
JANUARY 2001

G A M E D E V E L O P E R M A G A Z I N E

600 Harrison Street, San Francisco, CA 94107

t: 415.947.6000 f: 415.947.6090 w: www.gdmag.com

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief
Mark DeLoura mdeloura@cmp.com

Senior Editor
Jennifer Olsen jolsen@cmp.com

Managing Editor
Laura Huber lhuber@cmp.com

Production Editor
R.D.T. Byrd tbyrd@cmp.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Daniel Huebner dan@gamasutra.com
Jeff Lander jeffl@darwin3d.com
Mark Peasley mpeasley@gaspowered.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook Verant Interactive
Susan Lee-Merrow Lucas Learning
Mark Miller Group Process Consulting
Paul Steed Independent
Dan Teven Teven Consulting
Rob Wyatt The Groove Alliance

ADVERTISING SALES
Director of Sales & Marketing
Greg Kerwin e: gkerwin@cmp.com t: 415.947.6218

National Sales Manager
Jennifer Orvik e: jorvik@cmp.com t: 415.947.6217

Account Manager, Western Region, Silicon Valley & Asia
Mike Colligan e: mcolligan@cmp.com t: 415.947.6223

Account Manager, Northern California
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 415.947.6224

Sales Representative/Recruitment
Morgan Browning e: mbrowning@cmp.com t: 415.947.6225

ADVERTISING PRODUCTION
Senior Vice President/Production Andrew A. Mickus

Advertising Production Coordinator Kevin Chanel

Reprints Stella Valdez t: 916.983.6971

CMP GAME MEDIA GROUP MARKETING
Senior MarCom Manager Jennifer McLean

Strategic Marketing Manager Darrielle Sadle

Marketing Coordinator Scott Lyon

Audience Development Coordinator Jessica Shultz

Sales Marketing Associate
Jennifer Cereghetti

CIRCULATION
Group Circulation Director Kathy Henry

Director of Audience Development Henry Fung

Circulation Manager Ron Escobar

Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes
t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas
t: 650.513.4234 f: 650.513.4482
e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall

Corporate President/COO John Russell

CFO John Day

Group President, Business Technology Group Adam K. Marder

Group President, Specialized Technologies Group Regina Starr Ridley

Group President, Channel Group Pam Watkins

Group President, Electronics Group Steve Weitzner

Senior Vice President, Human Resources Leah Landro

Senior Vice President, Global Sales & Marketing Bill Howard

Senior Vice President, Business Development Vittoria Borazio

General Counsel Sandra Grayson

Vice President, Creative Technologies Johanna Kleppe

G A M E P L A N✎

L E T T E R F R O M T H E E D I T O R

A n interesting phenomenon

has been occurring in our

Postmortem column recent-

ly. Have you noticed it? Our

three most recent Post-

mortem titles have all used licensed game

engines. November’s DEUS EX used the

UNREAL engine, December’s HEAVY METAL:

F.A.K.K. 2 used QUAKE 3 technology, and

this month’s STAR TREK: VOYAGER — ELITE

FORCE also used QUAKE 3. All three of

these Postmortems noted that using

licensed technology was one of the things

that went right.

Is licensing a game engine right for your

title? That depends on a lot of factors. The

first thing to examine is the genre of your

game. If you’re creating a PC-based first-

or third-person action/puzzle/shooter title,

you have many options available. For

sports games, isometric-view games, or fly-

ing games, you’ll find fewer adequate game

engines, but they’re still out there. Console

games have fewer possibilities still.

Why Buy?

S helling out the bucks for a game

engine is not for the faint of heart.

There are many different types of licensing

agreements, from royalties-only to flat-fee

and everything in between. In general, the

cost outlay you can expect averages about

$200,000.

The typical game development process

takes 18 months and employs 10 people.

At a rough cost of $100,000 per person per

year, that game would cost $1.5 million to

develop. If buying an engine would save

you two person-years, that would cover the

$200,000 cost.

Unfortunately, none of our Postmortem

titles really seemed to save time overall by

purchasing an engine. The development

process took about the same amount of

time that they had expected it would with-

out purchasing an engine. Each develop-

ment team spent time learning to use the

engine, and then augmented it with propri-

etary extensions such as scripting lan-

guages, particle systems, lip-synch systems,

and so on. When you’re examining game

engines, make sure you have planned out

the features you’re going to need so you

know what systems you’ll have to create

yourselves. Making alterations to a licensed

game engine to add your own features

requires quite a bit of time examining the

engine code.

One resource that all of our Postmortem

titles saved by licensing technology was

the number of bodies. For example, DEUS

EX only required three programmers.

Writing a game engine is a huge task, and

not having that task to tackle meant that

they could get by with fewer programmers.

This is definitely a cost savings. Does it add

up to two person-years? Probably.

Other Lessons Learned

B y licensing an engine and its tools at

the beginning of a project, your artists

can immediately begin working on content

for the game. If you were writing your own

engine, there would be a period of time

while the programmers worked on the

engine that the artists would be mostly

spinning their wheels. In fact, you probably

wouldn’t want to have many artists on the

project at the early stages. When you buy

your engine, the programmers have more

time to create subsystems and tools which

assist the artists and designers in making

the game come to life.

Being on the cutting edge by getting a pre-

release version of an engine means that every

few months you’ll have to upgrade your

technology. You may have to redesign aug-

mentations you’ve built on top of the engine,

or modify custom tools you’ve designed. The

other choice is to buy a proven stable engine

and make your game distinctive through

your programmers’ augmentations.

By not having to build your game’s en-

gine, you have more freedom to concen-

trate on your design. It appears from our

last three Postmortems that that alone is

really what makes a game stand out.

On Game Engines

C
Let us know what you think. Send

e-mail to editors@gdmag.com, or write

to Game Developer, 600 Harrison St.,

San Francisco, CA 94107

D E V E L O P E R

ON THE FRONT LINE OF GAME INNOVATION

600 Harrison Street, San Francisco, CA 94107

t: 415.947.6000 f: 415.947.6090 w: www.gdmag.com

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief
Mark DeLoura mdeloura@cmp.com

Senior Editor
Jennifer Olsen jolsen@cmp.com

Managing Editor
Laura Huber lhuber@cmp.com

Production Editor
R.D.T. Byrd tbyrd@cmp.com

Production Assistance
Audrey Welch awelch@cmp.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Daniel Huebner dan@gamasutra.com
Jeff Lander jeffl@darwin3d.com
Mark Peasley mpeasley@gaspowered.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook Verant Interactive
Susan Lee-Merrow Lucas Learning
Mark Miller Group Process Consulting
Paul Steed Independent
Dan Teven Teven Consulting
Rob Wyatt The Groove Alliance

ADVERTISING SALES
Director of Sales & Marketing
Greg Kerwin e: gkerwin@cmp.com t: 415.947.6218

National Sales Manager, Western Region, Silicon Valley & Asia
Jennifer Orvik e: jorvik@cmp.com t: 415.947.6217

Account Manager, Northern California
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 415.947.6224

Sales Representative, Recruitment
Morgan Browning e: mbrowning@cmp.com t: 415.947.6225

ADVERTISING PRODUCTION
Senior Vice President/Production Andrew A. Mickus

Advertising Production Coordinator Kevin Chanel

Reprints Stella Valdez t: 916.983.6971

CMP GAME MEDIA GROUP MARKETING
Senior MarCom Manager Jennifer McLean

Strategic Marketing Manager Darrielle Sadle

Marketing Coordinator Scott Lyon

Audience Development Coordinator Jessica Shultz

Sales Marketing Associate Jennifer Cereghetti

CIRCULATION
Group Circulation Director Kathy Henry

Director of Audience Development Henry Fung

Circulation Manager Ron Escobar

Circulation Assistant Ian Hay

Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes
t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas
t: 650.513.4234 f: 650.513.4482
e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall

Corporate President/COO John Russell

CFO John Day

Group President, Business Technology Group Adam K. Marder

Group President, Specialized Technologies Group Regina Starr Ridley

Group President, Channel Group Pam Watkins

Group President, Electronics Group Steve Weitzner

Senior Vice President, Human Resources Leah Landro

Senior Vice President, Global Sales & Marketing Bill Howard

Senior Vice President, Business Development Vittoria Borazio

General Counsel Sandra Grayson

Vice President, Creative Technologies Johanna Kleppe

Game Developer
magazine is

BPA approved

W W W . C M P G A M E . C O M2

4

Z F R O N T L I N E T O O L S
W H A T ’ S N E W I N T H E W O R L D O F G A M E D E V E L O P M E N T | d a n i e l h u e b n e r

FACEGEN SDK

S ingular Inversions has released the

FaceGen SDK, a program designed to

allow game players the ability to create

unique, photorealistic faces easily. Designed

to be incorporated into games, FaceGen

allows users to modify faces, or create ran-

dom photorealistic faces for computer-con-

trolled characters. Users can start with any

model head, including their own, and use

the SDK to warp their shape to any face

imaginable. FaceGen also allows for the use

of existing morph states or skeletal anima-

tions, and existing textures and texture ani-

mations. SDK licenses are royalty-free, with

prices starting at $25,000.

FACEGEN SDK | Singular Inversions |
www.singularinversions.com

XBOX PROTOTYPE KIT

M icrosoft is making it easier for inde-

pendent developers to make games

for Xbox. The company is making an

Xbox Prototype Kit (XPK) available free of

charge. The kit contains software and

information designed to help developers

create prototype

Xbox games

using familiar

tools on stan-

dard PCs. Those

lusting for a com-

plete Xbox dev kit can apply to the

Xbox Incubator Program, available to

developers who are ready to commit

resources to an Xbox title but lack a

publisher. Participants in the Xbox

Incubator Program submit complete writ-

ten descriptions of their game

concepts for evaluation by

Microsoft’s Xbox team. Those

invited to join the program can

license an Xbox Development

Kit for six months to create a

prototype and secure publishing

and distribution deals.

XBOX PROTOTYPE KIT |
Microsoft | www.xbox.com

BIG MOVES FROM
MOTEK

Motek and Delft Motion Analysis

have collaborated on a new motion

capture system that will allow for a cap-

ture area of over 900 square feet — more

than three times larger than anything

previously available. The new system is

designed as a solution

for capturing big moves

in sports or dances that

previously had to be

broken into smaller

pieces of actions and

then spliced together.

LARGE-SCALE MOCAP
SYSTEM | Motek |www.e-
motek.com

CODEWARRIOR FOR
INDREMA

I ndrema Entertainment Systems, creator

of the Linux-based Indrema game con-

sole, and development tool maker Metro-

werks, have agreed to

jointly pro-

duce a ver-

sion of Code-

warrior for

Indrema’s

console,

which will be

included for

free or at a

nominal cost

as part of the Indrema Entertainment

Software Development Kit (IESDK).

Other key technologies in the IESDK will

come from Metro Link, a maker of

graphical display software for Linux sys-

tems, including Open Stream for video

and Xtrema for display management. The

IESDK will include several open stan-

dards for game development, including

Mesa3D for 3D graphics and OpenAL for

3D audio. The IESDK is available for

download at the Indrema Developer Net-

work web site.

CODEWARRIOR TOOLS FOR INDREMA |
Indrema Entertainment Systems |
idn.indrema.com

DISCREET SHIPS
CHARACTER STUDIO 3

Discreet is shipping Character Studio 3,

the newest version of its character

animation exten-

sion for 3D Stu-

dio Max.

Character

Studio 3 adds

new crowd and

behavioral ani-

mation tools, as

well as acceler-

ated physique

skinning per-

formance and

improved

inverse kinemat-

ics tools. The

Crowd toolset

allows members of a crowd scene to be

assigned behaviors such as wandering,

seeking goals, avoiding obstacles, follow-

ing surfaces, or behaviors from custom

Maxscripts, while new animation tools

allow characters to be motivated by either

hand-designed animations, motion capture,

or a mix of both. Character Studio 3 also

includes many workflow enhancements,

including improved nonlinear animation

and track operations. Character Studio 3 is

priced at $1,495, with upgrades from

Character Studio 2 available for $495.

CHARACTER STUDIO 3 | Discreet |
www.discreet.com

FaceGen SDK morphing a male face into a female face.

A motion flow screenshot
from Discreet’s Character
Studio 3.

j a n u a r y 2 0 0 1 | g a m e d e v e l o p e r

Codewarrior
tools are being developed for
Indrema’s Linux-based console.

6 j a n u a r y 2 0 0 1 | g a m e d e v e l o p e r

I N D U S T R Y W A T C HJ

Sega shifts gears. Sega plans to

address its recent financial woes by

shifting its focus from hardware to

software. The company is taking the

wraps off an ambitious plan to boost

its share of the videogame software

market to 25 percent. Sega currently

holds a 4.2 percent share; Nintendo

leads the industry with a 19.6 percent

share. Sega’s plans to reach their goal

include providing software for rival

consoles and licensing Dreamcast

technology to makers of PCs and cell

phones. “We aim to win the top

share of the world market in the near

future by increasing the number of

platforms which can operate Sega

software,’’ explained Sega’s strategic

counsel Tetsu Kayama. “Our focus on

content provision is back in place. Sega

aims to become a real game creator.” To

that end, Sega is looking to overhaul its

software development operation, includ-

ing redirecting more than $200 million in

investment funds from third parties back

to its own internal developers. Sega hopes

these moves will put the company back

into the black as soon as this year.

Winners and losers. Game publishers

were anxiously awaiting the launch of

Sony’s Playstation 2, hoping that the new

console would signal the end of an extend-

ed stretch of soft game sales. The final fis-

cal reporting period before the momentous

occasion brought decidedly mixed results.

Electronic Arts posted a loss in its sec-

ond quarter, but it was smaller than

expected. Second-quarter revenues came

in at $219.9 million, a significant dip

from revenues of $338.9 million in the

same period last year. Consolidated net

losses totaled $35 million, compared with

a profit of slightly more than $20 million

in the second quarter a year ago.

Activision fared better, beating its sec-

ond-quarter earnings expectations. The

company reported net income for the sec-

ond quarter of $4.3 million, or 17 cents per

diluted share, up from income a year ago

of $1.06 million or 4 cents per share.

Revenues rose to $144.4 million, up from

$115.4 million in the same period last year.

Interplay Entertainment may be the

biggest winner of the group as the compa-

ny managed to return to profitability in its

third quarter. Interplay reported $31.6 mil-

lion in revenue for the quarter ended

September 30, a 34 percent increase from

revenues of $23.6 million in the third quar-

ter last year. Net income nudged its way to

a bit more than $100,000, or break even

per share, versus last year’s $17 million

third-quarter loss.

THQ also reported quarterly earnings

that topped forecasts, but fell below last

year’s results. The company had rev-

enues of $53.3 million in the third quar-

ter, up from $44.3 million in the same

period last year, with net income reaching

$2.4 million. Last year’s third-quarter

earnings were $4.7 million. THQ’s third-

quarter earnings exclude a one-time

charge of $5.9 million related to the com-

pany’s purchase of Volition.

The 3DO Company’s second-quarter

revenues were up, but so were losses. The

company reported revenues of $22.9 mil-

lion for the second quarter, an increase of

11 percent from last year’s second-quarter

revenues of $20.7 million. Net losses

reached $15.2 million, compared to sec-

ond-quarter net losses of $5.9 million in

the same time the previous year.

Midway Games may have had the

toughest time in the final pre-PS2 quar-

ter, taking a significant revenue hit. The

company reported that revenues for the

first quarter of fiscal 2001 fell nearly 56

percent to $47.3 million, versus last

year’s first-quarter revenues of $106.6

million. That decline in revenue translat-

ed to a loss of $9.9 million, compared to

net income of $11.3 million in the same

period one year ago. Midway’s rough

financial patch has spurred rumors

of a buyout. Viacom chairman

Sumner Redstone, who already holds

a 28 percent stake in Midway, was

expected to take advantage of the

company’s weak stock price to

increase his holdings.

PS2 tariff debate. Sony made an

appeal to the United Kingdom to

reclassify the Playstation 2 for tax

purposes. Sony would like to see the

machine classified as a computer,

thus avoiding a 2.2 percent levy

imposed on products classified as

videogames. Customs officials denied

an earlier request from Sony to con-

sider the console a computer on the

grounds that the Playstation 2 was not

significantly different from the original

Playstation, which was classified as a

videogame. Sony could take their defense

on the matter directly to the World Trade

Organization if its appeal in the United

Kingdom is rejected. q

T H E B U Z Z A B O U T T H E G A M E B I Z | d a n i e l h u e b n e r

AMERICAN INTERNATIONAL
TOY FAIR
JACOB K. JAVITS CONVENTION CENTER

New York, N.Y.
February 11–15, 2001
Cost: none
www.toy-tma.com/AITF

M I L I A 2 0 0 1
PALAIS DES FESTIVALS

Cannes, France
February 11–14, 2001
Cost: (expo only) approx. $275
www.milia.com

T E D I I
MONTEREY CONFERENCE CENTER

Monterey, Calif.
February 21–24, 2001
Cost: $3,000
www.ted.com/tedxi.html

U P C O M I N G E V E N T S

CCAALLEENNDDAARR

The release of Bioware’s BALDUR’S GATE 2: SHADOWS OF AMN

helped Interplay return to profitability in its third quarter.

8 j a n u a r y 2 0 0 1 | g a m e d e v e l o p e r

Help! Zack’s in Spain with no Internet

connection, so I’m using this opportunity

to ask for opinions on an important game

programming pattern.

Problem

S tate Machines are one of the funda-

mental building blocks of all programs,

but they are particularly important in game

programming. AIs, puzzles, conversation

engines, physical controllers, network sub-

systems, and sometimes even programmable

graphics shaders use State Machines to han-

dle dynamically changing situations in the

game. Put simply, a State Machine is a piece

of code that manages the current state of a

system, and the transitions to new states

based on events. The problem is how to

represent a State Machine in a program.

Solutions

B ecause State Machines are so funda-

mental to computer science, a lot of

thought has been put into creating and

analyzing them. There are particularly ele-

gant diagrammatic representations of state

machines available. Everyone’s seen the

intuitive drawings with circles representing

states and arrows between them represent-

ing state transitions due to events. The dia-

grams might include actions that occur

either during a state (Moore machines) or

during transitions (Mealy machines).

Sometimes a state will have another State

Machine nested inside it.

However, once you’ve drawn your state

diagram, translating it into code is prob-

lematic and rarely elegant, in my opinion.

There are three main ways to implement

State Machines.

Transition Tables. I think this is the

most concise of the three, however it is

also the most restrictive on the types of

events and actions your State Machine

can support. An array indexed by states

and events is created, and then transitions

are looked up in this table. Usually the

table is generated at compile time by a

separate program that parses a static

description of the specific State Machine,

or a compile phase generates the table at

run time. You get code like this:

State = Trans[State][Event];

It’s difficult to integrate arbitrary

actions or transition events into this

scheme. It works well when the types of

the events and actions are compatible

with array storage (characters in a string

search, for example). The table, and

therefore the State Machine, is almost

completely indecipherable if you’re look-

ing at it in a debugger or editor.

Switch Statements. This is the most

common expression of a State Machine in

C code. You have a state variable on

which you switch, and the case state-

ments handle the various states, actions,

and tests for events.

switch (State) {

case LANDING:

if (FootTouches)

State = LANDED;

FootForce = 3.4;

}

case FLYING: ...

This quickly becomes a huge mess. My

biggest criticism of this technique is that it

blurs the concepts of state and transition

together. The case statements are the

states, but they also implement the transi-

tions by checking the events and setting

the new state, and they often implement

the actions for the new state. So, in the

example above, the FootForce for the LANDED

state is set in the LANDING state, which is

nonintuitive. Code duplication when there

are multiple paths to the same state is

another problem with this method.

State Objects. This is the “new” way to

implement State Machines, and is recom-

mended by most books on patterns. Here,

states become objects that know how to

react to events, and a central State Ma-

chine object manages the state objects.

Although this solves some of the nonintu-

itive control flow problems of the Switch

Statement, it’s common for a 20-line

Switch Statement State Machine to become

200 lines of C++ class declarations and

code spread over five or ten source files.

This doesn’t seem like a win to me.

Issues

T he whole point of this pattern is that

all the solutions known to me have

major problems. We have such an elegant

and intuitive way to represent a State Ma-

chine as a diagram on a piece of paper,

but we don’t have the equivalent clarity

for the pattern in code. Do you have a

good way to implement State Machines?

Do you disagree with my analysis above?

Is there a language or programming style

that gets close to the elegance of the state

diagram? Visit the Game Programming

Patterns page at www.gamasutra.com/

patterns and let me know!

References

UML statecharts are the currently hip

way to draw state diagrams. Here

are a couple of articles about State

Machines with equally bad solutions (in

my opinion, of course):

www.cuj.com/archive/1805/feature2.html

www.embedded.com/2000/0008/0008feat1.html

State Machine
a.k.a. (Non) Deterministic Finite State Machine,

Finite State Automata, Flow Chart

z
P A T T E R N S

G A M E P R O G R A M M I N G P A T T E R N S & I D I O M S | c h r i s h e c k e r & z a c h a r y b o o t h s i m p s o n

w w w. g a m a s u t r a . c o m / p a t t e r n s

This column depends on your contribu-
tions! Send your patterns and idioms to
us at patterns@d6.com. To learn more
about this column and the Game Pro-
gramming Patterns Database, go to
www.gamasutra.com/patterns. If we pub-
lish your pattern in the column, we’ll give
you recognition in print and $100!

We Want to Hear From You!

12

F R O N T L I N E A W A R D S m a r k d e l o u r a

j a n u a r y 2 0 0 1 | g a m e d e v e l o p e r

ffrroonntt lliinnee
tthhee2200000022000000ffrroonntt lliinnee aawwaarrddssaawwaarrddss

w w w . g d m a g . c o m 13

W elcome to Game
Developer’s 2000

Front Line Awards!

The Front Line

Awards are our

annual opportunity to recognize the most

outstanding innovative tools for game

development. This year’s awards actually

cover about 18 months of

time since our previous

awards issue in June

1999. As you might

expect, a lot of fabulous

tools have come out

since then.

There are so many tools available for

game developers, and many of them are

must-have packages that you’ve used for

years. But what the Front Line Awards

are about is rewarding innovation. This

puts all packages on a level playing field

— what you’ll find in the following pages

are tools that provide you, the developer,

with new features or techniques that

make your lives easier or open up new

possibilities in your games.

Tool Evolution

T he Front Line Awards also provide us

with an annual opportunity to survey

what makes a tool valuable. One very

clear evolution of the tools during this

past 18 months is an emphasis on cus-

tomization. As developers, you have to be

on the cutting edge in order to make your

game look better, sound better, and be

more fun than the game sitting next to

yours on the shelf. No matter how inno-

vative a tool is, you need to be able to

modify it to mate properly with your

engine, take advantage of the features of

your target platform, or enable your

artists to work more efficiently.

Another significant development during

this period has been the rise of middle-

ware. Since Sony began their middleware

program, many new tools and libraries

for game development have sprung up.

They haven’t just sprung up for the

Playstation 2, either: Sony’s middleware

announcement inspired an entire wave of

“middleware” that spans all platforms.

This gives you many more choices, but

also makes it vital for you to have a

source that distinguishes the tools that

smell like roses from those that just smell.

Over time, game development has

become increasingly specialized. In the

Atari 2600 days, the programmer also

designed the artwork and music. Now we

have programmers, texture artists, char-

acter modelers, animators, motion-cap-

ture technicians, musicians, sound effects

engineers, level designers, and many

other increasingly specialized

roles. This year we

decided to incorpo-

rate several new

awards — for game

engines and level design tools — to high-

light two of these newer areas for which

innovative tools are being created.

The Process

T his year we sought out more develop-

er participation in the awards than

ever before. Nominations were solicited

from the development community, votes

were cast on a public web site (with

appropriate screening of the voters and

results), and the winners were determined

by high vote count. From this process,

eight products of the past year have been

singled out as exceptionally innovative,

along with our annual Hall of Fame

inductee, a special award which honors

truly indispensable products that have

stood the test of time by loyally serving

game developers for years.

We’re looking at possible models for

the future of the Front Line Awards, as

our industry grows ever larger and more

diverse. The Scientific and Technical

Awards that are given by the Academy of

Motion Picture Arts and Sciences could

be a good model for us to base the Front

Line Awards on in the future. We’ll be

looking at it, and I invite you to look at it

as well and give us your feedback. Check

out the design at www.oscars.org/scitech/

index.html.

Acknowledgements

F inally, I want to thank everyone who

nominated products for this year’s

awards, voted for the products, or wrote

the descriptions that accompany each of

this year’s winners — thank you so much

for contributing your time and effort.

Hall of Fame Award
Gimpel | PC-Lint

W hat do you do when the boss calls

you in to fix a bug in somebody

else’s code, and you have to fix it now? I

don’t mean today, or by lunchtime, or by

midnight. I mean now, right this instant,

because the courier is idling in the parking

lot waiting to take the gold master to the

presser so the game will be on the shelves

by tomorrow. Find the bug that crashes the

system and you’re the hero — you might

even get that bonus they forgot to give you

last year. Blow it and you’ll never work in

this town again.

Last time that happened to me I whipped

out my copy of PC-Lint, from Gimpel

Software (www.gimpel.com). This little

gem is a source code analyzer that finds

everything that is wrong with your code.

“Everything” is not an exaggeration. In the

above example, it found the assignment

operator that was written where a compari-

son was intended, the kind of thing that

gets harder to find the harder you look.

PC-Lint found that bug in 250,000 lines of

code spread out in almost 100 source files.

All right, so it took 20 minutes to find the

bug, 30 minutes to figure out a kludge, and

two hours to recompile the whole thing.

Not exactly what the VP of development

meant by “now,” but it was close enough

to save my hide.

PC-Lint is the samurai sword of develop-

ment tools. It’ll slice, dice, hack, cut, shred,

mince, and chop anything, anywhere. But

like a real samurai sword, it’s not a tool to

place in the hands of an apprentice. PC-

Lint assumes you understand C++ com-

pletely. Goof up an access specifier and PC-

Lint will flag the conflict in excruciating

detail. But you better know what an access

specifier is, because PC-Lint is a big-league

tool. It won’t hold your hand and explain

it to you.

PC-Lint flags almost 2,000 types of

problems in your source code, from simple

little things such as incorrect indentation to

the nastiest tangle of obfuscated code. Each

type of problem can be customized with a

large selection of reporting flags. You can

prevent flagging a type of error in a file, a

single line of code, or a group of lines. PC-

Lint works with almost every compiler

you’ve ever heard of, from Aztec to Zortec,

A W A R D S

and with all versions thereof, and inte-

grates with almost every IDE out there.

Value tracking of automatic variables?

Yep, PC-Lint does that. Detection of

unnecessary objects in headers, or unused

headers? Yep, that

too. Debugging of

weak definials? Yep.

Every time you

stumble across a

bug and mutter a

curse, wondering

why your compiler

didn’t catch it, PC-

Lint would have

caught it for you.

Everything you’ve

always wished your

compiler would do

for you, PC-Lint

will do in several

different flavors.

As a time-saving tool, nothing beats PC-

Lint. If you’re hunting for bugs, or trying

to improve the quality of code to prevent

bugs from happening in the first place,

PC-Lint is the tool to have. It not only

does its job well, it does it far better than

any other tool in its class. With bugs con-

suming so much time in game develop-

ment, going without PC-Lint is a slow

form of suicide. If you don’t have a copy

of it, fire one of your programmers and

get PC-Lint instead. You’ll finish your

game sooner and it’ll run better.

— Mike Kelleghan

2D Art Package
Adobe | Photoshop 6.0

P hotoshop 6.0 is the tool of choice

for 2D work. It is hard to recall how

I ever got by prior to the introduction of

layers in Photoshop; it was a milestone in

innovation. For texture creation and edit-

ing as well as layout, Photoshop is

unmatched primarily due to its powerful

implementation of layers. Version 6.0,

while not adding any new features quite

of that magnitude, does provide many

improvements in managing layers as well

as significant interface enhancements and

new tools.

Working with complex files that con-

tain many layers is arguably Photoshop’s

greatest strength, and now managing

those layers has become much simpler

with the ability to organize layers into

sets. The Layer Set feature allows you to

group layers in a folder and perform

operations on them

as a group, so you

can apply a mask or

hide a whole set of

layers very quickly.

This grouping of lay-

ers also makes the

Layers palette much

easier to navigate

because similar ele-

ments of an image

can now be visually

grouped in the Lay-

ers palette.

Photoshop’s inter-

face is now very cus-

tomizable with more

freedom to dock palettes and organize

tools. A new context-sensitive Options

bar has more options available and the

ability to store docked palettes. Palettes

docked on the Options bar are easy to

access and they free up screen space.

Vector-based graphics have been inte-

grated into Photoshop, so now you can

create resolution-independent graphics

and masks. Pathfinder operations just

like those in Illustrator are now

available as well.

Vector-based

shapes can be

stored in libraries

for easy reuse.

New text fea-

tures have been

added, such as edit-

ing text directly in

the image window

and the ability to

warp type. Another

nice feature is the

Liquefy command,

which allows you to dis-

tort a layer or image by paint-

ing with brushlike tools.

Photoshop 6.0 includes many improve-

ments that increase functionality, ease of

use, and productivity, making an indis-

pensable piece of software for the game

artist even better.

— George Simmons

3D Art Package
Discreet | 3D Studio
Max 3.1

O ver the years, 3D Studio Max has

become the standard for making

real-time 3D models for videogames, and

for good reason. Release 3 is a powerful

polygonal modeler, has an easy-to-use

material editor, contains great mapping

tools, and has strong plug-in support,

mainly due to its popularity. It is also

priced reasonably when compared to

other high-end 3D software.

Max isn’t the strongest 3D utility for

all applications right out of the box, but

when it comes to modeling real-time

models for games, it’s very hard to beat

for one important reason: simplicity.

Every tool needed for modeling is right at

your fingertips. An intuitive user interface

makes things even easier, and Max 3’s

interface is completely customizable.

Users can create tabs that contain any

favorite tools and commands to fit that

user’s individual needs.

Creating and adjusting materials takes

no time at all. Tools such as Unwrap

UVW and Surface Mapper make mapping

coordinates extremely adjustable and

easy to apply to objects with irregular

shapes. Max has an enormous plug-

in library, both freeware and

retail. Many powerful

plug-ins are available,

and more are on the way

every day because of the

popularity Max has built

over the years. Many

plug-ins that were consid-

ered “must-haves” for

release 2.5 now come

standard in release 3, mak-

ing Max a fantastic value.

Max also comes with a

free SDK that includes more

than half of the source code,

making it easy for programmers to

create custom tools, exporters, and plug-

ins to fit any developer’s needs. When it

comes to polygonal modeling, Max is

simply the best choice out there. The sim-

plicity, capabilities, extensibility, and

price have helped make Max the best-

selling 3D software in the game industry.

— Chris George

j a n u a r y 2 0 0 1 | g a m e d e v e l o p e r14

F R O N T L I N E A W A R D S

j a n u a r y 2 0 0 1 | g a m e d e v e l o p e r16

Art Utility or Plug-in
ACDSystems | ACDSee 3.1

C hances are,

you’ve got some-

where around 40 bazil-

lion images in your

current game. Whether

it’s interface screens,

textures, sprites, pro-

motional artwork,

conceptual drawings,

raw scans, or any

other image related to

your game, you need a

way to keep track of

all this stuff. ACDSee

makes this daunting task much easier.

Over the past few years, ACDSee has

grown from a simple graphics file viewing

utility to a full-blown suite of image dis-

play, organization, conversion, and editing

tools. As a result of this evolution, ACD-

See has become the image viewer of choice

among computer enthusiasts and game

developers alike.

ACDSee’s blazing-fast renderer ensures

that images can be viewed instantly. By

using the convenient browsing feature,

you can quickly scan through your graph-

ics data accompanied by an automatic

thumbnail view. Files can be viewed

directly from compressed ZIP and LZH

archives. Comprehensive file listings are

available with the click of a button. Also

bearing mention are the comprehensive

search functionality and image annota-

tion capability.

The latest edition of ACDSee, version

3.1, attempts to provide some of the same

services of high-end professional tools but

at a shareware price. Among these new

enhancements is a batch function that can

run a series of simple operations on a

selection of files. These basic features are

buffeted by an array of plug-ins which

provide a growing list of functions, such as

generating contact sheets, automatically

creating HTML “albums,” reading

obscure file formats, and various other

enhancements to the standard package.

ACDSee is also becoming the tool to

manage all media, not just images. The last

few versions have included support for

audio files in addition to its vast array of

supported image and video data. In addi-

tion, an extensible plug-in architecture

guarantees that future formats can be

added easily, as well as custom modules for

your own pro-

priety formats

using the

ACDSee SDK.

Even if your

needs eventual-

ly outgrow the

comprehensive

feature set of

ACDSee, it’s

worth explor-

ing this low-

cost option

before laying

down the dough for far more expensive and

marginally more useful applications.

— Ralph Barbagallo

Programming Tool
MicroEdge | Visual
SlickEdit 5.0

T here are many tools for programmers

available on the market, but if you’re

specifically looking for a text editor for

your project, Visual SlickEdit 5.0 stands

out above the rest. It’s powerful,

customizable, and easy to

use. I like to program using

VI, and before I started

using Visual SlickEdit, I

would switch between

VIM (VI under

Windows) and Visual

C++ to get the best

features of both

editors. Well,

Visual SlickEdit

combines the

benefits of both

and adds much more,

providing accurate emulation of Visual

C++, CUA, Brief, Emacs, and VI.

The Context Tagging, which includes

Auto List Members, Auto Function Help,

and Context Navigation and Context

Preview, is superb. Visual SlickEdit main-

tains a database of functions contained in

your source and header files, and indicates

the function you are currently editing.

Files are automatically retagged when they

are added to a project, saved, or an idle

time threshold is reached. Most important-

ly, the tagging is impressively fast, effi-

cient, and can handle 65,000 files.

Other customizable features that help

increase productivity are the C/C++/Java

Code Beautifier, Comment/String Spell

Checker, Multi-file Search-Replace, and an

intuitive macro language with macro

recording capabilities. The code beautifier is

particularly useful; it reformats your inden-

tation, tag styles and brace styles to suit

your preference.

SlickEdit makes extensive use of dialog

boxes and windows to allow users to speci-

fy their preferences or custom-define

macros and key bindings. The editor is so

rich with features that you will find your-

self discovering new ones even after

months of use.

Beyond the editor itself, Visual SlickEdit

provides a robust environment for any

project. In the console industry, we fre-

quently find ourselves dependent on a vari-

ety of awkward environments with special-

ized compilers, linkers, art tools, and so

on. In my work at Nintendo of America, I

have found Visual SlickEdit to be very use-

ful in providing a stable, easy-to-use inter-

face for such environments. For example,

Visual SlickEdit can recog-

nize error outputs of several

different compilers (includ-

ing command-line compil-

ers such as gcc), and auto-

matically bring you to the

line in the source file where

the error occurred. It incor-

porates very easily with

makefile-based projects, and,

for PC developers, Visual

SlickEdit can open a Visual

C++ workspace seamlessly.

Visual SlickEdit also pro-

vides tools similar in function-

ality to Unix’s diff, grep, and

find commands but with a user-

friendly, easy-to-learn interface. The file-dif-

ference tool, named DiffZilla, is sophis-

ticated. The diff dialog can operate on mul-

tiple files in a directory tree, while exclud-

ing specified directories or file types.

With all these powerful features, Visual

SlickEdit will increase your performance

and efficiency by providing you with the

tools you need to get the job done.

— Dante Treglia II

F R O N T L I N E A W A R D S

ACDSee 3.1

w w w . g d m a g . c o m 17

Programming Library
Microsoft | DirectX 8
Direct3D

A fter almost half a decade of living in

OpenGL’s shadow, Microsoft’s 3D

graphics API has come into its own. It’s

amazing how Microsoft has turned

Direct3D from the laughingstock of the

game development community to the

bleeding edge of high-performance 3D

graphics technology.

Back in the Stone Age of Direct3D, we

had the horror of execute buffers, sparse

documentation, inconsistent driver imple-

mentation, and lengthy setup routines that

seemed to dwarf the size of the applica-

tion’s main code. However, with the last

few releases of Direct3D, almost everything

has become streamlined. You can practical-

ly set up your entire Direct3D application

with a single call. Robust framework

source is provided with each release. And

the documentation is actually helpful.

Previously, Direct3D was playing a game

of catch-up with developers. With DirectX

8, Microsoft is now ahead of the curve.

With the release of QUAKE 3, using pro-

grammable shaders in real time has become

a hot topic. Direct3D now includes built-in

support for pixel shaders. It also has more

support for vertex blending and skinned

models — an important element now that

skeletal animation systems are becoming

commonplace. These days, if you want to

learn about the latest in real-time 3D

graphics technology and techniques, a fine

place to start is the Direct3D API.

Direct3D is becoming not only a 3D

graphics API, but an entire toolset.

The new release is accompa-

nied by handy plug-ins to

export model and anima-

tion data from such

popular packages as

Maya and 3D Studio

Max. Combined with

Microsoft’s growing

suite of tools for use

with other DirectX com-

ponents, developing games

on the Win32 platform is

becoming easier every day.

While OpenGL remains mired in bureau-

cratic processes to include new elements,

every year we get a new version of Direct-

3D rife with brand new standardized fea-

tures, optimizations, and tools. Microsoft

has been quick and responsive to devel-

opers — and it shows. With extensive

developer support

on Microsoft’s vari-

ous newsgroups,

thorough documen-

tation available on

their web site, and

an ongoing series of

developer confer-

ences, keeping

abreast of the

increasingly large set

of Direct3D features

is becoming a bit

more manageable.

Sure, all of these

Windows API goodies are keeping many

game developers somewhat shackled to

Microsoft’s platform. But if you are looking

for cutting-edge Win32 multimedia per-

formance, DirectX 8 could quite possibly

be your complete choice.

— Ralph Barbagallo

Audio Tool
Factor 5 | MusyX

T he first time I heard Factor 5’s MusyX

tool, it was playing a John

Williams–like symphony that sounded

absolutely brilliant. The music was set up

as a MIDI file, just a bunch of scripted

notes, but used SMaL (Sound Macro

Language) macros to modify some of the

sounds. This gave the scripted music a sym-

phonic quality unlike what you’d

normally hear when a choir of

digitized violins all play the

same note. In that case,

you would typically hear

just one note, since the

waveform would stack

up on itself, but this

actually sounded like a

real orchestra belting out

the Star Wars theme.

MusyX is a synthesizer

program that runs on your PC

but targets audio for Game Boy

Color, Game Boy Advance, Nintendo 64,

or Gamecube. You can use whatever music

composition tool you’re used to — Cake-

walk, Cubase, whatever — and have it play

to the MusyX slave program which is either

running locally on your own PC or remote-

ly on your network (it communicates via

TCP/IP). The

MusyX slave can

emulate your tar-

get platform and

play through

your PC speak-

ers, or send to

your develop-

ment hardware

and play the

music on the real

thing.

The Game

Boy Advance

version lets you

mix 32 sampled voices and also do Dolby

Surround encoding. (Of course, you’ll

need to wear your headphones to hear it

properly.) The N64 version supports 32

much higher-quality voices and also

includes a 3D sound API.

The Sound Macro Language lets you

modify notes for music as well as create

sound effects. You can do this through the

graphical drag-and-drop interface, dragging

existing macros to affect your sounds or

creating your own macros. There are a ton

of different macros you can create — more

for the more advanced platforms — and if

you really wanted you could take your

Game Boy Color music with SMaL info

and play it on the N64 just by changing the

slave program and making some adjust-

ments to or replacing the macros.

Not much information is available about

the Gamecube version at this point, but if

it’s as good as the previous versions it

should make creating interactive music for

Gamecube much easier.

— Jim Verhaeghe

Game Engine
Epic Games | UNREAL Engine

H ere at Ion Storm Austin, we used the

UNREAL engine to create DEUS EX,

our hybrid RPG/shooter immersive sim,

which was in development for over two

years, including preproduction. As a

development group, we wanted to be

content providers, not technology

Screenshot from MusyX

j a n u a r y 2 0 0 1 | g a m e d e v e l o p e r18

F R O N T L I N E A W A R D S

providers, so we were looking for an

engine that would let us spend a signifi-

cant portion of our time working on

gameplay. The marriage

of our design/develop-

ment vision and the

UNREAL technology

worked out very well.

The UNREAL engine

technology enabled us

to get started quickly,

instead of waiting a

year or more for our

programmers to create

an original technology

package. Almost as

soon as we started, we

were building out

spaces and getting a

feel for what a DEUS EX environment

was. The programmers could take some

aspect of the design document and proto-

type it in short order. This allowed us to

go through many iterations of game

design features rapidly, for instance how

our nanotech augmentations allowed the

player to interact with the game environ-

ment. The technology was incredibly sta-

ble (from the perspective of someone

familiar with in-house engine technology

used at other companies). DEUS EX almost

never crashed during development, which

again allowed us to focus more time and

energy on content creation, instead of fire

fighting.

The UNREAL engine package is powerful

and well supported, especially from the

artist and designer perspectives. The

UnrealEd level editor is subtractive, which

I prefer greatly to additive editors. We

built all the maps and missions for DEUS

EX with UnrealEd. Our programmers

wrote a stand-alone tool called ConEdit

for the character conversations, but in all

other cases we used UNREAL technology as

a starting point. As mission designers, we

loved working with it — people often had

side-project maps going, working on, say,

a temple from their fantasy RPG cam-

paign, the interior of their apartment, or

some small scene from a favorite movie.

That says a lot; people saw it as a fun,

enabling creativity tool, rather than a hor-

rible beast that had to be struggled with

daily. The designers on our team actually

enjoyed using UnrealEd.

There were a few rough aspects that

required working around, but no technol-

ogy is perfect. All games are designed

around limitations. At key

points during develop-

ment, we came to under-

stand how things could

best be done with UNREAL,

embracing the technology

rather than fighting it.

UNREAL was a great

choice for us — it enabled

us to make a game we’re

proud of, and a game that

seems to have made a lot

of players happy.

— Harvey Smith

Level Editing Tool
Valve Software | Worldcraft

B ack in the days of WOLFENSTEIN 3D

and DOOM, level design software

was in a horrible state. Unstable editors,

zero documentation, and complex con-

struction techniques made level design for

games inaccessible to all but the most

hardened developers.

With the advent of DUKE NUKEM came

the Build engine and editor, which

spawned thousands of amateur level

designers who proceeded to fill the web

with their creations.

Many people left Build

behind to move onto

greener, more 3D pas-

tures when QUAKE was

released, and so the

QUAKE engine level edi-

tor was born. A few

editors rose to the chal-

lenge, QuArK (the

QUAKE Army Knife),

Radiant, and World-

craft being the most

notable editors of their

time.

In its previous incarnations, Worldcraft

was, quite frankly, not the greatest editor

on the block. What it offered in ease of

use, it took away in instability, poor 3D

display, and resource digestion. When

Valve Software picked it up as their in-

house level design software, it was still

stuck in this state. Now, at version 3.3, it

has progressed in leaps and bounds,

adding features users have been clamor-

ing for since the beginning.

First among these new features is a

fast, smooth, stable, and very much

appreciated OpenGL 3D window which,

while requiring a video card capable of

running OpenGL in a window, is a great

step up from the previous version, and

makes a lot of people’s lives a lot easier.

Version 3.3 also introduces the ability to

preserve texture alignment on rotated

brushes. Previously, if you wanted to

rotate a crate, say, five degrees left, you’d

have to manually rotate and position

every single texture on every single face

— while this was bad enough on a six-

sided box, imagine the fun you’d have on

anything larger. Worldcraft 3.3 brought

us the rotating texture lock, which made

creating realistic environments a much

less time-consuming process. Gone are

the days of uniform objects in a straight

line in most levels. Another useful feature

is the ability to display actual sprites in

the 3D window, rather than a green

square. Worldcraft 2 popped up a colored

cube every time you placed a sprite —

now you see them animated in real time,

which is a blessing to people trying to

position sprites perfectly.

Worldcraft also provides an amazing

amount of support. While it’s a bit of a

beast to set up

for the first-

time user,

there’s plenty

of help avail-

able from

Valve and on

the web.

Some people

still stick by

their old-

school guns

and slog it

out with

QuArK or

whichever editor is still favored among

the level design dinosaurs. Good luck

prying Worldcraft 3.3 out of my hands,

though. With the continued support from

Valve and the fantastic features added in

every new update, Worldcraft is one piece

of software that’s definitely on the up.

— Simon Westlake q

The Worldcraft level editor

w w w . g d m a g . c o m 21

N ow that the new millenni-

um has actually started, it’s

time to reflect on the year

that just ended. I’ve cov-

ered quite a bit of ground

in this column: nonphotorealistic render-

ing, free-form deformation, 3D painting,

texture wrapping, and a bunch of other

stuff for creating, animating, and rendering

3D objects. It’s probably apparent to most

of you the types of game development situ-

ations where these different techniques are

useful; however, I still often get e-mail

from readers that basically sound like,

“The technique you described in the maga-

zine for doing 3D_GRAPHICS_TECH-

NIQUE is pretty cool. But, I am doing a

CURRENT_GAME_GENRE title and I

don’t see how I can use it. When do I need

that technique?”

Now that my game developer toolbox

is all full of nice little pieces of 3D tech-

nology, it’s time to pull it all together and

actually do something with it. We start

with the game design. First of all, let’s

hope I have one. As the technical lead, it’s

always better to have a fully developed

concept before you actually start creating

the game. The few times I have been

involved with a “design it on the fly”

kind of project, it’s always ended in disas-

ter. But let me start by assuming that I

have a design.

The Design for
Battle Beetles

P itch: “It’s a fighting game with a

heart, but it’s really funny.”

Genre: 3D fighter similar to Sega’s VIRTUA

FIGHTER or Midway’s READY 2 RUMBLE.

Style: Animated-cartoon-style fighting

game with cartoon physics (squash and

stretch).

Levels: Various fantastic cartoon areas

like the “gooey blue goo puddle” and the

“battle in a bottle.”

Platform: The latest and greatest 3D

game platform (meaning polygon count and

graphics features are not a major factor).

Target demo: Mass market and early

adopters (we want the sexy high-end

graphics but want to sell a ton of them).

Delivery: 18 months from start of pro-

duction (aren’t they all?).

Poor me, that’s all I get. From that, I

need to create a technical design document.

Unfortunately for me, that means I need to

decide how a “fighter with a heart” actual-

ly plays. The environment that they fight in

will

be pretty

easy. It’s just a

polygonal

mesh. No fancy

dynamic view

culling needed,

since the center

of focus is al-

ways the battle

arena. That

means that the

main technical

focus will be the

characters.

Single-mesh polygo-

nal characters are the obvious choice. I

don’t need any fancy continuous level of

detail scheme, since the players will be full-

screen and close. The game style also dic-

tates a fairly simple mesh. No need to go

crazy with the polygon count. You can see

an example of the beetle characters with

simple texture maps battling in Figure 1.

To animate the characters, I could ex-

port various mesh key poses and morph

between the poses in the way that QUAKE

characters do. However, deforming the

characters with a skeletal system makes

more sense for some key reasons. A con-

temporary fighting game requires a lot of

animated moves. Morphing all these

J E F F L A N D E R | Presently, Jeff is probably pondering perplexing problems with polygons.
Jot Jeff a jaunty jingle at jeffl@darwin3d.com.

“When Tweetle
Beetles fight, it’s
called a tweetle beetle

battle.” — Dr. Suess

Battling

j e f f l a n d e r G R A P H I C C O N T E N T

Beetles

FIGURE 1.

frames would require a great deal of

memory. Animating the skeleton will

require a great deal less memory. Also,

using the skeletal system for animation

will allow for the creation of dynamic

moves on the fly. Plus, I already have the

code prepared to support the matrix

deformation needed for the skeletal ani-

mation system.

Collision Detection

Handling collisions between the char-

acters will be the most important

technical issue of the game. Fighting

games depend on good collision detec-

tion. I could simply track the character

states and distance between them. If one

character was in the “punch” pose and

was close enough to the other player, I

could call it a “hit” and make the charac-

ters react. This was typically the way

fighting was handled in the 2D fighting

games of the recent past. However, for

the modern 3D fighting game, that is no

longer adequate. Players like to see realis-

tic reactions. If one player hits another in

the head, the head should snap back.

Likewise, a punch that is blocked should

not continue through the body of the

character. This is a key problem with

many fighting games. They either cannot

detect the collision cor-

rectly or lack the ability to

have the characters react.

You often see little puffs of

magic dust or sparks to

cover the fact that the hand

of one character passed

through the torso of the

other.

To get accurate collision

detection for the characters,

or at least accurate to a

point, I need to check if

body parts are actually in

contact. A single boundary

for the entire character will

not be good enough. I could

go to the level of checking

for collisions between indi-

vidual polygons, but that

would be more detail then

I actually need. One

method for more detailed

collision detection is to use

a bounding sphere tree. In this technique,

boundary spheres are arranged in a hierar-

chy where each level of the tree bounds a

more detailed representation of the object.

For example, the root of the boundary tree

would be a sphere that encloses the entire

character. The next level has boundary

spheres for each arm, each leg, the head,

and the torso. The branching could contin-

ue until each individual polygon is bound-

ed by a sphere.

This again is probably more detail than

I need. However, it’s a good starting point.

I have a character made of a mesh that

contains a skeleton composed of bones

that roughly follow the shape of the char-

acter. I can add a floating point bsphere

value to the bone data structure that repre-

sents the radius of a bounding sphere at

that bone root location. This will give me

a series of boundary spheres that approxi-

mate the shape of the character. As a side

benefit, since the boundary spheres are

“attached” to the bones, they follow the

animation of the characters. You can see

the boundary spheres defining the charac-

ter in Figure 2.

The way I defined these sphere sizes

and positions, they don’t entirely cover

the object. For example, it may be possi-

ble to pass an object through the charac-

ter without hitting a boundary sphere;

for example, between the elbow and

wrist is a good example. I could close the

gap by adding more spheres, for exam-

ple, between the bone roots or by using

oriented bounding boxes to define the

object instead of spheres. However, these

spheres are good enough for my fighting

game application.

This same idea is useful for other game

genres as well. For example, one of the fea-

tures that players liked about Raven Soft-

ware’s SOLDIER OF FORTUNE was the ability

to selectively hit regions of the character’s

body. This feature could easily be accom-

plished using the sphere-tree approach.

Applying the Skin

S o I have a polygonal character with

an embedded skeleton and boundary

spheres attached. However, unless I attach

the skin to the skeleton, the beetle is

going to have a tough time moving. As I

have mentioned before in this column

(“Over My Dead, Polygonal Body,” Octo-

ber 1999), vertex weights are used to

associate each vertex with the bone ma-

trix in the skeleton. However, generating

these weights is as much art as technolo-

gy. If you are fortunate enough to use an

advanced 3D animation system such as

Maya or 3D Studio Max, you can use

these tools to generate the skin weights.

Of course, the challenge then becomes

getting the program to give you those val-

ues, but that problem will have to wait

for another article. If you do not have a

program like this, you will need to roll

your own.

If you realized that the 3D paint system

I created for last September’s column

(“Art and Intelligence: 3D Painting”) is

well suited for the job, you get a cookie.

In that program, I already had the capa-

bilities to paint on the surface of an

object. Making the system paint vertex

weights instead simply involves hooking a

few pieces together. However, for a rea-

sonably sized model with a lot of vertices,

you are not really going to want to paint

each vertex weight by hand. You want to

have a starting point. The 3D animation

packages use a default mapping to get

things going. I want to re-create this func-

tionality to give my program a head start

as well.

j a n u a r y 2 0 0 1 | g a m e d e v e l o p e r22

G R A P H I C C O N T E N T

FIGURE 2. A beetle with boundary spheres approximating the
shape of the character.

j a n u a r y 2 0 0 1 | g a m e d e v e l o p e r24

G R A P H I C C O N T E N T

The obvious start-

ing point would be to

say that the vertices

are influenced by the

bones that are close to

them. I need to create

a falloff function that

describes the amount

of influence a bone

has on a vertex. When

the weight is 1.0, the

vertex is under full

influence of that bone.

When it is 0.0, the

bone has no influence

at all. I have seen a

variety of falloff func-

tions, but for my models the following

function gives me the best results:

This weight is calculated for each ver-

tex-bone pair. The weights for each ver-

tex are then sorted by weight. You can

limit the weighting to a certain number

of bones by zeroing out the weights

beyond that number. The weights for

each vertex then need to be normalized

so that the sum of the weights for any

vertex is equal to 1.

The algorithm for the automatic weight-

ing function is:

For each Vertex in the mesh

For each Bone in the skeleton

Calculate the weight using the above

formula

Sort the vertex-bone pairs by weight

Zero out the weights beyond the desired

blend number

Normalize the weights so that their sum = 1

The tricky bit is deciding on the dis-

tance function to use when weighting.

The simple method would be to calculate

the distance from the vertex to the bone

root. However, this is not ideal. Consider

the case of the arm in Figure 3. The root

is near the shoulder; however, there are

vertices all along the bone structure.

Using the simple root distance function,

the vertices along the arm bone would

not be considered.

I need a distance function that consid-

ers the distance from any point along the

bone. Fortunately, this is similar to a

problem that I ran into long ago. Back in

January 1999 (“Crashing into the New

Year,” Graphic Content), I described

almost this exact scenario for use in mak-

ing sure that a point is not too close to a

wall. I’ll recap the technique here.

What I want to know is how far away

the test vertex, v, is from bone segment

A. An easy solution would be to find the

nearest point, n, to the test point on the

bone segment and measure the distance to

it. First, I create a vector, B, from the test

vertex, v, to bone root b1. I can dot this

vector with the bone segment A. This will

give me the cosine of the interior angle. If

this angle is 90 degrees or greater, the

nearest point is the root itself and I am

done. But let’s say that the dot product

gives me 0.7 or the cosine of about 45

degrees. I will then do the same thing on

the other side. I create a vector, C, and

dot it with the segment A. If it had re-

turned an angle greater than or equal to

90 degrees, point b2 would be the closest

and I would be done again. In this case

the dot product returns 0.75, or the

cosine of about 40 degrees. Now that I

have the two dot products, a linear ratio

will solve the problem:

This new point, n, can then be used to

check the distance to the vertex.

In practice, this works much better

than the basic root distance. However, I

have found that if you use the entire

bone length for the test, it interferes with

the next bone in the hierarchy. To coun-

d Mvn n
n

vertexcount

−[]
=

−

∑ 2

0

1

d Mv=

FIGURE 3. Automatic arm weighting.

In last month’s column (“Pump Up the

Volume: 3D Objects That Don’t Deflate”), I was

trying to find a way to generate a local coordi-

nate frame for an arbitrarily deforming mesh.

The method I described could easily be termed

a “hack.” What I did then was identify vertices

that roughly define the major axes of the

object and then use the average of those

points as a local frame. For objects that have

vertices roughly along their major axes, things

work pretty well. However, for a more compli-

cated object, things are more difficult. Averag-

ing the outer hull vertices also may not always

give the best result. After speaking to Chris

Hecker and David Eberly among others, it

appears that there may be a more mathemati-

cally correct, though more computationally

expensive solution. If I consider an initial ver-

tex, v, that corresponds to a deformed vertex,

d, I want to solve the equation

where M is the matrix that transforms the

vertex to the deformed position. This leads to

a problem of error minimization. I can measure

the distance from d to Mv for each vertex and

attempt to minimize that distance. I want to

find a matrix, M, that will return the minimum

possible value for the function:

This matrix will represent both the translation

and rotation that caused the object to get into

its deformed space. It is complicated a bit by

the fact that I want the transformation matrix

to be composed of only rotations and transla-

tions. A general transformation matrix can also

scale the object up or down to cause the defor-

mation. To keep this from happening, I need to

add constraints on the problem to keep the

scale uniform. I will be investigating this further

and reporting the results here in future

columns. If you have any ideas on the subject,

drop me an e-mail.

d Mvn n
n

vertexcount

−[]
=

−

∑ 2

0

1

d Mv=

MORE ON ABRITRARILY
DEFORMING MESHES

teract this problem, I use 75 percent of

the bone length as the test segment for

the distance. That seems to give me a

reasonable amount of influence without

too much interference.

That is not to say that the algorithm is

perfect. I am just using a simple distance

check. This check assumes no knowledge of

the actual mesh topology. So, as you can see

in Figure 4, the influence can fall off onto

objects that it should not affect.

In this example, the arm rotation

is moving vertices in the face.

I could probably combat this

problem by considering the dis-

tance traveled along the topolo-

gy of the mesh. But it is easier

to clean up these issues by hand

using the weight painting func-

tion. That is what makes this

problem artistic as well as tech-

nical. At visual effects compa-

nies, there are staff members

that do nothing else but attach

skeletons to characters and set

up the skin weighting. The game industry

is probably not to that point yet, but may

soon get there.

I Have Bones but I
Can’t Walk

I haven’t addressed either the animation

or rendering aspects of my technical

design document yet, but that will have

to wait until next month. Until then,

start thinking about how we can use

skeletal deformation and animation tech-

niques and still get the cartoon physics

type of squash and stretch that we want

for the characters.

On Game Developer’s web site at

www.gdmag.com, you will find source

code for automatically computing the ver-

tex weights of an object, as well as modi-

fications to the 3D paint program so that

you can paint the weights. Thanks to

Christine Lander for creating the Battling

Beetle model. q

F O R M O R E I N F O R M AT I O N

Seuss, Dr. [Theodor Seuss Giesel]. Fox

in Socks. New York: Beginner Books,

1965.

Discuss this article in
Gamasutra’s Connection!
www.gamasutra.com/discuss/gdmag

FIGURE 4. Too much influence.

W ay back (and I

mean way back)

when I art-directed

my first game, it

was just sort of

assumed that I knew what I should call

my files and how I would begin to organ-

ize my data. I was more or less left to my

own devices to figure out just what need-

ed to be done. Well, truth be told, I didn’t

have a clue. I made it up as I went, and

luckily, it was back in the Jurassic period

of game development when floppy disks

were all the rage. Even when I wasn’t well

organized, it didn’t matter too much since

there just weren’t that many files to

worry about.

Times have changed. CDs have become

the standard and DVDs are starting to

make a showing in the gaming industry.

Mass-media storage capabilities are stan-

dard on the next-generation consoles.

With the size and scope of most games

coming out now, art teams generate thou-

sands upon thousands of files. They range

from the working art production files to

the final files used on the CD or DVD.

There are 3D mesh files, texture files, ani-

mation files, GUI bitmaps, special 2D ani-

mation files, vector files, support files,

and so on. With all of that data floating

around, organization becomes critical.

Without it, work will be misplaced, lost,

and have to be redone. Hair will turn

gray and blood pressures will rise as team

members try to keep a handle on this

ever-expanding issue.

It Could Happen to You

A lthough much of what I’m going to

talk about is rooted in common

sense, it still deserves to be explored.

Sometimes we get so tied up in the details

that we can’t see the forest for the trees.

For a real-world example, let’s examine

a project I worked on a

few years back. I was

brought on midway

through the development

process of a large project.

The art team was busily

creating art, and had been

for well over a year before

I joined them. One of my

first tasks was to try to

get a handle on just what

had been created and find

out where it was.

It turned out that a for-

malized method of file

naming hadn’t been estab-

lished, or if there had

been one, no one was

adhering to it very stringently. In addition,

the directory structure for the art assets,

both working and final, didn’t exist in any

logical sense. The files were sometimes on

individual hard drives, sometimes on net-

work drives, or occasionally backed up

onto CDs. Team turnover had exacerbated

the problem as well.

Under these circumstances, it took me the

better part of a month just to get to the

point where I could make a spreadsheet

showing which assets were complete, which

were incomplete, and where everything was.

Additional problems occurred because

of incorrectly named files, which were

linked to untold lines of code and scripting

files. Correcting them (and there were a lot

of them) would have taken too long, so we

decided to leave them. These files were a

never-ending source of confusion. Logic

was tossed out the window, and we had to

develop a vast lookup spreadsheet just for

tracking the data.

While this is an example of a worst-case

scenario, it exemplifies the issues well.

With the proper structure and forethought,

we could have avoided a large expenditure

of art resources.

File Organization

B ased on that experience, and refined in

the years since, I have compiled some

rules to live by: First, files should sort

alphabetically and numerically in directo-

ries. Second, Excel is your friend. And third,

fast, cheap, or good — pick any two.

All right, now that I’ve gotten that out

of my system, I’ll explain why I arrived at

these rules in a bit more detail. The first

rule pertains to the way your data will

sort. If you design a directory and file sys-

tem that is logical and flexible, you will

reap the rewards down the road. If you

just name files and directories randomly,

or as you need them and without fore-

thought, you will oftentimes find yourself

painted into a corner. The farther you are

into the development cycle of a project,

the worse it gets when you have to make

sweeping changes to files. Often, other

team members are directly affected by

your changes. This can include program-

ming, level design, and just about every

facet of development.

Let’s take a look at an example and

walk through some of the problems and

File Organization and
Naming Schemes

M A R K P E A S L E Y | Mark has been in the game industry since the late 1980s and is currently the art director for Gas Powered Games. Visit
his web site at www.pixelman.com or e-mail him at mp@pixelman.com.

w w w . g d m a g . c o m 27

m a r k p e a s l e y A R T I S T ’ S V I E W

FIGURE 1. A simplified directory structure that is headed down the
wrong path.

potential solutions: Your project is

GUMBO’S REVENGE, a real-time 3D game. It

has a 3D world that will be filled to the

brim with objects, trees, and all of the nec-

essary graphical splendor to make it a big

hit. As you begin to create the art assets

for the game, the issue of organization

rears its ugly head.

Let’s take a standard tree object as a

case in point. The initial design calls for

your trees to be of varying sizes, including

one meter, three meters, and six meters

tall. There are also a couple of evergreen

and deciduous varieties. One of the first

things you’ll want to do is to determine

what to call your file, and where to put it.

In establishing what to call your files and

directories, you might ask yourself some

questions. What thing is the first determin-

ing factor in a directory-based file name?

Is it the size? The color? The type? Do I

care? (Hint: answer “yes” to the last one.)

So let’s say you decide that it goes in

the following order: size, general type,

specific type, and so on. You determine

that there will be a lot of trees in your

game, so you decide that the first order of

business is to set up your directory struc-

ture (see Figure 1).

Now, everything is going along just fine

until you decide that you need 12-meter

trees. When you add the 12meter directo-

ry, it situates itself at the beginning of the

other directories, following the standard

alphanumeric sorting.

Well, now your directories are out of

order. Not a big thing, but a nuisance just

the same. So you go back and rename your

first three directories 01meter, 03meter,

and 06meter. This allows your files to sort

correctly, and everything proceeds as it

should — for awhile (see Figure 2).

In your first directory (..\1meter\decidu-

ous\maple), you create four trees. Being the

logical person you are, they get named:

TREE01, TREE02, TREE03, and TREE04.

Then, you move on to the oak trees, and

you name the first four trees . . . uh . . .

TREE01, TREE02, TREE03, and TREE04.

Your logic is that they are in different

directories, so they can share the same

name without any problems.

After a couple more directories get filled

with files of identical names, you realize that

you may be heading down the wrong path.

Your first clue occurs when the level design-

ers start making little dolls

that look like you and pin-

ning them to their cube walls.

And they use way more push-

pins than they should.

Even though you can cre-

ate identically named files in

different directories, I’d

strongly recommend against

it. At some point in the art

process, you will be revisiting

the files again, and it

becomes a very confusing,

error-prone process if you are

calling up similarly named

files. Another reason might

occur months down the

development road. An appli-

cation might end up being

written that helps sort and

export your art data very effi-

ciently. These applications

can save you days of work,

but generally are more reli-

able if you use unique identi-

fiers. There are always workarounds to the

problems you will face, but it is good prac-

tice to err on the side of flexibility.

So bite the bullet and go back and rename

the files with a more logical naming scheme,

using the directory structure that you’ve cre-

ated as a basis for the file names. After cre-

ating the first file called 01METER_DECID-

UOUS_MAPLE_TREE01, you realize that

some people might balk at a 30-letter file

name. Some data truncating might be need-

ed to make the file more manageable, so you

cut the file down to 1M_D_M_T01. Know-

ing you are on the right track, you blaze

through the rest of the files and update them

to your new scheme.

Once again, things are right in the

world of GUMBO. The art progresses

along swimmingly for another week

before you realize that you need to define

your trees further with light and dark ver-

sions. Your first forays into the new detail

level start to show some problems with

your naming scheme. The file

1M_D_M_T01_D looks O.K. until some-

one points out that the first “D” stands

for “deciduous,” and the second “D”

stands for “dark.” So you rename it

1M_D_M_T01_DK. It all makes perfect

sense until you hand the file off to the

new guy who started last week and his

eyes glaze over as he looks at your “logi-

cal” file name.

Now, take that one example, and multi-

ply it by a hundred, or a thousand. Do

other assets in the game follow the same

logical structure as the trees? How about

houses? Character files? Is it going to take

you an hour to explain your naming

scheme to someone? If so, can you make it

more efficient? Have you checked with the

programmers to see if your scheme works

with the way they are writing the code?

It quickly becomes clear that you will

need to think this process through careful-

ly and keep a close watch on it as the proj-

ect moves forward. When done well, this is

one of the less visible infrastructure com-

ponents that allows the development

process to proceed at optimal speed. When

done poorly, it can quickly drag the art

asset process into a quagmire of problems.

“I’ll Take Technology for
600, Alex”

A s with many things in this “new” busi-

ness of game development, the prob-

lems we face have often been dealt with

before, only under different circumstances.

Take, for example, organizing a library full

of books. It’s essentially the same problem,

j a n u a r y 2 0 0 1 | g a m e d e v e l o p e r28

A R T I S T ’ S V I E W

FIGURE 2. An example of how the addition of a zero can cause
directories to sort correctly.

just applied to books instead of computer

files. Most of us have heard of the Dewey

decimal system used by libraries to organize

their materials. Just so you know (and I had

to look this one up too), it’s based on the

division of all knowledge into ten groups,

with each group assigned 100 numbers. The

10 main groups are: 000 to 099, general

works; 100 to 199, philosophy and psy-

chology; 200 to 299, religion; 300 to 399,

social sciences; 400 to 499, language; 500

to 599, natural sciences and mathematics;

600 to 699, technology; 700 to 799, the

arts; 800 to 899, literature and rhetoric;

and 900 to 999, history, biography, and

geography. These ten main groups are in

turn subdivided again and again to provide

more specific subject groups. Within each

main group the principal subseries are

divided by ten as well.

O.K., now that we’ve had our history

lesson for the day, let’s get back to the

problem at hand. Why couldn’t we just

apply the same technique to the issues of

file names and be done with it? From the

computer’s standpoint, a unique number

or letter-number combination is no differ-

ent from a long, descriptive word. All that

is generally required is that it be unique

from any other file. Are there distinct

advantages or disadvantages to using a

numbered system? The answer is, it

depends.

A numbered system can work well, and

is quite flexible, but it isn’t without some

costs. One of the main disadvantages is

that you have no way of visually sorting

the files in a directory without either see-

ing them (via opening them up or thumb-

nails) or using a lookup table.

When given the chance, most of us are

likely to label a picture of a flower as some-

thing descriptive, such as FLOWER1.JPG as

opposed to G32AL321.JPG. This is just

common sense, since you want to be able to

look at a directory of files and be able to

pick out your flower file easily. If the file is

named something that has no recognizable

reference to your original file, it becomes

much more difficult to locate and identify.

Once you have waded through two or three

directories that are nothing but numbered

files, it becomes impossible to remember

what the files represent.

So why would you choose this method

at all? One reason might be if you have

files that are constantly being shuffled,

reassigned, or changed. If this occurs, it’s

often necessary to rename the files contin-

ually in order to maintain the integrity of

the organization structure you have built.

For example, let’s say you have a file

called TOWN_INN_BUCKET.PSD. Under

a directory-driven structure, this repre-

sents a picture of a bucket, found in the

“Inn” subdirectory, which is located in

the “Town” directory. Later on in the

development cycle, you realize that this

bucket is much more applicable for use in

the barn, which is located in the country-

side section of your game. If you move

the file to the new directory, the filename

doesn’t match the existing structure.

Renaming isn’t difficult, but it takes a

small bit of time.

w w w . g d m a g . c o m 29

Let’s say that your bucket item needs to

be more of a global type. So you create a

“Global” directory, and break it down

into logical subdirectories. Again, you

move the bucket file and because its name

is derived from the directory it resides in,

it needs to be renamed. While this is a

simplified case, changes like this can occur

on a daily basis as a project continues.

If, on the other hand, the file was origi-

nally just given a unique number or letter-

number identifier, it could be shifted

around easily without you having to worry

about renaming it. This can be very advan-

tageous if there are a lot of files prone to

this type of evolution.

The main disadvantage is that a lookup

table of some sort will have to be main-

tained and readily available as a cross-ref-

erence. Generally, this requires several

spreadsheets that must be constantly main-

tained. In addition, error-checking is some-

times difficult to do since it is easy to

transpose characters that have no specific

logic to their structure. If you misspell

FLOWER1.JPG, it’s easier to see and cor-

rect than if you mistype G32AL321.JPG.

Make a Key or Two

O ne of the first things I do when begin-

ning a naming scheme is to start some

“living” documents. These are ones that

are constantly updated as the project pro-

gresses. They should be in a location that is

readily accessible to the other team mem-

bers, which can be as simple as a shared

directory over a LAN, or it can be more

tightly controlled by using some sort of

version control such as Visual SourceSafe.

A good first document to create is a key

for others to decipher your naming scheme.

This will be a requirement if you use a

numbered scheme. If it is a directory-based

naming scheme, then it isn’t required, but it

will certainly make life easier if it exists.

Since most descriptive words you use in

your file are going to get truncated, you

should have a document that everyone goes

to when they are looking for the abbrevia-

tion of a word. Even if you think the word

is so simple that no one could possibly con-

dense it incorrectly, you will be amazed.

Let’s take the word GOLD for example. Is

it GLD, GL, or GD? If you leave it up to

interpretation, the chance for error is high.

What Should I Use?

G enerally, I try to stick with the

basics. As a computer artist, you

may not be well versed in programs that

don’t directly deal with creating art

assets. While this is fine for production-

level positions, you will find that your

software knowledge base needs to expand

as you take on the responsibility of man-

aging assets.

Spreadsheets are a great type of pro-

gram to get familiar with. They are like

the Swiss army knife of applications. I

typically use Excel, mainly because it is

compatible with just about everyone, and

because I am developing on the PC envi-

ronment, it is one of the base tools I have

at my disposal. It’s powerful, flexible, and

easy to learn. It’s also available to all of

the artists on the team as part of their

basic system software, so I don’t have to

concern myself with additional software

purchases. Choose a program that every-

one has access to; otherwise they won’t

be able to review, edit, or update your

files without help.

Once you get into the management side

of the assets, you will soon find yourself

in the position of needing to supply data

to the person(s) responsible for tracking

the progression of your project. With a

properly organized spreadsheet, you can

find and present this information easily.

Excel also allows linking to other spread-

sheets. One way to take advantage of this

capability is to create linked summary

sheets. If properly set up and linked, sum-

mary spreadsheets can be made to update

automatically from other spreadsheets.

This is a great way to create files that are

always current (assuming the linked files

are maintained) and usually provide the

executive summary information needed

without all of the detail.

Safety Issues

A s my example at the beginning of

this column showed, poorly organ-

ized files can lead to some serious flaws

in the backup process. Part of any good

development structure includes the consis-

tent backup of both the final “CD image”

files and the production art files. Pro-

duction files are those which are used to

create the final game assets. In the case of

Photoshop, a production file can often be

20 or 30MB in its nondestructive, uncol-

lapsed form while the final asset is under

1MB. Also, most artists keep several iter-

ations of files on hand. Animations are

another good example. They are exported

from the 3D tool of choice, creating a

game-specific final asset.

It’s easy to see that a lot of files need

to be considered when thinking of the

safe backup of the artist’s development

environment. If it follows a logical, well-

thought-out structure, this can be a very

easy thing to manage and maintain. If

not, files can go for months or years

without being backed up, and only when

a hard drive fails or data turns up miss-

ing do you realize the files are missing

from what you perhaps thought was a

safe system.

So what backup method should you

use? As usual, it depends on your project.

Most big development teams will have an

automated LAN backup of some type.

Data is backed up every day or two, and

as long as you have your critical files on

the network, you are safe. CD backup

burns that include your iterations and

legacy files are a good idea. Like most

artists, I usually discover a particular file

has something useful in it the day after I

delete it. If you intend to burn CD back-

ups, think about how best to organize

your directories. It’s a lot easier to copy

and burn one “backup” directory tree

than it is to spend an hour gleaning the

files out of your working structure.

Plan Ahead, Stay Ahead

A s the person responsible for manag-

ing and/or maintaining art assets,

you will find that the organization of

your data is an ongoing process. If you

set up a good system, it doesn’t have to

be a full-time job to update and maintain.

While file organization isn’t the most

glamorous part of game development, it is

important, and can have a major impact

on how well your project runs. Remember

to keep it flexible, and keep it simple. q

j a n u a r y 2 0 0 1 | g a m e d e v e l o p e r30

A R T I S T ’ S V I E W

Discuss this article in
Gamasutra’s Connection!
www.gamasutra.com/discuss/gdmag

j a n u a r y 2 0 0 1 | g a m e d e v e l o p e r32

JAN KAUTZ | Jan is a Ph.D. student at the Max-Planck-Institute for Computer Science in Saarbrücken, Germany. His main research area is
interactive realistic lighting and shading using graphics hardware. He can be reached at kautz@mpi-sb.mpg.de. CHRIS WYNN | Chris is an
OpenGL software engineer working at Nvidia Corp.’s technical developer relations group. You can ask him anything (BRDF and other-
wise) at cwynn@nvidia.com. JONATHAN BLOW | Jonathan prefers the AK-47 and the Colt M4A1. He will use the MP5, though, if that’s
what it comes down to. He reads e-mail sent to jon@bolt-action.com. CHRIS BLASBAND | Mr. Blasband has more than 17 years of experi-
ence in applying BRDF phenomenology to military and commercial applications. As president of Soreal Technologies, he is responsible for
deploying Surface Optics Corporation’s technology into commercial off-the-shelf products. He can be contacted at cbb@soreal-tech.com.
ANIS AHMAD | Anis is an undergraduate student at the University of Waterloo, majoring in computer science. You can contact him at
a3ahmad@student.math.uwaterloo.ca. MICHAEL MCCOOL | Michael, who can be reached at mmcool@cgl.uwaterloo.ca, is an associate pro-
fessor with the Computer Graphics Lab at the University of Waterloo, Canada. His research areas include real-time hardware-acclerated
shading and illumination.

Achieving Real-Time
Realistic Reflectance

Achieving Real-Time
Realistic Reflectance

J A N K A U T Z , C H R I S W Y N N ,R E A L - T I M E R E F L E C T A N C E J A N K A U T Z , C H R I S W Y N N ,

O ne of the primary goals of game development is to

successfully convince players that they are in a dif-

ferent world — this is particularly important for

3D and first-person games where visual immersion

may mean the difference between life and death,

victory and defeat, or first place and second. In order to achieve this

visual immersion, the lighting must be as sufficiently convincing as

all the other elements in the environment. That is, the quality of the

geometric models and the lighting simulation should be good

enough to trick a player into suspending reality and believing that

he or she is in the fantasy world that months of development time

were devoted to creating.

The increased fill rates and optional transform and lighting

engines that highlight the evolution of 3D accelerators have paved

the way for increasingly complex geometric

detail. What once was unimaginable is now

commonplace, as games that utilize the poten-

tial of these accelerators make their way

through the production pipeline. The good

news is that this trend of increased polygon

throughput is likely to continue in the future.

Unfortunately, however, the quality of lighting

has not improved at the same rate, and many

games still lack the visual authenticity neces-

sary to provoke a truly compelling gaming

experience. Artifacts resulting from poor ver-

tex lighting continue to abound in games, and

while the geometry improvements have helped

the lighting cause, our games do not yet exhib-

it many of the lighting phenomena observable

in the real world.

So what’s necessary to achieve realistic

lighting? To answer this question, two areas

must ultimately be addressed: illumination and

reflectance. Illumination determines the distri-

bution of light striking the surfaces in the

scene, and includes the effects of shadows and

indirect lighting. Reflectance determines how surfaces redistribute

the light that hits them. For realistic lighting, both the illumination

and reflectance need to be simulated.

Within the game development community, several current

approaches address the illumination problem. Point lights (with

optional fog, distance, or shadow attenuation) are often used to

determine the amount of light that arrives at a surface. Directional

light sources and light maps effectively serve this purpose as well.

Unfortunately, sophisticated models of reflectance have not really

made an appearance in games. In terms of reflectance, most games

to date use the Phong reflectance model or rely on strict intensity

modulation to determine how surfaces reflect the light that strikes

them. While this is not a bad thing, Phong reflectance and intensity

modulation are limited in the types of lighting phenomena they are

capable of simulating. Consequently, they are unable to reproduce

the appearance that we observe of many real-world materials.

This two-part series of articles focuses on the reflectance aspect

of lighting. We will discuss a technique that implements more gen-

eral reflectance models for a wide variety of surface materials, for

example velvet, copper, and others. This is called separable decom-

position and is an effective and efficient way to incorporate physi-

cally accurate reflection models and ultimately increase the level of

realism in a game. The technique can be used in conjunction with

point light sources, directional light sources, light maps, shadows,

and fog, since each of these influences only the illumination compo-

nent of lighting and does not affect the reflectance model. More-

over, the technique evaluates reflectance on a per-pixel and not a

per-vertex basis, and it can support dynamic lights with no addi-

tional overhead. Finally, while the approach is general and allows

for arbitrary reflection models, it is still capable of simulating

Phong if desired. Figures 1 through 4 demonstrate examples done

at interactive rates with our technique.

This month, we will cover the mathematics behind reflectance

as well as how to acquire reflectance infor-

mation from real-world materials. Next

month, we’ll detail our separable decompo-

sition technique and how to implement it

using multi-texturing.

Scope of This Article

A s we said, the process of lighting

involves both illumination and reflec-

tion. In this article we will concentrate on

point-source direct lighting, where illumi-

nation comes from a point positional or

directional source and is reflected by a sur-

face directly into the eye. Even applications

that use sophisticated precomputed global

illumination should not neglect direct light-

ing from the brightest light sources, since

such lighting conveys the bulk of the infor-

mation about the shape and surface quali-

ties of objects in the scene.

Many if not most current-generation ren-

dering engines add interest to surfaces by

using color, bump, environment, and/or specular maps. While these

techniques are very effective, they are still limited by the underlying

reflectance models they modulate.

For simplicity, our examples will focus on materials with homo-

geneous surface properties; that is, each triangle in a model can rep-

resent only one type of material (such as metal or wood). Of

course, a real application wouldn’t use just, say, brushed metal, but

rather brushed metal that’s scuffed, rusty, dirty, has glowing green

alien mucus smeared on it, and has holes punched in it where acid

has eaten through. What we’re going to present is not merely

another technique to put in your bag of tricks, but a technique that

will greatly enhance other effects when combined with them.

Reflectance Models

I n computer graphics, when we talk about materials or material

properties, what we are really talking about is the reflectance

properties of a surface that define how light arriving at the surface

is scattered. A reflectance model can be thought of as a material

w w w . g d m a g . c o m 33

J O N AT H A N B L O W , C H R I S B L A S B A N D , A N I S A H M A D , M I C H A E L M C C O O L

Of course, a real applica-

tion wouldn’t use just,

say, brushed metal, but

rather brushed metal

that’s scuffed, rusty,

dirty, has glowing green

alien mucus smeared on

it, and has holes punched

in it where acid has eaten

through.

description that modulates the intensity of the light that arrives at

the surface. As parameters, it takes the angles by which incoming

light arrives at a surface point and the angles by which it must leave

that point to enter the eye; as outputs, it gives us the manipulations

that should be done to the light to simulate the reflective properties

of a material. Currently, the Phong reflectance model is used almost

universally for “glossy” surfaces in real-time rendering. Phong

reflectance is easy to use because it is directly supported by existing

graphics APIs such as DirectX and OpenGL. Moreover, in 3D

accelerators that include hardware transform and lighting support,

the computation of Phong reflectance can be performed very rapid-

ly and does not burden the general CPU.

Unfortunately, the Phong reflectance model is not physically

realistic, and many real surfaces have reflectances that look noth-

ing like it. Furthermore, the current implementations of the Phong

lighting model in OpenGL and DirectX both have some severe

problems because they evaluate the reflectance model only at the

vertices of the polygon instead of at every pixel sample rendered.

This method of evaluating a reflectance model at the vertices of a

primitive and then interpolating the resulting colors across the

primitive is the commonly known Gouraud shading technique.

Gouraud shading is fast and requires far fewer computations than

evaluating the reflectance model at each pixel, but unfortunately it

can be problematic — particularly so for shiny surfaces in which

the reflectance varies rapidly with view and illumination direction,

and contains specular highlights that do not fall on a vertex in the

model. For example, if the object being lit is modeled using a

small number of polygons, each covering many pixels, a rapidly

varying reflectance function can be undersampled, resulting in

aliasing of the reflectance model. This can result in splotchy high-

lights that may flash on and off as the object moves, which does

not convey the desired impression of a shiny surface. Hence it is

desirable to have a technique that performs the lighting computa-

tions on a per-pixel basis rather than on a per-vertex basis.

Finally, the Phong reflectance model is isotropic: the amount

of reflectance depends only on the elevation angles; that is, the

angles that the view and light directions make with the normal.

General reflectance models are anisotropic: they also depend on

the azimuth angles that the view and light directions make with

some preferred tangent embedded in the surface and perpendicu-

lar to the normal. In other words, anisotropic reflectance models

have an orientation about the normal, not just an elevation

angle. Examples of anisotropic materials include brushed metal

and most woven fabrics. Some materials, such as satin, are

extremely anisotropic. Other materials have a highly anisotropic

reflectance when viewed from a distance, such as hair, fur, and

mown grass. Even with a static light source and viewer, a surface

with an anisotropic reflectance will reflect differently when rotat-

ed around its surface normal. See Figure 1 for an example of an

anisotropic brushed material.

The BRDF

T he Phong reflectance model became popular because it was

easy to compute and produced fairly attractive results. In

order to develop more sophisticated reflectance models that do

not suffer from Phong’s problems, we need to define mathemati-

cally what a “reflectance model” is. The abstraction used by com-

puter graphics researchers is the bidirectional reflectance distribu-

tion function, or BRDF.

When light reflects off a perfectly smooth specular surface, the

angle of reflectance is equal to the angle of incidence. However,

perfectly smooth surfaces don’t exist in the real world. Rather,

surfaces tend to be quite complex at a microscopic level. For

example, a wood surface, no matter how polished and smooth it

may feel, contains millions of tiny fibers packed together. When

light reflects from surfaces like these it scatters in many directions.

Depending on the type of surface, light will be more prone to

scatter in certain directions. Directions in which a large fraction of

the incoming energy scatters are usually seen as highlights. A

BRDF models the probability that a photon from a certain incom-

ing direction will scatter in a certain outgoing direction, or will be

absorbed by the surface. An example of such a distribution (for

one light direction) can be seen in Figure 5.

The BRDF can be used to compute, for a particular view direc-

tion, the outgoing radiance (which corresponds to what the eye

actually perceives) as a weighted integral over all incoming radi-

ance at a particular surface point:

Here ƒ is the BRDF and L represents the radiance traveling in the

direction given by the spherical coordinates θ and φ relative to the

surface point. The elevation θ is the angle between a direction and

the surface normal, the azimuth φ is the angle of a direction around

the normal. The spherical coordinate system is shown in Figure 6.

The subscripts o and i represent the outgoing (view) direction and

incoming (light source) direction respectively. The notation dσ (the

solid angle measure) just indicates that all directions on the hemi-

sphere Ω should be weighted equally.

L L do o o o i i i i i i iθ φ θ φ θ φ θ φ θ σ θ φ, , , , , cos ,() = ƒ() () () ()∫∫
Ω

j a n u a r y 2 0 0 1 | g a m e d e v e l o p e r34

LEFT TO RIGHT: FIGURE 1. Metallic anisotropic material. FIGURE 2. Measured peacock feather: note color shifts at certain viewing angles.
FIGURE 3. Analytical BRDF for gold with an additional diffuse texture. FIGURE 4. Measured wood with an additional diffuse texture.

R E A L - T I M E R E F L E C T A N C E

If only point sources are considered, then light can only arrive

from specific directions, and this reduces to the following

reflectance equation for K point light sources:

Eq. 1

In the following, we will use normalized vectors and to rep-

resent the incoming and outgoing directions, in addition to θ and φ
for elevation and azimuth angles.

In addition to the incoming and outgoing ray directions relative

to the surface, BRDFs often also depend on the position on the sur-

face and the wavelength of the incoming light. For the purposes of

this article, we will deal only with the incoming and outgoing direc-

tions, which reduces the total number of parameters to the four

angles. Rather than use the wavelength of light as a parameter, we

normally will evaluate red, green, and blue components of the

BRDF separately, and combine these values into a final color.

Reflectance Equation and
Phong Model

E quation 1 can be understood more easily if we examine how a

raytracer usually evaluates this equation and how it relates to

the well-known Phong reflectance model. A raytracer traces rays

from the eye point through every pixel of the view plane. Whenever

a ray hits a surface at point , the normalized viewing vector

(pointing from to the eye) and the normalized light vector

(pointing from to the light source) are computed. The incoming

radiance Lk() from the kth light source is computed by dividing

the intensity of the light source by the squared distance from to

the light source. The incoming radiance Lk() is then multiplied

with the dot product between the surface normal and the light

vector , which corresponds to cos(θi). The result is then multi-

plied with the BRDF , which is the radiance value per-

ceived by the eye. Rewriting the reflectance equation (Equation 1)

using vectors and only one light source gives this:

Eq. 2

How does this correspond to the Phong model used by OpenGL,

for example? The Phong model consists of diffuse and specular

components and can be written like this (simplified):

where the halfway vector The intensity of the diffuse

part can be changed with kd, the intensity of the specular high-

light can be influenced with ks, and the size of the highlight can

be adjusted using the parameter N. We can rewrite this equation

to show the relation to the reflectance equation (see Equation 2):

So basically the Phong model is nothing but a specific BRDF,

which is fairly simple to evaluate. It should be noted that the

parameter kd is very often stored in a “diffuse texture map,”

and the parameter ks is often stored in a so-called “gloss map.”

Better Reflectance Models

Computer graphics researchers have developed many sophis-

ticated reflectance models that can better represent real sur-

faces. Most of these models are derived directly from the under-

lying physics of optics and mathematical models of light-surface

interactions. To discuss even one of them in any detail would

require an article of its own. We will, however, mention a few of

the more interesting models available, references for which are

provided at the end of this article. Fortunately, you don’t have

to understand the physics to use these models, and the separable

decomposition technique we will present in next month’s article

uses sampled data and can handle all these reflectance models at

real-time rates.

The Torrance-Sparrow model is a variant of a physically based

reflection model for isotropic surfaces. It assumes that each sur-

face consists of tiny, randomly oriented facets, each of which is a

perfect reflector (see Heidrich and Seidel under References). The

He model is based on physical wave optics. This isotropic model

is extremely powerful, as it can describe many surfaces from

roughened rubber to polished gold. It is also complicated, difficult

to implement robustly, and computationally expensive. Ward’s

model uses anisotropic Gaussian lobes. Many other reflectance

models can be represented to reasonable accuracy by summing

multiple Ward lobes. The Poulin-Fournier model assumes micro-

scopic cylinders cover the surface parallel to one another to model

anisotropic materials.

L L n

k
k n h

n

o phong o i k i i

phong o i d

s

N

i

ˆ ˆ , ˆ ˆ ˆ ˆ

ˆ , ˆ
ˆ ˆ

ˆ ˆ

ω ω ω ω ω

ω ω
ω

() = ƒ () () ⋅()

ƒ () = +
⋅()

⋅()

ˆ ˆ ˆ

ˆ ˆ
.h i o

i o

=
+
+

ω ω
ω ω

L k n k n h Lo d i s

N

k i
ˆ ˆ ˆ ˆ ˆ ˆ ,ω ω ω() = ⋅() + ⋅()



 ()

L L no o i k i i
ˆ ˆ , ˆ ˆ ˆ ˆω ω ω ω ω() = ƒ() () ⋅()

ƒ()ˆ , ˆω ωo i

ω̂i

n̂
ω̂i

p
ω̂i

p
ω̂ip
ω̂op

ω̂oω̂i

L Lo o o o i k i k k i k i k i k
k

K

θ φ θ φ θ φ θ φ θ, , , , , cos, , , , ,() = ƒ() () ()
=

∑
1

w w w . g d m a g . c o m 35

n
θi θo

φiφo

oiω

ŝ

t̂

ˆ
ˆ ω̂

FIGURE 5. Reflectance lobe
for a sample reflectance
function.

FIGURE 6. Visualization of
the angles and vectors
used: n = normal,
t = tangent, s = secondary.ˆ

ˆ
ˆ

Unfortunately, the above models aren’t directly suitable for hard-

ware-accelerated real-time applications, as they don’t address the

problem of implementation. However, measured data is available

for several materials (see Columbia-Utrecht Reflectance and Tex-

ture Database, and the Cornell University Program of Computer

Graphics’ Measurement Data under References) and can be used

instead of analytical models. This reflectance data can be used in

the approach we’ll discuss in next month’s article, and we’ll give

some examples. A BRDF can also be generated from computer

models of micro-geometry and bump maps (see Westin and oth-

ers under References). The second approach can be used to ren-

der objects with bump maps properly at a distance.

Acquiring BRDF Data

Currently, commercial BRDF data is only sparsely available

and focused mainly on measurements of materials of mili-

tary significance. Still, a great deal of research has been per-

formed on acquiring BRDF data and there are companies today

that are building databases, selling instruments, and performing

BRDF measurements for commercial applications.

There are three principal means of arriving at BRDF measure-

ments: two are currently in use, and the third is in the experi-

mental stages of development. They are a goniometer, the newer

imaging bidirectional reflectometer, and an image-based BRDF

measurement derived from photographs of an object.

The principle behind all of these instruments is that a sample

of material is illuminated by a known light source and the

amount of scattered energy is measured as a function of the ele-

vation and azimuth angles of the light source, elevation and

azimuth angles of the observer/detector, and the wavelength of

the incident light source. Therefore, the data produced by these

instruments is truly five-dimensional.

While it sounds simple in theory, the actual practice of build-

ing instruments to measure a calibrated BRDF is quite difficult.

It requires a detailed knowledge of electronics, optics, and scat-

tering theory.

Sample preparation is critical for many materials, and is quite

often overlooked by those making BRDF measurements. For exam-

ple, dirt placed in a pile will have quite different scattering proper-

ties from dirt that is thinly spread in the instrument cup. Material

such as velvet can have very different scattering effects if placed in a

tightly stretched position versus loose or crumpled. The moisture

content of the material is also important. A wet material will scatter

light very differently from when it is dry.

Measuring the BRDF is as much an art as a science. The sam-

ple must be properly prepared and situated in or under the

BRDF measuring device. It is also critical that the person per-

forming the measurements document the condition of the mate-

rial when measured.

BRDF Measurement Devices

Goniometers. The most well-known device for measuring the

BRDF is a goniometer. A goniometer performs an accurate

BRDF measurement by performing a systematic mapping of the

light scattered in the hemisphere. It does so utilizing a movable light

source and sensor, making a measurement for each incident and

exit angle of light on the surface. This gives a true five-dimensional

(four angles and wavelength) mapping of light scattered by a sur-

face. Figure 7 shows a smaller BRDF system in use at the U.S.

Army’s Tank-automotive and Armaments Command (TACOM) for

laboratory and field measurement. Figure 8 shows a second, and

much larger, fully automated system used in the laboratory at the

U.S. Navy’s Carderock Division Naval Service Warfare Center

(CDNSWC) to measure larger samples.

It is important in the design and use of these instruments that

one has knowledge of the type of light being used to illuminate

the material. Illumination sources for the measurements include

quartz halogen and blackbody sources (for examining BRDF

characteristics in the infrared) and up to five laser sources to

cover specific wavelengths in the visible (for example red, green,

blue). A number of detectors are employed to provide continuous

measured data from the visible to the long-wave infrared.

The information measured by these instruments is a five-dimen-

sional matrix based on incident and exit angles of light from the

surface and the wavelength of the illumination source. Figure 9

shows a three-dimensional plot of the BRDF for all exit angles

and just one incident direction (θi, φi) = (50°,0°) of an Army green

paint at a wavelength of 0.5µm (green light) as measured by one

of these instruments. As you can see, there are quite a few meas-

urements that must be made in order to accurately characterize

the BRDF of a material.

Imaging bidirectional reflectometers. A second type of instru-

ment, the imaging bidirectional reflectometer, has been developed

to complement goniometers, and provides a more cost-effective

and convenient means of measuring BRDFs in the field with only

a slight loss in accuracy. These new handheld BRDF imaging

devices allow developers to measure BRDFs in real time at their

own facilities and without the need for a laboratory.

One such device is capable of simultaneously measuring both

BRDF and hemispherical directional reflectance (HDR), a meas-

ure of the total reflectance as a function of the incident illumina-

tion angle of a surface. Using an imaging technique that takes into

account the elevation and azimuth angles of the light source, and

an imaging array that essentially requires no moving parts as in

the goniometer, this instrument fully maps the scattering from a

half-hemisphere above the surface with more than 30,000 angu-

larly resolved points and update rates to 60 measurements per

second. The user just places the instrument against the surface to

be measured and presses a button. The light source elevation

angle is variable from θi = 0 to 85 degrees, while scattering is

measured to nearly 90 degrees off normal.

Each pixel in the “angular image” (hemisphere) formed on the

array corresponds to a small range of scattering angles relative to

the illuminated spot on the measured surface, as shown in Figure

j a n u a r y 2 0 0 1 | g a m e d e v e l o p e r36

FIGURE 7 (above). SOC-250 in situ bidirec-
tional reflectometer. FIGURE 8 (right). SOC-
200 laboratory bidirectional reflectometer.

R E A L - T I M E R E F L E C T A N C E

10. If the detector response is known for each pixel, the images

may be interpreted as a quantitative measurement of the distri-

bution of the reflected light. Alternatively, dividing by the inci-

dent intensity of the illuminating beam, the image can be inter-

preted as revealing the distribution of reflectance from the sam-

ple, which is exactly what is needed.

Image-based BRDF measurement. A third method, image-based

BRDF measurement, is a means for measuring the BRDF at visi-

ble wavelengths. Using photographs of an object and known

camera position, lighting, and geometry effects, the BRDF of the

object’s surface is determined directly from the photographs. In

essence, without specialized apparatus, game developers can use

the camera’s positioning and knowledge of the conditions sur-

rounding the taking of the picture to derive some of the parame-

ters describing the BRDF.

This methodology is currently under investigation (see Marschner

under References) and could be very cost-effective, accepting some

further loss in accuracy. It holds promise, but as yet no commercial

systems exist, and it might require further validation.

BRDF Measurements for Game
Developers

T he imaging bidirectional reflectometer is the instrument best

suited for game developers. It is extremely user-friendly and

requires little effort to operate. Simply place the aperture on top

of the material to be measured, adjust the illumination angle,

and push a button. The result is a matrix of 30,000 BRDF data

points for that sample. The data is stored in a documented for-

mat on the computer that comes with the instrument. It is then

very easy to transfer the data to any computer.

For those who do not wish to make their own measurements,

there are companies developing commercial BRDF databases

composed of many materials relevant for today’s games. Devel-

opers can also hire one of these companies to develop custom

BRDF databases for their specific applications. Some public

BRDF measurements can also be found online, such as Cornell

University’s and the Columbia-Utrecht Reflectance and Texture

Database mentioned previously.

Coming Next Month

In this article, we have presented the necessary background for

the separable decomposition technique, which we will explain

in detail in part two next month. This technique allows you to

render realistic surfaces with arbitrary reflectance models. The

reflectance models used can be either analytical or measured

with one of the presented devices. q

w w w . g d m a g . c o m 37

FIGURE 9 (left). BRDF of Army green 383 at 0.5µm and 50o elevation
angle. FIGURE 10 (right). Angle image formed by the handheld HDR
instrument.

R E F E R E N C E S

Kautz, J., and M. McCool, “Interactive Rendering with Arbitrary BRDFs
Using Separable Approximations,” 10th Eurographics Rendering
Workshop, 1999. pp. 281–292.

Heidrich, W., and H. P. Seidel. “Realistic, Hardware-Accelerated
Shading and Lighting.” Proceedings of SIGGRAPH 1999.
pp. 171–178.

He, X., and others. “A Comprehensive Physical Model for Light
Reflection.” Proceedings of SIGGRAPH 1991. pp. 175–186.

Ward, G. “Measuring and Modeling Anisotropic Reflection.”
Proceedings of SIGGRAPH 1992. pp. 265–272.

Poulin, P., and A. Fournier. “A Model for Anisotropic Reflection.”
Proceedings of SIGGRAPH 1990. pp. 273–282.

Columbia-Utrecht Reflectance and Texture Database
www.cs.columbia.edu/CAVE/curet

Cornell University Program of Computer Graphics
www.graphics.cornell.edu/online/measurements

Westin, S., J. Arvo, and K. Torrance. “Predicting Reflectance Functions
from Complex Surfaces.” Proceedings of SIGGRAPH 1992.
pp. 255–264.

Marschner, Stephen Robert. “Inverse Rendering for Computer
Graphics”, Ph.D. diss., Cornell University, 1998.

j a n u a r y 2 0 0 1 | g a m e d e v e l o p e r38

F E A T U R E A R T I C L E

j a n u a r y 2 0 0 1 | g a m e d e v e l o p e r38

Great! Now just add
10 more levels and

multiplayer.

Let’s get a license —
here’s a list of what is

available. Just pick
something.

D E C I S I O N M A K I N G c h i p b u r w e l l

Here’s our game,
DEPRAVED INTERN’S
REVENGE, ready for

publication.

Calling the Shots
Decision Making

for Games

Calling the Shots
Decision Making

for Games

w w w . g d m a g . c o m 39

CHIP BURWELL | Chip is the owner of Gratuitous Games Inc., a small development studio currently working on a race game for PS2, Xbox, and
Gamecube. Chip started in the industry as a sound guy but after a stint working on Project Reality at SGI, he moved into game programming.
Recently, Chip has been studying drawing to develop his understanding of art. Learn more about Gratuitous Games at www.gratuitousgames.com,
or contact Chip at chipb@gratuitousgames.com.

Revenge isn’t skewing
so hot this year. How
about something more

kid friendly?

ou’ve heard it before: the story about some

important decision that went terribly wrong. If

you’re lucky, it just leads to angst and hours of

extra work. If you aren’t so lucky, it leads to your

project being killed.

Sometime after the crisis is over, a meeting is held

in which everyone reflects on what went wrong. Usually

this amounts to passing the buck and looking to avoid

blame. The meeting ends with comments about “learning from

our mistakes” and “we’ll know better next time.” Rarely does

such a meeting get to the real root of the problem, though.

What needs to happen in a case like this is for the group to

take a long, hard look at how the problem-causing decision was

made. You need to talk about the process of decision making and

figure out how to change the processes that led to that decision.

For this article, I’ll divide decision making processes into a cou-

ple of categories that are particularly relevant to game compa-

nies. The first division will be the number of people who make

the decision: either one person makes the decision, or a group

makes the decision. The second division is the basis for making

the decision. The two categories of this second division are

“political reasons” and “merit-based reasons.” Combining these

two categories, we can create a two-by-two matrix, as seen in

Figure 1.

Sometimes a process might pop up that doesn’t fit these divi-

sions very well (you might just flip a coin, for example), and

other times there might be some blending of these processes, but

for our purposes these categories will suffice. One exception is

worth noting, however: the case where no decision making

process exists. People just put whatever they want into the game,

no one decides what is good or bad, and when the schedule says

the game is done, they ship it.

ILLUSTRATIONS BY R.D.T. BYRD

Keep in mind

that these divisions

are hardly the only

categories you can

use to identify deci-

sion making processes.

There is extensive literature on this topic

(see For More Information for some

good references), and a number of differ-

ent theories. To discuss all the theories of

decision making would be beyond the

scope of this article, nor is this article

meant to be a synopsis of these theories.

It should be a starting point for conversa-

tions among game developers about how

they work together.

Single-Person
Decision Making

In cases where the “big cheese”

decides, there is one person who has

been designated the decision maker.

Everyone knows who this is, and what-

ever this person decides, that’s the way

it is. This method has a couple of distinct

advantages. First, it’s relatively easy to get

a decision made, and the group knows

whom to look to for its decisions. Because

just one person is making all the decisions,

there is a uniformity to the end results.

Also, decisions can be made very quickly,

since no meetings need to be called.

But the biggest strength of the big cheese

process is also its biggest weakness. That

is, the judgment of the big cheese. If the

right person is the big cheese, then this

method can go well. But if the wrong per-

son is the big cheese, it can be a disaster.

On one game design I worked on, we

had a producer who was regarded as one

of the best in the industry. The producer’s

idea involved looking down on gameplay

in a 3D environment. When we

first got a demo of the gameplay

up and running, virtually every-

one on the team found it wasn’t

much fun. The main issue was

that viewing the game from a

top-down angle, it was extreme-

ly hard to tell what height your

character was at. But the pro-

ducer was unable to let go of his

original idea, and even encour-

aged us to increase the height of

the game world, making things

worse. In the end, much to the team’s

relief, the project was canceled. The lesson

here is that, under the big cheese method,

you live and die by your cheese.

There is another aspect of the big cheese

method that is often overlooked, which is

the impact this method has on the people

who work under the big cheese. First,

because decisions are always being made

for them, the people working under the big

cheese don’t get experience making deci-

sions. That’s too bad, because there is

something to be said for learning from

your own mistakes. If your company is

trying to develop the talents of its staff,

this will be a big shortcoming.

Second, when all decisions are made

for them, creative people will find the

environment unmotivating. At a mini-

mum, this leads to people not having a

personal involvement with the project.

Worse, it can lead to creative people

leaving and finding jobs elsewhere. But

if you have someone who is extremely

talented and has excellent judgment, it

would be a shame not to use them as

your decision maker.

Despite these shortcomings, there

are lots of times when having a single

decision maker is a real benefit. In a

crisis situation, having a strong leader

who makes clear decisions and gives

straightforward instructions can be

invaluable.

Group Decision
Making

B efore discussing group decision

making, I should warn you that I

used to believe that group decision

making was always a bad idea. My

first job in the game business was as a

sound and music guy. Because there was

no “music director,” the decision about

what music would stay in the game and

what would get cut was based on com-

ments from the project lead, the CEO, the

art director, the marketing department,

and various others. I found that any song

that might bother anyone was likely to

get cut. The songs that were chosen to

stay in the game were often the least

inspired and most banal.

After a while, I stopped writing music

and got more involved with game pro-

gramming. Working in small groups with

other programmers, I found that we could

make good decisions together. Typically

the group suggested several different

ideas, debated their relative merits, and

finally chose the best idea from

the group.

Once I experienced this, I be-

gan wondering why some groups

make good decisions and others

don’t. At first I thought it was

because programming decisions

tend to be objective, while others,

such as music decisions, are sub-

jective. But some programming

decisions are subjective, and I

had seen programmer groups

handle these decisions well, too.

40

D E C I S I O N M A K I N G

j a n u a r y 2 0 0 1 | g a m e d e v e l o p e r

Single decision maker using
politically based decision

processes

Single decision maker using
merit-based decision

processes

Group decision making using
politically based decision

processes

Group decision making using
merit-based decision

processes

D E C I S I O N M A K I N G S T Y L E M AT R I X

FIGURE 1. A matrix of decision making processes relevant to game
development.

Have you guys had a chance to
work on my “4-player,

second-person perspective, first-
person shooter” idea yet?

As time went on I became more

involved in managing and leading a

team. More decisions were being

placed on my shoulders, and I became

increasingly concerned with how our

company was making decisions. I

began reading about how organ-

izations function, and trying to relate

what I read to my experience. The key

element that kept showing up in both

my reading and my experience was the

nature of the group itself. Time and

again this seemed to be the determin-

ing factor in how successful a group

was at making good decisions.

Is It a Group or Is It
a Team?

Now is a good time to introduce

the distinction between a group

and a team. A team is essentially a

group with some special qualities.

These include:

• Having good communications and

sharing information on a constant

basis

• Having respect for each other’s abili-

ties and opinions

• Not allowing conflict to become per-

sonal

• Having a common goal for which

members share responsibility

• Being small enough in size (usually

about 10 to 12 people) to interact

successfully

Keeping these qualities in mind, you might

realize that a lot of groups described as

“teams” are not in fact what we should

consider a team. This distinction between

a group and a team can’t be overempha-

sized when it comes to decision making

processes.

As you look at the traits of a team as I

just described, think about the impact

that each trait has on decision making.

Notice also that these traits are related in

a lot of ways. If you have the first two

traits, good communications and respect

for one another, chances are high that

you also have the other three traits. But if

you don’t have the first two traits, it’s

pretty unlikely that you have the other

three.

Back up and look at the examples I have

cited so far. When I was an audio guy, the

group of people that decided what music

was going to stay in the game was definite-

ly not a team. On the other hand, a small

group of programmers working together

often will qualify as a team.

Recently I was involved in trying to get

a game to final. To do this, we needed the

approval of the publisher’s testers, the

marketing department, the platform man-

ufacturer’s focus group, the team that cre-

ated the original arcade game, and a

handful of other people. This is the classic

case of a group not being a team. The

group didn’t share a clear vision of what

the goals of the game were, there was

poor communication with very little infor-

mation being shared, and there was little

respect between the groups for the opin-

ions of others. Not surprisingly, a number

of very poor decisions were made as each

subgroup tried to use its influence to dic-

tate the final product. One of the main

reasons that so many games fall apart

near the end of development is that deci-

sion making at this critical juncture is

turned over to a group that is not a team.

How can we as an industry try to

resolve this problem? In the above case

there are two possible scenarios. The first

is to pick one subgroup and give them

full decision making authority. But which

group? Your answer

probably depends

on which subgroup

you belong to.

Alternatively, we

could restructure the way

that different subgroups work together,

trying to find a way to create a true

team. The first objective would be to

trim the size of the group down to a

manageable team size. One person from

each subgroup could be designated to

represent that subgroup. These repre-

sentatives would then have to meet, set

goals, communicate, and work together

over the life of the project.

This is easier said then done, of

course. Such a structure would be a

radical departure from the way these

subgroups currently interact, and

would require that each representative

bring a high level of competence to the

team. However, this isn’t impossible,

and “cross-functional teams” are rela-

tively common in other industries from

aerospace to waste management.

But the group’s ability to function as a

team will have a tremendous impact on

how successful the group is at making

decisions. If the group becomes a team,

its members are likely to relate to each

other in a cooperative way, trying to sort

through the challenges together, while

groups that are not teams are focused

largely on watching their own backs.

When properly implemented, team/

group decision making can have several

big benefits. A team can combine its ex-

perience and judgment in a constructive

way that offers significantly more experi-

ence and insight than a single big cheese.

Also, when teams work together in a con-

structive way, they can motivate each

other, delivering a product that far ex-

ceeds their individual capabilities.

Political Decision
Making

Most people are pretty familiar with

this method in its most basic form

— we decide to do something because

someone whom we need to keep happy

has suggested that it be done. The deci-

sion was made not because the suggestion

was a good one (it might have been either

w w w . g d m a g . c o m 41

Here’s the 14th version of the
background music. Like you asked,
I’ve cut out the bass, the guitar, and

the harmonica.

Could you
jazz it up
a little?

good or bad), but simply because of

who suggested it.

Political decision making is much

broader than and has lots of variations

on the situation I just described. Who

hasn’t sat in a meeting that dragged on

and on until everyone agreed to a spe-

cific decision, just so the meeting

would end? (This is sometimes referred

to as the “he who has the biggest blad-

der gets his way” strategy.) Similar is

the tactic of simply repeating your

solution over and over until you wear

down all the opposition. In a strict

sense, it might be unfair to deem these

political decisions, but the key here is

that the decision is made because you

are trying to appease someone (even if

you only want to appease that person

enough so that they will let you out of

the meeting).

Merit-Based Decision
Making

M erit-based decision making involves

weighing the possible solutions and

picking the best one of the group, based

on which solution is best for the game. In

this method, different people suggest dif-

ferent solutions and their ideas compete to

be the victor.

How you judge the merit of a solution

is extremely important, as the quality of

your decision will hinge on this. If you

judge the merits of the solutions by who

proposed them, then you’re really making

politically based decisions. For merit-

based decision making to be effective, you

need to have a good, unbiased method of

evaluating the strengths and weaknesses

of competing solutions. There must be a

set of rules or standards to rate the possi-

ble choices. Whether a group or an indi-

vidual is making the decision, these stan-

dards should be clearly defined.

How you define these standards is not

the issue, so long as everyone shares the

same standards. In all the successful

teams I’ve worked on, we’ve never writ-

ten the standards down. We had good

communications as a team, and we regu-

larly discussed the standards so that

everyone understood them.

Consider for a minute the two main

tasks of creating a game, programming

and art creation. From my experience, a

team of programmers can come up with a

list of standards without much difficulty.

But artists have a significantly harder

time creating a set of standards that

defines what “good art” is. This explains

why we often see programming teams

making group decisions, but the art deci-

sions are usually made by one person, the

art director. That’s not to say that an art

team couldn’t make group decisions based

on a set of standards, but the more sub-

jective a decision is, the more difficult it

is to make group decisions.

Picking a Decision
Making Method

N ow that we’ve identified the basic

divisions of decision making process-

es, let’s look closer at deciding which

method to use and then how to avoid or

promote particular methods. Which

method will work best will depend prima-

rily on three factors: where you are in the

creative process, what type of decision you

need to make (how subjective versus how

objective the decision is), and the people in

the group (do you have a true team or just

a group, and is there anyone who is good

“big cheese” material?).

The processes you use to make

decisions can often change over the

course of a project. At the beginning

of a project, when you want to encour-

age experimentation and give people

the opportunity to be creative, you

might allow the group to make deci-

sions. But as the project approaches

completion and you want consistency

in design, it might be a lot better to

have only one person making decisions.

Likewise, the type of decision can

affect what process you should pick.

For a group to make good merit-based

decisions you need a set of rules or

standards by which to judge the choic-

es. Unfortunately there isn’t a universal

set of rules that will tell you what deci-

sion making process to use. You’ll

need to consider the advantages and

disadvantages of the different process-

es, the specifics of your situation, and

what your goals are. If you want to

use merit-based decision making, a set

of rules or standards that you can use

to evaluate the choices with is an absolute

necessity. If a group is making the deci-

sion, will the group agree to use those

rules, or is it more likely that politics

will overrule?

Avoiding Political
Decision Making

T he curious aspect of political decision

making is that most people feel it is a

poor way to make decisions in a creative

environment. Yet it is surprisingly com-

mon. Why is that?

Chefs have an expression, “A fish rots

back from its head.” This is true for

organizations, too. If upper management

is political, this will filter down to the

rank and file. But if upper management

encourages and uses merit-based decision

making, then the employees will follow

this example. I really don’t think this

point can be emphasized too heavily:

management must set the tone by exam-

ple. But that isn’t all that needs to happen.

From a practical point of view, manage-

ment must relinquish control of some deci-

sions in order to avoid political decisions.

This is often a tough thing for management.

At one company I worked for, the art direc-

tor was in charge of the art, but the CEO

j a n u a r y 2 0 0 1 | g a m e d e v e l o p e r42

D E C I S I O N M A K I N G

How do you feel
about changing game

engines?

Sure!
Fine!

Brilliant!

would always come in near the end of the

project and make lots of “suggestions.”

Knowing the danger of not accepting these

“suggestions,” the art director always saw

to it that they were implemented. In order

to avoid politics, the CEO is going to have

to relinquish control.

But it’s not just the CEO. Consider again

my previous examples. In a typical game

development environment, the development

team is given suggestions or requests for

changes from the marketing department,

the publisher, the license holder, the test

department, and the children of the vice

president of accounting. If management

doesn’t keep these groups at bay, decisions

will almost undoubtedly become political.

In cases like this, it is crucial that manage-

ment become proactive in setting up the

decision making process.

Other factors can contribute to politi-

cal decision making, too. When agreeing

to a political decision you avoid taking

on responsibility. On one game I worked

on, I really did not want to implement a

feature that had been suggested. But an

assistant producer dragged me into an

office and wouldn’t let me leave until I

agreed to do the implementation — not

because he liked the feature, but because

it was low-risk to him. If the feature was-

n’t well received he could shrug and point

his finger at the person who suggested the

solution in the first place.

Another common reason to opt for the

political decision process is that it is often

the easiest path. If you don’t agree to the

politically correct solution you might trigger

a bloody conflict, or worse, you might not

get out of that meeting with your bladder

intact! Avoiding political decisions is seldom

the easy road. In most cases, it’s up to man-

agement to create an environment that does

not encourage political decision making.

Management can help discourage this

practice in a number of ways. First, give

decision making authority to a specific per-

son or group. If it is a group, they should

exhibit the signs of a team that I discussed

earlier. Second, don’t allow other groups or

individuals to interfere with the decision.

They should be allowed to make sugges-

tions, but only if they are prepared to have

their suggestions discarded. Third, hold the

decision makers responsible for the end

results. Equally important is for managers

w w w . g d m a g . c o m 43

W hen groups attempt to reach decisions
regarding game development, there

are some pretty common traps that they can
fall into. Here are just some of them:

• Expecting everyone to reach a consensus.
Whenever a group decides that they will make
a decision by consensus, and their anticipation
is that a consensus means everyone, they
expose themselves to one person holding out
until they get their way. To prevent this, the
group should be prepared to make a decision
without every last person agreeing. A simple
majority can often be enough.

• The solution that offends the least. When
game developers start bad-mouthing “decision
by committee,” this is what they usually object
to. The best solution is often passed over
because someone finds it objectionable. (This
happens more often in the case of art and
design decisions than programming deci-
sions.) The result is a decision that doesn’t
offend, but also doesn’t make for a very excit-
ing game.

• Too many cooks spoil the
broth. All too often, game
development suffers from too
many people trying to control
the design of a game. Within
the company, the development
team, the marketing team, the
testers, and the executives all
feel it is their domain to “fix”
whatever they don’t like.
Meanwhile, from outside the
company we often see the
publisher and any license
holders also wanting to make
changes. The changes
requested can be good, but
often the suggestions conflict
with other aspects of the
game or are not thoroughly
thought out.

• Last-minute changes. This
trap usually goes hand in hand
with “too many cooks spoil the
broth.” Whenever a large num-
ber of people or groups want to
make changes, they often wait

to tell anyone until the game is almost at final.
But late changes can have disastrous conse-
quences. Rather than being designed into the
game in a coherent way, they are slapped on
piggyback-style. This often introduces new
bugs and problems, causing final not to be
reached.

• Letting it get personal. Members of a
strong, effective team never let their differ-
ences become personal. If someone attacks
your idea, remember that it is your idea that
they’re attacking, not you. When developing
creative content, the risk of criticism being
mistaken as personally directed is very high,
so always be alert to the response your com-
ments can generate.

• No uniformity to the end result. Whenever
you are making group decisions or working as
a team developing content, be particularly alert
to the potential that your end result will lack
uniformity. The clearer your guidelines are, the
less likely it is that this will be a problem.

COMMON TRAPS OF GROUP DECISION M A K I N G

I wonder if
it’s time for me to take

control of the team?

to understand that when the time comes

to evaluate the employees, the evalua-

tions must reflect end results, not

whether or not the employee agreed

with the manager. And finally, man-

agement must ensure that people who

are not the decision makers relinquish

control to those who are.

But what can you do if you aren’t in

management? This depends a lot on

the organization. Unfortunately, if the

organization is full of politics, the

effect you can have is probably very

limited. On a small scale, talking to

others in your immediate

group about this issue

can help. You might not

be able to change the

organization, but you

might be able to affect

your immediate situation.

Encouraging Merit-
Based Decision
Making

E arlier, I made a distinction between a

team and a group. Nowhere does this

distinction become more important than

when you are trying to encourage group

merit-based decision making. If the group is

a team, it is usually not too difficult to

implement merit-based decisions. But if the

group is not a team, you will find it very

difficult to get this process to work.

You can encourage successful merit-based

decision making by observing a few guide-

lines. First, create a set of rules or standards

that can be used to evaluate the choices.

Consider writing them down and putting

them in the technical design document.

Also, in order to evaluate choices fairly, you

need lots of accurate information to base

decisions on. Make sure your environment

encourages people to exchange and share

information. This will help keep decisions

merit-based rather than political. Third, be

sure to allow everyone the chance to bring

their ideas to the table. In meetings, make

sure that one or two people don’t monopo-

lize the meeting. Finally, be willing to let go

of your idea when another idea rates better

under the evaluation standards, and never

allow any discussion to become personal.

Although these rules are meant for group

decision making, a single decision maker

can also implement and benefit from any of

these suggestions.

Mixing Styles

K eep in mind that you don’t need to

use only one style of decision making

in all situations. For instance, when the

project starts you could focus on con-

structing teams, not groups, and having

the teams make merit-based decisions. As

the project draws to an end, the leader

then begins to assert more control,

and makes more decisions. This sce-

nario requires a leader who is capable

of working effectively in both styles,

first allowing others to make deci-

sions, and then subsequently taking

control. It also requires that the team

have enough respect for this leader to

relinquish their decision making role

as the project comes to the end. On

the other hand, if the leader doesn’t

trust the team’s decisions and is think-

ing, “Oh, don’t worry about that, I’ll

just change that later,” you’re proba-

bly headed for a full-scale disaster.

Last Words

Hopefully in this article I’ve been

able to shine some light on the

processes that we use to make decisions.

But just raising awareness of these issues

is not my objective. This article is meant

to be a starting point for people in game

development, a set of basic ways to look at

what is going on in their organization,

which can then be a basis for establishing

better decision making processes with better

results. I would encourage you to think

through some of the consequences and

implications of these issues. From my expe-

riences and from the comments of others I

know in the game business, we desperately

need to look at how we make decisions, and

how the outcomes of these decisions affect

our companies, our clients, our products,

and our customers. q

j a n u a r y 2 0 0 1 | g a m e d e v e l o p e r44

F O R M O R E I N F O R M A T I O N

BOOKS
Katzenbach, Jon R., and Douglas K. Smith.

The Wisdom of Teams. New York:

HarperBusiness, 1993.

Lencioni, Patrick. Obsessions of an Extra-

ordinary Executive. San Francisco:

Jossey-Bass, 2000.

ARTICLES
Eisenhardt, Kathleen M., Jean L. Kahwajy,

and L.J. Bourgeois III. “How Management

Teams Can Have a Good Fight.” Harvard

Business Review Vol. 75 No. 4

(July–August 1997): p. 77.

Eisenhardt, Kathleen M., Jean L. Kahwajy,

and L. J. Bourgeois III. “Conflict and Stra-

tegic Choice: How Top Management Teams

Disagree.” California Management

Review Vol. 39 No. 2 (Winter 1997): p. 42.

Katzenbach, Jon R. “The Myth of the Top

Management Team.” Harvard Business

Review Vol. 75, No. 6 (November–Dec-

ember 1997): p. 82.

Morely, Eileen, and Andrew Silver. ”A Film

Director's Approach to Managing Creativi-

ty.“ Harvard Business Review Vol. 55 No. 2

(March–April 1977): p. 59.

D E C I S I O N M A K I N G

That’s
the art
director.

w w w . g d m a g . c o m 45

GAME DATA
NUMBER OF FULL-TIME DEVELOPERS: 20

NUMBER OF CONTRACTORS: 13, including two
prerendered animation studios, additional

musician, voice director, casting director, and
eight main Voyager actors

LENGTH OF DEVELOPMENT: six months of pre-
production, 18 months of production

PROJECT SIZE: Single-player and Holomatch:
919,749 lines of code; 1,679 files. The single-

player game was largely controlled by scripting,
totaling 112,056 lines of code and 2,236 files.

RELEASE DATE: September 20, 2000
INTENDED PLATFORMS: Windows

95/98/NT/2000, Macintosh, Linux, Playstation 2
PROJECT BUDGET: Multi-million-dollar budget

CRITICAL DEVELOPMENT HARDWARE: Average
system: Dell Pentium II 550 with 128MB RAM,

18GB hard drive, GeForce 3D acceleration card,
and 21-inch monitor.

CRITICAL DEVELOPMENT SOFTWARE: Microsoft
Visual C++ 6.0, Microsoft Visual SourceSafe
6.0, Borland JBuilder 3.5, 3D Studio Max 2,

Softimage 3D, Photoshop.
NOTABLE TECHNOLOGIES: Licensed the QUAKE

3: ARENA engine from id Software (using
OpenGL); Icarus scripting system, BehaveEd
scripting tool, Carcass skeletal system, Bink,

and motion-capture data from House of Moves.

P O S T M O R T E M brian pelletier, michael gummelt & james monroe

j a n u a r y 2 0 0 1 | g a m e d e v e l o p e r46

In the summer of 1998, Activision had acquired licensing rights to make games

using a number of Star Trek franchises. Their goals from the beginning were to

create a broad selection of games and show the gaming community that Activi-

sion could take the Star Trek brand and make high-quality games with it, better

than other publishers had in the past. The preliminary game slate was set with a

first-person shooter as one of the initial titles.

Raven Software had been an external studio of Activision for a year, finishing up

work on HERETIC 2 and diving deep into the development of SOLDIER OF FORTUNE.

HERETIC 2 was near completion, and we would soon need another project to work on.

With our experience developing shooters and a reputation for making quality games,

Activision handed the Star Trek first-person shooter project to us.

The game started out being based on an unknown Star Trek crew within the Next
Generation franchise. For two months work was done on the plot and story line, with

a test level of a Defiant-class ship made using the QUAKE 2 engine. The main factor in

designing the plot of the game was that it had to be an action game, despite the fact

that Star Trek isn’t known for action. To give meaning to the action, the idea for a

Special Forces team soon emerged to drive the action for the game. Ultimately, because

Activision already had two other games using the Next Generation license, the setting

for our game changed to the Voyager franchise. Our excitement level was low at first,

with the team feeling that Voyager was the least popular of all the Star Trek franchises.

We soon realized that Voyager’s plot allowed us not only to make our game with much

more creative freedom, but also to create from something no one else had used. This

inspired us to open the floodgates, continue on, and eventually realize that Voyager
was the best setting for what we wanted to do. We quickly adapted the plot we had at

that point into the Voyager setting. This was much easier than we thought it would be,

and the Elite Force, or the Hazard Team as we called them, actually seemed to make

more sense as a by-product of Voyager’s situation. In January 1999, full production on

ELITE FORCE began with a small team of 15 people that would grow to about 25 core

team members, with additional support from the SOLDIER OF FORTUNE team.

Our main focus during production was not to think about the game as a Star Trek
product per se, but rather an action shooter that borrowed from the Star Trek uni-

verse. This helped us focus more on what would be fun for players. To our surprise,

the Paramount approval process was much easier than we anticipated. We had heard

many horror stories regarding Paramount’s strictness with their licenses, things like,

“You can’t do anything new,” and, “It’s hard to get things approved because they’re so

protective of the license.” What we experienced was the exact opposite. Paramount

was more than accommodating in helping us create a fun game, and we were able to

bend the rules a little along the way to help accomplish our goal. We created new Star-

fleet weapons, a Voyager SWAT team, used the Klingons, and even added “classic” Star
Trek to the Voyager setting. As long as an element made sense to the story and its pres-

ence could be explained, it was no problem.

One of the biggest obstacles we had to overcome was that we would be making an

action game that had to appeal to both the hardcore FPS player as well as the average

Star Trek gamer and fan. This was no easy task, and we spent a lot of time debating

over the game style being too much of an action game or more of a Star Trek game.

Balancing these two aims was a constant battle during the course of production. We

knew we had to walk a fine line blending a shooter and a Star Trek experience if we

were going to both make a successful game and overcome people’s perceptions that

Star Trek games are not good games.

Raven Software’s STAR TREK:
VOYAGER — ELITE FORCE

What Went Right

1.Improvements to the QUAKE 3
engine. Raven had worked with id

Software’s engines since 1992, but this was

the first time we had to add a single-player

game to an id engine. Normally, we had the

luxury of starting with a full single-player

code base and just adding things such as

breakable brushes, new AI, navigation sys-

tems, and so on. But this time we had licen-

sed a multiplayer game and had to put in

many systems we took for granted. We

needed AI and navigation appropriate for

single-player enemies (not multiplayer bots),

as well as teammate non-player characters

(NPCs) and cinematics. We needed an

expanded animation system for all the dif-

ferent animations our cinematics would

require, we needed to create a load and save

routine from scratch, and the list went on.

One of the things that made this possible

was the decision early on to separate the

multiplayer and single-player executables.

At this time, QUAKE 3 was still about eight

months from completion, so we started on

single-player and would worry about multi-

player when we got the final code base. We

were able to make drastic changes to the

single-player game and shortcut the net-

working, allowing us to get away with a lot

of things that would have just done very

bad things to networking. With this new

freedom, we revamped even more systems.

In the end, we actually surpassed our initial

ambitions as far as new systems and fea-

tures were concerned.

For example, our Icarus scripting system

was planned from the beginning and ended

up working out very well. The initial setup

was finished relatively quickly and the re-

mainder of the work was mostly just tying

the commands to the game and AI. How-

ever, for the first seven or eight months,

only a couple of programmers were doing

any scripting, as they were still refining the

commands and there was no GUI for it yet.

It wasn’t until the fall of 1999 that we

made a GUI and the designers could finally

start scripting. The system ended up con-

tributing a huge amount to the detail,

w w w . g d m a g . c o m 47

B R I A N P E L L E T I E R | Brian has worked at Raven Software for over eight years and was the project leader for STAR TREK: VOYAGER —
ELITE FORCE. Besides the two founders, he has worked for Raven longer than any of its 50 employees and has taken on many roles there, from
artist to lead artist and managing the art department. His game credits include ten of Raven’s games, and he was project leader for HERETIC 2.
Contact him at bpelletier@ravensoft.com.
M I C H A E L C H A N G G U M M E L T | Mike is a writer/game programmer at Raven Software. He has worked on various elements of game pro-
gramming such as AI, navigation, effects, animation, world interactivity, weapons, multiplayer modes, and scripting on HEXEN 2, HEXEN 2: THE

PORTAL OF PRAEVUS, SIEGE, HERETIC 2, and STAR TREK: VOYAGER — ELITE FORCE (for which he also wrote the dialogue script). Contact him at
mgummelt@ravensoft.com.
J A M E S M O N R O E | James was the lead programmer for STAR TREK: VOYAGER — ELITE FORCE. Starting his career at Origin Systems, he
soon moved on to Rogue Entertainment as lead programmer on STRIFE, an action/RPG using the DOOM engine. His Raven credits include pro-
grammer on MAGESLAYER and project leader for the HEXEN 2 mission pack, PORTAL OF PRAEVUS. He can be contacted at
jmonroe@ravensoft.com.

w w w . g d m a g . c o m 49

uniqueness, and complexity of the game,

and without it ELITE FORCE would have

been a totally different game.

Another big technology decision we had

to make was with Carcass, our new skele-

tal model format. It was a huge undertak-

ing to switch over to the new format, but it

really saved us in the end. At first we were

using the same model format as QUAKE 3,

but it quickly became apparent that we

were surpassing that format’s capabilities,

so we looked for a solution. id had already

laid the groundwork for a skeletal model,

which seemed like it would work for us.

Starting with that basis, we completed it

and developed it into the final format we

called Carcass. With it, we reduced tenfold

the amount of memory a single model took

up. Without the Carcass format, we would

have had to cut back many animations,

and we would have lost the complex detail

in our cinematics.

Another technology that was successful

was our lip-synch system, which really

added realism to the facial animations. We

did some research, looking into phoneme

recognition, but finally settled on a quick

volume analysis. We planned this system to

make it very easy to use. Once the mouth

animation art was made for each character,

the system used the appropriate frame

without intervention. The code automati-

cally scanned for peak volume of sounds

when loaded, and compared against that

whenever a sound was played on the voice

channel. Then the animation system picked

up that value to choose the speaking frame.

This setup required no extra effort when

adding sounds, and would work automati-

cally for any foreign languages used.

Another system we revamped was the

cinematic system, which had to be power-

ful and flexible enough to give our cine-

matics that Star Trek “feel.” The camera

system itself wasn’t that hard to imple-

ment, and it worked out well. First, the

scripter/designer would set up the blocking

of the NPCs through Icarus. Then they

could go into the game and let the scripted

event play out, pausing it whenever they

wanted to save a camera position to a file

that could be imported into the map. Using

Icarus commands, they could make the

camera zoom in and out, change the field

of view to simulate close-ups and wide

shots, move along a track, dynamically fol-

low a subject, fade in and out, shake, and

so on. This allowed us to set up our insane

amount of cinematics as quickly as possible

and still allow for some fine-tuning and

detail (such as the “walk and talk” with

Tuvok and Munro, and especially all the

gestures and expressions the NPCs them-

selves would do to add to their characteri-

zation and the believability of a scene).

2. Complete plot and story right
from the start. From the begin-

ning of production, ELITE FORCE had a

detailed story line, and every level of the

game was written out in story form. We

also had standards we had to meet; after

all, our game was going to be compared to

the Voyager TV show, so there was even

more emphasis on storytelling. The story

had to be engaging and reminiscent of

what a Voyager episode would be, and we

had to make sure our story had a lot of

depth and interest for the player, to give

them the feeling that they were partaking

in an episode of the show. Since one of

our main goals was to have an away-team

accompany the player for the missions, it

was even more important that the story be

solidified up front. A lot of story is con-

veyed during the missions, so we had to

make sure the levels were paced out well

and the level designers knew up front

what story content their levels contained.

We were able to pace the story through-

out the game so that players would be

continually rewarded with exposition. As

they completed more missions, the over-

arching plot of the game would slowly

form in their minds.

With our tight schedule, we wouldn’t

have time to redo parts of the game if

they didn’t work out, so it was crucial for

all the people involved to work together

on the story line toward one common

goal. With a complete walkthrough of the

levels written, the level designers could

concentrate on the looks of the level and

accommodate for where the cinematics

and story segments were going to take

place. Because our story line never

changed during production, we were able

to proceed forward uninterrupted, and

Extensive photographic reference was used to get as close to the exact likeness as possible for Voyager’s interior. Here, the photo reference of the
bridge of Voyager is on the left and the game screenshot is on the right.

50

P O S T M O R T E M

never had to scrap any levels due to plot

restructure. This was key, as we had a fair-

ly small team charged with creating a lot

of content in a short period of time. The

majority of the dialogue was written after

all the levels were finished, but this too

went smoothly because the walkthroughs

were updated from the finalized levels, and

then the dialogue was written from them.

3. The dialogue. The team was

excited about the concept of play-

ing with a team of NPCs in an FPS. This led

to the definition of the different characters

of the Hazard Team early on. However, the

actual script for the game didn’t begin right

away, since that had to wait for the final

game flow design to be finished. Our writer

(also one of our programmers) started in

September 1999 and finished the first draft

in March 2000.

While he was writing the script, we

were making all the cinematics and

needed some temporary voices. We had

employees record the lines and then

dropped them into the cinematics

to give us a feel for

the pacing of each

scene. This

allowed us to

tweak the dia-

logue while sav-

ing us from having

to bring the expensive Voyager cast back

for pickup lines.

The script finally came together after

many revisions and, once it was approved

by Paramount, the actors were lined up

very quickly and the voice recording was

done in about a month. We were then able

to put the final lines into each scene, replac-

ing our temporary dialogue without having

to adjust the timing or change the scripts.

This was due to the fact that Icarus could

pause execution of a script until a sound file

finished playing, so dropping in a new line

of dialogue automatically adjust-

ed the timing of each scene. This

also meant that lines would gen-

erally flow better in translation,

since they wouldn’t have

to deliver the line too quickly or slowly to

match any hard-coded timing.

We also had a system for automatically

reading the dialogue script itself and turning

it into .PRE files that would let the game

precache all the dialogue for a level and

simultaneously assign the caption text to it.

Included in this was automatic localization

and dialogue adjustment for the player’s

gender. All of these things together enabled

our game to have captioning, localization,

gender-specific dialogue, precaching, lip-

synching, and almost no pickups.

In the end, the dialogue turned out very

well and our performances were good

(Paramount even let us

make final casting

ABOVE. Storyboards were created as guides for the in-game cinematics, helping to speed up production of more than 50 cinematic sequences.

RIGHT. Voyager's Hazard
Team, created by Raven to help
accentuate the action for the
game.

j a n u a r y 2 0 0 1 | g a m e d e v e l o p e r

decisions on all the ELITE FORCE–specific

characters). The story and dialogue added

a great deal to the game and contributed

heavily to the feeling of actually being in

an episode of Star Trek.

4.Re-creating the look of the
Star Trek universe. Raven has

always tried to push graphics boundaries

and painstakingly create beautiful settings

for our game worlds. Star Trek was no

exception, and challenged us not only to

create a beautiful gaming environment but

also to create it in a likeness that is known

worldwide. It’s one thing to make arbitrary-

looking levels in a never-before-seen world,

but when trying to re-create the look of

Voyager we came across many difficulties

that we hadn’t expected. For

starters, the QUAKE 3 level editor is made to

create levels at a fairly big scale. When we

built the bridge of Voyager, we were all

astounded by the detail that we achieved,

but when we put a normal-sized character

on the bridge, he was incredibly tiny. The

bridge was huge, yet it was built like you

would build any normal QUAKE 3 level. We

realized that we had to build the levels on a

much smaller scale than what we were used

to. It took seven attempts at rebuilding Voy-
ager’s bridge until we attained the proper

proportions between the characters and the

level. We tweaked the scale until it looked

perfect and the player and other characters

could move around with ease. Once the

scale of the levels was set as a standard, we

continued forward with the other Voyager
rooms with little rework needed.

The artists spent much time working on

the textures for the environments, getting

their reference from many sources to

make sure everything was exact. Having

access to Paramount’s Star Trek reference

library was key in getting reference for

carpets, chairs, upholstery, computer pan-

els, and more. We sometimes scanned in

the photo references themselves for the

textures. Watching episodes of the show

on tape was also instrumental in deter-

mining what things looked like. We used a

total of 1,033 textures to create the look

of Voyager’s rooms and hallways. Working

together, the level designers and artists

created the best-looking Star Trek envi-

ronments in any game to date.

Just like the challenges we faced build-

ing the environments, creating Voyager’s

51

ABOVE. Storyboards also referenced the game’s dialogue script, which was more than 400 pages long — twice the length of a movie script.

ABOVE. Menu screen for choosing your player character in
Holomatch gameplay.

j a n u a r y 2 0 0 1 | g a m e d e v e l o p e r52

P O S T M O R T E M

characters and crew presented the challenge

of re-creating something that already exist-

ed. We used many references from the Star
Trek reference library to help us re-create

these real people. Each actor had a series

of photos of him or her as their character,

which we used to help get just the right

shape of the head, and we even used the

photos themselves (with Photoshop touch-

ups) as textures on the polygon heads to

achieve the likenesses. There are limitations

to any technology, and working around the

limitations is where we succeeded. The

heads could only have 150 polygonal faces

and the textures for the skins could only be

512�512 pixels. The fine craftsmanship

required to work with so little and still

achieve the right look for the characters is

a testament to our artists’ skills. For exam-

ple, designing the Hazard Suit in the Voy-
ager style took many attempts, but we

finally got something everyone was happy

with and looked natural to Star Trek.

5. Creating smart NPCs. To create

a Voyager game that resembles

what you would see in a TV episode, we

had to create a working spaceship filled

with its busy crew, and make it believable

enough so players would feel like they are

in a real place. We also had to create an

away-team to fight alongside the player.

After all, what is Star Trek without an

away-team?

We created our NPCs using a few differ-

ent things. The Icarus scripting system

allowed us to have precise control over spe-

cific actions. The NPC Stats system allowed

us to create many characters with various

looks. The Squadmate system gave us the

tools to enable the teammates to work with

the player, and we used a waypoint or

pathfinding system to make our NPCs nav-

igate through a complex environment. All

of these systems together created the artifi-

cial intelligence for our NPCs. We used

scripting with the pathfinding to make the

crew of Voyager come to life, and we could

tell them exactly where to go and what to

do without too many unknowns to cause

problems. They did exactly what we as

designers wanted them to do.

The teammates, on the other hand, have

to act according to what is happening with

the player. Since players can do anything

they want while playing the game, this

means a lot of unknowns for how the

teammates should react. The teammates

could have easily been a hindrance to the

gameplay, and now we know why no

other company has ever tried to make an

FPS game with up to five teammates work-

ing alongside you throughout entire levels.

In the final stages of developing the team-

mates, we weren’t sure if they were going

to work out; they had so many problems,

and every time we would fix something

another problem would crop up.

Just getting them to follow you was no

easy task and was something we kept

tweaking right up to the final days. Sure,

we could get them to follow the player, but

the game took place in tight hallways and

small rooms so players would bump into

them. They wouldn’t get out of the way

and would constantly get stuck on each

other. Also, having them follow the player

everywhere made them seem less like intel-

ligent characters, so sometimes we had

them stand their ground or take up a posi-

tion while the player went exploring. Then

we had the constant problem of the team

not following players at all, even though

they might need them later on. When we

did get it working, someone found a new

way to break a level with a teammate.

Elevators and teleporters added to the

risk of teammates being left behind. We

were getting worried that we wouldn’t

even be able to get them to walk through

ABOVE. Fighting aliens in the stasis ship, which was created with 90 percent curved surfaces. TOP RIGHT. Save your teammate from the Borg, one of the
many multiple outcome events. BOTTOM RIGHT. Your teammates fighting alongside you, with Telsia blasting Etherians.

an entire level, and we would have to

resort to something drastic. Luckily, we

did get them to work in the levels. They

may have run funny or jumped down long

elevator shafts to catch up with the player,

but at least they stayed in formation

through the whole level no matter what

the player was doing.

Of course, once there were enemies we

had to worry about friendly fire. We

wanted the team to react intelligently to

being shot, but we didn’t want to punish

the player for shooting them accidentally.

After a lot of trial and error, we decided

that teammates would retaliate against a

player only if the player had shot them

repeatedly outside combat. In combat,

they’d still react to friendly fire, but

couldn’t be killed, and would never turn

on the player.

Then came the problem of trying to

balance the teammates’ involvement in

combat. Once we put enemies in the lev-

els, we found that the teammates were so

good that they killed most of them, leav-

ing little for the player to do. To balance

this, we had the teammates shoot less

often, but then they got attacked con-

stantly by enemies, turning the gameplay

into “shoot the aliens attacking your

teammates.” Eventually we made the ene-

mies attack the player more, so the player

would feel threatened by them, and the

teammates helped but didn’t do all the

work. It’s funny now to hear people say

that the teammates were stupid because

they hardly killed any enemies, or that

the enemies were dumb because they

attacked the player more than the team-

mates. If they only knew how tiresome

the gameplay would have been had we

not balanced it the way we did.

What Went Wrong

1.Not enough programmers. For

the first half of development, there

was mainly only one programmer working

on scripting, enemy AI, teammate AI,

pathfinding, and the animation system. This

programmer was also writing all the dia-

logue, and it became necessary for him to

relinquish other programming duties in

order to finish writing. Unfortunately, we

didn’t have any extra programmers to help.

Eventually we got a programmer from

a different project to start working on

game code. He completely rewrote the

navigation system, which took time away

from creating the AI for all the enemies,

which didn’t end up being completed

until the game itself was done. This creat-

ed a real lack of cooperation between

level design and enemy AI, and forced the

designers to rewrite their scripts constant-

ly to match the changes in the underlying

game systems. With more programmers

working on AI and navigation early on in

the development, these kinds of last-min-

ute changes and back-end design could

have (hopefully) been avoided.

2.From Ghoul models to regular
models to skeletal models. It

was a big decision to switch to the new

skeletal models. In the beginning, we

were using what was to become SOLDIER

OF FORTUNE’s Ghoul system (see “Raven

Software’s SOLDIER OF FORTUNE,” Post-

mortem, September 1999, for more on

Ghoul). When we received the QUAKE 3

code, we tried to integrate Ghoul into the

new code, but found it to be too differ-

ent. It just didn’t fit in with the new opti-

mized rendering pipeline QUAKE 3 provid-

ed. So we switched over to regular QUAKE

3 models.

There was a lot of learning going on at

this time. When we get new code, it doesn’t

come with operating instructions, and it’s

often not complete. We went through a lot

of growing pains adopting the new format

and figuring out its requirements. When

j a n u a r y 2 0 0 1 | g a m e d e v e l o p e r54

P O S T M O R T E M

TOP LEFT. The AI of the Borg had them adapting to your weapons like their TV show counterparts. BOTTOM LEFT. Exploding architecture helped in
strategizing your attacks. RIGHT. The Klingons’ AI allowed them to crouch and run for cover.

the option to go skeletal came up, we had

to weigh the benefits of the new system

versus the risks and time it would take to

switch over. While we did the right thing

and embraced the new technology, we

had to write a new set of tools to handle

the new formats and learn new proce-

dures to get our animations out of

Softimage 3D and into 3D Studio Max.

We had a lot of squashed creatures and

bizarrely stretched limbs along the way,

but it was well worth the trip. Unfor-

tunately, by the time we got it working

right, we were past our alpha date, and

because of all the different changes the

models had gone through by that time,

we didn’t have enough time to fully

implement a good AI system for the ene-

mies, and had to settle with what we

could do in the time we had.

3.Underestimating the amount
of scripting work needed. As

we mentioned previously, our Icarus

scripting system was a huge plus. But we

also encountered a lot of problems with

scripting.

Not only had no one ever used this sys-

tem before, none of the programmers be-

hind it had ever written a scripting system

before. The designers didn’t even get their

hands on the scripting system until about

eight months before the game was done.

They did pick it up quickly, but not without

a lot of effort and time involved.

One of the major problems designers had

when scripting was the constant changes to

the underlying systems that the Icarus com-

mands relied upon. They’d script an NPC

one way and it would work fine. Then the

following week, something in the naviga-

tion, AI, or animation systems would

change, and the script would be broken.

This was a source of major frustration

among the designers and definitely impeded

their productivity. Ideally, those systems

would have been finalized before the

designers had to start scripting.

Within Icarus itself, there was one major

flaw that should be addressed. Icarus can

start a command and wait for completion,

but it does not have a built-in system for

letting the command (or “task”) time-out

and continue or take another route. There

was no failsafe if, somehow, a command

never completed. Given the sheer complexi-

ty of our scripting, these kinds of showstop-

per problems showed up constantly and

would completely stop the game in its

tracks. Up until the last minute, we were

frantically trying to find every case in

which a script would just stop execution.

In the end, we did manage to catch them

all, except for two cases that were caused

by people turning their detail levels up

too high and causing the game to drop to

very low framerates, which could in turn

mess up the scripted events. It turned out

pretty well in the end, but all the effort

that went into constantly revising the

scripts could have been put to other,

more productive uses.

4.Adjusting to new QUAKE 3 tech-
nology. The biggest level design

headache in working with technology

that is still being developed is that it’s

constantly changing. We started building

our levels way before the QUAKE 3 engine

was near completion, and this caused

scheduling problems every time we got a

new code build. We built our levels one

way with the tools and knowledge we

had at the time, and then when a big

change was made to the QUAKE 3 code,

the level designers had to spend a few

days altering each of their levels to keep

j a n u a r y 2 0 0 1 | g a m e d e v e l o p e r56

P O S T M O R T E M

TOP LEFT. The Voyager 3D model used in prerendered cinematics is the actual one used for the TV show. BOTTOM LEFT. Other models were designed
by Raven and made by the company making the prerendered movies. RIGHT. It was important to make highly detailed sketches, since another company
was making the models from them.

w w w . g d m a g . c o m 57

up with the changes in the code and how it

handled surfaces, lights, and architecture.

This happened numerous times during

development, and we often went months

without new code drops. The level design-

ers would continue to work on levels in

order to make progress, and then when we

finally received new code, we had to go

back to all the levels that had been done

and spend a month getting them up to date.

This month was not accounted for in the

schedule, and therefore a month of designer

time was simply lost. This happened more

than once and was a big factor in keeping

us behind our original schedule.

Another part of adjusting to the QUAKE 3

technology was realizing that our levels

couldn’t be as big as QUAKE 2 levels. The

wonderful thing about the QUAKE 3 engine

is that you can have many more polygons

in the view at one time, allowing for more

detailed levels and rooms, and of course

curves. Without this engine we wouldn’t

have been able to create such accurate-look-

ing Voyager rooms and locations.

When we started building levels, we

made them as we did using QUAKE 1 and 2

technology. We had expansive levels that

looked awesome and showed off what the

QUAKE 3 engine could do. Then, some-

where near the middle of our development,

we realized that the file size of most of our

levels was huge, running 11 to 15MB each,

when they should have been about 6MB.

This was a problem, since we’d planned for

the file sizes to be 10MB or less out of a

total memory budget of 64MB. The levels

were the normal game-world size of a

QUAKE 2 level, so what was the problem?

It turned out to be the high polygon (or

triangle) count used to create a much

more intricate and detailed environment.

We realized that although QUAKE 3 can

handle more polygons in the view at one

time, the file size for the level had not

increased much from a QUAKE 2 level. We

had a dilemma; either we could bring the

file size down by taking out all of the

detail that made the QUAKE 3 engine supe-

rior and keep the physical size, or we

could cut the size of the level down, mak-

ing it smaller yet highly detailed. Since we

were making a world that could readily

be compared to a TV show, we opted to

keep the detailed environments of the Star
Trek universe and cut the level size down.

We were able to cut most of the levels

in half and make two separate levels out

of them, but then all the level designers

had twice as many levels to work on, and

this could have caused some major sched-

uling problems. Unfortunately, to keep up

with the schedule, large parts of the levels

were deleted and redesigned, which result-

ed in much smaller levels that could be

traversed quicker, and ultimately made for

a shorter game.

5.Mission stats never got finished.
The only major thing that didn’t get

into the game that we originally planned

for was our end-mission statistics. The fea-

ture made it into the game in the form of

basic stats when you died, but it was

planned to be much more, and would have

really added to the game. The end-mission

stats would have improved the replayabili-

ty of the single-player game and given

more emphasis to the interactive and mul-

tiple-outcome events. The main goal with

the stats was to grade players’ perform-

ance when they completed a mission; for

example, giving a score of 100 percent for

a perfect mission. A number of medals

would also be awarded to players based

on what they did during the mission. At

the end of the game, all the scores and

medals would be added up for one final

game score.

The stats would have made a signifi-

cant gameplay feature, letting players

know at the end of a mission whether

they could have saved someone or done

something differently to get a better

score. This would have made the interac-

tive events mean something more,

emphasizing the fact that they

are interactive; events

that players didn’t

even know could be

changed would have

been presented to them

after the mission, mak-

ing the game world

seem that much more

alive. With this feature

not in the game, the

multiple outcome events

didn’t mean anything more

than just a “cool” factor,

instead of being intrinsic to the

gameplay and adding to replayability.

Final Thoughts

W e started out with a lot of great

ideas, and almost all of those ideas

were implemented in the game with the

exception of a couple. That’s certainly an

achievement in this industry.

We made the game we set out to make

and are very happy with the end result, so

it was hard to think of the things that

went wrong. Even though we had many

problems, we worked around them and

ultimately finished the game, which makes

us feel like we did everything right. Then

we heard comments from fans and game

reviewers who didn’t like certain things

about the game, and all the memories of

working through all the obstacles came

back, and we thought, “If they only knew

how many problems we had to work

through to get the game to its final state.”

It’s working through those development

obstacles that makes a game successful. It’s

also gratifying to hear from fans and

reviewers that the game was successful

both as a fun game and as a Star Trek
game. For us, that means many more

things went right than wrong, and the

team was talented enough to work

through the things that went wrong and

make a game that is being enjoyed by

thousands of people.

ELITE FORCE was a very difficult project

cycle with a really long crunch mode, but

what game is any different? Yet we had a

lot of extra obstacles to overcome, includ-

ing the perception that all Star Trek games

suck and that meant ours would too. It

seemed like we were destined to fail before

we even started. Working with one of the

two biggest science-fiction franchises in

the world added to the pressure. But

Activision supported us all

the way from upper man-

agement to a top-notch mar-

keting and PR staff. Paramount

was surprisingly helpful, and

proved to us that they care

about the quality of the games

made and would do everything

possible to ensure that quality.

With a dedicated and very tal-

ented team of individuals, we met

our challenges and succeeded in making

what is being called the best Star Trek
game ever made. q

How do you make a great

game without killing each

other? You’re a talented

artist, who is creative,

social, and has a thorough

knowledge of the latest technologies used

to make games. You’re working with a tal-

ented programmer who never comes out of

his room, wants to rewrite everyone’s

code, and doesn’t interact well with others

on the team. The hours are long, the tech-

nology is changing faster than you can buy

it, and you’re working on opposite sides of

the brain. With the rising de-

mands of the game industry

and the next-generation plat-

forms, the team concept is cru-

cial for game development. Yet

here are individuals who are

complete opposites of each

other, trying to work

together toward a com-

mon goal — to ship

a great game.

Getting off on the
right foot. At the

beginning of a project,

artists are developing

the look and feel of the

game, while the program-

mers are working on the

engine as well as tools that

artists will need to implement

their shells, shape building, level

building, animations, and special

effects. It’s during this phase of

production where things can and

usually do go wrong. There is a

tremendous amount of pressure

on the artists to get the

project off on the right

foot. If there is no inter-

action between the artist

and the programmers

during this period, tons of

art files will be thrown away. Many pro-

grammers are not by nature social or inter-

active, so the artist must knock down the

barriers of communication to find out what

may or may not be the proper procedure

when developing poly count or bitmap size.

During this period, it’s common for pro-

grammers to assume huge amounts of art

will be thrown away. The end result is a

fair amount of finger pointing and a large

amount of time and money lost.

Input leads to output. The norm in the

industry is to work flexible hours. This

usually means you should feel bad if you

are only working a forty-hour

week. The amount of hours

that both programmers

and artists work is

incredible.

The problem is that most programmers

tend to come in late in the day and work

late at night. Many even come up with the

lame, “I was working at home last night

until three in the morning.” They don’t

feel the need to interact with other team

members, even though they are building

the very tool that someone else is going to

use to implement features. Without advice

from designers or artists, many tools end

up being totally useless, and not used for

their intended purpose. An artist has to

visually produce a large body of work that

can be criticized by every member of the

company, including the receptionist. The

programmer, on the other hand, can put

together code that sometimes even his

peers can’t understand, and is hardly

ever criticized by other team members

for the quality of the tool or the

amount of time it has taken him to

finish a specific tool. Most tools are

“works in progress,” and are

usually rewritten later to

accommodate the exact

needs of the game. If the

programmers communicat-

ed more effectively with the

rest of their team while cre-

ating the tool, however,

fewer rewrites would be

needed, and cleaner code with

fewer bugs would be the rule.

Constantly changing soft-

ware and hardware are also

adding to the amount of hours

that artists and programmers

work. To learn new soft-

ware, artists at most

companies are

required to put in

extra hours of

their own time.

Learning entirely

continued on page 63

Viva la Différence
Making the Most of the War

Between Artists and Programmers

S O A P B O X j a r r e t t j e s t e r

j a n u a r y 2 0 0 1 | g a m e d e v e l o p e r64

w w w . g d m a g . c o m 63

S O A P B O X

continued from page 64

new software is only half the problem,

however. Artists spend a large amount of

time adjusting to new interfaces on

upgrades of software they had previously

mastered. Furthermore, many artists are

beginning to take scripting classes to use

with programs such as 3D Studio Max.

Changes in software and hardware like-

wise put added pressure on the program-

mers to come up with new and fancier

game engines and plug-ins. Next-genera-

tion platforms seem to be more artist-

friendly with higher poly counts, higher

resolutions with 24-bit color, and every-

thing in real time.

The constant with even the new plat-

forms, however, is that the artist and the

programmer still need to work together

toward common goals. To build art tools,

exporters, terrain editors, and the like, it

takes input from both the artist and the

programmer to make the proper tools.

There may be a handful of individuals out

in the gaming world who have top-notch

art, math, design, and programming skills

all rolled into one, but I haven’t met that

person yet. It would be great to hire art

techs who could do it all, but I’m not sure

how a team of individuals with the same

exact skills would work together. A greater

variety of artists with different skills can

only improve the outcome of a final prod-

uct. It is much the same with program-

mers. The more expertise a programming

team has with combined 3D, AI, physics,

tool-building, and so on, the higher the

quality of their game. People with overly

similar skill sets tend to let their egos get

in the way of their interactions with the

rest of the team, and the results are games

delivered late and of lesser quality.

Leveling the playing field. It’s no secret

that, on average, most artists are well

underpaid compared to their programmer

counterparts. This is a fact, even though

most artists in the industry have college

degrees or some kind of art training before

they are hired. The gaming industry has

far and away rewarded programmers with

much higher wages than artists. Many

artists I have worked with have become

designers just because of the higher salary

they could earn. One producer summed it

up best by saying, “To get a good artist

nowadays, all you have to do is kick a tree

and one will fall out.”

Every year since I began working in this

industry, art has become more and more the

critical path. The skills needed to work for a

top game company have increased tenfold.

More and more artists are learning to script,

doing lower-level programming, taking film

classes, and so on. Artists are becoming

more tech-oriented in part to play a larger

role in the creation of a game and thus

increase their earning potential. This discrep-

ancy in wages also plays a huge role in the

interaction between the artists and the pro-

grammers. It often seems that because the

programmer is the higher-paid employee, he

or she doesn’t have to ask the artist for

advice or direction. The reality is of course

that the best tools and games are created by

individuals who interact together, take direc-

tion well, leave their egos at home, and who

are rewarded equally for their time.

I have worked with some of the best

programmers in the game industry. By far

the best programmers to work with were

not the ones thought to have the cleanest

code, but the so-called hackers who could

make the game work and look good.

These were also the programmers who

worked the fastest and were fun to work

with. They work long hours, are social

enough that you can interact with them,

and come up with great product. Some of

the best artists I have worked with are

not “techies,” but know enough about

certain tools to create great-looking game

graphics. It does, however, take a variety

of kinds of people to make a great game.

Clean code makes for a good foundation.

Creative, innovative, and talented artists

and animators help make that code come

to life, good game design and scheduling

finishes the job, and if you’re lucky every-

body lives to ship the game. q

JARRETT JESTER | Jarrett is art director for
Pipeworks Software Inc. and has been in the
computer game industry for ten years. Before
that, he was an art director at Dynamix, a
Sierra company, in their game simulation de-
partment, and worked on such titles as ACES

OF THE DEEP (a submarine simulation), RED

BARON II, and CURSE YOU! RED BARON. He
also worked on ACES OF THE PACIFIC, ACES

OVER EUROPE, RED BARON, and a variety of
adventure games.

	02gameplan
	04frontlin
	06indwatch
	08patterns
	12flas
	21graphic
	27artview
	32f-kautz
	38f-burwel
	46postmort
	64soapbox

	return:

