
JANUARY 1999

G A M E D E V E L O P E R M A G A Z I N E

Y our first reaction to that
headline (besides the obvi-
ous, "What the heck is this
doing in Game Developer

magazine?") should be, "Who cares?"
The answer is: nobody — at least,

nobody who’s not deep in the film busi-
ness, selling or operating cameras. Yet, if
that headline had been "XYZ Games
Switches to the 123 Engine," you’d be
jumping out of your seat, eager to know
why XYZ dropped the famed ABC
Engine for the 123 Engine. Was it
money? Features? Support?

As developers, we’re analogous to the
people in the film business mentioned
above. That is, we actually have some
excuse for caring about the intricacies of
game development, and it’s real news to
us when a developer chooses one tech-
nology over another. We want and need
to know the gory details. Unfortunately,
the sad state of our industry today is
that we’re just as likely to see an engine-
oriented headline in our popular press
as in our technical trade press.

I believe this press focus on game
engines alienates most players.
Moreover, this engine-mania is distract-
ing us from our real job of bringing our
industry out of the garage and develop-
ing it into a mature artistic medium. It’s
easy to see why the press focuses on
game engines in interviews, articles, and
reviews. Writing about technology is
easy, especially when that technology is
conveniently wrapped up in a spiffy
engine name by the developers, some-
times even before the actual game has a
name. It’s much easier to write about
the engine than it is to write about the
actual important features of games, such
as game design, playability, and experi-
ence. The vocabulary is already present
for in-depth discussions of game tech-
nology with our light maps, polygons-
per-second, MIP-mapping, and what
have you. Contrast this with the current
state of the art in vocabulary for game
design and playability: "Uh, was it fun?"

We can’t just blame the press, of
course, because we developers aid and
abet them in their laziness by talking up
a storm about our engines and technol-

ogy. We answer their endless questions
about technology instead of getting
them back on track to talking about the
actual game we’re developing. Worst of
all, we put out self-congratulatory press
releases that focus specifically on our
technology and don’t even mention our
games. Again, I believe we do this
because it’s easy to talk about technolo-
gy, whereas we lack the vocabulary to
discuss game design effectively.

Now, I know technology is intimately
related to game design — especially at
this early point in our industry’s maturi-
ty — and I don’t think we should com-
pletely avoid "talking tech" for our hard-
core fans. However, when the first
question out of the interviewer’s mouth
is "What engine does the game use?" we
have a problem.

I love game technology as much as
the next developer, but I realize that the
game press is going to follow our lead
when it comes to discussing our games.
We can steer interviewers away from the
easy techno-centric questions and back
to how the game will play and what
experiences the player will have while
playing. We are differentiating on non-
technology features, right?

The idea that we need to develop a
vocabulary for game design is not mine.
Doug Church from Looking Glass
Technologies has lectured on the topic
at the CGDC (now the GDC), and I
believe the concept is mentioned as far
back as Chris Crawford’s The Art of
Computer Game Design. I’d like Game
Developer to provide a forum for creating
this vocabulary, and if you’ve got ideas
on the topic, or if your company’s game
designers have their own language that
they use to communicate, we’re inter-
ested in hearing about it. ■

Chris Hecker, Editor-At-Large

G A M E D E V E L O P E R J A N U A R Y 1 9 9 9

4

P L A NG A M E

Spielberg Switches

to Panaflex Cameras!

www.gdmag.com

600 Harrison Street, San Francisco, CA 94107
t: 415.905.2200 f: 415.905.4962 w: www.gdmag.com

Publisher
Cynthia A. Blair cblair@mfi.com

EDITORIAL

Editor-in-Chief
Alex Dunne adunne@sirius.com

Managing Editor
Tor D. Berg tdberg@sirius.com

Departments Editor
Wesley Hall whall@sirius.com

Art Director
Laura Pool lpool@mfi.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Jeff Lander jeffl@darwin3d.com
Mel Guymon mel@surreal.com
Omid Rahmat omid@compuserve.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook id Software
Susan Lee-Merrow Lucas Learning
Mark Miller Harmonix
Paul Steed id Software
Dan Teven Teven Consulting
Rob Wyatt DreamWorks Interactive

ADVERTISING SALES

Western Regional Sales Manager
Alicia Langer alanger@mfi.com t: 415.905.2156

Eastern Regional Sales Manager
Kim Love klove@mfi.com t: 415.905.2175

Sales Associate/Recruitment
Ayrien Houchin ahouchin@mfi.com t: 415.905.2788

ADVERTISING PRODUCTION

Vice President Production Andrew A. Mickus

Advertising Production Coordinator Dave Perrotti

Reprints Stella Valdez t: 916.983.6971

MILLER FREEMAN GAME GROUP MARKETING

Group Marketing Manager Gabe Zichermann

MarComm Manager Susan McDonald

Marketing Coordinator Izora Garcia de Lillard

CIRCULATION

Vice President Cirulation Jerry M. Okabe

Assistant Circulation Director Mike Poplardo

Circulation Manager Stephanie Blake

Circulation Assistant Kausha Jackson-Crain

Newsstand Analyst Joyce Gorsuch

INTERNATIONAL LICENSING INFORMATION

Robert J. Abramson and Associates Inc.
President Libby Abramson
720 Post Road, Scarsdale, New York 10583
t: 914.723.4700 f: 914.723.4722
e: abramson@prodigy.com

Chairman-Miller Freeman Inc. | Marshall W. Freeman
President/COO | Donald A. Pazour
Senior Vice President/CFO | Warren “Andy” Ambrose
Senior Vice Presidents | H. Ted Bahr, Darrell Denny
Galen A. Poss, Wini D. Ragus, Regina Starr
Ridley, Andrew A. Mickus, Jerry M. Okabe
Vice President/SD Show Group | KoAnn Vikören
Senior Vice President/Systems and Software
Division | Regina Ridley

BPA International Membership
Applied for March 1998

Miller Freeman
A United News & Media publication

VTune 3.0 Debated

I n the October 1998 issue of Game Developer, Dan Teven’s
review calls Intel’s VTune 3.0 “a mandatory upgrade” from

version 2.5. I say it’s lame and inexcusable. Here’s why:
VTune 2.5 is an excellent tool for optimizing Pentium MMX

assembly code. It flags your pipeline stalls and explains the
quirky details that derail instruction pairing. In blended CPU
mode, it also warns you of lethal Pentium II glitches — code
that runs perfectly well on a Pentium MMX, but brings a
Pentium II to its knees. Other than flagging these elementary
flaws, VTune 2.5 has little to say about how your code actually
performs on a Pentium II. All it can show is whether or not the
instruction decoder is choking on micro-ops.

With VTune 3.0, Intel had an opportunity to build a tool
that would enable programmers to analyze the micro-op
pipeline flow of Pentium II code. Instead, they lavished their
efforts on redesigning their Gratuitous User Interface into
something resembling a web browser. Question for Intel: I’ve
already got a clumsy web browser and a monolithic IDE hog-
ging too much screen space; am I supposed to buy a second
monitor just for you?

To make matters worse, Intel chose to drop the blended CPU
mode from VTune 3.0, which limits its analysis to just one
CPU at a time. This forces you to switch back and forth
between modes to make sure that an optimization for one CPU
doesn’t clobber another. VTune’s worst offense, however, is
the misleading way it assigns sampling percentages to assem-
bly language instructions that have absolutely nothing to do
with the event that is being monitored. What we really want
to know is which micro-op, generated by what instruction,
triggered the event in question. Intel, however, would prefer
not to discuss micro-ops with developers — they’ve actually
censored the original Pentium Pro micro-op documentation,
and refuse to update the Pentium II docs to fill in the gaps.

The Pentium II is theoretically capable of executing three
micro-ops per CPU cycle — essentially 50 percent more through-
put than the Pentium MMX. This level of performance can only
be achieved, however, by careful analysis of micro-op scheduling
and execution port utilization in critical inner loops (not to men-
tion cache misses and branch mispredictions). Rather than assist-
ing developers in this effort, Intel has maintained a wall of misin-
formation that obscures what’s really happening inside your
code. VTune 3.0 does nothing to breach this wall.

L e e P o w e l l

M a c h i n e C o d e S y s t e m s

v i a e - m a i l

T E V E N R E S P O N D S : I should have noticed that Intel dropped the

blended CPU analysis mode, and I hope they bring it back. I haven’t

changed my opinion, however. The improvements in VTune 3.0 are

an order of magnitude more important than this small loss.

The VTune 3.0 CD contains the Pentium Pro family documentation,

including the Intel Architecture Optimizations Manual and the three-

volume IA Software Developer’s Manual. These references talk quite

a bit about micro-ops. They also contain Intel’s recommendations for

writing “blended code,” which I will pass along:

• Important code entry points, such as a mispredicted label or an

interrupt function, should be aligned on 16-byte boundaries.

• Avoid partial stalls.

• Schedule to remove address generation interlock and other

pipeline stalls.

• Use simple instructions.

• Follow the branch prediction algorithm.

• Schedule floating-point code to improve throughput.

Your desire to analyze the micro-op flow of Pentium II code may be

valid, but it’s unfair to blame VTune for not letting you do it. VTune

relies on the event counters that are built into the processors for this

level of analysis, and the Pentium II doesn’t count anything but micro-

ops retired. If there are undocumented counters in the Pentium II, then

be upset with the Pentium II, not the profiler.

Financing Creativity

I read Alex Dunne’s September editoral on the “Sundance
Festival” for video games with some interest. The problem:

It’s not particularly difficult to get companies such as MGM
Interactive, Activision, Interplay, or Sony to look at game
demos, designs, and prototypes. What’s difficult is getting
money for anything remotely creative, and this is where we’ve
failed miserably. Whether we ask for $500,000 or $100,000 in
funding, the answer is always no. Fortunately, magazines such
as Next Generation and game players themselves seem to dis-
agree with their views on the subject, but that hasn’t brought
us any closer to discovery.

I suspect that the reason we have had such trouble is that
game suits are a scared bunch. The dirtiest secret of this indus-
try is that 34 out of 35 games lose money, and that only 1 in
140 hit it big. These odds make Las Vegas slot machines look
like an attractive investment. Dodging all risks, suits follow a
strategy similar to the music industry’s, and chase last year’s
hits: year after year after year. Ask yourself which is a sounder
investment: one 20 million dollar DOOM clone championed by
a bunch of disgruntled id employees, or 80 $250,000 “art flick”
games by 80 different unknowns and semi-unknowns?

Me? I’m a firm believer that the video game market is
becoming as efficient as the stock market — it’s increasingly
difficult to get something for nothing. The game suits simply
cannot a priori pick the hits, and they should give up trying to
do so, diversify their development portfolios, and wait for the
hits to emerge rather than try to predict them. Such a strategy
couldn’t work any less well than what we’re currently seeing.

S c o t t L e G r a n d

v i a e - m a i l

G A M E D E V E L O P E R J A N U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

6

Y O US A Y S

The following equations appeared incorrectly in Andrew
Flavell’s “Run Time MIP-Map Filtering” in the November
issue of Game Developer. Apologies for any inconvenience.

Eq. 12

Eq. 13

where

Eq. 20y e ax f bxl = − − −

() ()2 2

x c ay d byl = + + +

() ()2 2

Compression
Z

x y= 1
2

max(,)l l

v
Z dOverZdY VOverZ dOneOverZdY

Z

f by

Z
y = − =

−. .
2 2

u
Z dUOverZdY UOverZ dOneOverZdY

Z

e ay

Z
y = − =

−. .
2 2

CC OO RR RR EE CC TT II OO NN SS FF OO RR NN OO VV EE MM BB EE RR ::

h t t p : / / w w w. g d m a g . c o m J A N U A R Y 1 9 9 9 G A M E D E V E L O P E R

News from the World of Game Development

9

New Products
by Wesley Hall

The New Miles 5.0 is Out

RAD GAME TOOLS has once again done
a major feature-upgrade on the vener-
able Miles Sound System, the all-
inclusive audio tool for developers.

The 5.0 version of the Miles Sound
System has a ton of new features, but
the big ones are MPEG Layer-3 sup-
port, a high-level 3D audio API, and a
new digital sub-system. The Miles 5.0
MP3 support includes the abilities to
decompress data from your sound
mixer, to stream massive MP3 sound
files off of your hard drive or CD-
ROM, and to play MP3 compressed
instruments in DLS files. With Miles’s
3D audio API, your game will support
all of the commom 3D technologies,
such as DirectSound3D software and
hardware, Aureal’s A3D, Creative’s
EAX, and Intel’s RSX. You can switch
between any of the technologies at
runtime, or load multiple technolo-
gies at once. Further, future 3D
providers can be dropped into your
game without source code changes
because the 3D technologies are

abstracted from Miles’s API. The API
also allows you to perform 3D sample
sub-block looping. The new digital
subsystem allows Miles to use its own
mixer even when running under
DirectSound, and also includes MMX
optimizations that have been added
to the digital mixer subsystem.

The Miles Sound System SDK is
available for DOS, Windows 3.x,
Win32s, Windows 95, and Windows
NT. The Miles Sound System SDK is
licensed on a per-product or per-site
basis with no royalties. Single product
licenses start at $3,000.
■ RAD Game Tools Inc.

Kirkland, Wash.

(425) 893-4300

http://www.radgametools.com

Rhino NURBS

ROBERT MCNEEL & ASSOCIATES just
unleashed Rhinoceros (Rhino), the first
full-power NURBS (non-uniform ratio-
nal B-spline) modeler for Windows.

Rhino is a conceptual design and
modeling tool that allows you to cre-
ate objects that are smooth NURBS
surfaces rather than line segments or
polgon meshes. In the past, this tech-
nology was only available on high-
end workstations. Organic effects are
now much more accessible. You can
play in a free-form world as you
create and edit curves, surfaces, solids,
meshes, and (of course) 3D models.
Rhino also integrates solids (surfaces
joined together at their edges) and
surface modeling so that solids can be
exploded into surfaces, edited, and
then joined together again. Spline-
based models created in Rhino can be
used in most rendering and anima-
tion products, including 3D Studio
MAX, Softimage, and LightWave 3D.

Rhino runs on a system with a
Pentium processor, 32MB RAM, and
15MB disk space under Windows

95/98/NT. No special graphics soft-
ware is required, although Rhino is
compatible with a wide variety of 2D
and 3D file formats. It retails for $795.
■ Robert McNeel & Associates

Seattle, Wash.

(206) 545-7000

http://www.rhino3d.com

Online Radio Chatter

RESOUNDING TECHNOLOGY INC. just
debuted Roger Wilco, a stand-alone
application that allows online game
players to talk to each other while
playing their favorite multiplayer
games such as QUAKE II, DIABLO, and
STARCRAFT.

Roger Wilco is a companion tech-
nology that enables players to actual-
ly talk to each other instead of typing
messages. In its initial release, Roger
Wilco supports up to four players
without requiring a dedicated server.
It will support ten in the near future.
Players can now communicate with-
out interupting game play. When
other players speak, their transmis-
sions are mixed with the game audio.
Unlike Internet phone programs,
Roger Wilco is designed specifically
for running alongside multiplayer
online games without requiring an
additional soundcard.

Roger Wilco works with most
Windows 95/98 games that use
DirectSound. It requires a microphone
and a soundcard capable of full-
duplex audio. It also requires a
Pentium 166 or better processor, 2MB
disk space and at least a 28.8K
modem. Roger Wilco is currently in
beta test. A free "technology preview"
is immediately available for download
from Resounding’s web site.
■ Resounding Technology Inc.

Cambridge, Mass.

(512) 248-9344

http://www.resounding.com

New Products: The new Miles Sound
System 5.0, Rhinoceros does NURBS,
and Roger Wilco comes in loud and
clear. p. 9

Industry Watch: Wars and profits,
plus Mark Miller’s report from Project
Bar-B-Que pp. 10-13

Product Reviews: Okino’s PolyTrans
and MultiGen’s Creator pp. 14-18

Ocean Quigley modeled this rhino

using Rhinoceros, and then rendered

it in 3D Studio MAX.

Industry Watch
by Alex Dunne

THANKS TO SOME RECENT RULINGS in
the litigation between Creative Labs and
Aureal Semiconductor, this case is going
to trial. First, the court rejected Aureal’s
motion for summary judgment, reject-
ing Aureal’s limited interpretation of
Creative’s patent on a “Digital Sampling
Instrument Employing Cache-Memory.”

In the second ruling, the court rejected
Creative Labs’ motion for a preliminary
injunction against Aureal. Aureal argued
that a preliminary injunction prohibit-
ing the sale of their Vortex chips would
essentially force the company to close,
and the court ruled felt that such action
would be too severe in the event that
Aureal eventually emerged victorious
from the trial. In other words, in this
trial Aureal has much more to lose than
Creative Labs has to gain.

GT INTERACTIVE ACQUIRED ONEZERO
MEDIA, a two-year-old company which
produces the TV show The Wild Wild
Web and its accompanying web site,
http://www.getwild.com. GTI was
impressed with OZM’s success in creat-
ing the cross-media franchise, and said
that the purchase of OZM will further its
growth strategy by "providing an estab-
lished platform for e-commerce and for
promoting new entertainment products
and content." OZM will operate as a
wholly owned subsidiary of GTI.

MICROSOFT MADE AN UNDISCLOSED
minority investment in online game
developer VR-1, the company that
developed FIGHTER ACE for the MSN
Gaming Zone. Not too long ago, VR-1
agreed to develop a pair of games exclu-
sively for America Online, and while
the full terms of the deal weren’t dis-
closed, we know that the investment
will not affect VR-1’s ability to work
with other partners, and that Microsoft
won’t take a seat on the VR-1 board.

ELECTRONIC ARTS EXTENDED its pub-
lishing agreement with Sid Meier’s com-
pany, Firaxis. EA said that it will publish
up to two more as yet unannounced
Firaxis games. The original agreement,
announced in 1996, allowed EA to pub-

lish SID MEIER’S GETTYSBURG! and SID

MEIER’S ALPHA CENTAURI.

ACCLAIM ENTERTAINMENT REPORTED
their 1998 fiscal year results, which
ended August 31, 1998. The company
saw net revenues of $326.6 million
compared with $165.4 million in the
prior year, resulting in a profit of $20.7
million. During the fiscal year, Acclaim
published ten titles that sold over $10
million each, FORSAKEN, TUROK:
DINAOSAUR HUNTER, RIVEN, and WWF
WARZONE, among others.

MIDWAY PROFITS UP. Midway report-
ed that for its fiscal quarter ending
September 30, 1998, its revenues were
more than 21 percent higher than last
year, amounting to $89.3 million. Net
income rose to $9.8 million, compared
to last year’s $7.2 million. Mirroring the
pickup in console sales and slowdown
in the arcade business, Midway’s next
generation video game revenues
increased 106 percent and its coin-oper-
ated video game revenues for the quar-
ter decreased over 40 percent over the
previous year, to $19.6 million.

WITH THE STAR WARS PREQUEL DUE
OUT on the silver screen shortly,
Nintendo scored a sizable victory over
rivals Sony and Sega by announcing
that it has exclusive console rights to
LucasArts’ next three games. The five-
year, worldwide agreement includes STAR

WARS: ROGUE SQUANDRON (slated for
release by Christmas 1998) plus two
upcoming games based on George
Lucas’ next feature film, Star Wars:
Episode I: The Phantom Menace.

G A M E D E V E L O P E R J A N U A R Y 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

10

January 4-8, 1999

MacWorld Expo 99
Moscone Center
San Francisco, CA USA
Cost: $45 expo only, $345 and
up for conference.
http://www.macworldexpo.com

January 7-10, 1999

1999 CES
Las Vegas Convention Center,
Sands Expo & Convention
Center, Las
Vegas Hilton, Alexis Park Hotel
Las Vegas, NV
Cost: $75
http://www.cesweb.org

February 9-12, 1999

Milia 99
Palais des Festivals
Cannes, France
Cost: $655
http://www.reedmidem.
milia.com

February 17-20, 1999

TED 9
Monterey Convention Center
Monterey, CA
Cost: $2250
http://www.ted.com

UPCOMING EVENTS

CALENDAR

B I T B L A S T S - I N D U S T R Y W A T C H

OneZero Media’s web site and accom-

panying television show attracted the

interest of Ron Chaimowitz.

Acclaim’s fourth quarter was highlight-

ed by the success of WWF WARZONE.

B I T B L A S T S - I N D U S T R Y W A T C H

Tales from a
Cook-Out

by Mark Miller

I n the middle of last October, I
attended the third annual Project
Bar-B-Que, “an incredibly intense

Texas-style think tank.” The event was
hosted by none other than George
Sanger, a.k.a. The Fat Man. Now,
despite all of his meshugas (a Yiddish
word roughly meaning “antics,”
derived or at least deeply linked, I
think, to meshuganah, another Yiddish
word roughly meaning “crazy person”)
George is someone whom I’ve come to
like and respect for the efforts that he
and his team put into this conference
to the benefit of the entire industry.

So, you may ask, what is the Bar-B-
Que all about? Well, as far as I can tell,
it all started about four years ago.
George and I don’t exactly agree on
the specifics of what happened, but we
can pinpoint a moment in time when it
happened. George had written an arti-
cle in Music & Computers, the main
theme of which went something like
this: “Things are really disorganized
when it comes to audio on computers.
People are trying in vain to bring order
to this chaos by the grindingly slow
process of getting everyone to agree on
standards. I would like to propose
instead that I go off with a couple of
really smart people and just come up
with the answer and present it to
everyone as the .FAT file format.”

I was the co-chairman of the
Interactive Audio Special Interest
Group (the IA-SIG) at that time. We
were the people who were deeply
enmeshed in trying to develop those
standards. George was, in fact, one of
our working group chairmen. I button-
holed George in the hallway at some
trade show, and we had a conversation.
On this much of the story, we agree.

The content of the conversation is
where our recollections diverge, dra-
matically. I remember being fairly bent
out of shape and giving George a really
hard time for “dissing” the IA-SIG, of
which he was a chairman, in print.
George remembers it as an inspira-
tional sharing of ideas, out of which
the concept for the Bar-B-Que was
born. We both also remember some-
thing about George waving flags, but
the significance of this act now escapes
me completely.

So, you may ask again, what is Bar-
B-Que all about? George’s idea was to
create an executive-style (read “kind of
expensive but, boy, they treat you
nice”) retreat where a small (50 or
fewer) group of people with some
degree of responsibility over what you
hear when you turn on your computer
would get together to figure out how
to make what you hear when you turn
on your computer sound better. This
group would comprise composers,
sound designers, operating-system
vendors, sound driver gurus, hardware
designers, marketers, and philoso-
phers. The retreat would put all of
these people in one fairly remote place
for three days of provocative presenta-
tions, heated conversations, massively
parallel group decision making, con-
clusion drawing, and of course some
really hardcore two-fisted drinking.
When all was said and done, out the
other end would come a document
called the Bar-B-Que Report, which
would be required annual reading for

anyone with a professional interest in
computer audio.

When this event was first described
to me, I was skeptical to say the least.
This was crazy talk (another form of
meshugas). What kind of results could
possibly come from such an unstruc-
tured process with some guy in
sequins and a cowboy hat waving a
flag around?

Perhaps there is some truth in the
notion that there is a unique reality for
each human being based upon his or
her own individual perceptions of any
event. And perhaps it is precisely these
differences in people’s personal realities
that bring forth all that is truly useful
and new. But true or not, I’m really glad
that George remembers things his way
and not mine because somehow out of
this uniquely perceived conversation, a
really useful conference was born.

Later on in the year, when this con-

ference was on its way to becoming
reality, George and I did reconcile our
perceptions. George would host Bar-B-
Que, and wild, unorthodox ideas and
processes would be employed in order
to frame a picture of the next five years
in computer audio. The IA-SIG would
then pick through the conference out-
put and take over the process of grind-
ing these bits and pieces of inspiration
into publishable standards and recom-
mended practices.

The first two Bar-B-Ques generated a
lot of fascinating speculation about
how the future would sound. In itself,
the experience was inspiring and
refreshing to all involved, but some-
how hard to convey to nonpartici-
pants. Fortunately, some more tangi-
ble, near-term initiatives were also
produced. Two IA-SIG working groups,
the Platform Development Working
Group (PDWG) and the Audio
Advisory Working Group (AAWG) were
born. The work of these groups influ-
enced both the AC97 and PC98 stan-
dards. Significant progress was made
on interactive composition standards
some of which made its way into
DirectMusic. And finally, the idea that
computer audio systems should be as
easy to use as a toasters (the credo of
the Church of Appliantology) was
explored and has taken root in the

G A M E D E V E L O P E R J A N U A R Y 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

12

Mark Steven Miller produced audio for way too many games for way too many years.
Currently, he’s in charge of geological plasma extraction (‘Squeezing blood from
stones’ or ‘U.S. business development’) for Harmonix Music Systems in Cambridge,
Mass. Mark serves on the Steering Committee of the IA-SIG, the Advisory Board of
the Game Developer’s Conference, and is a frequent writer and speaker on the topic of
interactive audio. He can be reached at mark@harmonixmusic.com.

“Is that baby back ribs that I smell or is that
George starting up the Rolls again?”

B I T B L A S T S - I N D U S T R Y W A T C H

h t t p : / / w w w. g d m a g . c o m J A N U A R Y 1 9 9 9 G A M E D E V E L O P E R

13

minds of many of the hardware and
software designers who attended.

This year, the conference was light
on composers and sound designers and
heavy on hardware types. This demo-
graphic put much of the focus on the
next 6 to 18 month product cycle
rather than on the five-year plan tar-
geted in previous gatherings. Attendees
formed four main working groups. The
first went off to define the next genera-
tion of MIDI, tentatively called M1D2.
The group decided that MIDI, as we
know it, works pretty darn well; but it’s
old and many problems have been
identified and not corrected. M1D2
will correct these problems and bring
MIDI into the modern world of USB
and 1392 (a.k.a. FireWire), for example.

The second group attempted to
make sense of multiformat audio. The
group’s basic conclusion took the form
of a chart that listed all of the ways
that audio can exist within a software
program (mono, stereo, Quad, ProLogic
Stereo, 5.1, and so on) on one axis and
all of the possible speaker configura-
tions (headphones, stereo, ProLogic,
Quad, and so on) on the other. The
group’s members filled in the resulting
matrix with how all those inputs
should be matched to all of those out-
puts so that the results were pre-
dictable, sensible, and sounded good.

A third group went after the most
contentious of all of the problems. It
took on the task of harmonizing the
next set of extensions to 3D audio
beyond, “Put the sound source here
and put the listener here.” More specif-
ically, these extensions would deal
with the listening environment; in
other words, “Put the sound source
here and put the listener here, and put
them both in a 200×300-foot stone
cathedral.” At the outset, there were
two opposed and “dug-in” positions.
One group said that the actual room
geometry must be mapped and the real
physics of any sound therein recreated.
The other group said that generalized
room descriptions (reverb presets) were
simpler and good enough by far. This
conversation had actually been under-
way for months in the 3D Audio
Working Group (IA-SIG 3DWG), but
the “face time” occasioned by Bar-B-
Que generated greater mutual under-
standing and large steps forward
toward a unified standard. One 3D
world is enough for all of us….

The fourth group (I was a member of
this group) went off into the stratos-
phere a bit. We decided that it
wouldn’t be possible to figure out what
consumers might want in five years.
The best that we could do, then, would
be to try to create a tool that would
help one understand why people
bought anything in the first place. To
this end, we listed all of the basic moti-
vations that would make a consumer
consume. We then divided them into
categories using a cool data structure
called Maslow’s Hierarchy. (If you’re
unfamiliar with this, look it up. You’ll
learn something about who is buying
all of those sub-$1,000 PCs.) This data
ended up in a spreadsheet, which now
serves as a useful tool for constructing
a value proposition for something that
may not yet be technologically possi-
ble to produce. Finally, we created a list
of enabling characteristics that could
help one understand why a particular
packaging of that “something” might
succeed or fail in the marketplace. The
whole ordeal was kind of abstract over-
all, but a really good workout for the
right brain.

Traditionally, Bar-B-Que participants
who may be displeased with the pro-
gram are encouraged to form “Rogue
Groups.” This year, a Rogue Group
formed to deal with the possibility that
certain companies (such as, say,
Microsoft) might choose to make style-
based automatic music scoring systems
a part of their operating systems.
Rogue Group members felt that experi-
enced game composers should define a
list of presets for such a system. The
list would include the smallest number
of styles that would cover the largest
number of possible video game levels.
Once the Rogue Group had framed the
problem in this way, the answers were
readily apparent and the document
took about 30 minutes to create.

The resulting list was presented to a
the video game producers in atten-
dance. They looked it over and said,
fairly consistently, that about 80 per-
cent of their current projects needs
would be met by such a set of presets.
This was clearly an idea who’s time
had come. Recommended Style Presets
included Ice World, Jungle World,
Pirate World, Circus World,
Underground World, Falling World
(Forced scroll world), Moon World
(Altered Physics world), Mechanical or

Factory World, Urban World, Desert
World, Cave World, Alien World,
Medieval World, and Options Music

If you really want the details of
what I’ve just careened through in
these five short paragraphs, you’ll
simply need to pick up the report
when it comes out. (You can find it
online at http://www.fatman.com.)
But let me conclude by saying this:
Being 33 years old, I came in just too
late on a number of things in this life.
I missed the ‘60s and the early ‘70s.
Instead, all I had for my teen years
were goofy clothes, goofier music, and
the empty ambition of the Reagan era.
Professionally, I missed the early days
of Atari and the heyday of the 8-bit
Nintendo, when two guys in a garage
could get rich writing games. (In ret-
rospect though, cocaine and hookers
were never my style, so I guess Atari
wasn’t such a big loss.) Fortunately, I
haven’t missed the beginnings of Bar-
B-Que. It’s a truly outstanding experi-
ence to have the opportunity to think
hard, work hard, drink hard, and get
something done quickly for a change.
If there’s one overarching message
from The Ranch, it is this: Put the
right people together, take away their
company logos and cell phones, feed
them well, stay out of their way, and
good things will happen. ■

Creative Labs’ Jean-Mark Jot (right)

and Microsoft’s Aaron Higgins (left)

talk game audio at Project Bar-B-Que.

For information on attending Project Bar-
B-Que, please contact:
Project BBQ

Executive Director: Teresa Avallone

P.O. Box 9726

Austin, Texas 78766

(512) 473-3878

e-mail: spanki@outer.net

FF OO RR FF UU RR TT HH EE RR II NN FF OO

B I T B L A S T S - P R O D U C T R E V I E W S

G A M E D E V E L O P E R J A N U A R Y 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

14

Okino’s
PolyTrans 2.2

by Christian Aubert

P olyTrans addresses a lot of 3D
file translation problems that
affect game developers.

Anyone who has ever had to deal
with file translation issues will benefit
from this package. For this review, I
tested PolyTrans release 2.2 on an HP
Kayak XU-400 with a Matrox
Millennium II 8MB board and an IBM
Intellistation M Pro 6889 with
Intergraph Intense3D Pro3400 graph-
ics adapter. The package was very sta-
ble, and I never experienced any
crashes. Clearly, Okino has spent
countless hours tuning and refining

this software package. A fast CPU will
certainly help on large batch transla-
tions, but memory wasn’t so much of
a concern, as the data storage algo-
rithms seem to be very memory-effi-
cient. The only problem I ran into
was with display flickering during ani-
mation playback. Okino customer
support was quick to point out that
animation playback works best in
Shaded mode using hardware-acceler-
ated OpenGL.

Real-time game developers including
technical directors, technically minded
3D animators, and tools programmers
will all appreciate PolyTrans’s support
for most standard professional 3D
packages, along with MultiGen’s
OpenFlight, Nichimen’s Game
Exchange, and Cinegraphics’s UView
UV plug-in for LightWave. PolyTrans’s
OpenGL C code, DirectX, and VRML
1.0 and 2.0 export capabilities can all
come in handy for quick prototyping
of in-house tools or game engines.
These capabilities will be of most inter-
est to producers looking to save their
teams some work by buying an off-the-
shelf package instead of writing their
own conversion utility.

Anyone with a minimum of expo-
sure to 3D software will feel right at
home with this package. The standard
orthogonal and perspective views are
available with a choice of bounding

box, wireframe, or shad-
ed geometry displayed.
The interface is straight-
forward and fairly sim-
ple, considering the
wealth of choices facing
the user. A higher level of
technical competence
will be required to fully
understand and appreci-
ate the vast array of
choices that one is pre-
sented with when deal-
ing with 3D format con-
versions.

PolyTrans features file
import converters for the
following formats: ACIS
SAT, Apple 3D Metafile,
3D Studio R4, 3D Studio
MAX 1.2 and 2.x, Fractal

Design Detailer, .DXF, IGES 5.3,
Imagine, LightWave, Nichimen Game
Exchange, OpenFlight, Pro/Engineer,
Softimage, Stereolithography, trueSpace
2.0/3.0, USGS DEM, VistaPro, and
Alias|Wavefront (NURBS and Polygons).
File export converters support import
formats such as DirectX, Lightscape,
Open GL C Code, POV Ray 2.0 and 3.0,
Renderman RIB, RenderWare, and
VRML 1.0 and 2.0. The ACIS, IGES,
OpenFlight, Nichimen, and Softimage
import modules are sold separately,
each costing between $195 and $395.

PolyTrans does much more than
simply convert polygonal geometry
like older converters. Artists working
on prerendered 3D art will like the
easy transfer between their favorite
packages. Support for triangulating
NURBS and spline patch surfaces and
tight surface definition transfers will
definitely save lots of time. PolyTrans
also does a good job of preserving sur-
faces attributes, lighting, and camera
information. This package doesn’t
stop at geometry conversion either.
Vertex welding, polygon normal flip-
ping, and vertex normal computation
operators are all available. You can
also use PolyTrans to build physical
models of in-game or prerendered
geometry through a rapid prototyping
technology known as stereolithogra-
phy, whereby a laser draws a cross-sec-
tion on the surface of a bath of pho-
tosensitive resin, partially curing the
resin and thus producing a thin layer
of solid material. By lowering the bath
for each successive iteration of the
process, you end up with a three-
dimensional physical model (a nice
touch when presenting your project
to prospective customers, and always
a nice extra in a trade show booth).
All this would be enough to justify
the price of admission, but PolyTrans
does something that’s relatively rare
among data translation tools; namely,
animation transfers.

You can literally take a LightWave
scene and render it in 3D Studio MAX
or Softimage with no tweaking.
However, users will need to adapt
their workflow with PolyTrans use in
mind. I did a test in which I took one
of our in-game characters from
LightWave, converted it to 3D Studio
MAX, and then back over to
LightWave. PolyTrans left all the
geometry, animation, surface, light-

Christian Aubert is a technical director with Behaviour Interactive, whose most recent
title is JERSEY DEVIL for the PlayStation. He’s been working with 3D animation for 11
years

A wolf character from Behaviour Interactive’s latest

work in progress. This is the original model in

LightWave.

Excellent Very Good Average PoorBelow Average

h t t p : / / w w w. g d m a g . c o m J A N U A R Y 1 9 9 9 G A M E D E V E L O P E R

15

ing, and camera information intact.
One of the features that contributes
to this flexibility is PolyTrans’ support
for conversion of 2D bitmap formats,
allowing textures to be converted to a
3D package’s native format. Thus,
when translating a Strata file with its
.TIF textures over to Softimage 3D, for
example, you’ll have the option of
converting the 2D textures to
Softimage’s native .PIC format.

PolyTrans’s main competitors are
Lambsoft’s Movetools and Viewpoint
Interchange. Rhino from Robert
McNeel & Associates does a good job of
supporting polygonal and NURBS
geometry, but it lacks support for batch
translation and as such cannot be con-
sidered a competitor to PolyTrans.

While Movetools supports anima-
tion through per-frame keyframe sam-
pling for most major 3D packages
(with the notable exception of
LightWave and Alias’s Maya), it lacks
PolyTrans’s keyframe resampling tech-
nology and breadth of import/export
formats. At a cost of $1,500 per mod-
ule, a usable version of Movetools will
set you back at least $3,000, or almost
ten times the price of PolyTrans.

Viewpoint’s Interchange 4.5 supports
more file formats than PolyTrans, but it
tends more towards a pure geometry
translator. Support for surfaces, textures,
animation, and hierarchical informa-
tion is minimal or simply nonexistent.

If you ever come across file format
conversion issues (and who hasn’t?),
PolyTrans will pay for itself in a matter
of hours. If you need to do a lot of file
format conversion, having multiple
packages to chose from can be a good
thing. As a matter of fact, our studio
uses Rhino, Viewpoint Interchange,
and PolyTrans/Nugraf.

Still, some of the liberties PolyTrans
must take to allow conversion of very
different data formats might cause
problems for real-time game develop-
ers. Exporting a hierarchy to Softimage
will look great, but the pivot points
will all be in the world center. Users
have brought this deficiency to the
attention of Okino’s technical support,
and the company is trying to find a
workable solution to the problem.
Okino has a very good reputation for
working closely with customers and
quickly implementing needed features,
often within hours or days if the prob-
lem is critical.

Depending on workflow, this pack-
age might be more appropriate to
rendering applications than to real-
time, where data integrity has priori-
ty over visual quality. Considering
the fact that it costs one quarter to
one twentieth the price of the 3D
packages it helps interface with, the
question of whether to buy PolyTrans
is moot. The only reason I wouldn’t

recommend buying this piece of soft-
ware is because you can get its big
brother Nugraf for a mere $100 more.
Nugraf offers a high-speed ray-trac-
ing/Z-scanline photorealistic renderer
that can handle huge datasets, very
complete interactive material, and
2D/3D texture editing support, all
with a much more extensive graphi-
cal user interface. ■

Company: Okino Computer
Graphics Inc.
Mississauga, Ontario,
Canada
(888) 336-5466
http://www.okino.com

Price: $395 Windows
95/NT, $495 Irix 5.2

System Requirements:
Windows 95/NT –
Minimum 386, 6MB
RAM, 30MB hard-disk
space. Irix 5.2 –
Minimum R4x00, 32MB
RAM, 30MB hard-disk
space.

Competitors: Viewpoint
Interchange and
Lambsoft Movetools

Pros:

1. Very powerful and robust
animation resampling
and keyframe reduction
algorithms.

2. Very attractive base
price.

3. Solid geometry conver-
sion, including support
for NURBS and spline
patch surfaces.

Cons:

1. ACIS, IGES 5.3,
Softimage and
Openflight add-on mod-
ules can end up costing
as much as the base
package.

2. Some features might not
work as expected, and
thus may require Okino’s
collaboration for cus-
tomization.

3. High level of technical
knowledge required.

PolyTrans 2.2

The same wolf character model, in PolyTrans.

B I T B L A S T S - P R O D U C T R E V I E W S

G A M E D E V E L O P E R J A N U A R Y 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

16 MultiGen’s
Creator 2.1

by Jeff Abouaf

C reating 3D game objects tradi-
tionally involves a lot of back-
and-forth between the model-

er and the programmer. Usually, an

artist takes a stab at creating a low-
polygon model, then hands it off to a
programmer. The programmer evalu-
ates the model’s behavior in the game
engine, and then sends the model back
to the artist with comments. Creator,
from MultiGen-Paradigm, is a design
tool that helps artists create better
models from the start.

Creator is a highly specialized tool
that helps 3D modelers create efficient
polygonal objects for real-time 3D
applications. It complements tradition-
al animation development environ-
ments such as 3D Studio MAX. Creator
lets you build objects a few faces at a
time; as you build faces and objects,
Creator constructs an underlying data-
base for the model. This database is
then sent through your game’s engine
at run time. Because Creator lets the
artist construct an efficient hierarchical
database from the beginning, it can
reduce the number of hand-offs
between artists and programmers.
CREATOR’S ROOTS. When MultiGen-
Paradigm Inc. released Creator 2.0 for
Windows NT in December 1997, it

brought to Windows NT a specialized
set of real-time authoring tools for-
merly available only on Irix (as
MultiGen II Pro). These capabilities
had been used to create military and
flight simulators, and more recently,
real-time 3D urban simulations. In
effect, Creator 2.0 was MultiGen II Pro
(their flagship product) redesigned,
less the road and advanced terrain
tools, and developed for Windows NT
(later ported to the SGI).

This past October, MultiGen
released Creator 2.1, which incorpo-
rated all of the advanced features of
MultiGen II Pro. This high-end tool
set occupies a unique niche in the
market: most game developers use
Creator for its hierarchical database
editor, terrain tools, LOD tools, and
Road Pro options, while continuing to
use their other 3D content creation
tools for character animation, organic
modeling (Creator doesn’t support
patches or NURBs), and non–real-time
animation segments.

Creator uses a broad and extensible
3D file format called OpenFlight, which
was invented by MultiGen. Whereas
VRML is a minimal specification opti-
mized for real-time 3D (RT3D) over a
network, OpenFlight was designed to
meet the demanding requirements of
dedicated, stand-alone, high-end flight
simulators. The format accommodates
the development of new database
nodes, or “beads.” The Road Pro
options represent such a bead, in which
all road attributes can be written to a
single node. Creator 2.1 ships with its
SDK and a new Plug-in Wizard to sim-
plify plug-in development. Third par-
ties are extending Creator’s capabilities
by developing plug-ins, ranging from
new file translators to real-time viewers
within the product.
THE MODELING ENVIRONMENT. Creator
offers a split-screen layout that displays
both the scene and database hierarchy
(Figure 1). The database can be re-
ordered simply by dragging boxes
around. The boxes are represented top
to bottom by group(s), object(s), faces;
and left to right according to the order
in which they proceed through the
run-time engine. You can specify the
drawing order for faces, choosing from
fixed list (which determines the order
in which faces are painted), BSP, or Z-
buffer. The last option doesn’t require

F I G U R E 1 . Creator’s layout enables working interactively on the model, while

adjusting the underlying hierarchical database. Double-clicking on either the

object in the scene or the box in the database brings up a detailed attributes dia-

log box (not shown).

Jeff Abouaf is the principle at Ogle cg/fa, a multimedia and fine art design studio in
Mill Valley, Calif. He can be reached at jabouaf@ogle.com.

Excellent Very Good Average PoorBelow Average

h t t p : / / w w w. g d m a g . c o m J A N U A R Y 1 9 9 9 G A M E D E V E L O P E R

17

faces to be processed in a particular
order, but does require more powerful
3D graphics acceleration.

Creator doesn’t contain a run-time
engine. If you don’t have one, the
Performer-based “Per-Fly” is available
on Irix. On Windows NT, you can use
Open GVS, RealiView (Datapath’s
Realimation viewer program), or
SimStudio (NDimension Simulations
Inc.’s viewer), all of which are included
on the Creator Partner’s CD that’s
included with the product. Most
Creator users have a proprietary run
time in mind: for example, Atari’s
Creator-built environments in SAN

FRANCISCO RUSH ran on Atari’s own
engine. Creator also has special run-
time support for the Nintendo and
PlayStation. Specifically, the Creator
NIFF option allows N64 game develop-
ers to take full advantage of Creator’s
modeling and database features by pro-
viding an interface to the capabilities
provided in the Nintendo develop-
ment kit. Also, an optional .HMD con-
version tool provides support for
Sony’s Hierarchical Modeling Data
(HMD), their high-level graphics pro-
cessing framework available under the
PlayStation development environment.

Creator’s roots in visual simulation
are reflected in a very specialized tool
set. The only modeling techniques
available involve extrusion, lathing,
and lofting. Creator doesn’t support
spline modeling, patch modeling, and
NURBS modeling (as in, curve-based
modeling technologies). Creating a
simple rectangle requires you to posi-
tion a grid (the Tracking Plane), then
first and second diagonal points.
Building off of that surface requires
repositioning the Tracking Plane. At
first, this feels constraining, especially
compared to free-form drawing prod-
ucts such as 3D Studio MAX, Soft-
image, and others. But in practice, it
forces you to consider the need and
purpose of each face created, whether
the model is better optimized by slic-
ing, combining, or reshaping faces, and
how that face fits within the database.

For example, I recently generated a
low-polygon aircraft model with a “tra-
ditional” 3D modeling package. With
smoothing, the model required just
over 600 faces; a similar model built in
Creator resulted in about half the
faces, due to the manner in which it

was constructed and the ease of editing
faces. Creator has an extensive tool set
for working at face, edge, and vertex
levels, and additional tools for check-
ing for coplanar polygons or concave
polygons, which are illegal in most
run-time engines.

Creator’s Materials Palette gives con-
trol over the material’s shininess, opac-
ity (alpha), diffuse, ambient, specular,
and emissive attributes. The Texture
Palette lets you store groups of bitmap
textures for mapping onto objects, but
the materials and textures don’t sup-
port bump maps. Still, with vertex col-
oring, the materials capabilities, and
good texture maps, Creator can
achieve remarkable results. Figure 2 is a
screen shot of a warehouse model con-
taining 15 faces, 30 triangles, and a
768K RGB texture map.

Unlike 3D Studio MAX, Softimage,
and their competitors, Creator is not
an animation environment; the reason
being is that most RT3D animation
occurs at run time. However, you can
build minimal animation into a model
using the local degrees of freedom
(DOF) tools, or by creating a series of
position poses that can be cycled in a
flip-book. The former is useful for
rotating the wheels of a vehicle; the
latter works well for making a charac-

ter’s arm move or setting up a walk
cycle. In these examples, Creator could
take care of secondary movement,
while your run-time engine controls
translations in the scene.

Creator includes a powerful level of
detail (LOD) tool set for swapping
lower-polygon mesh copies, which is
useful for populating scenes with dis-
tant or background objects where
using a higher-detail model is a waste
of resources. You create a duplicate
model (or series of models) of lesser
detail, and Creator handles the task of
switching LODs based on the object’s
distance from the viewpoint (which
can be set manually or automatically).
More important, Creator can smooth
transitions by morphing vertices
between LODs, producing the effect of
a progressive mesh or intelligent poly-
gon decimation. But it does so without
introducing incompatible geometries
or file formats. In the aircraft model in
Figure 1, the highest LOD was about
300 faces, while the lowest was just 3.
Virtue 3D has developed VSimplify, an
intelligent polygon reduction plug-in
for Creator. VSimplify works by trian-
gulating all selected polygons on a
model, and reducing that number. In
the polygon-reduction process, you
can control the percentage of triangles

F I G U R E 2 . Creator’s materials and texturing capabilities support realistic

results. This warehouse model contains 15 faces, 60 vertices, and uses a 768K

texture map.

B I T B L A S T S - P R O D U C T R E V I E W S

G A M E D E V E L O P E R J A N U A R Y 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

18

to retain, the crease-angle threshold,
the object-boundary threshold, and the
deviation from the original bounding-
box size. Figure 3 shows VSimplify
applied to a crane model. From my
point of view, this plug-in fills a
noticeable gap in the LOD tool set.

PRO OPTIONS TOOLS. The two most
important additions to Creator in the
2.1 release are Pro Options Tools: the
advanced terrain-following tools and
the Road Pro package. These are
advanced tools designed for simula-
tions based on actual data. Creator can

import USGS or DTED files and con-
vert them to its own .DED file format,
generating scene terrain to double-pre-
cision accuracy. The new advanced ter-
rain capabilities enable importing satel-
lite image data, which can be mapped
onto the terrain. From this image data,
Creator can populate the scene with
trees, vegetation, and other features,
which, depending on hardware, can be
generated on-the-fly. If the geographi-
cal database is particularly large (for
instance, the U.S. Eastern Seaboard),
Creator can slice the terrain into tiled
sections for loading on-the-fly during
the simulation.

The Road Pro options consist of
three basic operations: road construc-
tion, road tessellation, and scenario
data. Road construction interactively
defines the type of road, beginning
and end points, curve, banking, and
slope. Road tessellation defines and
applies the road attributes, such as
light poles and signs, as well as road
LODs. The scenario data, such as lane
and centerline data, are additional
attributes that can be accumulated for
driving simulations. The detail and
accuracy of the roads generated and
the LOD capabilities reflect MultiGen’s
interests in urban simulation. For game
developers, you can drive along the
road and generate instrumentation for
the driving simulation.

Creator fits into the game develop-
ment workflow in two respects: it
works as a content/hierarchical data-
base creation environment in the first
place, or as an intermediary tool to be
used between a cinematic 3D authoring
tool (such as 3D Studio MAX,
Softimage, and so on) and the run-time
engine. While very powerful in its ter-
rain- and environment-building capa-
bility, Creator is not strong in character
modeling/animation, especially when
compared to Maya, Kinetix’s Character
Studio 2.0, Softimage, and Nichimen.
In my tests, Creator imported 3D
Studio MAX models well, preserving
the database hierarchy. However, I
found the time it took to edit the poly-
gon count from the 3D Studio model
was better spent rebuilding the model
from scratch in Creator using the 3D
Studio model as a template. My hope is
that VSimplify and other polygon
reduction tools on other packages will
alleviate this problem. ■

F I G U R E 3 . Applying Creator’s VSimplify plug-in to a low-polygon mesh reduced

the triangle count an additional amount. The plug-in works automatically,

allows you to preserve the original state, and toggle between the before and

after versions.

Company: MultiGen-
Paradigm Inc.
San Jose, Calif.
(408) 261-4100
http://www.multigen.com

Price: $9,500. The Road
Pro option is an addition-
al $12,000.

System Requirements:
Windows NT 4.0, 133 Mhz
Pentium P5, 32MB RAM,
1GB hard drive space,
and a 3D graphics
accelerator.

Pros:

1. Creator is very useful for
building CAD-accurate
RT3D environments, from
scratch or using USGS
data.

2. Its extensive tool set for
generating and editing
low-polygon models and
LODs is impressive.

3. It allows complete visual
editing of a hierarchical
database (no code),
bringing the artist close
to the programmer in the
production pipeline.

Cons:

1. While a visual authoring
environment, Creator is
not as interactive as it
may become. Fundament-
ally, this is a tool for cre-
ating and editing a data-
base one piece at a time.

2. The interface is an
improvement over
MultiGen II Pro on Irix,
but for the untrained, the
relationship between tool
palettes, menu items,
and step sequences
result in a significant
learning curve.

3. The price point may limit
size of the user base.

Creator 2.1:

b y J e f f L a n d e r G R A P H I C C O N T E N T

Consumers can now buy cards for
under $100 that deliver 3D graphics
performance that would have cost
thousands only a few years ago. This
added processing power leaves game
developers more and more time to ded-
icate to exploring other areas in com-
puter simulation.

I’m continually amazed that learning
a simple trick or technique can open
the door to so many different effects
and applications. In past columns, I’ve
discussed how techniques such as the
dot product and cross product can be
used in applications such as animation
and inverse kinematics. This month,
I’m going to apply these same, well-
used methods to the problem of colli-
sion detection. Collision detection is a
huge issue in graphics simulation. In
fact, it’s an active area of research, so
SIGGRAPH and professional journals
are a great source of information.

Let me start off by looking at some
common problems that can be impor-
tant to a variety of game applications.
These routines, though fairly simple,
are very handy to have in your library.
The first issue is how to determine
whether a point is inside an arbitrary
area. Detecting whether a point is
inside a convex polygon can be deter-
mined very easily. Figure 1 shows a
point inside a simple four-sided poly-
gon. Our first step is to create vectors
for each of the polygon edges and a
vector from the test point to the first
vertex of each edge. As you may recall
from previous columns, the dot prod-
uct of two vectors defines the cosine of
the angle between those vectors. If the
dot product for each of the edges is

positive, all the angles are less than 90
degrees and the point is inside the
polygon.

That rule is pretty useful for some
things. However, it only works when
the boundary that you’re checking is
convex. Many spaces that we’re inter-
ested in are actually concave (Figure 2).

This polygon looks like a character in
a DUKE NUKEM level. And in fact, DUKE

is a pretty good application for this
kind of test. Each “sector” of a DUKE

level is a polygonal boundary defining
a region with a specific floor and ceil-
ing height. Knowing whether I’m
inside or outside of a particular sector
is important information. Unfortun-
ately, the aforementioned dot product
test won’t work on these concave poly-
gons. I could divide this region into
smaller convex polygons, but that
wouldn’t be very efficient. Luckily, this
problem is the classic “point in poly-
gon” test that’s commonly described in
computational geometry books. There
are many approaches to solving this

problem, but I want to look at just two
of them.

Here We Go Round the Vertex List

O ne method for determining if the
test point is inside the concave

polygon comes from the idea that a cir-
cle is 360 degrees. Calculate the angle
between each vertex and the test point
(at the test point itself) and then add
up all the angles. If the total is equal to
360, then you are inside. You can see

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 9 G A M E D E V E L O P E R

21

Crashing into the New Year

I t’s hard to believe that it’s already 1999. The last year moved at an incredible

pace. It was a year with amazing advances in the visual quality of games. The

predictions that 3D hardware would become a major force in the industry

have come true.

Jeff made a resolution this year to shrink his own bounding box and to spend more
time away from the computer. Show him how futile this is by mailing him at
jeffl@darwin3d.com.

a

b
c

d

A

B

C

D

Test Point

F I G U R E 1 . Inside a convex polygon.

Test Point

F I G U R E 2 . Inside a concave polygon.

Test Point

F I G U R E 3 . Angles around the test

point.

what this looks like in Figure 3.
This actually works very well, how-

ever, it is not very efficient. Calculating
each angle requires a dot product and
an arccosine operation. Those will add
up quickly.

A better strategy is to divide the
polygon into quadrants centered on
the test point, as in Figure 4. Start at
the first vertex in the polygon and set a
counter to 0. Anytime an edge crosses
from one quadrant to the next, add
one to the counter if it crosses clock-
wise around the test point and subtract
one if it crosses counter-clockwise. If
the edge crosses diagonally across two
quadrants, you need to determine
which side of the test point it crossed,
and then either add or subtract 2. Try it
yourself on Figure 4. Start at vertex 1.
Add 1 when edge 3-4 crosses from
quadrant I to II, and subtract it again
with edge 4-5. When you reach the last
edge (11-1), you should have 4. When
using the routine, if the counter is
equal to 4 or –4, the test point is inside
the polygon. You can see the code for
this routine in Listing 1.

Don’t Cross that Line

T he quadrant method is pretty effi-
cient. However, there’s a com-

pletely different approach. An interest-
ing feature of this problem can be
found if you draw a line from the test
point to a point definitely outside the
polygon. Now count how many poly-
gon edges crossed that line. If that
number is odd, the point is inside the
polygon. If the number of edge cross-
ings is even, the point is on the out-
side. Try it out.

I saw a pretty fast way to implement
this in Graphic Gems IV. This method
projects a line from the hit position
along the x axis. Only testing line seg-
ments that are on either side of this
position lets you avoid some calcula-
tions. Segments that could cross this

line require an x intercept calculation
to be sure. However, this can be sim-
plified to eliminate a divide because of
the unique needs of the test. The code
for this routine is in Listing 2.
Whether or not this method is faster
than the quadrant method depends

G R A P H I C C O N T E N T

G A M E D E V E L O P E R J A N U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

22

//// FFIIGGUURREE OOUUTT WWHHIICCHH QQUUAADDRRAANNTT TTHHEE VVEERRTTEEXX IISS RREELLAATTIIVVEE TTOO TTHHEE HHIITT PPOOIINNTT

##ddeeffiinnee WWHHIICCHH__QQUUAADD((vveerrtteexx,, hhiittPPooss)) \\

((((vveerrtteexx..xx >> hhiittPPooss-->>xx)) ?? ((((vveerrtteexx..yy >> hhiittPPooss-->>yy)) ?? 11 :: 44)) :: ((((vveerrtteexx..yy >> hhiittPPooss-->>yy)) ?? 22

:: 33))))

//// GGEETT TTHHEE XX IINNTTEERRCCEEPPTT OOFF TTHHEE LLIINNEE FFRROOMM TTHHEE CCUURRRREENNTT VVEERRTTEEXX TTOO TTHHEE NNEEXXTT

##ddeeffiinnee XX__IINNTTEERRCCEEPPTT((ppooiinntt11,, ppooiinntt22,, hhiittYY)) \\

((ppooiinntt22..xx -- ((((((ppooiinntt22..yy -- hhiittYY)) ** ((ppooiinntt11..xx -- ppooiinntt22..xx)))) // ((ppooiinntt11..yy -- ppooiinntt22..yy))))))

//

//// PPrroocceedduurree:: PPooiinnttIInnPPoollyy ((SSUUMM OOFF AANNGGLLEESS CCRROOSSSSIINNGG VVEERRSSIIOONN))

//// PPuurrppoossee:: CChheecckk iiff aa ppooiinntt iiss iinnssiiddee aa ppoollyyggoonn

//// RReettuurrnnss:: TTRRUUEE iiff PPooiinntt iiss iinnssiiddee ppoollyyggoonn,, eellssee FFAALLSSEE

//

BBOOOOLL CCFFaatteeVViieeww::::PPooiinnttIInnPPoollyy((ttSSeeccttoorr **sseeccttoorr,, ttPPooiinntt22DD **hhiittPPooss))

{{

////// LLooccaall VVaarriiaabblleess //

sshhoorrtt eeddggee,, ffiirrsstt,, nneexxtt;;

sshhoorrtt qquuaadd,, nneexxtt__qquuaadd,, ddeellttaa,, ttoottaall;;

//

eeddggee == ffiirrsstt == sseeccttoorr-->>eeddggee;;

qquuaadd == WWHHIICCHH__QQUUAADD((mm__eeddggeelliisstt[[eeddggee]]..ppooss,, hhiittPPooss));;

ttoottaall == 00;; //// CCOOUUNNTT OOFF AABBSSOOLLUUTTEE SSEECCTTOORRSS CCRROOSSSSEEDD

//** LLOOOOPP TTHHRROOUUGGHH TTHHEE VVEERRTTIICCEESS IINN AA SSEECCTTOORR **//

ddoo {{

nneexxtt == mm__eeddggeelliisstt[[eeddggee]]..nneexxtteeddggee;;

nneexxtt__qquuaadd == WWHHIICCHH__QQUUAADD((mm__eeddggeelliisstt[[nneexxtt]]..ppooss,, hhiittPPooss));;

ddeellttaa == nneexxtt__qquuaadd -- qquuaadd;; //// HHOOWW MMAANNYY QQUUAADDSS HHAAVVEE II MMOOVVEEDD

//// SSPPEECCIIAALL CCAASSEESS TTOO HHAANNDDLLEE CCRROOSSSSIINNGGSS OOFF MMOORREE TTHHEENN OONNEE QQUUAADD

sswwiittcchh ((ddeellttaa)) {{

ccaassee 22:: //// IIFF WWEE CCRROOSSSSEEDD TTHHEE MMIIDDDDLLEE,, FFIIGGUURREE OOUUTT IIFF IITT WWAASS CCLLOOCCKKWWIISSEE OORR CCOOUUNNTTEERR

ccaassee --22:: //// UUSS TTHHEE XX PPOOSSIITTIIOONN AATT TTHHEE HHIITT PPOOIINNTT TTOO DDEETTEERRMMIINNEE WWHHIICCHH WWAAYY AARROOUUNNDD

iiff ((XX__IINNTTEERRCCEEPPTT((mm__eeddggeelliisstt[[eeddggee]]..ppooss,, mm__eeddggeelliisstt[[nneexxtt]]..ppooss,, hhiittPPooss-->>yy)) >> hhiittPPooss-->>xx))

ddeellttaa == -- ((ddeellttaa));;

bbrreeaakk;;

ccaassee 33:: //// MMOOVVIINNGG 33 QQUUAADDSS IISS LLIIKKEE MMOOVVIINNGG BBAACCKK 11

ddeellttaa == --11;;

bbrreeaakk;;

ccaassee --33:: //// MMOOVVIINNGG BBAACCKK 33 IISS LLIIKKEE MMOOVVIINNGG FFOORRWWAARRDD 11

ddeellttaa == 11;;

bbrreeaakk;;

}}

//** AADDDD IINN TTHHEE DDEELLTTAA **//

ttoottaall ++== ddeellttaa;;

qquuaadd == nneexxtt__qquuaadd;; //// RREESSEETT FFOORR NNEEXXTT SSTTEEPP

eeddggee == nneexxtt;;

}} wwhhiillee ((eeddggee !!== ffiirrsstt));;

//** AAFFTTEERR AALLLL IISS DDOONNEE IIFF TTHHEE TTOOTTAALL IISS 44 TTHHEENN WWEE AARREE IINNSSIIDDEE **//

iiff ((((ttoottaall ==== ++44)) |||| ((ttoottaall ==== --44)))) rreettuurrnn TTRRUUEE;; eellssee rreettuurrnn FFAALLSSEE;;

}}

L I S T I N G 1 . The quadrant approach to the bounding box test.

Test Point

1

2

3

4

5
6

7

8

9

10

11

III

IIIIV

F I G U R E 4 . Dividing the polygon into

quadrants.

greatly on the polygon being testing.
The routines are so easy to implement
that you should try both in your appli-
cation if speed is a real issue.

Standing at Arm’s Length

T he above routines are enough to
let your player navigate around in

a DOOM-style level. You would just
need to make sure that the player is
always inside a sector. If the player
leaves one sector and does not enter
any other, a “collision” has happened.
This works very well. However, using
the inside polygon test for collision by
itself has a drawback. The player can
get very close to the wall of a sector
and still be considered “inside.”
Logically, this works fine. However, in
a 3D rendered game engine, being too
close to a wall is a bad thing. Textures
will look blocky, they can distort
badly, and walls may clip out.

What you really want to do is keep
the walls at “arm’s length” from the
player. You can simply make the logi-
cal collision walls closer in than the
visual walls; however, this can lead to
other problems. So how do I keep the
character away from the wall? Turn
once again to our dear old friend, the
dot product. Take a look at Figure 5.

What I want to know is, how far
away is the test point, t, from line seg-
ment A. An easy solution would be to
find the nearest point, n, to the test
point on the line segment and mea-
sure the distance to it. First, I create a
vector, B, from the test point, t, to ver-
tex p1. I can dot this vector with the
line segment A. This will give me the
cosine of the interior angle. If this
angle is 90 degrees or greater, the

nearest point is the vertex itself and
I’m done. But let’s say that the dot
product gives me 0.7, or the cosine of
about 45 degrees. I will then do the
same thing on the other side. I create
a vector C and dot it with the segment
A. If it had returned an angle greater
than or equal to 90 degrees, point p2
would be the closest and I would be
done again. In this case, the dot prod-
uct returns 0.75, or the cosine of
about 40 degrees. Now that I have the
two dot products, a linear ratio will
solve the problem.

You can see the code that deter-
mines the nearest point on a line seg-
ment to an input point in Listing 3.
The squared distance from t to n can
be used to make sure the player can-
not get too close to the wall. When I

combine this with the inside-polygon
tests, I have the pieces I need to create
a DOOM-style collision model. In these
days of QUAKE II and UNREAL, it may
seem a bit retro to talk about DOOM-
style collision detection. However, the
ability to build simple collision
boundaries that you can use and mod-
ify in real-time is a very attractive fea-
ture. Rules in game development are
meant to be broken. Just because these
days you are displaying a world made
of 3D polygons, your collision bound-
aries don’t have to be 3D polygons.
Many of the environments we wish to
interact with have boundaries that
can easily be defined as 2D concave-
polygonal-line-segments. Sometimes
the best results can be achieved with
simple solutions. If you didn’t have
these routines already in your math
library, add them and you will be sur-
prised by how often you use them.

n p
p p B A
B A C A

= +
− •
• + •1

2 1() * ()
() ()

G R A P H I C C O N T E N T

G A M E D E V E L O P E R J A N U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

24

//
//// PPrroocceedduurree:: PPooiinnttIInnPPoollyy ((EEDDGGEE CCRROOSSSSIINNGG VVEERRSSIIOONN))
//// PPuurrppoossee:: CChheecckk iiff aa ppooiinntt iiss iinnssiiddee aa ppoollyyggoonn
//// RReettuurrnnss:: TTRRUUEE iiff PPooiinntt iiss iinnssiiddee ppoollyyggoonn,, eellssee FFAALLSSEE
//
BBOOOOLL CCFFaatteeVViieeww::::PPooiinnttIInnPPoollyy((ttSSeeccttoorr **sseeccttoorr,, ttPPooiinntt22DD **hhiittPPooss))
{{
////// LLooccaall VVaarriiaabblleess //

sshhoorrtt eeddggee,, ffiirrsstt,, nneexxtt;;
ttPPooiinntt22DD **ppnntt11,,**ppnntt22;;
BBOOOOLL iinnssiiddee == FFAALLSSEE;; //// IINNIITTIIAALL TTEESSTT CCOONNDDIITTIIOONN
BBOOOOLL ffllaagg11,,ffllaagg22;;

//
eeddggee == ffiirrsstt == sseeccttoorr-->>eeddggee;; //// SSEETT UUPP IINNIITTIIAALL CCOONNDDIITTIIOONNSS
ppnntt11 == &&mm__eeddggeelliisstt[[eeddggee]]..ppooss;;
ffllaagg11 == ((hhiittPPooss-->>yy >>== ppnntt11-->>yy)) ;; //// IISS TTHHEE FFIIRRSSTT VVEERRTTEEXX OOVVEERR OORR UUNNDDEERR TTHHEE LLIINNEE
//** LLOOOOPP TTHHRROOUUGGHH TTHHEE VVEERRTTIICCEESS IINN AA SSEECCTTOORR **//
ddoo {{

nneexxtt == mm__eeddggeelliisstt[[eeddggee]]..nneexxtteeddggee;; //// CCHHEECCKK TTHHEE NNEEXXTT VVEERRTTEEXX
ppnntt22 == &&mm__eeddggeelliisstt[[nneexxtt]]..ppooss;;

ffllaagg22 == ((hhiittPPooss-->>yy >>== ppnntt22-->>yy));; //// IISS IITT OOVVEERR OORR UUNNDDEERR

iiff ((ffllaagg11 !!== ffllaagg22)) //// MMAAKKEE SSUURREE TTHHEE EEDDGGEE AACCTTUUAALLLLYY CCRROOSSSSEESS TTHHEE TTEESSTT XX AAXXIISS
{{

//// CCAALLCCUULLAATTEE WWHHEETTHHEERR TTHHEE SSEEGGMMEENNTT AACCTTUUAALLLLYY CCRROOSSSSEESS TTHHEE XX TTEESSTT AAXXIISS
//// AA TTRRIICCKK FFRROOMM GGRRAAPPHHIICC GGEEMMSS IIVV TTOO GGEETT RRIIDD OOFF TTHHEE XX IINNTTEERRCCEEPPTT DDIIVVIIDDEE
iiff ((((((ppnntt22-->>yy -- hhiittPPooss-->>yy)) ** ((ppnntt11-->>xx -- ppnntt22-->>xx)) >>==

((ppnntt22-->>xx -- hhiittPPooss-->>xx)) ** ((ppnntt11-->>yy -- ppnntt22-->>yy)))) ==== ffllaagg22))
iinnssiiddee == !!iinnssiiddee;;//// IIFF IITT CCRROOSSSSEESS TTOOGGGGLLEE TTHHEE IINNSSIIDDEE FFLLAAGG ((OODDDD IISS IINN,, EEVVEENN OOUUTT))
}}

ppnntt11 == ppnntt22;; //// RREESSEETT FFOORR NNEEXXTT SSTTEEPP
eeddggee == nneexxtt;;
ffllaagg11 == ffllaagg22;;
}} wwhhiillee ((eeddggee !!== ffiirrsstt));;
rreettuurrnn iinnssiiddee;;

}}

L I S T I N G 2 . The x intercept calculation.

A

B C

p2

t

n

p1

F I G U R E 5 . Checking the distance.

Colliding in the Third Dimension

R unning around a maze is one
thing, but that’s just the begin-

ning to the collision detection story.
Consider the problem of determining if
two objects have collided. Two of the
most common approaches to this prob-
lem are bounding boxes and bounding
spheres. For a bounding sphere, find the
point furthest away from the center of
the object. The distance of the point
from the center defines the radius of the
bounding sphere. You can see a bound-
ing sphere around an object in Figure 6.
Now imagine that the object and circle
around it are actually 3D. As you can
see, although the entire object is inside
the sphere, it isn’t a snug fit. You can
see how easy it would be to have an
object that would hit the bounding
sphere yet miss the object completely.

So why use a bounding sphere? Well,
testing to see if a collision has occurred
is really fast. If you measure the distance
between two objects, and the distance is
less than the radius of either bounding
sphere, then there is a collision. This is a
very quick test, so it’s easy to see why
many games use spheres as at least a
first line of defense. But if you need to
determine exactly where two objects
made contact, this won’t be enough.

Axis-aligned bounding boxes, or
bounding boxes for short, are another
simple method for collision detection.
The box is called axis-aligned because
the sides of the box are parallel to the
principle world x, y, and z axes. This
reduces the check for collision to a sim-
ple minimum-maximum test. You create
the box by determining the minimum
and maximum extents in each dimen-

sion. The collision test then consists of:

IIFF ((((ppooiinntt..xx >>== bbooxx..mmiinnXX

aanndd ppooiinntt..xx <<== bbooxx..mmaaxxXX))

aanndd ((ppooiinntt..yy >>== bbooxx..mmiinnYY

aanndd ppooiinntt..yy <<== bbooxx..mmaaxxYY))

aanndd ((ppooiinntt..zz >>== bbooxx..mmiinnZZ

aanndd ppooiinntt..zz <<== bbooxx..mmaaxxZZ))

)) tthheenn aa ccoolllliissiioonn ooccccuurrrreedd..

Bounding boxes are a simple, fast
way to check for rough collisions.
However, like the bounding spheres,
the fit is not necessarily very accurate.
They’re generally used as a first test to
check if further investigation is needed.
You can improve the fit by maintain-
ing a hierarchy of smaller bounding
boxes or spheres that are tested after
the initial collision is determined. For
many games, such as 3D fighting
games which require fairly detailed col-
lision, this is enough for realism. If you
need more detailed collision informa-
tion, you need to look elsewhere.

Other methods such as oriented
bounding boxes (OBB), where the
bounding box is allowed to rotate to an
arbitrary orientation, will allow for a
tighter fit than either above method.
However, even OBBs do not provide
information on the exact point of colli-
sion on an arbitrary mesh unless the
object happens to be a box.

Getting to the Point

I f you really need to know which
point of an object has collided with

another — say for your realistic
physics simulation — you have some
work in front of you. All the other
techniques are good first steps, and
serve to filter out unneeded calcula-
tions. I’m going to start out in 2D
again to make things easy. Let me
begin by considering only convex
objects. Remember that convex
objects are polygon meshes that con-

G R A P H I C C O N T E N T

G A M E D E V E L O P E R J A N U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

26

//

//// PPrroocceedduurree:: GGeettNNeeaarreessttPPooiinntt

//// PPuurrppoossee:: FFiinndd tthhee nneeaarreesstt ppooiinntt oonn aa lliinnee sseeggmmeenntt

//// AArrgguummeennttss:: TTwwoo eennddppooiinnttss ttoo aa lliinnee sseeggmmeenntt aa aanndd bb,,

//// aanndd aa tteesstt ppooiinntt cc

//// RReettuurrnnss:: SSeettss tthhee nneeaarreesstt ppooiinntt oonn tthhee sseeggmmeenntt iinn nneeaarreesstt

//

vvooiidd CCFFaatteeVViieeww::::GGeettNNeeaarreessttPPooiinntt((ttPPooiinntt22DD **aa,,ttPPooiinntt22DD **bb,,ttPPooiinntt22DD **cc,,ttPPooiinntt22DD **nneeaarreesstt))

{{

////// LLooccaall VVaarriiaabblleess //

lloonngg ddoott__ttaa,,ddoott__ttbb;;

//

//// SSEEEE IIFF aa IISS TTHHEE NNEEAARREESSTT PPOOIINNTT -- AANNGGLLEE IISS OOBBTTUUSSEE

ddoott__ttaa == ((cc-->>xx -- aa-->>xx))**((bb-->>xx -- aa-->>xx)) ++ ((cc-->>yy -- aa-->>yy))**((bb-->>yy -- aa-->>yy));;

iiff ((ddoott__ttaa <<== 00)) //// IITT IISS OOFFFF TTHHEE aa VVEERRTTEEXX

{{

nneeaarreesstt-->>xx == aa-->>xx;;

nneeaarreesstt-->>yy == aa-->>yy;;

rreettuurrnn;;

}}

ddoott__ttbb == ((cc-->>xx -- bb-->>xx))**((aa-->>xx -- bb-->>xx)) ++ ((cc-->>yy -- bb-->>yy))**((aa-->>yy -- bb-->>yy));;

//// SSEEEE IIFF bb IISS TTHHEE NNEEAARREESSTT PPOOIINNTT -- AANNGGLLEE IISS OOBBTTUUSSEE

iiff ((ddoott__ttbb <<== 00))

{{

nneeaarreesstt-->>xx == bb-->>xx;;

nneeaarreesstt-->>yy == bb-->>yy;;

rreettuurrnn;;

}}

//// FFIINNDD TTHHEE RREEAALL NNEEAARREESSTT PPOOIINNTT OONN TTHHEE LLIINNEE SSEEGGMMEENNTT -- BBAASSEEDD OONN RRAATTIIOO

nneeaarreesstt-->>xx == aa-->>xx ++ ((((bb-->>xx -- aa-->>xx)) ** ddoott__ttaa))//((ddoott__ttaa ++ ddoott__ttbb));;

nneeaarreesstt-->>yy == aa-->>yy ++ ((((bb-->>yy -- aa-->>yy)) ** ddoott__ttaa))//((ddoott__ttaa ++ ddoott__ttbb));;

}}

L I S T I N G 3 . Finding the nearest point on a line segment.

F I G U R E 6 . A bounding sphere.

tain no interior angles greater than
180 degrees. Figure 7 outlines the
problem.

I am interested in deciding whether
polygon 1 is colliding with polygon 2.
I could use my point-in-polygon test
from earlier, and test every point in
each polygon and see if it’s in the
other. That wouldn’t be very efficient
though, and in 3D it would be even
less reasonable. What I really want to
find is a single feature that makes it
impossible for polygon 2 to be inside
polygon 1. It turns out that if I can
find a line that separates the two poly-
gons, then they cannot be colliding.
To make it easier, I will use the edges
of each polygon as a test line. If all the
vertices of polygon 2 are on the other
side of an edge in polygon 1, they
aren’t colliding.

You will recall from the convex

point-in-polygon test that I used the
dot product to determine if a point was
inside an edge. I can use the same test
to see if a point is outside. In other
words, iiff vveeccttoorrbbaa ddoott vveeccttoorrbbcc << 00,, tthheenn
ppooiinntt cc iiss oouuttssiiddee ooff ppoollyyggoonn 11..

That dot product operation sure
comes in handy. In 3D, you would be
dotting the face normal with the test
point, but it works out similarly. The
first time you test to find this separat-
ing edge, you need to test all edges in
each polygon against all the vertices in
the opposite one. However, once you

have found a separating edge, you can
store this information so that edge is
the first one you will test the next time
you try. This caching of collision
points can speed up testing quite a bit,
and I highly recommend it.

That is all the time I have for this
month. Next month, I will examine
what exactly is required for detecting
the collision point in 3D. I will also
discuss what you can do with this
information once you have it, and
work out some cool samples to
demonstrate it. ■

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 9 G A M E D E V E L O P E R

27

• O’Rourke, Joseph. Computation

Geometry in C. Cambridge University

Press, 1993. A very good discussion of

point-in-polygon strategies as well as

path finding and convex hull operations

(hint: may be handy).

• Heckbert, Paul S., Editor. Graphic

Gems IV. Academic Press, 1994. Inside

polygon strategies and routines.

• Baraff, David, and Andrew Witkin.

“Physically Based Modeling,” SIG-

GRAPH Course Notes, July, 1998, pp.

D32 – D40. Collision detection and

response methods.

FF OO RR FF UU RR TT HH EE RR II NN FF OO

a

b

c

1

2

F I G U R E 7. Two convex polygons.

With today’s hardware, the bounding
box around our capabilities has
expanded exponentially, and the digital
vistas we create are beginning to look
more and more like what we see outside
our office windows. However, with the
added functionality comes added
responsibility and expectation; game
players are becoming savvy to the RT3D
scene, and have come to expect a level
of quality that doesn’t always come eas-
ily. Successfully creating a living,
breathing environment that con-
tributes to game play instead of com-
promising it can be a daunting task,
especially with this industry’s stringent
deadlines. To top it off, the endless
tweaking and reworking that we artists
are all prone to while trying to “get it
just right” can lead to resource bottle-
necks and missed deadlines, which in
turn create undue friction between art
and design, and undermine the creative
process for the entire team.

Part 1: Working with
Game-Play–Critical Objects

O ver the next two months, we’ll
examine how to successfully

generate the art resources for a RT3D
title, from the initial design document
to the final gold-master CD. We’ll
look at planning strategies and artistic
techniques, and also discuss some
common pitfalls. The goal will be to
look at the problem from both the
standpoint of a beginning team tack-
ling its first project, as well as from
the point of view of a seasoned pro-
duction staff ramping up in the first
quarter of the year.

Step 1: Creating the Art Bible

W e’ll begin with the assumption
that your team has progressed

through the initial design and planning
stage of the project. You have generated
a game design document that reflects
the contributions made by the respec-
tive team leads. The basic game play
mechanic, the artistic look-and-feel,
and the engine and tools parameters
have all been defined. Most important-
ly for this discussion, the section of the
game design document pertaining to
the look-and-feel of the game, the art
bible, should be complete.

The art bible will serve as the govern-
ing reference document for the art team
throughout the project. From an artistic
standpoint, creating a solid art bible is
one of the most important tasks that an
art lead will face; it will focus the cre-
ative efforts of the art team and remove
any ambiguity as to the artistic vision
for the game.

What should be included in the art
bible? As a general rule, most of the ini-
tial conceptual work for the game
should be included. Pencil renderings,
photographs, and computerized mock-
ups should be included, all with writ-
ten descriptions highlighting the perti-
nent features of each image. These
should be of sufficient detail and depth
to provide the entire art team with a
clear idea of what the art direction will
be; character and creature designs,
architectural types, landscapes and

scenery, and lighting styles should all
be identified. Enough information
should be available and presented in
such a manner that a new artist com-
ing on board can get a clear indication
of the art direction of the game simply
by reading the art bible.

This is not to say that the vision is
immutable and not subject to change.
Quite the contrary, because another
property of a good art bible is that it
remains liquid and alive throughout
the development process (time permit-

Mel has worked in the games industry for several years, with past experience at
EIDOS and Zombie. Currently, he is working as the art lead on DRAKAN

(http://www.surreal.com). Mel can be reached via e-mail at mel@surreal.com.

b y M e l G u y m o n

Resource Production
Flowchart

Game Design Document

Art Bible

Identify Gameplay-Critical Items

Generate Functional Renderings

Object Construction

Evaluate Result

Gameplay Testing

Sign-off as Completed

A R T I S T ’ S V I E W

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 9 G A M E D E V E L O P E R

29

Playing God:

World Creation in Real-Time 3D

Until very recently, creating a fully immersive RT3D environment used to

be an exercise in minimalism. Software-only rendering engines and lim-

ited texture budgets set a bounding box that often resulted in a pixelated

and blocky virtual world.

F I G U R E 1 . Resource production

flowchart.

ting). Having a benchmark against
which to measure new ideas is the basis
of any good iterative process. A solid

vision early on is what allows the
process to be fluid. Alternatively, a
weak vision at the start can lead to
indecisiveness regarding later courses
of action. This can be a fatal flaw in the
production cycle because a true, coher-
ent vision of the game will probably
never be reached.

Step 2: Identify
Game-Play–Critical Items

N ow that you’ve outlined the game
on paper, it’s time to define and

prioritize your work list. Working with
design, you need to analyze and dis-
sect your concept pieces to determine
what aspects of each can be readily
translated into the game engine. One
way of doing this is to ask the ques-
tion, “What must I create, as a mini-
mum, to get the point across.” Or, put
another way, how many trees does it
take to create a forest, when does a
group of houses actually start to look
like a town, and so on? Obviously, you
can’t expect to be able to duplicate
your world down to every branch and
leaf, but a forest with only a few trees
probably won’t be convincing.

All this is done with the underlying
knowledge that the game still has to
run on the target platform. Inevitably,
it will come down to questions such
as, “If I reduce my target polygon
count on my town hall by 200 poly-
gons, how many extra trees will this
buy me?”

Once you’ve outlined the basic
pieces necessary to create your game-
play environment, you need to identi-
fy those aspects of the game that fall
into the “game-play–critical” category.
These objects will have to go through a
more rigorous testing process to ensure
functionality, and therefore should be
treated as a separate case. These would
include any items associated with
traps, puzzles, mechanisms, and so on,
but the category also includes those

aspects of the game that are unique to
the genre that you are creating. For
example, let’s say that in one of the

levels, the player will encounter a
pirate ship manned by orcs. The ship
will have internal spaces, and a large
portion of the level’s game play takes
place on or around the vessel.
Therefore, the pirate ship falls into the
category of “game-play–critical
objects.” To assure yourself that a cer-
tain task is game-play–critical, ask the
question “If I removed this object from
the game, would the game-play
mechanic suffer significantly?” If the
answer is yes, that object is game-
play–critical.

After you’ve identified all of the
game-play–critical aspects of the game,
the remaining tasks can be grouped in
the non–game-play–critical list. These
are items that, although they don’t
affect the actual game-play mechanic
directly, are crucial to the successful
creation of a convincing environment.
For instance, if we look at the previous
example, the pirate ship in question
was obviously critical to game play,

because by removing it you would be
eliminating one of the character’s main
objectives. However, the fish in the
ocean, the clouds in the sky, the trees
on the beach, and even the water itself
are all examples non–game-play–criti-
cal objects. They are just as important
to the overall gaming experience, for
they are the backdrop against which
the ship is made to appear real.
GAME-PLAY–CRITICAL VS. NON–GAME-
PLAY–CRITICAL. The main difference here
is that for game-play–critical items, the
design team will need to work hand-in-
hand with the art team to ensure prop-
er execution of the game-play mechan-
ic. This dialogue needs to begin early
on, and should be a continuation of
the initial process of generating the
game design document. Getting input
from the design team while the con-
cept is still on paper will save
headaches later on, and also guarantees
that the artistic vision and game-play
mechanic remain concurrent. One way
to do this is to assign a designer and an
artist to each task on the list.

Step 3: Functional Renderings

F orm follows function, and for the
game-play–critical objects, this is

the point in the process where design’s
input is most appropriate, because the

A R T I S T ’ S V I E W

G A M E D E V E L O P E R J A N U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

30

F I G U R E 2 . Pirate ship concept piece.

Having a benchmark against which to measure
new ideas is the basis of any good iterative
process.

most crucial feature of these items is
their functionality. How does this
object work and how does the player
interact with it? What are the parame-
ters the artist must hold to ensure the
functionality of the item? To answer
these questions it is often necessary to
reduce the original artistic concept
rendering down to a line drawing that
only identifies the key functional
areas. Getting at the bare bones of the
design will help the artist to isolate
those aspects of game play that need
to be preserved when creating the
object in 3D.

Figure 2 shows the initial concept
piece for a pirate ship in the game
DRAKAN (in development at Surreal
Software). The rendering is stylized
and holds to the artistic vision of the
game. Note the exaggerated details
that will be almost impossible to
reproduce: individual oars, spear
posts, and ship’s rigging.

Figure 3 shows a functional render-
ing of the pirate ship, based on the
game-play mechanic of the designers.
Note that now particular attention is
being paid to the ship internals, where
additional game play will take place.
Character silhouettes are included so
that there is no ambiguity as to the
scale of the object. Note again that
some of the features from the original
concept piece have been removed,
and the functional rendering, while
not polygonal itself, is closer to the
target that the artist will be aiming for
when converting the 2D concepts into
3D content.

Note that while this phase usually
takes only a few hours to complete for
any given item, spending an extra
hour working out the bugs on paper
can save weeks of work later.

Step 4: Object Construction

N ow it’s finally time for the artist
to go away and work at the com-

puter. From the line drawing generated
earlier, and the conceptual art created
early on, we have created a clear vision
in the artist’s head of what he’s going
to build long before he sits down at his
machine. At this point, the artist must
merge the functional design with the
artistic vision for the game.

Figure 4 shows an example of the
pirate ship in its fully modeled and

textured form. Note that the polygo-
nal version of the object does not sig-
nificantly differ from the concept
pieces. Except for some minor changes
to the decking and hull design, the
artist has achieved a true interpreta-
tion of the concept piece.

Step 5: Evaluate the Result

N ow that the object has been mod-
eled, it is important for the artist

and designer to look over the results
briefly before implementing the object
in the game. Has the artist stayed with-

A R T I S T ’ S V I E W

G A M E D E V E L O P E R J A N U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

32

F I G U R E 3 . Pirate ship functional rendering.

F I G U R E 4 . Pirate ship model.

in the boundaries set forth by the
original artistic vision? Does the object
meet the functional design criteria origi-
nally set forth? Have any problems been
identified with the design as a result of
actually building the object? Has the
design changed significantly, and if so,
how will this affect the flow of game
play? All these questions should be
answered, and the soundness of the
design and the functionality should be
verified before you spend the time to
implement the object in the game.

Step 6: Game-Play Testing

T his is the final litmus test to deter-
mine whether you’ve achieved your

goal. If you’ve done a thorough job of
completing the preceding steps, it’s a
good bet that you’ve hit it right the first
time. The true value of the process will
become clear the first time you try skip-
ping a few steps and rushing the object
into the game. Either the look will be
wrong, or the object won’t function
properly, or both. And in a production
environment, this can be a killer
because tight deadlines and robust
schedules are the norm in this industry.
You just can’t afford to have production
come to a grinding halt as design and
programming are bottlenecked while
waiting for resources that are being re-
done for the umpteenth time.

The critical aspect about this phase is
timing. Once objects are finished being
created, you need to have an efficient
pipeline for getting them into the
game engine and tested as soon as pos-
sible. The dead time between object
completion and game-play testing is a
black hole in which the iterative feed-
back process suffers and creative moti-
vation wanes. An artist may work on
anywhere from a few dozen to a few
hundred objects for a game, and get-
ting the objects implemented and test-
ed in the game while the vision is still
fresh in the artist’s mind can really
make the difference.

If you haven’t met your goal, it’s
time to back up a few steps and
regroup with design to determine the
problem. If the look is wrong, but the
object works correctly, you only need
to give the artist some more time work-
ing the model. However, if the design
is wrong and the object functions
incorrectly, both art and design need

to work together to fix the problem,
and fix it fast, because now you’re
probably going to be behind schedule
and rushing to get the work finished.

Step 7: Sign Off as Completed

T his is the last step in the process
— when the artist can take the

object and make some final adjust-
ments. Most likely, the only thing left
to do is polish up the texture maps
and adjust mapping coordinates. If
you find that you’re having to do a lot
of polygon modeling and vertex
adjustment here, you’ve probably
jumped the gun, and you’ll need to go
back and do some more game-play
testing on the newly modeled areas.

Oddly enough, this is the step in the
process where most artists run astray.
In an effort to massage the art into
looking just a little bit better, they
inevitably introduce changes that

require retesting the object and diving
back into the art path. Furthermore,
because most talented artists have a
high standard for self-criticism, if left
to their own designs, they will end up
tweaking the object far more than is
necessary or prudent.

The way to get around this is to
ensure that the time scheduled for
each task is sufficient for completing
the process. That way, the artist has
just enough time to follow through
with a good effort without feeling the
need to go back and spend more time
on the object later. When you step
back from the process and look at the
result, you should have a piece of the
game that fits with the overall artistic
vision and merges seamlessly with the
game-play mechanic for the rest of
your world. ■

G A M E D E V E L O P E R J A N U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

34

A R T I S T ’ S V I E W

DEVELOP A PROCESS AND STICK TO

IT. Artists are notorious for

having inefficient and spo-

radic work cycles. After all,

it’s hard to schedule creativity. Have the

discipline to create a process and stick to

it, particularly at the initial stages of the

production cycle. Get your team into the

habit of following a process early on so

that when it comes to crunch time, they

do it instinctively.

USE REALISTIC TIMETABLES. The best plan in

the world will fail if the people working

under it are not given sufficient time to

complete it. Be realistic in your estimates

of how long it will take to accomplish

each task. There is no point promising a

piece of work in two days when you know

it will take four. You’ll just end up rushing

the job and having to rework it anyhow,

and with the aggressive schedules that

are par for the course in this industry, you

don’t have that luxury.

DON’T SKIMP ON THE CONCEPTUAL WORK. This

is a common error among inexperienced

teams, especially with the increasing

functionality of today’s software pack-

ages. Don’t forget that as artists, the first

thing any of us learned to do was to

sketch with pencil and paper, and this is

where you’ll do your most efficient work.

You need to get your design fleshed out

on paper before you go anywhere near

the computer. You can’t afford to wait

until you’ve been working on a piece of

art for three or four days to find out that

it’s not going to work as originally

designed. That’s time wasted that you

just can’t afford to lose.

AVOID TEMPORARY OR PLACEHOLDER ART.
Even the most disciplined team will even-

tually resort to using unfinished resources

for troubleshooting and game-play test-

ing. This is often necessary to avoid creat-

ing a bottleneck for programming or

design. Don’t let this become common

practice. Allowing the team become

accustomed to working with placeholders

sends you down a slippery slope towards

mediocrity. Once a piece of art is in the

game, it’s all to easy for the artist to write

it off and begin work on something else.

Consider how unfortunate it would be to

have to demo your game to a group of

investors or worse, to a surprise interview

with the press, and to hear yourself

repeating “Oh, ignore that, it’s just tem-

porary...” or “Yeah, but when the game’s

finished that ballista won’t really look like

a VW, honest!” First impressions are hard

to break, and chances are when they think

of your game, they’ll remember the VW.

Avoiding Time Snafus: Advice to Artists

Ben Olson, Mike Nichols, Louise Smith,

and Phillip Campbell.

SS PP EE CC II AA LL TT HH AA NN KK SS ::

There is obvious enthusiasm for the
realism and quality that high-end audio,
particularly 3D audio, adds to a title.
Yet, in the midst of this market activity,
the game development community
seems reluctant to step up its own audio
development. It seems that Creative
Labs, which pioneered DOS audio, may
be the company to push the 3D audio
market. Although Creative has more
competitors in the 3D audio market
than it ever had with Sound Blaster,
there is no arguing with the company’s

sheer size and the extent of its reach.
Therefore, in this issue of Game
Developer, we are going to look at trends
in the audio market from the perspec-
tive of this one powerful company.

The Market

M ultimedia, particularly multime-
dia for games, is one of the pri-

mary selling attributes of the consumer
PC. And so, not surprisingly, audio has

been figuring more and more promi-
nently as a standard feature in con-
sumer PCs since 1994. Thus, this seg-
ment has rapidly become
audio-enabled, with 98 percent of new
shipments leaving the loading dock
with audio in 1998. By definition now,
a consumer PC must be audio-visual.
As this segment continues to grow
through the end of the decade, this sat-
uration will become virtually complete.
The chart in Figure 1.illustrates audio’s
current market penetration.

100 %

90

80

70

60

50

40

30

20

10

0

56

1995 1996 1997 1998 1999 2000 2001

75

95
98 99 100 100

G A M E D E V E L O P E R J A N U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

36

Creative Labs’ Move from

Legacy to Future Products

T here is an interesting dichotomy in the audio market today. Faster CPUs

are eating up the market for low-end audio products. They are taking on

the burden of audio signal processing, while the high end is moving

towards a greater reliance on 3D audio served up on dedicated hardware.

Omid Rahmat works for Doodah Marketing as a copywriter, consultant, tea boy, and sole employee. He also writes regularly on the
computer graphics and entertainment markets for online and print publications. Contact him at omid@compuserve.com.

F I G U R E 1 . World-wide audio penetration in the consumer market segment, 1995–2001. Source: International Data.

H A R D T A R G E T S

Audio is going beyond the consumer
PC as well. Roger Kay, senior analyst of
IDC Research, tracks the audio market.
Kay says that, “In 1994, a grand separa-
tion occurred in the PC industry. As part
of an effort to segment products and
markets more distinctly, OEMs began to
target two broad customer types: com-
mercial buyers and consumers. Not that
this segmentation hadn’t been recog-
nized to some degree before, but now,
in an effort to compete more effectively,
vendors were designing, configuring,
and distributing PCs in different ways
depending on whether they were con-
sidered business or home systems.
During the past four years, these distinc-
tions have become ever more pro-
nounced, with commercial PCs being
those distributed primarily through
resellers, VARs, and other indirect chan-
nels and configured with networking,
management software, and business
productivity applications. Consumer
PCs are those sold directly or through
retailers and configured with multime-
dia hardware and software, modems,
and ‘lifestyle’ software (such as games,
web access and applications, and con-
sumer reference information).

“Although commercial PCs have not
needed much in the way of audiovisu-
al capabilities until now, this situation
is changing rapidly. Two related devel-
opments are primarily responsible for

the increased need for audio-visual in
commercial PCs. The first is the advent
of the World Wide Web as a business

tool. Many workers now have reason
to go out on the Web to do their jobs.
Researchers, journalists, marketers,
and many other job categories need to
find information rapidly about their
subjects, customers, or markets, and
the Web is a gold mine for this type of
data. As audio-visual information
becomes more common on the Web
(in the form of singing, dancing Java
applets, recordings of speeches, and
other sound snippets), a greater need
for audio-visual capabilities in com-
mercial systems will arise.”

So, simply put, we now know that
just as every computer is guaranteed
to have a display and graphics con-
troller, it is equally likely to have an
audio component as well. The
installed base of audio is no longer the
issue, but rather where the consumer
market is pushed in order to position
it away from mainstream audio, and

thus, make it a more attractive multi-
media option. Normally, we could rely
on statistics of add-in board products.

Add-in board shipments indicate the
health of the market for peripherals in
general. In the case of audio, however,
it might seem otherwise judging by
the figures shown below in Figure 2.

This is where it gets tricky for game
developers, and why concentrating on
Creative might help to paint a clearer
picture. The drop-off in add-in board
sales in the next couple of years is
actually good news for quality audio.
What is happening in both the audio
and graphics markets is that the base-
line, or integrated components in a
consumer PC, are better quality and
cheaper. They have to be in order to
satisfy the low-cost PC model that
seems to be driving the consumer
market these days. This leaves the
add-in board market as a smaller mar-
ket, but one in which the performance
and quality of products needs to be
significantly higher than the baseline-

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 9 G A M E D E V E L O P E R

37

... it does put game developers in the posi-
tion of having to make nasty choices about
the future. Just like 3D graphics, the ques-
tion becomes, “Which 3D audio?”

b y O m i d R a h m a t

30 M

0

5

10

15

20

25

9.0

1995 1996 1997 1998 1999 2000 2001

15.5

21.0
23.5 24.0

19.0

15.0

F I G U R E 2 . Worldwide Audio Add-In Board Shipments, 1995–2001. Source: International Data Corporation

integrated products. Think of it as a
natural segmentation: some PCs will
come fully equipped like boom boxes,
and some PCs will have separate, qual-
ity components, like high-fidelity
stereo systems. The game players, at
least the hard-core enthusiasts, will go
for the separates. That’s the good
news. The bad news is that it does put
game developers in the position of
having to make nasty choices about
the future. Just like 3D graphics, the
question becomes, “Which 3D
audio?” Yet, it probably won’t be that
bad because, unlike the graphics mar-
ket where no single company has ever
dominated the field for long, in the
audio market Creative has been very
solid, and looks to remain so.

Blasting Sound into the 3D Age

W hile I refer to Creative Labs, it is
worth noting that the company

is actually a wholly-owned subsidiary
of Creative Technology of Singapore,
and it also offers a number of related
products, including graphics, video,
communications, and multimedia kits
and accessories. According to IDC,
Creative Labs is by far the world’s
largest audio vendor, holding almost
90 percent of the U.S. retail add-in
market and almost 60 percent of the
worldwide OEM market. Having origi-
nated and pioneered the audio market
with the Sound Blaster standard,
Creative not only has an enviable lega-
cy in the industry, but it also owns the

market for legacy audio. If there is a
DOS game, then it’s served by
Creative’s technology.

Using its market dominance and
financial clout, Creative has been
steadily building up its technology and
product reserves to maintain its leader-
ship in audio. A few years ago, Creative
purchased E-Mu Systems, and got an
injection of technology in the form of
the Advanced WavEffects Engine
(AWE). The company also owns
Ensoniq, and more recently acquired
speaker manufacturer Cambridge
SoundWorks. Today, Creative makes its
own chips and supports everything
from AC’97 to PCI, as well its own lega-
cy. It numbers among its clients moth-
erboard vendors such as Intel,

$385,903

1994

1996

1996

1997

1998

1 2 3 4 5 6 7 8 9 10 11 12 13 13

$657,940

$427,206

$230,734

$1,202,337

$923,612

$278,725

$1,308,061

$1,120,977

$187,084

$1,232,957

$893,432

$339,525

$1,234,208

$848,305

Net Sales Cost of sales Gross profit

($ per 100)

F I G U R E 3 . Creative’s financial performance suffered briefly between 1996 and 1997 as the company came to grips with the

fact that it would no longer control audio standards. In the meantime, the company has amassed $400 million of cash to fend

off its smaller, and less powerful competitors. (Creative’s fiscal year ends in June).

H A R D T A R G E T S

G A M E D E V E L O P E R J A N U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

38

Micronics, Acer, ECS, Asus, and the
Taiwanese motherboard crowd. In
addition, the company also has a
healthy OEM add-in card business with
the direct PC vendors, Dell, Micron,
and Gateway, as well as with a large
number of VARs and systems integra-
tors to which it sells directly or
through distributors. Finally, there is
the retail business, a great contributor
to Creative’s top line.

The challenge facing all audio prod-
ucts vendors is that the low-end add-in
audio board business will disappear in
the coming years. It is PCI audio that is
driving the industry today, but with
almost 100 percent consumer penetra-
tion of audio, built-in PCI audio in
both consumer and business PCs is a
given. Specifically, the impact of a mul-
timedia-rich Internet is making audio a
compulsory feature in all computing
devices, whereas only two years ago,
corporate PC buyers were adamant
about not having audio in their users’
systems. Of course, in referring to ubiq-
uitous audio we are talking primarily
about the influence of Microsoft and
Intel, one supplying integrated OS sup-
port for audio, and the other handing
over CPU cycles to process it. Taking a
closer look at Creative’s strategies to
deal with the emergence of prevalent
audio is a clear roadmap to the future
of the industry.

Micah Stroud, audio product market-
ing manager for the Americas at
Creative Labs, sees some important
trends. “We are in the process of mov-
ing from ISA to PCI audio. By the first
quarter of 1999, it should be com-
plete. The PCI bus is obviously faster,
and as a result, one of the primary
things that has become of interest to
developers is multi-channel audio. On
the ISA bus, we had to deal with inter-
rupt driven audio that demanded a
disproportionate amount of the CPU’s
time, and required a step by step,
interrupt driven approach to audio
playback. On the PCI bus, you have
bus mastering, which means you gen-
erate an interrupt to play the sound,
and the rest is in the hands of the
audio card. It all happens seamlessly,
and it doesn’t involve the CPU.”

Stroud is careful to point out that
this is not true of all PCI cards, but he
clearly sees that this is the way all
audio cards have to go. Another reason
why the faster performance audio mar-

ket is going to be important to the
audio vendors is 3D audio. Stroud says
that, “What we have found is that
there is a great deal of interest in 3D
audio. We are seeing, at the end of
1998, a shakeout of APIs, and the end
result is that the interface for 3D audio
is going to be DirectSound3D.”

Creative admits that game develop-
ers might be cynical about Direct-
Sound3D, but the company has taken
the steps to build on top of Direct-
Sound3D in order to push the market
in certain directions. For Christmas

1998, the company lined up 50 game
titles to support its Environmental
Audio platform. Specifically, the com-
pany’s API is called EAX. The exten-
sions describe the fundamental prop-
erties of rooms. Absorbency of walls,
reverberations, and up to thirty pre-
sets are exposed, as well as the para-
meters to tweak for optimal effects.
Stroud says, “One of the things that
we committed to the game developer
community is that we will provide
environmental audio extensions to
anyone who wants it for free. So far,

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 9 G A M E D E V E L O P E R

39

we have signed on companies such as QSound, Spatializer,
and many more. Arguably, we cover 90 percent of the mar-
ket with these companies. We have also offered EAX up to
IASIG as an industry standard.”

George Thorn, director of developer relations for Creative
Labs, says, “The proof of the pudding is in shipping prod-
uct. Christmas 1998 will establish DirectSound3D. For
example, we ported our EAX renderer to our Ensoniq-based
cards, using the host to render environment audio effects.
There are 6 million of those cards out there. I firmly believe
that, finally, audio is no longer being
considered as something that you can
throw in at the end of a product and
expect to be competitive. You know,
just effects and music. More developers
are investing in a core team to produce
original music for titles. Hollywood rec-
ognized that audio was important. I
mean, if the sound in the movie theater
wasn’t going to be better than watching a video at home,
then why bother? Sound is really, really important for a
compelling entertainment experience.”

But technology and quality may not be enough. Creative
has also sought to litigate against its competitors, or rather,
against the suppliers of its competitors. Take the case of
Diamond Multimedia, a company that has used the success
of its 3Dfx graphics products to go hand in hand with its
3D audio products. First, Creative sued ESS Technology,
then Aureal. In the case between ESS Technology and

Creative, the two companies have reached an agreement.
However, the original suit was filed by Creative
Technology in March 1998, just before the announcement
of Diamond’s Sonic Impact products using ESS’s Maestro-2
audio chip. Creative is suing Aureal for false advertising, in
addition to claims that Aureal’s Vortex AU8820 infringes
on Creative’s Patent No. 5,342,990, named Digital
Sampling Instruments Employing Cache-Memory. Aureal
supplies the chipsets for Diamond’s Monster 3D Sound
product line.

The Multichannel Product Line

O ne issue that Creative was told to deal with by game
developers, and that may prove to be another compet-

itive advantage for the company, is the speakers. Thorn
says, “About two years ago Creative embarked on a certain
path. We knew the future of audio was going to be multi-
channel. We talked to developers, and overwhelmingly the
reply came back that they were interested in surround
sound. The caveat was that developers have to mix down to
two channels. They were riding the promise of people
hooking up their PCs to their home stereos, and although it
is happening, it is to a small extent. So, if we want to have
multichannel audio, the problem is the speakers. Game
developers basically told us that we had to go down the
speaker route to enable this market.” Creative bought into
Cambridge SoundWorks, and is now putting multichannel
speakers into affordable packages.

And just in case developers still don’t get the message,
the company is using the professional studio products of E-
mu and Ensoniq, and filtering the technology into their
mainstream markets. So, professional and semi-professional
audio development products are also finding their way into
Creative’s customers’ hands. This strategy isn’t just about
the technology filtering down, but also about putting
boards in the hands of developers and saying, “Develop on
this, and know that your users will be playing back the
results on similar products.” All these strategies put Creative
well in advance of their competitors, but there is the fact
that the company has shipped 55 million Sound Blaster
products, and well over 10 million of that base is PCI prod-
ucts. As ISA disappears for good in 1999, Creative is doing
all the right things to move its customer base onto its own
PCI cards. And as the add-in board market shrinks, Creative
is moving into selling audio chipsets for the motherboard
and laptops. The future may determine that audio doesn’t
even sit inside of a PC, but is attached through USB. The
audio experience is getting better, and the products to sup-
port 3D audio are becoming prevalent. Creative will be hard
to beat in this arena for some time to come. ■

H A R D T A R G E T S

G A M E D E V E L O P E R J A N U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

40

The challenge facing all audio products
vendors is that the low-end add-in audio
board business will disappear in the
coming years.

42
After several close calls, Dave managed to avoid getting a “real job” and joined Ensemble
Studios straight out of college a few years ago (just in time to the do the computer-player

AI for a little game called AGE OF EMPIRES). These days, Dave spends his time either
leading the development of Ensemble Studios’ engines or with his lovely wife

Kristen. Dave can be reached at dpottinger@ensemblestudios.com.

Coordinated
Unit Movement

B Y D A V E C . P O T T I N G E R

Illu
stratio

n
 by Stu

art B
rad

fo
rd

43

ow many times have you been sitting in rush-hour

traffic thinking, “Hey, I know where I want to go. And I’m

sure everyone around me knows where they want to go, too.

If we could just work together, I’ll bet we would all get where

we wanted to go a lot easier, faster, and without rear-ending

each other”? As your frustration rises, you realize that impatient commuters aren’t

the most cooperative people. However, if you’re a game player, uncooperative resource

gatherers and infantry are probably even more frustrating than a real-life traffic jam.

Figuring out how to get hundreds of
units moving around a complex game
map in real time — commonly referred
to as pathfinding — is a tough task.
While pathfinding is a hot industry
buzzword, it’s only half of the solution.
Movement, the execution of a given

path, is the other half of the solution.
For real-time strategy games, this
movement goes hand in hand with
pathfinding. An axeman certainly
needs a plan (as in, a path) for how
he’s going to get from one side of his
town to the other to help stave off the
enemy invasion. If he doesn’t execute
that plan using a good movement sys-
tem, however, all may be lost.

Game Developer has already visited
the topic of pathfinding in such past
articles as “Smart Move: Path-Finding”
by Brian Stout (October/November
1996) and “Real-Time Pathfinding for
Multiple Objects” by Swen Vincke (June
1997). Rather than go over the same
material, I’ll approach the problem
from the other side by examining the
ways to execute a path that’s already
been found. In this article, I’ll cover the
basic components of an effective move-
ment system. In a companion article in
next month’s Game Developer, I’ll

extend these basic concepts to cover
higher-order movement and implemen-
tation. Though the examples in these
articles focus mainly on a real-time
strategy game, the methods I’ll describe
can easily be applied to other genres.

Movement Issues
Facing Game Developers

B efore we dive into coordinated
unit movement, let’s take a look

at some of the movement issues facing
game developers today. Most of these
have to do with minimizing CPU load
versus maximizing the accuracy and
intelligence of the movement.
MOVING ONE UNIT VERSUS MOVING MULTIPLE

UNITS. Moving one unit is generally
pretty simple, but methods that work
well for one unit rarely scale up effort-
lessly for application to hundreds of
units. If you’re designing a system for

G A M E D E V E L O P E R J A N U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

44

C O O R D I N A T E D M O V E M E N T

Movement. The execution of a path.

Simple movement algorithms move a

unit along a path, while more complex

systems check collisions and coordinate

unit movement to avoid collisions and

allow otherwise stuck units to move.

Pathfinding. The act of finding a path (a

planned route for a unit to get from point

A to point B). The algorithm used can be

anything from a simple exhaustive search

to an optimized A* implementation.

Waypoint. A point on a path that a unit

must go through to execute the path.

Each path, by definition, has one way-

point at the start and one waypoint at

the end.

Unit. A game entity that has the ability

to move around the game map.

Group. A general collection of units that

have been grouped together by the user

for convenience (usually to issue the

same order to all of the units in the

group). Most games try to keep all of

the units in a group together during

movement.

Formation. A more complex group. A

formation has facing (a front, a back,

and two flanks). Each unit in the forma-

tion tries to maintain a unique relative

position inside the formation. More

complex models provide an individual-

ized unit facing inside of the overall for-

mation and support for wheeling during

movement.

Hard Movement Radius. A measure of

the volume of a unit with which we

absolutely do not allow other units to

collide.

Soft Movement Radius. A measure of

the volume of a unit with which we

would prefer not to collide.

Movement Prediction. Using the move-

ment algorithms to predict where a unit

will be at some point in the future. A

good prediction system will take acceler-

ation and deceleration into account.

Turn Radius. The radius of the tightest

circle a unit can turn on at a given speed.

Basic Definitions

Constant Update

Distance is the same throughout.

Varied Update

Distance varies throughou,t which makes movement more complicated.

F I G U R E 1 . Varied update lengths cause units to move differing distances each

update.

hundreds of units, it will need to be
very conservative in its CPU use.
SOME MOVEMENT FEATURES ARE CPU INTEN-
SIVE. Very few games that move hun-
dreds of units support advanced behav-
ior such as modeling the acceleration
and deceleration of these units. The
movement of large ships and heavily
armored units has a lot more realism
with acceleration and deceleration, but
that realism comes at a high cost in
terms of extra CPU usage. The actual
movement calculation becomes more
complicated because you have to apply
the time differential to the acceleration

to create the new velocity. As we
extend our movement system to han-
dle prediction, we’ll see that accelera-
tion and deceleration complicate these
calculations as well. Modeling a turn
radius is also difficult because many
pathfinding algorithms are not able to
take turn radii into account at all.
Thus, even though a unit can find a
path, it may not be able to follow that
path because of turn radius restrictions.
Most systems overcome this deficiency
by slowing the unit down to make a
sharp turn, but this involves an extra
set of calculations.

DIFFERENT LENGTHS FOR THE MAIN GAME

UPDATE LOOP. Most games use the length
of the last pass through update loop as
some indication of how much time to
simulate during the next update pass.
But such a solution creates a problem
for unit movement systems because
these lengths vary from one update to
the next (Figure 1). Unit movement
algorithms work much better with
nice, consistent simulation intervals. A
good update smoothing system can
alleviate this problem quite a bit.
SORTING OUT UNIT COLLISIONS. Once units
come into contact with one another,
how do you get them apart again? The
naïve solution is just never to allow
units to collide in the first place. In
practice, though, this requirement
enforces exacting code that is difficult
to write. No matter how much code
you write, your units will always find a
way to overlap. More importantly, this
solution simply isn’t practical for good
game play; in many cases, units should
be allowed to overlap a little. Hand-to-
hand combat in Ensemble Studios’
recent title AGE OF EMPIRES should have
been just such a case. The restriction
for zero collision overlap often makes
units walk well out of their way to fight
other units, exposing them to needless
(not to mention frustrating) additional
damage. You’ll have to decide how
much collision overlap is acceptable for
your game and resolve accordingly.
MAP COMPLEXITY. The more complex the
map is, the more complicated and diffi-
cult good movement will be to create.
As game worlds and maps are only get-
ting more intricate and realistic, the
requirement for movement that can
handle those worlds goes up, too.
RANDOM MAPS OR CONTROLLED SCENARIOS?
Because you can’t hard-code feasible
paths, random maps are obviously
more difficult to deal with in many
cases, including pathfinding. When
pathfinding becomes too CPU inten-
sive, the only choice (aside from reduc-
ing map complexity or removing ran-
dom maps) is to decrease the quality of
the pathfinding. As the quality of the
pathfinding decreases, the quality of
the movement system needs to
increase to pick up the slack.
MAXIMUM OBJECT DENSITY. This issue, more
than anything, dictates how accurate
the movement system must be. If your
game has only a handful of moving
objects that never really come into

G A M E D E V E L O P E R J A N U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

46

C O O R D I N A T E D M O V E M E N T

TToopp ooff mmoovveemmeenntt ssttaattee lloooopp::

{{

IIff wwee’’rree iinn IInnccrreemmeennttWWaayyppooiinntt ssttaattee::

IInnccrreemmeenntt oouurr wwaayyppooiinntt..

IIff wwee’’rree oonn aa ppaattrrooll

GGrraabb tthhee nneexxtt wwaayyppooiinntt aass ddeeffiinneedd bbyy tthhee ppaattrrooll ddiirreeccttiioonn..

SSeett ssttaattee ttoo WWaaiittiinnggFFoorrPPaatthh..

EEllssee

IIff wwee’’rree oouutt ooff wwaayyppooiinnttss

SSeett ssttaattee ttoo RReeaacchheeddGGooaall..

EEllssee

SSeett ssttaattee ttoo WWaaiittiinnggFFoorrPPaatthh..

IIff wwee’’rree iinn RReeaacchheeddGGooaall ssttaattee::

MMaakkee tthhee aapppprroopprriiaattee nnoottiiffiiccaattiioonnss ((iiff aannyy))..

WWee’’rree ddoonnee.. SSttoopp tthhee wwaallkkiinngg aanniimmaattiioonn.. EExxiitt ffuunnccttiioonn..

IIff wwee’’rree iinn WWaaiittiinnggFFoorrPPaatthh ssttaattee::

FFiinndd aa ppaatthh aanndd ssaavvee iitt..

IIff wwee ccoouulldd nnoott ffiinndd oonnee

WWee’’vvee ffaaiilleedd.. EExxiitt ffuunnccttiioonn..

CCaallccuullaattee tthhee ddiirreeccttiioonn wwee nneeeedd ttoo hheeaadd iinn ttoo ggeett ttoo oouurr ddeessiirreedd wwaayyppooiinntt..

MMooddiiffyy tthhaatt ddiirreeccttiioonn bbyy aannyy lliimmiittaattiioonnss ssuucchh aass ttuurrnn rraaddiiuuss..

UUssiinngg tthhaatt nneeww ddiirreeccttiioonn,, ccaallccuullaattee wwhheerree wwee’’llll eenndd uupp aafftteerr tthhiiss mmoovvee..

IIff tthhaatt nneeww ppoossiittiioonn ccaauusseess aa ccoolllliissiioonn

SSeett ssttaattee ttoo WWaaiittiinnggFFoorrPPaatthh..

JJuummpp bbaacckk ttoo tthhee ttoopp ooff tthhee lloooopp..

UUssiinngg tthhee ccuurrrreenntt aanndd ffuuttuurree ppoossiittiioonn::

IIff wwee’’rree cclloosseerr ttoo tthhee wwaayyppooiinntt bbeeffoorree mmoovviinngg

SSeett ssttaattee ttoo IInnccrreemmeennttWWaayyppooiinntt

GGoo bbaacckk ttoo ttoopp ooff lloooopp..

IIff wwee’’rree ggooiinngg ttoo jjuummpp oovveerr tthhee wwaayyppooiinntt dduurriinngg tthhiiss mmoovvee

SSeett ssttaattee ttoo IInnccrreemmeennttWWaayyppooiinntt..

BBrreeaakk oouutt ooff lloooopp..

}}

SSeett tthhee aacccceelleerraattiioonnss aaccccoorrddiinnggllyy..

DDoo tthhee aaccttuuaall mmoovvee..

SSeett oorr uuppddaattee aannyy aanniimmaattiioonn hhooookkss tthhaatt wwee mmiigghhtt hhaavvee..

UUppddaattee oouurr pprreeddiicctteedd ppoossiittiioonnss..

L I S T I N G 1 . The movement algorithm in pseudocode.

contact with one another (as is the case
with most any first-person shooter),
then you can get away with a relatively
simple movement system. However, if
you have hundreds of moving objects
that need to have collision and move-
ment resolution on the scale of the
smallest object (for example, a unit can
walk through a small gap between two
other units), then the quality and accu-
racy requirements of your movement
system are dramatically raised.

Simple Movement Algorithm

L et’s start with some pseudo code
for a simple, state-based movement

algorithm (Listing 1). While this algo-
rithm doesn’t do much more than fol-
low a path and decide to find a new
path when a collision is found, it does

work equally well for both 2D and 3D
games. We’ll start in a given state and
iterate until we can find a waypoint to
move towards. Once we find that
point, we break out of the loop and do
the movement.

There are three states: WWaaiittiinnggFFoorrPPaatthh,
RReeaacchheeddGGooaall, and IInnccrreemmeennttWWaayyppooiinntt. The
movement state for a unit is preserved
across game updates in order to allow
us to set future events, such as the
“automatic” waypoint increment on a
future game update. By preserving a
unit’s movement state, we lessen the
chance that a unit will make a decision
on the next game update that counters
a decision made during the current
update. This is the first of several plan-
ning steps that we’ll introduce.

We assume that we’ll be given a path
to follow and that the path is accurate
and viable (meaning, no collisions) at

the time it was given to us. Because
most strategy games have relatively
large maps, a unit may take several
minutes to get all the way across the
map. During this time, the map can
change in ways that can invalidate the
path. So, we do a simple collision
check during the state loop. At this
point, if we find a collision, we’ll just
repath. Later on, we’ll cover several
ways to avoid repathing.

Collision Determination

T he basic goal of any collision deter-
mination system is to find out if

two units have collided. For the time
being, we’ll represent all collisions as
two-entity collisions. We’ll cover com-
pound collisions (collisions involving
three or more entities) next month.
Once a collision is found, each entity
needs to know about the collision in
order to make appropriate movement
decisions.

Basic collision determination for
most strategy games consists of treat-
ing all units as spheres (circles in 2D)
and doing a simple spherical collision
check. Whether or not such a system is
sufficient depends on the specific
requirements of a game. Even if a game
implements more complex collision —
such as oriented bounding boxes or
even low-level polygon to polygon
intersection tests — maintaining a total
bounding sphere for quick potential
collision elimination will usually
improve performance.

There are three distinct entity types
to take into account when designing a
collision system: the single unit, a
group of units, and a formation (Figure
2). Each of these types can work well
using a single sphere for quick collision
culling (elimination of further collision
checks). In fact, the single unit simply
uses a sphere for all of its collision
checking. The group and the formation
require a bit more work, though.

For a group of units, the acceptable
minimum is to check each unit in the
group for a collision. By itself, this
method will allow a non-grouped unit
to sit happily in the middle of your
group. For our purposes, we can over-
look this discrepancy, because forma-
tions will provide the additional, more
rigid collision checking. Groups also
have the ability to be reshaped at any

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 9 G A M E D E V E L O P E R

47

Single Unit Hard radius

Soft radius

Groups of Units

Groups of Units

Front of the formation

F I G U R E 2 . Collision entities.

time to accommodate tight quarters, so
it’s actually a good idea to keep group
collision checking as simple as possible.

A formation requires the same checks
as a group, but these check must further
ensure that there are no internal colli-
sions within the formation. If a forma-
tion has space between some of its
units, it is unacceptable for a non-
formed unit to occupy that space.
Additionally, formations generally don’t
have the option to reshape or break.
However, it’s probably a good idea to
implement some game rules that allow
formations to break and reform on the
other side of an obstacle if no path
around the obstacle can be found.

For our system, we’ll also keep track
of the timing of the collision.
Immediate collisions represent colli-
sions currently existing between two
objects. Future collisions will happen

at a specified point in the future
(assuming neither of the objects
changes its predicted movement
behavior). In all cases, immediate colli-
sions have a higher resolution priority
than future collisions. We’ll also track
the state of each collision as unre-
solved, resolving, or resolved.

Discrete vs. Continuous Simulation

M ost movement algorithms are
discrete in nature. That is, they

move the unit from point A to point B
without considering what might be
between those two points, whereas a
continuous simulation would consider
the volume between the two points as
well. In a lag-ridden Internet game, fast
moving units can move quite a dis-
tance in a single game update. When

discrete simulations are coupled with
these long updates, units can actually
hop over other objects with which they
should have collided. In the case of a
resource gathering unit, no one really
minds too much. But players rarely
want enemy units to be able to walk
through a wall. While most games
work around this problem by limiting
the length of a unit’s move, this dis-
crete simulation problem is relatively
easy to solve (Figure 3).

One way to solve the problem is to
sub-sample each move into a series of
several smaller moves. Taking the size of
the moving unit into account, we make
the sampling interval small enough to
guarantee that no other unit can fit
between two of the sample points. We
then run each of those points through
the collision determination system.
Calculating all of those points and colli-
sions may seem overly expensive, but
later on we’ll see a potential way to off-
set most of that cost.

Another method is to create what
we’ll call a move line. A move line rep-
resents the unit’s move as a line seg-
ment starting at point A and ending at
point B. This system creates no extra
data, but the collision check does have
an increase in complexity; we must
convert from a simple spherical colli-
sion check to a more expensive calcula-
tion that involves finding the distance
from a point to a line segment. Most
3D games have already implemented a
fast hierarchical system for visible
object culling, so we can reuse that for
collision culling. By quickly narrowing
down the number of potential colli-
sions, we can afford to spend more
time checking collisions against a small
set of objects.

Predicted Positions

N ow that we have a simple move-
ment algorithm and a list of unit

collisions, what else do we need to get
decent unit cooperation? Position
prediction.

Predicted positions are simply a set of
positions (with associated orientations
and time stamps) that indicate where
an object will be in the future (Figure
4). A movement system can calculate
these positions using the same move-
ment algorithm that’s used to move the
object. The more accurate these posi-

G A M E D E V E L O P E R J A N U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

48

C O O R D I N A T E D M O V E M E N T

Move distance

Overlapped point sampling ensures that the collisions are properly found.

Using a move line does the same thing as point sampling, but uses less

data and CPU time.

Unit jumps over obstruction due

to discrete simulation intervels.

O
B
S
T
R
U
C
T
I
O
N

O
B
S
T
R
U
C
T
I
O
N

O
B
S
T
R
U
C
T
I
O
N

F I G U R E 3 . Solving the problem with discrete movement simulation.

tions are, the more useful they are.
Position prediction isn’t immediately
free, though, so let’s look at how to off-
set the additional CPU usage.

The most obvious optimization is to
avoid recalculating all of your predict-
ed positions at every frame. A simple
rolling list works well (Figure 5); you
can roll off the positions that are now
in the past and add a few new positions
each frame to keep the prediction
envelope at the same scale. While this
optimization doesn’t get rid of the
start-up cost of creating a complete set
of prediction positions the first time
you move, it does have constant time
for the remainder of the movement.

The next optimization is to create a
prediction system that handles both
points and lines. Because our collision
determination system already sup-
ports points and lines, it should be
easy to add this support to our predic-
tion system. If a unit is traveling in a
straight line, we can designate an
enclosed volume by using the current
position, a future position, and the
unit’s soft movement radius.
However, if the object has a turn
radius, things get a little more compli-
cated. You can try to store the curve as
a function, but that’s too costly.
Instead, you’re better off doing point
sampling to create the right predicted
points (Figure 6). In the end, you real-
ly want a system that seamlessly sup-
ports both point and line predictions,
using the lines wherever possible to
cut down on the CPU cost.

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 9 G A M E D E V E L O P E R

49

Current position

Current Time

Orientations

Position at

Update Next

Position at

Update +2

Position at

Update +3

Need to also trace:

• Acceleratio

• Orientation

F I G U R E 4 . A closer look at the predicted positions.

Next update put object here, so we

• Drop P0 & P1

• Add new positions on the end

P0
P1

P2

P2

P3

P3

P4

P4

P5

P5

P6

P6
P7

F I G U R E 5 . Rolling list of predicted positions.

The last optimization we’ll cover is
important and perhaps a little nonin-
tuitive. If we’re going to get this pre-
dicted system with as little overhead as
possible, we don’t want to duplicate
our calculations for every unit by pre-
dicting its position and then doing
another calculation to move it. Thus,
the solution is to predict positions
accurately, and then use those posi-
tions to move the object. This way,
we’re only calculating each move once,
so there’s no extra cost aside from the
aforementioned extra start-up time.

In the actual implementation, you’ll
probably just pick a single update
length to do the prediction. Of course,
it’s fairly unlikely that all of the future
updates will be consistent. If you blind-
ly move the unit from one predicted
position to the next without any regard
to what the actual update length cur-
rently is, you’re bound to run into
some problems. Some games (or some
subset of objects in a game) can accept
this inaccuracy. Those of us developing
all the other games will end up adding
some interpolation so that can quickly
adjust a series of predicted points that
isn’t completely accurate. You also
need to recognize when you’re contin-
ually adjusting a series of predicted
positions so that you cut your losses
and just recalculate the entire series.

Most of the rest of the implementa-
tion difficulties arise from the fact that
we use these predicted positions in col-
lision detection just as we do for the

object’s actual current position. You
should easily see the combinatorial
explosion that’s created by comparing
predicted positions for all units in a
given area. However, in order to have
good coordinated unit movement, we
have to know where units are going to
be in the near future and what other
units they’re likely to hit. This takes a
good, fast collision determination sys-
tem. As with most aspects of a 3D
engine, the big optimizations come
from quickly eliminating potential
interactions, thus allowing you to
spend more CPU cycles on the most
probable interactions.

Unit to Unit Cooperation

W e’ve created a complex system
for determining where an

object is going to be in the future. It
supports 3D movement, it doesn’t take
up much more CPU time than a simple
system, and it provides an accurate list
of everything we expected a unit to run
into in the near future. Now we get to
the fun part.

If we do our job well, most of the
collisions that we must deal with are
future collisions (because we avoid
most of the immediate collisions
before they even happen). While the
baseline approach for any future colli-
sion is to stop and repath, it’s impor-
tant to avoid firing up the pathfinder
as much as possible.

This set of collision resolution rules
is a complete breakdown of how to
approach the problem of unit-to-unit
collision resolution (from a unit’s
frame of reference).
UNRESOLVED COLLISIONS.
Case 1. If both units are not moving:
1. If we’re the lower-priority unit, don’t

do anything of our own volition.
2. If we’re the higher-priority unit, fig-

ure out which unit (if any) is going
to move and tell that unit to make
the shortest move possible to resolve
the hard collision. Change the colli-
sion state to rreessoollvviinngg.

Case 2. If we’re not moving, and the other
unit is moving, we don’t do anything.
Case 3. If we’re moving and the other unit
is stopped:
1. If we’re the higher-priority unit, and

the lower priority unit can get out of
the way, calculate our “get-to point”
(the point we need to get to in order

to be past the collision) and tell the
lower-priority unit to move out of
our way (Figure 7). Change the colli-
sion state to rreessoollvviinngg.

2. Else, if we can avoid the other unit,
avoid the other unit and resolve the
collision.

3. Else, if we’re the higher-priority unit
and we can push the lower-priority
unit along our path, push the lower
priority-unit. Change the collision
state to rreessoollvviinngg.

4. Else, stop, repath, and resolve the
collision.

Case 4. If we’re moving and the other unit
is moving:
1. If we’re the lower-priority unit, don’t

do anything.
2. If collision with hard radius overlap

is inevitable and we’re the higher-
priority unit, tell the lower-priority
unit to pause, and go to Case 3.

3. Else, if we’re the higher-priority unit,
calculate our get-to point and tell the
lower-priority unit to slow down
enough to avoid the collision.

RESOLVING COLLISIONS.
• If we’re the unit that’s moving in

order to resolve a Case 1 collision and
we’ve reached our desired point,
resolve the collision.

• If we’re the Case 3.1 lower-priority
unit and the higher- priority unit has
passed its get-to point, start returning
to the previous position and resolve
the collision.

• If we’re the Case 3.1 higher-priority
unit, wait (slow down or stop) until
the lower-priority unit has gotten out
of the way, then continue.

• If we’re the Case 3.3 higher-priority
unit and the lower-priority unit can
now get out of the way, go to Case 3.1.

• If we’re the Case 4.3 lower-priority
unit and the higher-priority unit has
passed its get-to point, resume nor-
mal speed and resolve the collision.
One of the key components of coor-

dinated unit movement is to prioritize
and resolve disputes. Without a solid,
well-defined priority system, you’re
likely to see units doing a merry-go-
round dance as each demands that the
other move out of its way; no one unit
has the ability to say no to a demand.
The priority system also has to take the
collision severity into account. A sim-
ple heuristic is to take the highest-pri-
ority hard collision and resolve down
through all of the other hard collisions
before considering any soft collisions.

G A M E D E V E L O P E R J A N U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

50

C O O R D I N A T E D M O V E M E N T

Center

of Turn

Turn

Radius

F I G U R E 6 . Using predicted positions

with a turn radius

If the hard collisions are far enough in
the future, though, you might want to
spend some time resolving more imme-
diate soft collisions.

Depending on the game, the resolu-
tion mechanism might also need to
scale based on unit density. If a huge
melee battle is creating several com-
pound hard collisions between some
swordsmen, you’re better served spend-
ing your CPU time resolving all of
those combat collisions than resolving
a soft collision between two of your
resource gatherers on a distant area of
the map. An added bonus to tracking
these areas of high collision density is
that you can influence the pathfinding
of other units away from those areas.

Basic Planning

P lanning is a key element of unit
cooperation. All of these predic-

tions and calculations should be as
accurate as possible. Inevitably, though,
things will go wrong. One of the biggest
mistakes we made with the AGE OF

EMPIRES’ movement was to make every
decision within a single frame of refer-

ence. Every decision was always made
correctly, but we didn’t track that infor-
mation into future updates. As a result,
we ended up with units that would
make a decision, encounter a problem
during the execution of that decision,
and then make a decision that sent
them right back on their original path,
only to start the whole cycle over again
the next update.

Planning fixes this tautology. We
keep around the old, resolved colli-
sions long enough (defined by some
game-specific heuristic) so that we can
reference them should we get into a
predicament in the future. When we
execute an avoidance, for example, we
remember what object it is that we’re
avoiding. Because we’ll have created a
viable resolution plan, there’s no rea-
son to do collision checking with the
other unit in the collision unless one of
the units gets a new order or some
other drastic change takes place. Once
we’re done with the avoidance maneu-
ver, we can resume normal collision
checking with the other unit. As you’ll
see next month, we’ll reuse this plan-
ning concept over and over again to
accomplish our goals.

Simple games are a thing of the past;
so is simple movement. We’ve covered
the basic components necessary for
creating a solid, extensible movement
system: a state-based movement algo-
rithm, a scalable collision determina-
tion system, and a fast position predic-
tion system. All of these components
work together to create a deterministic
plan for collision resolution.

Next month, we’ll extend these con-
cepts to cover higher-order movement
topics, such as group movement, full-
blown formation movement, and com-
pound collision resolution. I’ll also go
into more detail about some implemen-
tation specifics that help solve some of
the classic movement problems. ■

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 9 G A M E D E V E L O P E R

51

Moving Unit Stopped Unit Predicted position
Unit A's

"Get to" position

Move line

Unit B's
"get out of way" position

A B

1. Find collision

2. Calculate position for Unit B to

 move to in order to get out of Unit

 A’s way.

3. Calculate position for Unit A to get

 to in order to be past the collision.

 Once Unit A reaches that point,

 have Unit B move back to its

 original spot.

F I G U R E 7. Resolving a collision between a moving unit and a stopped unit.

• Take a look at Craig W. Reynolds’

Boids work at

http://hmt.com/cwr/boids.html.

• Steven Woodcock’s Game AI web site is

located at http://www.cris.com/~swood-

coc/ai.html.

• Also see Patrick Winston. Artificial

Intelligence, 3rd ed. (Addison-Wesley,

1993.)

FF OO RR FF UU RR TT HH EE RR II NN FF OO

hen TOTAL ANNIHILATION (TA) was released in

September 1997, most of those who played it

found it to be an enjoyable and robust game.

However, despite our best testing efforts here at

Cavedog Entertainment prior to release, some of our cus-

tomers reported crashing bugs. One of
my tasks at the company was to track
down the cause of these crashes.

It quickly became apparent that this
was going to be a tricky problem. A dis-
quieting number of the bug reports
looked something like this: “I’d been
playing multiplayer TA for two hours
when the game suddenly exited back
to the desktop without displaying an
error dialog.” For some reason the stan-
dard Windows 95 crash reporting dia-
log wasn’t appearing, so I had absolute-
ly no evidence as to where in the
million bytes of code the crash was
occurring.

The Solution

S hortly after I started my task, a
random meeting with a member

of the DirectX team gave me a crucial
clue. If a program crashes while
DirectDraw has the screen locked, then
any attempt to bring up the error dia-
log would result in a deadlock. I found
that the DirectX team had put in a
structured exception handler that
would suppress the error dialog when
necessary to avoid deadlocks after

crashes. Clearly, TA was running afoul
of this error dialog suppression.

Once I knew what the problem was,
the solution became clear. The best
way to fight a structured exception
handler is with another structured
exception handler. All I had to do was
wrap each of TA’s threads in a struc-
tured exception handler that would
record the error information to a file —
then it wouldn’t matter whether or not
the error dialog came up.

The Tedious Details

S ome of you are probably wonder-
ing what a structured exception

handler is. Structured exception han-
dling is a Win32 feature that allows
programs to set up a list of routines that
should be called when something bad
happens. This process is very similar to
C++ exception handling, with two
important differences. First, structured
exception handlers are given a data
structure that contains important infor-
mation, such as the contents of the
CPU registers when the error happened.
This information is vital to what we’ll
be doing. Another difference — one

that we won’t be making use of — is
that under certain circumstances, a
structured exception handler can actu-
ally restart the faulting instruction after
fixing whatever caused the error.

This article isn’t concerned with the
dirty details of how structured excep-
tion handling works. You can use it very
effectively — including writing handlers
— without understanding the internal
details. You just have to trust that the
black magic works. See the “For Further
Information” section for details.

If you have a Windows program with
an entry point at WWiinnMMaaiinn(()), it’s trivial to
wrap it in a structured exception han-
dler so that all errors will be caught.
Simply rename your WWiinnMMaaiinn(()) function
as HHaannddlleeddWWiinnMMaaiinn(()) and insert the code
from Listing 1.

Your entire program executes inside
the ____ttrryy block. The function in the
____eexxcceepptt block gets called if your program
(or your main thread, at least) crashes.
So now all you need is a RReeccoorrddEExxcceepptt--
iioonnIInnffoo(()) function (GGeettEExxcceeppttiioonnIInnffoorr--
mmaattiioonn(()) is a system function). The basic
idea behind the RReeccoorrddEExxcceeppttiioonnIInnffoo(())
function is trivial. All you have to do is
open a file, write out the register infor-
mation from the PPEEXXCCEEPPTTIIOONN__PPOOIINNTTEERRSS struc-
ture, then return EEXXCCEEPPTTIIOONN__CCOONNTTIINNUUEE__SSEEAARRCCHH,
a magic value that tells Win32 to pro-
ceed with its normal error handling
mechanism. This step is important

G A M E D E V E L O P E R J A N U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

52

H A N D L I N GE X C E P T I O N

Structured
Exception Handling

b y B r u c e D a w s o n

WW

Bruce Dawson is senior software engineer at Cavedog Entertainment. He can be
reached at comments@cygnus-software.com.

because it means that an error dialog
will pop up if possible and your debug-
ger will happily coexist with the struc-
tured exception handler.

As usual, the devil is in the details.
You need to make sure that your excep-
tion handler will work in unusual cir-
cumstances. Because a crash can happen
at any time, the C run time may be in a
bad state, so you have to try to avoid
using it. If the exception was an FPU
exception, then you can’t use the FPU or
you’ll trigger the exception again.
Finally, you might as well make use of
the exception handler to record addi-
tional information about the environ-
ment in which the crash happened —
information that might be invaluable in
tracking down the problem. The excep-
tion handler supplied with this article
(you can download the .ZIP archive from
Game Developer’s web site) uses a number
of unusual tricks to accomplish this, and
should run on any Win32 x86 system.

The Win9x error dialog has a reason-
able layout, so I followed its example
where possible for the error log file,
making additions as needed. For
instance, the sixteen words of stack
needed to be increased, so that as much
of the local variables and the call stack
as possible will be saved. Locating the
bottom of the stack is easy — it’s just
the ESP register. The location of the top
of the stack isn’t as obvious, but it is
fairly easy to find. It’s stored in the task
information block, four bytes into the
ffss segment, and you can get it with
these two lines of assembly language:
mmoovv eeaaxx,, ffss::[[44]]

mmoovv SSttaacckkTToopp,,eeaaxx

I use VViirrttuuaallQQuueerryy and GGeettMMoodduulleeFFiilleeNNaammee to
scan through memory looking for
loaded .DLLs, which makes use of the
fact that a .DLL’s module handle is noth-
ing more than its load address. For each
.DLL, I print out enough information to
identify it uniquely, so that I can verify
what versions were being used. Finally,
to allow easy formatted printing without
the C run time, I wrote a formatted
printing routine that uses wwvvsspprriinnttff and
WWrriitteeFFiillee, both Win32 functions.

Test Drive — Seeing It in Action

The exception handler, available on
the Game Developer’s web site,

comes with three sample applications
to demonstrate it in action. These are a

console application, a WinMain
application, and an MFC applica-
tion. The MFC application requires
a different technique to hook in
the exception handler; see the
EXCEPTIONATTACHER.CPP file
for instructions on how to do it.
The MFC application is the easiest
with which to experiment. Just
click on one of the crash buttons,
then look at the ERRORLOG.TXT
file to see what gets recorded.

Interpreting the Results:
The Easy Stuff

The sheer volume of information that
the exception handler produces (see

Listing 2 for an abbreviated example) in
response to a crash can be daunting. It’s
not uncommon for programmers to feel
that the only change with the exception
handler installed is that instead of hav-
ing a small amount of indecipherable
information, they now have a large
amount of indecipherable information.
This is a genuine concern — some of the
information that the exception handler
dumps is quite cryptic. However, there
are two thoughts that should give you
solace. One is that if you ever run across
a critical crash that relies on that extra
information, you’ll probably figure out
how to interpret it. The other is that a
lot of the information in the error logs is
actually quite easy to interpret, once you
learn how.

Perhaps the most critical piece of
information that the error log gives

you is a complete description of what
executable and .DLLs caused the crash.
Whether you’re dealing with QA or
with customers, this knowledge will
avoid a huge number of mistakes
because you’ll frequently be able to tell
them, “Oh, well of course it crashes.
You’re running Tuesday’s version.” For
each .DLL and for the executable, the
error log lists several pieces of vital
information. The full file name of the
code module, its file size, the time
stamp of its file, and — most impor-
tantly and unambiguously — the link
time stamp. The link time stamp is
vital because, though you may end up
with multiple executables that are the
same size, and while file times can be
altered by installers and time zones,
the link time stamp is stored in the file
at link time and is always unique and
unaltered. The exception handler could
easily be modified to record version
information, but I haven’t yet found
that necessary.

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 9 G A M E D E V E L O P E R

53

F I G U R E 1 . The MFC Exception handler.

iinntt ____ccddeeccll RReeccoorrddEExxcceeppttiioonnIInnffoo((PPEEXXCCEEPPTTIIOONN__PPOOIINNTTEERRSS ddaattaa,, ccoonnsstt cchhaarr **MMeessssaaggee));;

iinntt WWIINNAAPPII WWiinnMMaaiinn((HHIINNSSTTAANNCCEE hhIInnssttaannccee,, HHIINNSSTTAANNCCEE hhPPrreevvIInnssttaannccee,,

LLPPTTSSTTRR llppCCmmddLLiinnee,, iinntt nnCCmmddSShhooww))

{{

iinntt RReessuulltt == --11;;

____ttrryy

{{

RReessuulltt == HHaannddlleeddWWiinnMMaaiinn((hhIInnssttaannccee,, hhPPrreevvIInnssttaannccee,, llppCCmmddLLiinnee,, nnCCmmddSShhooww));;

}}

____eexxcceepptt((RReeccoorrddEExxcceeppttiioonnIInnffoo((GGeettEExxcceeppttiioonnIInnffoorrmmaattiioonn(()),, ““mmaaiinn tthhrreeaadd””))))

{{

//// DDoo nnootthhiinngg hheerree..

}}

rreettuurrnn RReessuulltt;;

}}

L I S T I N G 1 . Wrapping your Windows program’s entry point in a structured excep-

tion handler.

Another critical piece of information
that the error log tells you about each
code module is where it was loaded in
memory. This information allows you
to interpret addresses in the stack as
possible return addresses, and it allows
you to adjust your bug interpreting if
.DLLs are relocated when loaded.

The “Bytes at CS: EIP” field, a hex
dump of the instructions that caused
the crash and a part of the standard sys-
tem error dialog, is useful as a final
check that the correct code was being
executed. If you load the offending exe-
cutable into the debugger and notice
that the code bytes don’t match, then
you’re loading the wrong executable or
the .DLLs don’t match. Alternately, if
just a few bits are different, it’s possible
that you’ve just found the cause of the
crash, and identified it as a hardware
problem. Code segments are write-pro-
tected in Windows 95, so they can’t be
corrupted by stray pointers. Therefore,
changed code bytes generally suggest
an error in the memory, disk, or proces-
sor. While tracking down TA crashes,
I’ve come across two crashes that were
definitely such hardware failures, and
three others that seemed likely.

System details, such as the processor
type, time of crash, and the amount of
memory, can be helpful in detecting
unusual configurations that could be
causing the problem. There is huge

potential for recording additional infor-
mation, such as DirectX driver versions,
video card types, and so on. You could
even save your data section and all of
your allocated game data. If you record
too much information, you may run
into privacy concerns from some users,
but as long as you don’t try automatical-
ly mailing the crash log to yourself, you
should be safe.

Interpreting the Results:
The Hard Stuff

F inally, we get to the hardest part of
interpreting the results. If your cus-

tomer isn’t running the beta version of
your game on a 386 with 4MB of faulty
memory, then you have to start consid-
ering the possibility that your precious
game might have a bug. In an ideal
world, the games that we released to
the public would have no bugs, sound
drivers would never misbehave, and it
would only rain at night. However, it’s
a fact of life that no matter how careful-
ly you write your games, they will
always crash occasionally — not
because of the code that you write of
course, but because everybody has care-
less coworkers. When these bugs can-
not be reproduced, and leave no evi-
dence as to where they occurred, you
can easily have an expensive problem.

As always, “Be prepared” is a good
motto. Whenever you send out a ver-
sion of your game, whether it’s to QA
or to manufacturing, you need to make
sure that you’ve kept a copy of every-
thing you need to aid in bug analysis.
Basically, this means that you need to
archive the released files, the debug
information, and the source.

With your debugging information
handy, load your copy of the executable
that crashed into the debugger by select-
ing it from the file dialog. You want
your debugger to load your executable
into memory and create a process, but
not start running your program. You do
this by selecting the Single Step or Step
Into command. Once all the symbols
have loaded, open up a register display
window and click on the EIP register to
place the insertion point there. Now
type in the EIP value from the error log
file, and the debugger should take you
to the code that crashed. By carefully
examining the assembly language, the
relevant source code, the register con-
tents from the error log, and the stack
dump from the error log, you will fre-
quently be able to track down the cause
of crashes — even crashes that only
happen on machines on the other side
of the continent.

Success

T he crashes in TA were eventually
tracked down to a few memory

buffer overruns and a buggy sound dri-
ver. Because the only machine we
could get these crashes to happen on
was in New York, I spent many hours
poring over error logs and piecing
together pieces of the puzzle. Without
the exception handler to reliably
record the critical data, I might still be
puzzling over why TA sometimes
crashed… instead of playing it. ■

G A M E D E V E L O P E R J A N U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

54

E X C E P T I O N H A N D L I N G

mmffcctteesstt ccaauusseedd aann AAcccceessss VViioollaattiioonn iinn mmoodduullee mmffcctteesstt..eexxee aatt 000011bb::0000440022117788..
EExxcceeppttiioonn hhaannddlleerr ccaalllleedd iinn MMaaiinn TThhrreeaadd..
EErrrroorr ooccccuurrrreedd aatt 1100//1188//11999988 2222::2288::4466..
DD::\\bbssrrcc\\eexxcceeppttiioonnhhaannddlleerr\\mmffcctteesstt\\RReelleeaassee\\mmffcctteesstt..eexxee,, rruunn bbyy bbrruuccee..
11 pprroocceessssoorr((ss)),, ttyyppee 558866..
9966 MMBByytteess pphhyyssiiccaall mmeemmoorryy..
WWrriittee ttoo llooccaattiioonn 00 ccaauusseedd aann aacccceessss vviioollaattiioonn..

RReeggiisstteerrss::
EEAAXX==0000000000000000 CCSS==000011bb EEIIPP==0000440022117788 EEFFLLGGSS==0000001100228866
EEBBXX==0000000000000011 SSSS==00002233 EESSPP==00001122ffaa0000 EEBBPP==00001122ffaa1188
EECCXX==ffffffffffff0000 DDSS==00002233 EESSII==000044003333aa88 FFSS==00003388
EEDDXX==0000000000000000 EESS==00002233 EEDDII==00001122ffee7700 GGSS==00000000
BByytteess aatt CCSS::EEIIPP::
8888 0088 eebb 4477 88bb 5555 ffcc 88aa 0022 8888 4455 ff88 eebb 33dd 3333 ffff
SSttaacckk dduummpp::
00001122ffaa0000:: 00001122ffee7700 000044003333aa88 ffffffffffffffff 000000000033ee88 00001122ffee0000 0000000000000000 00001122ffaa3344 00004400116600ff
......

MMoodduullee lliisstt:: nnaammeess,, aaddddrreesssseess,, ssiizzeess,, ttiimmee ssttaammppss aanndd ffiillee ttiimmeess::
DD::\\bbssrrcc\\eexxcceeppttiioonnhhaannddlleerr\\mmffcctteesstt\\RReelleeaassee\\mmffcctteesstt..eexxee,, llooaaddeedd aatt 00xx0000440000000000 -- 1188443322 bbyytteess --
336622aabb00ff33 -- ffiillee ddaattee iiss 1100//1188//11999988 2222::2244::3388
CC::\\WWIINNDDOOWWSS\\SSyysstteemm3322\\MMFFCC4422..DDLLLL,, llooaaddeedd aatt 00xx55ff440000000000 -- 995544664400 bbyytteess -- 334455eeff1144aa -- ffiillee ddaattee
iiss 55//1111//11999988 1188::1199::0000

L I S T I N G 2 . Some of the information returned by the exception handler.

• Anything by Matt Pietrek, especially

the January 1997, May 1996, April 1997,

and May 1998 editions of his “Under the

Hood” column in Microsoft Systems

Journal. These are available at

http://www.microsoft.com/msj/ or on

MSDN.

• Windows NT/95/98 developers should

consult the WINNT.H file, which describes

the EEXXCCEEPPTTIIOONN__PPOOIINNTTEERRSS structure.

FF OO RR FF UU RR TT HH EE RR II NN FF OO

for game developers to achieve better
results with less headache.

Playback Resolution

L et’s begin by briefly going over
some important topics that are

pertinent to the use of video in games.
First, we’ll look at the issue of playback
resolution. Video doesn’t need to play
back at the same resolution as the rest
of the content. For example, if the
game engine runs at 1024×768, but cut
scenes only play by themselves in full-
screen mode, it makes sense to drop
the resolution of the monitor down to
640×480 for playback. All the APIs that
we’ll look at in this article support reso-
lution switching.

Scaling is another technique. Many
of today’s graphics cards have built-in

high-quality hardware scaling; at low
data rates, a 320×240 movie scaled up
200 percent can often look a lot better
than a native 640×480, as scaling arti-
facts are generally less objectionable
than compression artifacts. In addi-
tion, because the video card does the
scaling, processor’s cycles are saved for
running the game itself.

A cheap way to do pixel doubling is
to draw only every other line. Duck’s
TrueMotion and RAD Game Tools’
Smacker offer this option, and it’s
always employed by Eidos Escape. The
main advantages are lower video band-
width and processing power require-
ments and an interlaced video-like
effect that tends to hide video limita-
tions. This last aspect is especially
important. The latter installments in
the WING COMMANDER game series
crammed a large amount of video on

each CD-ROM using this technique. Its
drawback is that because every other
line is black, the image is only half as
bright as it otherwise could be.

Frame Rate

Sometimes it’s not possible to use
the full frame rate of the source due

to bandwidth, data, or other concerns.
When reducing frame rate, the final
frame rate should be evenly divisible by
the original frame rate. This restriction
is critical to achieving the appearance of
smooth motion. Imagine that you have
video that was shot at 30 FPS being
played back at 20 FPS (so every third
frame is dropped). A moving object in
the original video would move a certain
amount on each frame, but after con-
version to 20 FPS, each frame samples
one thirtieth of a second or one twenti-
eth of a second, alternating. This can
cause an object to move different
amounts in alternating frames.

To address this problem, each frame
of the final video has to represent an

G A M E D E V E L O P E R J A N U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

56

V I D E OD I G I T A L

Surveying the Digital
Video Landscape

b y B e n W a g g o n e r

ideo in games has gone from an impossibility, to

the holy grail, to the source of all evil, to a com-

mon, appropriate component in most games. Video

is done badly in many cases, resulting in poor quality

and requiring more work than necessary. This article looks

at video compression and playback technologies currently

being used in games, some upcoming options, and some waysVV
Ben Waggoner is the chief technologist of Journeyman Digital, a digital media pro-
duction, post-production, and consulting company serving the interactive entertain-
ment industry. He hates it when good games have bad video, and you don’t want Ben
hating you. You can reach him at ben@journeyman.com.

equal sample of the original motion. In
order to achieve equal samples, we
divide the frame rate by an integer
value. So, a 24 FPS film should reduce
into a frame rate of 24, 12, 8, 6, and so
on. Video at 30 FPS should go to 30,
15, 10, 7.5, 6, and so on.

Keyframes

T he codecs that we’ll look at in this
article are all interframe codecs,

which means that they compress video
by comparing differences between
frames. Most frames aren’t stored as
complete images, instead storing only
those parts of the frame that differ
from the frame before it. The frames
that store a complete image are the
keyframes; the partial frames are delta
frames. Because delta frames are small-
er than keyframes, generally the fewer
keyframes, the better the compression.
Of course, when a video frame changes
a lot (such as at the start of a new
scene), there is often no advantage to
using a delta frame. Most codecs would
automatically insert a keyframe if the
delta frame was 85 percent of the size
of the keyframe or larger.

As a result, when you randomly
access a segment of video, you can
quickly go to a keyframe, but other
frames may not be pulled up so easily.
For instance, say you wanted to look at
a frame of video that was 100 frames
after the previous keyframe. You’d
have to decode the keyframe, and then
process all 99 delta frames off-screen
before you could view the right frame.
Needless to say, this process can be a
little slow. Also, if a frame is dropped
during playback due to some perfor-

mance hitch, the video will pause on
the last decoded frame until it gets to
the next keyframe (generally, the audio
will keep playing).

In many games, random access to
video segments isn’t necessary. But if it
is, make sure you have a keyframe at
the point to which you’d like to skip.
This point will often fall at the start of
a scene, which as we said before, will
often be a keyframe anyway. Sorenson
Video allows you to change the
keyframe insertion sensitivity, so you
can tune appropriately. Also, Adobe
Premiere and Media Cleaner Pro let
you add markers at certain frames so
that upon compression, those frames
are automatically made keyframes.

Data Rate vs. Data Size

N ow that most machines have 24x
or better CD-ROM drives,

throughput isn’t much of an issue.
More important is balancing playback
performance, quality, and disc usage.
We can easily play back full-screen,
full-motion 1MB per second Cinepak
movies — but only at ten minutes of
video per disc. The result, of course,
has been multi-disc fests such as WING

COMMANDER III and IV, the six-disc
BLACK DAHLIA, and others.

For most games, average data rate is
much more important than peak data
rate. But most compression tools still
default to fixed data rates. We’re much
better off having the codec vary its data

rate with the content, going up in diffi-
cult portions and down with easy
parts, preserving an even quality. We
have some options for varying data
rates. Some codecs allow you to set a
fixed quality level. For instance, with
Indeo 5.06, a quality setting of 85 at
320×240 and 30 FPS will generally yield
files around 130K per second, which
look better than files compressed at a
fixed 150K per second. The problem
with this approach is that you can’t
predict how big the files will be; you
may find yourself performing multiple
compressions of the video before you
can exactly meet your bit budget.
Better yet is Sorenson’s VBR mode,
which lets you select both an average
and a peak data rate; it then optimizes
quality given those parameters. This
same concept is used in MPEG-2 for
DVD. We should encourage other ven-
dors to adopt this option as well.

Tools for Video Compression

A DOBE PREMIERE. The traditional tool
for compressing video has been

Adobe Premiere, which was primarily
designed for video editing. However, it
does an adequate job of compression,
and it’s the best tool available for
Windows-based platforms. Premiere is
capable of outputting QuickTime 3.0
and .AVI files, but there are a few com-
pression issues to consider. First, if
you‘re able to work off of progressive
scan source, make sure you turn off

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 9 G A M E D E V E L O P E R

57
Bungie’s MYTH: THE FALLEN LORDS used Smacker from RAD Game Tools for its ani-

mated cut scenes.

Older Cinepak movies were high-

quality, but the large files resulted in

multi-disc games such as WING

COMMANDER IV.

field rendering in the Video dialog. If
you’re using an interlaced source, make
sure field rendering is turned on.

You’ll find some important settings
in the Special tab in the Export Movie
dialog. First, make sure that Better
Resize is turned on. This option forces
Premiere to use high-quality bicubic
scaling instead of its default, bad-look-
ing nearest-neighbor method. Bicubic
scaling alone can substantially improve
video quality. Also, if you’re coming off
of a video source that has noise or black
around the edges, you can select the
area to be cropped for the final image.
TERRAN MEDIA CLEANER PRO. A much better
tool for compression is Terran’s Media
Cleaner Pro. Unlike Premiere, it’s a dedi-
cated compression tool that’s full of
great features for doing this type of
work. Right now, it’s only available for
Macintosh and doesn’t handle .AVI
directly. Terran has promised a
Windows version with support for other
file formats. But Media Cleaner is so
good that it’s worth using a Macintosh
just so you can preprocess your video
with this tool, even if you just make
intermediate files and copy them over
to a Windows system for compression.

Playback Technologies

T here are three main playback archi-
tecture technologies used in

games. Having grown beyond their
original play-video-in-a-window ori-
gins, these products now provide com-
plex APIs to implement video in myri-
ad ways. They all have strengths and
weaknesses, and choosing which to use
depends on the given project needs.
APPLE QUICKTIME. Until last spring, the
full authoring API and media-layer
technologies for QuickTime were only

available for Macintoshes, so its use in
games was largely supplanted by other
technologies. However, the new 3.0
version offers the same API on both
Macintosh and Win32.

QuickTime’s biggest advantage is in
its ubiquity. QuickTime has robust solu-
tions in every part of the content chain
from digitization through editing,
effects, compression, and playback.
QuickTime 3.0 also includes advanced
media-layer functionality, allowing
authors to combine video and audio
with VR, 3D, music synthesizers, and
animated stills in very exciting ways.

QuickTime also goes far beyond sim-
ple audio and video playback. It works
on a track metaphor, in which each
track corresponds to a certain media
type. Beyond audio and video tracks
are MIDI, QuickDraw 3D animation,
video effects, sprites, and even interac-
tive elements. For example, it would be
easy to make a QuickTime movie that
consisted of a real-time rendered 3D
object that is composited on the fly
over a playing video, with a digitized
vocal track with MIDI accompaniment
playing. All these media could be
stored in a single .MOV file that would
play on any QuickTime 3.0 machine.
Addressing the API would make it easy
to swap out the 3D model at run time,
and dynamically change the MIDI
track while it plays. QuickTime is far
beyond other systems in offering this
kind of functionality, and it verges on
being a platform of its own: there are
over 7,000 pages of official documenta-
tion available for it now. However,
using QuickTime needn’t be complex.
Because the file format can encapsulate
all the media integration information,
media authors can do the heavy lifting;
from an API-level, playback of the most
complex movie requires no more cod-
ing than for the simplest.

QuickTime’s biggest drawback is that
it lacks MPEG-1 support on Windows,
and has no MPEG-2 support at all.
QuickTime also eats up a few MB of
RAM while running, which can be a
concern for RAM-hungry titles.

QuickTime has long been a staple of
multimedia CD-ROM, providing video
in such chestnuts as MYST. It has some-
what fallen out of favor with game
developers, largely due to the anemic
state of the older QuickTime for
Windows APIs. This could change with
QuickTime 3.0’s excellent API, which

has a lot to offer even Wintel-only prod-
ucts. It’s well worth a look by all devel-
opers. The first major game title ship-
ping with QuickTime 3.0 is X-FILES. The
new LEGO MINDSTORMS product also uses
QuickTime 3.0 heavily in its cut scenes
and building instruction sections.
DIRECTSHOW. DirectShow is a descendent
of a long line of Microsoft attempts at a
QuickTime killer. It started out as Video
for Windows, it later became Active-
Movie in the 32-bit world, and is now
DirectShow and is a part of DirectX. For
a few years in there, it seemed that
Microsoft kept rereleasing the same
product road map under new names
instead of shipping a complete product.
Nonetheless, the current DirectShow
2.0 has a lot to recommend it.

DirectShow’s target market is similar
to QuickTime’s — it offers an “every-
thing to everyone” suite of digital
video services. DirectShow’s main
advantage over QuickTime is that it
handles MPEG-2 and DVD content
well. If your product is targeting com-
puters using DVD playback hardware,
DirectShow provides a single API to
play the MPEG-2 content, regardless of
which MPEG-2 hardware is installed.
The installed base of DVD-ROM and
MPEG-2 is growing rapidly, and will
become increasingly important.

Unfortunately, DirectShow lacks
flexibility as a file format and author-
ing system, and .AVI is showing its age.
While you can use the DirectShow API
for media-layer functions such as over-
laying video with text, it’s impossible
to make a simple file that holds more
than a video and an audio track. While
Microsoft does have the “Advanced
Authoring Format,” at this point it’s
largely vaporware — it remains to be
seen if the AAF will reach critical mass
among software vendors. There is a
dearth of high-quality compression
tools for the DirectShow formats —
Adobe Premiere is the best available.
SMACKER. Smacker, from RAD Game
Tools, has been the dominant system
used in commercial games for the last
few years. It was originally designed to
play 320×200 full-screen video from
DOS games on 486-based Intel
machines, it’s been under continuous
development, and it’s more popular
than ever in the Win32 DirectX age.

Where QuickTime and DirectShow
have breadth, Smacker has depth.
Instead of being a general-purpose video

G A M E D E V E L O P E R J A N U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

58

D I G I T A L V I D E O

Interplay’s Star Trek franchise used

the TrueMotion-S codec.

architecture, Smacker has unwavering
focus on giving game developers exactly
what they need in a playback architec-
ture. Smacker doesn’t have a capture
architecture, 3D support, or third-party
tools available for it. All there is the
Smacker compressor and the Smacker
codec. It supports QuickTime 3.0, .AVI,
and other formats for input.

Smacker’s main advantage is its
incredible performance and flexibility
for game creators. It’s not just used for
cut scenes, but throughout programs
for simple animation. For example, all
the in-game animations in TOTAL

ANNIHILATION are Smacker-based. The
Smacker SDK is very flexible.

Smacker’s main limitation is that it’s
8-bit only. Yes, in our high-color
world, Smacker only does 8-bit graph-
ics. This limitation is less severe than
you might think, and is partly respon-
sible for Smacker’s excellent perfor-
mance. Smacker has a very good
palette optimization system, and if the
video will be played in a high-color
environment, you can switch palettes
at will (they recommend every 10
frames). However, this won’t help if
you have a lot of continuous tone
imagery in a single frame. Smacker is
best suited to rendered video or live
video with limited colors.

RAD Game Tools has a 24-bit follow
up to Smacker in progress, called Bink.
Bink should offer all of Smacker’s focus
on game developers, but finally with
great true-color support (see the side-
bar, “Upcoming Codecs”).

The Smacker tools are a free down-
load, or $95 with support. Player and
Scriptor applications without credit
screens and the Director Xtra cost
$995. Licenses cost $3,000 per product,
with volume and site licenses available.
Smacker costs $1,000 for the SDK and
$3,000/title for playback distribution.

Odds are good that any game you
can think of uses Smacker. A random
smattering of titles include INTERSTATE

76, STARCRAFT, DUNGEON KEEPER, MYTH:
THE FALLEN LORDS, and BLACK DAHLIA.

Video Codecs

A s important as the architectures
are the codecs. Codecs (compres-

sors/decompressors) are plug-ins to the
different architectures that do the actu-
al video processing. Both QuickTime

and DirectShow have some built-in
codecs, with a number of third-party
codecs available as well. In many cases,
a given codec can be available for both
architectures.
TRUEMOTION. Duck’s TrueMotion family
of codecs has been one of the most suc-
cessful codecs in games to date, both in
terms of titles produced and revenue.
There have been three main products
in its lifetime: TrueMotion-S,
TrueMotion RT, and TrueMotion 2.0.

TrueMotion-S was an intraframe-
only codec with limited quality but
excellent playback performance. Its
main selling point was the ability to
play back reasonable-quality full-screen
video on a variety of platforms. It was
used in a number of products, most
notably Interplay’s Star Trek franchise.
However, wide-scale acceptance was
hampered by difficult tools and unpre-
dictable data rates.

Duck decided to produce a new
interframe codec that would maintain
the good playback of TrueMotion-S,
while providing higher quality at lower
data rates. This product is TrueMotion
2.0 ($395), currently available for
DirectShow and, hopefully by the time
you read this, QuickTime. Duck sells
TrueMotion 2.0 directly, and still
charges both for tools and a per-prod-
uct licensing fee. The company also
sells an SDK for TruePlay, which is a
high-performance proprietary playback
environment.

TruePlay is used by a number of
major game developers such as
Activision and Electronic Arts. Given
its quality and performance,
TrueMotion 2.0 is widely expected to
become the dominant for-sale codec
for higher data-rate CD-ROM and
DVD-ROM content. A decompressor is
also built into
Microsoft’s DirectX
from version 5.1 on,
a boon for developers
who don’t need the
playback perfor-
mance of TruePlay.

The TrueMotion
2.0 Compression
Toolkit is $395. The
TruePlay 6.0 SDK is
$5,000. Non-retail
kiosk and high-vol-
ume application
licenses are $1,000
per product. Retail

kiosk and application licenses are
$2,500 per product. The TruePlay
license costs $5,000 per product. Note
that TrueMotion playback is built into
DirectShow.

Major happenings are on the hori-
zon for TrueMotion. A new version,
currently called TrueMotion 2x, should
be out in a few months (see the side-
bar, “Upcoming Codecs”). Even in the
early development version I’ve worked
with, it offers substantially improved
quality and compression. Sega has
licensed TrueMotion for Dreamcast, so
we can expect to see even more
TrueMotion in the future.

The first major game using True-
Motion 2.0 and TruePlay was FINAL

FANTASY VII. Games using older ver-
sions of TrueMotion include PHAN-
TASMAGORIA: A PUZZLE OF FLESH and
most of the Star Trek titles.
SORENSON VIDEO. Sorenson Vision’s
Sorenson Video codec was one of the
big pushes in the rollout of QuickTime
3.0, and rightly so. Derived from a
video conferencing application for the
deaf, it excels in preserving important
motion at low data rates.

Apple and Sorenson struck a deal by
which Apple included a full decoder
into the basic QuickTime 3.0 package,
in exchange for also including a limited
version of the compressor. The deal
worked well: QuickTime 3.0 has been
downloaded over one million times
since its release, Sorenson-compressed
videos are becoming common on the
Internet, and the Sorenson Developer
Edition has been selling briskly at $499.
The Developer Edition adds a number
of additional configuration options,
such as keyframe insertion threshold,
and (when run from Media Cleaner
Pro) Variable Bit Rate (VBR) encoding.

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 9 G A M E D E V E L O P E R

59

Video in X-FILES is based on Apple’s new QuickTime 3.0.

While Sorenson has been pushed pri-
marily as a video solution for the Web,
it has a lot to offer games in which disc
space is at a premium. Unlike True-
Motion or Smacker, Sorenson can pro-
duce good results with many kinds of
content at 50-100K per second. If you
want to use Sorenson, I highly recom-
mend that you do it with Media
Cleaner Pro and the Developer edition.
The VBR produces dramatically better
results. In essence, you tell the com-
pressor the average data rate at which
you want a clip to play back, and what
the highest peak data rate your target
platform can achieve during playback.
From this input, the compressor figures
out how best to distribute bandwidth
throughout the clip for maximum
quality. There’s a lot of depth and sub-
tlety to Sorenson.

Sorenson’s major drawback is its per-
formance. It is slow to encode, espe-
cially in its VBR mode. It also requires a
fast Pentium II-class computer to play
back anything more than 320×240
movies. However, it has a very high-
quality scaling mode, so pixel doubling
can produce very good results. For
game use, it’s probably best to encode
at 320×240, and then scale up to the
desired size. Lastly, Sorenson uses YUV-
9 color space, which causes trouble
with highly saturated colors.

The Basic version of Sorenson Video
in included free in QuickTime 3.0. The
Developer version of the codec is $499.
No games currently use Sorenson, but I
think it’s a great technology in cases
where disc space is at a premium.
EIDOS ESCAPE. Eidos Technologies, sister
company to the publisher of TOMB

RAIDER, developed a
codec for use in its
games. Happy with the
results, Eidos took it to
market as Eidos Escape,
available separately or
with the Eidos Escape
VideoStudio.

One of the more chari-
table descriptions I’ve
heard of Eidos Escape
was, “Just like True-
Motion 2.0, but worse.”
Escape’s two main prob-
lems are that it’s only 16-
bit (causing terrible
banding with low-con-
trast images) and that it
has no data rate control

beyond a quality slider. Escape has
been a bomb in the marketplace, and I
can’t think of any problem for which it
is the ideal solution. The only titles I’m
aware of that use Escape are the TOMB

RAIDER series and other Eidos
Interactive titles.
CINEPAK. Cinepak was the original CD-
ROM video codec. Created by
SuperMac and acquired by Radius, it
was licensed to virtually every digital
video platform, including QuickTime,
Video for Windows, 3DO, Sega Saturn,
Sega CD game systems, and now in the
Java Media Layer. Free to end users, its
combination of good overall perfor-
mance and great price made it the
dominant codec in multimedia until
last year. Unless a game is targeting
older machines, or wants to eschew
any license cost, Cinepak doesn’t have
much to recommend it anymore.

This didn’t have to be true. Given
the enormous audience for Cinepak
content, Radius developed a Pro ver-
sion of Cinepak, demonstrating a
nearly final version at NAB ’95.
However, Radius fell apart financially,
and development of Cinepak effec-
tively ceased. Several former Radius
employees formed Compression
Technologies Inc. and licensed back
the work-in-progress from Radius.
Initial hopes for a quick release and
rapid enhancement proved vain, how-
ever. CTI released a $499 package of
the new codec and its own compres-
sion tool. While it’s capable of impres-
sive results for projects needing
Cinepak delivery, Cinepak Pro has
consistently shipped late and been
technically troubled; its window in

the marketplace has largely closed.
While apparently still available as a
commercial product, it is Macintosh-
only, unstable, and barely marketed.

Cinepak is included for free in
DirectShow and QuickTime. Cinepak
Pro costs $499 for a single-user license.
INDEO. Intel’s Indeo line is unique in
that it was never intended to make
money. Early versions were attempts to
grow the multimedia industry, and thus
sell more Intel processors. In an era
where Macintosh dominated digital
video, it was also a way to encourage
users to use Intel’s video capture and
video playback cards in Windows-based
machines. In the early days of CD-ROM
digital video, the Indeo 3.2 codec was
second only to Cinepak in use, and had
strong advantages for talking-head con-
tent. When Pentium machines began to
come out, Intel wanted a new codec
that would demonstrate the new
processor’s power, while still being
usable on older machines. They
redesigned Indeo 4.0 from the ground
up, using a scalable wavelet-based com-
pression technology.

Even though Indeo has been contin-
ually improved and is free, its use has
dropped precipitously in recent years.
This inattention may be mainly due to
a lack of marketing — presumably Intel
didn’t want to spend marketing
resources on a giveaway technology.

Indeo has a number of special fea-
tures of interest to game developers. It
supports a one-bit alpha channel, and
can do good real-time compositing
with playback. This is great for achiev-
ing a number of game effects, such as
compositing an actor over a run-time
generated background in real time.

The Indeo API can do local decoding
of a region of a movie. For instance,
imagine a submarine game in which
the user looks through a periscope.
One could render a 1,024×192 Indeo
movie, representing a panoramic image
around the sub. The Indeo codec could
then decode only the 192×192 region
that the periscope is looking at, dra-
matically saving processing time.

Indeo, using its wavelet compression
system, can also do scalable playback.
With scalability turned on, when there
is insufficient processor power to
decode the video, the codec can
dynamically drop quality instead of
dropping frames. This provides a much
better experience for the end user.

G A M E D E V E L O P E R J A N U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

60

D I G I T A L V I D E O

FINAL FANTASY VII’s cut scenes were based on

TrueMotion 2.0.

There are two caveats with Indeo.
First, it’s processor intensive. Only the
fastest Pentium II machines can play
back a 640×480 Indeo movie. Second, it
uses YUV-9 color space. With YUV-9,
the codec stores color information in
4×4 blocks. This means that a sharp
edge of a highly saturated color can look
extremely blocky. When running under
MMX, Indeo automatically smoothes
out these blocks, substantially enhanc-
ing quality. If your game isn’t going to
be MMX-only, make sure to test the
video quality on a non-MMX machine.

Interestingly, there are currently four
available versions of Indeo. The one
that you, as a game developer, should
use is Indeo 5.06, which offers the best
performance, quality, and compres-
sion. Indeo 3.2 is an old cross-platform
talking-head codec little in use today.
Indeo 4.1 is the last version that ran
under Win16. Indeo 4.4 is available for
.AVI and QuickTime playback under
Windows, and it’s generally compara-
ble to Indeo 5.06, except for slightly
inferior compression and no MMX
YUV-9 correction.

As I mentioned, Indeo is free. It has-
n’t been used much for games to date.
The only high-profile title that has used
it, to my knowledge, is CIVILIZATION II.
MPEG-1. MPEG-1 is an open-standard
digital video format. It was originally
intended to run only with hardware
acceleration. As with many open stan-
dards, MPEG-1’s adoption was ham-
pered by different vendors implement-

ing the standard slightly differently.
While there was an early ‘90s push for
hardware-assisted MPEG-1–based
games, it never reached critical mass.
DirectShow now includes a robust
MPEG-1 software playback system that
yields good results on fast machines.
But MPEG-1 doesn’t offer nearly as
much to the industry today. It’s not
very flexible and can’t go past 352×240
in resolution. A few games still do use
MPEG-1, such as Microsoft’s CLOSE

COMBAT 2. Software-based MPEG-1,
especially with full-screen playback,
can be quite processor intensive; CLOSE

COMBAT 2’s video playback was the
most system taxing part of the game.

MPEG-1 hardware and software com-
pressors are available from a number of
different vendors. My favorite is
Heuris-Pulitzer’s MPEG Power
Professional ($499). MPEG-1 decom-
pression is built into DirectShow and
QuickTime for Macintosh (QuickTime
for Windows support is forthcoming).
MPEG-2. A high-resolution, high-quali-
ty enhancement of MPEG-2 is the dark
horse in game video right now. Fast
Pentium II systems with good AGP
video cards can do a marginal job of
MPEG-2 playback in software (without
much CPU power left over for any-
thing else). However, with the advent
of DVD, an increasing number of com-
puters are being sold with DVD-ROM
drives and MPEG-2 playback hardware.
As the installed base increases, this
could become a tempting video play-

back option for games. I would expect
the installed base of MPEG-2–capable
systems is already approaching that of,
say, 3Dfx graphics cards (although the
demographics of those consumers
might differ from the typical game-
hungry 3Dfx card owner). Some com-
panies, including Electronic Arts and
Sierra, are developing MPEG-2–based
products for DVD-ROM users (initially
converting older multi-disc titles to
single MPEG-2 based DVDs). Electronic
Arts is already shipping bundle-only
DVD-ROM versions of WING

COMMANDER IV and NFL GAME DAY 98,
with more in the offing. I expect devel-
opment of games using DVD-ROM and
MPEG-2 to increase over time. ■

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 9 G A M E D E V E L O P E R

61

T he next few months are going

to be an exiting time for codecs.

Duck’s TrueMotion 2X and RAD

Game Tools’ Bink are very pro-

mising enhancements. I’ve been working

with an alpha of Bink and a beta of True-

Motion 2X, and I’m impressed with both.

Bink finally brings Smacker users into

the true-color world. It will work pretty

much as Smacker does, with similar

tools, APIs, and so on. Although it’s 24-

bit instead of 8-bit per pixel, data rates

are much less than three times as much.

For some kinds of content, with lots of

continuous tone gradients, I expect Bink

will be able to produce better quality than

Smacker, but at the same data rates.

Bink’s pricing model should be very simi-

lar to Smacker’s, although it might cost

slightly more.

Duck’s Truemotion 2X, even in early

beta, promises to be a major enhance-

ment. Originally planed as a 2.x upgrade

to 2.0, the development went so well

Duck redubbed it 2X, as a new product.

The biggest enhancements are seen in

data rate control and compression quali-

ty, historically Truemotion’s biggest

weaknesses. The codec’s final version

should also offer meaningful enhance-

ments in motion quality. Dreamcast

developers should definitely be paying

attention to 2X, as it will be built into the

Dreamcast development environment.

Upcoming Codecs

Adobe Premiere:
San Jose, Calif.
(408) 536-6000
http://www.adobe.com

DirectShow:
Microsoft Corp
Redmond, Wash.
(425) 882-8080
http://msdn.microsoft.com/developer/sdk/dxmedia.htm

Eidos Escape:
Eidos Technologies Ltd.
Wimbledon, London, U.K.
+44 (181) 636 3000
http://www.eidostechnologies.com

Indeo:
Intel Corp.
Santa Clara, Calif.
(408) 765-8080
http://developer.intel.com/pc-supp/multimed/indeo/overview.htm

QuickTime:
Apple Computers Inc.
Cupertino, Calif.
(408) 996-1010
http://www.apple.com/quicktime/index.html

Smacker:
RAD Game Tools Inc.
Kirkland, Wash.
(425) 893-4300
http://www.radgametools.com

Sorenson Video:
Sorenson Vision Inc.
Logan, Utah
(888) 767-3676
http://www.s-vision.com

Terran Media Cleaner
Terran Interactive
Los Gatos, Calif.
(408) 356-7373
http://www.terran-int.com

FF OO RR FF UU RR TT HH EE RR II NN FF OO

hen Peter Akemann and Don Likeness

(a.k.a. The Brains) first moved to the moun-

tain town of Wrightwood, Calif., to prototype

the then-unnamed DIE BY THE SWORD, they imag-

ined the game as a sort of BILESTOAD 3D. They wanted

to create a fighting game that wasn’t just real-time rock, paper, scissors,

but an actual sword-fighting simulation, where players could target

exactly where their swords went and physics would take care of the rest.

And, similar to BILESTOAD, when players did enough damage to their

opponents’ limbs, said limbs would come

right off. Pete and Don had connections at

Interplay who introduced them to Brian

Fargo; they showed Brian the prototype,

signed a contract, moved to Venice, Calif.,

and started building a development team.

G A M E D E V E L O P E R J A N U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

62

b y J a m i e F r i s t r o m

WW
TreyarchÕs DIE BY
THE SWORD

P O S T M O R T E M

Jamie Fristrom’s girlfriend keeps trying to assure him that he’s not a geek. This article is non-fiction about
computer geeks; to see some of Jamie’s fiction about computer geeks, go to http://id.mind.net/~fristrom.

63

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 9 G A M E D E V E L O P E R

The Team

I t took a while for a good team to stabilize; we tried work-
ing with out-of-house contract artists to no avail. Then

Chris Busse, an old friend whom we’d hired as a producer,
started experimenting with LightWave and ended up as our
first 3D artist. And then, by stroke of luck, we hired Chris
Soares, our art director, who’d previously worked for
Microprose (he created the cover of X-COM); Chris Soares
entirely turned around the look of the game. The rest of our
team included myself, a coder whose biggest previous title
had been DELUXE JEOPARDY FEATURING VANNA WHITE; Mark
Nau, a frustrated ex-Atari game designer; Charles Tolman, a
programmer who did the GRETSKY port for the N64; and
Tomo Moriwaki, an art student whom we originally hired as
a flunky but who ended up as our other level designer. And
that was it. An eight-person team, most of whom had been
friends of The Brains in high school or college. We were a
very democratic bunch; although Don acted as our fearless
leader for the first half of the project (partly because Pete
took some time off to finish his Ph.D.) and Pete for the sec-
ond half, we usually did things by consensus — if just one
team member didn’t like something, we’d argue until that
person was convinced, or we’d figure out something better.

Interplay’s sound department did almost all of the sounds,
hired and recorded the voice actors, and composed the
music. Also, Interplay gave us an animator and a production
assistant during the last crunch. Although the sound and
music sometimes came in frustratingly late, the animator
was a production machine.

Slippage

D epending on who you talk to here at Treyarch, the pro-
ject schedule slipped anywhere between three and five

times. Technically, if you go by the contracts with Interplay,
it slipped three times, but there were also periods of time
between contract renegotiations where we had some verbal
agreement on a ship date that later changed.

The first slip was due to the realization that our out-of-
house artists weren’t going to produce models of acceptable
quality on time. So we asked for more time, hired an in-
house guy, and reassigned Chris Busse to the art department.

The second slip was due to a slight design drift. Nobody
really thought a fighting game for the PC would sell, and
we’d been dropping hints about how we’d like our next pro-
ject to be a sort of PRINCE OF PERSIA, but in 3D. (Believe it or
not, we hadn’t seen TOMB RAIDER yet.) So Interplay asked for
some proof of concept. Charles came up with the idea of por-
tals (we called them scissors, back then) and coded a camera
that could stay inside caves. Pete developed the rope trap to
prove that physics really was an asset to a computer game. I
took an event system that we’d originally built to control our
demo at E3 and turned it into a scripting language. We fin-
ished our proof-of-concept demo on the morning that we
had show it to the executives at Interplay, and they loved it.

The last time slip was due to the fact that the game just
needed more polish. We used this last slip as an opportunity
to update our lighting model, which was no good compared
to the competition.

Despite the setbacks, we did finally manage to ship a prod-
uct, and even though it came out over a year and a half later
than we had originally intended, it was still current: Next
Generation gave it five out of five stars and Computer Gaming
World called it “a fine game indeed.”

Our Tools

T he prototype was originally a 16-bit DOS program writ-
ten in BorlandC++. Before we showed the prototype to

Interplay, The Brains took it to 32 bits with the Borland DOS
extender. (“No sleep ‘til 32!” was their rallying cry.)

The DIE BY THE SWORD team: (left to right) author Jamie

Fristrom coded much of the game and wrote the scripting

language; Don Likeness, the project’s cofounder and some-

time team leader, built the renderer; Tomo Moriwaki mod-

eled many of the game’s levels; Dr. Peter Akemann,

cofounder and team leader, built VSIM, the game’s engine;

Mark Nau designed the game’s levels; Charles Tolman

shared coding responsibilities with the author; Chris Soares,

art director, modeled and painted the game’s characters and

levels; and Chris Busse, in addition to level-building respon-

sibilites, served as DIE BY THE SWORD’s producer.

Treyarch LLC
Culver City, Calif.
(310) 670-4111
http://www.treyarch.com
http://www.diebythesword.com

Team Size: Eight full-time developers at Treyarch. A handful of
assistants at Interplay.

Release date: March 1998.
Budget: Approximately $1,000,000 overall.
Time in development: Two and a half years.
Intended platform: Windows 95
Typical workstation at the beginning of the project: 90Mhz

Pentium with 16MB RAM.
Typical workstation at the end of the project: 200Mhz

Pentium II with 32MB RAM. Artists had 64MB.
Critical software: Visual C++ 4.2, CoolEdit, Paint Shop Pro,

Image Robot, Photoshop, SourceSafe, LightWave, 3D Studio
MAX, and Premiere

Notable technology: Treyarch’s VSIM engine

DIE BY THE SWORD

Borland’s DOS extender wasn’t ade-
quate, so we switched to Watcom.
Then, when we started doing dual
development (DOS and Windows 95),
we switched to Visual C++ 4. We used
C++’s extended features heavily,
including templates, exception han-
dling, and some standard template
libraries (STL). (I remember a conversa-
tion with Jon Blossom at a CGDC in
which he asked if we were using STL. I
said, “No, I mean, we’ve pretty much
internalized how to do a linked list.”
The very next week I wrote a linked list
with a stupid bug. The next day I
switched to STL.) We used Microosoft
Assembler for the software rasterizer.
Although we tried Starbase’s Versions
for source control, we quickly switched
to Microsoft SourceSafe, because of
shortcomings in Versions.

When we started,
we had

two art-houses, one building in
LightWave and the other in
PowerAnimator. Because of the differ-
ences in texture-mapping between the
two programs, the game could actually
handle two different file formats. When
we got rid of the art-houses, we went
with LightWave exclusively, because it
was much cheaper. Still, Soares used 3D
Studio MAX to make fire and user-inter-
face decorations. We used 3D Studio
MAX and Adobe Premiere to do the
post-processing on our cut-scenes.
CoolEdit was our favorite utility for
managing sounds.

Pete built our physics and human ani-
mation system, which we called VSIM.
VSIM is an animation system that can
be used for walking, swinging weapons,
reaching for door handles, looking at
opponents, and hanging upside down
from ropes. Most of the combat anima-
tion, and a lot of the simple gestures
that the characters made, were created
using VSIM in the in-house Move
Editor. The Move Editor allowed us to
apply motion targets to a character's
arms; a left-to-right sword swing was a
target on the left followed by a target on
the right. We thought the Move Editor
was so clever, we decided to ship a slick,
polished version of it with the game.
"Create your own custom moves" was
the marketing bullet. Unfortunately, it
was a rarely used feature, as most people
felt it was more effective to control

Enric on the fly than to store up
prerecorded moves for him.
A great in-house tool can be
a very mediocre feature.

The Art

A s I mentioned before,
Chris Soares’ art direc-

tion made a world of differ-
ence to the look of DIE

BY THE SWORD. A num-
ber of his tricks and

techniques contributed
greatly to the success of the
game as great-looking prod-
uct.
COOL PALETTE TRICKS. In DIE BY

THE SWORD, Chris Soares
came up with a great
method for dealing with
palette restrictions. Our
artists did all their paint-
ing in true color. Then

we took all
the textures
(characters and
terrain) and
sprites that were
to appear on a
given level and
used Image
Alchemy to make
an optimized
palette for that art. Then we’d remap all
the textures for that level to that palette.
So, for different levels, character models
use different texture maps that are opti-
mized for each specific level’s palette.
This method resulted in much more
subtle coloration than we could have
achieved by choosing one palette at the
beginning of the game and then picking
all of our colors from it.

Still, this method did have its limi-
tations; a palette is still a limited set of
colors, and you can’t have a level with
a wide variety of dramatically differ-
ent colors without losing your nice
gradients.
CONSISTENT ART DESIGN. One thing that
Chris Soares insisted on after we hired
him was that the game have a consis-
tent look — and that doesn’t just
mean dark fantasy all the way
through. For example, one place where
the consistency is most apparent is in
the user-interface shell screens: every
menu or dialog box that pops up is a
translucent dark banner that has a
bracket of weapons, skulls, and other
dark fantasy accessories. And most of
the banners animate.

G A M E D E V E L O P E R J A N U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

64

P O S T M O R T E M

CHARACTER MODELS. Originally, the char-
acters were made up of rigid polygonal
hulls for every limb segment; the sword
was a model, the forearm a model, the
upper-arm a model, the torso a model,
and so on. This construction looked
fairly ugly (especially when the twist-
ing torso turned on the pelvis) and
caused some overdraw. We changed
the models so that matching vertices
on different limbs could be attached,
and would stretch when the limbs
moved, creating the appearance of a
single-mesh that didn’t overdraw.

What Went Right

A project that slips as often as ours
often suffers from the STONEKEEP

phenomenon: the game sounds
intriguing when you first see the PR for
it, but by the time it finally hits the
shelves, it’s out of date. We managed
to avoid becoming another STONEKEEP.
This is how I think we did it:

1.WE ONLY EMPLOYED EXCELLENT PEOPLE.
In his Decline and Fall of the

American Programmer (Yourdon Press
Computing, 1993), Edward Yourdon
says this tenet is key to the success of a
development project. But it doesn’t
apply to just programmers; it applies to
every member of the team: artists, pro-
ducers, level designers. To achieve this
goal, we practiced nepotism: we hired
friends from college who had some
experience in the game industry and
we knew we could trust. Also, we got
lucky a couple of times. But a couple of
times, we ended up with mediocre peo-
ple whom we had to let go. Maybe in a
project with a larger team, we would
have had to figure out how to work
with mediocre people. DIE BY THE

SWORD wasn’t that project.

2.C++ WAS OUR FRIEND. When Pete
and Don hired me, I began a

campaign of whining about proper
object-oriented design. This whining
turned out to be productive, because
well-designed programs are capable of
more evolution than poorly-designed
ones. And as it turned out, DIE BY THE

SWORD needed to evolve.
Layers between the game and the

hardware allowed us to port from DOS
to Windows without coughing up our
lungs. And when the game evolved
from a fighting game to a TOMB RAIDER-
style dungeon crawl, it was solid

object-
oriented
design that
allowed this evo-
lution. Also,
Interplay always
wanted new features;
object-oriented design
enabled the develop-
ment of a lot of those
features.

3.OUR SCRIPTING

LANGUAGE.
We had an
event-driven,
and in a sense
multithread-
ed, scripting
language that facilitated Tomo and
Mark’s work immensely. I was leery of
scripting languages because I was used
to working on projects with mediocre
production assistants who either
couldn’t figure out the language or
wouldn’t step up to take advantage of
all its features. Mark was a programmer
in his own right, however, and Tomo
was just a hell of a smart guy.

This scripting language is my
favorite example of how object-orient-
ed code can evolve to meet new needs.
Originally, there was just the eevveenntt
class, a class intended to time camera
changes and some AI mode switching
for an E3 demo. But these events soon
became something a level designer
could enter from a text file, and from
there they evolved into a scripting lan-
guage that created chains of complex

behavior.
This scripting lan-

guage wasn’t as power-
ful as it could have been if

it were written as a virtual
stack machine with a real compiler;

it’s still better to do things correctly
from the start than to evolve the sys-
tem you need incrementally. But you
should design well so that when you
need to add a feature that you never
dreamed of, you can do it. Steve

McConnell, the author of Code
Complete (Microsoft Press, 1993)

pointed out that changing
requirements are just a fact of

life: “Maybe you think the
Edsel was the greatest car ever

made, belong to the Flat Earth
Society, and vote for George McGovern
every four years. If you do, go ahead
and believe that requirements won’t
change on your projects.”

The scripting language turned into
an extremely quick way to get a new
feature into the game and turn it over
to Mark and Tomo for fine-tuning. It
also gave the game its distinctive per-
sonality, the feeling that you’re in an
actual world that’s going on without
you, not just a world where you walk
from room to room and kill whatever’s
behind the next door. For example, the
room in which you come across two
orcs in the process of beating on a
kobold hanging from a rope until you
open the door and engage them…

We even used the scripting language
to make our between-level cut-scenes:
Mark would direct the actors with it,

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 9 G A M E D E V E L O P E R

65

The Minotaur character, in wireframe.

then shoot movies which we converted
to Interplay’s proprietary movie-play-
ing format.

4.SOURCE CONTROL WAS OUR FRIEND. We
weren’t using source control for

the first couple of months of the pro-
ject, and when we finally started, it was
so nice that we wondered what took us
so long. We learned to use concurrent
checkouts without hesitation or fear.A
few times over the life of the project,
some routines and modifications were
mysteriously lost, but for the most part
everything worked beautifully.

I read in a previous issue of Game
Developer that the guys at id don’t use
revision control (Brian Hook, “How I
Spent my Summer Vacation, or What I
Learned While Working on QUAKE II,”
January 1998). I think they’re insane.
How much better would QUAKE II have
been if they didn’t have to waste
time on code integration?

We used revision control on
the game data as well. At first, if
you wanted a
file fixed,
you had to
tell the per-
son who
“owned” it
to fix it for
you.
Revision
control
empowered
anyone to fix
a problem when-
ever he found it
without stepping
on someone else’s
toes. On occasion, revision
control even allowed me to find
a bug from a bug-report that had
disappeared
because the data
had changed.

5.BUG HUNTING.
For the most part,

we fixed the bugs before adding fea-
tures. This regimen is recommended
in Steve Maguire’s Debugging the
Development Process (Microsoft Press,
1994) and was my motto from day
one at the company. This is an easy
procedure to forget when your mile-
stone is approaching and your pub-
lisher just wants to see features; some-
times, we’d put off bug-fixing until
after a milestone release. But in gener-
al, we fixed the bugs as soon as possi-
ble. So, in the final release, there was
only one serious bug we had to patch:
although you could bring custom
moves with you into the arena por-
tion of the game, you couldn’t bring
them into the quest.

What Went Wrong with Our
Development? Where Do I Start?

1.NOT ALL OF THE CODE WAS WELL-
DESIGNED. Unfortunately, the pro-

totype that The Brains wrote three
years ago and showed to Interplay was
Pete’s first C++ project. Some parts,
such as the human motion engine, suf-
fered from a nearly complete absence
of even the basic principles of good
code, and other parts of the project suf-

fered from wacky C++
experiments that

would have
made Bjarne

Stroustrup cringe. Because
the code was laced with

assumptions, deep in
the heart of the

physics engine was
a locked down 18
frames per second.
We were stuck
with a frame-
locked net-play
model for similar

reasons, which we
knew wouldn’t be

decent over the
Internet.

2.A SHORT GAME. DIE

BY THE SWORD

ended up not being very
big: six to eight hours of
game play in the quest

portion. The
main reason for

this is that our tools
for level design weren’t

good enough. This had

two effects: we had to get rid of artists
who couldn’t adapt to our tools, and
the artists we did keep took more time
to make a level than they would have
needed if the tools were better.
“Scissoring” a level, or dividing it into
sectors, was a laborious process. The
scripting language had no facilities for
debugging, and its error messages were
often quite unenlightening.
Furthermore, the game could take min-
utes to load a single level. Our level
designers would typically make a
change to a script that took ten sec-
onds to type in, and then read a maga-
zine while the level loaded. It often
took longer than the coder’s compiles.
Unfortunately, the programmers were
adding new lame features, such as the
tournament, rather than writing better
tools to facilitate the level designers.

On our next project, our producer
will be there to facilitate the program-
mers and the programmers will be
there to facilitate the level designers.
When a level designer gets jammed due
to a bad programmer, the programmer
will be given forty lashes.

3.LIGHTING. We experimented with
shadow maps in the middle of

the project and discarded them
because we felt the memory was better
used making higher-resolution,
unshadowed textures. Chris Soares
repeatedly asked, “Are you sure?”
because if his maps weren’t going to be
shaded, he was going to paint the
shadows right into them. We told him
to go ahead. Unfortunately, the end
result wasn’t as good, not because the
textures were badly painted, but
because there still wasn’t enough
memory. Next, we tried vertex shad-
ing, but that meant that Chris Soares
had to go through and undo all the
shading he’d put into the textures,
because everything was coming out
too dark. Also, it was too slow in soft-
ware to run on our benchmark

G A M E D E V E L O P E R J A N U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

66

P O S T M O R T E M

machine. Users had to
turn the shading off
for a decent frame
rate, so they
ended up with
unshaded, washed-
out terrains.

4.FEATURE CREEP. A
recurring pattern

when our schedule
slipped went something
like this: we would fall
behind schedule; we’d
agree that the schedule
would have to slip; as
long as the schedule
was slipping, it was
quite tempting to add
new features into the
schedule. We tried to
say no to new features
as much as possible,
but some of them were
just too tempting to
resist. And then our schedule would
slip again when those features took
longer to implement than planned.
And so on.

Some features, such as the tourna-
ment mode, seem a total waste of time
in hindsight. But other features, such as
the improved lighting model, were
probably essential to the game’s suc-
cess. We did manage to ship eventually,
but Interplay tells us we didn’t hit our
marketing window (whatever that is.)

5.STEEP LEARNING CURVE. The game
ended up being too hard to play,

and a lot of newcomers got stuck in the
tutorial, where there were some jump-
ing puzzles that were almost as hard as
jumps in the middle of the game. Also,
the first monsters you meet are so short
that the default attack goes over their

heads. The tutorial and
first level were our interac-
tive demo, so I imagine
that a lot of people who

couldn’t finish
the demo

decided not
to buy the
game.

We learned
two things

from this experi-
ence. First, a tutori-

al/game model of teach-
ing the game’s skill set is
no good. Users should
learn skills gradually as
they progress through the
game, rather than learn-
ing them all at once.
Second, make sure that
you can rearrange your
levels so that the easy
stuff comes first.

The Aftermath

W e weren’t ready to put DIE

BY THE SWORD away once
we’d shipped. No, a two-and-a-half-
year habit is much too hard to break.
Besides, we had issues to resolve.
MAKING THE PATCH. We always knew that
our game would be awful over the
Internet, partly because 250 millisec-
onds of latency makes a swordfighting
game impossible in the first place and
partly because we were stuck with a
frame-locked model from the begin-
ning. Still, people tried it over the
Internet, and those with cable modems
actually had some success.

The abysmal Internet play was the
largest complaint on the bulletin
boards, even though Interplay’s mar-
keting department was wise enough to
say nothing about Internet play on
the box. As a result, most of the patch
dealt with getting a frame-locked
Internet game tolerable. We were able
to optimize the game to a relatively
acceptable level. If both players were
on modems, it was playable (at some-
thing like 5 frames per second); if one
had a cable modem, it was okay
(maybe 11 frames per second); and if
both had cable modems, it was
decent.
MAKING THE EXPANSION PACK. We managed
to convince Interplay that a $20 expan-

sion pack would be a worthwhile addi-
tion to the game. Unfortunately, we
then had to develop it, when we would
have preferred to start creating our new
engine. The whole process went quite
smoothly. Pete gave up the producer
reins entirely to Chris Busse, who man-
aged everything. The expanision pack
hit the shelves in the beginning of
October 1998.
DIE BY THE SWORD JAPANESE. Out of
nowhere, Interplay asked us about the
feasibility of doing the game in
Japanese. We had impressed Interplay
by being the first game in the history
of their company to ship in America
and Europe at the same time, but no
one had said anything about Japan
until now. Chuck Tolman handled the
port almost exclusively, converting
strings into double-byte format and
finding ways to fit ridiculous amounts
of kanji onto the screen. And because
the Move Editor shared so much code
with the main executable, once he got
that working, the Move Editor took less
than a day to get into the new lan-
guage. Our next product will be
Japanese-ready from the start.

What Have We Learned

U nless you’re willing to cut fea-
tures, your game is probably

going to slip. And when it slips, you’re
going to need to add features to stay
current. The only way to do that, on
the programming side, is to take the
hit from day one, always doing things
correctly instead of doing things
quickly. Sometimes something as sim-
ple as a poor choice of variable name
will be a thorn in your side until the
end of the project. ■

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 9 G A M E D E V E L O P E R

67

The final version of the Move Editor,

which shipped with the retail version

of the game. This screenshot happens

to be from the Spanish version. Treyarch’s in-house Move Editor.

(c) retailers putting these duds on the
shelves, (d) some members of the press
giving inaccurate reviews and fueling
the hype of games they know are
released incomplete, and (e) game play-
ers who purchase said duds and
then attempt to blame
someone.

If the current
trend of low-cost
titles as well as
high-end ones
finding their
way into bar-
gain bins with-
in weeks of
shipping is
any indica-
tion, one can
assume that
the monetary
clout of game
players will win,
and that this practice of shipping
incomplete games will cease. Right?
Wrong. It’s going to take a lot more
than flame wars, lawsuits, and foul lan-
guage to resolve this problem. So, what
the heck is going on out there? Below, is
my take on the situation.

The Usual Suspects

T HE PUBLISHER. Your typical outfit is
run by suits who ignore the fact

that releasing a game incomplete is just
plain fraudulent. Whether it’s an innov-
ative title or the next great shovelware,
the game players are the last factors con-

sidered in a bean-counting exercise that
peers at the bottom-line sales figures. No
matter how long a game is in develop-
ment, there will come a time when it
will go in a box, even if it’s not ready.
Publishers are blamed for this mishap,
but in all fairness, suits don’t make

games.
Developers

make games. When
a development team schedules

a game to be completed in 18 months
and takes large advances from publish-
ers, what recourse does the publisher
have, when 24 months and a bloated
budget later, the game is still not ready?
Where can a publisher draw the line
between shipping an incomplete prod-
uct and recouping at least a portion of
its investment? In an industry where
the release date of a title makes a world
of difference, most games are subject to
the Christmas Syndrome.
THE DEVELOPER. A producer from the pub-
lisher is usually tasked with ensuring
that the publisher’s interests are protect-
ed and that the team and game are on

track. No respectable development team
plans to ship an incomplete game. There
are a variety of situations that cause this
problem as a result of games slipping
and going over budget. It’s a problem
that is prevalent, and one which is not
as easy to resolve as one would think. In-
house developers have milestones and a
regular paycheck. If they slip, heads roll,
and the suits say “Ship it.” All the devel-
oper can do at that point is ask,
“When?” An outside team that is paid
on milestones will find itself in a bind if
a game slips because it can’t deliver that
critical version in
order

to collect pay for that milestone. At the
end of the day, what will the publisher
do when they’ve invested millions of
dollars in a title, and its schedule slips?
Give the team more time and money?
Fire the team? Cancel the project? Most
times, the team is either given more time
or the game ships incomplete. In some
cases, team members leave under suspi-
cious circumstances only to resurface
elsewhere and repeat the same mistakes.
When a game slips, the developer loses
leverage with the publisher, and unless
there’s a bargaining chip tucked away
somewhere, the game is going to ship if
the publisher says so.
Continued on page 71.

G A M E D E V E L O P E R J A N U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

72

b y D e r e k S m a r tS O A P B O X

It’s Ready When it Ships

T here’s a war going on out there. It’s a fragfest

that involves: (a) publishers shipping games

before they’re ready, (b) developers taking

flak for games released incomplete,

Derek Smart is the designer/lead developer of BATTLECRUISER 3000AD, one of the most disastrous publisher-induced game-
release-mishaps since OUTPOST. Outgunned, outnumbered, and unabashed, Smart is behind enemy lines doing what he does
for fun: making industry deadbeats and anti-social misfits very, very mad. You can flame him at dsmart@3000ad.com.

Illu
s

tra
tio

n
 b

y
 P

a
m

e
la

 H
o

b
b

s

Continued from page 72.

Developers are tasked with accurately
scheduling their projects, but no matter
how accurate they are, Murphy’s law
always enters the picture.

The Court Martial Candidates

T HE PRESS. If this war were regulated,
some members of the press would

be on trial for treason — if you assume
that they are on the side of the game
player. The publishers need the press to
get the word out on their games. The
press need the publishers’ ad dollars, as
well as the game players’ subscriptions.
Most game players factor what they read
into their buying decisions. Gaming
magazines with years of experience and
reader loyalty find themselves in the
combat zone, trying to cater to both the
publishers and the game players. Playing
both sides against the middle is common
practice for some press types. Certain
members of the media will trash a bad
game that everyone knows is bad, and
hope that the next time they give a high
rating to a truly bad game (from a pub-
lisher withad purchases) that no-one will
notice. Take a wild guess at what hap-
pens when a magazine assigns a sports
game columnist to review a flight sim —
an inaccurate review. With the number
of game release blunders, grossly inaccu-
rate reviews and previews, and hype
without substance on the rise, game play-
ers have a hard time figuring out who to
trust. What happens when a game is
hyped for years based on countless
reviews of previews, beta versions, and so
on,.and then game bombs because (a) it
was plain bad or (b) it was released
incomplete? The game player will find
someone to blame, and will often forget
that the press is at fault for generating
inaccurate hype in the first place.
THE RETAILER. It isn’t surprising that sever-
al publishers are either going out of
business or peddling shovelware in
order to make up for losses in big budget
games. The retailing tactics amount to
something short of outright extortion. It
is becoming more and more difficult to
put games on the shelves, especially for
small publishers and independent devel-
opers who want to self-publish. There
was a time when retailers made their
money on gaming software from profit
margins. Nowadays, they rely on big

budget publisher-funded marketing
campaigns. Therefore, fewer games
make it to the shelves. Those that do
make it don’t last very long because the
retailer expects price reductions in order
to move them and make way for the
next best thing. If the retailer paid low
cost for non-returnable inventory, this
means that the retailer is stuck with the
inventory and has to shovel it. When
disgruntled game players return dud
games, you would expect that action to
ultimately affect the retailer-publisher
relationship, right? And that if the
retailer didn’t sell duds, that publishers
would cease producing them. Wrong. As
long as publishers continue to pay retail-
ers to put bad games on the shelves, this
cycle will continue. The retailers must
be thinking that if the publishers are
going to peddle duds on their shelves,
they may as well pay for the forthcom-
ing downtime that those returns are
going to cause.

Casualties of War

T HE GAME PLAYER. Meet the warrior
clan: the casual gamer, the hobbyist,

and the anti-social misfit. With the
exception of the third caste, who only
use game-release mishaps as an excuse to
behave badly online, this clan just wants
to play games right out of the box.
When a game player has to search the
Internet for a patch that makes a new
game playable, you know somebody is
going to take the flak for it. What is a
game player to do when a favorite pub-
lisher releases a game incomplete? The
game player can start a war or threaten a
boycott, but this practice has been going
on for years and incomplete games are
still the number one complaint among
game players. The solution is not as easy
as buying another game. If the game
player is locked into a genre, for exam-
ple, a flight jock who has never played
QUAKE, then it compounds the problem.
Publisher brand recognition is not what
it used to be, but the damage is already
done.In a choice between RED BARON II
and FLYING CORPS GOLD, how many
flight jocks relied on the Sierra name
brand and ignored a better alternative in
FLYING CORPS GOLD? Or games go only
halfway. UNREAL is an awesome single-
player game, but it has dismal Internet
play. So, we all continue playing our

favorite QUAKE II mods online. There
isn’t too much flak about UNREAL

because we have the QUAKE alternative.
Let me give an example from personal

experience. When my game,
Battlecruiser 3000AD, was released
incomplete by my publishers in 1996,
there were no alternatives in that genre.
So, the fallout was catastrophic and it’s
still going on to this day. There aren’t
that many choices, and when eagerly
awaited titles don’t live up to the hype or
are released in a dismal fashion, it alien-
ates the game players and places the
developers under siege.

Developers, Publishers, Retailers,
Press, Game Players . . . FIGHT!!

T he Quality Assurance guys are sea-
soned vets who are paid to play

games and break them. Period.
However, there is always the possibility
that a game will ship with known or
unknown bugs. This is one reason why
patches appear online before ten people
have even bought the game. A time
comes when a decision has to be made.
Publishers assume they don’t have
much choice when development sched-
ules slip and there are millions of dollars
at stake. Most often, they will ship the
game incomplete, recoup some of their
money, and hope that the game is good
enough for game players to hang on to
while the development team continues
to work feverishly in order to fix the
bugs and complete the game.

The advancements in technology
which create the hardware and soft-
ware cocktails prevalent in today’s sys-
tems ensure that somewhere out there,
a bug is waiting to surface. This, in
itself, is quite different from shipping a
game with known bugs that should’ve
been fixed prior to release. I predict
that in the coming months, especially
with the ULTIMA ONLINE lawsuit, we will
start to see game disclaimers the size of
legal documents. Epic has already start-
ed the trend with their inbox notice
acknowledging that there may be
unforeseen problems in the boxed ver-
sion of UNREAL. This is a step in the
right direction, but one which I feel
will be misused by some publishers as
yet another loophole to shovel duds.
One thing is certain, the war will con-
tinue to rage on. ■

S O A P B O X

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 9 G A M E D E V E L O P E R

71

	back:

