
JANUARY 2002

G A M E  D E V E L O P E R  M A G A Z I N E



G A M E  P L A N
L E T T E R  F R O M  T H E  E D I T O R

War Games

W W W . G A M A N E T W O R K . C O M

✎

2

T he game industry overall did
an admirable job of weathering
the public criticisms lobbed its
way immediately following
September 11. Some popular

genres, such as real-time tactical shooters,
especially those featuring counter-terrorist
operations, came under fire for hitting too
close to home in post–September 11
America. In just one among many similar
actions by game publishers, Ubi Soft
announced shortly after September 11 that
it would be delaying the release of Red
Storm’s ROGUE SPEAR: BLACK THORN indefi-
nitely to modify sensitive content.

What a difference a month makes. Not
only was the modified BLACK THORN

released with fanfare less than a month after
its original ship date, but by then Ubi Soft
was proudly publicizing the fact that they
had recently licensed the ROGUE SPEAR

engine to a contractor working for none
other than the U.S. Department of Defense
(DOD). New maps and scenarios will be
added in order to train Army troops in
urban counter-terrorist strategy and tactics. 

Technology sharing between the game
and defense industries is nothing new, of
course. But our industry’s collaborations
with DOD suddenly takes on a whole new
significance as ground troops, possibly
trained in part on technology that originat-
ed from game developers for entertainment
products, begin fanning out through
Afghanistan. Perhaps some of the game
industry’s most outspoken critics will find
themselves unsure of whether to continue to
chastise the game industry or raise a hand
in salute. Strange times tend to make for
strange bedfellows.

We’ve come a long way since 1980,
when Atari’s tank simulation arcade game,
BATTLEZONE, caught the attention of Penta-
gon officials who wanted Atari adapt it for
military training. To say that most game
developers — then and now — don’t fit the
mold of your typical straitlaced defense
contractor is an understatement.
Nonetheless, collaboration efforts have
stepped up in recent years.

One organization to keep an eye on is
the Institute for Creative Technologies
(www.itc.usc.edu), founded in 1999 as a

joint effort between the Army (who provid-
ed $45 million in funding), game develop-
ers, Hollywood talent, and the University
of Southern California, which recently
announced development of two projects
that will have both military and commer-
cial applications. C-FORCE is being devel-
oped for consoles by Future Combat
Systems (a venture between Sony Pictures
ImageWorks and Pandemic Studios), and
CS-12 will come to PC from Quicksilver
Software. Effectively, these are the first two
commercial games ever commissioned by
the military and developed with DOD’s
direct input, through the Army’s Training
& Doctrine Command bureau.

Such efforts could end up being good PR
for the game industry at a time when public
interest in the military is particularly high.
DOD-backed games could also serve as a
recruitment aid for the Army (much the
same way Top Gun, produced under the
beaming auspices of the U.S. Navy, sent
aspiring Mavericks to Navy recruiting
offices in droves). However, we are also
opening our industry up to a whole new
level of scrutiny. What headway we’ve made
convincing the general public that
videogames aren’t sophisticated training for
would-be high school snipers may well
reemerge when people realize that the Army
is co-developing commercial applications
for its own training purposes, and with tax-
payer dollars. (The difference, of course, is
that the Army has no interest in using these
applications to train soldiers to shoot
weapons. The emphasis, say Army officials,
is strictly on strategic and tactical training.)
It would be wise for our industry to contin-
ue to keep tabs not only on our known crit-
ics but also on those who would ride our
coattails to further their own goals.

Welcome, Hayden. This month, we’re
pleased to welcome Hayden Duvall as our
new Artist’s View columnist. Hayden brings
with him a wealth of experience in both art
and the game industry, and currently works
as lead artist at Confounding Factor on
their upcoming console title, GALLEON. 

600 Harrison Street, San Francisco, CA 94107 t: 415.947.6000   f: 415.947.6070

Publisher
Jennifer Pahlka  jpahlka@cmp.com 

EDITORIAL
Editor-In-Chief

Jennifer Olsen  jolsen@cmp.com
Managing Editor

Laura Huber  lhuber@cmp.com
Production Editor

Olga Zundel  ozundel@cmp.com
Product Review Editor

Tor Berg  tberg@cmp.com
Art Director

Audrey Welch  awelch@cmp.com
Editor-At-Large

Chris Hecker  checker@d6.com
Contributing Editors

Daniel Huebner  dan@gamasutra.com
Jonathan Blow  jon@bolt-action.com
Hayden Duvall  hayden@confounding-factor.com

Advisory Board
Hal Barwood  LucasArts
Ellen Guon Beeman  Beemania
Andy Gavin  Naughty Dog
Joby Otero  Luxoflux
Dave Pottinger  Ensemble Studios
George Sanger  Big Fat Inc.
Harvey Smith  Ion Storm
Paul Steed  WildTangent

ADVERTISING SALES
Director of Sales & Marketing

Greg Kerwin  e: gkerwin@cmp.com t: 415.947.6218
National Sales Manager

Jennifer Orvik  e: jorvik@cmp.com t: 415.947.6217
Senior Account Manager, Eastern Region & Europe

Afton Thatcher  e: athatcher@cmp.com  t: 415.947.6224
Account Manager, Northern California & Southeast

Susan Kirby e: skirby@cmp.com  t: 415.947.6226
Account Manager, Recruitment

Raelene Maiben  e: rmaiben@cmp.com  t: 415.947.6225
Account Manager, Western Region & Asia

Craig Perreault  e: cperreault@cmp.com  t: 415.947.6223
Sales Associate

Aaron Murawski  e: amurawski@cmp.com  t: 415.947.6227

ADVERTISING PRODUCTION
Vice President, Manufacturing Bill Amstutz
Advertising Production Coordinator Kevin Chanel
Reprints Stella Valdez  t: 916.983.6971

GAMA NETWORK MARKETING
Senior MarCom Manager Jennifer McLean 
Marketing Coordinator   Scott Lyon
Audience Development Coordinator Jessica Shultz

CIRCULATION
Group Circulation Director Catherine Flynn
Circulation Manager Ron Escobar
Circulation Assistant Ian Hay
Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes
t: 800.250.2429 or 847.647.5928  f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas
t: 650.513.4234  f: 650.513.4482  e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall
Executive Vice President & CFO  John Day
President, Business Technology Group  Adam K. Marder
President, Specialized Technologies Group Regina Starr Ridley
President, Technology Solutions Group  Robert Faletra
President, Electronics Group  Steve Weitzner
President, Healthcare Group  Vicki Masseria
Senior Vice President, Human Resources & Communications Leah Landro
Senior Vice President, Global Sales & Marketing  Bill Howard
Senior Vice President, Business Development  Vittoria Borazio
Vice President & General Counsel  Sandra Grayson
Vice President, Creative Technologies  Philip Chapnick

Game Developer
is BPA approved



S A Y S  Y O U
C T H E  F O R U M  F O R  Y O U R  P O I N T  O F  V I E W .  G I V E  U S  Y O U R  F E E D B A C K . . .

Sound Design Kudos

I just wanted to thank Andrew Boyd for
his kind words and intelligent observa-

tions about the sound design of MEDAL OF

HONOR and MEDAL OF HONOR:
UNDERGROUND in “Escape from Bad
Audio” (October, 2001). We here in the
audio department at Electronic Arts Los
Angeles/DreamWorks Interactive have been
enjoying reading it and we're pleased that
you so astutely picked up on some of our
techniques. It was an excellent article.

Erik Kraber

Senior Sound Designer

MEDAL OF HONOR

MEDAL OF HONOR: UNDERGROUND

via e-mail

I enjoyed Andrew Boyd’s “Escape from
Bad Audio.” I am a member of the

AIAS Best Music category panel, and I can
tell you your points are right on. We are
all very dedicated to great music and
sound. One of the problems we have faced
is that many noteworthy games don’t
make it for our review because the game
developer or publisher didn’t submit them.
We have been working to improve this by
communicating throughout the year about
games we think are great, which should
improve the pool of excellent games for
final review.

Thanks for bringing audio to forefront
of thought among developers and publish-
ers with this article.

Lennie Moore

via e-mail

Mobile Platforms?

T he issue of games for mobile devices
is interesting. While RJ Mical gives

some lip service (“Some Assembly
Required,” Soapbox, November 2001) to
the idea that we might take new risks and

have a different development cycle than
the current standard one, most of his
article seems to suggest that mobile plat-
forms have lesser hardware and what we
really want is better hardware, so we can
play on them the same games that we
play on PCs.

On the game design side, it might be
interesting to see games designed for
mobile platforms, instead of adapted to
them. Thinking games (which include
adventure games) seem like a good match
to PDA-style games, because they fit the
control method and the goal of saving bat-
tery life. For action games, the control lim-
itations may also not be that serious, espe-
cially when targeting non-hardcore audi-
ences. My father liked some action games
on my old VIC 20. These days, he doesn’t
play any action games, although he likes
MINESWEEPER and such. I’d imagine that
one reason is the complex control methods
of current games. Simpler hardware could
mean a simpler interface, and that might
not be a bad thing.

Eyal Teler

via e-mail

Apples vs.Codewarrior

J amie Fristrom’s product review of
ProDG in the November issue of Game

Developer (“SN Systems’ ProDG 2 for
PlayStation 2,” Product Reviews,
November 2001) implies a comparison of
Codewarrior on Dreamcast to ProDG on
Playstation 2. We feel that this could be
misleading to readers of the magazine in
that this is not an apples-to-apples com-
parison, and implies that CodeWarrior is
not a mature enough product on
PlayStation 2.

The situation is quite the contrary.
Codewarrior is the industry-leading prod-
uct for PlayStation 2 and Gamecube devel-
opment. Feature for feature, we match or
exceed those described in the product
review, but also have some unique prod-
ucts, features, and services exclusively for
Codewarrior users.

We strongly encourage any licensed
Playstation 2 or Gamecube developers out
there to evaluate our product themselves.
If you’re interested, let us know by sending
a message to games@metrowerks.com.

Brian Gildon

Director, Entertainment Products

Metrowerks Corp.

PRODUCT REVIEW EDITOR TOR BERG RESPONDS:

While it is not our practice to run com-
parative reviews of development tools, in
the case of Jamie’s review of ProDG, both
he and I felt that mentioning a competitive
product established a tone for the review
that would be helpful to the reader. Trey-
arch had evaluated Codewarrior for
Dreamcast and found it to be inappro-
priate for the studio’s specific develop-
ment needs. This experience led Jamie 
and the Treyarch team to examine SN
Systems’ ProDG 2 for Playstation 2.

In today’s game industry, development
tools are generally too specialized to com-
pare to one another. Feature sets are rarely
even similar, let alone equivalent. So a fea-
ture-by-feature comparison is inevitably
unfair to one product or the other. Thus,
we regret implying a comparison between
ProDG and Codewarrior.

Codewarrior has indeed been an indus-
try leading product for a long time and has
been used in the development of many cut-
ting-edge titles. We look forward to
reviewing Codewarrior on its own merits
in the near future.

w w w . g d m a g . c o m 4

C O R R E C T I O N

In the information box included in the review of

SN Systems’ ProDG 2 for Playstation 2 on page

9 of the November 2001 issue of Game

Developer, the price of the product was listed

incorrectly due to an editing error. 

The correct price for ProDG 2 for Playstation 2

is $5,000 per unit for the first nine units, with

reduced volume pricing for larger orders.

We apologize for any confusion that this error

may have caused.C
Let us know what you think: send us an

e-mail to editors@gdmag.com, or write

to Game Developer, 600 Harrison St., 

San Francisco, CA 94107



6 j a n u a r y  2 0 0 2 | g a m e  d e v e l o p e r

I N D U S T R Y  W A T C H
Jd a n i e l  h u e b n e r |  T H E  B U Z Z  A B O U T  T H E  G A M E  B I Z

EA improves, Midway lags, SNK clos-
es. Electronic Arts managed to post better
sales and a smaller second-quarter loss
than last year, but the company’s net loss
still reached $32.8 million on revenues of
$240.2 million. EA lost $38.9 million on
sales of $219.9 million in the second quar-
ter one year ago. The results were largely
within analyst expectations. Prior to
releasing its second-quarter financials, the
company made a move to improve the per-
formance of its online subsidiary, EA.com,
by announcing layoffs of 200 to 250 staff
from the unit. EA executives said the cuts
had to be made in order for the company
to make that unit, which trades as a sepa-
rate tracking stock, profitable by fiscal
2003.

While EA boosted its sales and cut its
losses, Midway announced a steep drop in
revenue. The company’s revenues slid 40
percent from last year to just $28.3 mil-
lion. Despite the lower sales, Midway man-
aged to cut its loss to $7.7 million from
last year’s $10 million. 

Japanese hardware and software devel-
oper SNK Corporation has ceased opera-
tions entirely. The company, which created
the NeoGeo arcade system as well as leg-
endary games like VANGUARD, filed for
bankruptcy last April, and had earlier
closed down many of its offices.

McNally family donation increases IGF
Grand Prize stakes. The Independent
Games Festival is sweetening the grand
prize pot by posting an additional $5,000
to the giant check handed out with the Seu-
mas McNally Award for Independent
Game of the Year. The total amount of the
prize is now set at $15,000, with the addi-
tional funds coming from the Seumas
McNally Memorial Fund created in honor
of the lead programmer of Longbow Digi-
tal Arts. The IGF Grand Prize was posthu-
mously named in honor of Seumas McNal-
ly after his death of Hodgkin’s lymphoma
shortly after the festival in 2000.

Acclaim, Activision, and THQ raise
expectations. Acclaim reported fourth-
quarter earnings of $2.9 million on revenues
of $46.5 million, marking a return to prof-
itability after a loss of $63.5 million in the
same period last year. The company said
that its DAVE MIRRA FREESTYLE BMX and
CRAZY TAXI franchises were responsible for

much of the improvement, leading Acclaim
to raise its guidance for revenue and profit
for the fiscal first two quarters of 2002.

Activision also reported encouraging
financials, posting solid second quarter
numbers despite lower revenues and profits
than last year. The company’s net revenues
for the quarter were $139.6 million, down
from $144.4 million last year. The compa-
ny’s profits were also off from last year’s
results, down 47 percent to $2.2 million.
Despite the slip, Activision’s results exceed-
ed analyst expectations, and the company
raised guidance for the year-end quarter
and predicted continued strong sales.

THQ, for its part, translated a strong
Game Boy Advance catalog into a 144
percent increase in third-quarter profit.
The company reported net income of $3.2
million, compared to $1.3 million last
year. Revenues for the quarter reached
$68 million, up from $53.3 million a year
ago. 51 percent of THQ’s sales for the
quarter came from Game Boy and Game
Boy Advance titles. THQ also increased its
forecast for the coming year.

3DO quarterly sales fall by half,
Hawkins underwrites new stock. 3DO
cut costs in its second quarter but couldn’t
match its savings with increased sales. For
the quarter, revenues dropped by more
than 50 percent to $9.9 million from $20.2
million in the same period last year. Cost
cutting helped 3DO trim its quarterly loss
by 42 percent to $9.7 million from a loss
of $16.7 million in the second quarter last
year. These results were in line with analyst
expectations for the company.  

CEO Trip Hawkins again stepped in to
provide the company with desperately
needed working capital, using personal
funds to purchase over $8 million of 3DO
shares in a recently completed private
placement round of financing that raised

$9.75 million for the company. Hawkins
bought 3.9 million of a total of 4.7 million
shares. The shares we were issued at $2.06
per share.

Sega teams with Microsoft and THQ.
Sega continues to cut deals in its bid to
become the industry’s largest third-party
software provider. Sega and Microsoft
unveiled a new partnership at the Tokyo
Game Show which will bring a number of
Sega games exclusively to the Xbox. Most
notably, the next game in the SHENMUE

series will only appear on the Xbox in
North America, and Sega will also port
PHANTASY STAR ONLINE to the Xbox as
well. New online PC games may also result
from collaborations between the compa-
nies. Sega and Microsoft also said their
work together would extend into the arcade
market by designing an arcade mother-
board based on the Xbox technology.

Sega also reached an exclusive, multi-title
co-publishing agreement with THQ to pub-
lish 16 Sega titles for Nintendo’s Game Boy
Advance. THQ said it will co-publish Game
Boy Advance titles featuring Sega brands in
North America through 2003.  q

M I L I A  2 0 0 2
PALAIS DES FESTIVALS

Cannes, France
February 4–8, 2002
Cost: variable
www.milia.com

A M E R I C A N  I N T E R N AT I O N A L
TO Y  FA I R
JACOB K. JAVITS CONVENTION CENTER

New York, N.Y. 
February 10–14, 2002
Cost: none
http://www.toy-tma.com/AITF

D . I . C . E .  S U M M I T
HARD ROCK HOTEL

Las Vegas, Nev. 
February 28–March 1, 2002
Cost: variable
www.interactive.org

U P C O M I N G E V E N T S

CCAALLEENNDDAARR

LEGENDS OF WRESTLING, helped Acclaim Entertain-
ment return to profitability in its fourth quarter.



A fter spending a few weeks
with the latest version of
NXN Software’s flagship
product, Alienbrain, I find
myself returning again and

again to the same conclusion. These guys
have taken the complicated and daunting
task of enterprise-wide asset management
and made it . . . sexy?

That’s right, sexy. Alienbrain is a beauti-
ful and altogether elegant client/server solu-
tion for managing a game project’s files and
multimedia assets. And version 5.0 moves
the product toward NXN’s ultimate goal of
fully digitizing the entire production
pipeline. While not without its flaws, Alien-
brain comes closer to organizing and man-
aging the entire cradle-to-grave life cycle of
a development team’s collective output than
any other product. In fact, were it not for
the product’s 24-carat price tag, I’d be com-
pletely comfortable recommending
Alienbrain as a must-have product for any
development team. As it is, however, the
story is a bit more complicated.

As you’re no doubt aware, keeping track
of all the resources required to build a con-
temporary game title is a huge task. On a
day-to-day basis, game developers must
deal with many different file types, each of
which may appear in a dozen different
forms or stages within an art pipeline. We
need to worry about source art files,
sounds, scripts, exported art, preprocessed
art, postprocessed art, bundled art, plat-
form-specified art . . . you name it. Even a
relatively small title typically needs to deal
with thousands of different files, and unless
the team is well organized and eternally

vigilant, keeping track of all this inherent
complexity can be an absolute nightmare.
Alienbrain straightens out this dire state of
affairs, helping team members coordinate
the modification and creation of new assets
in a controlled and methodical fashion.

At its core, Alienbrain is built around a
version control engine that has been specif-
ically designed to handle the media types
commonly used in the development of
interactive titles. In other words, Alien-
brain is tuned to deal with exactly those
sorts of large binary files that bring other
version control systems to their knees. In

fact, you can place any sort of file that you
want into Alienbrain and it is likely to han-
dle the data with aplomb. The main client’s
elegant user interface allows for rapid, real-
time previewing of most standard file for-
mats without resorting to external viewer
programs that need to be spawned in a sep-
arate window. For those not-so-standard
proprietary file formats that we all find
ourselves relying on from time to time,
Alienbrain has a robust and comprehensive
plug-in architecture for referencing exter-
nal viewers or, for the more ambitious
among you, custom-built viewers that inte-
grate seamlessly into the client. Overall, the
main, artist-oriented Alienbrain client is a
model of flexible user-interface design.
While it can, at times, threaten to over-

8

XXT H E  S K I N N Y  O N  N E W  T O O L S  

P R O D U C T  R E V I E W S

NXN Software’s
Alienbrain 5

by chris corry

j a n u a r y  2 0 0 2  | g a m e  d e v e l o p e r

Alienbrain helps you keep a complete version history of every file in a project.

C H R I S  C O R R Y | Chris is a brash but harmless fellow, often found lurking in the shad-
ows of LucasArts Entertainment Company. He may soon be bald. You can reach him at
chrisc@lucasarts.com



w w w . g d m a g . c o m 9

XXXXX
XXXX
XXX
=XX
X

excellent

very good

average

disappointing

don’t bother

whelm you with its inherent customizabili-
ty, virtually every user is assured of being
able to set up the interface in whatever
way he or she desires.

Alienbrain supports all of the standard
version-control features and then some.
The software tracks the history of a file as
it evolves over time, encouraging users to
associate comments with each new ver-
sion and allowing effortless rollbacks to
previous versions. Version rollbacks are
nondestructive; the previous, rolled-back
version of the file becomes the new tip of
the revision tree, and you can still access
any previous version. The main client
even offers a fancy visual version compar-
ison feature that, for certain supported
file types, lets you compare multiple ver-
sions of an image file side by side. You
can check files in and out directly from
within common applications such as
Photoshop, Maya, and 3DS Max, and the
client even extends the Windows shell
namespace, allowing you to manipulate
version-controlled files directly from an
Explorer window.

There are a few lapses. The Alienbrain
server is only available on Windows plat-
forms, and overall the whole product has a
very Windows-centric feel to it. Macintosh
(OS 9.x or higher) and Linux clients are
available, but they provide only basic func-
tionality such as check-in, check-out, and
previewing. For text and source code files,
Alienbrain does provide rudimentary dif-
ferencing and merge facilities, but because
NXN relies on the Windiff and WinMerge
utilities, these features are far from best of
breed. And although projects can opt to

allow or disallow multiple check-outs on a
per-file-type basis, some programmers
might complain about the lack of support
for branching and version pinning. While
the requisite integration with Visual Studio
is well done, a source-code-oriented ver-
sion control system such as Perforce may
still be a better choice for programmers. At
the very least, if you do decide to commit
your programmers to Alienbrain, you’ll
want to invest in a beefed-up utility such as
Araxis Merge to help with differencing-
related tasks. The good news is that NXN
makes it relatively easy to substitute a
third-party merge application, so a moti-
vated project manager is likely to find a
way to get the entire team using
Alienbrain.

If the Alienbrain client is our sexy
femme fatale, the server is her well-mus-
cled bodyguard. Alienbrain’s server-side
databases support robust user-management
tools that provide a tremendous degree of
control over user rights and feature access.
For example, you can easily set up a group
that allows check-ins and check-outs but
disallows file deletions from a project. The
Alienbrain administrative user interface is
well designed and powerful, allowing you
to configure projects and monitor server
performance in real time from any machine
on the network.

Alienbrain is also a marvel of customiz-
ability. Beyond the aforementioned
chameleon-like abilities of the client, there
is almost no functional aspect of the pro-
gram that cannot be modified through
scripting or with a bit of programming
elbow grease. Much of the Alienbrain

client is actually implemented in JScript
(Microsoft’s take on JavaScript), and while
there’s a lot here to wrap your head
around, once you’ve mastered the land-
scape of the programming environment,
you can perform some remarkable modifi-
cations. One customization example that
particularly impressed me was a script that
hooked the client’s “Post_CheckIn” event
and used an external utility to process the
newly checked-in file into a platform-spe-
cific format. Such functionality could
ensure that users always had locally
processed, platform-native resources that
were ready for use. Because files can have
custom properties associated with them,
and because these properties are all
exposed to the scripting system, the cus-
tomization possibilities are nearly limitless.
As if this level of control weren’t enough,
NXN also supplies an SDK that lets
Alienbrain users modify and extend the
product using C++. If all this talk of script-
ing and programming intimidates you,
NXN offers a variety of consulting and
customization services — at an additional
charge, of course.

With version 5.0, Alienbrain is moving
beyond simple asset management by incor-
porating tools to help manage and track the
production process. As an art resource
moves through an approval process,
Alienbrain can attach a status to the file,
indicating the current state of that file. For
example, an artist can create a bitmap file
with a status indicating that the file is still a
“Work In Progress.” Once completed, the
file can be marked as “Awaiting Sign Off,”
after which time a lead artist can review the

View side-by-side comparisons of two files in a
file history.

The administrator can set up new users quickly
and give each unique permissions.

Comprehensive productivity reports offer a
detailed snapshot of a project.



10 j a n u a r y  2 0 0 2  | g a m e  d e v e l o p e r

XP R O D U C T  R E V I E W S

work and either approve it as final or bump
it back to the artist for modification. Alien-
brain can be customized to accommodate
your company’s specific development work-
flows, while an innovative color-coded
reporting feature makes tracking and
reporting progress a cinch. These features
are likely to be a godsend for projects with
complicated production processes.

Alienbrain offers a host of other features
that I haven’t the space to describe fully
here. These run the gamut from an exten-
sive reporting engine to an integrated
instant messaging system to a secure, VPN-
like feature that allows remote clients to
access off-site Alienbrain databases safely
and securely. 

Make no mistake about it, Alienbrain is
a large, sophisticated system that performs
well and promises a tremendous amount of
value to those customers brave enough to
tackle it head-on — and to those customers
with deep pockets. My biggest complaint
about Alienbrain is its price tag. This is a

powerful product that has much to offer,
but a typical installation using the full-fea-
tured Power Client will cost approximately
$2,000 a seat. You can purchase a less
expensive, lower-fidelity Base Client for
people like programmers, who don’t need
all of the Power Client’s bells and whistles,
but at the end of the day you’re still look-
ing at a significant expense for migrating an
entire team to Alienbrain. On top of the
high price, NXN Software has an utterly
bizarre policy of not providing prospective
customers with evaluation copies. In an
industry that’s used to paying thousands
upon thousands of dollars for state-of-the-
art 3D modeling tools, maybe some of the
larger studios can roll the dice and justify
an expense like this with little or no hands-
on experience. Most companies, however,
cannot. If Alienbrain cost $750 a seat, I
have little doubt that it would become a de
facto industry standard. As it is, it’s a terrif-
ic product that will sadly remain out of
reach for most of us.

GIMPEL PC-LINT
VERSION 8.0

by herb marselas

G impel PC-lint 8.0 (Lint) is arguably
one of the most powerful, and yet

daunting, tools for C/C++ programmers.
The power of Lint lies in the exhaustive
number of warnings, errors, and informa-
tional messages that its static code analysis
generates, informing you of virtually every
potential peril and pitfall waiting in your
code. The messages generated by Lint
range from strict C/C++ error information
to coding recommendations from Dan Saks
and Scott Meyers (the author of Effective
C++). The latest version of Lint doesn’t dis-
appoint, adding nearly 90 new messages
and 40 enhanced messages and options to
the range of information supplied.

The problem with all this power is that
it can lead some programmers to dismiss
Lint’s bountiful and seemingly extraneous
messages. This complaint is not unjustified.
Although our own code base at Ensemble
compiles without a problem on our com-
piler’s highest warning level, a fresh install
of Lint generated a 56,000-line message
file when run on just one of our files.
Within a few hours, I was able to identify
and disable all of the extraneous messages
and get down to a meaningful set of poten-

tial problems that needed to be examined
and addressed.

Beyond its power of static code analysis,
Lint’s appeal lies in the broad range of
platforms and compilers that it supports.
For Windows users, Lint is released as an
executable. But for other platforms, Lint is
released as a shrouded, or obfuscated, set
of source files. Lint also doesn’t favor one
compiler or library over another, support-
ing configurations for more than 30 com-
pilers and many common programming
libraries out of the box.

One of Lint’s few compiler-specific fea-
tures is its new support for Microsoft
Visual C++ Developer Studio Project files
(.DSP). Visual C++ users can now feed
their .DSP file directly into Lint, eliminat-
ing the need to copy the preprocessor set-
tings from the Visual C++ IDE into Lint’s
configuration files. However, Visual C++
users must still manually add other set-
tings, such as the include directories, from
the Tools Directories menu to the Lint con-
figuration files. As long as Lint already
supports the Visual C++ project files,
Gimpel should have gone the extra step
and included the ability to read additional
configuration information directly from
the Microsoft Windows registry.

Perhaps the most important new fea-
ture in Lint 8.0 is the interactive value
tracking. When it’s enabled, interactive
value tracking attempts to verify and
track values passed between functions by
making up to six passes over the code
being analyzed. This function can help
find value-out-of-range conditions or
other situations in which parameter pass-
ing could cause problems. While I was
able to see this functionality at work with
the sample programs that Gimpel supplies
with the Lint package, in practice I was
unable to find any issues of this type
using a sampling of files from Ensemble’s
large source code base.

Another change with this version is that
the documentation is now completely
online in Adobe Acrobat format. The doc-
umentation is relatively complete, though
it could include more examples illustrating
the messages that Lint generates.
NuMega’s BoundsChecker, for instance,
includes a small code example for each of
its errors; a similar glossary could only
enhance Lint’s usability.

ALIENBRAIN 5.0 XXXX

STATS
NXN SOFTWARE

Sonnenstrasse 19
80331 Munich, Germany
+49 (0)89 27 32 240
www.nxn-software.com

PRICE

Pricing varies depending on the size and
requirements of the project. Contact NXN for
more information.

SYSTEM REQUIREMENTS

Server: Windows NT 4 SP 5/2000; 256MB
RAM. Client: 128MB RAM; Windows
98/ME/NT 4 SP 5/2000, Mac OS 9.x or higher
(with MacOS Runtime for Java), or Linux
Server 4 SR 2 or later.

PROS

1. Flexible and effective main client user
interface.

2. Customization options are legion.
3. Powerful project management and pro-

duction tracking tools.

CONS
1. Price.
2. Geared more towards artists than

programmers.
3. Servers are available under Windows only.



The only major problem that I encoun-
tered while testing Lint 8.0 was a crash bug
that surfaced while parsing some of our
template code. However, Gimpel’s technical
support staff was able to get us a
workaround after just a few days and a
half-dozen e-mails. Unfortunately, we had
to wait almost a month for a patch to fix
the crash, so in the meantime we had to
modify our code whenever we wanted to
run Lint.

I also found that Lint doesn’t correctly
add itself to the path during installation if
you’re running Microsoft Windows NT,
2000, or XP. This seems like a glaring over-
sight, as Gimpel has added other Windows
NT/2000/XP features, such the ability to
reduce the priority of the process if you
want to run Lint as a background task.

If you don’t have Lint, get it today. If you
already have the last major version, careful-
ly evaluate whether these new features are
enough to justify the upgrade. Regardless of
your choice in compiler and platform, using
Lint can only improve the quality of your
code if you take the time to configure it
properly and use it regularly.

XXXX | PC-lint 8.0 | Gimpel Software
www.gimpel.com

Herb Marselas is a programmer at
Ensemble Studios.

EFFECTIVE STL: 50 SPE-
CIFIC WAYS TO IMPROVE
YOUR USE OF THE
STANDARD TEMPLATE
LIBRARY
BY SCOTT MEYERS

reviewed by noel llopis

H ave you read Effective C++, also by
Scott Meyers? No? Go buy it right

now, read it, reread it, and then come back
here. I guarantee that it will make a huge
difference in the way you work.

O.K., welcome back. Here’s the good
news: Effective STL is to STL what
Effective C++ is to C++. Meyers’s latest
book is equally great and is written in the
same light, conversational tone that made
reading his earlier work such a pleasure. It
assumes that the reader has a basic knowl-
edge of STL (and C++) and builds on that
knowledge to show how to use it effective-
ly and avoid common pitfalls.

The Standard Template Library (STL) is
made up of generic data structures and
algorithms that can be used across many
compilers and platforms, including most
current consoles. The library is imple-
mented with templates, so the resulting
code is quite efficient, possibly even more
so than hand-coded structures and algo-
rithms. Additionally, STL has been imple-
mented, tested, debugged, and optimized
by thousands of peo-
ple, so it’s generally
reliable code. STL
also empowers its
users by putting pow-
erful constructs at
their fingertips.
Previously, a common
approach was to
throw a bunch of
objects into an array
and search through
them in linear time
(does that sound
familiar?). STL lets
you put these objects
into a hash table and
thus have constant-
time access to them.

Effective STL begins
with a fairly thorough discussion of con-
tainers (vector, list, map, and so on) and
iterators. Meyers immediately goes beyond
a typical description of the containers and
their O(n) performance characteristics by
addressing important, real-world ques-
tions: Is the memory for the elements allo-
cated contiguously? Are the iterators inval-
idated when the elements change? What is
the most efficient way of removing ele-
ments for a specific container?

Meyers then moves on to algorithms and
functors. Just as with his discussion of con-
tainers, rather than simply listing all the
available algorithms, he points out com-
mon mistakes and how to deal with them.
Meyers reveals, for example, different ways
of sorting elements, or how std::remove
really works (and why it doesn’t really
remove anything).

The final chapters present more general,
but still very useful, information on the
STL. Meyers discusses when to use STL
algorithms and when to use your own,
style guidelines, or even how to deal with

the broken STL implementation and tem-
plate support in Microsoft’s Visual C++.

But STL isn’t perfect. Readers will gain
some ideas of where STL is lacking, but
these issues aren’t spelled out explicitly.
Sometimes you’ll need to read between the
lines and consider how STL applies to
game development. For example, memory
allocation can be an issue, especially for
those doing console development; game

developers will
probably want to
write their own
allocators. Effective
STL has a brief dis-
cussion of alloca-
tors but doesn’t
provide enough
information to
guide developers
who need to write
their own.

Another of STL’s
oft-cited shortcom-
ings is the difficulty
debugging STL
code. Developers
working with STL
often face cryptic
multi-line error

messages and experience difficulty viewing
the elements of a container in the debugger.
Effective STL shows readers how to parse
the intimidating error messages and
includes pointers to STL resources on the
Internet.

Effective STL works well both as a book
to read cover to cover and as a reference
later on. Meyers only uses source code
where it’s necessary; he doesn’t bore his
readers with pages and pages of pointless
code. As a matter of fact, this book won’t
bore you at all, since it packs a lot of infor-
mation into a mere 250 pages. Overall, you
simply must read Effective STL before you
decide to use (or not to use) STL in your
next game or tools. If you’re currently
using STL, then this book should already
be on your bookshelf.  q

XXXX | Effective STL
Addison Wesley | www.aw.com

Noel Llopis a software engineer at
Meyer/Glass Interactive, where he special-
izes in 3D graphics.

12 j a n u a r y  2 0 0 2  | g a m e  d e v e l o p e r

XP R O D U C T  R E V I E W S



P R O F I L E S
c h r i s  h e c k e r | T A L K I N G  T O  P E O P L E  W H O  M A K E  A  D I F F E R E N C E  

Jay Stelly is a senior engineer at Valve. He was on the HALF-
LIFE team, and he’s leading the engineers developing the tech-
nology for Valve’s next generation of games. We recently

caught up with Jay to discuss his take on the challenges of bal-
ancing the roles of programmer, designer, and manager. 

Game Developer. How much of your time do you spend managing
versus programming? Do you try to stay out of the critical path on your
own code?

Jay Stelly. The management demands change as the project goes
on, but most of the time I spend about one to two days per week
doing that. I’m still on the critical path, but my schedule does
reflect having fewer hours to spend on coding. I still love to write
code. I have to be on the critical path to enjoy my job! 

I’ll get a few hours each day to code without distractions. I’ll
shut off e-mail and the phone and just focus on what I’m coding.
For some of the other time, I’m still coding, but I’ll be interrupted
often with various meetings or issues. Obviously, there are some
tasks I can only get done with the proper amount of focus — so it
takes a little extra planning as well. But regardless of process, most
of the management comes back to hiring. I think that having the
right people is a bigger part of the problem than how you organize
those people.

We try to hire great people and stay out of their way as much as
possible. We don’t have any hierarchy in our engineering group.
Everyone is responsible for a product; there are no technology-
only developers at Valve.

GD. You have the legacy HALF-LIFE code, licensed physics, and a
large team of programmers doing custom technology. How do you
integrate all this, and is this heterogeneity the future of high-end
games? 

JS. Games have already reached this level of complexity. Many
developers are reusing code now; I’d say it’s the present as well as
the future. Gamers are asking us to push the bleeding edge but not
take any steps back along the way. Our code base has become
more and more component oriented as it has grown. We’ve got
clear interfaces between components, and really tight communica-
tion about the overall architecture. 

GD. With long ship cycles, how do you make sure components that
are developed early on are still relevant to the game that actually
ships? 

JS. This has been a really interesting shift. At the high level, our
overall technology goals don’t change much over the course of a
project. But underneath, we’re incredibly iterative. We constantly
bring in new bits of technology or upgrade existing code. We cer-
tainly aren’t just implementing something that was completely
designed up front. We’re attempting too many things that we did-
n’t know quite how to do when we started. So, we take small
steps, and keep the engine running and stable at all times. When
big new features come online, there is usually some loss in stabili-
ty, but it’s temporary. We do throw away some code, but I believe

that building the
code we throw
away is a neces-
sary step to get-
ting the final
code just right.
Having things
split out into
components
makes it much
easier to manage
the iteration.
Much of the
change happens
behind interfaces,
without large effects on the rest of the system. We’ve got enough
automation built in to allow us to keep the content up to date as
we make changes.

GD. What’s the interaction between game design and engineering at
Valve? How do you keep the game design iterative and flexible without
constantly churning and rewriting code?

JS. This is the hard part, isn’t it? In the beginning of develop-
ment, we got a bunch of people together across disciplines to
make the high-level game design and technology plan. Most of
the new technology was driven directly by our game design. But
once we started to implement that technology and build the game,
we had to deal with a bunch of challenges. Probably the biggest
cost when adding new technology is the amount of time it takes
for the artists and designers to get comfortable with it. At that
point, they have lots of really good ideas for improvements and
further development. So we try to bring those guys into the
process as early as possible. Each new technology has at least one
artist or designer acting as an advisor and tester far in advance of
the rest of the team. 

This procedure lets us figure out a bunch of the design prob-
lems earlier, and lets programmers fix these problems before they
become overly difficult or costly. It also means that we can start
working on second-order features sooner, because we’ve gotten
that early feedback. It’s kind of odd, but another part of the solu-
tion to this problem is to avoid being too flexible with the code.
Our game designers come up with incredibly creative solutions to
problems when faced with technological constraints. We’re not
trying to simply remove these constraints from the design process
wherever possible. Some of the best stuff happens when designers
are forced to think about how to create the game in the face of
constraints. So it’s important to be careful about choosing which
constraints to change —  and not to make these decisions without
giving the design enough time to react. Having constraints be
inflexible is really valuable. Lack of certainty about technology
will paralyze a game design. q

Jay Stelly, 
Technically 

Speaking

Valve’s Jay Stelly. 

j a n u a r y  2 0 0 2 | g a m e  d e v e l o p e r14



j a n u a r y  2 0 0 2 | g a m e  d e v e l o p e r16

I N N E R  P R O D U C T j o n a t h a n  b l o w

L et’s continue our quest for
higher-quality mipmaps that
we began with last month’s
column (“Mipmapping, Part
1,” December 2001). Last

month we saw that Kaiser filters produce
output of a fairly nice quality. According
to the tenets of signal processing, the more
CPU we are willing to spend, the wider we
can make our filters and the higher the
output quality will be. But when we tried
to make our filters very wide, we saw dis-
turbing ripples in our output images, so we
settled on a filter that was not very wide
after all.

We suggested that these ripples were
caused by oscillations in the frequency
response of the filter. But the output ripples
didn’t go away even as the filters became
ridiculously large and their frequency
responses approached the ideal. This sug-
gests that additional causes lurk behind the
scenes. As it happens, identifying the guilty
phenomena is important for our under-
standing of much of computer graphics, not
just mipmapping.

Ditching Filters

W ide Kaiser filters are just approxima-
tions to an infinitely wide sinc pulse,

which we said would remove the high fre-
quencies from our image. Sinc does what
we want because its Fourier transform is a
rectangular pulse; when applied to the
Fourier transform of our signal, this pulse
multiplies the low frequencies by 1 and the
high frequencies by 0.

In applications such as live audio process-
ing, you want to respond to a signal coming
over a wire with low latency; for these
cases, the filtering form of antialiasing is
well suited. But because we are mipmapping
as a batch process, we have the option of
just performing the Fourier transform on
our texture map, manually writing zeroes to
the high frequencies, and then transforming
it back.

Mathematically, this is the same as filter-

ing with an infinitely wide sinc. Since we
are perfectly enacting the rectangular pulse
frequency response, we won’t have any
problem with a finite filter causing frequen-
cy response ripples. Therefore our output
will be perfect, or so we might expect.

But our output isn’t perfect. The texture
map still has horrible ripples in it, as you
can see in Figure 1. It looks much like the
output of last month’s Figure 4, which was
processed with a 64-sample Kaiser filter.

Life isn’t simple, so there are multiple
causes for these ripples. We’ll look at the
two most important causes. First, though,
I’ll mention that this month’s sample code
(which can be downloaded from
www.gdmag.com) implements the Fourier
transform method of mipmapping. On
some images, such as the human face in the
Choir Communications billboard, the
results are better than the Kaiser filter. But
on some other images, the results are terri-
ble. So what’s going on?

Darn

T he biggest problem is that our concept
of a texture map is mathematically ill-

defined. Texture maps are pictures meant to
evoke in the viewer’s mind the nature of the
represented surface. We need to think about
the mathematical consequences of the way
in which we store texture maps and com-
pare that math to our mental model of the
corresponding surface. We will see that the
two are in conflict.

Figures 2 and 3 show a simple texture:
each pixel is the same shade of green,
except for one spot that is white. We inter-
pret this as a surface that is uniformly
green everywhere except in that white
spot. Ideally, all the math we perform on
the texture should be consistent with this
mental interpretation, so that the
processed image matches our expectations.
Our mental model of the image surface is
a continuous function, but the texture map
is not continuous. It exists only as a series
of samples, which is why Figure 3 is
drawn the way it is. 

Let’s talk about sampling and reconstruc-
tion. When we sample an arbitrary (not
band-limited) continuous function at n
points, then those points are the only infor-
mation we have. In between, there could be
anything at all. So suppose we take a set of

Mipmapping, Part 2

J O N A T H A N  B L O W I Jonathan Blow is a game technology con-
sultant living in San Francisco. His e-mail is jon@bolt-action.com.
Game that influenced this article: Konami’s POLICE 911, arcade ver-
sion.  That game rocks!

FIGURE 1A (left). Original image of a road sign.
FIGURE 1B (right). A close-up of the corner
after mipmapping via the discrete Fourier
transform.  Note the unwanted bands of color
(“ringing”).

FIGURE 2 (left). A solid green texture containing
a single white spot (pixels depicted as big
squares. FIGURE 3 (right). The same texture as
Figure 2, drawn differently to emphasize the
point-sampled nature of the data.



w w w . g d m a g . c o m 17

samples and try to reconstruct a continuous
function. We need to interpolate all the val-
ues in between, but because we threw away
most of the original data, no interpolation
algorithm will get us back to where we
started. We just have no idea what was sup-
posed to be between those samples.

Here’s where digital filtering comes in.

The Shannon Sampling Theorem is a cor-
nerstone of information theory. It says that
if you restrict your input functions to con-
tain only a certain range of sinusoid fre-
quencies (that is, the function is band-limit-
ed), then you can reconstruct the continu-
ous function exactly from the samples.
That’s a powerful idea.

But there’s a consequence to that idea.
When reconstructing, we’re not allowed to
dictate what the function does in between
the sample points; we have to take what
we’re given. Because the continuous func-
tion must be band-limited, it will oscillate
between samples in ways that we may not
expect. Figure 4 shows a one-dimensional
cross-section of our green-with-white-spot
texture and the continuous function it rep-
resents when we use sinusoids as our recon-
struction basis. Note that the continuous
version is not flat in the green area, as we
would imagine it. Instead, it ripples. It can’t
possibly be flat, because the band-limitation
constraint means that the function is unable
to ease down to a slope of zero. 

As far as the math we are using is con-
cerned, here’s what happened: To generate
our texture, we started with some band-lim-
ited function with ripples all over the place,
but when we sampled it, our sample points
just happened to hit the right spots on the
ripples to generate constant intensity values.
Because the samples represent the entire
continuous function, the ripples are still
there, and our signal processing operations
will reproduce them faithfully. When we

shrink the texture to build mipmaps, we are
essentially zooming out our view of the
continuous function. Visible ripples appear
because the change of scale and the added
low-pass filtering disrupt the delicate coinci-
dence of our sample point positions.

If we enlarge the source texture instead
of shrinking it, we will see the ripples at our
new sample points. As we move to higher
and higher resolutions, we converge toward
the continuous function in the limit.

Last month I mentioned that Don
Mitchell, who has helped with this column
by discussing many of the ideas, has a filter
named after him. The Mitchell filter result-
ed from experiments about enlarging
images without making them look icky. It is
intentionally imperfect from a signal recon-
struction standpoint, because perfect recon-
struction isn’t very much like what our
brains are thinking about. But the Mitchell
Filter doesn’t stray too far from the perfect
upsampling either, because then nasty arti-
facts would appear.

In the same way that the Mitchell filter is
not a perfect resolution-increasing filter, our
mipmap filters, intended to decrease resolu-
tion, look best when they hover in a sweet
spot between badness and goodness. 

Do We Really Want to
Antialias?

There is another important point here.
The band-limited continuous-function

representation, with all the unacceptable
ripples, is a prerequisite to digital sampling.
That is, if you walk up to a real-life green
wall with a white spot on it, and you wish
to create a texture map from it, then to pre-
vent aliasing you must low-pass the incom-
ing image before digitizing it. This filtering
produces the unacceptable rippled function,
and the ripples will show up in your sam-
ples. Thus, digital cameras don’t try to
antialias this way, and they don’t collect
point samples to use as the photographed
image. If we then treat the image as a col-
lection of band-limited point samples, a
practice that seems to be in vogue, then we
introduce ripples that weren’t there in the
natural lightfield.

Antialiasing causes the ripples. We don’t
want the ripples. Therefore, antialiasing is
not really what we want.

What we actually want is for all of our

graphics to have infinite resolution, so that
we can draw surfaces at arbitrary scales and
orientations with impunity. Unfortunately,
we don’t yet have the means to do that, so
we’re using this digitally sampled image
stuff instead. Antialiasing is an important
tool that helps us cope with the constraints
imposed by digital sampling. But it also
causes some problems, so it should not be
visualized as a goal in itself.

Antialiasing is usually touted as some-
thing that only fixes problems, that has no
downside. That’s because an awful lot of
people in computer graphics (and game pro-
gramming) work from day to day using a
set of concepts that they don’t understand
down to the core. They’re just repeating
what they heard from someone else, and
what we get is much like the game of tele-
phone, where we whisper in each other’s
ears, and after a few transmissions the mes-
sage “I biked with Pete on Friday” becomes
“I’d like to eat a fried egg.”

That’s not to say that anyone should be
blamed — it’s hard to understand all this
stuff. I didn’t understand it until writing this
article. But there you have it: Antialiasing is
not really what we want. We want elimina-
tion of objectionable artifacts, which is a
different thing. Antialiasing can help in that
regard, but it’s not a total solution, and it
can hurt too.

And that’s assuming that we actually
know how to antialias — which we don’t.
Here’s why.

Questionable
Interpretations

The Fourier transform is all about treat-
ing your data as a big vector and pro-

jecting it onto a set of (complex-valued)
sinusoids that serve as basis functions. Each
sinusoid is of a different frequency. The
length of the vector in the direction of each
basis function tells us something about the
frequency content of the signal for that
given frequency.

But what it tells us is not the actual fre-
quency content. If you have a single cosine
wave of the same frequency as a basis func-
tion and you push it through the Fourier
transform, you’ll get what you’d expect: a
single spike in the output at the appropri-
ate frequency. But if that cosine wave has a
frequency somewhere in between the basis

FIGURE 4. A one-dimensional cross-section of
the texture from Figure 2, viewed from the side;
the cyan curve shows the band-limited continu-
ous function represented by these samples.



j a n u a r y  2 0 0 2 | g a m e  d e v e l o p e r18

I N N E R  P R O D U C T

functions, you don’t get a spike anymore.
You get a smear of frequencies across the
entire spectrum. Figures 5 and 6 illustrate
this. The peak of the Fourier-transformed
data is in the right place, but what is going
on with all that other stuff?

Even though each Fourier basis function
consists of a single frequency, in the end
they’re still just basis functions. If you
ascribe any interpretation to the transformed
data, aside from “the inner product of my
input data with each basis function,” then
you do so at your own risk. “Frequency
content of the signal” is just an inter-
pretation, and it’s a slightly misleading one.

When we low-pass filter in order to
antialias, we are acting on this misleading
interpretation. Consider that the cosine in
Figure 5 could be downsampled into a
mipmap just fine, as it stands. But when
we filter it, we cut off all the high frequen-
cies to the right of the red line in Figure 6.
These frequencies aren’t really there; when
we subtract them from the cosine wave,
the shape changes. We were shooting at
ghosts, so we hit ourselves in the foot.
This is important: some kind of imaginary
true antialiasing would have left the cosine
unscathed; but all we know is how to
eliminate aliasing as the Fourier transform
sees it through its own peculiar tunnel
vision. This causes problems.

If we can’t even antialias a dang cosine
wave without messing it up, then what can
we antialias?

Moving On

W e’ve looked at some difficult issues
underlying not only mipmapping

but many other areas of computer graphics
as well (pixels on the screen are, after all,
samples). It’s important for engine pro-
grammers to understand these issues. But
as of today there’s no magic bullet for
them. I can’t just give you code that magi-
cally shrinks your textures while simulta-
neously preventing aliasing, bluring, and
rippling. Maybe in the future we’ll have a
new paradigm to help sort out these prob-
lems. Maybe, if we’re vigilant and our aim
is true, the community of game engine sci-
entists will develop the new concepts and
techniques. Who can say?

But this is an action-oriented column, so
I’m obliged to provide some news you can
use today. The good news is that there’s
something we can do, having nothing to
do with choice of filter, that improves the
quality of our mipmaps.

Conservation of Energy

A n important goal of mipmap filters is
that they don’t add or subtract energy

from an image; mipmap levels of a single
texture should all be equally bright. This is
equivalent to saying that as you sweep a fil-
ter across a given sample, the sum of all
that sample’s contributions does not exceed
the sample’s original magnitude. Or: 

where fi are the filter coefficients and s is
the sample value. This implies 

Thus, the sum of the filter’s coefficients is
1.

We have a problem, though. We want
the same number of photons per unit area
to shoot out of the user’s monitor, no mat-
ter which mipmap level we’re displaying.
But that doesn’t happen, even though our
filter’s coefficients sum to 1. This is
because we tend to do our image process-
ing in a color space ramped by the moni-
tor’s gamma, which messes up the energy
conservation properties.

Figures 7 and 8 demonstrate this. Figure
7 is a high-contrast texture at full resolu-
tion. Figure 8 is a lower-resolution
mipmap constructed in the naive way; the
areas containing fine features have gotten
significantly dimmer.

Here’s a quick gamma recap: Unless we
do weird tweaking with our graphics
card’s color lookup-tables, the amount of
light coming out of a CRT is not propor-
tional to the frame buffer value p. It is
proportional to psγ, where sγ (gamma) is a
device-dependent value typically above 2.
Our eyes interpret light energy logarithmi-

fi
i

=∑ 1

f s si
i

=∑

FIGURE 9A (top). A
highway shield
mipmapped using a
typical game’s box fil-
ter. FIGURE 9B (cen-
ter). A Kaiser filter
does a better job of
preserving the shapes
of the numbers and
the sign border.
FIGURE  9C (bottom).
Moving the Kaiser fil-
tering into light-linear
space, we maintain
the contrast between
the numbers and the
background, and we
preserve the white
border around the
edge of the shield.

FIGURE 5 (top left). A low-frequency cosine wave (green) that could be sampled easily at the inter-
vals marked in white. FIGURE 6 (top right). The magnitude of the frequency content of Figure 5
(graphed in yellow), as reported by the Fourier transform. It is the sum of two sinc pulses. The red
step function depicts the cutoff pulse of an ideal low-pass filter. FIGURE 7 (bottom left). A high-con-
trast texture at full resolution. FIGURE 8 (bottom right). The high-contrast texture reduced by three
mipmap levels (box filter). The text has become somewhat dim, and the outlining rectangle has
become extremely dim. This is energy loss due to the gamma ramp.



cally, so this exponential outpouring of
energy looks somewhat linear by the time
it gets to our brains.

We store all our texture maps in a non-
linear way — they expect the CRT to
exponentiate them in order to look right.
This serves as a compression mechanism.
We would need more than 8 bits per chan-
nel if each channel held values proportion-
al to light energy.

Suppose we pass a simple box filter,
coefficients [.5, .5], across a sample of
magnitude s. We get 2 contributions to
the image, of magnitude .5s and .5s. That
adds up to s again — so far so good.
Now the CRT raises these values to the
power gamma. Now we have two adja-
cent pixels of magnitude (.5γ sγ). For sim-
plicity, suppose gamma is 2. Then the
total amount of light energy is (.25 s2+
.25 s2 = .5s2) . . . but this is only half as
bright as it should be (the unfiltered pixel
would have brightness s2). Our image got
dimmer.

We can fix this by filtering in a space
where pixel values are proportional to
light energy. We convert our texture into
this space by raising each pixel to the
power gamma. Then we pass our filter
over the texture, ensuring conservation of
energy. We then raise each pixel to the 1/γ
to get back to the ramped space so we can
write the texture into the frame buffer.
(The CRT will raise each pixel to the
gamma again during output.)

It would be cleaner to set up the frame
buffer so that all values stored in it are
linear with light energy; the RAMDAC
would perform any necessary exponentia-
tion. High-end film and scientific render-
ing all happens in linear-light; game ren-
dering will switch to this paradigm soon.
When the frame buffer is linear-light, you
can correctly add radiance to a surface
just by adding pixel values in the frame
buffer. (Right now, when we shine multi-
ple lights on a surface, we just add the
values together, but the gamma ramp
makes that wrong. This is one reason
why lighting in PC games is dull and
limp.)

This month’s sample code implements
mipmapping in linear-light space, and you
can see the results on a game texture in
Figure 9.  q

w w w . g d m a g . c o m 19

F O R  M O R E  I N F O R M AT I O N

A C K N O W L E D G E M E N T S

The “Phoenix 1 Mile” texture in Figure 4 is by
Dethtex, see http://users.nac.net/schwenz.

Thanks to Don Mitchell, Sean Barrett, and Jay
Stelly for fruitful discussion. 

Blinn, Jim. Jim Blinn’s Corner: Dirty Pixels.
Morgan Kaufmann, 1998. 

Hamming, R.W. Digital Filters. Dover Publica-
tions, 1998. 

Poynton, Charles. Digital Video and HDTV
Algorithms and Interfaces. Morgan
Kaufmann, 2001.



j a n u a r y  2 0 0 2 | g a m e  d e v e l o p e r20

A R T I S T ’ S  V I E W h a y d e n  d u v a l l

Building the Future,
Part 1: Architecture

W hy is it that we play
videogames? Is it to
learn something
about ourselves as
human beings? Is it

to hone our social skills and make us more
attractive to the opposite sex? Do video-
games strengthen the fabric of society? Do
we find answers to life’s most profound
questions when we plug in our consoles
and fire up our joypads? Or is it just enter-
tainment? Call me shallow if you like, but
the game industry is, by its very definition,
in the business of entertaining.

O.K., some games come along that give
us insight into the microeconomics
involved in running a chain of pizza
restaurants or simulate what it’s like pilot-
ing an Apache helicopter. But we still play
them for fun. Games that attempt to be
about real life, like their TV counterparts,
run the risk of becoming tedious, and once
you remove the element of voyeurism
(which is unlikely to play a large part in a
game, anyway), you can easily be left with
nothing more than the mundane. Which is,
of course, no fun at all.

With this in mind, it’s easy to see why
such a large percentage of games are set in
a fantasy world that doesn’t actually exist.
The ability to design a game that takes
players beyond the things they can experi-
ence in their real lives, as well as the cre-
ative freedom that this affords, is hard for
game developers to resist.

As with film, the choice of fantasy set-
tings often splits broadly into either a
sword-and-sorcery troll-bashing dragon
fest, with pointy weapons and more than
its fair share of beards, or the sci-fi staple
that is the world of the future.

In this column, I will take the second of
these and look at some ways in which we,
as artists and designers, can put together an

environment that successfully gives players
the feeling that they are in the future, with
specific reference to the architecture.

Buildings Are Not Fun

W hat makes a game’s visuals excit-
ing? Insane particle effects when

you fire your plasma cannon? Exquisitely
detailed zombies tripping over their own
intestines? Beautifully animated female
ninjas with real-time physics in all the
right places? The answer to all of these
questions is, of course, yes, but as sexy as
the central characters and their effects may
be, without a high-quality environment to
give the game its context and location, the
atmosphere and overall feel of the game
will suffer.

Architecture is an indication of the time
period in which the game is set, but more
than that, it can be both a backdrop and
the stage on which the action takes place.
As game environments become increasing-
ly interactive, and as we are constantly
being allowed to use greater detail as well
as a wider variety of visual tricks in our
worlds, creating the architecture, exteriors
and interiors, is no longer the thankless
task it once was. The days when the lowli-
est of all art monkeys was assigned the
job of making “some buildings for the
background” are long gone, and the quali-
ty of our architecture is now a strong con-
tributor to a game’s visual impact. 

To the DeLorean,
Marty…

Having established that architecture
within a game is important, and that

this is particularly the case when designing
the future, we now need to decide what
future we are going to be dealing with.

Perhaps the first and most obvious ques-
tion is how far into the future we’re going.
Near-future games, like near-future films,
are based in a world that we know and
recognize, albeit with a few, often superfi-
cial, changes. Travel farther into the future
and the restrictions of our current sur-
roundings begin to evaporate. Extrapola-
tion gives way to hypothesis and the possi-
bilities become more varied.

Even when avoiding extremes like the
diaper-wearing future world of Sean
Connery’s Zardoz or that of H. G. Wells’
hairy, subterranean Morlocks in The Time
Machine, the most common future arche-
types are that of utopian and dystopian
civilizations (Figure 1). These reflect the
positive and negative possibilities we imag-
ine as potential futures, and are polar
opposites of what will, for us, likely turn
out to be a combination of both.

The utopian ideal often describes a place
where technology has been used to produce
a world of beauty, peace, equality, and more
often than not, a whole lot of white molded
plastic. In the utopian future, the designer is
concerned primarily with aesthetics, and

HAYDEN DUVALL I Hayden started work in 1987, creating air-
brushed artwork for the games industry. Over the next eight years,
Hayden continued as a freelance artist and lectured in psychology at
Perth College in Scotland. Hayden now lives in Bristol, England,
with his wife, Leah, and their four children, where he is lead artist
at Confounding Factor.



architecture becomes less about function
and more about form. Advances in science
have allowed the city of the future to
become a clean, bright, happy place, where
the harmony of human achievement is
reflected in the surroundings.

Dystopia, however, is a little bit darker
and a whole lot dirtier. Rutger Hauer may
have seen it as an ideal holiday destina-
tion in Blade Runner, but the dystopian
city of the future takes the worst of soci-
ety’s ills and straps on decades of indus-
trial madness.

Both versions of the future present the
game artist with a variety of challenges.
As always, the easiest environment to
deal with in a game is a small, interior
space. Once we venture outside, things
tend to get larger, and the areas that we
need to fill with meaningful visuals get
larger also. Whether organic or man-
made, large spaces are both labor inten-
sive and resource hungry, and solutions
involving complex systems of LOD, tex-
ture streaming, and clever layout can all
help ease the pain.

Although our game worlds often com-
bine elements of both utopian and dystopi-
an futures, as far as the creation process
for the game artist goes, it’s useful to break
it down into the three areas of surface,
structure, and scale.

Surface: Shiny Happy
People and Urban Decay

I n this context, surface refers to the
materials that we are attempting to por-

tray, their properties, and how we convey

these within the framework of our engine
and platform limitations.

When looking at large-scale city build-
ings, the move from brick to concrete and
then toward shiny surfaces is clearly visi-
ble. Highly reflective materials became
associated with high-tech, and as the
1970s saw the gratuitous proliferation of
mirrored sunglasses, so the 1980s began
in earnest to produce huge, monolithic
mirrors at the centers of our largest cities.
The portrayal of future cities of chrome
and glass has long been a science fiction
staple, but besides being a slightly dated
approach, real-time environment mapping
and refraction within a world that is
packed with shiny, semitransparent sur-
faces will have any programmer bleeding
from his or her ears in no time at all.
Despite huge advances of late in areas
such as hardware transformation and
lighting, reflective surfaces on a large scale
within a game are still not practical.

In a similar vein, one indication that we
are indeed dealing with the architecture of
the future is the presence of exotic or out-
of-the-ordinary materials. Examples of this
have been evident for some time in preren-
dered backgrounds or FMV sequences, and
with the graphical grunt behind today’s
gaming platforms, the game artist can now
achieve some of these effects in real time,
without the hardware they’re working
with bursting into flames under the strain.

Taking materials out of context and
building with them can be used to suggest
a futuristic world, and using the detail of
organic surfaces such as tree bark or coral
can be a good starting point. Combining
these kinds of natural materials with some
element of human design can produce
interesting results. In graphics, the mathe-
matical precision of computer-generated
features and geometry is usually a problem
that detracts from the realism of a scene.
Our eyes are extremely sensitive to this
kind of perfection, as the real world is gen-
erally full of flaws and shapes that are
much less exact. We can, however, use this
regularity and order to place features with-
in an organic texture to show that it is
being manipulated by humans and used as
a material for construction.

The simple addition of fabrication joins,
rivets, bevels, and the like can be all that’s
needed to give a surface the extra detail

necessary. This combination of the natural
and the manufactured can provide some
unique surface qualities (Figure 2). 

Once we begin to look toward a dirtier
future, the kind of surfaces we are dealing
with become more recognizable to us. It’s
nigh on impossible to talk about a dystopi-
an future city without reference to Blade
Runner (see, I’ve already done it twice).
But without lapsing into spasms of wor-
ship at the alter of Syd Mead, his vision of
a future city has had a vast impact on visu-
al representations of our future in films
and games alike.

Using the dirtiest, most unkempt pieces
of a contemporary city as a starting point,
and extrapolating out to a seething mass
of giant, twisted structures, decaying, part
derelict, the surfaces we begin to encounter
would be at home in an abandoned chemi-
cal plant. Taking materials and dirtying
them down is certainly part of the way
toward the look we’re after, but another
important element is that of making the
underlying technology visible.

In a dystopian future, the aesthetics of
design are crushed under the weight of
shoddy workmanship and dereliction.
Instead of a single, coherent whole, in
which all elements are combined in har-
mony, things are grafted together, creating

ugly hybrids. What are usually hidden
workings break through to the surface,
with pipes, ducts, and wiring all becoming
exposed (Figure 3). Architect Renzo Piano
may have won huge acclaim for designing
the Pompidou Center in much the same
way, but combine this externalization with
dilapidation and a good coating of dirt,
and the result is somewhat less attractive.

When dealing with the surface (in other
words, textures), it is often useful to add
mechanical detailing, or to expose circuit-
ry. High-magnification images of micro-

w w w . g d m a g . c o m 21

FIGURE 2A (left). Utopian texture 1. FIGURE 2B
(right). Utopian texture 2.

FIGURE 1A (left). Utopia. FIGURE 1B (right).
Dystopia. 



j a n u a r y  2 0 0 2 | g a m e  d e v e l o p e r22

A R T I S T ’ S  V I E W

processors can be extremely useful as a
starting point for adding the precision-
machined look to a surface. “Greeble”
plug-ins are also useful if you wish to ren-
der out an image to use in texture genera-
tion, as these can take most of the work
out of generating a large amount of
detailed geometry.

One additional aspect not to be over-
looked when considering surfaces in a
game is the way in which they are encoun-
tered by the player. Detail in a texture is,
of course, wasted if the player is never
going to be near enough to appreciate it,
especially when dealing with potentially
large-scale objects such as buildings. As
always, a sensible allocation of resources
will achieve the best results.

Structure: The Shape of
Things to Come 

Buildings have historically been fairly
square. Maximizing usable space, and

minimizing the complexity of the physics
involved has generally led to boxlike struc-
tures. Even when departing from a cuboid,
straight lines remain an important feature.

Seeing this as somewhat of a challenge,
architects of recent times have availed them-
selves of vastly improved technology, as
well as huge advances in the understanding
of the science involved in construction, to
create buildings that are anything but angu-
lar. Some err on the side of  crazy (the
Guggenhiem Museum in Spain, for exam-
ple). The trend, however, has been to chal-
lenge convention, and in the city of the
future, we are free to break all the rules.

The battle of the curve, struggling to
overcome its idiot cousin, the straight line,
has featured throughout most areas of

industrial design. In architecture, especially
when dealing with large structures, the
restraints are somewhat more stringent
than when dealing with a vacuum cleaner,
for example. But as we probe the future
for possibilities, one potential direction to
explore is a move toward organic forms.

A simple indicator that the player is
roaming around in the future is the pres-
ence of structures that would not be possi-
ble to build in the present (Figure 4). It is
also vital to remember that any structures
must function within the context of the
game in which they exist. Gameplay consid-

erations and level design have to take prece-
dence over pure aesthetics, and successfully
combining the functional with the beautiful
is the ideal.

Scale: How Big Is Yours?

One common view of the future city is
that it will somehow have to accom-

modate vast numbers of people, whether for
work or simply as a place to live. This idea
of expansion in all directions is already in
evidence in places such as Tokyo, where
severe limitations of available land have
caused the city to expand vertically and also
to compact more into less space.

This high-density living has, on occasion,
been used to show that the post-apocalyptic
landscape is no longer inhabitable (Mega
City One in Judge Dredd for example), but
it can also simply be a caricatured version
of the overcrowding seen today in most of
the world’s major cities. Whatever the
underlying rationale, architectural scale is a
useful component of the future landscape.

The well-worn science-fiction idea of
the huge, all-powerful corporation that

runs everything from the police to the
burger-matic fast food vending machines
is not that hard to imagine (I think we can
already name a few contenders), and cities
of the future like to base these corporate
monsters in buildings scaled to reflect
their immensity. 

Specifically, the height of a structure has
always shown man’s defiance of natural
laws  and his ever-growing command of the
elements. In the future, we can theorize that
our architecture will doubtless take advan-
tage of incredible scientific breakthroughs,
and the scale of our largest buildings will
increase accordingly (Figure 5).

When building a game environment, an
overindulgence in large-scale architecture
can, however, be counterproductive. Unlike
the real world, our perception of scale with-
in a game is almost completely relative, and
if too much of a character’s environment is
built on a massively large scale, we run the
risk of creating the impression that it is
actually the character that is in miniature.

Constructing the Future

Successfully creating a game world set in
the future obviously depends on a

whole range of contributing factors. Archi-
tecture is certainly one element that we, as
artists, can use to locate the player in the
desired time period and create an atmos-
phere that enhances the experience. There
is, of course, no correct way to construct

the buildings of the future, as every game
has its own particular demands and every
world we build can be unique. 

Despite this array of possibilities, we
have the present to use as a starting point,
and there is a wealth of visionary architects
whose work already challenges convention
and can give us a glimpse of what may be
to come. Our task is to pin it down and
make it work.  q

FIGURE 3A (left). Dystopian texture 1. FIGURE
3B (right). Dystopian texture 2.

FIGURE 5. Megastructure. 

FIGURE 4A (left). TWA inside. FIGURE 4B (right).
TWA outside.



j a n u a r y  2 0 0 2 | g a m e  d e v e l o p e r

F R O N T  L I N E  A W A R D S

I t gives me great pleasure to introduce Game Developer’s
2001 Front Line Awards. In this, our fourth annual
awards program, we’ve found that the best and brightest
of the game industry’s development tools mirror the evo-
lution of the game industry itself. This year’s crop of

Front Line Award honorees tends to reflect efforts to formalize
and codify, and in a way professionalize and legitimize, the prac-
tice of game development.

Indeed, the common thread that connects most of our winners
is their utility in creating and enforcing standards, best practices,
reusability, version control, and extensibility, all hallmarks of tra-
ditional, so-called corporate software development. Our industry
has arrived in the mainstream, ladies and gentlemen, and the
advent of products such as Alienbrain, Quantify, and the GeForce
3 are plain evidence of this professional maturation.

As always, Game Developer magazine owes a huge debt of grati-
tude to our Front Line Award judges. Our judges this year threw
themselves into this project with aplomb, enduring a rigorous peri-
od of hands-on evaluation and open debate. Furthermore, since our
judges were drawn from the ranks of working game developers, I’m
confident that their concerns and final choices are relevant to the
readers of this magazine. So without further ado, I would like to
recognize the contributions of our 2001 Front Line Award judges. 
Programming: Independent developer Scott Bilas, Chris Corry of
LucasArts, Mark DeLoura of Sony Computer Entertainment
America (and formerly of Game Developer magazine), Herb
Marselas and Matt Pritchard of Ensemble Studios, and Michael
Saladino of Presto Studios. 
Art: Hayden Duvall of Confounding Factor, Spencer Lindsay of
Etribe Studio, and Todd Siechen of RealEyz Imaging.

24



w w w . g d m a g . c o m

H A L L  O F  F A M E  A W A R D

3DFX VOODOO CARD
3Dfx

T he Front Line Hall of Fame is for products that have
made a lasting impact on the direction of game

development. All Front Line judges from all categories
debate the significance of various historic development
tools until they final agree on a single inductee.

The original Voodoo card, along with its killer app,
GLQuake, caused game developers everywhere to stop in
our collective tracks. Before Voodoo’s arrival on the
scene, we had never seen a video card targeted at the end
user that elevated the performance of our games to some-
thing that was clearly more than the sum of the CPU,
clock speed, and installed memory. So convincing was
Voodoo that we added a new variable to the equations
that made up our games: The Hardware 3D Accelerator.
And Glide, 3Dfx’s 3D API, ripped the covers open on this
wonderful new device and laid its inner workings open
for us to use and manipulate with a minimum of interfer-
ence. And though there had always been some of us who
had used 3D in our games, the presence of the Voodoo
accelerator and the rewards that it gave was what push so
many of us who had never before considered 3D to start
the journey. For the next few years, a lifetime in the com-
puter industry, 3Dfx evolved the Voodoo chip and stayed
on top of the consumer 3D industry. 

Though eventually overtaken by its competitors,
Voodoo’s impact was enough to change the very shape
and direction of mainstream game development. And
that is perhaps how we will remember it in the future: as
a signpost on our journey, marking the spot where the
heart of PC gaming changed direction from 2D to 3D.

—Matt Pritchard
3Dfx • www.3dfx.com

Audio: Chuck Carr of Sony Computer Entertainment America,
Tom Hays of Novalogic, Aaron Marks of On Your Mark
Music, Robb Mills of Stormfront Studios, independent audio
developer Gene Porfido, and Rob Ross of Sound Endeavours.
Production: John Williamson of Zombie, Troy Dunniway of
Microsoft, and Alex Dunne of Gamasutra.com (formerly of
Game Developer and, in fact, the founder of the Front Line
Awards).
Hardware: The hardware category was open to balloting by all
of our judges in all categories, and the results reflect the dis-
parate roles and opinions of our judges.

Finally, it seems appropriate to thank you, our readers, first
for your help in nominating an initial list of over 90 remark-
able tools, and second for your continued interest in the Front
Line Awards and in Game Developer magazine.

—Tor Berg

Ill
us

tr
at

io
n 

by
 P

et
er

 F
er

gu
so

n

25



j a n u a r y  2 0 0 2 | g a m e  d e v e l o p e r

F R O N T  L I N E  A W A R D S

P R O G R A M M I N G

F I N A L I S T S
Game Programming Gems 2 by Mark DeLoura – Charles River Media; Perforce 2001.1 – Perforce Software; Visual Assist – Whole Tomato Software,
Merge 2001 v6 – Araxis; Vtune Performance Analyzer 5 – Intel; Mathcad 2001 – Mathcad; 3D Game Engine Design; A Practical Approach

ARAXIS MERGE 2001 v6.0 FOR WINDOWS
Araxis

A raxis Merge is a tool that you won’t think you need. Use
it once, however, and you’ll question how you ever got

any work done without it. Merge is hands down the most fully
featured, easy to use, graphically intuitive file and directory dif-
ferencing/merging utility available. Merge is what you get when
you take a tool to its extreme, polish it to a high shine, and
then add a few more features for good measure. Its differenc-
ing/merging interface is fast and easy, and is friendly to both
mouse and keyboard users. Among its notable features are
unlimited undo, in-place editing, and highlighting of changes
within lines. For those times when you know some differences
are safe, Merge provides the ability to ignore differences via a
regular expression match. Its default GUI is two-way, but a
unique three-way option enables two versions to be merged into
a third. This feature is particularly useful for engine licensees
needing to merge the latest code drop against their own local
changes, as well as simultaneously differencing with the previ-
ous code drop. Araxis Merge is truly one of this year’s most
innovative and useful programming products.

—Scott Bilas

Araxis • www.araxis.com

PERFORCE 2001.1
Perforce Software

N early all game companies are using version-control
systems for code, and many are using such systems for

game assets, which seem to grow exponentially in size each
year. Perforce easily handles the huge files that are becom-
ing common in today’s production environments. It uses a
client-server model built on top of TCP/IP, making syncs to
large databases extremely fast. A defining feature of
Perforce is its model for version control, the change list,
which is a logical grouping of files that are changed for the
same purpose. Change lists are submitted to the database
automatically, receive the same comment, and have one
entry in the history listing. This can be a powerful tool for
organizing and tracking game development. Pending change
lists are also viewable by the entire team, so it’s easy to see
what teammates are working on. Perforce supports integra-
tion with a variety of popular programming tools, and also
comes with C++ and Perl APIs to enable automation or
integration with custom tools. Ready to switch over right
now? Perforce even has a tool to convert SourceSafe, RCS,
CVS, and ClearCase databases.

—Scott Bilas

Perforce Software • www.perforce.com

26



w w w . g d m a g . c o m

P R O D U C T I O N

ALIENBRAIN 5
NXN Software

W ith Alienbrain, NXN Software has created an entire-
ly new class of development tool. While past efforts

to implement various flavors of asset management systems in
game development have resulted in clever but quaint collec-
tions of scripts and other homegrown tools, NXN’s Alienbrain
is an extremely powerful version-control system straight out of
the box, and only gets better as users uncover its extensibility
and ease of customization. (See page 8 of this issue for a more
detailed review of Alienbrain by FLA judge Chris Corry.)

NXN built Alienbrain to handle file types commonly
associated with interactive software development. The inter-
face is a wonder of GUI design, presenting a wealth of
information about a file’s status and history in a clear and
well-organized manner. Alienbrain’s functionality is well-
integrated with many standard game development tools,
such as 3DS Max, Photoshop, and Maya. And if Alienbrain
doesn’t already do what you want it to do, NXN’s extreme-
ly eager support team will fix it so that it does.

Unfortunately, Alienbrain remains really pricey. With a
product so heavily dependent on its human (and expensive)
component, NXN must charge its customers a relatively high
licensing fee.

This expense is going to stand in the way of smaller stu-
dios purchasing Alienbrain, which is a shame, because NXN
has done an admirable job of trying to fill a gaping hole in
game development production needs.

—Tor Berg
NXN Software • www.nxn-software.com

FINALISTS

Alienbrain – NXN; Project 2000 – Microsoft; ICQ 2000b – ICQXbox Development Kit – Microsoft; Codewright 6.6 – Starbase;
by David Eberly – Morgan Kaufmann; Quantify 2001– Rational

RATIONAL QUANTIFY v2001A
Rational Software

R ational Quantify is a first-rate call graph profiler that
should be in every programmer’s toolbox. What real-

ly sets it apart from other profilers is its combination of
power and simplicity in providing many angles of attack
to optimizing CPU usage. Any programmer can pick up
Quantify, do a few profile runs, and quickly find out
where the game is slow and how to speed it up. Instru-
menting an executable is hands-free, fairly speedy, and is
done at the binary level, so there’s no need to recompile.
For analysis, Quantify provides four separate views into
the profile databases — an innovative pie-chart-style view,
a global table view, a call graph, and the inevitable source
code view, complete with per-line profile stats. Navigating
these views is simple and fast, which is vital to make sense
of the millions of function calls that happen in just a few
seconds of game execution. Multiple sessions can be
loaded at once, and merged and differenced to provide
new databases for further analysis. Quantify also exports
several APIs, including one that lets the game control sam-
pling sessions, which can be used to enable fully automat-
ed profiling. Few tools provide this much bang for the
buck, and in such a polished, friendly package.

—Scott Bilas

Rational Software • www.rational.com

27



A R T

j a n u a r y  2 0 0 2 | g a m e  d e v e l o p e r

F R O N T  L I N E  A W A R D S

3DS  MAX 4.2
Discreet

T his latest incarnation of Discreet’s 3DS Max is a prod-
uct that really shows its maturity. In addition to a com-

pletely redesigned IK and bones toolset, the very Maya-
esque quad-view toolbar is exceptionally useful when one is
deep in a modeling or animation task. The interface is com-
pletely redefinable. Users can modify the positioning, col-
ors, and keystrokes of the tool bars with MaxScript and
Visual MaxScript.  

Although in the past, 3DS Max has had a bad rap as a
modeling package, the extensibility of the standard polygo-
nal modeling tools via plug-ins and scripting has made this
version a really great modeler. The subdivision surfaces
(NURMS) are logical and easy to work with, and Patch
Modeling is a breeze. The NURBS modeling portion of
Max 4 is still not up to the level of Maya or Rhino, but it
proves to be a very reliable modeler in its own right.

With the release of Character Studio 3.0 and the addition
of many standard interactive controls such as the Wire
Editor and manipulators, character animation is easier than
ever.

I’ve been using Max since it was 3D Studio DOS beta
1.0, and this version is by far the best one yet.

—Spencer Lindsay

Discreet • www.discreet.com

MAYA 4
Alias|Wavefront

M aya is something of a small miracle in 3D produc-
tion. It remains true to its PowerAnimator heritage

and really shines by bringing the tools to a polished and
usable state for customization in the pipeline. The way
Maya can be molded to fit any sort of environment, user,
or task is ironically synonymous with its ability to allow
the artists and programmers to craft fantastic imagery in
short periods of time with minimal obstacles beyond their
own imaginations. Maya often leaves you with a feeling of
amazement at its ability to work in the way that you had
always wished that a piece of software would work. There
is no doubt that with future versions of Maya, we can
expect further refinement of key areas such as subdivision
surfaces and rendering.

Undoubtedly, May has a steep learning curve, but there
is a very big payoff once that learning curve has been tack-
led. Molding Maya’s interface to your own personal style
will make you soon almost forget about the interface alto-
gether and pay more attention to the craft itself.

—Todd Siechen

Alias|Wavefront • www.aliaswavefront.com

F I N A L I S T S
Maya 4 - Alias|Wavefront; Bones Pro 3 – Digimation; FaceGen – Digimation; 3DS Max 4 – Discreet; Deep Paint 3D – Right Hemisphere; 
Reactor – Discreet; Zbrush 1.23 – Pixologic; Vroom for Maya – Testarossa

28



A U D I O

CHANNELSTRIP
Metric Halo

C hannelStrip from Metric Halo is a Mac OS plug-in
for MAS (MOTU Audio System, the format for

Digital Performer) and Pro Tools that brings the look,
feel, and sound of a high-end digital console to the com-
puter. It includes a gate, compressor, and six-band fully
configurable EQ, along with animated visual graphs of
each parameter (just like the big boys). 

Not only is ChannelStrip’s design and concept right on
the money, the audio quality is exceptional. ChannelStrip’s
EQ has been able to capture that sound for which many of
the classic recording consoles and elite outboard boxes (all
hardware) are famous. The high-end EQ is notably as clean
and clear as you could imagine, thanks to 64-bit processing,
and adds an open air to music and voice-overs that’s magic.
The EQ’s ability to morph from a shelf or wideband
through the most intricately accurate notch is also impres-
sive. On vocals and delicate instruments such as acoustic
guitar or violin, the quality truly shines through. Add the
noise gate and compressor and you’d think you just
dropped an SSL into your Mac. 

To top it off, company support is unrivaled in attention
to user satisfaction. The bottom line is that Metric Halo
simply got it right all the way around with ChannelStrip.
It has excellent sound, a great price, and the people to
back it up. I don’t record or mix anything without it. 

—Gene Porfido

Metric Halo • www.mhlabs.com

FINALISTS
ChannelStrip – Metric Halo; SpectraFoo – Metric Halo; 
C4 Multiband Parametric Processor Native – Waves;
SoundMax with SPX – Analog Devices/Staccato;
GigaStudio – Nemesys

w w w . g d m a g . c o m

DEEP PAINT 3D
Right Hemisphere

E xcellent integration with Photoshop plug-ins allows 
digital artists to benefit from Deep Paint 3D’s extensive

customizable set of painting tools in conjunction with those
they are most likely familiar with already. Effects available
in the 2.5D mode give artists the ability to give work a
false depth, allowing the easy creation an image with a
hand-painted look (compatibility with Wacom Intuos
tablets makes this a useful function).

In 3D mode, Deep Paint 3D works seamlessly with 3DS
Max, Maya, and Softimage, allowing models to be paint-
ed directly, with control of color, bump, opacity, shine, 
and glow.

Documentation and online tutorials provide an excel-
lent introduction to the package, and a friendly interface
allows the artist good access to Deep Paint 3D’s powerful 
features.

Although many of Deep Paint 3D’s tools are not neces-
sarily going to be useful to the average game artist, this
powerful program can provide the user with more control
over their 2D work, as well as some additional help when
working in 3D.

—Hayden Duvall

Right Hemisphere • www.us.righthemisphere.com

29



j a n u a r y  2 0 0 2 | g a m e  d e v e l o p e r

F R O N T  L I N E  A W A R D S

H A R D W A R E

TITANIUM POWERBOOK G4
Apple

A pple’s latest Powerbook brings the multimedia studio
on the road in style. Powered by the G4 PowerPC

chip with Altivec at speeds up to 667MHz, the Titanium
has a beautiful 15.2-inch display, DVD-ROM drive, Mac
OS 9 and X, and it’s all squeezed into a 1-inch thick, 5.3-
pound titanium shell. Priced between $2,199 to $3,299 for
the top-of-the-line system, the Titanium Powerbook is
truly a sight to hold and behold.

The Titanium Powerbook fits in perfectly for the multi-
media developer. Audio and graphics applications that take
advantage of the G4’s Altivec Velocity Engine are opening
doors for artists and musicians that had been closed tightly
without it. Photoshop and some of its plug-ins move at
burning speeds. A new plug-in for Mark of the Unicorn’s
Digital Performer from Audio Ease even gives the user the
ability to sample and save different architectural spaces to
process audio through as authentic reverbs. And there’s
more to come.

Apple has created the perfect portable studio with the
Titanium Powerbook. The combination of speed, size, and
software, along with the Mac OS’s legendary productivity,
is why Apple’s latest Powerbook design deserves to be
honored. 

—Gene Porfido

Apple • www.apple.com

GEFORCE 3
Nvidia

U ntil this year, 3D hardware acceleration had seen little
improvement in the functionality of chips since the

original 3Dfx Voodoo. Improvements to triangle setup and
fill rates were increasing the speed of the triangle engines, but
specific feature innovations were at a standstill. Eventually, all
chips handled bilinear filtering, mipmapping, and every blend
mode that Direct3D offered. This stagnation was causing
most 3D games to appear the same. Then Nvidia introduced
the GeForce 3 and changed the progress of 3D hardware.

The GeForce 3’s programmable vertex and pixel process-
ing units finally gave game programmers the true flexibility
to create a unique vision. Nvidia’s first demos showed real-
time shadows, cartoon shading, hardware-accelerated mesh
skinning, volumetric fur . . . and this was just the beginning.
The GeForce 3 has also added speed to triangle setup and
pixel fill rates that is truly impressive.

However, creating a jump in technology was not enough
for Nvidia. The company also created an SDK with techni-
cal support that was unmatched. Nvidia exposed its chip’s
new functionality through the Direct3D and OpenGL APIs
instead of trying to enforce a new standard. Nvidia’s efforts
to instruct programmers in the correct ways to use its chip
have been outstanding. The Nvidia GeForce 3 is a leap for-
ward in technology and support, making it an amazing tool
for game programmers.

—Michael Saladino

Nvidia • www.nvidia.com

F I N A L I S T S
Titanium Powerbook G4 – Apple; ATI Radeon – ATI; GeForce 3 – Nvidia; DVD-R/CD-RW SuperDrive – Pioneer; Vaio Superslim
Notebook – Sony

30



W ith project budgets
in the multiple mil-
lions of dollars and
virtually no margin
for error, more and

more development teams are under
tremendous pressure to come out on top of
the entertainment software market’s cut-
throat competition. No team manager
wants to contemplate dropping the ball
when creating the vivid graphics necessary
to help make a game a success. Electronic
Arts’ THE SIMS franchise is an excellent
example of this pressurized situation. With
record-breaking sales on its initial release
of THE SIMS, as well as the subsequent suc-
cesses of the expansion packs THE SIMS:
LIVIN’ LARGE and THE SIMS: HOUSE PARTY,
EA had a lot riding on the success of its
content generation strategies.

Much of THE SIMS’ appeal is due to the
very same element of the game that pres-
ents one of EA’s strategic production chal-
lenges: the sheer number of highly detailed,
technically complex objects that populate
its game world and provide interaction for
the Sims, the little creatures that are at the
core of this unique world. Designing, speci-
fying, engineering, and troubleshooting
these objects is no small amount of work;
EA counts on balancing that effort by send-

ing the actual production of much of the
sprite art assets for these objects out of
house. New Pencil has been the studio
charged with delivering on EA’s demanding
vision for these critical assets, from provid-
ing auxiliary production capacity on the
original version of THE SIMS to the creation
of most of the sprite assets on later expan-
sion packs, such as the recently released
THE SIMS: HOT DATE.

This article highlights the critical issues
that govern the high-volume asset produc-
tion needed for today’s most demanding
games and some of the techniques upon
which New Pencil has relied to create the
artwork for the Sims franchise. These prin-
ciples were developed at New Pencil and at
Maxis over the long association between
the two studios, and New Pencil has found
these techniques to be fundamentally good
practices. Although New Pencil uses these
principles to provide high-volume content
outsourcing services, they can be employed
by any internal development team with
excellent results. If you are in the position
of managing this kind of production
capacity, there are some things you are
going to need to consider.

As New Pencil developed its systems over
repeated contracts with Maxis, four strate-
gic targets emerged that helped us generate

j a n u a r y  2 0 0 2 | g a m e  d e v e l o p e r32

C O N T E N T  P R O D U C T I O N c h a r l e s  l o n d o n

Managing
Large-Scale 
Game Content
Production

C H A R L E S  L O N D O N  |  Charles has
worked in the game industry for 10 years 
and is currently the executive in charge of 
production at New Pencil Inc., which provides
outsourced game art content for all platforms.
Previously, Charles spent four years at Elec-
tronic Arts/Maxis as the art director for THE

SIMS franchise, developing the game’s look and
feel and leading the content creation team. He
lives in San Francisco with his wife, Lori
Orson, and his goldfish, Mr. Fish. 



w w w . g d m a g . c o m

a large body of game content on time and
on budget while still holding quality as the
uppermost value: time estimation and cost
modeling, style matching and cross-team
consistency, asset staging, and project track-
ing and team management. 

These four fundamentals are corner-
stones of a solid production foundation.
Omit one, and your production may col-
lapse. Let’s take a closer look at what each
target entails.

Time Estimation and
Cost Modeling

No project is going to be delivered on
time and looking great without good

projections of how long each asset will
take to make and how much it will cost to
make it. Too often, teams stop short and
focus exclusively on the underlying techni-
cal issues that support time estimation
without going to the next step. This is
especially true when work is being done
internally, where budgets often deal with
large numbers of assets as a group line
item such as “animations.”

The reason for doing these projections
goes beyond just wanting to hit a budget
and a timeline; it goes to the deeper issue
of quality. Good time projections allow

you to reserve buffer time for extra polish,
integrate new techniques, and create tai-
lored resource plans to handle special con-
cerns in the production without having to
rush too fast or cut too many corners on
the look of any asset. 

Once the time estimates are in place, it
is then possible to institute good cost
models. A solid cost model allows inter-
nal teams to make the best use of their
budgets and outsourcers to defend their
profit margins, which in turn allows them
to be more flexible and service-oriented
toward their clients. It seems easy just to
take the average time you think an asset
will require and multiply that by the
number of assets. At that point, you need
to then add 20 percent right away as a
rule, as a rough stab at accounting for the
unknown developments that are sure to
occur. No seasoned client or production
manager, however, wants to depend on
that kind of superficial analysis; he or she
knows that there are far too many effi-
ciencies to be found and dependencies to
be contended with for any such simple
formula to reflect reality. In order to
develop a more in-depth cost analysis, we
focus on the following three general
areas: the pipeline, the approval process,
and the aesthetic target. 

SHOWN FROM LEFT TO RIGHT:

Yuan Zhang 3D artist

Josh Nadelberg 3D artist

Greg Faillace creative director

Michael Murguia CEO

Adam Murguia art director

Disco Dog traditional artist

Mat Smiley 3D artist

Scot Tumlin project manager

Charles London executive in charge 

of production

John Beebe lead technical artist

33



The place to start in developing good
time estimates is the pipeline. Time esti-
mates need to be based on a pretty solid
production pipeline, or else they are
meaningless. This is not to say that a
pipeline can’t be upgraded or amended
during production, but unless the baseline
is well understood by everyone who is
going to use it, those upgrades cannot be
evaluated for their impact on the sched-
ule. Begin by posing a few questions
about the pipeline: Who are the experts in
the use of the pipeline, and is there access
to those individuals? If assets have
already been through production on this
pipeline in the past, what were the time-
frames associated with them? What tech-
nical taboos or requirements are there in
the creation of the assets, and are they
documented? How modular is the
pipeline? If an error has been made some-
where during production, how far back in
the creation must the artist regress to
bring the asset up to specification? 

We relied successfully on Maxis to pro-
vide instruction and support on their
homegrown export tools and worked to
make sure the pipeline that we set up at
New Pencil was as close as possible in
implementation to the pipeline at Maxis.
THE SIMS’ sprite pipeline was well devel-
oped before Maxis went casting for a
contract house to expand their capabili-
ties. Just as importantly, Maxis worked
hard to ensure that New Pencil had access
to its experts who had the inside track on
how the pipeline really worked. Maxis
had clear expectations as to how modifi-
cations were to be made to assets and at
which point in the pipeline each asset
should be modified. New Pencil also had

a team with a long history of working
together, which is a huge plus when devel-
oping time estimates. Many new studios
or teams are forced to rely on experiences
with other teams that may not reflect
their actual present skill sets, exposing
them to potentially large errors in time
estimation. As a result, New Pencil had a
high level of confidence in estimating the
time the average basic asset would
require, excluding revisions.

Understanding the approval process and
the approval team is the next most impor-
tant factor. Are the members of that group
in good communication with each other?
Are the list of reviewers involved in regular
critiques of the submissions restricted to
only those with clear responsibility for the
final result? Is the review group casting a
well-aimed net to garner feedback from
other individuals with influence on the
product’s future, such as marketing or the
publisher? Is there someone on the review
team whose task is to manage the review
team to timely consensus and with the
freedom to make a command decision
when the team is at loggerheads? Is there a
clear progression of stages that an asset
will pass through to avoid changes to pre-
viously approved work? Can the art team
expect to receive feedback from the
reviewers in a timely manner? Is there a
general aesthetic vocabulary in use by the
reviewers, and is the art team conversant
with it? In the case of THE SIMS, we were
able to answer yes to all of the preceding
questions about the review process due to
the amount of preproduction work that
Maxis had done, its own existing produc-
tion pipeline, and the close-knit nature of
its team leadership. If the answer that you

get to more than one of these questions
about your approval process is “no,” or if
the questions cannot be answered at all,
get ready for rising costs. Sadly, it’s easier
to say that the costs will rise because of a
faulty approval process than it is to say by
how much, but a good rule of thumb is to
multiply the costs associated with any
existing approval process by 1.5 when
there is risk of multiple iterations.

For internal development teams, calling
attention to this cost inflation, if done
diplomatically, can be a useful way of
generating the leverage at higher levels of
the company to address the problems
within the team that underlie the
approval process’s instability. No execu-
tive wants to see money being thrown
away because there are questions about
how solid the review team is. For out-
sourcers, this is a more dicey proposition.
Ideally, if your relationship with your
client is solid, you can consider a gently
candid conversation about your concerns.
If the relationship is not that strong,
you’re left with few options besides sim-
ply charging more for the work in order
to reduce your exposure to these higher
costs. However, in the bargain, you’re
also throwing away your competitive
edge. In any case, make sure the contracts
that you sign clearly state time limits and
the format of feedback so that you can
protect yourself. It’s no substitute for
being able to help the partnership address
review-related challenges, but it may help
you avoid eating too many revisions.

Having a clear progression of stages for
the assets was also crucial. It helped focus
the feedback from Maxis on the aspects of
the asset at issue and made sure that the

j a n u a r y  2 0 0 2 | g a m e  d e v e l o p e r34

C O N T E N T  P R O D U C T I O N

FIGURES 1–5 (left to right): FIGURE 1. Design evaluation: The rudimentary blocking of the object to see if it’s even in the ballpark. FIGURE 2. First model:
The model has most of the geometric detail it will receive. FIGURE 3. Final model: The model has all the geometric detail it will get and is ready for tex-
turing and lighting. FIGURE 4. The first pass on materials and lighting. FIGURE 5. The final result.



likelihood of large revisions was greater in
the early part of development, when
changes were less expensive. The process
that resulted worked to achieve in-game
integration as early as possible, giving
Maxis lead time to support New Pencil
should the assets not perform as anticipat-
ed. The process was divided into the fol-
lowing stages:

Design evaluation. The asset is shown as
a high-resolution render in 3DS Max, with
no texture and only enough model detail
to communicate the general direction of
work (Figure 1). The key elements of the
asset as described in the asset specification
document are referred to, but may not be
completely modeled.

First model. The first model is shown as
an in-game screenshot with little or no tex-
ture (Figure 2). Color may be used to help
differentiate the model’s substructure but is
not yet a subject for review. All comments
from the design evaluation feedback are
addressed, if they are relevant to this stage.
In some cases, the asset may be well devel-
oped enough to skip the next step and go
on to texturing.

Final model. The final model is shown as
another in-game screenshot, where the
model is complete with respect to geometry
(Figure 3). All sprite animation states are
represented, and the animations function in
the game. All comments from the first
model submission are addressed, if they are
relevant to this stage. In some cases, there
will still be model comments, but they will
be small enough to be addressed in the
forthcoming first texture stage.

First texture. Materials and lighting are
shown for the first time at this stage
(Figure 4). All comments from the final
model stage are addressed.

Final candidate. Ideally, all comments
have been addressed and the asset is ready
to be delivered (Figure 5).

The last concern for time estimation and
cost modeling is the aesthetic that you’re
trying to match. It’s safe to say that this is
a larger concern for outsourcers than for
internal development teams, due to the
separation between the conceptual artist or
art director who has the vision that sets
the bar and the art team executing the
work. Nonetheless, the more elaborate and
esoteric the style is that has been chosen
for the work, the more it will cost to pro-

duce. Don’t confuse this issue with the
technical complexity dealt with in the pre-
ceding pipeline discussion. Rather, this is
the cost of having to undertake the revi-
sions necessary while the artists internalize
the aesthetic they must match. 

The questions that need to be posed
regarding the style matching have more to
do with one’s own capabilities than what
one needs from the client or the art direc-
tor: Do you feel that you understand this
aesthetic? Are the reference materials both
broad enough to support a consistent look
across all assets and deep enough to com-
municate clear individual asset identities?
Are the various skill sets that the project’s
aesthetic demands present in a balanced
fashion across the art team? Is the requisite
familiarity with software present in enough
art team members to support general pro-
ductivity? Is there someone on the team
who has a particular understanding of the
reviewer’s vision who can share this insight
with the art team? Again, we were able to
answer yes to all of these questions; this
was essential to New Pencil’s confidence
that the final assets could be produced
with roughly the number of submissions
planned.

So let’s say you’ve asked all these ques-
tions of yourself and of your client or
development team and
you’ve come up with
some time estimates and
costs that you feel pretty
sure about. Next, you
should gauge your
assumptions with a test
run. Don’t just sign up
for the whole shebang if
you can help it. There
are going to be hidden
costs, surprise develop-
ments, and plain old
reversals of fortune you
may or may not have
anticipated. Choose a
representative set of
assets — a few easy
ones, a few medium
ones, not too many hard
ones — and set yourself
a milestone deadline
and a team structure
that reflects your best
guess as to time and

costs. It’s important that everyone, espe-
cially your client or management, know
that this is a test, and that the estimates will
likely change as a result of how the test
works out. It’s a good way to blow the bugs
out of the system and get everyone on both
sides of the art fence accustomed to work-
ing together, without committing the entire
project to deadlines and cost expectations
that just aren’t realistic. 

Early on, New Pencil and Maxis took
the time to learn to work together by
beginning with more modest goals and
then evaluating the realities of production
that emerged. As a result of these early les-
sons, the negotiated price for content did
rise by some 30 percent, but because the
standard of quality had been set and the
relationship forged in a climate of good
communication, these price increases were
perceived as reasonable and did not have
to be repeated later, which would have
endangered the long-term relationship
between the studios.

Style Matching and
Cross-Team Consistency

T he name of the game is consistency; if
it doesn’t look like the reference, the

product won’t hang together. Once you’ve

w w w . g d m a g . c o m 35

FIGURE 6. Tight feedback rocks. The submission from New Pencil is
returned with Maxis’s comments included in the image.



actually begun production, it takes a bit of
time for the understanding of the visual
style to percolate through the art team. In
the period where the team is working to
internalize that vision, an aesthetic check-
list is a key tool in making this period as
short as possible. This checklist enumer-
ates techniques to be employed and ele-
ments to be checked for in pursuing the
aesthetic at hand. It’s a supplement to the
reference package that incorporates the
most common feedback points that the
team receives. The sidebar “The Aesthetic
Checklist” shows the aesthetic checklist
developed for the sprite content for THE

SIMS. 
Putting assets in-game very early allows

feedback to be done visually, by marking
up the screenshots and sending them via
FTP so that the feedback can be stored on
a server and remain accessible to the whole
team. Working with annotated game
screenshots (see Figure 6 for an example)
instead of only e-mail comments did won-
ders for centralizing art direction. 

In addition, group reviews and the
development of the checklist was crucial in
allowing New Pencil to improve consis-
tently its ability to implement art direction
feedback across relevant assets, thus help-
ing to ensure that feedback provided for
earlier assets was incorporated into later
assets that shared those aesthetics.

Another vital tool to assure consistency
across assets is the asset library. Develop-
ing an asset library is a goal that should be
pursued immediately upon production. As
materials or model elements are developed
to approval, reusable elements that serve
as style signifiers should immediately be
archived in a file structure that is easily
accessible to the entire team. The ability
for one artist to reuse the work of another
does far more than simply save time in
construction; it’s also a powerful way to
keep the general look and feel of the proj-
ect consistent across numerous artists. In
addition, such reuse compensates for the
inevitable inequities in skill sets among
team members, allowing artists to comple-
ment each other’s capabilities while work-
ing on separate items. 

It’s critical to get the team looking at
each other’s artwork. Often, an asset
doesn’t seem quite right, and it takes a few
sets of eyes to determine why. Besides reg-

ular group reviews, the asset library rein-
forces this behavior by getting artists to
assist each other in the integration of their
various library contributions.

Template files, like asset library files,
are another powerful way to help keep
everyone’s work in the same vein. Perhaps
the most useful template file to New
Pencil was a standardized lighting set,
introduced after THE SIMS: LIVIN’ LARGE

and first used in developing a small set of
downloadable objects. The lighting set is a
3DS Max file containing a fast spoof of
radiosity, which all artists would merge
into their workflow very early in creation.
The set is not only a great time-saver with
regard to the labor required to make an
object seem lifelike and volumetric as per
the checklist, it also goes a long way
toward establishing a uniform appearance
through subtle ambient lighting (Figure 7).
After a few additional tweaks, this set
became a standard part of asset creation
both at New Pencil and at Maxis. 

Asset Staging

W orking on THE SIMS franchise
means being faced with a very large

number of objects to produce. Most
recently, that figure was 100 animated
object sprite sets be delivered within a 10-
week timeframe. Such a high volume of
work cannot be done effectively with a
completely flat team. We employ a modi-
fied assembly-line process that allows some
artists to specialize in their strongest skills
and others with broader abilities to float,

adding capacity on the part of the line that
may be under pressure. The assembly line
is broken up between modelers and textur-
ers/lighters, with approximately one floater
for every two craft-dedicated artists. 

The art director who leads the whole
team serves as a liaison between the Maxis
art director and the New Pencil art team,
making sure that work done at New Pencil
is being held to internal standards of quali-
ty as well as the detailed direction from
Maxis. In order to make sure this art
director isn’t spread too thin, we usually
designate a lead texturer and a lead model-
er. These are primarily service roles for
solving technical problems and providing
critique in advance of the art director’s
review. In addition to these resources,
keeping up with THE SIMS requires a proj-
ect manager to track the progress of each
asset and help make projections about
future bottlenecks or overloads. Figure 8
shows how all these parties interact to
maximize efficiency.

Keeping things moving forward is a pri-
mary goal. New Pencil works to make sure
that all artists understand their weekly
workload, and the art director or project
manager communicates the priority of
each object within that work list. The
artists are directed to focus their attention
on the highest-priority asset that has out-
standing feedback issues. Should an asset
of higher priority come back from evalua-
tion, the artist is expected to set aside the
asset currently being worked on and
address the requested changes on the high-
priority item quickly. This technique keeps

j a n u a r y  2 0 0 2 | g a m e  d e v e l o p e r36

C O N T E N T  P R O D U C T I O N

FIGURE 7. The lighting set at work. The difference between the images using default ambience (left)
and the ambient light provided by the lighting set (right) is dramatic.



the most advanced assets on the front
burner, speeding their process through the
system and helping to achieve a spread of
assets across different stages of approval.
This process helps avoid bottlenecks by
making sure that there are always models
coming off the line for texturers/lighters to
work on, and helps New Pencil keep to a
regular weekly output level. 

Priorities are determined using a variety
of criteria: New Pencil tries to interleave
difficult items with easy ones in order to
avoid a hard patch of slowdowns due to
too many difficult assets. (In addition,
because invoicing was done by blocks of
assets finished, making sure there were
enough easy objects in every block helped
New Pencil stay on time and thus ensured
regular payments. Any internal develop-
ment team can also appreciate the benefits
of regular output. Even if it’s not tied to
payments, it’s in the best interest of every
team to be seen as reliable and consistent.)
Prioritizing to stay within a regular band
of productivity also makes it easier to beat
deadlines every now and then by getting
the team used to a baseline average work
pace, rather than an irregular one.

Asset library needs are another criterion
for setting an asset’s priority. Often, the
development of one asset will set the look
and feel of all the others. A good example
of this was the development of the castle-
style objects for THE SIMS: LIVIN’ LARGE.
Heavy, dark wood, velvet, stone, and iron
were the dominant elements in the Castle
furniture and architectural items that New
Pencil created. By frontloading a small set
of items that used all of these archetypical
materials, the Castle library elements were
quickly laid down, speeding the develop-
ment of the rest of the set while allowing
them to be interleaved effectively with
other assets as priorities required.

Lastly, work on some items must wait
until the end of the project. Due to the com-
plexity of the code that underlies some of
the items, Maxis was often unable to pro-
vide us with the game files needed in order
to proceed on certain assets at the beginning
of production. However, because Maxis had
done a good job detailing the rest of the
asset list, New Pencil was able to remain
productive with the objects on its plate and
give Maxis the time it needed to develop the
remaining objects correctly. In later con-

w w w . g d m a g . c o m 37

This checklist is a recap of all the elements

that are often reiterated in feedback and that

comprise the basic bar of quality against

which an asset will be measured, regardless

of aesthetic subtheme. The idea here is to

call out all elements that need to be checked

before an asset is submitted. The main pur-

pose is to reduce revisions and to keep the

burden on Maxis’s review team low.

Modeling
• Have all artists been given the opportunity

to ask questions regarding the object’s
construction?

• Are all the relevant template dimensions
built to tolerances?

• If animations are already implemented in
the game, has the model been checked
against them?

• Do all edges have the right amount of real-
world finish, such as flanges on the ends
of openings, grilles, chamfers, and so on?

• Is there enough subtle low-level detail to
make good use of lighting?

• Has the model been previewed at game
resolution to check the visibility of all
model detail?

• Does the object display properly in the
game?

• Does the model conform to all called-out
features of the spec?

• Has the entire team been given the oppor-
tunity to provide feedback?

Textures
• Have all artists been given the opportunity

to ask questions regarding the object’s
materials?

• Do the materials look realistic and similar
to spec examples (woodgrain visible and
natural; metal shiny, brushed, or patinaed
as appropriate; colored metals rich and
non-plasticky; chrome well developed in
reflections; and so on)?

• Are materials and/or textures being appro-
priately reused when items are intended as
an associated or matched set?

• Are there evident repeats in the texture?
• Where a texture from one geometry has

been reused on another of different
proportions, has it been checked for
distortion?

• Are the colors mapping well to the run-
time file?

• Is dithering being used properly to defeat
banding?

• Has the palette been polished where
necessary?

• Has the entire team been given the oppor-
tunity to provide feedback?

Lighting
• Have all artists been given the opportunity

to ask questions regarding the object’s
lighting?

• Is the lighting set current and installed
properly?

• Is a keylight being used to properly develop
box lighting for cubic forms, dihedral
angles, and planar objects?

• Are keylight highlights being effectively
used to set off shadows and shiny sur-
faces?

• Are surfaces that overhang other geometry
being properly shadowed?

• Are interior spaces slightly darker than
exterior surfaces?

• If any part of the object lights up, is it effec-
tively casting light back onto itself where
relevant?

• Is the pattern of cast light representative of
the illuminated object’s apertures (grilles,
shades, and so on)?

• If any part of the object lights up, is there a
satisfying level of contrast between lit and
unlit states?

• Is the shape of the object well revealed by
the lighting set?

• Are lighting gradients being used to relieve
large, flat expanses?

• Are subtle gradients being used across
standing elements to help give a feeling of
verticality?

• Are lighting levels being corrected for
dominance in sprites that display together
but export separately?

• Has the entire team been given the oppor-

tunity to provide feedback?

The Aesthetic Checklist



tracts, as the relationship between the stu-
dios has become more mature, Maxis has
chosen to wait to detail some 20 percent of
the assets until the majority of the work
could be seen together, thus choosing items
that would best finish out the set.

Project Tracking and
Team Management

A ll the good plans in the world won’t
help you to manage large numbers of

assets if you don’t have some sort of track-
ing system. New Pencil’s system is a simple
but effective Microsoft Access database.
The project database allows the project
manager to list assets individually, define a
series of states that the assets can pass
through on their way to final, track which
artist is assigned to these assets, and time-
stamp the asset for when it was submitted
and when feedback was returned or when
it was finalized. Furthermore, the system
allows the generation of particular reports,
such as project overviews by state or artist,
or reports of assets that are blocked and
what is blocking them. While these reports
are invaluable, it’s important to make sure
that the system is easy to use and not over-
ly detailed. Too many reports are a sign
that you may be confusing the asset data-
base with the project itself; ideally, you’ll
be spending as little time on it as possible,
so don’t burn too many hours setting it up.

The project manager who manages the
tracking system is also the person who
serves as the exclusive technical liaison with
Maxis. The project manager notifies Maxis
of files that are needed, of evaluations post-
ed, and of requests for technical support.
Likewise, the project manager also notifies
the New Pencil art team of arriving feed-
back, priority assignments, predictions of
bottlenecks or chokes, and any technical
changes that have arrived from Maxis.
Keeping a single contact for these kinds of
matters ensures that Maxis always knows
whom to contact in case of some snafu or
concern; on projects like THE SIMS expan-
sion packs, time is of the essence. One of
the most important things an art team can
do is adopt the no-surprises rule when deal-
ing with its clients or individual team mem-
bers. While being the bearer of bad news is
never pleasant, providing a heads up early
enough for a solution to be formulated

builds confidence and acclimates the team
to problem solving and avoiding panic. 

Some simple but solid personnel manage-
ment techniques will be needed to stay on
the plan that you’ve worked hard to create
and make sure that the work is of the high-
est caliber. First and foremost, the team
needs to understand the task set before
them and be motivated to achieve it. Make
sure that everyone gets a chance to review
all of the art materials. While you don’t
want to bury artists working on one asset
group with the minutiae of references that
doesn’t relate to their assignments, it’s
important that everyone understand the
broad context that relates to all the work.
Make time for questions from all team
members, both individually and in a group
setting, and make sure that questions are
answered fully. Some of the most important
technical challenges will be spotted not by
the management but by the people on the
ground who actually have to take the hill. 

Get feedback from the artists as to the
usefulness of the reference material at
hand and make clear action items to sup-
plement the reference in places where
artists clearly are not getting the concept.
Where possible, give artists the opportuni-
ty to choose assets to work on for them-
selves instead of just being assigned their
workloads. A sense of ownership will do
wonders in helping the artist bring his or
her own vision to the work in service of
the existing aesthetic. 

All-nighters and seven-day weeks are a
fool’s game. Nothing superb ever gets
done by overtired people whose lives have
been turned upside down. Sure, the game
business requires the occasional supreme
effort, but the smart manager does every-
thing he or she can to avoid such excess-
es. Put your artists first. If they feel you
are behind them, they’ll be more than
capable of providing the exceptional
work that you’ve guaranteed. q

j a n u a r y  2 0 0 2 | g a m e  d e v e l o p e r38

C O N T E N T  P R O D U C T I O N

FIGURE 8. A schematic of the production pipeline that exists between Maxis and New Pencil.

MAXIS

Project Manager Art Director

Texturer/Lighter
Lead (floater)

Modeler

Modeler

Texturer/Lighter

Texturer/Lighter

Modeler Lead
(floater)

Deliverable postings
Support file requests 

Art direction coordination

Priority setting
Project updates

Individual review and critique
Team review leadership

Priority assignment
Deliverable collection

Technical art support
Stylistic coordination
Asset library support

Technical art support
Stylistic coordination
Asset library support



j a n u a r y  2 0 0 2 | g a m e  d e v e l o p e r40

G A M E  D A T A  

PUBLISHER: Codemasters
FULL-TIME DEVELOPERS: 10

PART-TIME CONTRACTORS: 3
ESTIMATED BUDGET: $600,000

LENGTH OF DEVELOPMENT: Over 4 years
RELEASE DATE: June 22 (worldwide except North

America), August 29 (North America), 2001
DEVELOPMENT HARDWARE: Various PC systems

from 266MHz Pentium IIs to 1GHz Pentium
4s and 1.2GHz Athlons with 20GB hard drives

and Voodoo 2 or GeForce 2 graphics cards
DEVELOPMENT SOFTWARE: Windows 98/2000,

Linux servers, Visual C++ 6, SourceSafe,
Adobe Photoshop 5.0, 3DS Max, Microsoft

Office, TextAloud (for voice prototyping)
PROPRIETARY SOFTWARE: Oxygen (3D low-

polygon modeling and texturing tool), Visitor
(landscape editor), and some other pro-

prietary data conversion and packing tools
NOTABLE TECHNOLOGIES: DirectX, Vorbis Ogg,

Vicon 8 motion capture system
PROJECT SIZE: 10,000+ files, 250,000 lines of

C++ (some assembly), 5,000 textures, 800 3D
models, 100,000 words (localized into six

other languages), more than 60 single-player
and multiplayer missions

T he story of OPERATION

FLASHPOINT’s development is
quite unusual in the game
industry these days. For one
thing, the team didn’t start

out as professionals; originally only the
lead programmer was allowed to work on
the game full-time. Switching publishers
three times, starting a new company,
growing the team from one to 12 full-
time members, and moving offices five
times during the game’s development
were just some of the hurdles we had to
clear. Only the team’s vision and obses-
sion for the game remained consistent
from the very first playable version until
the end. It’s not possible to describe

whole story in the space given for this
article, so let’s just jump directly to the
final moments.

It was 8 P.M. on Friday, May 25, 2001.
Our publisher’s representative, who had
been in Prague for the last few days to
make sure everything was going O.K. as
we were finalizing the gold master, left
Prague feeling confident that things were
going well — the disc was almost ready
and could be sent to final testing and then
to manufacturing after some weekend
testing. 

Meanwhile, our lead programmer (to
make matters even more exciting, he was
then working at his temporary home in
France for couple of weeks) was trying to

Bohemia Interactive Studios’

OPERATION
FLASHPOINT

P O S T M O R T E M m a r e k  s p a n e l  a n d  o n d r e j  s p a n e l



w w w . g d m a g . c o m 41

resolve some serious graphical anomalies with
the hardware transformation and lighting
(HW T&L) rendering. If he were to fail, HW
T&L would not be included in the final
release. If he solved it, some data organization
changes would be necessary to suit the needs
of the HW T&L. He spent nearly the whole
day resolving some random crashes that
appeared in the game during the last day,
going back and forth over e-mail with an
Nvidia support engineer. The crash was fixed
by late afternoon, and by 10 P.M. it looked like
the HW T&L problems were at an acceptable
level. Around midnight, the tools that would
perform the data format change were ready. 

On the other front, the team had received
the final localized strings for the game.

M A R E K  S P A N E L | Marek worked on home-grown games even 
as a child back in the late 1980s, with his brother Ondrej. In 1992, he
started working at a game distribution company, and in 1998 he started 
to work full time on his first PC game, eventually released as OPERATION

FLASHPOINT. In 1999, he co-founded Bohemia Interactive Studios, the
company that undertook development of OPERATION FLASHPOINT.

O N D R E J  S P A N E L  | Ondrej coded his first games in the late 1980s.
After graduating from Charles University in Prague in 1995 with a
degree in computer science, he started work as the lead programmer
for research and development of a PC game that was completed in
2001 under the title OPERATION FLASHPOINT.



However, the file containing the core
strings of the game that had been delivered
by our publisher appeared to be untested
and unusable. After spending a couple of
hours dealing with it, most of the team
had to go home to have some sleep. Still,
the team leader stayed behind at the office,
trying to use the new HW T&L data for-
mat, going over each step by phone or 
e-mail with the lead programmer (while
also trying to implement new localized
string tables and fix some problems in the
campaign and missions). At 3 A.M. it
looked like all the data had been con-
verted — and both the lead programmer
and the team leader could go have some
sleep. 

Saturday morning, our publisher real-
ized that the gold master hadn’t actually
been delivered. Tensions rose even further,
and nerves began to unravel. Only two
days remained before mass production
was scheduled to begin. Everyone on the
team had been working since early
Saturday morning, but at times a success-
ful end to these last-minute crises seemed
to be so far away. By around 5 P.M. on
Saturday, most of the important issues in
the code had been resolved, and the lead
programmer decided to take another look
at the HW T&L implementation. Luckily,
within a few hours, he suddenly discov-
ered the root of all of the HW T&L prob-
lems and fixed them. The plan was to

deliver the gold master to our publisher
via FTP by that evening. Nobody expected
that it would actually take until Sunday
morning. After a long, sleepless night of
playing through the game and fixing any
problems that appeared, everything looked
fine, and most of the team could finally go
to sleep again. 

With some relief, we finally started the
game upload on Sunday around 9H But
were we done? Not yet. Suddenly, a seag-
ull stopped flying in some of the in-game
cutscenes. The team leader called to wake
up the lead programmer in France: “The
seagull is not flying. What should I do?”
We had to stop the upload until the lead
programmer delivered necessary code fix.
After the project leader received the updat-
ed files from the lead programmer, he
started to rebuild the game in Visual
Studio. It was Sunday around noon, and
the game had finally gone to the publisher
for final testing.

The publisher’s test staff started playing
the game Sunday afternoon. Everything
went smoothly at first, but later they dis-
covered one serious scripting bug in one of
the campaign missions that made it
unplayable. Late in the evening, they called
the team leader about the bug, and he had
to drive to the office after sleeping just a
couple of hours over the past three days to
fix the bug as quickly as possible and then
upload the fixed version to the publisher’s

server in the U.K. Around midnight Sunday
night, the disc was finally ready to go. 

Three weeks later, hundreds of thou-
sands of copies of the game were available
in stores worldwide. In the meantime, the
development team was playing the game,
terrified of finding a disastrous bug. Fortu-
nately, no such critical bug appeared. Con-
sidering the amount of work we’d done on
the game in those last couple of days and
hours, the risk of finding some major
problems was pretty high. On Friday, June
22, the game was released, and it immedi-
ately became the top-selling PC game in
many countries. The team knew that their
mission was successfully completed. The
passion and hard work of every single
member of the development and publish-
ing teams started to pay off. 

What Went Right

1. The team. Probably the most posi-
tive thing we encountered during

development of this game was the people
working on it. Almost all of the people
who joined the team really helped to
improve the game and remained fully dedi-
cated to it from the first day until the final
moments. While we were understaffed
almost all the time, we are happy to say
that while the team was growing steadily,
it was very stable — almost all the people
who participated in the development of

j a n u a r y  2 0 0 2 | g a m e  d e v e l o p e r42

P O S T M O R T E M

OPERATION FLASHPOINT enables the player to use any vehicles, including 
gunships and planes.

Daytime and weather changes dynamically in the game so the are looks
pretty different in various daytime and weather conditions.



OPERATION FLASHPOINT are still working at
our studios now that the game is finished.
Another advantage was that the team was
very cooperative. Some roles on the team
were not demarcated very strictly. Still,
between the programmers, designers, and
artists, everyone could comment on any
part of the game, and everyone’s opinions
were taken seriously.

While this often made communication
more difficult, it definitely helped the design
and development process and enriched the
game in many areas. One of the most
powerful tools we used for internal com-
munication was our intranet news server,
which proved to be an invaluable tool 
during the whole design process. The game
was mostly designed on the fly, and the
newsgroups made the design process not
only convenient, but really quite enjoyable.

2. The community. OPERATION

FLASHPOINT’s public following is
incredible. We ourselves are surprised by
the number of people creating fan sites,
developing new content for the game, or
just keeping in touch with the community
by reading news and forums. Currently
there are hundreds of different sites dedi-
cated to FLASHPOINT, and dozens of them
are of a truly professional quality with
news updated almost hourly.

Another great thing about the communi-
ty is that some of the people have been fol-

lowing this game for years already, and
they still carry a great deal of enthusiasm
for it. Some of the first great fan sites
started out more than two years before the
game was released, and we managed to
keep people’s excitement going with regu-
lar updates about the improvements we
were making to the game throughout its
development. We take it as a good sign
that most of the sites are still online and
updated regularly. About halfway through
development, we invited some people from
the community to participate in the design
of the game directly, via external forums
and newsgroups. Their skills in both mili-
tary and gaming areas were invaluable,
and we constantly used their feedback to
improve the game.

Since the release of the public demo ver-
sion (around three months prior to the
release of the final game), the community
following has become much bigger. The
only downside to the increase in the com-
munity base is that the community has
become much less focused and less mature,
as the average age of those visiting the web
sites has descended notably.

But the community still looks really vital
and the most-visited fan site has counted
millions of page views already. Recently,
fans have been creating many custom-
made tools and enhancements to the game
in addition to the various web sites and
services.

3.Open architecture. Since we
know that plenty of players enjoy

not just playing games but also providing
their own content for them, we wanted to
enable this extensibility as much as possi-
ble. Therefore, the game included exactly
the same mission editor that we had used
to design our missions. In addition, much
of the game’s functionality is data-driven
instead of being hard-coded. This includes
not only the mission files and world maps
but also the capabilities and properties of
units. The units are stored in a very pow-
erful hierarchical configuration tree with
inheritance capability, yet they are relative-
ly easy to edit. By using these configura-
tion files, it is possible to add completely
new units and worlds to the game or add
modified versions of existing ones, which
is what many players are doing to create
their own content, thus lengthening the
product’s lifespan. We wanted to use con-
figuration files to shorten coding time as
well, because we figured that the fine-tun-
ing of most values could be done by
designers or testers instead of program-
mers. But this didn’t work as we expected,
mostly because only the programmers
really knew meaning of the values.

Our scripting language also featured
highly in the game’s development and
extensibility. We started to build the mis-
sion editor as a visual tool, but we soon
recognized its limitations in certain areas.

w w w . g d m a g . c o m 43

The OPERATION FLASHPOINT demo enabled millions of players around the world
to taste the game around three months prior to its commercial release.

The built-in visual mission editor opens endless gaming options with
easily created missions.



Seeing this, we added an expression evalu-
ator for trigger activation, which was sur-
prisingly powerful, and a full scripting lan-
guage soon followed. When the game was
released, we knew immediately that script-
ing was a really good choice, as many
user-made mission used scripts to imple-
ment specific new functionality. Looking
back, we can say scripting proved to be
much more powerful than we expected.
We only wish we had added it sooner in
the development cycle, so that some of the
functionality that we hard-coded into the
game could have been scripted instead,
including some AI behavior.

At a later stage of develop-
ment (after the European
release, in fact), we
extended the game’s abil-
ity to support add-on
content. Single files
stored in specific fold-
ers could add, for
instance, new models,
units, or islands.
Besides some official
add-ons that we have
introduced since the
game’s release, there is
already a massive
number of user-
made add-ons, all
available for free
on the
Internet.

4. Creative freedom. From the
very beginning of the project, we

tried to create the game that we really
wanted to play. We didn’t look too much
toward other games for inspiration, and we
virtually ignored games that might be con-
sidered our competition. We also gave little
regard to whether the market would like
the game or not. Our relationships with
publishers were never too strong (actually,
we changed publishers several times), and
all important decisions were made by the
core development team, keeping us rela-
tively independent throughout the game’s
development. In fact, changing publishers

so many times wasn’t strictly a
negative thing. Even

though it led to some
financial uncer-
tainties, the
creative

freedom we enjoyed instead of some more
money was more than worth it.

The result of this creative freedom is a
game that is really distinct. Our design-
on-the-fly approach (or “design by play-
ing,” as we prefer to think of it) made the
game very enjoyable and a different expe-
rience from any other. Most design deci-
sions were first discussed (mostly in
newsgroups as mentioned earlier) and
then tried out in the game. No matter
how nice a design idea might have seemed
at first, only the elements that worked well
in the game ended up being included.

5. Long development cycle. The
unusually long time that

FLASHPOINT was in devel-
opment was very bene-
ficial. In terms of game-
play, the game is very
mature, which would

not have been possible in a
shorter development cycle, espe-

cially because this was our first
major game. Two or three years into

development, the game started to be really
enjoyable. In fact, it was polished enough
then to suit our original plans for the
release version. But due to various things
(mainly on the publishing side), the game
wasn’t released at that point, which gave
us more time to polish and improve it. We
were able to incorporate various features
that we originally hadn’t planned to devel-
op, either because they were too difficult
or required excessive CPU or memory
resources. 

We were also able to incorporate feed-
back from various external testers — our
friends as well as colleagues at well-
known gaming companies who evaluated
the game throughout its development. We
refocused and redesigned the game a cou-
ple of times, always opting to keep every-
thing that worked well and change the
things we felt could work better. 

What Went Wrong

1.Development cycle much longer
than expected. Ironic as it is, we

have to start What Went Wrong exactly
where we left off with What Went Right.
Despite some of the usefulness the extra

j a n u a r y  2 0 0 2 | g a m e  d e v e l o p e r

P O S T M O R T E M



development time offered us, in the end th
cycle was probably too long, and in opti-
mal conditions would have been at least
20 percent shorter. It may have been possi-
ble to shorten the cycle, but we experi-
enced various external events or internal
missteps that prevented us from accom-
plishing that.

First of all, some technologies in the
game were a bit outdated after more than
four years. We didn’t know at the outset
that the game would be still in develop-
ment after so long, and we hadn’t left time
at the end to rework parts of the engine.
Some of the criticism of OPERATION

FLASHPOINT addresses the amount of detail
in the textures and some models — and
we have to admit that these could have
been better. 

Furthermore, the excessively long devel-
opment cycle led to burnout and heavy
exhaustion, particularly for the people
who had been working on the game since
very beginning (the lead programmer, lead
artist Jan Hovora, and the team leader). In
some cases, we weren’t able to sustain
some of the features we’d implemented
two or more years prior. They just disap-
peared somehow in the process of rework-
ing parts of the code, and we didn’t even
notice. Newcomers to the development
and testing process never knew such fea-
tures had ever existed.

The main problem wasn’t that the devel-
opment cycle was too long per se, but that
the development was so much longer than
we’d expected. Next time, we will work
much more diligently to better estimate
our development time — and we will
probably try to aim higher with the detail
of our artwork, even if it seems insanely
detailed for present and predicted hard-
ware capabilities.

2.Documentation. Lack of docu-
mentation is a common affliction

among game developers, but some aspects
of this problem were so severe in our case
that they are worth mentioning.

While we’d never believed too much in
designing the game on paper, the real
problem was that we never even had docu-
mentation of the things that we’d finished.
This situation led to incredible problems in
the final stages of development. Many tasks
could only be done by one person on the

w w w . g d m a g . c o m 45

Bohemia Interactive’s in-house motion capture facility has proven very beneficial in creation of life-
like human movement animations.

The combination of infantry combat with full simulation of vehicles is a crucial part of the design of
OPERATION FLASHPOINT.



j a n u a r y  2 0 0 2 | g a m e  d e v e l o p e r46

P O S T M O R T E M

A Soviet AKSU rifle shown in Bohemia Interactive’s proprietary modeling
tool, Oxygen, with direct real-time previewing using the game’s engine.

The Head of a tank crew in Oxygen. You can see face of Petr Pechar, one of
the artists on OPERATION FLASHPOINT, under the helmet.

whole team. In other cases, hours were
spent trying to investigate how something
had originally been meant to work. We rec-
ognized these problems and tried to
improve them, but apart from a few
instances, our effort wasn’t really successful.

As the development team grew, the
missing documentation was becoming a
more serious problem. But the final project
deadlines were getting closer as well, so it
was nearly impossible to find the time to
address the problem.

3.Quality assurance. We experi-
enced various problems in commu-

nication and cooperation with our pub-
lisher. Generally, their focus and assistance
in some areas of the production of the
game (design suggestions, voice-overs, trans-
lation, scriptwriting) were really helpful. But
in other areas, we experienced some events
and circumstances that slowed down and
complicated the game’s development
rather than moving things forward.

One of the most unsatisfactory areas
was the way the QA procedures were
managed and designed to work by the
publisher. We never succeeded in achieving
a common bug database, and the publisher
enjoyed an illusory feeling that its QA
database really covered the project. The
truth was that such a database (even with-
out any direct access for the development
team) hardly said anything about the pro-

ject’s status because it covered just small
fraction of all the problems we had tried
to fix. Even when the publisher dedicated
a pretty big testing team to the game, it
sometimes seemed something of a waste of
time for everyone involved in it. 

In the end, we had to largely ignore the
publisher’s QA reports, because they con-
tained too much useless information and
very few real bugs. We tried to focus on
very limited external testing managed
directly in the very late stages of develop-
ment to ameliorate this problem — but
this approach could hardly replace real,
full-time testing of the game.

We admit the situation was very diffi-
cult for the QA team as well — in no
small part because of the lack of docu-
mentation on our side — but we still
believe this process could have been han-
dled much better. One of the mistakes we
made was assuming that the publisher’s
QA would be sufficient, so we didn’t
build a strong testing team in-house. We
definitely will find a solution for any
future projects, because the way it was
done for OPERATION FLASHPOINT wasn’t
satisfactory.

4. Some content was not under
our full control. One very con-

cerning thing was that our final CD was
still manipulated by the publisher. The
publisher applied SafeDisc protection to

the final code, which caused some unex-
pected compatibility problems that we
weren’t able to control. The mixing of var-
ious SafeDisc versions and a serious com-
patibility problem with Windows 2000
that was present in the first European
batch of CDs could have been avoided.

In addition, we weren’t able to finalize
the English language in the game because
we didn’t have a native English writer on
the team. We also didn’t oversee the voice
recording and voice actor selection, which
led to some results that were unsatisfactory
to us.

5.Multiplayer API. From the very
beginning we were aware that our

game had huge multiplayer potential, espe-
cially if it were implemented as a massively
multiplayer online game. But we knew we
would be unable to deliver such experi-
ence. Instead of aiming for such an
unrealistically high goal, we decided to
implement mission-based multiplayer that
shared as much code as possible with sin-
gle-player game. Even this effort proved
to be extremely difficult. OPERATION

FLASHPOINT was always developed prima-
rily as single-player game with a strong
story, but for a very long time we were
thinking about multiplayer functionality,
and we tried to design the game code in
such a way that it would help us incorpo-
rate multiplayer later. 



For implementation, we wanted to avoid
low-level network coding and instead use a
high-level API. As we were already using
Direct3D for graphics and DirectSound for
audio, and both suited our needs quite
well, we decided to use DirectPlay as our
network API. DirectPlay offered high-level
handling of all network communication,
including Voice Over Net capabilities.
Unfortunately, our experience with this
API was extremely bad. Often when trying
to get some high-level functionality work-
ing, we realized it contained bugs that ren-
dered it almost unusable. 

We had to implement our custom code
for things we thought DirectPlay would
provide, but that was sometimes very hard,
as we did not have the low-level control
that we needed. We also encountered many
performance problems, some very strange,
such as significant (particularly server-side)
slowdown even with no traffic over the
network. This along with the lack of docu-
mentation and a lack of stability resulted in
many problems that were hard to debug. 

Another drawback that we didn’t recog-
nize beforehand is that DirectPlay is
Windows-only, but many dedicated servers
for games currently being played online
run on Linux. Overall, selecting DirectPlay
as our network API was one of the most
unfortunate decisions in the whole game’s
development.

Future Dreaming

M ost start-up game developers dream
of developing a number-one title. We

weren’t any different. With OPERATION

FLASHPOINT, this dream has come true for
us. The game achieved the number-one
position in sales charts of various countries
and regions, including the U.S., Germany,
the United Kingdom, Benelux,
Scandinavia, and Australia. More than
500,000 copies sold worldwide in just
three months, proving to us that our last
four years of effort were worth something.

We always stayed focused on the game,
and we didn’t have too much regard for
those who believe that the success of any
game is mainly a question of marketing,
securing a big license, or working on a
sequel. We always believed that it’s the
game itself that makes the difference
between success and failure. 

We’re still playing the game and we still
like it. After such a long time, it’s hard to
believe that OPERATION FLASHPOINT

remains the favorite choice of games for
most of the development team. We’re still
working on new content for FLASHPOINT

out of pure enthusiasm. In the end, we
don’t feel ourselves to be anything more
than proud members of a big and healthy
FLASHPOINT fan community that has arisen
around the world. 

We know that someday we will have to
leave FLASHPOINT to its own destiny. But
currently, we still feel too involved in the
game. We are already looking forward to
future projects, but it will take months for

us to start one. We consider the success of
OPERATION FLASHPOINT as the pole posi-
tion for our next race. We plan to use all
the experience and resources that we have
gained during the last couple of years to
push gaming even further in the future.  q

w w w . g d m a g . c o m 47

OPERATION FLASHPOINT’s mission was to deliver the tension of full-scale conventional military conflict.

SPECIAL ON GAMASUTRA.COM

Step back in time and check out two of

Bohemia Interactive's early demos of

OPERATION FLASHPOINT from 1996–1997. Visit

www.gamasutra.com in mid-December to

download.



64 j a n u a r y  2 0 0 2  | g a m e  d e v e l o p e r

S O A P B O X  j a k e  s i m p s o n   

Job hunting the game industry — that most fun of occu-
pations. Recently I’ve run that gauntlet, jumped through
that hoop, been into that bag, or whatever idiom you
prefer. I tend to think “descended to that particular ring
of hell” sums it up fairly well. I dunno, have you ever

had an interview where you didn’t sit there squirming with
anticipated humiliation?

The whole point of an interview, from the
interviewee’s perspective, is to show how
brilliant one is, how the company
should be making a huge offer to the
interviewee immediately, and
indeed, how lucky said company is
that the interviewee had nothing
better to do that morning than
to be there inspecting it. Said
company’s representative
conducting the interview
should do so without put-
ting any questions to the
interviewee that he or she
might not be interested in
answering. In fact, said
interviewer shouldn’t
really ask any questions
apart from, “How big do
you want your office to
be?”, “Would you please fill
in this blank check yourself?”,
and “The masseur arrives on a
Wednesday afternoon; is that good with you?”

Interviewers should not indulge in programming tests, require
proof of any kind of technical ability, and specifically not ask for
references. And if they do, they should not follow up on them.
What kind of company wouldn’t trust you? If I say that I person-
ally wrote all of the rendering code for the new DOOM engine for
John Carmack as a personal favor, then that should be the end of
it. Be properly impressed and reach for the checkbook, please.

For some reason, some companies ask you to bring proof of
your abilities: demos, portfolios, examples, and so on. Why this
seems to be an accepted practice is beyond me. Maybe interview-
ers just need something to do in the evenings, like play your
games so they can see your brilliance showing through or rip off
your undoubtedly fantastic ideas.

Some companies try to trap you by asking questions such as,
“What’s the worst bit of code/management situation you’ve
done/been in?” This is a trap, people. Be prepared. I am. 

At this point in the interview, I just point out that everything
I’ve done has been nothing short of inspired, then divert the line
of questioning by pointing out the window and asking if it’s
rained frogs recently.

Sometimes you’ll have to admit that something you were
involved in wasn’t perfect. Try to avoid this if you can. But if you

get blindsided you, here’s a good tip. Say something along
the lines of, “Well, I’m not perfect — if I were I wouldn’t

have allowed that other person to make that mistake.”
I’ve found that, for some reason, interviewers don’t

have much to say after that. At this point, you can
go off on a wild tangent about the color of the

blinds or how the interviewer would look
great with orange contact lenses.

Other Tips I’ve 
Picked Up

Along the Way
That You Might
Find Helpful

E nsure you’ve gone out and got-
ten a skinful of beer the night

before. Nothing says “I am a social
animal” to interviewers like a faceful
of last night’s beer. And nothing

says, “I am totally comfortable talk-
ing to you” like letting a nice big belch

out to play. Trust me, it always goes down a treat. At least I
think it does, judging by past interviewers who’ve cried with
laughter. I’m assuming it was laughter, anyway, though they
were definitely crying.

Try not to mention black magic too often, or ask the interview-
er if he or she has a daughter, as this often offends. (It’s usually
safe to ask about a sister, though.)

Be sure to visit Best Buy or Electronics Boutique before going
to an interview so that if they ask what you’re currently playing,
you can drop some of the names of what’s currently on the
shelves. I mean, it’s not as if you have time play anything, what
with your busy social schedule. And if they ask about bad
games, be sure to mention one of their company’s titles. That
way you can really show them how cool you are, and how
you’re not afraid of saying what you think. They can’t fail to be
impressed.

Ill
us

tr
at

io
n 

by
 S

co
t R

itc
hi

e

Interviewing 
at Game Companies

continued on page 63



w w w . g d m a g . c o m 63

S O A P B O X

Don’t worry at all about lying on your resume. I looked it up
and “resume” is actually Latin for “fiction,” so you’re O.K. there.
Just make sure you don’t lie too obviously. Saying that you were
CEO of Microsoft for three years is probably not going to pan
out — someone might spot that. On the other hand, that 18-
month stint you did for shoplifting women’s underwear is some-
thing you definitely want to keep quiet.

A really good get-out-of-awkward-question phrase that I dis-
covered is, “I’m sorry, I’m contractually bound not to discuss
that.” It’s right up there with, “I’m sorry, for me to tell you that
would contravene the Official Secrets Act.” For example:

“You worked on project X?” 
“I’m sorry, I’m contractually bound not to discuss that.”
Or, “Who was the 17th president of the United States?”
“I’m sorry, I’m contractually bound not to discuss that.”
Or, “Wow, crappy weather, eh?”
“I’m sorry, I’m contractually bound not to discuss that.”

Actually, you could probably answer that last one. Just be care-
ful and never mention “vibrant moonbeams.” People will look at
you funny.

So, to recap: Be yourself, and make sure you impress the inter-
viewer with your wit and sophistication. Some good potty humor
usually breaks the ice. You can’t fail to win any job you set your
mind to.

Oh, and you don’t need to thank me.  q

J A K E  S I M P S O N | Jake works for Maxis, appearing every day
dutifully and cashing the checks as soon as he gets them. Hey, you
never know, right? He’s been in the game industry for a few years,
working for Midway, Raven, and others that have vanished into the
mists of time. Wow, that sounds poetic doesn’t it? If you want to read
more of his drivel, check out www.jakeworld.org. He can be contact-
ed at jakesimpson100@yahoo.com, but please, he’s a sad, sad individ-
ual. Treat him with caution, and above all, don’t buy him beer.


	02gameplan
	04saysyou
	06indwatch
	08prodrev
	14profile
	16inprod
	20artview
	24frontlin
	32f-london
	40postmort
	64soapbox

	return: 


