
ahead to determine the upcoming tex-
ture needs and updates the in-memory
selection by swapping out older
textures that are no longer need-
ed. The textures are laid out on
the CD in the appropriate order to
minimize seek times, and most
textures can be found on the CD
twice (we implemented this
redundancy in case a player
chooses to drive backwards on the
track). Pitbull was able to offer the
player a huge variety of details to
complement all of the tracks,
some of which are ten miles long.
The 3D terrain mesh was textured
with tiled photos, touched up and
color reduced. Some additional 3D

objects decorated the road’s edge, and
vistas were enhanced with some 2D
polygon objects.

What Did Not Work

A s with most games, the vision for
TEST DRIVE 4 was (and continues

to be) much larger than what we actu-
ally accomplished. So, of course, there
are things we wanted to do better.
Here’s where we would have liked to
spend more time on refinements.

1.USER INTERFACE. The game menus
are just plain and simple, without

any sizzle. We chose to put the sizzle in
the game play, and frankly we over-
looked the menu screens. We spent a
lot of time on functionality to make
sure that the players could quickly and
easily get to the options and selections,
but overlooked how plain they were.
The lesson we learned was that the
relentless pursuit of excellence must be
applied to every aspect of the game.
The menu screens were designed first

on the PlayStation, and while they
were acceptable for a PlayStation game,
they definitely fell short when we port-
ed them to the PC. When we viewed
them on the PC, we knew we should
have done better from the start. 

We used icons heavily throughout
the menus, so that each menu and sub-
menu consisted a of a selection of large
buttons with pictorial representations
on them. For instance, the game
options icon is a wrench. When the
player selects an icon, a subtitle explain-
ing the icon appears in a text box at the
bottom of the screen. In theory, this
should have worked well — most of the
Windows interface uses this concept.
However, our implementation got noth-
ing but negative remarks. Incidentally,
though, this icon with subtitle approach
worked great for localization. Trans-
lating English into a foreign language
typically results in longer text strings,
which can cause screen layout problems
in certain instances. By placing the text
in a subtitle line, each translation had
the freedom to use the full width of the

screen. 

2.MISSED 3D OPPORTUNITIES. On
the PC, given what we know

now, we should have developed
the software version of the PC
engine with Direct3D in mind.
Pitbull just finished the upgrade of
the TEST DRIVE 4 engine for
Direct3D compatibility — this will
be the basis for the sequel — and it
was painful. The vertex data for-
mat that the game uses is not at all
compatible with Direct3D, and it
required a significant rewrite to
accommodate Direct3D. The pro-
grammers really wanted to go with

h t t p : / / w w w . g d m a g . c o m J U L Y  1 9 9 8 G A M E  D E V E L O P E R

57



OpenGL, but market size was
the determining factor. Just
about every 3D card manufac-
turer is supporting Direct3D,
but OpenGL support is spotty.
Direct3D is certainly more dif-
ficult to use, but it also lets you
get closer to the hardware — an
important factor when it
comes to squeezing extra per-
formance out of a 3D chipset.
We missed a couple of OEM
opportunities in the process.
For instance, a prominent PC
maker was looking for games to
bundle with a 3D card that
they were including in one of
their systems. We missed out
on this opportunity — Direct3D com-
patibility was a prerequisite for bundling
with the card. Voodoo2 was another
OEM deal that we almost closed, but the
port of TEST DRIVE 4 wasn’t ready in
time. In the near future, we will consider
supporting DVD-ROM because bundling
opportunities look promising and we
can offer added value via video clips of
some of these cars in action. 

3.DRIVING FIDELITY. For the most part,
magazine game reviewers disliked

the driving controls in the PC version
of the game. These reviewers seem to
favor the purist-driving-simulation
approach to driving games, whereas
TEST DRIVE 4 admittedly uses an
“arcade” driving model, tuned to give
an adrenaline rush, emphasize speed,
and forgive crashes. While I think that
an arcade-like experience appeals to a
large segment of PC game players (cer-
tainly our sales indicate that), we’d like
to appeal to the purist as well. As such,
we’re licking our wounds and planning

improvements. But a true purist must
also admit that there is no way to simu-
late driving a car with a keyboard. I
look forward to the day when most PC
owners can combine true return-to-cen-
ter steering and force feedback with
their PC’s processing power and 3D ren-
dering capabilities to get much more
realistic driving fidelity. Fortunately, I
don’t think that day is too far away.

4.INTERNATIONAL LAUNCH. Our timing
on the launch of our international

versions of the game was poor. We sim-
ply didn’t allocate enough time to cope
with the iterations on the localization
process. We figured that with only
about 200 words of instructions to
translate in the game, we would be in
good shape. We weren’t. We didn’t
translate the licensing screens, which
are the first screens a player sees in the
game, nor did we translate the car speci-
fication screens. In retrospect, we
should have translated every word, or at
least moved anything not translated

away from the player’s main
start-up path. A player should
see and hear only his or her
language once they have
selected that language for the
game. This oversight can
impact the quality of the prod-
uct. In our case, the iterations
to correct the situation
delayed the European retail
launch from November to
December, which really hurt.

5.PATENT HEADACHES. One
racing mode in TEST

DRIVE 4 allows players to
alternate, taking turns racing
solo against an opponent’s
previous best race. Several

games have this feature. We call it
“Duel Mode.” Others call it “Time
Attack,” or “Ghost Car Mode.” Another
game publisher claims to own a patent
on this feature, and wants to charge us
a licensing fee to use it in our game.
We are researching the matter, and
we’re trying to reach an amicable reso-
lution. Unfortunately, we had no idea
about this until the game had shipped. 

Every product must balance the
opposing forces of time, quality, and
cost. A strict adherence to any one of
these aspects over the others is a for-
mula for failure. Emphasize quality and
the product will never ship, because a
game can always be better. Emphasize
timeliness and either your costs will
skyrocket or quality will suffer.
Emphasize cost and either the timeline
will be too long or again, quality will
suffer. TEST DRIVE 4 found a good bal-
ance and passed the test. Was it per-
fect? No. Do we want to make it better?
You bet. Watch for TEST DRIVE 5.  ■

G A M E  D E V E L O P E R J U L Y  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

58

P O S T M O R T E M



Today’s society is plagued by a get-
rich-quick mentality propagated by the
necessary evil of our legal system:
lawyers. Sometimes extreme legal
action is warranted, but too often it is
spurred on by someone who has
already spent their cut of the settle-
ment and whose interests are anything
but altruistic.

An accident due to negligence or
maliciousness is a neat and tidy case for
initiating litigation. Copyright infringe-
ment, plagiarism, out-and-out theft of
someone else’s physical or intellectual
property, assault — these are all actions
that typically end up in court. But what
about a marketing promise or an adver-
tising claim? If you buy a diet-plan-in-a-
can and fail to lose the weight hawked
on the label in the time it said it would
take, no matter how stringently
you followed the directions,
can the Craggy Jen
Weight Loss com-
pany be held
liable for
such
claims?
Or, for
an

example a little closer to home, should a
game developer or publisher be legally
responsible to its customers if the com-
pany fails to satisfy the players’ expecta-
tions? Picture the consumer who says,
“On the game box it stated that it was
an ‘…amazingly fun-filled ride never
before experienced on a PC or other-
wise.’ And they lied — this game is a
lemon! I’m going to sue that company
for fleecing me out of my money, and
more importantly, my time.”

Would I sue a game company
because their game didn’t satisfy my
fun jones? No. I just wouldn’t buy their
products or their advertising hype any-
more. I would evangelize their shoddi-
ness through whatever means I could:
word of mouth, e-mail, .plan file, and
so on. Which brings me to the recently
filed ULTIMA ONLINE lawsuit, the one in
which Electronic Arts and
Origin are being sued by
some disgruntled
customers.

I’ll state up front that I’ve never
played UO. The only hard evidence I
have that it may not be fun at times is
from a coworker who lamented over
the fact that as a warrior-in-training
during one UO session, he was taken
out by a rabbit. A hare. A damn bunny.
So he stopped playing, tossed the CD,
and used the jewel case to store a back-
up CD of his hard drive. Did he run
around the office yelling, “I’m gonna
sue those guys!”? No.

As a former employee of EA Texas
(a.k.a. Origin), I owe much to my old
“Origin University,” and I can guaran-
tee nobody at Origin intentionally set
out to make UO a bad game. My feel-
ing is that if some people are unhappy
with how fun UO is, then they don’t
need to play it anymore. When they
bought the game it stated very plainly
on the box that no refunds would be
issued. Whether they liked the game or
not, they were stuck with it. 

However, the lawsuit in question
brings up other interesting issues.
Among other complaints, the suit
against the company states that the
defendants “falsely and fraudulently
represented that the game ULTIMA

ONLINE would be playable ‘24 hours a
day, everyday’… that the game could

be played in real time… [and] that
the above described technical
problems would be corrected. The
true facts are that the Defendants
have yet to correct these problems,
and that they still persist.”

The suit doesn’t necessarily tar-
get UO as a bad product (although
that may be inferred from the
suit), and the plaintiffs perpetrat-

ing this legal chicanery are not
after EA’s earnings — they just
want their money back. So how
then should one interpret EA’s

G A M E  D E V E L O P E R J U L Y  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

b y  P a u l  S t e e dS O A P B O X
Lies, Damn Lies, 

and Small Print

I f you don’t like what I’m about to say, sue me.

That’s right, S-U-E me. 

After surviving adolescence and never quite growing out of it, the author likes to think of himself as an art Samurai. Primarily a model-
er and animator serving time at Origin, Iguana Entertainment, and Virgin Interactive, Steed currently swings a sword for id Software,
specializing in models, animations, and cinematics. Learning, growing, and teaching his craft is the cornerstone of his digital-bushido
philosophy. Kicking ass in a good game of pool is pretty important, too. 

Continued on p. 63



3Name 3D 19

Activision 61

Aureal Semiconductor 5

Bungie 60

Conitec 61

DH Institute of Media Arts 62

Don Traeger Productions 61

Duck Corp. C3

Dwango 6

Dwango 23

ELSA Inc. 15

IBM C2-1

Immersion Corp. 31

Ki-Tech 62

Matrox 2

Metrowerks Inc. 17

MTV Networks 60

NANI 20

Newtek Inc. 9

Nichimen Graphics 33

RAD Game Tools Inc C4

S3 Incorporated 12

Seneca College 62

SIGGRAPH 35

Square USA 59

Technical Animation 62

Yosemite Entertainment 60

N A M E P A G E N A M E P A G E

A D V E R T I S E R  I N D E X

63

defense, in which they cite small print
on the UO box that states “No refunds
will be given — only exchanges.” Is
printing this disclaimer on the box a
legitimate business strategy, or is it a
slippery legal tactic designed to let the
company off the hook in the event of a
flood of returns due to product defi-
ciencies? It’s not clear to me.

We at id have been the target of simi-
lar charges recently, so this is an issue
that hits close to home. After the UO
litigation story broke, several people
took the news of the EA lawsuit as an
opportunity to fire shots at our recently
released title, QUAKE 2. An editorial was
posted on the web drawing parallels
between the EA lawsuit and the “short-
comings” of our title. It certainly
stretched things to compare two games
as different as QUAKE 2 (which was
designed as a single-player action game
with the added multiplayer features)
and UO (a persistent, massively multi-
player RPG online world). Whereas the
heart of the dissatisfaction with UO
seems to be with unavoidable problems
associated with all Internet games, the
complaints voiced about QUAKE 2 were
that id did not give the fans exactly the

features they wanted when they want-
ed them (and hopefully we’ve since
addressed those problems). 

Complaints and litigation such as
these against game developers raise
some important points. First, as in our
case, if a feature doesn’t make it into
the game, it’s not a bug. That feature
was cut. We as developers have the right
to cut or add anything to the games we
make. Fortunately for consumers, we
developers strive to do what our fans
want, given enough time, technology,
resources, and desire. However, if a fea-
ture is advertised on the box and it is
not in the game, and if a consumer
bought the game based solely on the
expectation that he or she would be get-
ting that one feature, then that person
has a good case to get their money back. 

Now let me address complaints about
game performance. You cannot get the
most out of a game running it on a
machine that meets only the minimum
system requirements printed on the box.
You’ll be able to install and play it, but
will it be the “unimaginable trip
through the funnest, most immersive,
awesome, seat-of-the-pants gaming
experience ever” as advertised on the

box? Unlikely. Certain features have to
be switched off, capabilities hobbled,
and game play sacrifices made in order
to get titles to play on slow, RAM-chal-
lenged dinosaurs that plenty of folks out
there still own. If a game developer tar-
gets the present generation of machines
owned by consumers, by the time the
game is finished 12 to 36 months down
the road, that developer risks passing up
new technological leaps and being out-
flanked by the competition’s games
which utilize said technological leaps. 

Don’t get me wrong. There’s no
excuse for making false claims about a
game on a box. In the case of UO,
maybe the business model for the prod-
uct wasn’t the most consumer-friendly,
and their claims were a little too lofty.
Marketing hype and bold claims are
everywhere in today’s high-pressure,
competitive business atmosphere.
Everyone pushes that envelope. But
what exactly is our obligation to that
hype? Does the consumer have the
right to sue a developer because they
didn’t deliver the goods, refusing to
give you a refund based on the dis-
claimer in small print? 

I guess we’ll find out soon enough. ■

S O A P B O X

Continued from p. 64


	back: 


