
JANUARY 2000

G A M E D E V E L O P E R M A G A Z I N E

O ur industry has, by recent
accounts, overtaken
movies and spectator
sports in terms of annual

revenue in the U.S., but there’s anoth-
er form of entertainment that’s still far
ahead of us: gambling. The gambling
industry is so huge, in fact, that in
1997 (the last year for which data was
available) it dwarfed the annual rev-
enues of videogames, movies, specta-
tor sports, recorded music, and theme
parks combined. That year it took in
$50.9 billion, according to the recently
released findings of the National
Gambling Impact Study Commission
(available at http://www.ngisc.gov).
And it will likely continue to grow.

One of the fastest growing sectors of
the gambling industry is “convenience”
gambling, which currently rakes in
about $9 billion per year. This sector
comprises stand-alone wagering
machines like video poker, video black-
jack, slot machines, and video keno,
which are collectively known as elec-
tronic gambling devices (EGDs). I sup-
pose the growth in EGDs over the last
decade shouldn’t come as much of a
surprise, because more and more states
have turned to gambling as a way to
bring in revenue and keep tax rates
down, and gambling machines require
little administration. Consequently,
EGDs have cropped all over the place —
gas stations, airports, convenience
stores, supermarkets, bars, and other
places where people have money in
their pockets and time to kill. Because
of their growing prevalence, we decid-
ed it was time to take a look at EGD
development in this issue.

Currently the EGD market is some-
what peripheral to our “traditional”
videogame market. Most EGDs are still
mechanical, but increasingly they’re
going all digital, and some companies
like Silicon Gaming are starting to
market machines that feature 3D
graphics and full-motion video. (Go
ahead and chuckle to yourself that
EGDs are a bit behind the technology
curve compared to videogames, but
just remember who takes in more
money.)

What intrigues me is the potential for
videogames to influence EGD design. At
some point in the not-too-distant
future, I believe casinos and other con-
trolled gambling establishments —
those from which children are restricted
— will seek out EGDs that feature more
immersive game play than today’s sim-
ple, traditional poker and slot machine
games. If that day arrives, the opportu-
nities open to videogame developers
will widen considerably. Game develop-
ment skills might be in high demand
from the likes of Bally, Williams, Silicon
Gaming, and Casino Data Systems, and
shows such as the GDC and E3 might
begin catering to EGD companies.

Of course, the future of EGDs rests
largely in the hands of the federal and
state governments, which are currently
in the process of evaluating the long-
term effects of gambling on individuals
and communities. As for the EGD mar-
ket, the NGISC report noted that conve-
nience gambling was not as beneficial as
other forms of gambling, in that it pro-
vides “fewer economic benefits and cre-
ates potentially greater social costs by
making gambling more available and
accessible.” The commission recom-
mended that states stop authorizing
convenience gambling establishments,
and even advised shutting down exist-
ing operations. Whether these recom-
mendations actually are adopted is an
entirely different matter, but EGD mak-
ers may face further regulation.

Fortunately, within casinos EGDs face
little regulatory threat, and that is where
the most interesting opportunities exist.
(Because children are banned from casi-
nos, games can be developed that
appeal to the adolescent in all of us
without concern for luring minors into
the dark world of gambling.) It’s these
locations that hold intriguing potential
for more exotic, creative EGD designs.
Who knows, someday we might see a
descendant of one of today’s hit titles
in a game cabinet at the MGM Grand,
spitting out coins to a little old lady
wearing a muumuu. ■

G A M E D E V E L O P E R J A N U A R Y 2 0 0 0

4

P L A NG A M E

Betting on the

Industry’s Future

D E V E L O P E R

ON THE FRONT LINE OF GAME INNOVATION

600 Harrison Street, San Francisco, CA 94107
t: 415.905.2200 f: 415.905.2228 w: www.gdmag.com

Publisher
Cynthia A. Blair cblair@mfi.com

EDITORIAL

Editorial Director
Alex Dunne adunne@sirius.com

Managing Editor
Kimberley Van Hooser kvanhoos@sirius.com

Departments Editor
Jennifer Olsen jolsen@sirius.com

Art Director
Laura Pool lpool@mfi.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Jeff Lander jeffl@darwin3d.com
Mel Guymon mel@infinexus.com
Omid Rahmat omid@compuserve.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook Verant Interactive
Susan Lee-Merrow Lucas Learning
Mark Miller Harmonix
Paul Steed id Software
Dan Teven Teven Consulting
Rob Wyatt DreamWorks Interactive

ADVERTISING SALES

National Sales Manager
Jennifer Orvik e: jorvik@mfi.com t: 415.905.2156

Publisher Relations Manager
Ayrien Houchin e: ahouchin@mfi.com t: 415.905.2788

Account Executive, Eastern Region
Afton Thatcher e: athatcher@mfi.com t: 415.905.2323

Account Executive, Western Region
Darrielle Sadle e: dsadle@mfi.com t: 415.905.2182

Account Executive, Northern California
Dan Nopar e: nopar@mfgame.com t: 415.356.3406

Account Representative, Silicon Valley
Mike Colligan e: mike@mfgame.com t: 415.356.3406

ADVERTISING PRODUCTION

Senior Vice President/Production Andrew A. Mickus

Advertising Production Coordinator Dave Perrotti

Reprints Stella Valdez t: 916.983.6971

MILLER FREEMAN GAME GROUP MARKETING

Marketing Director Gabe Zichermann

MarCom Manager Susan McDonald

Junior MarCom Project Manager Beena Jacob

CIRCULATION

Vice President/Circulation Jerry M. Okabe

Assistant Circulation Director Sara DeCarlo

Circulation Manager Stephanie Blake

Assistant Circulation Manager Craig Diamantine

Circulation Assistant Kausha Jackson-Crain

Newsstand Analyst Joyce Gorsuch

INTERNATIONAL LICENSING INFORMATION

Robert J. Abramson and Associates Inc.
t: 914.723.4700 f: 914.723.4722
e: abramson@prodigy.com

CEO/Miller Freeman Global Tony Tillin
Chairman/Miller Freeman Inc. Marshall W. Freeman
President & CEO Donald A. Pazour
Executive Vice President/CFO Ed Pinedo
Executive Vice Presidents Darrell Denny, John Pearson,
Galen Poss
Group President/Specialized Technologies Regina Ridley
Sr. Vice President/Creative Technologies KoAnn Vikören
Sr. Vice President/CIO Lynn Reedy
Sr. Vice President/Human Resources Macy Fecto

DSP Pokes Holes in Terrain Generation

K ai Martin’s article “Automatic
Generation of Large-Scale Terrain

Models” (October 1999) overlooked
some important issues. Basically, this
was an article describing a signal pro-
cessing operation; but when we use the
fundamental ideas of signal processing
to analyze Martin’s techniques, flaws
are revealed. Following the article’s
advice can lead to wasted artist hours
and a poorly-performing game engine.

Figure 2b of the article shows a
bitmap that has been “scaled up.” Each
pixel of the original image has become
a square block of pixels in the big
image. This is not the correct way to
enlarge an image. Programmers often
think that pixels are square, but rather
pixels must be treated as infinitesimal
sample points of a signal. To enlarge a
bitmap correctly, you must “resample”
it. Usually this is done by interleaving
the pixels with zero values, then apply-
ing a low-pass filter. This filter is
carefully chosen to limit the
output to the frequency con-
tent of the original signal.

If the height map were prop-
erly scaled up, the result would
be smooth and 100 percent
faithful to the original. This
would eliminate the need for the rest
of the article. Instead, Martin performs
the incorrect scaling, then notes that
the result is unpleasant. He devises ad
hoc ways of eliminating the noise cre-
ated by the erroneous scaling. By filter-
ing with big gaussians, or by fitting
loose splines to the terrain, he smooths
the image severely; this destroys its
high-frequency information.

When you know a signal’s frequency
range, the Nyquist Sampling theorem
tells you at what resolution to store it.
By smoothing excessively, Martin
reduces the terrain to a frequency band
that can be represented by a much
lower resolution. Most of the memory
used to store the image is wasted.

The map designer’s effort is wasted,
too. Suppose he draws the terrain as a
series of 256×256 blocks. You pass each
block through a system that enlarges it
to 2048×2048, adds noise, then
smooths it to an effective resolution of
140×140. Seventy percent of the artist’s
work is wasted (256×256 is 65,536;
140×140 is 19,600). Furthermore, the
final image uses 214 times more mem-

ory than is justified by its information
content, as (2048×2048)/(140×140) is
about 214.

Because of excessive smoothing, the
height values created by the artist will
not survive to the output. Peaks and val-
leys will melt. Many trial-and-error
attempts will be required for the artist to
achieve what he wants. With a proper
upsampling of the input, the peaks and
valleys would be reproduced exactly.

To the end user, that 214-times-
memory-bloat is going to hurt. A per-
sistent-world online game requires the
ability to be auto-updated after
launch. When it’s
time to
update the
terrain,
how many
hours will
your 56k-
modem user
sit there and wait,

cursing you?
Or if you’re

making a single-player
game, shouldn’t you
be worried about
painful load times?

Martin suggests
that the artist would

fine-tune the upscaled
height maps. This is a good

idea, but it doesn’t require the maps to
eat so much storage. Instead, each
140×140 map should be resampled to
2048×2048. Then the artist makes his
changes. The engine subtracts the orig-
inal image from the touched up ver-
sion, yielding a “delta image.” This
delta image is 2048×2048, but it is
extremely compressible. Any modern
compression algorithm would make it
very, very small. Meanwhile, the input
is stored at its original size, 140×140.
During game play, when it’s time to
load a block of terrain, the engine adds
the two images. Thus storage require-
ments are shrunk dramatically.

I would like to have described these
issues without jargon. But regardless of
specific technical issues, the most
important point is this: Today, knowl-
edge of signal processing is important
to game programmers. Tomorrow it
will be more so.

J o n a t h a n B l o w

B o l t A c t i o n S o f t w a r e

v i a e - m a i l

A U T H O R K A I M A R T I N R E S P O N D S : If you

read carefully, you’ll notice that I did point

out that using the convolution filters I

described in the article does decrease the

amount of local detail (that is, they change

the original image values proportional to

the size of the filter):

Page 50: “...choosing the size of your

convolution mask will depend on the

amount of filtering you need and level of

detail your final image requires.”

Page 51: “...there is a trade-off between

losing local detail from the original height

bitmap (since smoothing reduces noise by

spreading it over a larger area, making it

more diffuse) and generating more terrain

data from a bitmap of given size.”

You also say that I don’t acknowl-

edge that the filtering I described

translates into a lot of wasted art

work. I’d argue that there is no

work wasted whatsoever. Just

because the original values have

changed slightly (due to the filtering)

does not mean that it suddenly turns into

useless data. It’s been my experience that,

depending on the amount of scaling you

use, if you use some sort of scheme that pre-

serves the original data (like what you later

describe) vs. the filtering schemes I outline

in the article, the difference isn’t noticeable

at all once the terrain data is inside the

game engine (which is what really matters in

the end). I did try various interpolating

methods (including curved surface fitting)

and they just didn’t end up being worth it.

Also, I never claimed that any of the meth-

ods I talked about would contain more infor-

mation in the true sense; they just generate

more data that you can use in your game. (It

sounds like we’re splitting semantic hairs

here, doesn’t it?)

Speaking of the digital signal processing

technique you talk a bit about, I don’t have

much of a background in DSP so I wasn’t

able to validate what you proposed in the

time I had to write this response. It does

sound like an interesting idea, though.

In the part of Kai Martin’s terrain-gen-
eration article about B-splines, the

author lists the basis functions for a uni-
form cubic B-spline. Unfortunately, the
first basis function is incorrect. It should
be written (1–u)3/6 instead of (1+u)3/6.
This is due to using Alan and Mark
Watt’s book Advanced Animation and
Rendering Techniques as a source for this
information, which contains a misprint.

S c o t t S c h a e f e r

v i a e - m a i l

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 2 0 0 0 G A M E D E V E L O P E R

7

S A Y S Y O U

Brother, can you spare two cents?
E-mail us at saysyou@gdmag.com. Or write to

Game Developer, 600 Harrison Street,
San Francisco, CA 94107.

O

h t t p : / / w w w. g d m a g . c o m J A N U A R Y 2 0 0 0 G A M E D E V E L O P E R

New Products
by Jennifer Olsen

The Search for Intelligent Life Forms

CREDO INTERACTIVE has upgraded its
Life Forms character animation soft-
ware with version 3.5. Life Forms
Studio can either function as a stand-
alone application or integrate with
most of the top 3D modeling and ani-
mation packages, including Max,
Maya, Lightwave, and others.

New features in 3.5 are all designed
to alleviate redundant, time-consum-
ing tasks and improve real-time inter-
active development functionality. With
the Walk Generator, animators can
save time by previewing and tweaking
character walks before generating a
final walk cycle. In addition, objects
can be aligned automatically across a
range of keyframes with the Snap fea-
ture, to circumvent common anima-
tion problems such as “sliding” or
“skating.” The Interactive Render View
allows users to reposition figures from
within the render-view window for bet-

ter real-time development, while
OpenGL and QuickDraw 3D rendering
offer easy previsualization.

Life Forms Studio 3.5 ships with
Credo’s PowerMoves 1 and 2, contain-
ing a host of more than 750 motion
files including 150 mo-cap files, all
ready for action. It is priced at $495 and
is available for Windows 95/98/NT 4.0
and Mac OS platforms.
■ Credo Interactive Inc.

Vancouver, B.C., Canada

(604) 291-6717

http://www.charactermotion.com

6 Miles and Counting

RAD GAME TOOLS has shipped version 6
of its reverend Miles Sound System
API, which has been used in more than
2,000 games since 1991 for digital
audio, 3D audio, MP3 and ADPCM
decompression, DSP filtering, MIDI,
and Internet voice chat.

Miles now supports all the latest
industry standards for interactive audio,
including Creative’s EAX 2, Aureal’s
A3D 2, Microsoft’s DirectMusic 7, and
QSound (which must be licensed sepa-
rately from QSound Labs). It also fea-

tures software EAX
emulation on the
Miles Fast 2D and
Dolby Surround
providers. For A3D
2, developers can
either download
their own geometry
or Miles can emu-
late EAX room
types by creating
A3D 2 geometry to
match on the fly.
There is also sup-
port for occlusions
and obstructions,
and there are 18
new run-time DSP
filters for a vast
range of effects.

RAD offers several licensing alterna-
tives for Miles, all with source code. A
single-platform, single-product devel-
opment license is $3,000; a single-
platform, single-site (with unlimited
product creation) license is $9,000;
and the multi-platform, single-site
license is $12,000.
■ RAD Game Tools Inc.

Kirkland, Wash.

(425) 893-4300

http://www.radgametools.com

3D Data on the Move

LAMBSOFT continues to simplify artists’
and animators’ increasingly complex
work environment with MoveTools
1.5. MoveTools is a digital conversion
and translation utility for moving
geometry, animation hierarchies, and
animation data (including cameras,
lights, bones, and more) between dif-
ferent 3D animation programs and
hardware platforms. Artists can model
in one package, send the data to
another for animation, and return it to
the first package for rendering.

The upgrade features new, compact
“hub” files, which can move motion
and geometry across hardware plat-
forms in a single file transfer. MoveTools
works with a bidirectional hub-and-
spoke I/O system: the hub is the
Lambsoft Scene Composition database
(LSCMP), and each spoke governs I/O
between each different software pack-
age. The new version supports Maya 2,
3D Studio Max 3, Softimage 3.8, Light-
wave 5.6, and other common packages.

MoveTools 1.5 is available for
Windows NT and SGI platforms, and
sells for $1,800. Users typically need at
least two copies, one for each native
3D package they are converting
between.
■ Lambsoft Inc.

Minneapolis, Minn.

(800) 535-5117 or (612) 872-1700

http://www.lambsoft.com

New Products: Credo discovers new
Life Forms, RAD Game Tools’ venerable
Miles turns 6, and Lambsoft picks up
the pace with new MoveTools. p. 9

Industry Watch: Activision signs
Totally Games, the IDSA introduces
advertising standards for publishers,
and Mattel looks ripe for takeover. p. 10

Product Review: Kelly Kleider takes
an in-depth look at 3D Studio Max 3
and scopes out all the new bells and
whistles. p. 11News from the World of Game Development

9

Life Forms Studio’s interface is designed to offer users a

natural workspace for exploring and building concepts.

B I T B L A S T S - I N D U S T R Y W A T C H

Industry Watch
by Daniel Huebner

3DO CUTS LOSSES. 3DO reduced net
losses from 29 cents per share to 18
cents per share, or from $7.5 million
to $5.9 million, for the second quarter
against the same period last year.
Same quarter revenues increased from
$5 million to $20.7 million, largely
based on the strong sales of games
such as ARMY MEN: SARGE’S HEROES and
HEROES OF MIGHT & MAGIC III. CEO
Trip Hawkins told analysts that the
company would continue to focus on
Playstation and N64 titles throughout
the coming year, while gearing up for
support of both the Playstation 2 and
Nintendo’s Dolphin. 3DO is also look-
ing to enter the Internet-based games
market with the development of
MIGHT & MAGIC ONLINE.

ACTIVISION SIGNS TOTALLY GAMES.
Activision posted generous increases
in both income and revenue in the
second quarter and same quarter rev-
enues jumped 74 percent from $66.2
million to $115 million. That trans-
lates to an income of 4 cents per share
this year, against a loss of 10 cents per
share in the second quarter last year.
Activision attributes the gains to
growth in its publishing business,
which the company is further
strengthening with the announce-
ment of a deal to publish titles by
Totally Games, based in San Rafael,
Calif. Totally Games is known for hav-
ing developed LucasArts’ successful
X-WING series, and joins Lionhead,
Nihilistic, id, and Pandemic on
Activision’s publishing roster.

S3 SPLITS DIAMOND. Graphics chip
maker S3 has made good on its plans
to spilt Diamond Multimedia, which
it acquired last summer, into two sep-
arate companies. The move will sepa-
rate Diamond’s RioPort music opera-
tions from its traditional hardware
business. The RioPort arm, infused
with $30 million from new invest-
ment partners Paul Allen, Oak Tree
Partners, and MTV Networks Online,
and fresh off the successful offering of
MP3.com, is being positioned as a web
company with an IPO tentatively
scheduled for the coming spring. S3,

which narrowed its second-quarter
losses to $11.1 million against $47.3
million for the same period last year,
will remain the majority shareholder
in the new company.

TIBERIAN SUN LEADS EA. Net income
at Electronic Arts increased a healthy 69
percent in the second quarter versus the
same period last year. The company
reported a net income of $18.1 million
on revenues of $339 million, whereas
last year’s second quarter result was a
net income of $10.7 million on rev-
enues of $246 million. Westwood’s
chart-topping TIBERIAN SUN led EA’s
strong North American sales to a 93 per-
cent increase over last year, while help-
ing to double European sales.

BARBIE ON THE BLOCK? Market watch-
ers believe that recent problems with
Barbie’s parent Mattel might make the
company ripe for takeover. Mattel’s
share price has taken a beating recently
and analysts point to weak stock prices
and shareholder unhappiness as indica-
tors that the company is a prime target
for acquisition. Mattel is also facing a
class-action lawsuit brought by investors
who maintain that the company
delayed reporting serious problems with
The Learning Company when it was
acquired by Mattel. After announcing
The Learning Company’s $50 to $100
million losses for the third quarter, due
to large product returns and a failed
licensing deal, Mattel’s share price expe-
rienced its largest single-day drop in 17
years. Reports indicate possible buyers
might include Disney, Time Warner,
Hasbro, and Sega.

VIDEOGAME AD RATINGS. The Inter-
active Digital Software Association is
hoping videogame publishers will be
able to avoid government regulation
by setting voluntary standards for
advertising. The newly formed Adver-
tising Review Council, which will oper-
ate as a part of the Entertainment Soft-
ware Ratings Board, will seek to set
standards for videogame advertising
balancing publishers’ creative freedom
with the IDSA’s responsibilities to its
consumers, according to IDSA presi-
dent Doug Lowenstein. The council
will seek to ensure that advertising
does not mislead consumers about a
game’s true content, does not promote
or exploit mature ratings, is responsible

to the public, and is not offensive to
the average customer. Companies will
be asked to comply voluntarily, but
those refusing could be subject to rat-
ings revocations, public notice of viola-
tion, or even fines. Imagine Media,
Ziff-Davis, and IDG Games Media have
signed on in support of the standards.

MIDWAY RIDES DREAMCAST. Midway
Games saw net income for its first quar-
ter increase to $11.3 million on rev-
enues of $106.6 million, compared
with an income of $9.8 million on rev-
enues of $89.3 million in the same peri-
od last year. Strong international and
domestic sales drove the increase, with
nearly a third attributable to its success-
ful Dreamcast titles, including READY 2
RUMBLE, HYDRO THUNDER, and NFL BLITZ.
This quarter also saw Midway move
into the European market after taking
back international distribution rights
from GT Interactive. An additional
third of Midway’s revenue this quarter
came from its resurgent coin-op divi-
sion, which countered an industry-wide
slump, mainly due to its success with
driving games. ■

G A M E D E V E L O P E R J A N U A R Y 2 0 0 0 h t t p : / / w w w. g d m a g . c o m

10

MacWorld Expo

MOSCONE CONVENTION CENTER

San Francisco, Calif.
January 4–8, 2000
Cost: $45–$1,095
(discounts available)
http://www.macworldexpo.com

UPCOMING EVENTS

CALENDAR

Westwood’s TIBERIAN SUN helped EA

command and conquer in Q2.

h t t p : / / w w w. g d m a g . c o m J A N U A R Y 2 0 0 0 G A M E D E V E L O P E R

11

Discreet’s 3D
Studio Max 3

by Kelly Kleider

W hen a new version of soft-
ware is released, there is
always a buzz about new

features and perceived deficiencies. I
can remember some of the features
from the past that make me smirk when
I think of them — Inverse Kinematics,
bump maps, particle systems. I smirk
because the feature set we wield today
could not have been dreamed up ten
years ago and still we want more fea-
tures. The latest version of 3D Studio

Max certainly delivers more features
than previous versions and augments
existing features that required more
attention, but Max 3 certainly is not the
final version of Max that will be
released due to perfection. There will be
more versions. In terms of overall
improvement, Max 3 is definitely a step
up from 2.5, however Max 3’s function-
ality does not differ so dramatically that
Max 2.5 users will not be able to work
exactly as they did in 2.5. Max 3 has
new features and improvements in
every area of the program, from light-
ing, modeling, and mapping to render-
ing, animating, and scripting. 3D Studio
Max has definitely moved into the rar-
efied air of the high-end 3D packages.
A NEW LOOK. When you run Max 3 for
the first time, you immediately notice
the UI facelift. The UI has less of that
text-editor feel with larger (more iconic)
icons. There is a new cluster of tab pan-
els below the main menu that have the
toolbar items grouped according to task,
such as rendering, modeling, or modi-
fiers. The interface has all gray tones
instead of the Windows blue and gray
scheme. Whether you are into a gray-
scale scheme or love purple and green,
Max 3 allows you to reconfigure the
look of almost any part of the program.

The command panels (create, modi-
fy, and so on) can be detached from
the main UI, as can the tab panels and

the main menu. Once detached, the
panels become floating windows that
can be positioned anywhere on the
screen. The tab panels themselves can
be customized to contain user-defined
tools or existing tools grouped together
for convenience.

Manipulating objects, cameras, and
lights in Max 3 just got a little easier
with the introduction of the transform
gizmo. As you move the cursor around
the screen, the transform gizmo axis
closest to the cursor will turn yellow.
The highlighted axis constrains move-
ment, rotation, or scaling of the object
being manipulated. The practical use
for this feature is the quick, accurate
transformation of objects by directly
selecting the axis or plane desired.
Another useful enhancement is the
ability to change a light or camera base
type without having to create a new
object. For example, say you want an
omni light instead of a target direction-
al light, just select omni in the light
type pull-down menu and the light
type is switched.

Max 3 now has a schematic window
(similar to Softimage and Maya). The
schematic lets you browse objects and
their materials in a graphical environ-
ment. The schematic is not for every-
one, but gives those who want it greater
flexibility in their workflow techniques.
XREFS. The latest feature that created a
buzz at the trade shows was Xrefs, or
external references. An Xref is a link
that points to a file from within a Max
scene. There are two varieties of Xrefs:
object Xrefs and scene Xrefs. What this
means is that you, Artist A, can be set-
ting up a scene with objects that are
Xrefs of objects that Artist B is still
building. As Artist B updates the object
files, Artist A will notice the changes in
the scene with the Xrefs updated auto-
matically. Xrefs are extremely powerful
tools for streamlining a production,
but they are also very dangerous. The
flip side to being able to change the
character model in every scene is being
able to break the character model in
every scene. Xrefs are very useful, but
should be used with an appropriate
amount of caution.
PICK ME! PICK ME! Max 3 has seen some
great changes in the modeling area. The
most significant change is the death of
affect region, which was a radius-based
surface deformation tool. Happily it was
replaced with soft selection. Soft selec-

The transform gizmo. Once an axis has been highlighted (here, the z-axis), a click

and a drag is all that’s required to move the object along the selected axis.

B I T B L A S T S - P R O D U C T R E V I E W

Kelly Kleider is a technical director at Mondo Media.

B I T B L A S T S - P R O D U C T R E V I E W

G A M E D E V E L O P E R J A N U A R Y 2 0 0 0 h t t p : / / w w w. g d m a g . c o m

12

tions have been implemented in several
modifiers and offer a huge number of
uses in general production. A soft selec-
tion takes the current selection and
adds a falloff based on a curve defined
in the modifier. The influence of the
soft selection is displayed as a gradient
of colors, which tells you graphically
what is being selected, and by how
much. Soft selections are invaluable for
making morph targets.

The volume-select modifier allows
the selection of an object or its compo-
nents using a volume. You can now
use geometry and particle systems to
select parts of an object, including the
object itself. Soft selections have been
added to the volume-select modifier,
further enhancing an already useful
tool. As always, the majority of a modi-
fier’s parameters are animatable.
ANIMATION. The area that has seen the
least attention in terms of new fea-
tures is animation. It is relatively
unchanged from the previous version
of Max. The native IK system is also
unchanged, which is unfortunate since
it is the weakest part of the animation
module. Rumor has it that this is the
next area to be overhauled. Max 3’s
animation capabilities are still nothing
to sneer at, but there are definitely
areas for improvement. Hopefully new
animation features will not be too
long in coming.

Flex is a new modifier that deforms a
mesh based on animated transforma-
tions. Imagine turning mesh into rub-
ber and you have flex. It’s ideal for get-
ting a little secondary motion on
ropelike things and works very well
with morphs. Flex has definable
weights for the deformation and is fair-
ly straightforward to use.

The new morph modifier has made
the process of building and tweaking
morphs much simpler. You simply
apply morpher to the base morph tar-
get and load in the morphs. If you
have made a change to one or more
of your morphs you can hit the reload
button and update them. The modifi-
er also lets you create new targets
from existing ones by mixing several
targets together.
MATERIALS. The functionality of the
material editor itself has not seen any
significant alteration, but there are
some new material types. One of the
most useful new materials is the falloff
material, which resembles some of the
behavior from the ever-popular side-
fade material by Blur Studios. Falloff
blends two materials based on dis-
tance, which can be defined by anoth-
er object, world axes, or local axes.
Falloff could be used to simulate a light
source, strange lighting effects or blend
from one material to another based on
camera distance.

There are also some welcome changes
to the basic material settings, such as
the ability to preview some of the pro-
cedural textures on shaded geometry in
the viewport. Another level of control
has been added to the output portion of
a material with the addition of the color
map curve. The color map curve lets
you modulate the color’s output from
the texture to create rainbow effects, iri-
descent patterns, and other neat effects.

One feature that is noticeably absent
is an undo in the materials editor. Cur-
rently, only certain operations are undo-
able, when at the very least every major
edit should be an undo-able operation.

For those of you who live in the map-
ping world, you will be pleased to hear
that the UVW editor, unwrapUVW, has
seen drastic improvements from the
previous version. The interface itself has
not changed too much, but there are
some new buttons, including a radius
falloff mode with different curve types,
a mirror mode (which allows you to flip
the vertices easily), and the option to
select an individual mapping ID. One
odd thing about the unwrapUVW editor
is that if you distort the window —
stretch it wide, for instance — the
image gets stretched as well. Users
should have the option of turning this
behavior off.

There are a number of new shading
models that allow for almost any look
or effect that you may want to achieve.
Of particular interest is the anisotropic
shader, which allows you greater control
of surface specularity. The anisotropic
shader simulates metals and shiny
objects with minimal amounts of
tweaking. There is also the multi-layer
shader, which is the anisotropic shader
with two sets of specular controls.
RENDERING. Max 3 sports a new render-
er. In addition to all of the material
enhancements, the renderer is, well,
enhanced. Those who have longed for
different anti-aliasing options now
have 12 instead of the usual one.
There is a filter for every occasion,
from fine, single-pixel detail to broad
ranges of color.

Another addition to the renderer is
render effects. Render effects are simi-
lar to video post effects, but are much
easier to use. I can see the eventual
elimination of video post in favor of
render effects. The interface is very
similar to the environment editor, so if
you are familiar with the environment

The bulge on the sphere was made with soft selection enabled. Soft selection is

useful for organic modeling as well as denting and bending metallic objects.

Excellent Very Good Average PoorBelow Average

13

editor, picking up the render effects
editor is pretty straightforward.

Max 3 ships with a RAM player that
lets you use your available RAM as a
playback device for viewing animations
at 30 frames per second and up. The
RAM player can load and view multiple
clips. You will find yourself using the
RAM player all the time — it’s one of
those tools that makes you wonder
how you ever got along without it.
SCRIPT-O-MATIC. Maxscript has always
been one of the murkier areas of Max.
Formerly the province of the brave and,
of course, propeller-heads, this is no
longer the case. One of the major
enhancements to Maxscript has been
the implementation of the macro
recorder. As you perform tasks in Max
with the recorder on, the Maxscript
commands that create those tasks are
echoed in a text window. You can grab
that text and create a button that can
be placed in the tool bar for later use, or
place the commands in a file and run
the commands as a “classic” Maxscript.
The macro recorder is a built-in tutorial
on Maxscript basics. In addition to
increased scope, Maxscript also has an

extensive help file, which includes
example scripts and an excellent refer-
ence section. Maxscript has finally been
made accessible to everyone.
THE BOTTOM LINE. The upgrades to the
renderer and the integration of many
Max 2.5 plug-ins make Max 3 a very
capable 3D production tool “out of
box.” Realistically, you should expect
to have to buy a few auxiliary plug-ins

to augment Max 3’s capabilities, how-
ever Max 3 is a significant upgrade to
version 2.5. There are some additions
that are awkward and some of the
tools still need attention, but on the
whole Max 3 is worth the purchase
price, which has been raised but is still
less than Softimage or Maya. Max 3
deserves a second look if you have
passed on it in the past. ■

Discreet:
Montreal, Quebec
(800) 869-3504 or
(514) 393-1616
http://www.discreet.com

Price: $3,495

System Requirements:
Intel-compatible proces-
sor at 200MHz (dual
Pentium II system rec-
ommended), 128MB
RAM, 250MB HD swap
file, graphics card sup-
porting 1024×768×16-bit
color, Windows NT

Pros:

1. Solid toolset for the
price.

2. Improved renderer.

3. Many third-party devel-
opers constantly extend
its capabilities.

Cons:

1. Needs a better native IK
system.

2. Modifier control still
clumsy.

3. UI is not completely
intuitive.

Competitors:

Alias|Wavefront Maya
http://www.aw.sgi.com

Avid Softimage 3D 3.8
http://www.softimage.com

Newtek Lightwave 6
http://www.newtek.com

Nichimen Mirai
http://www.nichimen.com

3D Studio Max 3:

Excellent Very Good Average PoorBelow Average

b y J e f f L a n d e r G R A P H I C C O N T E N T

A topic as complex as the computer
simulation of the behavior of liquids
requires research. In fact, I have spent
the last week traveling up and down
the Rhine valley in western Germany
observing one of the great rivers of the
world. All right, so I mostly sat in a
Weinstube watching the barge traffic
travel up and down the Rhine. I just
ordered another round of wonderful
Spätlese Rieslings (trocken for me, lieblich
for my wife) while we discussed the
boat maneuvering between shallow
water reefs in the river.

Germany is a very interesting place
to research fluid dynamics. As a couple
of native Californians, several physical
realities were very clear to us. The only

liquid readily available and affordable
in the Rhine valley was the wine (else-
where beer was the drink of choice)
and the restaurants provided an amaz-
ing demonstration of the interaction of
turbulent hot gases in a dynamic envi-
ronment. The level of cigarette smoke
allows you to observe completely the
natural eddies and turbulent rotation
that occurs as people travel through
the field. As people who have been sub-
jected to California’s rather draconian
laws regarding the free release of turbu-
lent hot gases in confined spaces, it was
quite an impressive sight.

Watching the barges travel up and
down the river, I was impressed by the
size of the wakes left by these enor-

mous vessels. The wakes interacted
with the standing waves in the river,
reflected off the banks, and generally
interfered with each other creating
complex patterns in the water. Where
the river narrowed then widened again,
large eddies formed along the banks
slowly swirling around and around.

The connecting Mosel river winds its
way up the canyons toward Belgium.
To control the level of water along the
river, a series of dams have been con-
structed, which the barges navigate
through a series of locks. The barges
enter the lock which is then sealed. The
water is raised or lowered to match the
level on the other side of the dam, and
then the vessel continues on its way.
It’s a wonder of fluid dynamics to
behold. These massive barges brimming
with heavy cargo are lifted by simply
pumping more water into the bathtub.
This elegant method for transporting

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 2 0 0 0 G A M E D E V E L O P E R

15

Research on the Rhine:

Reflections on Water Simulation

L ast month I left off talking about what makes water look realistic in a simula-

tion. I used image processing to create an effect that behaved something like

the way water behaves. However, the technique wasn’t based on any physi-

cal foundation. Now we need to consider some physical properties of liquid.

Wenn man die Menge der Flüssigkeit außer acht läßt, die aus Jeffs Weinglas fließt, kann man ihn bei Darwin 3D erreichen. Um zu
überprüfen, ob er wirklich wieder am Arbeiten ist, schreibt an ihn unter jeffl@darwin3d.com.

Kicking back in one of the Rhine valley’s Weinstuben offered the author a chance

to contemplate realistic simulations of water behavior, among other things.

µ	 Viscosity of the fluid

ρ	 Density of the fluid

∇	 Gradient operation
	 = (d/dx)i + (d/dy)j + (d/dz)k

g	 Gravity vector

p	 Pressure of a point in the fluid

v	 Velocity vector

s	 Height of water surface

b	 Height of water bottom

d	 Depth of the water

A summary of the notations used in

this article.

cargo has been in use in western Europe
since the thirteenth century.

Where Is This Leading?

T hese things that I observed along
the waterways of Europe are exact-

ly the kind of effects I would like to
build into my fluid simulations. The
image-based method I developed last
month didn’t simulate the physical
properties of water. There were ripples
and they interacted with each other,
but modeling something like an eddy
was way beyond the capability of that
simple technique.

What goes into making an eddy, any-
way? First I need to discuss some physi-
cal properties of water. When a river is
moving, the individual water particles
are constantly interacting with each
other. The particles rub against each
other, against the sides of the river, and
against any rocks or other obstacles in
the flow. These interactions are a form
of friction between the water particles.
The physical property of the fluid that
regulates the amount of friction inter-
action is called viscosity. You probably
think of motor oil when you hear that
term. However, viscosity is a way of
describing the degree to which the par-
ticles will interact similar to the coeffi-
cient of friction in the Coulomb dry
friction model (see “The Trials and
Tribulations of Tribology,” Graphic
Content, August 1999).

To better visualize this interaction,
imagine that a river is a series of water
layers like stacked blocks, as you see in
Figure 1a. When the flow is unobstruct-
ed, the layers all move together in the
direction of the flow. However, when
the flow of the bottom layer is
obstructed, the friction force is trans-
ferred between the layers, slowing
them and resulting in the situation you
see in Figure 1b.

When a flow behaves in this layered
manner, the flow is said to be laminar.
Another form of flow is called turbu-
lent flow. In a turbulent flow, particles
belonging to different layers become
mixed due to the internal friction of
the flow. For my simulation, I will only
be concerned with laminar flows.

Now if the river is flowing at a rela-
tively slow velocity, when it encoun-
ters a narrow section the viscous
forces are transferred through all the

layers of water, slowing the river
down. You can see this in Figure 2a.
However, if the inertial velocity of the
water is strong enough to overcome
the viscous forces acting between the
layers, the flow separates from the
shore. This creates an eddy or vortex
rotating in the direction opposite the
flow along the shore. In a river, this is
where the water pools and debris and
stagnant water accumulate. You can
see this behavior in Figure 2b.

This form of physical realism creates
a much more interesting game simula-
tion. Clearly, I would like to calculate
the effects of viscous forces in my vir-
tual water. To do this I need to turn to
computation fluid dynamics.

CFD and Gaming

E ngineers have been studying fluid
flows for a long time now.

Computation fluid dynamics, or CFD,
has been a very important field with a
great variety of applications. Aircraft
and automobile manufacturers study

the flow of air across the surfaces of
planes and cars. Mechanical engineers
study the flow of liquids through pipes
and structures like dams. Even rocket
scientists use fluid dynamics to under-
stand the flow of the jet engines.

Fluid particles behave according to
the laws of physics. In general, parti-
cles behave according to Newton’s sec-
ond law. The second law states that the
sum of forces acting on a particle is
equal to the rate of change of the linear
momentum of the particle. If the mass
is constant, the sum of the forces is
equal to the product of the particle’s
mass and acceleration. In mathemati-
cal terms, this is the famous F = ma.

In the nineteenth century, physicists
Navier and Stokes applied Newton’s
second law to the field of fluid dynam-
ics. The behavior of a fluid particle is
governed by a series of equations
called, not surprisingly, the Navier-
Stokes equations. The first equation
describes the force acting on an infini-
tesimal fluid particle.

ρ µ ρDv
Dt

p v g= −∇ + ∇ +2

G R A P H I C C O N T E N T

G A M E D E V E L O P E R J A N U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

16

��
��
�
�
��
��
�
�

��
��
�
�

��
��
�
�
���
��
��
�
�

��
��
�
�
���

�
�
��
��
�
�
��
��

�
�
��
��

�
�
��
��
��
�
�
�
�

�
�
�
�
��

A. Unobstructed flow B. Obstructed flow

F I G U R E 1 . Water layers, shown unobstructed (A) and obstructed (B).

A. Slow inertial flow B. Fast inertial flow with eddy

F I G U R E 2 . A slow inertial flow (A) and a fast inertial flow (B), creating an eddy.

This equation states that the acceleration of the fluid par-
ticle is a function of the pressure, velocity, and force of grav-
ity acting on it. The formula is valid for fluids that exhibit a
linear relationship between the pressure components and
the velocity gradients. These fluids are called Newtonian flu-
ids and include most common fluids such as water, oil, and
air. (For the purposes of physical behavior, liquids and gases
are both considered fluids. Fluids cannot resist a shear stress
at rest, in contrast to solid materials, which can.)

A second part of the Navier-Stokes equations enforces the
fact that Newtonian fluids are incompressible. That is, the
mass of the fluid must be conserved.

These equations describe the complete behavior of
Newtonian fluids. However, it is fairly complex. In the field
of CFD it’s necessary to have highly accurate simulations
regardless of computational expense. As we know, in the
field of real-time computer graphics, we do not necessarily
share these priorities. As game developers, we are perfectly
willing to sacrifice correctness in exchange for interactive
rates. Our priorities are to create a realistic-looking anima-
tion using the fastest calculations possible.

The Navier-Stokes equations describe the motion of the
entire fluid field in three dimensions. However, for most
applications, I am not really concerned with the interactions
within the fluid. The key interaction for visual realism is the
surface of the fluid. By reducing the simulation to a 2D prob-
lem, I can greatly reduce the calculations required.

A Watery Landscape

M ichael Kass and Gavin Miller realized this and tried to
simplify the Navier-Stokes equations. Physicists have

used a simplification of the above equations to predict the
motion of shallow water. The key was to make several
assumptions.

The water surface should be thought of as a height field.
This restricts the possible range of effects, as you cannot
have splashing or breaking waves. This is similar to the use
of height fields for terrain landscapes. In a height field ter-
rain, it is not possible to have overhangs or caves without
resorting to multiple layers or other tricks.

The second assumption is that the horizontal velocity of
the water is constant throughout the column. This would
not accurately simulate the ground friction shown in Figure
2. However, this is not really important to the surface
appearance of the water.

The third simplification is that the vertical velocity of the
water particles is ignored. This will lead to problems only if
the change of height in adjacent columns occurs too dra-
matically. However, in practice, this is not a big issue.

Figure 3 shows a one-dimensional water height field. The
height of the surface of the water is s(x), and b(x) is the
height of the water bottom. I will set d(x) = s(x) – b(x) to be
the depth of the water at location x. The velocity of the col-
umn is given by v(x).

Given all these assumptions, the Navier-Stokes equation
for shallow water fluid flow becomes

The first equation is Newton’s second law and the second
equation is the conservation of mass. Kass and Miller simpli-
fy this further by eliminating the second term of the first
equation and change the second equation to vary with the
surface height. This assumption causes the speed of propaga-
tion to be constant throughout the field, which should not
be a problem if the fluid velocity is relatively small.

These equations can be combined as shown:

This last equation results in a partial differential equation. In
order to be useful, I need to change that to a discrete form.
Kass and Miller suggest the use of finite-difference tech-
niques for a delta time h in the form:

This final formula describes the vertical acceleration of the
water surface at position x. I can now simulate the surface of
the water in 2D. The formula also largely conserves mass as

∂
∂

= −
+

()

−() +
+

()

−()−
−

+
+

2

2
1

2 1
1

2 1
2 2

s
t

g
d d

x
s s g

d d

x
s sx x

x x
x x

x x
∆ ∆

∂
∂

= ∂
∂

()
2

2

2

2

s
t

gd
s

x
ud

∂
∂

+ ∂
∂

() =

∂
∂

+ ∂
∂ ∂

() =

s
t x

ud

s
t x t

ud

0

0
2

2

2

∂
∂

+ ∂
∂

=

∂
∂ ∂

+ ∂
∂

=

u
t

g
s
x

u
t x

g
s

x

0

0
2 2

2

∂
∂

+ ∂
∂

=

∂
∂

+ ∂
∂

() =

u
t

g
s
x

s
t x

ud

0

0

∂
∂

+ ∂
∂

+ ∂
∂

=

∂
∂

+ ∂
∂

() =

u
t

u
u
x

g
s
x

d
t x

ud

0

0

∂
∂

+ ∂
∂

+ ∂
∂

=u
x

v
y

w
z

0

G R A P H I C C O N T E N T

G A M E D E V E L O P E R J A N U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

18

s1

s2

s3

s4

v1 v2 v3 v4

b1

b2

b3 b4

F I G U R E 3 . A one-dimensional water height field.

the mass conservation formula was calculated into the final
equation. However, there is one situation that is not han-
dled — there is no restriction that the surface of the water
must be as high as the bottom surface, meaning s < b is pos-
sible. This requires a bit of tweaking to fix. The solution is to
conserve volume manually for any location where s < b by
checking the water depth in the previous frame in the loca-
tion and its neighbors. If the volume differs from frame to
frame, I can distribute the difference into the neighboring
cells. This formula is easy to code up and stick into my exist-
ing simulation framework. This makes it easy to start play-
ing around with variations on the formula.

I’m really interested in making the simulation in 3D.
Luckily it’s easy to extend the algorithm. First, the height
field is extended to a 2D array, which is evaluated in the x
and z directions using two passes with the finite-difference
equation. The water height is determined in the y direction
and the grid is then sent to the renderer as a series of trian-
gle strips.

Another Approach

One problem with the above approach is that the shal-
low water simplifications eliminate some of the fea-

tures of the original Navier-Stokes equations. One particular
change was the elimination of the viscosity factor from the
equation. The assumption was that the entire fluid field was
a constant viscosity. For some simulations, it may be desir-
able to have fluids with viscosity values that vary over time.
Likewise, the assumption that the wave propagation speed
is constant could be a problem for some simulations.

Jim Chen and Niels Lobo approached the problem by
using the Navier-Stokes equations more directly. The solu-
tion they proposed was to consider the fluid field as a 2D grid
as Kass and Miller did. However, in their approach the height
of the cell under consideration is not determined directly.
They start with the general Navier-Stokes equation.

This formula is used to generate the velocity vectors and
pressure values at every point in the grid. To determine the
height in the y direction of a particular point on the grid,
the pressure at that point is considered. The height is then
determined as some scaled value of this pressure reading.

This method effectively allows you to simulate the inter-
action of fluids with different viscosities. However, there is
no current consideration for the shape of the water floor.
Since I find this to be an important aspect for many game
simulations, I will have to determine how that can be added
into the equation without considering the complete 3D
Navier-Stokes equations.

Obviously, completely voxelizing my simulation area and
then calculating the complete equations at every point in
the environment would be ideal. This would allow for very
realistic fluid that could splash and break on itself, as well as
swirl at every level throughout the volume. That is exactly
what Nick Foster and Dimitri Metaxas have done. Their sim-
ulation allows for completely realistic simulation of fluid in
3D. However, the voxelized space that they simulate is fairly
small and even that does not run anywhere near interactive

rates. Jos Stam proposed another method for computing the
fluid dynamics in a 3D field at Siggraph 99. But once again,
the field size was much too small to be usable in any of the
applications I have in mind.

So for now at least, I am left with height map techniques
for interactive simulation. I will continue to research the
topic and keep you updated. At least the computers are get-
ting faster; that will certainly help. But for now, I’m going to
get back to enjoying my wine. ■

ρ µ ρDv
Dt

p v g= −∇ + ∇ +2

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 2 0 0 0 G A M E D E V E L O P E R

19

• Chen, Jim, and Niels da Vitoria Lobo. “Toward Interactive-Rate

Simulation of Fluids with Moving Obstacles Using Navier-

Stokes Equations,” Graphics Models and Image Processing

Vol. 57, No. 2 (March 1995): pp. 107–116.

• Foster, Nick, and Dimitri Metaxas. “Realistic Animation of

Liquids,” Graphics Models and Image Processing Vol. 58,

No. 5 (1996): pp. 471–483.

• Griebel, Michael, Thomas Dornseifer, and Tilman Neunhoeffer.

Numerical Simulation in Fluid Dynamics: A Practical Introduc-

tion. Philadelphia: SIAM, 1998.

• Kass, Michael, and Gavin Miller. “Rapid, Stable, Fluid Dynam-

ics for Computer Graphics.” Siggraph 1990 Vol. 24, No. 4:

pp. 49–55.

• Stam, Jos. “Stable Fluids.” Proceedings of Siggraph 1999. New

York: ACM Siggraph, pp. 121–127.

FF OO RR FF UU RR TT HH EE RR II NN FF OO

b y M e l G u y m o n A R T I S T ’ S V I E W

the technology juggernaut rumbles on,
this year’s developers find themselves
ever more capable of creating the highly
detailed digital landscapes that game
players have come to expect. While the
fundamental principles of terrain gener-
ation remain a constant, the techniques
and strategies for development are con-
stantly evolving in concert with the
technology. This month, we’ll examine
some of these methods and discuss their
advantages and disadvantages relative
to the development process.

The importance of a correctly imple-
mented terrain system cannot be over-
stated. A well-implemented terrain sys-
tem can become invisible to players
after the first few minutes, allowing
them to focus on the characters and
objects from which most of the game
play derives. Conversely, a terrain sys-
tem that is shoddily assembled or poor-
ly textured will be problematic, causing
visual discontinuity and encumbering
the control system, reminding the
player of the unreality of the situation.
Suspension of disbelief is lost, and the
game play experience suffers. A team’s
ability to avoid this latter instance is
often determined very early on in the
production cycle, when the methods
and techniques for generating terrain
are determined. Choosing an efficient
method early on, then, one that allows
for rapid iteration and tweaking, is crit-
ical in arriving at a terrain system that
looks correct and plays well. With
these thoughts in mind, let’s examine
the terrain generation problem.

The artist’s toolbox for terrain gener-
ation contains three major items:
polygonal-, spline-, or NURBS-based
geometry; texture maps with which to
paint the terrain; and lighting, pre-cal-
culated or dynamic. For this topic we’ll
cover the first two items, leaving the
lighting topic for a later discussion.

Geometry

From a game-play perspective, the
most important aspect of the ter-

rain is its form and structure. The
method used to build the terrain has
ramifications on rendering speed and

memory storage, as well as on deter-
mining how the player will interface
with the environment. Finding the
right mix of speed and functionality is
a constant balancing act, and while
there are many good ways, there is
probably no single best way. The wide
range of successful engines and devel-
opment methods stand as testimony to
this. There are, however, a few things
which experience has taught us to
adhere to.

First, regardless of whether the terrain
is constructed from B-splines, polygons,
or NURBS, using a regularly-spaced grid
is by far the fastest, most efficient
method of construction. The rigid grid

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 2 0 0 0 G A M E D E V E L O P E R

21

Moving Mountains:

Terrain Generation Methodology

W hether you’re gliding over the hilltops on the back of a dragon

or lumbering through the forest in a 20-ton mech, your real-

time 3D world is based on a terrain system. With each succes-

sive year the number of terrain-based games increases, and as

Mel has worked in the games industry for several years, and recently finished work as the art lead on DRAKAN. Currently, he manages a
modeling and animation studio which provides custom content for RT3D games. He can be reached via e-mail at mel@infinexus.com.

F I G U R E 1 . Height maps and corresponding displaced terrain from various sources.

spacing allows program-
mers to make assumptions
which can speed up ren-
dering times and optimize
data storage, while the reg-
ular, repeating structure
yields a predictable surface
topology and allows for
implicit mapping coordi-
nates, taking the pain out
of texture mapping and
saving weeks of artist time
in the process.

Second, no matter how
you slice it, there must be a fast and
efficient iterative path for testing and
making changes to the terrain. To fine-
tune the topology successfully, you
should restrict the number of steps in
the art path; that is, the number of pro-
grams the data must pass through
before it reaches the game engine.
HEIGHT-MAP DISPLACEMENT. Probably the
most common method for terrain gen-
eration is height-map displacement.
Height maps are images, grayscale or
otherwise, which are applied to the ter-
rain with a displacement modifier.
They can come from a variety of
sources, and can be hand-generated,
computer-generated (like a fractal), or
come from actual topographical survey
data. Figure 1 shows some grayscale
height maps and the corresponding dis-
placed terrain. Note the variation in
structure and appearance for the differ-

ent types of height maps. From left to
right the sources are: an elevation map
from Bryce 3D, a random fractal from
VistaPro, and a Digital Elevation map of
the Grand Canyon. (Digital Elevation
Maps, or DEMs, are available for most
regions of the U.S. and many regions
throughout the world and solar system.
There are vast resources available on
the web, probably the best of which is
the U.S. Geological Survey’s site, at
http://edc.usgs.gov.)

There are many advantages to using
this type of displacement method.
First, most of the major software pack-
ages support some type of displace-
ment tool. Second, manipulating a tex-
ture, in this case the height map, can
be much easier than working directly
with the geometry. This depends some-
what on the editing toolset, but in
most cases, it is very fast and efficient.
Third, keeping the height information
external to the actual geometry can
serve to optimize storage and rendering
times further. For instance, it’s possible
when using a regular grid with height-
field displacement never to require the
artists to manipulate the geometry,
except to assign texture IDs. The pro-
grammers can use the assumption of a
regularly-spaced grid and sample into
the height map for the vertical dis-
placement of the topography, and
essentially store only the height map
and texture assignments. Finally, if for
some reason the underlying tessella-
tion or geometry construction needs to
change, the terrain can be scrapped
completely with a minimum of lost
effort. Simply reassign the height maps
and displace the terrain again.

Figure 2 shows an example of how to
implement the height-map method. On
the left is a rough sketch by the design-
er, identifying a particular encounter
area. In the center is a height map

which has been created by hand, obvi-
ously with the aid of some existing
DEMs (note the detail in the canyon
walls). On the right, the height map has
been applied and the terrain displaced.
For this example, creating the height
map and displacing the terrain took less
than an hour. The general work flow is
as follows: 1) block out the roads, paths,
and game-play areas; 2) introduce the
global topographical features, the large
hills, canyons, and so on; and 3) add the
appropriate details, erode and smooth
the boundaries between regions, and if
possible add an overall noise to the tex-
ture map to give variation.

Once a process is developed, an artist
experienced in the technique will be
able to generate height maps on par
with this at the same rate, if not faster.
Note the green area on the displaced
terrain. This is a visual cue, denoting
the traversable areas of the terrain
where the majority of the game play
takes place. It is important for the artist
to identify these areas and ensure that
they are relatively smooth and unob-
structed, so that game play is not hin-
dered by the terrain displacement.
Failure to do this can result in terrain
that is no longer navigable, causing
players and AI-controlled characters to
display erratic behavior or simply to
become stuck. Figure 3 shows a more
detailed example of this phenomenon.
VERTEX MANIPULATION. The second
method for generating terrain is to
manipulate the vertices directly, that
is, to sculpt the geometry. Until very
recently, this was a tedious and
improbable method for generating
topography. Grabbing clusters of ver-
tices or control points and manipulat-
ing them to form organic, flowing
landscapes is a process that is not intu-
itive or straightforward for most of us.
Fortunately, technology has come to

A R T I S T ’ S V I E W

G A M E D E V E L O P E R J A N U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

22

F I G U R E 2 . The height-map method implemented.

F I G U R E 3 . Terrain displacement.

the rescue, redefining the way we
manipulate the terrain. Figure 4 shows
the same encounter area, only this
time the terrain has been dynamically
sculpted by hand, using no height
maps or displacement routines. What’s
more, this piece of terrain took less
than five minutes to create.

The reason for this rapid construc-
tion is a new plug-in for 3D Studio Max
called Deform Paint. The algorithm,
written by plug-in guru Peter Watje,
mimics the functionality of the more
powerful Artisan sculpting tool in
Maya. Both Deform Paint and Artisan
allow you to paint directly on the
model by scrubbing the mouse back
and forth. As you do so, the geometry is
displaced in one of several possible
axes, in our case vertically. The tech-
nique takes a few tries to get the hang
of, but once it clicks you never want to
go back the old “grab and move.” There
are disadvantages to this technique,
however. Because you are working
directly with the geometry, you miss
out on all the advantages of the height-
map method. Furthermore, it’s harder
to undo a change with this method,
since you can’t simply go back and
readjust the height map. However, the
extreme rapidity with which the terrain
can be generated may outweigh these
problems in many instances, and as the
artist’s technique is perfected, this can
become a powerful tool.

Texturing

In most cases, creating and applying
the texture maps to a large-scale ter-

rain model is by far the most time- and
effort-intensive aspect of terrain gener-
ation. In some cases, up to half the
total art budget for the project can be
spent here. It behooves us as develop-
ers, then, to try to optimize the process
wherever possible, while keeping an
eye towards ensuring a high level of
detail and polish which our consumers
have come to expect. Fortunately, this
is an area where the recent advances in
hardware technology have yielded
great benefits. The increased capabili-
ties of the average target platform now
allow us to use bump mapping, multi-
pass and detail texturing, and bi- and
trilinear filtering, all with constantly
increasing texture budgets. The funda-
mental methods for texturing, howev-

er, can still be broken down into one of
two major categories: tile-based textur-
ing, and large-scale, global texturing.
The following two examples are varia-
tions on these methods, taking advan-
tage of the currently available hard-
ware technology.

Multi-Pass Texture Blending

T he multi-pass texture blending
(MPTB) method is a variation on

the standard tile-based texturing
method. In the standard tile-based sys-
tem, a small number of base tiles, con-
sisting of the major terrain types (grass,
rock, dirt, road, and so on), are assem-
bled. Then, for each possible combina-
tion of abutting terrains, a set of border
tiles is generated with multiple varia-
tions of each to give diversity to the ter-
rain. For instance, where a grass-covered
area meets a dirt-cov-
ered area, a set of
boundary textures is
created consisting of
both grass and dirt.

The advantage to
this technique is that
there is literally no
limit to the amount of
terrain that can be tex-
tured. There is a fixed
palette of tiles, and
therefore a fixed and
easily manageable tex-
ture budget for the ter-
rain. The disadvantage
is that for a reasonable
amount of diversity in
the tile set, the num-
ber of and variations
in the tiles can be
enormous, such that

you may need to generate dozens and
dozens of tiles for a single terrain set.
Furthermore, it’s almost impossible to
hide the fact that the terrain is tiled,
since there is a limit to how many tiles
can be generated and stored, and play-
ers will eventually be able to pick out
the repeating tiles.

The multi-pass blending method as
shown in Figure 5 is designed to elimi-
nate these disadvantages. The terrain
piece on the right has been generated
with a combination of two tiling texture
maps (A and B), blended together. The
underlying terrain has an implicit map-
ping coordinate which tiles these tex-
tures five times along each axis. The
large-scale, chroma-keyed alpha map
(C) has a one-to-one tiling with the ter-
rain, such that it is stretched over the
entire terrain piece. (This is for purposes
of discussion only, the map can easily
be subdivided arbitrarily to yield what-

A R T I S T ’ S V I E W

G A M E D E V E L O P E R J A N U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

24

F I G U R E 5 . Multi-pass texture blending.

F I G U R E 4 . This terrain has been dynamically sculpted

by hand and took under five minutes to create.

ever appropriate mapping coordinate
the terrain will support.) The displace-
ment map (D) used to displace the ter-
rain is synched up with the alpha map.

Taking advantage of the fact that
most cards on the market today support
at least two-stage rendering, the two
texture maps are blended on each
group of polygons based on the govern-
ing alpha map (C). The actual blending
process can occur in at least two differ-
ent ways. In this example, the terrain
has been subdivided aggressively, such
that for this terrain piece there are 100
vertices along each axis. At render time
each vertex samples into the global
alpha map to determine whether it is
assigned texture A or B. Where two
adjacent vertices have different IDs, a
smooth procedural blend is applied.
Although it requires a relatively high
level of tessellation, this blending tech-
nique has the potential to be extremely
fast. A second method for implement-
ing this would be to use a lower-tessel-
lation terrain and to render it in multi-
ple passes, double-rendering the
blended polygons based on the govern-
ing alpha map.

The production advantages for MPTB
are threefold. First, only the primary tile
pieces need to be derived, so no bound-
ary tiles need to be generated. Since the
mapping coordinates for the terrain are
implicit, once the primary textures and
governing alpha map are completed,
the terrain is essentially finished. Sec-
ond, for a relatively low texture over-
head (A and B are each 512×512 pixels),
an arbitrarily high pixel density can be
achieved on the terrain without many
of the tiling artifacts usually seen. Third,
endless variations can be generated

rapidly simply by changing the govern-
ing alpha texture (C), and its associated
displacement map (D). This method
seems primarily suited for projects
requiring massive amounts of terrain
where the level of detail is of secondary
importance.

Large-Scale Maps with Detail
Textures

T he second method is more
straightforward, focusing more on

the visual effect than on the efficiency
of the production process. Neverthe-
less, it too is an expedient and time-
saving technique for texturing large
sections of terrain. As the name
implies, the large-scale map method is
just that. Instead of painting the ter-
rain with smaller, repeating tiles, the
terrain is textured with larger, unique
textures that may or may not tile in
any given direction. Removing the
tiling restriction gives the texture artist
an enormous amount of flexibility in
adding detail to the terrain.

As you can see in Figure 6, a mam-
moth 1024×1024 texture has been
applied globally over the entire terrain
piece. It has been arbitrarily cut into
four pieces, but this does not have to be
the case. In fact, the texture map can be
as large as the engine or hardware can
support. Regardless, depending on the
implementation, it should be trivial for
the programming team to write an
algorithm that subdivides the large tex-
ture as necessary. In this case, the tex-
ture has been composited using several
steps, the final step being to render the
texture on a high-resolution mesh

which has been displaced with
the same displacement map as
that of the final in-game terrain.
In this way, much of the detail
from the high-resolution mesh
remains “baked” into the tex-
ture in the form of shadows and
lighting information. Still, the
detail in the terrain is ultimate-
ly limited, since the large tex-
ture is being stretched over such
a massive area. To address this,
the perceived pixel density is
boosted by the addition of a
detail texture (A). This 512×512
texture is composited onto the
global texture, and is tiled five
times in each direction, greatly

increasing the pixel density and there-
by the perceived texture detail. Clearly
most of the time here is spent in gener-
ating the high-resolution texture map.
As such, this method is primarily suited
to projects which need a high level of
polish and detail in the terrain, but
which do not require massive amounts
of terrain to be generated.

Process and Execution

A lmost without exception, devel-
opers get to the ends of their pro-

jects wishing they had more time to
work on the things they feel are impor-
tant. In many cases, this perceived lack
of time in the schedule results from the
methods and techniques of content
creation remaining in flux too far into
the development cycle. Subsequently,
it would seem of paramount impor-
tance that the artists, designers, and
programmers agree upon — and rigidly
adhere to — the set of development
methods to be used well in advance of
the production process. Having the
foresight to identify the best methods
is a talent that comes with experience,
and depends largely on the technical
expertise of the developers. It is expedi-
ent, then, for us as 3D artists and ani-
mators, to become experts with our
respective toolsets, so that when called
upon, we can provide the necessary
expertise in our field. ■

A R T I S T ’ S V I E W

G A M E D E V E L O P E R J A N U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

26

F I G U R E 6 . Large-scale maps with detail textures.

Special thanks to Dave Coathupe, Stuart

Denman, Wyeth Ridgway, and Peter

Watje.

Acknowledgements

b y O m i d R a h m a t H A R D T A R G E T S

likes of Nvidia and S3, and the magic
of T-buffer from 3dfx. There’s even talk
of something called the X-Box from
Microsoft, a very PC way of emulating
the closed-box advantages of a console.
I can’t tell you what hot technology is
worth backing all the way, but it may
not be that important anyway.

The Players

F oremost in the minds of most
graphics companies is the looming

launch of the Playstation 2. In many
ways, Sony has put the PC industry on
the defensive because it promises to
deliver both a high-end technology and
a mass-market consumer product. With
none of the legacy of the PC industry,
Sony has redefined the architecture of
the Playstation line, and at the same
time come up with the kind of polygon
counts and bus bandwidths that the PC
folks only dream about. Some say that
is why Microsoft has been trying to
gauge support among game developers
for something called the X-Box.

The X-Box is shrouded in rumor,
innuendo, and speculation. What seems
to be clear is that it’s at heart a Win-
dows PC, but the components of the
box are fixed, meaning they are pre-
determined and not upgradable, making
the X-Box a competitive to the next-
generation consoles. It’s a fixed function
PC that could be available for under
$300 retail. Probably the most anticipat-
ed aspect of the X-Box design is the
graphics, because that’s where Sony’s
Emotion Engine and Graphics Synthe-
sizer stand out. Graphics seem to be the
linchpin of any consumer computing

strategy right now, but then again the
promise of 3D is enough to assure any
hardware developers plenty of media
coverage and e-zine speculation.

So far, two companies’ wares have
been touted as X-Box graphics candi-
dates: Nvidia’s GeForce 256 and 3dfx’s
next-generation product, code-named
Napalm or Voodoo 4. As far as the
GeForce 256 is concerned, the facts are
very clear because the product is already
out. This is Nvidia’s flagship graphics
architecture for at least the next 18
months. It’s the first chipset to have
hardware-accelerated transformation
and lighting integrated, and it is
Nvidia’s newly anointed Graphics
Processing Unit (GPU). The GPU desig-
nation is telling; Nvidia wants to make
sure that people outside of the graphics
industry appreciate the complexity and
power of next-generation graphics hard-
ware. Modern day graphics chips are
big, complicated pieces of silicon, even
though the CPU gets all the attention.

GeForce is a consumer-level product,
albeit at the high end of the price scale.
However, if you think of it as also being
competitive enough in performance and
features for inclusion in PC worksta-
tions used in CAD or digital content cre-
ation, then it’s a bargain (there is a
GeForce derivative called Quadro that
Nvidia recommends for the workstation
market). Nvidia has shown that by stick-
ing to DirectX and OpenGL it can get
both the recognition of avid gamers,
who tend to be the early adopters of 3D

graphics accelerators, and OEMs, who
tend to care little about gamers’ feelings
and just want to get enough features
and benchmark numbers to place their
products. The most interesting point for
game developers is that Nvidia has been
very aggressive in touting the benefits of
DirectX 7’s hardware T&L support,
although in practice the benefits of the
technology haven’t been immediately
apparent in the benchmarks. In addi-
tion, Nvidia is also highlighting its
GPU’s cube environment mapping tech-
nology, but it’s the inclusion of hard-
ware T&L that’s a watershed in 3D
graphics hardware. Game developers are
now faced with hardware that does its
stuff further up the 3D graphics pipe-
line, and the hardware makers want to
get them to hand over the vertices.

S3 is another company that supports
hardware-accelerated T&L, in its Savage
2000 chipset. S3 is less sanguine about
the technology, but supports it more
out of a realization that its real benefits
are still some way off in the future when
the development community starts to
support it earnestly. It must be pointed
out that S3 hired some game designers
and created four levels for QUAKE 3:
ARENA, ostensibly to show what the ben-
efits of hardware T&L could be in a real-
world application. S3 was also one of
the first companies to put its weight
behind texture compression, and S3’s
implementation, S3TC, has found its
way into DirectX, and will apparently
be included in Nintendo’s next-genera-

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 2 0 0 0 G A M E D E V E L O P E R

29

The Burdens of New

Technology

It’s that time of the year again. You know, when every graphics chip company

seems to have a hot-ticket technology for the next wave of 3D games. As we

enter the new millennium, the significant gambits in 3D graphics on the PC

appear to be hardware-accelerated transformation and lighting (T&L) from the

Omid Rahmat is the proprietor of Doodah Marketing, a digital media consulting
firm. He also publishes research and market analysis notes on his web site at
http://www.smokezine.com. He can be reached via e-mail at omid@compuserve.com.

tion Dolphin system. So there’s a prece-
dent which implies that if you build it,
they will in fact come. Companies like
S3 and Nvidia will be under some pres-
sure in the next year to show where
their technologies stand against those of
Sony. It may be an unrealistic compari-
son, but at issue is game developer sup-
port for advances in PC graphics tech-
nology, over investments in Sony’s
vision. It doesn’t necessarily mean that
those developers who jump on the Sony
bandwagon will abandon the PC, but it
could mean that the 3D you see on a
console might be ahead of what you’ll
see on a PC. With Internet connectivity
available to both platforms, that’s going
to leave the PC in a secondary role as a
home computing platform, something
that has never happened.

As we went to press, it was still
unclear what the next-generation 3dfx
graphics chip would look like, but the
company has been touting one tech-
nology sure to be included in the
design: the T-buffer. The 3dfx T-buffer
provides a number of new, never-
before-seen effects on consumer-level
PCs. These include entire full-scene
spatial anti-aliasing, motion blur, and
depth of field. The company acknowl-
edges that the T-buffer owes its exis-
tence to the heritage of the accumula-
tion buffer, developed at SGI. An
accumulation buffer in an OpenGL
workstation provides an additional
buffer to integrate multiple renderings
of a scene. The T-buffer essentially
does the same thing as an accumula-
tion buffer, combining multiple differ-
ent images to create its effects, howev-
er it does it at significantly less cost,
and it is designed for the more frame-
sensitive world of PC gaming. The
T-buffer’s results are impressive, and
you can see how 3dfx has managed to
go right to the heart of issues that
would attract the creative aspects of
game development. It certainly isn’t
an orthodox path that the company is
taking, but that’s where 3dfx has been
at its strongest in the past.

Image Is Everything

So there you have it, some excellent
technologies and some compelling

reasons to use them. Yet the main prob-
lem with great hardware technologies
remains that while they may deliver

compelling visuals,
they invariably
require investments
in time and effort.
Furthermore, there
are always different
flavors of 3D tech-
nology (Nvidia’s
and S3’s implemen-
tation of hardware
T&L being a prime
example), therefore
developers have to
make room for the
cost of supporting
more than one
graphics chip archi-
tecture. It could be
argued that in the
case of hardware-
accelerated transfor-
mation and light-
ing, graphics chip vendors are merely
riding the coattails of DirectX 7. DirectX
7 supports hardware-accelerated trans-
formation and lighting, and that should
make it ubiquitous. Of course, no two
Direct3D drivers are the same. In 3dfx’s
case, the company commands a very
loyal and large following of game
enthusiasts among consumers and
developers alike, possibly because of the
benefits of its proprietary Glide API and
its support of Macintosh and Linux.

The differences that exist between the
philosophies of Nvidia, S3, 3dfx, and
every other graphics chip vendor mirror
what has taken place at the highest end
of the graphics business. Progress in
consumer 3D graphics is following the
same path as the evolution of worksta-
tion 3D graphics. In the PC workstation
market, the CPU has long been a recog-
nized bottleneck for the graphics sub-
system. 3Dlabs, probably the market
leader in this segment, has provided
hardware geometry support through its
Gamma chipset, but that hasn’t trans-
lated into an overwhelming technical or
performance leadership for the compa-
ny, even against those companies that
have eschewed geometry hardware. One
reason may be that geometry processing
does help certain applications in the
high end where image quality is of
importance, but in some applications,
such as CAD, it has little impact on line
drawing speeds. For game developers,
the same situation could arise. For
example, hardware-accelerated T&L
favors static images more than it does

dynamic 3D ones, therefore racing and
flight sims would be the genres that
would see immediate benefits of using
Nvidia’s and S3’s hardware. In racing
and flight sims the main light source is
usually the sun, and the terrain remains
static for the most part.

In the case of the T-buffer, it’s more
difficult to predict the potential. Cer-
tainly the results of using some of T-
buffer’s technologies are immediate.
Depth of field and motion blur create
effects that you only see in photogra-
phy, and will require some thought on
implementation. For example, if a game
scene requires that the camera zoom in
on a foreground object, and the T-buffer
allows the depth of field effect to blur
the background much as a real camera
lens would, how does a developer
account for the same effect in almost
every other graphics accelerator that
won’t have T-buffer? It may not matter.
3dfx’s following among game develop-
ers and the “cool factor” of its technolo-
gies may carry it through.

Ultimately, game developers will
want to know about the installed base
and the effects of these technologies on
development, support, and game sales.
Like every other graphics technology
that comes around, the decision is prob-
ably going to be financial. This is true
even for X-Box, where Microsoft has to
convince the development community
that it can create a market for an alter-
native PC-based gaming platform. This
should all sound familiar to the hard-
ened veterans of 3D gaming.

H A R D T A R G E T S

G A M E D E V E L O P E R J A N U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

30

Low-end

22%

Matrox
9%

S3 & Nvidia

28%

ATI

32%
3dfx

6%

Others

3%

C H A R T 1 . Market share statistics for desktop graphics

chips in 1998 (source: International Data Corp., 1999).

The Technology Growth Curve

Ihave always found the amount of
data available on the installed base

of PCs to be less than satisfactory for
most game developers’ uses. Unfortu-
nately, most market research on the PC
industry is designed for the benefit of
manufacturers and vendors of hard-
ware, who prefer to see sales projections
rather than any great focus on legacy
systems. In this regard, the console
industry offers clear advantages because
you can guarantee that for every con-
sole sold there is a ratio of game titles
per system also sold, and you certainly
have little to fear about diverging hard-
ware specifications. Of course, this is a
problem that Microsoft could address
with X-Box, but until more details
emerge, we can only speculate.

Looking at things purely from a
graphics-chip standpoint, 3dfx sells its
hardware primarily through retail chan-
nels which means that it is reaching an
after-market of users. As a result, if you
were to consider only the installed base
and growth of Glide systems, you are
probably looking at a shrinking market.
The big PC OEMs are buying their

graphics chips from ATI, Nvidia, and S3,
and there is an overwhelming number
of non-brand PC makers, systems inte-
grators, and resellers to take into consid-
eration as well. Still, 3dfx is selling to a
very dedicated retail audience. 3dfx
graphics consumers are probably the
most easily defined demographic in the
industry — they’re bound to have an
interest in games. 3dfx is the only real
upgrade 3D accelerator for Macintosh
users and was the first product for Linux
gaming enthusiasts.

It’s fair to say that any projected
numbers for the sales of graphics boards
with hardware T&L or T-buffer would
not tell the whole story. I don’t know of
any numbers that would give game
developers some guidance on which of
these technologies would be the most
widely adopted. You can be certain that
T&L will find its way into more PCs
than T-buffer technology because
Nvidia and S3 sell a hell of a lot more
chips than 3dfx. However, I’ve yet to see
any realistic assessments on where those
chips are ending up, whether it’s in the
home, at work, or for what purpose.

Nevertheless, I think you can get a
pretty good feel for the market from

some of the information here. The data
provided by IDC in Chart 1 is for 1998,
but I doubt very much that the order of
things will change. I expect ATI, S3,
Nvidia, Matrox, and 3dfx to be the main
brand leaders. However, I took the liber-
ty of lumping together SiS, Cirrus Logic,
Intel, and Trident numbers under the
heading of “low end.” Obviously, there
is still a significant percentage of the
market that is less-than-3D if you will,
although it’s safe to assume that the
majority of these products are finding
their way into the corporate market. It’s
too early to tell what impact the low-
cost PC business will have on the pene-
tration of the better 3D products from
Nvidia, S3, and 3dfx. The bright spot is
that at least Nvidia and S3 are commit-
ted to migrating their 3D technologies
into these lower-cost systems, meaning
that hardware T&L will eventually find
its way into a broader range of systems,
but that is at least two or three years
away. Probably the next development to
look for is whether ATI or Matrox adopt
hardware T&L. If and when they do,
there should be little to hold back a
game development move up the 3D
graphics pipeline. ■

H A R D T A R G E T S

32

S u b d i v i s i o n S u r f a c e T h e o r y

Images from Geri’s Game courtesy of Pixar Inc.

A
bout 18 months ago at

Siggraph '98, Pixar unveiled a

short animated film.

Christened Geri’s Game, it was, to quote

its Academy Award press release, the

“endearing tale of an aging codger who

likes to play chess in the park against

himself.” Not only was it artistically

stunning, but it was also a technologi-

cal powerhouse. The short served as a

vehicle to demonstrate Pixar’s latest

addition to its production environment,

a surface scheme known as subdivision

surfaces.

Subdivision surfaces are a way to

describe a surface using a polygonal

model. Like the polygonal model, the

surface can be of any shape or size —

it’s not limited to a rectangular patch.

Unlike that polygonal model, the sur-

face itself is perfectly smooth. Subdivi-

sion surface schemes allow you to take

the original polygonal model and pro-

duce an approximation of the surface by

adding vertices and subdividing exist-

ing polygons. The approximation can be

as coarse or as detailed as your needs

allow. Because Pixar’s rendering system

requires everything to be broken into

polygons that are a half-pixel across,

subdivision surfaces allowed them to tes-

sellate automatically to that level every-

where. As such, the artists didn’t need to

worry about how close Geri was to the

camera. While your game probably can’t

quite deal with half-pixel polygons, what-

ever size you do choose, your models can

scale up and down in polygon count with

the speed of the machine and their dis-

tance

from the

camera.

The

technolo-

gy itself

is, for the

most

part, not

new, but

its appli-

cation up until recently has been fairly

limited. Indeed, Geri’s Game is still one of

the only compelling demonstrations of

subdivision surfaces. Nonetheless, it

brought attention to subdivision surfaces

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 2 0 0 0 G A M E D E V E L O P E R

35

When he's not sleeping through meetings or plotting to take over the world, Brian's busy furtively subdividing, hoping one day
to develop his own well-defined tangent plane. Critique his continuity at bsharp@acm.org.

by Brian Sharp

as a relatively new, up-and-coming
technique for implementing scalable
geometry.

Along with Pixar’s work, quite a few
researchers are actively tackling issues
in the area of subdivision surfaces, and
several Siggraph papers each year
advance them academically and put
them to use in solving problems. By
now, they are a fairly mature technolo-
gy, and a compelling contender among
scalability solutions.

The game development community
realizes that scalable geometry tech-
niques are an important part of
developing next-generation game
engines. The spread between high-end
and low-end hardware seems to get
bigger each year (thanks to current
and forthcoming geometry accelera-
tors such as Nvidia’s GeForce 256 and
S3’s Savage2000), forcing game devel-
opers to find ways to cater to the mass-
es that use low-end machines while
building in features that make the
most of hardcore gamers’ advanced
hardware. As a result, on the low end
our engines should still be capable of
using fewer than 10,000 polygons per
scene, but on the high end, the sky’s
the limit: even hundreds of thousands
of polygons per scene can cruise along
at 60 frames per second. Scalable
geometry techniques such as subdivi-
sion surfaces are therefore necessary to
accommodate this variation in hard-
ware capabilities.

In this article, a number of different
kinds of subdivision surfaces will be
discussed. As a preliminary warning,
this article is entirely theory. Next
month, we’ll look at an example imple-
mentation of one of the schemes, the
modified butterfly, which I’ll discuss
here. Keep in mind as you read this
article that not every concept described
here will be practical for use in your
engine. Indeed, some subdivision sur-
face models may not be feasible for use
in games at all. But knowing the
strengths and weaknesses of the vari-
ous models will help you make the
right decision for your next game.

The What and the Why

F irst, what is a subdivision surface?
The obvious answer is that it’s a

surface generated through subdivision.
To elaborate, every subdivision surface

starts with an original polygonal sur-
face, called a control net. Then the sur-
face is subdivided into additional poly-
gons and all the vertices are moved
according to some set of rules. The
rules for moving the vertices are differ-
ent from scheme to scheme, and it is
these rules that determine the proper-
ties of the surface. The rules of most
schemes (including all the ones dis-
cussed here) involve keeping the old
vertices around, optionally moving
them, and introducing new vertices.
There are schemes that remove the old
vertices at each step, but they’re in the
definite minority.

The one thing the control net and
the eventual surface (called the limit
surface) have in common is that they
are topologically the same. Topology is
a way of describing the structure of a
surface that isn’t changed by an elastic
deformation, that is, a stretching or
twisting. A good example and common
joke is that to a topologist, a coffee cup
and a donut are identical. The donut
hole corresponds to the hole in the
handle of the coffee mug. On the other
hand, a sphere and coffee mug are not
topologically equivalent, since no
amount of stretching and twisting can
punch a hole in that sphere.

Topology is one reason that subdivi-
sion surfaces are worth a look. With
Bézier or B-spline patches, modeling
complex surfaces amounts to trying to
cover them with pieces of rectangular
cloth. It’s not easy, and often not possi-
ble if you don’t make some of the
patch edges degenerate (yielding trian-
gular patches). Furthermore, trying to
animate that object can make continu-
ity very difficult, and if you’re not very
careful, your model will show creases
and artifacts near patch seams.

That’s where subdivision surfaces
come in. You can make a subdivision
surface out of any arbitrary (preferably
closed) mesh, which means that subdi-
vision surfaces can consist of arbitrary
topology. On top of that, since the
mesh produces a single surface, you
can animate the control net without
worrying about seams or other conti-
nuity issues.

As far as actual uses in games, I
believe that subdivision surfaces are an
ideal solution for character modeling.
Environments and other parts of a
game generally don’t have the fine
detail or strange topology that would

require subdivision surfaces, but char-
acters can have joint areas that are par-
ticularly hard to model with patches,
and characters are in constant anima-
tion, which makes maintaining conti-
nuity conditions very important.
THE BASICS. Before we start discussing
individual schemes, let’s look at the
basic characteristics of subdivision sur-
faces in general. This gives us a frame-
work for classifying and comparing the
schemes as we come across them. Most
of these characteristics carry notable
implications with them, whether they
are implied computational costs or
implied ease-of-use considerations, or
anything else. These will usually be the
criteria on which you might choose
one scheme above another.
CONTINUITY: THE HOLY GRAIL. The first char-
acteristic of a scheme is its continuity.
Schemes are referred to as having Cn

continuity, where n determines how
many derivatives are continuous. So if
a surface is C0 continuous, it means
that no derivatives are continuous, that
the surface itself doesn’t have open
holes. If a surface is C1 continuous, it
means that the surface is closed and
that its tangents are continuous (so
there aren’t any sharp seams).

This probably won’t be a major sell-
ing point of one scheme above anoth-
er, since just about every scheme has
C1 continuity everywhere. Some have
C2 continuity in some places, but the
majority have areas where the best
they can claim is C1. So most schemes
are alike in this regard.

However, continuity is most cer-
tainly worth mentioning because it’s
one of the major reasons to think
about using subdivision surfaces in
the first place. After all, Pixar could
have modeled Geri using as many
polygons as they wanted, since they’re
not running their movies in real time.
But no matter how many polygons
they used, you could get close enough
that Geri’s skin would look faceted
from the polygons. The point of using
a subdivision model is that you have
that ideal limit surface at which you
can always throw more and more
polygons as you get closer and closer
to, no matter how high the display
resolution or how close the model is
to the screen. Only a very small por-
tion of the real world is flat with sharp
edges. For everything else, there’s sub-
division surfaces.

G A M E D E V E L O P E R J A N U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

36

S U B D I V I S I O N S U R F A C E S

To Interpolate or not to Interpolate...

W hile the degree of continuity is
generally the same for all subdi-

vision schemes, there are a number of
characteristics that vary notably
between schemes. One important
aspect of a scheme is whether it is an
approximating scheme or an interpo-
lating scheme. If it’s an approximating
scheme, it means that the vertices of
the control net don’t lie on the surface
itself. So, at each step of subdivision,
the existing vertices in the control net
are moved closer to the limit surface.
The benefit of an approximating
scheme is that the resulting surface
tends to be very fair, having few undu-
lations and ripples. Even if the control
net is of very high frequency with
sharp points, the scheme will tend to
smooth it out, as the sharpest points
move the furthest onto the limit sur-
face. On the other hand, this can be to
the approximating scheme’s detriment,
too. It can be difficult to work with, as
it’s harder to envision the end result
while building a control net, and it
may be hard to craft more undulating,

rippling surfaces as the scheme fights
to smooth them out.

If it’s an interpolating scheme, it
means that the vertices of the control
net actually lie on the limit surface.
This means that at each recursive step,
the existing vertices of the control net
are not moved. The benefit of this is
that it can be much more obvious from
a control net what the limit surface will
look like, since the control net vertices
are all on the surface. However, it can
sometimes be deceptively difficult to
get an interpolating surface to look just
the way you want, as the surface can
develop unsightly bulges in areas
where it strains to interpolate the ver-
tices and still maintain its continuity.
Nonetheless, this is usually not a
tremendous problem.

Figure 1 shows examples of an
approximating scheme (on the left)
and an interpolating scheme (on the
right). The white outline is the control
net, and the red wireframe is the
resulting surface after a few subdivi-
sion steps. You can see the difference
quite clearly: the approximating sur-
face seems to pull away from the net,

while the interpolating sur-
face flows through the ver-
tices of the net.

Surfaces in Uniform

A nother set of characteris-
tics of a scheme brings in

four more terms. A scheme
can be either uniform or
nonuniform, and it can be
either stationary or nonsta-
tionary. These terms describe
how the rules of the scheme
are applied to the surface. If
the scheme is uniform, it
means that all areas of a con-
trol net are subdivided using
the same set of rules, whereas
a nonuniform scheme might
subdivide one edge one way
and another edge another
way. If a scheme is stationary,
it means that the same set of
rules is used to subdivide the
net at each step. A nonstation-
ary scheme, on the other
hand, might first subdivide
the net one way, and then the
next time around use a differ-
ent set of rules.

All the schemes we’ll talk about here
are fundamentally both uniform and
stationary. There are some extensions
to these schemes that make them non-
stationary or nonuniform, but there
aren’t many subdivision schemes that
are fundamentally nonstationary or
nonuniform. One of the main reasons
for this is that most of the mathemati-
cal tools we have for analyzing
schemes are unable to deal with
dynamically changing rules sets.

Subdivision Shape

A nother characteristic of a scheme,
albeit less significant than the

prior ones, is whether it is triangular or
quadrilateral. As the names would
imply, a triangular scheme operates on
triangular control nets, and a quadrilat-
eral scheme operates on quadrilateral
nets. Clearly, it would be inconvenient
if you had to restrict yourself to these
primitives when building models.
Therefore, most quadrilateral schemes
(including the one discussed here) have
rules for subdividing n-sided polygons.
For triangular schemes, you generally
need to split the polygons into trian-
gles before handing them over to be
subdivided. This is easy enough to do,
but one downside is that for some
schemes, the way you break your poly-
gons into triangles can change the
limit surface. The changes are usually
minor, though, so you simply need to
be consistent: if you randomly choose
which diagonal of a quadrilateral to
split on every frame, you’ll end up with
popping artifacts.

Figure 2 shows examples of a trian-
gular subdivision scheme as compared
to a quadrilateral scheme. Notice that
the triangular scheme only adds new
vertices along the edges, whereas the
quadrilateral scheme needs to add a
vertex in the center of each face. This is
one reason why triangular schemes
tend to be somewhat easier to under-
stand: their rules have that one fewer
step in them.

Extraordinary Vertices

The preferred vertex valence is
another property of subdivision

schemes. The valence of a vertex is the
number of edges coming out of it.

G A M E D E V E L O P E R J A N U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

38

S U B D I V I S I O N S U R F A C E S

F I G U R E 2 . The differences between the tessel-

lation used by a triangular scheme (top) and a

quadrilateral scheme (bottom).

F I G U R E 1 . Two schemes subdivide a tetrahe-

dron. The left scheme is approximating, and the

right is interpolating.

Most every vertex a scheme produces
during subdivision has the same
valence. Vertices of that valence are
the regular vertices of a scheme.
Vertices of any other valence are
known as extraordinary vertices. Their
effect depends on the subdivision
scheme, but historically there have
been problems analyzing the limit sur-
face near extraordinary vertices. As we
look at various schemes, we’ll see the
effect that extraordinary vertices have
on each one.

Most schemes don’t ever produce
extraordinary vertices during subdivi-
sion, so the number of extraordinary
vertices is set by the original control net
and never changes. Figure 3 is an exam-
ple of two steps of a triangular scheme
with an extraordinary vertex in the cen-
ter. Notice how it remains the only

extraordinary vertex after a step of sub-
division. Also note that the valence of
the regular vertices is 6. This is common
for triangular schemes, as they all tend
to split the triangles in the same way —
by adding new vertices along the edges
and breaking each triangle into four
smaller triangles.

Surface Evaluation

Surface evaluation is the process of
taking a control net, adding ver-

tices, and breaking faces into more,
smaller faces to find a better polygonal
approximation of the limit surface.
There are a number of ways to evaluate
a subdivision surface. All subdivision
schemes can be evaluated recursively.
Furthermore, most (including all the
ones discussed here) can be explicitly
evaluated at the vertex points of the
control net. For interpolating schemes,
this means that you can explicitly cal-
culate the surface normals at the ver-
tices using what are called tangent
masks. For approximating schemes it

means you can also
explicitly calculate the
vertex’s limit position,
using what are called
evaluation masks. In this
context, a mask isn’t the
same kind of mask that
you might use during
binary arithmetic. Our
masks are more analogous
to the masks worn at a
masquerade. They are like

stencil cutouts, shapes that can be
“placed” on the control net, and their
shape determines which of the sur-
rounding vertices are taken into
account (and how much effect each
has) in determining the end result, be
it the vertex location or its tangent
vectors. Figure 4 shows a visual exam-
ple of applying a mask to a surface at a
vertex.

An important aspect of evaluation is
the scheme’s support. The support
refers to the size of the region consid-
ered during evaluation. A scheme is
said to have compact support if it
doesn’t have to look very far from the
evaluation point. Compact support is
generally desirable because it means
that changes to a surface are local —
they don’t affect the surface farther
away.

A Note on Notation

S ince the original authors of many
subdivision schemes weren’t oper-

ating in concert with one another, the
notation used between schemes tends
to vary fairly wildly. Here, I’ve tried to
stick with a fairly consistent notation.
When talking about a specific vertex, it
is v. If it matters what level of recursion
it’s at, that level i is indicated as a
superscript, so the vertex is vi. The ver-
tex’s valence is N. The neighboring ver-
tices of the vertex are ej where j is in
the range [0,N–1]. Again, if the level of
recursion matters, that level i is a
superscript, so ei

j is the jth edge vertex
at level i. I try to use this notation
everywhere, but there are a few places
where it’s much clearer to use a differ-
ent notation.

The one problem with a standard
notation is that if you access some of
the references at the end of this article,
they will very likely use their own, dif-
ferent notation. As long as the con-
cepts make sense, though, it shouldn’t
be difficult to figure out someone else’s
naming convention.

The Polyhedral Scheme

The polyhedral scheme is about the
simplest subdivision scheme of all,

which makes it a good didactic tool but
not the kind of scheme you’d ever
actually want to use. It’s a triangular
scheme where you subdivide by adding
new vertices along the midpoints of
each edge, and then break each exist-
ing triangle into four triangles using
the new edge vertices. A simple exam-
ple is shown in Figure 5. The problem
with this, of course, is that it doesn’t
produce smooth surfaces. It doesn’t
even change the shape of the control
net at all. But it serves to demonstrate
some concepts fairly well.

The scheme is clearly interpolating
since it doesn’t move the vertices once
they’re created. It’s also triangular, since
it operates on a triangular mesh.
Furthermore, the scheme is uniform
since the edge’s location doesn’t affect
the rules used to subdivide it, and sta-
tionary since the same midpoint subdi-
vision is used over and over. The surface
is only C0 continuous, since along the
edges of polygons it doesn’t have a well-
defined tangent plane. The regular ver-

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 2 0 0 0 G A M E D E V E L O P E R

39

F I G U R E 3 . A triangular net (left) and

after one subdivision step (right). The

red vertex is extraordinary.

F I G U R E 4 . A hypothetical mask.

Here, the white region is a mask used

to dictate which vertices are used in a

computation involving the red vertex.

F I G U R E 5 . Two steps of subdividing a triangle with

the polyhedral scheme.

tices of this scheme are of valence
6, as that’s the valence of new ver-
tices created by the scheme.
However, this scheme is simple
enough that it doesn’t suffer
because of its extraordinary
vertices.

The evaluation of the scheme
isn’t hard at all. You can evaluate
it recursively using the subdivi-
sion rules. As far as evaluation and
tangent masks go, it’s clear that
we don’t need an evaluation
mask, since the points are already
on the limit surface. Tangent
masks don’t really make any
sense, since our surface isn’t
smooth and therefore doesn’t
have well-defined tangents
everywhere.

Figure 6 shows a tetrahedron
control net in white with a red wireframe of the surface after
a few subdivision steps of the polyhedral scheme.

Float Like a Butterfly...

The next scheme is known as the butterfly subdivision
scheme, or, in its current form, the modified butterfly

scheme. It shares some similarities with the polyhedral
scheme, but has some differences, notably that it’s C1

continuous and therefore actually produces a smooth
surface.

The butterfly scheme has a fairly interesting history to it.
In 1990, Dyn, Levin, and Gregory published a paper titled
“A Butterfly Subdivision Scheme for Surface Interpolation
with Tension Control” (see For Further Info box, p. 42). It
described the first butterfly scheme. The title is derived
from the stencil, or map of neighbors used during evalua-
tion, which is shaped like a butterfly (Figure 7). The scheme
is interpolating and triangular, so all it ever does is add ver-
tices along the edges of existing triangles. The rules for
adding those vertices are simple, and the support is com-
pact. For each edge, sum up the vertices in the stencil-
shaped area around that edge, weighting each one by a pre-
determined weight. The result is the new vertex. The
weights used, corresponding to the vertex labelings in
Figure 7, are these:

In this case, w is a tension parameter, which controls how
“tightly” the limit surface is pulled towards the control net
— note that if w equals –1/16, the scheme simply linearly
interpolates the endpoints and the surface isn’t smooth.

One question that the scheme doesn’t answer, though, is
what to do if the area around an edge doesn’t look like that
butterfly stencil. Specifically, if either of the edges’ end-
points is of a valence less than 5, there isn’t sufficient infor-
mation to use the scheme, leaving you with no choice but to
choose w = –1/16 near that area, resulting in a surface that

isn’t smooth near those
extraordinary points.
This means that while
the surface is smooth
almost everywhere,
there will be isolated
jagged points that really
stand out visually and
make the surface harder
for an artist to craft.

In 1993, Dyn and his
colleagues extended the
butterfly scheme to use
a ten-point stencil, so
that the default case was
the one shown in Figure
8, similar to the eight-
point case with the rear
vertices added in. The
new weights are:

Note that by adding w to the d points and subtracting it
from the a points, the stencil’s total weighting still adds up
to 1. Intuitively, this is important because it means that the
new point will be in the neighborhood of the ones used to
generate it. If the weights summed to, say, 2, then the point
would be twice as far from the origin as the points used to
generate it, which would be undesirable.

This new scheme even reduces to the old scheme as a sub-
set — choosing w = 0 results in the same rule set as the eight-
point butterfly stencil. However, this extension didn’t
address the smoothness problem at extraordinary vertices.

In 1996, Zorin, Schröder, and Sweldens published an
extension of the butterfly scheme known as the modified
butterfly scheme. The primary intent of their extension was
to develop rules to use for extraordinary vertices, making the
surface C1 continuous everywhere.

If both of the endpoints of the edge are regular valence-6
vertices, the scheme uses the standard butterfly’s ten-point
stencil with the same weights.

If only one of the endpoints is extraordinary, the new ver-
tex is computed by the weighted sum of the extraordinary
vertex and its neighbors (see the stencil in Figure 9). Note
that you actually do not consider some of the neighbors of
the regular vertex in doing this, which might seem a little
odd. Given the extraordinary vertex’s valence of N, the
weights used are:

The full justification for these weights is available in Zorin’s
thesis (see For Further Info box, p. 42).

If both endpoints of the edge are extraordinary, the vertex
is computed by averaging the results produced by each of the

N v e e e

N v e e e e

N v e
j

N
j

Nj

= − −

= −

≥ +

+

3
3
4

5
12

1
12

1
12

4
3
4

3
8

0
1
8

0

5
3
4

0 25
2

0 5
4

0 1 2

0 1 2 3

: : , : , : , :

: : , : , : , : , :

: : , : . cos . * cos
π π

/ N

a w b w c w d w: , : , : , :
1
2

1
8

2
1

16
− + − −

 a b w c w: , : , :
1
2

1
8

2
1

16
+ − −

G A M E D E V E L O P E R J A N U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

40

S U B D I V I S I O N S U R F A C E S

F I G U R E 8 . The 10-point stencil from

the modified butterfly scheme.

F I G U R E 6 . A

tetrahedron con-

trol net (in white)

and a polygonal

surface approxi-

mation (in red)

produced using

the polyhedral

scheme.

F I G U R E 7. The 8-point stencil for the

original Butterfly scheme.

endpoints. So, evaluate the vertex once for each endpoint
using the appropriate weights from above, and average the
resulting two candidates.

Those, then, are the rules for recursively evaluating the sur-
face. Since the scheme is interpolating, you don’t need an
evaluation mask, but it would be nice to have a tangent mask
to explicitly find the tangents at vertices. Such a mask exists,
although it’s fairly lengthy to write out, and not particularly
enlightening. It can be found in Zorin’s thesis, and I’ll discuss
it next month when implementing this scheme.

Figure 10 shows a tetrahedron control net in white with a
red wireframe of the surface after a few subdivision steps of
the modified butterfly scheme.

Catmull-Clark Surfaces

The final scheme we’ll examine has some significant dif-
ferences from the modified butterfly. Notably, it’s

quadrilateral and it’s approximating, and so presents some
new challenges. Its regular vertices are of valence 4, since a
regular quadrilateral surface is a rectangular grid with ver-
tices of valence 4.

Because this scheme is quadrilateral, it has to deal with
things like placing vertices in the centers of polygons, and
the rules are generally a bit more complex. Vertex addition is
done in three steps. For each face in the old control net, add
a vertex in its center, where the center is found by averaging
its vertices. Then, for each edge in the old control net, a new
vertex is added equal to the average of the edge’s endpoints
and the new adjacent face points (see Figure 11 for an
illustration).

Finally, move the original vertices of the old control net
using neighboring points in the calculation. The stencil is
shown in Figure 12; the rules are as follows:

New edges are then formed by connecting each new face
point to its adjacent new edge points and connecting each
new vertex point to its adjacent new edge points. This
defines the faces as well, and it brings up an interesting

point: consider what happens when you subdivide a surface
with a polygon that is not a quadrilateral. The resulting new
face vertex will be connected to k new edge vertices, and k
will not be equal to four. Therefore, the new face vertex is an
extraordinary vertex. This is the only one of the three
schemes shown here where the scheme can actually create
an extraordinary vertex during subdivision.

This is not as bad as it may seem, though. After a single
subdivision step, all the faces in the control net are quadri-
laterals. Therefore, the scheme can only introduce new
extraordinary vertices during the first subdivision step. After
a single subdivision step, the number of extraordinary ver-
tices is set and will not change.

The scheme also has evaluation and tangent masks for
evaluation at the vertices. The full discussion and proof of
the evaluation mask can be found in Halstead et al. and is
fairly lengthy. The mask itself is fairly simple, though. For a
vertex of valence N, the mask is equal to:

It’s interesting to note that this mask requires that we’ve
subdivided the net once, since it uses the face and edge ver-
tices of the same level as the corner vertices, and face and
edge vertices are not available in the original control net.

The tangent masks carry an equally lengthy discussion,
but their resulting formula is also fairly complicated.
Because most of it can be precomputed for each valence and
stored in a lookup table, it’s not computationally expensive,
it’s just a large formula:

The surface normal is then the normalized cross product
of t0 and t1.

Figure 13 shows a tetrahedron control net in white with a
red wireframe of the surface after a few subdivision steps of
the Catmull-Clark scheme.

A
N N

N

t A e f

N

N Nj

N

i j i j iN

j

N

j

N

j

N

= + + +

= +∑

 ()()

()

+ +() ()=

−
+

+

1
2

2 9 2

2 2 2 11 1

0

1

cos cos cos /

cos cos cos
mod mod

π π
π

π π π

v

N v e f

N N

j j
j

N

∞ =
+ +()

+()
=

−

∑2 1 1 1

0

1

4

5

v
N

N
v

N
e fi i

j
i

j
i

j

N
+ +

=

−

= − + +()

∑1

2
1

0

12 1

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 2 0 0 0 G A M E D E V E L O P E R

41

F I G U R E 1 0 . A tetra-

hedron control net (in

white) and a polygo-

nal surface approxi-

mation (in red) pro-

duced using the

modified butterfly

scheme.

F I G U R E 9 . The stencil

for an extraordinary

vertex in the modified

butterfly scheme.

F I G U R E 1 1 . Calcula-

tion of a new edge ver-

tex in a Catmull-Clark

surface. The new edge

vertex is the average of

the four points.

F I G U R E 1 2 . The points used to calcu-

late the new position of a vertex in a

Catmull-Clark surface. The points

used are in green; the new vertex

location is in red.

Catmull-Clark Extended

C atmull-Clark surfaces hold the dis-
tinction of being the favored sur-

faces for use in high-end rendering;
they were the model employed by
Pixar in Geri’s Game. Their mathemati-
cal elegance and the amount of work
devoted to them make them a fairly
attractive choice. For instance, work
has been done on generating Catmull-
Clark surfaces that interpolate a set of
points, which, as an approximating
scheme, they do not usually
do. Furthermore, Pixar
extended them for Geri’s
Game to allow for sharp and
semi-sharp creases in the
surface.

Pixar’s scheme generating
these creases is fairly
straightforward. It allows an
artist to specify for an edge
or vertex that subdivision
near that edge or vertex
should be done sharply
(using polyhedral subdivi-
sion) for some number of
steps, from 0 to infinity.
Intuitively, the more sharp
steps that are used, the
more creased the surface
will appear near that edge. If
the number is finite, then
the surface will still be smooth, since
eventually the surface will resume
using the normal Catmull-Clark subdi-
vision rules. If the crease is infinitely
sharp, it isn’t smooth at all. Pixar put
these to use on Geri’s skin features,
adding creases to various locations
across his body like between his skin
and fingernails.

It’s worth noting that while this
greatly extends the application of the
surfaces, it changes the properties of
the scheme. The scheme becomes
both nonuniform, since different
edges and vertices can be of differing
degrees of sharpness, and nonstation-
ary, because a semi-sharp crease is
evaluated linearly for some number of
steps and then smoothly for the rest.
Near the creases, the surface no longer
reduces to the B-spline surface, and it
also invalidates the evaluation and
tangent masks.

Geri’s Game clearly demonstrates the
benefit of sharp and semi-sharp creases.
However, for use in games, the evalua-
tion and tangent masks are fairly

important, and so it’s difficult to say
whether the increased computational
cost is worth the added functionality.

Are You Dizzy Yet?

A fter this whirlwind tour of subdi-
vision surfaces, you might be feel-

ing a little light-headed or dizzy.
Hopefully though, you’ve picked up
the concepts behind subdivision sur-
faces and maybe even thought of some

good applications for
them in projects you’re
working on or getting
ready to start. Since
there’s nowhere near
enough space to discuss
implementation details
for even just these three
schemes, next month
we’ll bear down and
focus on one of them,
the modified butterfly
scheme. I’ll mention the
reasons I think it’s a good
choice for use in games,
discuss some of the bene-
fits and detriments, and
then present an example
implementation.

Until then, there’s cer-
tainly no dearth of infor-

mation on subdivision surfaces. Much
of it is available online. The ACM
Digital Library is an excellent resource
for this topic as much of the work in
subdivision surfaces has been pub-
lished in the recent Siggraph confer-
ences. Furthermore, many of the
papers, Siggraph or not, are available
directly from authors’ web sites. ■

G A M E D E V E L O P E R J A N U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

42

S U B D I V I S I O N S U R F A C E S

Thanks to Pixar for graciously allow-

ing us to use images from their short

animation, Geri’s Game. Thanks also to

Denis Zorin for his suggestions and

references, Jos Stam at Alias|Wave-

front for his help and suggestions, and

to Alias|Wavefront for allowing him to

release his precomputed eigenstruc-

tures. Thanks to Chris Goodman of

3dfx for discussions, latté, and those

hard-to-find papers, and to Adrian

Perez of Carnegie-Mellon University

for suggesting the subdivision scheme

I eventually settled on.

Acknowledgements

• Catmull, E., and J. Clark. “Recursively

Generated B-Spline Surfaces on Arbi-

trary Topological Meshes.” Computer

Aided Design, 1978.

• DeRose, T., M. Kass, and T. Truong.

“Subdivision Surfaces in Character

Animation.” Siggraph ‘98.

pp. 85–94.

• Dyn, N., J. A. Gregory, and D. A. Levin.

“Butterfly Subdivision Scheme for

Surface Interpolation with Tension

Control.” ACM Transactions on Graph-

ics. Vol. 9, No. 2 (April 1990):

pp. 160–169.

• Dyn, N., S. Hed, and D. Levin. “Subdi-

vision Schemes for Surface Interpola-

tion.” Workshop in Computational

Geometry (1993), A. C. et al., Ed.,”

World Scientific, pp. 97–118.

• Halstead, M., M. Kass, and T. DeRose.

“Efficient, Fair Interpolation Using

Catmull-Clark Surfaces.” Siggraph

‘93. p. 35.

• Stollnitz, E., T. DeRose, and

D. Salesin. Wavelets for Computer

Graphics. San Francisco: Morgan-

Kaufman, 1996.

• Zorin, D. “Stationary Subdivision and

Multiresolution Surface Representa-

tions.” Ph.D. diss., California Institute

of Technology, 1997. (Available at

ftp://ftp.cs.caltech.edu/tr/

cs-tr-97-32.ps.Z)

• Zorin, D., P. Schröder, and W.

Sweldens. “Interpolating Subdivision

for Meshes with Arbitrary Topology.”

Siggraph ‘96. pp. 189–192.

ACM Digital Library
http://www.acm.org/dl

Joe Stam’s web site
http://reality.sgi.com/jstam_sea/

index.html

Denis Zorin’s web site
http://www.mrl.nyu.edu/dzorin

Charles Loop’s web site
http://research.microsoft.com/~cloop

Siggraph ‘99 Subdivision Course Details,
Notes, Slides
http://www.mrl.nyu.edu/dzorin/sig99

Geometric Modeling
http://muldoon.cipic.ucdavis.edu/

CAGDNotes

FF OO RR FF UU RR TT HH EE RR II NN FF OO

F I G U R E 1 3 . A tetrahe-

dron control net (in

white) and a polygo-

nal surface approxi-

mation (in red) pro-

duced using the

Catmull-Clark scheme.

tremendous changes that are occurring
in the gaming (gambling) machine
industry. Long gone are the days when
slot machines were placed in casinos
only as amusements for the wives of
high-rolling craps or blackjack players.
Today’s casino floors are brimming
with high-tech machines that are capa-
ble of providing rich, immersive expe-
riences, and the revenue they produce
far exceeds that which flows across the
green felt gambling tables. This article
will explore the history and evolution
of the slot machine industry, and pro-
vide some insight into the develop-
ment processes used to create these
games. Those from the PC and console
game businesses may be surprised to
see how similar the development of
these devices is to their own profes-

sion. We will also delve into the special
math considerations involved in creat-
ing a successful gaming machine, and
take a look into the complex, ubiqui-
tous regulatory structure that oversees
most aspects of the industry.

Before we begin, let’s debunk some
common urban legends regarding slot
machines. There is a popular miscon-
ception that a game can be made “loos-
er” (made to pay back more) or
“tighter” (made to pay back less) sim-
ply by turning a screw or knob inside
the game cabinet. Others believe that
the games are “fixed” to hit big jack-
pots on predetermined days, such as
major holidays or grand openings. This
simply isn’t the case. The outcome of
every handle pull on a modern gaming
device is a completely random event

(or at least as random as today’s tech-
nology allows). As we shall see, it’s pos-
sible to control the overall odds and
payback rate on a machine, but not
possible (and highly illegal) to control
individual game outcomes. Regulators,
casino owners, and game manufactur-
ers go to great lengths to maintain the
fairness of all games, both in fact and
in perception.

Why? Because the importance of
electronic gaming to the modern casi-
no industry is enormous. Gaming
devices (which include all types of elec-
tronic gambling devices, including
reel-spinning slot machines, video
slots, and electronic versions of live
games such as poker, keno, and black-
jack) account for nearly 75 percent of
all casino revenues, and fill over 80

G A M E D E V E L O P E R J A N U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

44

G A M E SC A S I N O

Playing for Keeps:
Developing Casino Games

b y S t e v e B o e l h o u w e r

ake a coin chute for the people to put their money

in, and a cash box for the money to go into, and put

something in between that will interest the people, and you’ve

invented a slot machine.

— Charlie Fey (1862–1944), inventor of
the slot machine as we know it today.

Only unawareness, and some persistent Hollywood

stereotypes prevents most people from recognizing the

Steve Boelhouwer is co-art director at Casino Data Systems, a leading designer and manufacturer of gaming devices. He has almost 15
years’ experience in the casino gaming industry. Steve would gratefully like to acknowledge the assistance of fellow art director Kim
Tempest and CDS founder and CEO Steve Weiss for their invaluable input into this article. Contact Steve at SBoelhouwer@csds.com

TT
A

ll
 i

m
a

g
e

s
 (

C
)

19
9

8
-1

9
9

9
 C

a
s

in
o

 D
a

ta
 S

y
s

te
m

s
.

 A
ll

 R
ig

h
ts

 R
e

s
e

rv
e

d
.

percent of the total casino floor space.
It’s estimated there are approximately
460,000 gaming devices in legal opera-
tion throughout North America and
the annual replacement market alone
runs around 70,000 units annually.
Let’s take a look at how the industry
grew to what it is today.

Bells and Cherries: A Brief History

S lot machines first appeared on San
Francisco’s Barbary Coast in the

1890s. California laws of that era pro-
hibited gambling machines that paid
jackpots in money, so the games were
redesigned as “trade stimulators.” For
example, if a lucky player lined up
matching symbols on the reels, the
owner of the establishment would pay
the winner ten cigars. The fruit sym-
bols (cherries, plums, and so on) used
on the reels of modern slot machines
originated from this scheme, as these
icons once represented payouts of fruit-
flavored chewing gum. It’s a safe bet to
assume that a dollar or two was paid
out instead of cigars or gum when the
police weren’t around.

The state of Nevada legalized casino
gambling in 1931, thereby creating a
legal American market for slot
machines. Games of that era were com-
pletely mechanical, using complex col-
lections of springs, wheels, and gears to
drive the spinning reels. Mechanical
games were the norm until the early
1960s, when Bally Manufacturing
introduced Money Honey, the indus-
try’s first electromechanical slot
machine. The game was a huge success.
Computerized reel-spinning slot
machines were introduced in 1981,
and video-display games were intro-
duced during this period as well.
Today, virtually all legal gaming
devices in the United States are micro-
processor-based, whether they spin
reels or blast pixels onto a video screen.

In the early 1990s, the convergence of
two events had another profound
impact on the industry. First, legalized
casino gaming exploded beyond its his-
torical boundaries of Nevada and
Atlantic City. Many local and state gov-
ernments were looking for ways to
increase tax revenues, and gaming
seemed like an easy way to fill the pub-
lic coffers. Riverboat casinos were
launched on the Mississippi River at a

pace that would have made Mark Twain
proud. At the same time, new federal
rulings allowed for a tremendous expan-
sion of gaming on Native American
lands. (The world’s largest casino,
Foxwoods, is owned by the Pequot tribe
in Leyward, Conn.) The result of this
surge in demand was the slot makers
now had substantial amounts of cash to
fuel further R&D efforts.

The PC gaming industry was experi-
encing a boom of a different sort during
that era. “Multimedia” was the buzz-
word of the day, and the impact that
the introduction of the CD-ROM had
on the computer gaming world needs
no repeating here. Forward-thinking

slot manufacturers realized that a simi-
lar revolution could be carried over to
their industry as well, providing the
means to increase the entertainment
value offered by their games drastically.

Technological Changes

Before this innovation could begin,
some fundamental changes to the

standard game architecture had to be
made. Traditionally, gaming devices
are ROM-based, with all game code,
graphics, and sound residing in pro-
grammable, read-only memory mod-
ules (EPROMs). This architecture,
which is still in wide use today, is
rugged and has certain security advan-
tages. The security aspect of burning all
of the game control code into non-
volatile EPROMs is particularly impor-
tant, given the highly regulated nature
of the industry (I’ll expand on this
later), and the huge amounts of money
that can be at stake. Nonetheless, this
architecture has all of the inherent lim-
itations that are associated with classic
coin-op arcade games. Most EPROM-
based system boards operate at very
slow clock speeds, support only a limit-
ed amount of memory, and have basic
graphics capabilities at best (typically
4-bit color).

Programming tools for these plat-
forms are typically limited to simple
DOS-prompt linkers and C compilers.
As such, it is difficult to enhance the
player experience significantly within
the constraints of this environment.
The challenge was to develop a new
platform that could still provide the
security and reliability of an EPROM-
based game, and at the same time
allow for vastly improved graphics,
sound, and interaction.

The industry took several different
approaches to this challenge. In 1997,
the state of Nevada approved a new
platform based on PC-style hardware
(all gaming devices must pass regulato-
ry muster before they can legally be
offered for play). This device utilized a
Pentium processor, a hard disk, and a
full-color graphics subsystem to deliver
content. All game code and media
assets were encrypted and stored on
the hard disk, which was jumpered to
prevent unauthorized writing to the
drive. While the games offered on this
platform were traditional (slots, video

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 2 0 0 0 G A M E D E V E L O P E R

45

This game is an example of a

"traditional" reel-spinning slot

machine. This particular model has

an overhead wheel and LED panel to

display game messages and bonus

information.

poker, and video
keno), the increased
graphics capabilities,
professional-quality
animation, and
high-caliber sound
offered a consider-
ably modernized
playing experience.
However, many
gaming jurisdictions
perceived problems
with the security of
this architecture,
and further
approvals were slow
in coming.

A more rounded
approach was later
developed by my
employer, Casino
Data Systems (CDS),
which keeps all
game control functions (the code
which controls random number gener-
ation, win decoding, money handling,
security, and accounting functions) in
EPROM and utilizes a PC-based system
for storage and execution of the multi-
media functions only. With the plat-
forms in place, titles could now be
developed which took advantage of the
increased capabilities.

Game Development and the Target
Marketplace

In broad terms, the development of
gambling games is not significantly

different from the development cycle
used in the PC, console, and coin-op
games industries. A market segment is
identified and targeted, a specification
is defined, prototypes are produced,
tested, and refined, and if all is success-
ful the title is moved into full produc-
tion. The unique aspects of game
development in this industry involve
special math considerations and meet-
ing the regulatory requirements that
address almost all aspects of a game.
These regulations can have some
unusual side effects on the day-to-day
production work. Art, programming,
and business have always been some-
what tentative bedfellows; adding gov-
ernment to the mix can really shake
things up.

The overall demographics of the
gaming market are not difficult to iden-

tify. The minimum legal gaming age in
all jurisdictions is 21, and the baby-
boomer and older demographics are the
key targets for casinos, given their high-
er percentage of discretionary income.
This tends to make the game designs
more conservative than other medi-
ums. Older adults are also typically less
computer-literate than younger people,
so games must be kept “comfortable”
even for the customers who do not
know how to program their VCRs.
Furthermore, this design parameter also
drives significantly less content than is
typical for other forms of entertain-
ment. Gaming devices would never

have hundreds of
levels or dozens
of characters, for
example.

Within these
constraints, tar-
get marketplace
segments can be
identified in sev-
eral ways. They
can be catego-
rized by the
nature of the
games (reel-spin-
ning slots, video
slots, video
poker, and so
on), by denomi-
nation (a game
that accepts nick-
els is designed
and targeted dif-
ferently from a

$1 game, for example), or by the tar-
geted player type. In general, the
industry has perceived two categories
of customers, the “tourist” and the
“local.” Games designed for the
tourist market have traditionally been
flashier, easier to understand and
play, and higher-earning for the casi-
no. The local player typically looks for
games that have the highest payback
percentage (often video poker), ignor-
ing the bells and whistles of the
tourist-style games. In the past, locals’
games received little attention in areas
such as game choreography, interac-
tivity, and graphics and sound quali-
ty. However, the aforementioned
technological breakthroughs, along
with improvements in the game
design process, have resulted in new
titles that have broad appeal to play-
ers of all types, and the tourist/local
distinctions are beginning to blur.
(They have also resulted in signifi-
cantly shorter replacement cycles. As
with the PC gaming industry, the
faster the technology advances, the
faster it becomes outdated.)

Designing a Successful Gaming
Experience

A successful game design satisfies
the following objectives:

INITIAL ATTRACTION. Why will this game be
attractive to players when placed on a
casino floor with thousands of other

G A M E D E V E L O P E R J A N U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

46

C A S I N O G A M E S

The main reel screen from CDS’s Easy

Street slot game.

The second-level bonus screen from

CDS’s Easy Street video slot game.

CDS’s Bandit Bingo game.

games? Some games lure players simply
by offering a large jackpot, while others
offer unique themes, recognizable
brand names, or just an attractive over-
all package. These games are typically
placed in banks of four to twelve
machines and are offered for play 24/7,
a rigorous environment to say the least.
PLAYER APPEAL. What are the game char-
acteristics that will keep people playing
once they have chosen this game?
Again, certain models accomplish this
by offering the promise of a huge jack-
pot, but players are increasingly opting
for models that offer a higher level of
overall entertainment value.
COMPLETION. What is the goal the player
is striving for? This again can be simply
a large top award, but the trend is to
develop games with enhanced sec-
ondary features over and above the
standard game play. Examples of these
features include bonus games: different
game levels which are reached by satis-
fying a specified objective in the prima-
ry game. Bonus games typically feature
special animation, distinctive music,
and most importantly, the opportunity
for additional payouts.
CELEBRATION. What type of feedback
does the game provide when the player
wins a jackpot or achieved a game
milestone? Casino gaming is typically a
very social experience, and providing
feedback to the player that he or she
has accomplished something special is
critical to a game’s success.

Not surprisingly, these objectives
aren’t that different from those estab-
lished for non-gambling games as well.

Also similar are the tools utilized for
prototyping and development. After
game and math concepts are estab-
lished and storyboarded, prototypes
are built using Macromedia Director or
similar proprietary tools. Once a game
is approved for production, code is
typically developed in C or C++ (usual-
ly with Visual C++), although code
destined to execute from EPROM may
be written with legacy or custom tools.
Artwork is developed using all of the
usual suspects: 3D Studio Max, Light-
wave, After Effects, and of course
Photoshop. Custom graphics tools
may be used to dither images to lower
color depths or convert to proprietary
file formats.

In an ideal world, the workflow of
game development follows closely the
procedures detailed in the article

“Bringing Engineering Discipline to
Game Development” (December 1998).
But as we’re all aware, factors such as
market conditions, personnel changes,
and simple deadlines can compress
development cycles to something less
than the theoretical ideal. Still, it’s
critical to respect the conventional
alpha/beta/silver/gold release process
in order to refine game attributes,
squash bugs, and prepare the title for
regulatory submission. Product devel-
opment cycles can vary significantly;
market opportunities have driven
games from storyboard to shipping
dock in as little as six months. More
typical development cycles run 12 to
18 months.

The distribution channels for gaming
devices can be particularly brutal.
Unless a title is extremely strong, most
casinos demand a trial period before
they will commit to a purchase. During
this period, which is typically a mini-
mum of 30 days, casinos get to keep
and operate the games at no cost to
them. Once concluded, they then make
the choice to keep or return the game.
Often a buyer will request that the
machine be converted to another title if
they feel the installed one is not earn-
ing enough; these conversions are also
typically done at no cost to the buyer.
Then, should the casino decide to move
ahead with the purchase, often a sub-
stantial discount is requested (the logic

being that they are buying a used game
at this point). Most game manufactur-
ers distribute their games directly,
although third-party distributors are
often used for international markets.

Money for Nothing

Because these are gambling games,
the game math is a critical factor

in the success or failure of a title. This
math determines, on a statistical basis,
how big and how frequently the jack-
pots are hit. A game that is perceived by
players as offering neither high payouts
nor any other type of entertainment
value will quickly be shunned by the
marketplace. The basic math considera-
tions are a game’s hit frequency (the
statistical percentage of plays in which
some type of payout is awarded), as
well as the overall payback percentage
(the percentage of money wagered by
players that is returned to them via pay-
outs). Most jurisdictions have estab-
lished laws that require gaming devices
to offer a minimum payback percentage
of 75 percent, and it may be surprising
to some that the great majority of mod-
ern games return at least 90 percent of
the total monies wagered.

With some game types, the overall
payback percentage is dependent to
some extent on player skill. Games
such as video poker and video black-

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 2 0 0 0 G A M E D E V E L O P E R

47

Several “banks” of CDS Easy Street slot machines with accompanying signage.

jack, for example, require the player to
make certain decisions during each
hand of play (such as which cards to
hold). The skill and strategies used can
swing the payback percentage several
points in either direction. This is an
important factor in the design of video
poker games in particular (generally
regarded as the most popular “locals”
game), as some models can offer up to
(and sometimes even more than) 100
percent payback with the right strategy.

At the heart of the math engine (and
indeed, the game itself), lies the ran-
dom number generator, or RNG. A far
cry from the simple random functions
provided by most development envi-
ronments, a gaming device’s RNG con-
sists of sophisticated algorithms
designed to ensure that all outcomes
are as random as is technologically pos-
sible. The best RNGs use algorithms
that change the random seed constant-
ly and unpredictably, as the ability to
detect predictive patterns in a game is a
classic cheating technique.

When a game is initiated, output
from the RNG is funneled through the
odds calculations. At this point, the
game outcome is calculated and dis-
played (either by spinning reels or a
video screen), and evaluated for poten-
tial winning combinations. Payouts are
based on the amount wagered and the
paytable, the schedule of awards for
any given game outcome. Naturally,
the longer the odds of hitting a certain
combination, the higher the payout
will be. It’s important that the paytable
be displayed and communicated clearly
to the player, otherwise disputes are
likely to result. Traditionally, paytables
were printed on the backlit glass that is
part of almost all game cabinets, how-
ever the increased popularity of video-
based games has allowed developers to
display more informative and interac-
tive paytables on the video monitors.
These paytables, along with general
game help, are usually accessed
through touchscreen buttons.

More Technology, and the Call for
Professionals to Build It

In addition to the math engine, mod-
ern gaming devices have several

additional subsystems critical to their
success. I/O functions are very impor-
tant, as the games must monitor all

internal functions. Examples of these
functions include coin and bill han-
dling, button and/or touchscreen sta-
tus, and integrity checks (door open,
for example). Regulations mandate that
games constantly monitor these func-
tions and go into “tilt” mode should
any abnormalities be detected. Games
must be able to survive an unexpected
shutdown gracefully with absolutely no
loss of data, as very few casinos provide
adequate uninterruptible power supply
(UPS) systems on their floors. Addi-
tionally, a complete game history log
must be kept in nonvolatile memory

(typically on an EPROM chip) so that
casino personnel and regulators can
review the game’s history should a cus-
tomer dispute erupt.

Networking capabilities are another
important consideration in today’s
machines. The great majority of casi-
nos today utilize slot monitoring sys-
tems, which are in effect large, real-
time databases of machine information
and player data. All games on the casi-
no floor are networked to this database
via proprietary, encrypted protocols.
These systems have enabled the devel-
opment of the popular slot clubs,
wherein customers sign up to have
their play monitored online. Once
enrolled, players earn bonus points
based upon their play. These points
can then be redeemed for cash or mer-
chandise. Casinos benefit from these
systems not only by attracting player
loyalty, but also by building a tremen-
dous database of marketing informa-
tion. They also use these systems to
extract a great deal of accounting and
security information from the gaming
devices, and are required by law in
many states.

Games may also offer progressive
jackpots, which increase over time and
are based on the amount wagered by
players trying to win them. These jack-
pots are typically advertised on large
overhead LED or plasma TV signage,
and other proprietary, encrypted proto-
cols (typically serial-based) have been
developed to enable communication
between the games and the displays.
Games can be networked together to
form a progressive link, where play
from all games contributes towards one
large jackpot pool. In recent years,
these networks have grown to encom-
pass machines spread throughout a
state (and in some cases, several states),
thereby enabling the posting of lottery-
sized jackpots (with accompanying lot-
tery-sized odds, of course).

As a result of the advancing technol-
ogy and design methods, the gaming
device business offers significant job
opportunities for game programmers
and artists. The skill sets necessary for
these professions are virtually identical
to those sought after in other types of
game development, with the advantage
to those who have a background in (or
a penchant for) the mathematical
areas. Nevada, the home of most major
manufacturers, has never been known

G A M E D E V E L O P E R J A N U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

48

C A S I N O G A M E S

CDS's Reel Racers video slot

machine. The hardware deployed in

casino games must be robust enough

to withstand 24/7 operation in less

than ideal conditions.

Chance from the Easy Street game

shown here with a background scene.

as a major hotbed of technological tal-
ent, so when the need to find staff
arose, the industry turned toward (not
surprisingly) Silicon Valley. Several
major manufacturers (including mine)
have established design studios in the
Valley, where it’s easier to attract
world-class talent. Others have found
offering relocation to Nevada attractive
due to the significantly lower cost of
living. Still others prefer simply to out-
source their multimedia production to
well-known California studios.

Popular Titles

So what types of games are most
popular today? Traditional reel-

spinning games continue to constitute
the greatest percentage of the market
(these modern games differ from reel-
spinners of yore in that the reels are
now controlled by stepper motors dri-
ven by the main processor board).
However, their dominance is being
threatened by the dramatic growth of
video-based games, and all indications
point to this trend continuing.

Within the video classification, poker
games remain popular, mainly because
of their high payback rates. Growth
potential for these games remains limit-
ed, however. The real boom is occur-
ring in the video slot arena, where
designers can implement myriad fea-
tures unavailable on any mechanical-
reel machine. The hot ticket today is
“secondary bonusing,” the addition of
different game levels beyond the base
reel game. Initially, these were imple-
mented as simple second-level screens
that appeared over the slot reels and
allowed the player to make several

game-show type choices (picking one of
several doors, for example). The result
of these choices is almost always a
bonus payout. Current game choreogra-
phy expands on this premise.

In CDS’s Bandit Bingo, for example,
players begin by choosing a bingo card
that is placed on-screen below the slot
reels. As players spin the reels, bingo
ball symbols appear. Should a bingo
ball symbol match a number on the
card, it bounces off the reels and daubs

the bingo card. Once players have
bingo, they are taken to a second screen
where they choose one of five special
bingo balls for a bonus payout. This
game offers the opportunity to play two
traditional casino games simultaneous-
ly (slots and bingo), and also provides
for the bonus experience. Easy Street,
another CDS title, offers a road-based
board game as the initial bonus. Players
earn bonus payouts for each successful
turn on the board, and should they
make it to the end they are taken to an
additional bonus level. Here, an anima-
tion of the game’s main character,
Chance the Dog, plays in a window. As
Chance drives his car down Easy Street,
players use the touchscreen to select
any of the buildings he passes for an
additional bonus jackpot.

Recently, the industry has begun to
look beyond its own borders for
attractive content. This has resulted in
a recent surge of games based on
licensed brand names from outside
the gaming industry. Titles have
recently been released that are based
on board games (Monopoly), televi-
sion (Wheel of Fortune), and deceased
entertainers (Elvis). Although this
approach offers instant brand recogni-
tion, and has been very successful in
several cases, the huge royalties
involved make development of such
games a risky proposition.

The Long Arm of the Law

Underneath all of the design and
technology lies the basic fact that

these machines are designed for gam-
bling, with the classic elements of
chance, risk, and reward. Gambling

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 2 0 0 0 G A M E D E V E L O P E R

49

First-level bonus screen of CDS’s Monkey Business game. Outtake from the Monkey Business promotional movie.

CDS’s Easy Street video slot machine

(complete cabinet). The game, part of

CDS’s Bandit model series, utilizes a

hybrid ROM/PC architecture to

achieve high security while delivering

engaging, immersive content.

has always been a controversial
topic in the United States, and
the industry’s rapid expansion
in the early 1990s provided
plenty of fuel for the ongoing
debate. In 1997, Congress autho-
rized the National Gaming
Impact Study Commission, the
purpose of which was to report
on the economic, political, and
social effects of the gaming
industry.

Because of the controversy, as
well as the somewhat notorious
origins of casino gaming (remem-
ber the movie Casino?), the
industry is subject to intense gov-
ernmental regulation on all lev-
els. Businesses wishing to enter
the industry must go through a
vigorous background investiga-
tion by every state in which they
intend to do business. These
investigations, which delve into
all aspects of an applicant’s back-
ground, can cost well over
$100,000 per state with no guar-
antee that a license will eventual-
ly be issued. For this reason
alone, the cost of entry into the
industry is very high. All employ-
ees of a gaming company can be
subject to personal background
checks as well.

Beyond these corporate and
personal licensing requirements,
the games themselves are also subject
to heavy regulation. Both hardware and
software are subject to review, and the
laboratories that examine these games
enforce strict rules on the randomness,
payback percentage, security, and
auditability of all games. Certain states
(Nevada, New Jersey, Mississippi and
Michigan) have established their own
testing laboratories, while other states
prefer to rely on the services of inde-
pendent testing facilities such as
Gaming Laborites International.
Hardware components are subject to
environmental testing (electrostatic dis-
charge resistance, line noise, and so
on), and all software is reviewed at the
source level. Approved programs are
identified with a digital signature, and
once approved, even a one-bit change
to the code will render it noncompli-
ant. The time required for these
approvals varies wildly from jurisdic-
tion to jurisdiction, but is typically
never less than 30 days. Obviously, this

added compliance time can have a
major impact on shipping schedules.

The state of Nevada has recently
added a new twist to the regulatory
process by proposing rules that address
game content itself. Specifically, these
new regulations prohibit advertising
on any gaming device, and further ban
the use of any themes or artwork that
may appeal to children. Obviously, the
subjective nature of these proposed
new regulations troubles many in the
industry, and has already caused the
withdrawal from consideration a game
based on Comedy Central’s South Park
animated TV series.

No discussion of electronic gaming
would be complete without touching
on the rise of Internet gambling. Sup-
porters of online wagering tout the
convenience of simply logging on and
betting. Despite this, true online bet-
ting carries enormous risks and has
been shunned by the vast majority of
the legitimate gaming industry. The

primary reason is that the lack
of any sort of comprehensive
regulatory structure leaves
Internet gambling ripe for fraud,
abuse, and deception. There are
no guarantees that any of these
games are fair, or that players
will actually be paid should they
win and decide to collect. Not
surprisingly, many of these sites
are hosted from islands in the
Caribbean, away from U.S. legal
protections. Additionally, there
is no easy way to guarantee that
people gambling on the Internet
are of legal age or capacity. As a
result, Congress is currently
considering a bill that would
outlaw Internet gambling, and
similar laws have already been
enacted by several states. Until
these problems can be resolved
(if ever), Internet gambling will
remain in that online nether-
world currently inhabited by
pornography and warez web
sites.

This is not to say the Internet
has been totally ignored by the
legitimate gaming industry,
however. Forward-thinking
companies are developing mar-
keting and other related pro-
grams which leverage the power
of the medium without actually
offering online wagering. For

example, the previously mentioned
slot monitoring databases have already
begun to grow online hooks, and the
prospects for similar systems are bright.

The Challenge of the Future

A s the gaming device industry
enters the 21st century, it faces

many of the same challenges and
opportunities present in the PC, con-
sole, and coin-op gaming worlds.
Industry consolidation will continue,
with the large, well-funded companies
absorbing the smaller players. Advances
in the technology employed will con-
tinue to shorten the life span of these
games, although probably never to the
extent that the PC and console markets
must deal with. And fierce competition
will continue to force the development
of quality, interactive content, while
never forgetting to offer players a good
gamble. That’s a safe bet. ■

50

C A S I N O G A M E S

The second-level bonus round from CDS’s Monkey

Business game.

The main reel screen from the CDS Monkey Business

game.

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 2 0 0 0 G A M E D E V E L O P E R

or anyone who has ever worked on a PC game

and poured their heart and soul into their work,

they may have imagined in an optimistic moment,

“If this game sells a million copies…” Maybe it was

spoken out loud, or carefully whispered so that no one else

would hear. It’s the expression of the dreams and promise of

success that drives so many of us. But recent-

ly I found myself somewhere I never antici-

pated as I listened to this ironic ending to

that very statement: “… I am going to be so

disappointed if that’s all it sells.” And you

know what? I had to agree.

G A M E D E V E L O P E R J A N U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

52

b y M a t t P r i t c h a r d

Ensemble StudiosÕ
AGE OF EMPIRES II:
THE AGE OF KINGS

P O S T M O R T E M

Matt Pritchard is busy trying to be a modern renaissance man. When not working, he can be found with his
family or playing with his collection of antique video games and computers. He can be reached at
mpritchard@ensemblestudios.com.

FF

53

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 2 0 0 0 G A M E D E V E L O P E R

Catching Up

Two years ago in this very column (Postmortem, March
1998) I told you the story of Ensemble Studios, a scrap-

py upstart that overcame challenges to create the game AGE

OF EMPIRES (AOE). Since its release two years ago in the great
real-time strategy (RTS) wars of 1997, approximately three
million copies of AOE have been sold worldwide, along
with almost a million copes of the RISE OF ROME (ROR)
expansion pack. The totals don’t give the whole story,
though. AOE proved to be a consistent seller, hanging
around the top of the PC Data charts, and even re-entered
the top ten a year-and-a-half after its release. The demo-
graphics of the buyers were another surprise. Sure we had
the sales to the 14- to 28-year-old male hard-core players,
but we also had significant sales to older players, women of
all ages, and casual game players of all sorts. That is to say
we had a crossover hit on our hands. If you have ever
watched the VH1 show Behind the Music, then you know
the story of the upstart band that finds itself suddenly on
top of the world — things change, and not always for the
better. I wouldn’t go so far as to say that we sank into a
wild orgy of sex, fast cars, and money — despite the wishes
of a couple of our guys — but this change along with the
benefits of success brought us a whole new set of chal-
lenges, making our next game no easier than the first.

Designing a Sequel

I t was a surprise to no one that Ensemble Studios’ next
game would be a sequel to AOE, although most people

probably didn’t know that we had a contract with our pub-
lisher for a sequel long before the original game was fin-
ished. Given our historically-based themes and time periods
in AOE, the chosen time period for AGE OF EMPIRES II: THE

AGE OF KINGS (AOK), the Middle Ages, practically picked
itself. That was the only easy part, however. Like a band
going back into the studio after a hit record, there were dif-
fering opinions of what direction to take next. Do we play it
safe and stick tightly to the AOE formula, or do we get bold
and daring and take the whole game genre in new direc-
tions? This is the million-dollar question every successful
game is faced with when the topic of a follow-up is raised.
But the successful band I’m using as an analogy is fortunate.
They don’t have to contend with the unbelievably rapid
pace of evolution in PC hardware and games.

Improvements to the game in every area from graphics to
user interface are expected in this business as a matter of
fact. Expectations can be a bitch sometimes. Take the vast
demographics of AOE players that I mentioned earlier —
they are the largest group of people most likely to buy the
sequel — and everyone is concerned about making sure
that this huge and diverse group will like the next game so
much they will run out and buy it. We’ll just do more of
what we did right in AOE, we said. That sounds great, but
it’s almost impossible to quantify in a meaningful, detailed
way. The game business is brutal to those who fail to move
forward with the times, but it’s also equally brutal to those
who experiment too much and stray from the expectations
of the players.

When we started work on AOK, we thought that we could
make use of our existing code and tools, and that this would
make the sequel easier to create than the original. Filled
with these optimistic thoughts, we concluded that we could
develop AOK in a single year. This was also going to be our
opportunity to add all those dream features and make our
magnum opus of computer games. So we set about to do
just that. To make enhancements for AOK, we had pulled
together a giant wish list of features and ideas from inside
and outside sources. To the game design we added all sorts
of neat new features such as off-map trade, renewable
resources, combat facings, sophisticated diplomacy and sys-
tems of religion, and so on. Of course, the art, sound, and
game content were also going to be bigger and better and
bolder and brighter and...well...you get the idea.

Several months down the road, reality reared its ugly
head in big way: we had bitten off more than we could

Top row, from left to right: Jeff Goodsill (COO), Brad Crow (art lead),

Brian Hehmann (artist), Angelo Laudon (lead programmer), Sandy

Petersen (designer), Dave Pottinger (programmer), Ian Fisher (designer),

Harter Ryan (producer), Duncan McKissick (artist), Trey Taylor (program-

mer), Mario Grimani (programmer), Paul Bettner (programmer), Chris Van

Doren (artist), Jeff Dotson (artist), John Evanson (programmer), Doug

Brucks (programmer), Roy Rabey (IS support), Paul Slusser (artist), Chea

O'Neill (artist), Bob Wallace (strategic), Mike McCart (webmaster).

Bottom row: Rob Fermier (programmer), Nellie Sherman (logistics),

Stephen Rippy (music), Herb Marselas (programmer), Mark Terrano (lead

designer), Chris Rippy (sound), Herb Ellwood (artist), Thonny Namounglo

(artist), Duane Santos (artist), David Lewis (programmer), Sean Wolf

(artist), Bruce Shelley (lead designer), Matt Pritchard (programmer),

Brian Moon (CFO), Tony Goodman (CEO), Don Gagen (artist), Greg Street

(designer). Not pictured: Tim Deen (programmer) Brian Sullivan (strate-

gic), Chad Walker (artist), Eric Walker (artist), Scott Winsett (lead artist).

Ensemble Studios
Dallas, Tex.
(214) 378-6868
http://www.ensemblestudios.com

Release date: October 1999
Intended platform: Windows 95/98/NT
Project length: 24 months
Team size: 40
Critical development hardware: Pentium II 450 128MB, Dual

Xeon 450 512MB
Critical development software: Visual C++, 3D Studio Max

AGE OF EMPIRES II: THE AGE OF KINGS

chew and the game’s design was losing
focus. Instead of sticking to the core of
what makes an RTS game great, we had
gone off in many contradictory direc-
tions. Along with that came the real-
ization that there was no way that we
were going to finish AOK in a single
year and have it anywhere close to the
quality of AOE. This was a sobering
time for Ensemble Studios staff and
our publisher, Microsoft. While the
Ensemble Studios crew adjusted quick-
ly, it caused a few problems for some
of the people at Microsoft: “Uh, guys,
we’ve already gone ahead and commit-
ted to our bosses that we would have
another AGE OF EMPIRES game this
year,” is probably a good way to para-
phrase it. From this situation, a con-
tingency plan was born. We were
going to take anoth-
er year to finish
AOK, giving us time
to get the game back
on track and to cre-
ate the ambitious
content for it. We
also had a plan to
help our publisher
out: we would create
an in-house expan-
sion pack for AOE. It
would be a signifi-
cant addition to the
game, yet require
only a small amount
of our resources, and
most importantly, it
would be ready in

time for Christmas 1998, taking the
slot originally planned for AOK. Thus
was born the ROR expansion pack. ROR
helped, but it didn’t take all the pres-
sure off us. Unlike the latitude we had
with AOE, which had also come out a
year late, our new deadlines for AOK
were very firm and hung over us the
entire time. The pressure was very
much on.

What Went Right

W e did what it took to make AOK
a triple-A game. While the deci-

sions to take an extra year and reset the
units to an AOE baseline were tough in
the short term, they were the right
decisions to make. The commitment of

Ensemble Studios to exceed the quality
of its prior games never wavered. To
realize our goals, we added the addi-
tional programmers, artists, and
designers that we needed. When we
needed to stop, take a hard assessment
of what we were doing, and kill our
own children if need be, we did just
that. We pushed ourselves hard and we
came together as a team.

1.ADDRESSED THE MAJOR CRITICISMS OF

THE FIRST GAME. Despite AOE’s suc-
cess and generally glowing reviews,
there were two things about the game
that were repeatedly criticized: the
artificial intelligence of the computer
players and the pathfinding and
movement of units. And to be honest,
they were right. Because these issues
got so much press, we knew going in

that if we didn’t
address them in a
visible and obvious
way, AOK was going
to be raked over the
coals by reviewers
and users. It didn’t
matter that other
popular RTS games
had pathfinding that
was just as bad, or
that our AIs didn’t
cheat and theirs did
— we weren’t going
be judged against
them, but rather
against ourselves.

To handle the com-
puter-player AI, we

G A M E D E V E L O P E R J A N U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

54

P O S T M O R T E M

A 3D Studio Max model of the Mameluke character. Twenty

thousand polygons got reduced down to several hundred

pixels for the final game.

A 3D Studio Max model for a male villager. For AOK, female

villagers were also added.

A bird’s-eye view of the AOK game world. Compared to AOE, AOK has bigger

worlds with more objects and richer graphics.

hired Mario Grimani, an industry veter-
an with significant AI experience under
his belt. The computer-player AI from
AOE was thrown out, and a new, expert-
system, script-based AI was developed.
While Grimani was doing the coding,
Sandy Petersen led the design team in
developing scripts for the new AI. Input
from the whole company was encour-
aged, and various people contributed
scripts that were pitted against each
other in an evolutionary fashion to
develop a computer player that could
race a human player up through the
ages and react to his tactics.

For the pathfinding problems, noth-
ing less than an all-out blitz was
ordered up. The game engine’s move-
ment system was redesigned and no
fewer than three separate pathfinding
and two obstruction systems were
developed, requiring five different
people working on them at various
times. A high-level pathfinder com-
putes general routes across the world
map, ignoring such trivial things as
people walking, which were handled
by lower-level pathfinders that could
thread a path through a closely
packed group of units. In the end, we
were so successful in ridding the
movement problems that hampered
AOE that reviewers and players
couldn’t help but take notice and
acknowledge the improvement.

2.WE INNOVATED WITHIN THE GENRE.
While in the end AOK stayed

much closer to its AOE roots than we
had initially envisioned, we pushed
the RTS gaming experience forward
with a host of improvements. Some of
these were interface-only improve-
ments, such as the “Find Next Idle
Villager” command, completely cus-
tomizable hot-keys, and the extensive
rollover help. Other improvements
changed the game play itself, such as
the Town Bell (ring it and all your vil-
lagers run inside the Town Center to
defend it), in-game technology tree,
and of course, Automatic Formations.
One of the most praised features,
Automatic Formations, caused a group
of selected units to automatically
arrange themselves logically by
putting the strongest units up front
and the ones needing protection in the
rear. They stay in formation while
traveling, replacing the “random
horde” that players had become accus-
tomed to in RTS games. Programmer

Dave Pottinger originally set out to
create a formation system incorporat-
ing characteristics of a turn-based war
game’s formation system, but as the
game progressed and our understand-
ing and vision for the game matured, a
complicated formation system gave
way to a simpler system that better
served the game.

When I wrote the graphics engine
for AOE, I used a 166MHz Pentium at
work and tested on my 486 at home. A
2MB video card was my target, but the
game would run with only 1MB of
video memory. Today I have a 32MB
TNT2 card in my 500MHz Pentium III
system. These changes in the typical
game player’s system are mirrored by
the increase in player expectations for
a great visual experience. In AOK, I’m
proud to say, we met and exceeded
game players expectations. The first
thing that you notice upon playing
AOK is the scale. The units in the
game are about the same size, but the
buildings and trees are no longer icon-
ic. They are large structures with a
scale that looks as if the units could
comfortably reside inside them.
Castles and Wonders are now gigan-
tic, imposing structures that fill the
screen. And the art itself is just so
much better. Our entire art staff
gained a great deal of experience and

skill with AOE and ROR, and AOK
became a showcase for their improved
talent. It wasn’t just the units and
buildings, though. In AOE, the terrain
had something of an Astroturf feel to
it and the need to make transition
tiles by hand limited the game to four
terrain textures. For AOK, a whole new
terrain system was developed, allow-
ing us to mix terrains together, shade
elevation in 3D, greatly increase the
number of textures, and even alpha-
blend textures such as water. The
highest compliments came at the
1999 E3 show when we were unable to
convince people from some of our
biggest competitors that AOK was still
a 256-color game.

3.BETTER USE OF BUG TRACKING SOFT-
WARE AND CRUNCH-TIME MANAGEMENT.

During the development of AOE, we
had a single machine in the office that
would connect up to RAID, a remote
bug database in Redmond, Wash., via
an ISDN modem. This was used to han-
dle bugs found by testers at Microsoft.
Every so often someone would fire the
connection up and, if the machine at
the other end was in a good mood,
make hard copies of new bug reports to
pass around to people. We also had a
different software package for commu-
nicating bugs and issues among our-
selves, but there were not enough users

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 2 0 0 0 G A M E D E V E L O P E R

55

A scene from one of the game scenarios. The updated graphics engine and build-

ing scale allowed us to create scenes much more impressive than in A0E.

on the license for everyone.
Suffice it to say, this system left
something to be desired, but it
was all we had. During the
development of AOK, ThinRAID
was made available to us, allow-
ing everyone to access the bug
database directly from their web
browser. Having only one sys-
tem on everyone’s desktop,
available whenever needed, that
was always up-to-date made a
huge improvement in our ability
to track bugs, stay on top of
things, avoid redundancies, and
just plain save time.

The last six months of devel-
opment on AOE were pretty
much one continuous blur of
people working nonstop. This
took a heavy toll on people,
sometimes even straining their
health or marriages. As a com-
pany, we vowed to not let
things get that bad again. To
further underscore the need,
the composition of Ensemble
Studios had shifted dramatical-
ly away from being mostly
young, single men (with pre-
sumably no life) to being dominated
by married men with a growing num-
ber of children and babies on the way.
To protect ourselves, we scheduled
crunch time well in advance at multi-
ple points in the development process.
The hours were 10 A.M. to midnight,
Monday through Friday, with
Wednesday nights ending at 7 P.M. so
we could go home to our families. We
had weekends off and meals were pro-
vided during the week. For the most
part this worked very well, although
having a “family night” where family
members could join us for dinner once
a week proved to be more of a distrac-
tion than we would have liked.
Producer Harter Ryan deserves much
credit for making crunch time so
much easier on AOK.

4.BETTER USE OF TOOLS AND AUTOMAT-
ED TESTING. After AOE was fin-

ished, we developed several in-house
and in-game tools to make the job of
development easier. The most-used
tool was ArtDesk, a multi-purpose pro-
gram that converted graphics from
standard formats to our proprietary
formats, which allowed us to view and
analyze the content of our graphics
data, and generated many of the cus-

tom data files for the game. This easy-
to-use GUI-based program replaced
several antiquated DOS command-line
utilities and automated many tasks,
saving a huge amount of time over the
development span. In an effort led by
Herb Marselas, programming tools

such as Lint, BoundsChecker,
and TrueTime were used to a
degree never approached during
AOE’s development and proved
invaluable in improving the
quality of our code. Finally, in-
game utilities such the Unit
Combat Comparison simulator
allowed the designers to balance
the game in a more scientific
way. Every effort made in the
tools area was rewarded with
either time saved or significant
improvements in the product.
The only glaring omission in all
this was the lack of an art asset
management tool.

5.WE MET OUR SYSTEM

REQUIREMENTS. A game
that’s expected to sell in the
millions needs to be able to run
on most of the computers it will
encounter. Requiring cutting-
edge systems or specific video
cards won’t work. With AOK
being an 8-bit 2D game, meet-
ing video card requirements
wasn’t going to be very difficult.
But memory and processor-
speed targets were another

story. All the new systems in AOK
would put their demands on the com-
puter. Optimization issues were
worked on hard for the last several
months of development. The eleventh-
hour addition of some clever tricks
and a variable graphics-detail switch
allowed us to hit our CPU target of a
Pentium 166MHz, MMX-supported
CPU. The minimum memory require-
ment of 32MB was also met, but with
some reservations. Large multiplayer
games on huge maps would need an
extra eight or 16MB to be really
playable. All in all though, the mini-
mum system requirements for AOK are
some of the lowest for games released
in the Christmas 1999 season, widen-
ing the game’s potential audience.

What Went Wrong

I’d like to say that we had fewer prob-
lems developing AOK than we did

for AOE, but it didn’t turn out that
way. Some problems listed in the AOE
Postmortem were addressed in AOK
and others weren’t. And like that band
going back into the studio to record a
follow up to a hit album, we encoun-

G A M E D E V E L O P E R J A N U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

56

P O S T M O R T E M

A Turkish mosque shows off the

greater detail and improved skills of

our art staff.

A shot from a very early version of the game. Most

everything shown would be revised before the game

shipped.

tered a whole slew of brand
new problems, many of
which we found we were just
as unprepared for as we were
the first time around. I’ve
tried to include some of the
issues that became more
important due to the fact that
we were making a sequel to a
successful game.

1.WE STILL DON’T HAVE A

PATCH PROCESS. This was
a problem area from the AOE
Postmortem, and as of this
writing it still has not been
addressed. I outlined the rea-
sons we needed a process to
issue patches for our game in
a timely manner in the AOE
Postmortem. Additionally, a
new reason reared its ugly
head: cheating in multiplayer
games. At first people found
bugs in AOE and exploited
them to win unfairly. Then it
got even worse. Programs
called “trainers” were devel-
oped that would actually
modify the game’s code while
it was running to allow play-
ers to cheat.

Being the developer — not
the publisher — of AOE, we
don’t have the final decision if
or when a patch is to be
released. As a result, all during
1999 our reputation as developers was
assaulted by fans who saw us as uncar-
ing about the problems that were dri-
ving people away from online play of
our games. The topic of cheating in
multiplayer games is so extensive I hope
to do an article on it in the near future.
We addressed this problem with our
publisher and were promised a patch
process. Unfortunately, AOK shipped
with a couple bugs that seriously needed
addressing in the short term. They’re
not show stoppers, but if not addressed
soon, the game’s (and our) reputation
may suffer another black eye. If a patch
for AOK is out by the time you read this,
then you can conclude that we finally
established our process.

2.UNFINISHED VERSIONS OF THE GAME

GOT OUT. This is a problem that
is born of success. Prerelease versions
of nearly all games wind up circulating
in pirate channels known as “warez.”
This happened with AOE. Imagine our
surprise at reading an entire review of

the game (an alpha version) eight
months before it was released.
Fortunately, almost no one bothered
with it until the game was properly
released because nobody knew much
about it. AOK was a completely differ-
ent story. It was a highly anticipated
sequel to a very successful game, and
the various warez sites were tripping all
over themselves to get a copy of the
latest build. And get a copy they did.
They were usually only one or two
weeks behind our latest build. It
seemed as though copies were leaking
out from every imaginable source —
play-testers at Microsoft, previews sent
to magazines, even internal sources.
Unfortunately, positively identifying
and fingering the culprits was almost
impossible. There were hacking
attempts on our FTP server and net-
work, though the real rub came from
the pirates in Hong Kong and
Singapore. They took the warez ver-
sions of AOK, burned them onto CDs,

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 2 0 0 0 G A M E D E V E L O P E R

57

Wireframe model for the trebuchet unit.

Fully textured and skinned, the trebuchet proved

to be one of the most popular units in the game.

added some cover art, and sold the
game throughout the Pacific Rim. In
Korea, the CD vendors operating in
front of Microsoft’s headquarters had a
warez version of AOK for sale. Warez
versions were even turning up on eBay.
Though we doubt bottom-line sales
were hurt much, our pride certainly
suffered. Any of our future games will
probably require connecting to a secure
server of our own design to operate,
even for single-player games.

3.PLAY-TESTING HAD A LOT OF PROB-
LEMS. This item is a catchall for

several problems that we encountered.
On the good news front, our new
offices have a dedicated play-test area
equipped with identically configured
machines. The bad news is that we
didn’t make the best of it.

Many of our play-tests were not orga-
nized and focused enough, seriously
reducing the amount of new and mean-
ingful feedback obtained. It wasn’t

always clear when we were testing for
specific bugs and issues, and when we
were testing for “fun.” We had a sched-
ule of participants which drew upon
the whole company, but schedule con-
flicts and lax enforcement resulted in
the same people playing most of the
games. We played too much multiplay-
er and not enough attention was given
to the single-player game. And some
people took it much too seriously,
trash-talking other players, celebrating
wins at the loser’s expense and storm-
ing off when they were losing. Play-test
problems weren’t confined to Ensem-
ble, though. At Microsoft, it was discov-
ered that a play-tester had turned
cheats on, playing to win not to test, in
almost every game for over a month,
which invalidated all the feedback from
that group for the prior two months.

4.ART ASSET MANAGEMENT WAS NONEX-
ISTENT. The number of individ-

ual frames of graphics in AOK is in the
tens of thousands, and we didn’t do a
good job managing it. The program-
mers had a source-control system to
help coordinate their primary output
of code and the designers had the
game’s database system, but no such
equivalent existed for the game’s art
assets. Artists could be working on
something with no idea that anyone
else was also working on it. There was
no way to get a momentary snapshot
of who was working on what, other
than going around from office to
office. Plus, there was no way to tell
which files were actually live and being
used and which ones were just taking
up space. Also missing was a way to go
back and find prior versions of art, or
to guarantee that new versions
wouldn’t be overwritten. As we have
grown as a company, this problem has
grown even faster. To address this
problem in the future, a source-control
similar to the art asset management
system is being developed for use in all
future projects.

5.PROBLEMS WITH THIRD-PARTY APIS

AND SOFTWARE. Another one of
the items from the AOE postmortem
returns again. Microsoft’s DirectPlay
API still has a number of issues that
make it less than perfect. One of its
biggest problems is documentation and
testing of the lesser-used portions of the
API, or rather the lack thereof. Late in
the development of AOK, our commu-
nications programmer, Paul Bettner,

58

P O S T M O R T E M

was able to communicate with the
DirectPlay developers and an interest-
ing scenario played out several times:
Paul would attempt to solve some prob-
lem and the developers would indicate
that it wouldn’t work because of bugs
in DirectPlay that they knew about but
that were not documented.

DirectPlay wasn’t the only problem.
We decided to use DirectShow to handle
our cinematics. The short version of this
story is that it just didn’t work. And
then there was the Zone software for
Microsoft’s online Gaming Zone. The
Zone software was developed too late in
the process and had a number of prob-
lems, due to a lack of time to test and
correct. Unfortunately, this means that
direct TCP/IP games are more reliable
than those played over the Zone, which
is disappointing. This was not all the
Zone’s fault because we did not get our
requirements to them soon enough.

The Show Goes On

One of the touchiest and most per-
sonal issues concerned letting suc-

cess go to our heads. The success of AOE
is something that a lot of people in this
business have not experienced. It
exceeded our wildest dreams and
allowed our company to take charge of
our destiny. I remember when we got
our first AOE royalty check — I had
never held a multi-million dollar check
before. That was great. We all got
caught up in how good we were doing.
Over time an attitude of invincibility
set in. With a success like AOE, it’s easy
to forget what it was like to wonder if
we were going to be in business the
next year. At some of the industry
events such as the Game Developers
Conference and E3, some of our people
behaved in ways that embarrassed us.
With success comes a responsibility to
behave appropriately — the game
industry is a small and incestuous one,
and nothing lasts forever. Behaving in
an exemplary manner and being friends
with the industry at large is far more
important than chest-beating about our
current success. Suffice it to say that
people in the Ensemble Studios organi-
zation have stepped forward to address
this and we have challenged ourselves
to be better people.

All the early indications for AOK are
that it’s going to be a blockbuster on

the order of its predecessor, and maybe
even greater. The reviews from the
press have been unbelievably positive.
According to PC Data, AOK was the
number-one selling game in October.

The great success of AOE made it pos-
sible for us to go to the next level of
making great games. Though it enabled
us to grow and acquire greater

resources, it also raised expectations for
our next game and spawned a host of
new challenges. Meeting these new
expectations has proved to be just as
tough and rewarding a journey as cre-
ating the first game. In the end we suc-
ceeded in creating a game to be proud
of, and I feel privileged to have been
part of it. ■

59

C R E A T I V E R E E R SC A R E E R S

confuse the pursuit of artistic vision
with slacking off while playing QUAKE

on the company LAN. Making a success-
ful game without losing your
sanity and/or having the
entire team quit at pro-
ject end requires a
minimum level of dis-
cipline, engineering
talent, perspective,
and vision. Hey, it’s
great to have a
vision to pursue, but
remember that unlike
writing a song, develop-
ing a game is a slightly
more involved
process than,
say, breaking
up with your
girlfriend,
drinking a
few shots of
tequila, and
riffing on your
acoustic guitar
until sunrise in your
dorm room. That
MUD you maintained
your sophomore year
doesn’t count.

My message is simple:
ship your damn game.

Look, you’re a game
developer, not the bassist for
Korn. This means that you’re
actually expected to produce
some meaningful work that is
profitable for your investors

(those people who give you money
based on the expectation that they will

eventually get it back, possibly with
interest). Sure, have your

“vision,” but understand
that you’re first and
foremost a business,
not some Real Cool
Guy that just happens
to develop computer
games on the side
when not busting
ass trying to win
the Geek with the

Most Piercings Award
at the Game Develop-

ers Conference. Ship
your damn game before

you start asking for
cover shots on

Rolling
Stone.

Shipping a
game really isn’t

that difficult if you
think about it — just

pretend you’re an actual professional
interested in creating a profitable
product (a.k.a. “the title”) for your
investor (a.k.a. “The Man”). This
means, above all else, taking the
development of your title seriously,
which entails fun stuff like actually
doing your job (note: your job is not
to surf the web, lamp around on
#IM2COOL on IRC, or do web inter-
views with gaming “news” sites). Ship
your damn game before taking an on-
the-job vacation.

I’m not advocating that you go cor-
porate and buy a three-piece suit and
a Lexus, but I am advocating that you,
as a developer, take your art seriously
both as a business and as a form of
creative expression. This means han-
dling your company and team with
maturity and staying focused on your
project. When you get that wad o’
cash from Mr. Publisher, spend it
wisely, watch your finances, and
understand that you haven’t “made
it” just yet. And when Mr. Publisher
comes knocking asking where your
milestone is, don’t start railing about
The Man holding you down. As much
as we love to hate publishers, the vast
majority of missed milestones can be
directly attributed to the developer’s

own mistakes: a combination of
naively optimistic scheduling,

an overconfident assess-
ment of a team’s ability to
finish everything “if we bust
ass this weekend,” and a few
too many hours refining

one’s railgun tactics on Q3TEST2.
I’m tired of watching a bunch of

self-absorbed dorks spout about their
intrinsic coolness and how they’re
gonna make a [insert category champ]
Killer. Back up your rhetoric, maga-
zine covers, screenshots, interviews,
trash talk, and .AVIs with a real game

G A M E D E V E L O P E R J A N U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

64

b y B r i a n H o o kS O A P B O X

Ship Your Damn Game!

S ome people liken game development to

other art forms such as painting, cinema,

and music. While there is a certain truth to

this comparison, sometimes “visionaries”

Brian Hook is a programmer at Verant Interactive. Before working for Verant he was an employee at id Software where he worked
on the popular QUAKE 2 and QUAKE 3 titles. Before that Brian was an engineer at 3Dfx where he designed Glide, their hardware
access API. In addition, Brian has also worked as a consultant with Nvidia and Silicon Graphics. Brian was formerly a columnist
for Game Developer magazine and writes his own column, Ask Hook, at http://www.voodooextreme.com.

— something that I can zip down to
CompUSA and purchase. Until then,
shut your pie hole and ship your
damn game.

Finally, just because you’ve got sharp
objects stuck in uncomfortable places,
colored hair, and really loud clothing
doesn’t mean you’re any less a nerd
than the rest of us. It just means you’re
more annoying about it. Hey, you
know that fat guy with the greasy, dan-
druff-laced hair and the Palm Pilot bust-
ing out the pocket seams of his sweat-
stained button-down? He’s a nerd. He

knows it. He’s just not trying to be the
loudest nerd around. Handle your geek-
dom with quiet dignity. Oh, and in case
I forgot to mention this, ship your
damn game before you start copping a
“Look, I’m a cool guy, I just happen to
write games...but you guys are hopeless
geeks” attitude at the GDC.

I’m not saying that getting some tat-
toos, piercing your anatomy, and
wearing really cool anti-establishment
T-shirts will necessarily prevent you
from getting rich and famous. But
delivering a quality product on time

and on budget gives you a much
greater chance in the long run of being
able to present your vision repeatedly
to the world. In the end, most vision-
aries would rather have their creation
shared with the world than appreciat-
ed in solitude. The key to this is to
take your art seriously as a business
while at the same time deferring your
delusions of being the next game
developer-cum-rock star until after
you’ve actually done something to
warrant it. Ship your damn game,
because screenshots don’t count. ■

S O A P B O X

63

	back:

