
JANUARY 1998

G A M E D E V E L O P E R M A G A Z I N E

In Hollywood, reading an interview
is the most common way to find
out about what's going on in a
star's life. Magazines such as People,

Rolling Stone, Spin, and Interview are suc-
cessful because the public wants to know
what's going on with the people behind
the movies and music. There's a natural
curiosity about what projects they're cur-
rently working on and what's going on
in their personal lives. With the excep-
tion of the rare autobiography, however,
it's rare to get first-hand information
from well-known stars.

That's not true in the game develop-
ment industry. Game developers
expound their opinions about life, the
universe, and everything via .plan files,
and outside of the academic world
(where .plan and .project files were
probably first used to keep colleagues
across the country updated on research
projects), this candor is fairly isolated to
our industry. Some may dismiss finger-
ing .plan files as an outdated mode of
communication now that web pages are
ubiquitous, but in terms of simplicity
and beauty, there's nothing like pure
vanilla text to get your message across.

To help disseminate the contents of
the various .plan files around the indus-
try, a number of web sites have been
launched in the past two years, which
effectively market .plans to the masses.
A quick scan of the Stomped Finger
Tracker at redwood.stomped.com
reveals constantly updated .plan files
from id, Rogue Entertainment, Ritual
Entertainment, Raven Software,
3DRealms/Apogee, ION Storm,
Quantum Axcess, and more. Over 100
developers have .plan files listed on the
site, and about a quarter of those are
updated every week — quite a bit of
information.

At a business level, there are so many
reasons to author a .plan that it's hard
to know where to begin. A good .plan
brings developers closer to customers,
letting consumers tap into the thoughts
and feelings of the people behind the
games. .plans build excitement for
upcoming games and connect con-
sumers with the creators of shipping
games. They bring game players closer
to members of the development team,
and they build company identity, loyal-

ty, and developer name recognition.
Undoubtedly, all of these factors trans-
late in some way to increased sales.

At a personal level, authoring a .plan
can raise your personal stock — if it's
written consistently and intelligently.
And building name recognition within
the industry and with customers
should be a high priority for anyone
who's serious about making a name for
themselves.

A word of caution, however.
Remember that what the .plan giveth,
the .plan can taketh away. Those who
forget to engage their brains before
putting mouths in action often learn
tough lessons about making derogatory
public statements on the Net. Off-the-
cuff comments have been misconstrued,
innocuous statements have been turned
against authors, and 3AM rants have
proven to be public relations messes the
following day. As with anything you run
up the flagpole on Usenet and the Web,
adopting a harsh tone or making inaccu-
rate statements can get authors and their
companies in hot water. Companies
whose developers author .plans should
adopt guidelines that spell out which
topics are acceptable to write about and
which are not. This may sound authori-
tarian and somewhat counter to the
open nature of .plan authorship, but it
also prevents someone from exercising
poor judgement in a .plan.

My point is this: don't overlook the
obvious when you're trying to get some
attention in today's crowded market-
place. Web sites are great customer ser-
vice tools and online product
brochures, but all too often they lack
soul. If you're management, encourage
.plan authorship within your develop-
ment teams' ranks. If you're creating a
game and your company doesn't
already support the notion of .plans,
approach management with the idea.
Doesn't it make sense for you and your
company to do everything within your
power to generate consumer interest
and loyalty, especially when all that's
required is a little time every week and
some space on your server? ■

G A M E D E V E L O P E R J A N U A R Y 1 9 9 8

4

P L A NG A M E

What's Your .plan?
EDITOR IN CHIEF

MANAGING EDITOR

EDITORIAL ASSISTANT

EDITOR-AT-LARGE

CONTRIBUTING EDITORS

ART DIRECTOR

ADVISORY BOARD

COVER IMAGE

PUBLISHER

ASSOCIATE PUBLISHER

WESTERN REGIONAL SALES
MANAGER

MARKETING MANAGER

AD. PRODUCTION COORDINATOR

DIRECTOR OF PRODUCTION

VICE PRESIDENT/CIRCULATION

GROUP CIRCULATION DIRECTOR

CIRCULATION MANAGER

CIRCULATION ASSISTANT

DIRECT MAIL MANAGER

NEWSSTAND MANAGER

REPRINTS

CEO - MILLER FREEMAN GLOBAL

CHAIRMAN - MILLER FREEMAN INC.

PRESIDENT

SENIOR VICE PRESIDENT/CFO

SENIOR VICE PRESIDENTS

VICE PRESIDENT/PRODUCTION

VICE PRESIDENT/CIRCULATION

SENIOR VICE PRESIDENT/
SYSTEMS AND SOFTWARE

DIVISION

Alex Dunne
adunne@compuserve.com

Tor Berg
tdberg@sirius.com

Wesley Hall
whall@mfi.com

Chris Hecker
checker@bix.com

Brian Hook
bwh@wksoftware.com

Josh White
josh@vectorg.com

Azriel Hayes
ahayes@mfi.com

Hal Barwood

Noah Falstein

Susan Lee-Merrow

Mark Miller

Darwin 3D

KoAnn Vikören

Cynthia A. Blair
cblair@mfi.com

Tony Andrade
(415) 905-2156
tandrade@mfi.com

Susan McDonald

Dave Perrotti

Andrew A. Mickus

Jerry M. Okabe

Mike Poplardo

Stephanie Blake

Kausha Jackson-Crain

Claudia Curcio

Eric Alekman

Stella Valdez
(916) 983-6971

Tony Tillin

Marshall W. Freeman

Donald A. Pazour

Warren “Andy” Ambrose

H. Ted Bahr,

Darrell Denny,

David Nussbaum,

Galen A. Poss,

Wini D. Ragus,

Regina Starr Ridley

Andrew A. Mickus

Jerry M. Okabe

Regina Starr Ridley

Miller Freeman
A United News & Media publication

www.gdmag.com

What Dave Said

I f we are to believe Dave Thielen
("Goodbye For Now," Soapbox,

October 1997), then all of us in the
game industry are uneducated sloths
who would do better to step aside and
let the "professional" programmers do
the job! If that is the way Mr. Thielen
wants it, then scratch ULTIMA: It was
developed by a young Richard Garriott.
And scratch many other successful
games while you're at it.

I have seen many games programmed
by "professional" programmers. These
games all have "really slick code" — and
that's about it. No heart, no soul, no
passion. The game industry may
change, but it will never completely
stamp out the Leonardos and
Michaelangelos of the game industry.
These are the hearty souls that other
industries wish they had. They are the
pioneers with the raw talent and stami-
na to overcome the persecution perpe-
trated by the arrogance so often seen in
the attitudes of those who deem them-
selves "professional." Many of the games
that people love today were developed
on an extremely tight budget. How
many programmers working in other
industries would go the extra yard to get
their product out even though they
hadn't been paid for a month?

Concerning game publishers' will-
ingness to decide for themselves
whether or not a product is worthy of
publishing: This problem isn’t isolated
to the game industry. Publishers in
general have this problem. They have
many products thrust at them, and
when a product doesn’t stand out from
the crowd, it gets overlooked. Rejection
is part of the game; get used to it.

Concerning unqualified program-
mers: Certainly there are some who are
eccentric and maybe a few who are not
"right" for the job. But to brand most of
the industry as "unqualified" shows a
lack of reasoning.

Concerning self-taught program-
mers: Every developer can benefit from
experience working with a senior
developer. How can anyone invalidate
an individual's desire to learn whether
it is through formal classroom or inde-
pendent studies? Mr. Thielen's concept
is both unreasonable and contradictory
to many of the educational programs
offered through mainstream technolo-

gy companies. In fact, those interested
enough to spend their own time learn-
ing a subject are usually more capable
than those force-fed in the classroom.
If the heart, soul, and passion driving
the individual are missing, no amount
of training or experience that the indi-
vidual has will help finish the project.

L a r r y D o l y n i u k

v i a E - m a i l

What Nancie Said

I feel compelled to write concerning
Nancie S. Martin's Soapbox (“Take the

Y Out of Computer Games,”
September 1997”). My first
reaction was insult
and anger, which has
quieted to mere hurt
feelings. Imagine her
article being written
by a Nathaniel S.
Martin… imagine the
sneering tone and condescend-
ing attitude of the article being applied
to females, rather than males. Instead of
this one, lonely missive in protest, you
would be flooded with e-mail, demand-
ing blood payment.

The nature of video games, to date,
has been largely determined by the
audience, the nature of those writing
the games, and the limitations of the
hardware/software. Conflict, the heart
of storytelling (which is what video
games are about), is difficult to pro-
gram, except through violent, physical
activity. Consider the complexity of
the plot in an action movie vs. the plot
in a love story or contemplative drama.

The video game industry was
breech-born, in the spare time of real
programmers doing “real” program-
ming. It's hardly surprising that video
games appealed to those writing them.
If Ms. Martin wishes for there to be
video games that appeal to her tastes,
let her write them. One of my all-time
favorite games is MYST. DOOM, and all
of its spin-offs, literally leave me ill.
DIABLO bores me. Granted, I do love
the CRUSADER games, but consider the
plot they have and the lengths to
which the authors went to draw the
player into that plot. Most of my all-
time favorite games involve explo-
ration rather than physical action. If

her suppositions concerning what does
and does not interest men, and the dif-
ferences between what men and
women like are valid, how can she
explain my taste, as well as my friends'
taste, in video games? Women's tastes
in video games are, by and large, dif-
ferent from men's. Not better, not
worse, merely different. However, the
area of overlap is so large, I strongly
doubt that it’s necessary to specifically
target the female audience.

As the hardware, software, and tools
improve, so will the overall quality and
complexity of games of all genres. For
that small bit of software that specifi-
cally targets women, there will be plen-

ty of programmers and design-
ers, probably female, to create

it. For the rest of it, I think
the developers should

concentrate on telling
good stories.

J i m W i l l i a m s

v i a E - m a i l

Wal-Mart and the RSAC

A s one of the members of the
committee who created the

RSAC ratings system, I can tell you
that one of our committee members
met with Wal-Mart and received feed-
back from their management before
moving forward with the system. We
knew that publishers would not sup-
port a system that couldn't get them
into Wal-Mart. I am therefore alarmed
by your September editorial which
suggests that RSAC ratings wouldn't
stand up to the scrutiny of the Wal-
Mart management.

J o h n n y L . W i l s o n

E d i t o r - i n - C h i e f ,

C o m p u t e r G a m i n g W o r l d

E D I T O R A L E X D U N N E R E S P O N D S :

Rightfully admonished. Had I only dived

deeper into the RSAC web site

(www.rsac.org), I would have uncovered an

old press release stating that Wal-Mart was

one of the first on board to support the

RSAC ratings. While I did not attempt to

contact RSAC, my two messages with Wal-

Mart itself were not returned, so I never got

the opportunity to talk directly to store rep-

resentatives. Apologies to you and the

other RSAC committee members.

G A M E D E V E L O P E R J A N U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

6

Y O US A Y S

T

CodeWarrior
Professional 2
METROWERKS has just released
CodeWarrior Professional 2, the newest
version of the company’s line of pro-
gramming tools that combines
Windows- and MacOS-hosted desktop
tools into a unified software develop-
ment package.

CodeWarrior Professional 2 com-
bines a project manager, a source-code
editor, and a multilanguage code

browser together with compilers and
linkers. It supports development for a
variety of target processors and oper-
ating systems using plug-in compilers
and linkers from third-party vendors
and other CodeWarrior products. New
features include: project files that are
interchangeable between Windows
and MacOS, the ability to compare
two source files and merge changes,
version 2.0 of Metrowerks’ C/C++
compiler, a “current target” column in
the project window, a code browser
that works across targets and subpro-
jects, and subproject caching that

G A M E D E V E L O P E R J A N U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

8

BIT BBBB LLLL
N E W S F R O M T H E W O R L D

R O B E R T S D I R E C T S

W I N G

C O M M A N D E R

M O V I E .

Chris
Roberts, who cut

his teeth behind the cam-
era during production of the video seg-
ments of WING COMMANDER 3 and 4, steps
behind the camera again this month as
the director of the upcoming WING

COMMANDER movie. This is Roberts' debut
at the helm of a feature-length film. The
$27 million movie has been picked up by
Twentieth Century Fox for distribution in
the US and UK, and Roberts' own Digital
Anvil is going to create the digital
imagery for the film. No word yet on a
release date or who appears in the
movie.
B L I Z Z A R D S A Y S B Y E - B Y E T O

C O M M E R C I A L N E T W O R K S . With the
intense popularity of Blizzard's
Battle.net, the company has announced
that it it will not license future titles such
as STARCRAFT out to third-party networks
such as Mpath and TEN, opting instead to
host them exclusively on their own free,
proprietary network. The company also
announced that the site — which recent-
ly reached the 1.4 millionth unique user
mark — will begin serving paid banner
advertisements.
P G L S I G N I N G S P O N S O R S . TEN's
Professional Gamers League (PGL) has
lined up over $2 million in sponsorships
so far (including Levi Strauss's Dockers
khakis), and this thing looks like it
might have legs. Just as some game
developers are reaching cult figure sta-
tus outside of our industry, the PGL has
a good shot at turning highly-ranked
players into recognizable figures in the
mainstream.

Organica
IMPULSE has announced the completion of Organica, a new 3D modeling pro-
gram that supports 3D object file formats such as Imagine, LightWave, and 3D
Studio MAX.

In Organica, users build objects
in a method based loosely on the
metaball concept. The program
gives you 25 different magic
blocks that you can put together,
bend, taper, twist, shear, or resize
to meet your needs. Running in
real time, the product lets you put
a high-quality 3D object together
quickly. The images at right were
modeled in Organica by UK-based
developer
Synthetic
Dimensions for
their upcoming
game.

Organica runs
on Windows
95/NT, and a
MacOS version is
scheduled for
release in January
1998. The program
has a suggested
retail price of $299.
■ Impulse Inc.

Minneapolis, MN

(612) 425-0557

www.coolfun.com

I N D U S T R Y
W A T C H
I N D U S T R Y
W A T C H

b y A l e x D u n n e

D

speeds multiproject builds and sup-
ports browsing across subprojects.
CodeWarrior Professional 2, like all
CodeWarrior products, also features
the CodeWarrior two-machine source-
level debugger. The Windows 95/NT-
hosted version also features support
for debugging Java in Internet
Explorer 4.0.

CodeWarrior Professional 2 is avail-
able for MacOS or Windows 95/NT,
and is priced at $449.
■ Metrowerks Inc.

Austin, TX

(512) 873-4700

www.metrowerks.com

fusion: VOCODE
OPCODE recently released fusion:
VOCODE, a cross-platform DSP plug-in
designed to enhance digital audio
recording by bringing the classic ana-
log vocoder effect onto the desktop.

fusion: VOCODE launches
Opcode’s new line of DSP plug-ins,
called fusion: EFFECTS. The series
provides a way to tailor individual
sounds and add texture to mixes.
VOCODE moves beyond the “hard-
ware box” approach of most plug-ins
(software reproductions of traditional
functions like reverb, chorus, and
others). It includes control features
not commonly found on analog
boxes, including level, resonance,
depth, and mix — in addition to five-
band tonal control. VOCODE will
also allow you to fuse one sound’s

personality with anothers. By doing
this, distinctive effects can be gener-
ated such as guitar talkboxes, robot
vocals, and even pulsating rhythm
parts derived from sustained chords.

fusion: VOCODE and the fusion:
EFFECTS platform currently support
plug-in formats including Adobe
Premiere, Audiosuite, and DirectX
Media. The plug-ins run on both Mac
OS and Windows 95. fusion: VOCODE
has a suggested retail price of $149.95.
■ Opcode Systems Inc.

Palo Alto, CA

(650) 865-3333

www.opcode.com

Shag: Fur
DIGIMATION is shipping Shag: Fur, a
new environment plug-in for 3D Studio
MAX that adds fur (and even, to some
degree, long hair) to an object’s surface.

Shag: Fur generates fur with speed
without sacrificing realism. It doesn’t
create geometry for individual hairs, so
it works quickly. However, even
though no real geometry is generated,
the fur can cast and receive shadows
and highlights. Other features allow
you to control exactly where fur is
applied, as well as the density, color,
thickness, direction, leaning, and bend
of the hairs. Separate texture maps can
be used for most of these options to
provide complete control. For exam-
ple, a texture map of a tiger skin can
be used for fur color, while a separate
map image is used to control where
the hairs are thick and thin. Almost all
of these functions are animatable, so
motion, growth and color changes are
all possible.

Shag: Fur works with 3D Studio MAX
1.2 and MAX 2.0, which run on
Windows NT. Shag: Fur has a list price
of $295.
■ Digimation Inc.

St. Rose, LA

(504) 468-7898

www.digimation.com

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 8 G A M E D E V E L O P E R

9

AAAA SSSS TTTT SSSS
O F G A M E D E V E L O P M E N T

M A R K E T R E P O R T S S I G N A L I N D U S-

T R Y H E A L T H . Recent market reports by
PC Data and InfoTech indicate that both
online and shrinkwrap game sales are on
the uptick. First, PC Data reported that
September's game software sales were
up 27.5% over the previous period a year
earlier and were growing about about
40% faster than the overall software mar-
ket compared to the same period in the
prior year. Second, InfoTech forecast that
worldwide revenue for interactive soft-
ware publishing would reach $15.8 billion
and grow to $26 billion by 2001. InfoTech
expects the fastest growth to come in the
Internet multiplayer arena, at an estimat-
ed compound annual growth rate of more
than 70% (to $3.7 billion in revenue)
through 2001. But that pales in comparison
to their estimate for packaged sales,
which InfoTech predicts will reach $22.3
billion that year.
A N D I C O M P L A I N A B O U T

D E A D L I N E S . In conjunc-
tion with the launch of
the movie Starship
Troopers in
November, Sony
Pictures
Entertainment's
Imageworks created
an VRML-based game for
the film's web site (www.starshiptroop-
ers.com). While the game is a just simple
2D obstacle maze, what's impressive is
that the game was written, developed, and
staged in just eight weeks — by the same
team that did the special effects for the
movie itself.
J I M M Y J O H N S O N , V R S P O R T S T E A M

U P . To help promote their latest title and
raise money for charity, VR Sports is
donating $1 to the United Way for every
copy of JIMMY JOHNSON VR FOOTBALL '98
that's sold. Kudos to VR Sports for this
gesture. We here at Game Developer are
waiting for some publisher to pick up the
rights to MIKE DITKA FOOTBALL '98 — you
know the one, in which the Saints' AI is
hard-coded to lose every game and after
which Ditka exclaims "We suck!"

h

b y B r i a n H o o k G R A P H I C C O N T E N T

the procedures in place at id are not
perfect, they have resulted in the time-
ly shipment of several popular prod-
ucts, so take this for what you will.
This column is pretty dry and matter-
of-fact — it’s more like a laundry list,
to be honest — so while it may not be
amusing and entertaining, I hope
many of you will find it informative.
And just to be clear, this is not a recipe
for success.

This month, I’ll be talking about
some of the programming methodolo-
gies that we’ve used during QUAKE 2’S
development. Next month, I plan to
discuss the tools that we employ, both
software and hardware, and some relat-
ed issues.

Team Programming

T he programming staff at id consists
of three programmers: John

Carmack, John Cash, and myself.
Programming tasks are split into three
distinct groups: graphics, game logic,
and “glue.” The graphics subsystems
(OpenGL and software rendering) con-
sist of the actual code used to render a
scene and are encapsulated into two
.DLLs, REF_GL.DLL and
REF_SOFT.DLL. The game logic is also
put in a .DLL, GAMEX86.DLL, which

handles all game-specific
stuff such as monster intelli-
gence, weapon behavior,
physics, and power-up
effects. Finally, the “glue”
code, which consists of win-
dow system interaction,
input management, sound,
CD management, network
protocols, and other not-
easy-to-categorize crud, is
located in the executable,
QUAKE2.EXE.

The sweet spot for our
team size is working out to
be three programmers. The
graphics subsystems are my
domain; the game logic is
John Cash’s responsibility;
and the glue code is usually
modified by any of us. John
Carmack is the grand dicta-
tor and architect — he modifies broad
expanses of all the code at any given
time and is responsible for the overall
architecture and making sure that the
pieces of QUAKE 2 fit together logically
and efficiently.

The current triangular hierarchy that
we have in place is extremely efficient
because John Carmack is the absolute
ruler of the programming team. Even
though Carmack is the undisputed
boss because of his position within id,
both Cash and I have extreme respect
for him, and it is this respect that
allows Carmack to manage the devel-
opment process effectively. It is far
more important to have respect from

your employees than arbitrary authori-
ty over them. Also, by taking care of
implementation details and minutiae,
Cash and I allow Carmack to concen-
trate almost exclusively on large,
sweeping architectural issues.

Also, a key to making the team pro-
gramming approach work, at least for
id, is that John Carmack is responsible
for both the architecture and the initial
implementation of any new technolo-
gy. This lets him reconcile any unfore-
seen implementation and design inter-
actions that may have global
repercussions within the code base.

Another nice thing about the delega-
tion of responsibilities is that there is

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 8 G A M E D E V E L O P E R

11

How I Spent My Summer Vacation,

or What I Learned While Working on

QUAKE 2

lot of people in the game industry have asked me about the software devel-

opment processes used at id software, so I thought I’d take the time to

write an article about the processes and philosophies used at id software

while interspersing my own opinions and reflections on them. WhileA

Brian Hook’s last Game Developer col-
umn will appear in next month’s issue.
Tell him how much you’ll miss him via
e-mail at bwh@wksoftware.com.

very little adversarial competition
between programmers. Neither Cash
nor I is presumptuous enough to chal-
lenge Carmack’s dominance, and since
Cash and I work on separate subsys-
tems, our work is complementary
instead of competitive in nature. The
lines of code ownership are clearly
defined and are something with which
we’re all very comfortable — and we
respect each other enough that we
don’t feel any urge to edit someone
else’s code. This lets us work in a real
team atmosphere, and we manage to
avoid the whole “Who’s The Man?”
jockeying that is so common among
computer programmers.

One problem that team program-
ming presents is source control. As
ashamed as I am to admit it, id software
does not use source code control. Right
now, this discrepancy is largely the
result of expediency. We recognize the
need for proper source control, but we
have enough of a working system that
until source control becomes a crisis,
we won’t address the problem — espe-
cially when we’re this close to shipping
a product. Our next generation soft-
ware hopefully will be developed com-
pletely within the framework of a large-
scale source control system. Personally,

however, I use Microsoft
Visual SourceSafe on my
main workstation simply
because I like to have a
history of my changes at
all times.

Another issue that arises
when multiple program-
mers work together is cod-
ing style. It’s important
not to get wrapped up in
religious issues such as tab
size, brace and parenthesis

placement, or indentation style
— you should be able to adjust
to any style, even if it irks you.
Fighting battles over something as per-
sonal as this simply is not worth the
effort — make some compromises and
move on.

Other coding style issues, however,
are worth specifying at the outset of a
product’s development. Standard-
ization and consistency are very impor-
tant when working on large projects.
Files, data structures, APIs, and vari-
ables should have a clean, consistent,
and intuitive naming convention so
that there is little room for confusion
when looking at someone else’s code.
Static and global variables should be
tagged as such, be it by a prefix, suffix,
or some other convention. Parameter
ordering should be consistent: Is a des-
tination address the first or last para-
meter? Are prefixes used in ssttrruucctt mem-
bers? Where are global variables
declared and under what conditions?
Are globals stuffed into a single global
structure or just tossed out into the
global namespace? How are manifest
constants differentiated from ccoonnsstt dec-
larations? How are directory structures
organized?

NIH

F or quite some time (over a
decade now), computer scien-

tists have been talking about mod-
ular software, component soft-
ware, or “software ICs.” The
theory is that programmers should
be able to purchase a thoroughly
debugged and optimized prepack-
aged software library (who are we
kidding?) from some third-party
development house and just drop
it into a program — voila, instant
new features and functionality.

Obviously, there is a difference
between that theory and the harsh
realities of creating a product that has
to ship to real people on a real calen-
dar. Libraries are written by program-
mers, and programmers are human,
and humans make mistakes. Many
times, these programmers will even
have a different set of priorities than
your own.

This is the crux of the problem. The
software component that you pur-
chased might look great on paper, but
when you drop it into your program
and then spend a week looking for a
bug that turns out to be a part of your
new magic software IC, well, you tend
to snap out of your dream world pretty
quickly. Anyone who has wanted to
firebomb Redmond, Washington, after
using Microsoft’s DirectX knows what
I’m talking about. And when a fix for
that bug isn’t going to arrive in a time-
ly fashion, you’re suddenly in the posi-
tion of hacking around broken code, a
process pleasantly known as “coming
up with a workaround.” Deal with
enough “workarounds,” and you’ll
eventually reach a cross-over point
where you realize that you may have
been better off if you’d just written the
code yourself.

And bugs aren’t the only problem
you’ll encounter — there are perfor-
mance issues to contend with also.
With WINQUAKE, GLQUAKE, and QUAKE

2, we had to work around some pretty
serious performance problems in
Microsoft’s DirectSound. DirectSound
works the way it’s supposed to, but it’s
slow enough that you get all teary-eyed
remembering the days of Sound Blaster
16 programming under DOS.

Finally, not only do you have to
contend with bugs and performance

G R A P H I C C O N T E N T

G A M E D E V E L O P E R J A N U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

12

issues, but there’s always the specter
of flexibility. That nifty new library
might do everything you need now,
but when you’re six months into
using that library, and you must have
a couple new features implemented,
and the library owner isn’t amenable
to adding those features… well, you’re
in trouble. You now have the option
of undoing months of work and
rewriting everything from scratch, at
which point you’ve tossed away
months of effort, or you forego the
extra functionality, which may not be
a feasible alternative. And, of course,
if you want to port to a development
platform or operating system on
which the library is not available,
you’re in deep trouble. You can
address many of these problems by
licensing the source code to whatever
library you’re using, but at that point
you’re in the position of actually
learning someone else’s code, not to
mention maintaining, extending, and
debugging it. At some point, you may
find that you’d have been better off
writing everything yourself from
scratch.

Don’t get me wrong — I’m not say-
ing that using externally developed
libraries is absolutely a bad thing, but
some tradeoffs are definitely involved.
We have a hard enough time dealing
with bugs in our compiler, the Win32
API, Microsoft DirectX, and hardware
drivers without adding someone else’s
code to the mix. So the unofficial poli-
cy at id is that we engineer all of our
own code unless we absolutely have no
choice, such as the necessity of
depending on DirectX. It may not be

the most effective use of our resources,
but it leaves our destiny in our hands,
which has a certain warm and fuzzy
appeal to it.

Programming Languages

A s technology-oriented as id soft-
ware is perceived, we’re actually

knuckle-dragging primates when it
comes to our programming language
of choice. We use good old ANSI C for
the majority of our development.
Objective-C, a version of C with
object-oriented extensions, was the
language of choice for tool develop-
ment back when id was using
NextStep. However, during the subse-
quent move to Windows NT, id was
forced to abandon Objective-C in
favor of ANSI C for these tasks. We’re
currently evaluating the performance
and robustness of OpenStep for
Windows NT, and if it turns out that it
doesn’t suck, we may switch back to
using Objective-C and OpenStep for
tool development.

id software still uses ANSI C for its
core development; we have several
compelling reasons why. We stress
portability, and ANSI C is about as
portable as a language can get — it’s
available across a wide range of plat-
forms, and most ANSI C compilers are
extremely stable. ANSI C is no longer
evolving at a frantic pace, so it’s stable
in terms of syntax, feature set, and
behavior. Mechanisms for interfacing
ANSI C with other languages, such as
assembler, are well-defined and pre-
dictable. Compilers and development
tools support ANSI C more than any
other language. Finally, ANSI C is
a pretty WYSIWYG language —
when you look at a chunk of C,
you can be reasonably certain
what kind of machine code will
be generated.

C++, on the other hand, does
not share these wonderful fea-
tures. C++ is stuck on top of C
using the programming language
equivalent of duct tape and
twine. It’s still evolving at a dis-
turbing rate. It’s being designed
by a committee. Compilers and
tools that support C++ are con-
stantly missing features or incor-
rectly implementing them, and
the language, as a whole, is so

large that understanding all of it is
nearly impossible. Any given chunk of
C++ code, assuming it uses even a
small portion of the language, can gen-
erate seemingly random assembly
code. While you can pick up a book
such as Bjarne Stroustrup’s Design and
Evolution of C++ to help you under-
stand why C++ is such a screwed up
language, it still doesn’t address the
issue that C++ is a screwed up lan-
guage. It’s constantly evolving, getting
bigger and uglier, and pretty soon it’s
going to implode under its own
weight.

Seven years ago, I bought Borland
Turbo C++ 1.00 the day it was
released (yes, I’m that big a geek), and
over the course of the ensuing five or
six years I used C++ as my only pro-
gramming language. In that time, I
learned most of its weird intricacies,
adjusted to them, and accepted them
as necessary evils, the price I had to
pay for object-oriented programming.
When I started working at 3Dfx
Interactive, I had to start using ANSI
C again because I was developing a
programming library, Glide, that
needed to be used by a lot of develop-
ers, many of whom would not be
familiar with C++.

The amazing thing to me was that
when I switched back to ANSI C, I was
actually happier — I discovered a new-
found appreciation for ANSI C’s sim-
plicity (at least compared to C++).
Sure, I lost some nice syntactic sugar,
and I ended up missing classes and vir-
tual functions a bit, but I was willing
to eschew these niceties in return for
simplicity. By using ANSI C, I never
had to crack open a reference book,

G R A P H I C C O N T E N T

G A M E D E V E L O P E R J A N U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

14

and I rarely had to work around lan-
guage quirks. Since then, I’ve done
very little serious C++ programming,
and the last time I looked at the spec,
it was a completely different language.
The language has mutated so much
over time that it’s become the
Highlander 2 of programming lan-
guages — you can see similar themes
and names, but somehow the new ver-
sion screws up so badly that it sullies
the name of its parent.

id’s use of assembly language has
varied over the years. DOOM had very
little assembly language in it, but it
was primarily targeted at 486-class
processors, where scheduling, pipelin-
ing, and memory bandwidth issues
were not nearly as relevant as on later
generations of processors. QUAKE, on
the other hand, was targeted at Intel
Pentium-class processors, and as a
result, there was significant room for
hand-coded assembly optimization. It
also helped that Michael Abrash, Mr.
Assembly Optimization Dude, was
working at id then, and could devote
large chunks of time to tweaking
inner loops.

QUAKE 2 is also targeted at the
Pentium, and thus benefits from
assembly coding. However, there is a
very significant chance that there

will be little to no assem-
bly code in post-QUAKE 2
products from id software.
There are several reasons
for this, the primary one
being that hand coding
for advanced processors
such as the Intel Pentium
Pro and Pentium II is
often a lost cause. At any
given time, a Pentium Pro
can have a large amount
of non-deterministic
internal state that radical-
ly affects the efficiency of
hand-coded assembly lan-
guage. With these
advanced, superscalar,
and superpipelined
processors that support
features such as specula-
tive, out-of-order execu-
tion and branch predic-
tion, it makes far more
sense to use CPU-friendly
algorithms as opposed to
CPU-optimized code.

Optimization

O ur optimization rules are quite
simple: make sure that what

you’re optimizing makes a difference,
don’t optimize before you’re done
implementing features, and learn to
optimize up to the point of diminish-
ing returns but no further. It’s amazing
how badly our intuition can deceive us
when it comes to finding execution hot
spots. You’ll often look at a program
and intuitively label certain areas as
definite bottlenecks only to find out,
after analytical profiling, that some
other heretofore-unknown hot spot is
actually consuming all of your execu-
tion time. Before diving into “prob-
lem” routines, use a profiler
such as Intel VTune,
Tracepoint HiProf, or
Rational Visual Quantify
(skip the one in Microsoft
Visual C++, it's pretty much
useless) to make sure that
you are, in fact, going to
edit code that makes a dif-
ference in your program’s
overall execution time.
QUAKE had a hand-opti-
mized routine responsible
for clearing the screen to a

flat color. This routine only would be
called if the game had texture mapping
disabled. Optimizing that clear routine
probably wasn’t time well spent.

It’s easy to get sidetracked into opti-
mizing a chunk of code that you’re
working on while you’re still thinking
about it, then tossing away all of that
effort when you change your algo-
rithms yet again. Until your overall
design is set in stone, it’s wise to avoid
doing any optimization at all. I had a
chunk of code that I was pretty confi-
dent wouldn’t need to be changed
again — it was responsible for trans-
forming the points within an Alias
model — but as luck would have it, two
months after I optimized that routine,
we ended up needing a new feature
that required editing the optimized
source. Luckily, this wasn’t overly trau-
matic, but if it had been even a bit
more complex, it would have con-
sumed far more time than if I had just
done all the optimization closer to the
end of QUAKE 2’s development.

Premature optimization also has
another, more sinister, side effect — it
makes you reluctant to make major
changes to your overall design if it
means rendering your previous opti-
mization work irrelevant. A similar
adage exists in the world of creative
writing — don’t keep a bad paragraph
just because it has a great sentence. The
onset of this mentality can often be
very subtle as you start unconsciously
weighing the benefits of a potentially
better design against the hassle of
rewriting your cherished code.

Finally, make sure that you aren’t
spending more time optimizing a spe-
cific chunk of code than is truly neces-
sary. In my experience, the biggest
gains during optimization come within
the first 25% or so of the time spent —
after that the increases are only incre-

G R A P H I C C O N T E N T

G A M E D E V E L O P E R J A N U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

16

mental. There’s a cross-over point
where the extra effort spent optimizing
a piece of code is not reaping commen-
surate increases in performance. Our
blanket policy is that we wait until the
final stretch — all features implement-
ed — before doing serious “no retreat,
no surrender” optimization work —
stuff that requires lots of work and that
will end up being wasted time if we
change higher-level algorithms and
data structures.

Portability

O ne of the nice benefits of using
ANSI C is that our product porta-

bility is limited only by our coding dis-
cipline. Throughout the development
of QUAKE 2 a lot of thought was put
into the issue of portability, and by
adhering to some general rules, we
make our lives a lot simpler when per-
forming a port: segregate OS-specific
code from the rest of the code base,
always maintain a C-only version of
your code, avoid compiler and operat-
ing system dependencies, and watch
for endianess assumptions.

The first step in writing portable
code is recognizing appropriate levels
of abstraction and managing your code
appropriately. The bulk of our software
rendering and sound code only oper-
ates on memory addresses — the con-
cepts of DIB sections, DirectDraw, wave
sound, and DirectSound aren’t known
to the actual graphics and sound-gen-
eration code, and are instead handled
by abstracted glue code. All OS-specific
code is sequestered into a set of well
defined files — porting QUAKE 2 to an
new platform involves touching less
than a dozen files, each dealing with
some OS-specific subsystem (CD audio,

OpenGL, software render-
ing, window system man-
agement, input handling,
sound output, and OS-spe-
cific utility routines, such as
time routines). By doing
abstractions at this level, we
can greatly minimize the
number of conditional com-
pilation directives in our
main code body. As a matter
of fact, the statement ##iiffddeeff
WWIINN3322 only occurs twice in all
of our OpenGL code, and it

doesn’t occur at all in the
software rendering subsystem.

We always keep up-to-date C-only
versions of our assembly code, both to
assist in porting and also because it
makes debugging the assembly code
extremely easy. It’s really easy to forget
to maintain your C-only paths, but it
does pay off the moment you try to get
things up and running on another
operating system or CPU.

It’s easy to get sucked into compiler
and operating system dependencies —
for example, utilizing a compiler’s
##pprraaggmmaa directives, or maybe an operat-
ing system’s message box or memory
management functions. Unfortunately,
##pprraaggmmaa directives are extremely useful
for a lot of reasons, and it’s easy to for-
get to bracket them with the appropri-
ate preprocessor directives. The easiest
way to avoid operating system depen-
dencies in your main body of code is to
make sure that you’re not including
any OS-specific header files (for exam-
ple, WINDOWS.H) — the compiler
should complain when you start mak-
ing calls that it doesn’t recognize, such
as MMeessssaaggeeBBooxx or VViirrttuuaallAAlllloocc.

Bugs related to CPU endianess can be
pretty hard to find, so the best way to
prevent them is to recognize code
that’s doing bad things — for example,
casting between different size
types. A beneficial side effect of
porting to many platforms is
that it also forces you to write
much cleaner and more robust
code, since hidden bugs in your
code may only manifest them-
selves on another compiler,
operating system, or CPU. You
derive a feeling of confidence
from knowing that your code
has compiled and run success-
fully across a wide range of
operating systems, compilers,

and CPUs. We had a divide-by-zero bug
that only generated an exception on
the DEC Alpha processor, and it would
have been a very long time before this
bug was detected in our code under an
Intel x86 processor.

However, there are some pretty
solid business reasons not to port a
game to multiple platforms. With
QUAKE 2 we plan on supporting
Win32 (x86), Win32 (DEC Alpha),
Linux (various CPUs), SGI Irix (MIPS),
and Rhapsody (x86 and PowerPC).
Our publisher will likely receive a dis-
proportionately higher number of
support calls for the non-Intel/non-
Win32 versions of QUAKE 2 if we
release these versions on the QUAKE 2
CD. Couple this with the fact that
ports will probably account for less
than 3% of our overall revenue, and
the argument for supporting a pletho-
ra of system architectures becomes
pretty flimsy.

We do it anyway, though, because
it’s cool.

In the end, porting to alternate
architectures simply doesn’t make very
good business sense for most game
companies. We do our ports for only
three simple reasons: it’s easy to do, we
like seeing our games played by as
many people as possible, and we gain
the intangible benefit of having
extremely loyal consumers on systems
with poor mainstream support.

Stay Tuned

B ecause the story is just so darn
big, I’ve had to save some for

later. Tune in to this space next month
for more on QUAKE 2. I’ll be explaining
the tool choices that we made, compli-
menting some vendors, and denigrat-
ing a few more. ■

G R A P H I C C O N T E N T

G A M E D E V E L O P E R J A N U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

18

b y J o s h W h i t e A R T I S T ’ S V I E W

course there isn’t an array of perfect
tools out there yet.

The future is what scares me. Even
when tool makers listen, we artists
aren’t talking. Our tools aren’t going to
get any better unless professional
artists explain their needs in a way that
tool makers can understand. I’m only
one artist in the industry. Tool makers
need to hear from other artists (or else
we’ll get a Josh-centric tool — or more
likely, the brush-off). So, RT3D artists,
tell me what’s wrong with your tools
(column@vectorg.com), and I’ll publi-
cize the gist of it. I’ll start with my
main issues.
3D ART TOOLS AREN’T VERSATILE ENOUGH.
Artists have a reputation as being inde-
pendent (if not downright weird), and
that’s critical to art. RT3D artists’ tools
are forcing us all to work in very simi-
lar patterns. That’s wrong. Artists need
many different ways of doing the same
thing — especially the small variations
on the same basic idea. In writing, it’s
obviously critical; imagine how lame
writing would be if an author could
only use “good” instead of great, won-
derful, terrific, excellent, amazing,
superb, awesome, or stunning.

I’m talking about synonyms of fea-
tures — multiple similar features. “Rich
feature set” refers to a variety of fea-
tures; that’s not what I mean. For
example, AutoCAD’s hardly a world-
standard for art tool excellence, but
when AutoCAD users pick a point,
their options are plentiful. They can
use over a dozen object snaps, includ-
ing weird ones such as “tangent” and
“perpendicular,” grid snaps, constraint
to an axis or plane, offset from an
existing point (in polar or planar coor-

dinate systems), composition of the
point from the coordinates of several
others (“X from point B, but YZ from
point C”), or completely custom func-
tions via the built-in macro language.

Most technical 3D modeling soft-
ware (SDRC I-DEAS, AutoCAD,
PATRAN) lets the user choose a symbol
to represent a point: a cross, a dot, a
box, or a text label. This is unusual in
3D art tools; we get only one choice for

vertex viewing. (Nitpicky? On-screen
image matters a lot to artists. For exam-
ple, little “+” signs can easily draw over
short edges, obscuring subtle detail in
the mesh.) Even Windows 95 offers
Control-S, Alt-F-S, mouse clicks, and
combinations of menu shortcut key
presses and mouse clicks. If you love
mouse and toolbar approaches, you
should have those options.

Clearly, tool developers face a major
challenge. But they would be wise to
address a few specific problems. For
instance, developers have long lists of
planned improvements to their prod-
ucts, and sexy, major features make for
more impressive advertising copy (or
so they think). I suspect they would

consider my set of feature synonyms a
small “core functionality” improve-
ment that would take significant devel-
opment effort, and it’d get delayed
endlessly.

Of course, these multiple interface
paths to the same database edit start
making developers’ flow charts look
like spider webs. This flexibility is
where the underlying architecture of
the software shows. If the software was-

n’t well designed and cleanly coded,
it’s very difficult for the tool maker to
avoid bugs when implementing this
type of new feature.

It’s damned hard to present the user
with a ton of different methods with-
out overwhelming an already-compli-
cated UI, and I think most tool devel-
opers are overly focused on “easy to
use” — they’re assuming artists won’t
bother to learn their tool if they add
too many features. Unfortunately, 3D
art tools often take the worst of the
Windows UI and then strip out the
versatility that makes it valuable. In
Microsoft Word, darn near every func-
tion in the whole program is accessi-
ble via the keyboard, either through

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 8 G A M E D E V E L O P E R

21

Part 1: Real-time

3D Art Tools Need Help!

C all me cranky, but I have something to say: we artists, especially low-

polygon modelers, have tools that are holding us back... and they aren’t

going to get better without our help. In a way, that’s to be expected; the

job title “real-time 3D artist” (RT3D) is only a couple of years old, so of

Artists have a reputation of being indepen-
dent (if not downright weird) and that’s part-
ly what makes great art. We need tools with
large ‘vocabulary’ to express it.

Josh White runs Vector Graphics, a real-time 3D art production company. He wrote
Designing 3D Graphics (Wiley Computer Publishing, 1996), he has spoken at the
CGDC and cofounded the CGA, an open association of computer game artists. You
can reach him at josh@vectorg.com.

menu shortcuts or with customizable
shortcut keys. For example, there’s no
direct keyboard shortcut to change
the font of a style, but you can use the
menu shortcuts (Alt-O,S,M,O,F). This
sequence is hardly intuitive, but if you
forget it, you can look at the menus
for a reminder. If you’re a fast typist,
six keystrokes are much faster and
more reliable than six mouse point
and clicks.

In most 3D art software UIs, the
majority of the powerful editing com-
mands are only accessible through
mouse-clicked toolbars. This requires
accurate, repetitious mouse move-
ment as you navigate through roll-
ups and drop-down lists. Witness the
lame “keyboard input” windows
where you can type in coordinates,
but you have to mouse over and click
exactly on the “+” roll-up button use
it. It’s better than no keyboard input
at all, but it’s hardly an alternative to
mouse movement.
IT’S MY WORKSPACE — LET ME ARRANGE IT!
The hundreds of buttons packed onto
the screen are impressive at trade
shows, and for new users, they’re con-
venient reminders of a function’s exis-
tence. For experienced users, however,
they waste desktop space. Who uses
toolbar buttons for Cut/Copy/Paste?
Naturally, you want to remove them to
save space (as well as declutter your
work area), but in most mainstream 3D
art software with nonstandard toolbars,
this is impossible.

To me, an easy-to-learn but inflexible
interface shows that the tool maker
doubts its users’ commitment to its
tool. The tool is hard-wired to be E-Z,
which means it’s meant only for users
who aren’t going to use it for long — a
self-fulfilling prophecy.
INNOVATE! Incremental improvements
are good, but tool makers also need to
go out on a limb, design-wise. There’s
no really smooth, easy-to-use interface
for 3D modeling — until one exists,
any convergence in software is prema-
ture (and dangerous to market leaders,
since it makes space for upstarts to
stage revolutions). Artists need to be a
part of this design process. Unless
you’re 100% happy with the tools

you’re using, remember to keep an
open mind about new tools. One prac-
tical way to do this is by keeping a wish
list. Whenever you find yourself gnash-
ing your teeth about some 3D model-
ing problem, pop up Notepad and jot
down the annoyance.

Then tell people who care. Attend at
least one trade show and when the sales
people attack you, attack right back
with the wish list. You may not find the

perfect tool, but by asking for specific
features, you’re giving feedback to the
tool makers... and before long, you’ll
find yourself confronted with a dozen
different paradigms for 3D modeling.
BORROW FEATURES. I want tool makers to
incorporate (and improve on) competi-
tors’ good ideas shamelessly. The same
applies for 3D modeling in other indus-
tries. Take a look at custom 3D soft-

ware for aerospace, training simula-
tion, mechanical engineering, GIS,
medical, and other specialized indus-
tries. Skim off the few great ideas. We’ll
thank you for it.
COMPATIBILITY. There are two forms of
compatibility I think about: data trans-
fer and backwards-compatibility (also
called legacy issues). The first is critical,
not very sexy, and very difficult (no
wonder so few tools do a good job of
it), but without a robust way to get
data in and out of a modeling tool, it’s
useless. Tool makers need to improve
this by agreeing on a common file for-
mat (for example, VRML for RT3D) and
writing really solid input/output func-
tions for it. If you make it a plug-in,
distribute source code so that develop-
ers can understand what you did.

After a few years of gradual improve-
ments, 3D art tools are often rebuilt
entirely, retaining only the name of
the last product. The transition is
tough, both for tool makers (who risk
their user base) and users (who feel

A R T I S T ’ S V I E W

G A M E D E V E L O P E R J A N U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

22

When paying customers need their product to
work differently, tool makers listen closely.

T he top-down structure of large

software companies operates

on the architect/contractor

model. The product architect

assembles customer surveys into a clean

new product design, which is then thrown

over the wall to a complacent, obedient

programming department that never sees

the actual customer (or even knows how

to use the product it constructs).

The defending argument goes, “half-

finished ‘good ideas’ aren’t going to help

a project this size.” The only true gods

are the schedule and the specifications.

These companies don’t want freewheel-

ing cowboy coders who actually have

used the product and can form their own

opinions. A plague of feature creep (the

development of weird, sometimes bril-

liant, new features that weren’t in the

spec) will curse their clean environments

and incite revolution among the other

coders. The feeling is mutual: Creative

developers are scared away because

developing other people’s design is not a

creative job.

This leaves behind a group of calm,

balanced professionals who are extreme

team players, but don’t ever get to create

their own designs. If you’ve ever met the

staff of a really successful project, you

know why I find this upsetting — they’re

talented and organized, but not calm, and

they definitely build their own designs.

It’s true that feature creep hurts timely

production, but the alternatives are

worse. Complacent, user-ignorant pro-

grammers turn out bland, bloated prod-

ucts that don’t meet the needs of their

users. The teams are missing that intense

focus, that deep desire that motivates in

a way money never can.

To fix this, we don’t need a revolution,

but we do need change. One way is get

face-to-face with users. For example, cele-

brate beta ship dates with field trips to

customer sites. Regularly sit down with

users and watch them work, offering sug-

gestions and getting input. Key developers

can adopt a client and work onsite once a

month. If the wall between Research and

Development falls, then tool programmers

will understand their users, and the soft-

ware will improve mightily.

Research & Development:
Break Down the Wall

abandoned). Still, I’m impressed with
tool makers who have the guts to
throw away old code — it makes for
better software. Ideally, tool architec-
ture allows sections to be rebuilt with-
out disturbing the remaining parts.

As a user, I can digest an incremental
improvement (that is, tools created
from a section-by-section rebuild)
much more easily than a complete rev-
olution every year, but this incremen-
tal approach usually introduces new
bugs galore. Once old code is thrown
away, I think most tool makers do a
good job of compromising between
new functionality and old working
methods.
ENGINEERS, USE YOUR OWN TOOLS. If you’re a
professional full-time tool program-
mer, your company should be begging
you to use your tool as the customer
would. I’m always amazed to meet tool
developers who don’t. Lots of program-
mers grumpily call this “marketing”
and think it’s not their problem. I say
it’s the “R” in R&D, and it’s critical to
making killer tools. See “Research &
Development: Break Down the Wall.”
ADVICE TO ARTISTS. Artists, tool makers
need your help. We artists are too
quiet. We aren’t asking for better than
what we have. This is bad because pro-
fessional tool makers will never be
truly clued in to our needs. Without
our input, they will assume they’re
doing fine, and we’ll keep getting
mediocre tools.

Though you probably can’t guess it
from this column, I’m very grateful to
tool makers for providing me any-
thing that makes my job easier. My
way of thanking them is to tell them
all the problems the tool has. Rude?
Actually, that input (and, of course,
payment for the tool) is the most
valuable thing a user can offer a tool
maker. When paying customers need
their product to work differently, tool
makers listen closely.

If you do RT3D modeling with gen-
eral-purpose 3D tools, tool makers
need to know how you use their soft-
ware — they probably think you render
movies with it. Even tool makers who
are specialized in their attempts to
make tools for RT3D need input badly
— a lot of their previous customers
were building from blueprints, not
pencil sketches.

If you use 3D software regularly, you
should write the people who make it

and tell them what you think. E-mail
them, call them, visit trade shows and
tell them in person. If you’re doing
something new such as RT3D, the
squeaky wheel gets the grease — and
we seriously need some grease here.

OK, flame off. Let’s actually build that
human character we started last time.

Part II: Low-polygon Character
Modeling

If you’ve joined us from last month
where we designed a RT3D charac-

ter, you’ll know that we’ve got 500 tex-
tured triangles with which to make our

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 8 G A M E D E V E L O P E R

23

F I G U R E 1 . Character design sketch.

character come alive. We also have a
clearly defined character, shown in
Figure 1, and enough specifics about
our environment that we can actually
build a model.

Last month, we decided on our
approach (including mapping meth-
ods and face counts on a per-part
basis), identified important areas, and
divided up our budgets accordingly.
So our task at hand is building a tex-
tured 3D model from our sketch and
within our face count budget. Here’s
how we’ll tackle it:
• Create the rough geometry. We’ll

walk through building the head step
by step.

• Tune the 3D model to perfection.
• Paint textures on each part.
• Map the parts together into a com-

plete model.
After that, we’ll

get into animation
and revisions.
We’ll link the
parts into a hierar-
chy, place pivots,
and adjust joint
designs as neces-
sary. Finally, we’ll
show our work in
the application
and do revisions
until the model is
approved and
completed.
FIRST-PASS MODEL-
ING. Though we
usually start with
existing geometry

and modify it, if we have to create
geometry from thin air, we start with
low-polygon primitives and move ver-
tices, divide edges, and weld vertices in
an iterative loop. Note that the illustra-
tions here show complete heads, but
we usually erase half of the geometry
before we start rough modeling, then
mirror the existing geometry occasion-
ally to see how it really looks. After
we’ve taken a look, we erase the mir-
rored half and keep working. Once
we’re done, we mirror the geometry
one last time and weld up unnecessary
vertices at the centerline.

Start with a simple sphere with the
approximately correct face count, as
shown in Figure 2. In a top view, this
one has 12 pie slices and four height-
lines between the poles, using 96

faces. Now we’ll mush this geometry
around until it looks like a face.
That’s easier said than done. Start by
looking at the source art carefully and
forming a profile along the edge of
the sphere in the Left view, as shown
in Figure 3. We do this by moving
vertices, dividing a few edges as nec-
essary to get the unique features of
the profile. Next, we rotate the view
and keep moving vertices, turning
and dividing edges to define major
features. Push a few vertices in for an
eye socket, which also forms a bridge
for the nose (Figure 4). From there,
work the cheekbones a bit and form
the chin. For the chin we can change
the lowest height-line of vertices to a
semi-diagonal edge of the chin. That
looks better, but it leaves the under-
chin/neck area hurting. We’ll fix it by
dividing a couple of edges, which cre-
ates new vertices in approximately
the right area. Move those new ver-
tices to define the jaw/neck intersec-
tion, turning any edges that connect
directly below the chin so those ver-
tices define the corner in profile (Left
view). It should now look something
like Figure 5.
HEAD COVERAGE. As we look at the sketch,
we run into a typical situation: we for-
got to plan for accessories. How should
we handle the hat in the sketch? Being
conscientious artists, we stop model-
ing and get back into planning mode
for a minute. If we build the hat as
part of the head (as long as the charac-
ter doesn’t ever need to bare his head),
we’ll have better performance and less

A R T I S T ’ S V I E W

G A M E D E V E L O P E R J A N U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

24

F I G U R E 4 . Eye socket formed.

F I G U R E 2 . Basic sphere for head modeling.

F I G U R E 3 . Head profile defined in Left view.

work. After consulting with the art
director and game designer, our deci-
sion is to model the hair and hat as
part of the head.

To build the hat, we grab the top of
the head’s vertices, move them so they
form a diagonal line in the Left view,
and scale them a little larger. Then we
select a row of four edges near the hair-
line and extrude them out to form the
bill of the cap. Note that these edges
aren’t perfectly horizontal; they curve
around the face somewhat. This is
clearly visible in the side view where
we see that the profile of the bill is
somewhat bulky. This gives us a nice
thick-looking bill, even though we
didn’t spend faces modeling the thick-
ness of the bill.

Once we’ve got the head roughed
out (Figure 6), we mirror it, stand back,
and compare it to our thumb just like
real artists. Close one eye and make
sure the model doesn’t look like your
thumb. After you’ve taken a look, erase
that mirrored half — we’re not ready
for that yet.
MEANWHILE, BACK IN YOUR MIND....
Throughout this mushy geometry
editing, we’ll constantly be revisiting
our design decisions. Specifically,
we’ll need to review which details
need to be 3D geometry, and which
can be shown in textures. This is a
basic decision that was effectively
made early on when we sketched the
wireframe outline over the pencil
sketch; everything not represented by
a vertex is assumed to be in the tex-
ture. Now that we have the actual
model, we’ll want to make sure those

decisions still make sense (and change
our minds as appropriate). For exam-
ple, you’ll notice that we don’t have
any geometry for the mouth opening
— that’s because it will look fine as a
texture map. The eye sockets, on the
other hand, need some 3D depth to
look good.

We also need to remember to keep
material boundaries represented in
geometry. Though it’s not an issue for
this example, we often need to show
expressions on our character. This is
commonly done by swapping facial
textures at run-time. In that case, we’d
do two things:
1) Separate the hat and hair textures

from the facial texture. Why? So
we don’t waste texture memory
duplicating the hat and hair
images in each
facial expres-
sion texture.

2) Make edges
between the
animating
facial area and
the rest of the
head. Since
each polygon
can have only
one texture
map, we need
separate faces
to map the
facial anima-
tion area onto.

SECOND-PASS MODEL-
ING: TWEAKING. Now
it’s time to tune
the rough model.

This phase is the pleasant pause after
the mad thrashing. Calmly and careful-
ly, we hone the model into a fine work
of art. Often, artists will create texture
maps before doing this second pass on
the 3D model. It’s a personal thing —
either way works, but since we haven’t
even addressed material boundaries
yet, this example will do second-pass
modeling before texturing.

At this point, we need to take a
more critical look at the overall pro-
portions, adjusting features to more
closely match the sketch. For exam-
ple, this is a good time to scale the
width of the head down a bit since
heads aren’t usually as sphere-shaped
as our model. We’ll also move vertices
in the mouth area so that it looks
more like that of an old man; right

A R T I S T ’ S V I E W

G A M E D E V E L O P E R J A N U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

26
F I G U R E 6 . Rough model completed.

F I G U R E 7. Modeling completed.

F I G U R E 5 . Chin, cheeks, and nose formed.

now the chin and cheeks look too
taut and young.

We also need to fix the face count
— we’ll compensate for some of the
faces that we added with all those
edge divisions by removing faces

that aren’t defining critical detail.
For example, the base of the neck has
far too many vertices, especially
since it will be hidden inside the
torso. We’ll get rid of about half of
them now.

Let’s revisit the design and see if
we’re on track. Specific steps during
second-pass modeling are simply itera-
tions of the same types of commands
we used in rough modeling, except
that the changes are more subtle.
Instead of stomping an eye socket out a
smooth sphere, we’ll be slightly adjust-
ing the depth of the socket. The fin-
ished geometry should look something
like Figure 7.
TEXTURE MAP CREATION. Creating textures
from the pencil sketch is relatively
straightforward 2D artwork — essen-
tially, we want to paint full-color,
detailed versions of the pencil sketch.
There aren’t many technical issues that
are unique to character texture cre-
ation, but let’s go through the process.

We could paint the entire front
view in a single texture just like the
sketch, but this wastes precious tex-
ture memory in white space around
the arms. So we’ll create one texture
for each body part. This approach also
allows us to use unique (nonsymmet-
rical) texture for the torso, yet re-use
the arm and leg textures on the left
and right sides.

Good lighting is critical to good tex-
tures. Keep in mind, however, that
creating lights in the textures before
we have the environment can be a
dangerous step to take. If you photo-
graph a red cotton shirt under spot-
lights and then paste it over a dimly
lit room, the shirt will look like shiny
red plastic because the white high-
lights in the photo won’t match the
room’s lighting. This is especially true
when the image is so tiny that you
can’t see the threads in the cloth.
Often, the easiest and most versatile
solution is to avoid hot spots (bright
or white reflections) on non-shiny
materials — skin, denim, cotton, and
the like should be pretty uniformly lit.

A R T I S T ’ S V I E W

G A M E D E V E L O P E R J A N U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

28

Meet Scared Sam, the artist

who builds 100,000-face

human models for TV

commercials. Sam

believes that it’s impossible to build any

kind of human model with only 500

faces. “Hah!” we reply, puffing out our

chests. “We could build a human in only

100 faces! Yes, that’s right, a mere 100

faces. Granted, it will kind of suck, but it

will be a recognizable human figure.”

“No way.” says Sam. “Prove it, brag-

gart.” And so we do.

First, we use triangular cross-sections

for the arms and legs. That means we’ll

have six triangles per straight section.

The face counts will be:

two sections

(forearm and biceps) 12 faces

cap the end of the limb 1 face

joints 4 faces

per limb: 17 faces
Total, 4 limbs: 68 faces

That leaves us a luxurious 32 faces to

build a head and torso.

The concept for the torso is simple.

Start with the connection triangles where

the four limbs connect and join them with

as few faces as possible. We may notice

that the connection triangle’s shape has

changed some from the one on the limb.

This keeps the torso’s shape reasonable.

This kind of flexing is what sketching is

for; we shouldn’t feel bound by our previ-

ous sketches if they constrain the rest of

the model horribly.

This torso design uses 15 faces. With

the limbs, we’ve now used 83 faces, leav-

ing a paltry 17 faces for the head. That’s

not enough — we’ll have to go over our

polygon budget a bit.

The hardest part is the head. Here’s a

synopsis of how to built it: Start with an

uncapped extruded pentagon shape.

Twist the shape so that the top and bot-

tom pairs of five vertices aren’t aligned.

Scale the top vertices around their local

axis about 120%. Create five new faces

that cap the bottom end. Collapse one of

the lower edges, creating a four-sided

bottom connected to a five-sided top. The

long edge that was formed by the col-

lapse is the nape of the neck. Now build a

five-sided pyramid to cap the top of the

pentagon. Divide the edge in the middle

of the forehead. Move this new vertex

and the pyramid peak vertex until the

head is a little rounder looking.

Scared Sam is impressed. We used 20

faces in this head model, which means we

have a 103-face human. Yeah, it’s ugly as

sin, but it’s also surprisingly useful. How

else would you make a 50-person angry-

mob scene? And And why spend any more

faces than necessary on a six-pixel-tall

LOD model?

Simple Characters: How Low
Can You Go?

Lisa Washburn is the lead RT3D

artist at Vector Graphics. With her

background in fine art, she uses

sculpturing skills as well as her 3D

modeling abilities to do her magic.

Lynell Jinks is a professional artist for

Vector Graphics. He created the pencil

sketches and textures shown in this col-

umn. His talent in 2D character artwork

spans natural media as well as

Photoshop texture and image creation.

Contributors

Related to lighting, but not the same, is the ambient
light level. It sounds obvious that the basic color of the
textures should be established and consistent, but it’s
easy to get wrong. One technique for preventing confu-
sion is to agree on a single RGB value as a background
color. The textures should be visible against it, which

essentially means that it should be somewhere near
an average color.

Enough preaching to the choir on how to draw tex-
tures. I’m sure you’ve already concluded that we
should establish lighting levels and methods, and plan
on trying out a few different highlight/contrast
schemes until we get good-looking cloth and skin.

Creating cylindrical textures from scratch is difficult
because it’s harder to imagine how the texture will
look on the object. Placing highlights isn’t as intuitive.
It’s much easier to work from existing textures, espe-
cially for alignment of faces. If you can find a
Cyberware scan of somebody’s head, this is a great
starting point for painting cylindrical maps of faces
(Figure 8).

The Rest

W e’ll build the rest of the body next month,
then we’ll assemble the parts into a hierar-

chy, place pivots, and adjust joint designs as necessary.
We’ll also prepare simple hand-keyframed animations,
and walk through steps of applying motion capture data
onto the model.

Feedback is always welcome. E-mail column@vectorg.com
and let me know what you thought. ■

29
F I G U R E 8 . Head texture.

G A M E D E V E L O P E R J A N U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

30

WORKING WITH
MOTION CAPTURE
F I L E F O R M A T S

oy am I glad that 3D acceleration hardware is here to stay. I’m

sure you all feel as liberated as I do by not having to write

all that basic polygon stuff. Clipping, sorting, and draw-

ing pixel-by-pixel is about as dull as 3D programming

gets. Now I have all this great hardware to do the mind-

numbingly dull texture mapping and Z-buffering for me. I

also have the render speed and horsepower to do some

really interesting stuff. What am I going to do with all

this spare time? Really cool real-time 3D characters!

Sure, we’ve all seen real-time 3D characters. We’ve even

seen real-time 3D characters with a restricted use of ani-

mation. However, there have been so many limitations,

B Y J E F F L A N D E R

C A P T U R EM O T I O N

BB
Jeff Lander is a Digital Evolutionist at Darwin 3D, where he crafts technology for the future of gaming, entertainment, and network
communication. He can be reached at jeffl@darwin3d.com.

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 8 G A M E D E V E L O P E R

and we all want so much more. We
want realism, but how do we go about
fulfilling these sick desires? The
answer: motion capture.

Motion Capture

L et’s face it, motion capture is hot.
In the last couple of years, motion

capture has spread everywhere — from
movies to television commercials,
from sports titles to action games,
even to click-and-explore adventures.
Publishers are climbing all over each
other trying to get the words “Motion-
Captured 3D Characters” on their
boxes. A lot of hype has been loaded
onto those words, often to the player’s
disappointment. As usual, our expecta-
tions exceed what the technology can
truly deliver. But we’re getting so
much closer; we have new ripping
hardware and the experience from
past-generation motion capture down-
falls. Yet the desire for more keeps
increasing.

The hype has gotten so over-the-top
that for the last couple of years, I’ve
been threatening to put out VIRTUA

HANGMAN as a demo at E3. I can just
see it, these realistic real-time 3D char-
acters marching up to the gallows as
you relentlessly guess letters. If we
want to be cliché, we could even have
a 3D character turning the letters.
Now that would be an excessive use of
technology.

While I wouldn’t consider using
motion capture for characters better
suited to traditional keyframing,
motion capture technology clearly has
a place in game development. Luckily,

the techniques needed for
programmers to apply
motion capture data to real-
time characters work equally
well with any type of anima-
tion data, be it keyframed,
motion captured, or animat-
ed through procedural
dynamics.

The Need

L et’s imagine a scenario in
which your brilliant pro-

ducers have assigned you,
the programmer, to develop
a real-time 3D character-

based game. They have charged you
with the tasks of designing the game
engine and creating the production
pathway. For a variety of design, bud-
getary, and staffing reasons, you’ve
decided to use motion capture to sup-
ply the bulk of your animation data.

Your first task is to decide where
you’re going to get this data. It does-
n’t really matter whether you have
your own capture setup or a service
bureau is doing it for you — plan on
plenty of cleanup time. Motion cap-
ture is not simple. The data needs
quite a bit of massaging to get it ready
for the game, and you can get in trou-
ble by underestimating the amount of
post-production work the data needs.
You also need to be aware that motion
capture data is specific to the hierar-
chy and body dimensions of the per-

son captured. It’s possible, but tricky,
to scale this motion to other body
types and sizes. However, I would rec-
ommend getting all your data from
one session with one capture artist.
This will make your life much easier
in the long run.

Still, as an experienced production
company, you won’t be burdened
with these details because your pro-
ducers have budgeted the motion cap-
ture session correctly. Now you need
to decide how you want this data to
come to you. Other formats exist, but
the Biovision (.BVA/.BVH) formats
and the Acclaim Motion format are
the big ones, and all the service
bureaus and animation packages sup-
port these.

Your file format decision depends on
your application and engine needs.
You can bring these formats into a
commercial animation package and
export the data from there, but the for-
mats are very compact and easy to use
with your own tool set.

Definition of Terms

I ’ll refer to the character that you
apply motion capture data to as a

skeleton. The skeleton is made up of
bones. To create the character’s look,
you attach geometry or weighted
mesh vertices to these bones. The
attributes that describe the position,
orientation, and scale of a bone will
be referred to as channels. By varying

G A M E D E V E L O P E R J A N U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

32

M O T I O N C A P T U R E

SSeeggmmeenntt:: HHiippss

FFrraammeess:: 2299

FFrraammee TTiimmee:: 00..003333333333

XXTTRRAANN YYTTRRAANN ZZTTRRAANN XXRROOTT YYRROOTT ZZRROOTT XXSSCCAALLEE YYSSCCAALLEE ZZSSCCAALLEE

IINNCCHHEESS IINNCCHHEESS IINNCCHHEESS DDEEGGRREEEESS DDEEGGRREEEESS DDEEGGRREEEESS IINNCCHHEESS IINNCCHHEESS IINNCCHHEESS

00..000000000000 3344..551199668844 00..000000000000 --1144..998888003399 --1122..224400660044 --33..448811115555

00..110022774488 3344..007788773399 33..115599997799 --1155..333377665544 --1144..332200441133 --33..998833440077

00..226600668800 3333..883366661133 66..448877889955 --1166..330088772233 --1155..009900779999 --33..886611226600

...... RREEPPEEAATTSS FFOORR AA TTOOTTAALL OOFF 2299 FFRRAAMMEESS

SSeeggmmeenntt:: CChheesstt

FFrraammeess:: 2299

FFrraammee TTiimmee:: 00..003333333333

XXTTRRAANN YYTTRRAANN ZZTTRRAANN XXRROOTT YYRROOTT ZZRROOTT XXSSCCAALLEE YYSSCCAALLEE ZZSSCCAALLEE

IINNCCHHEESS IINNCCHHEESS IINNCCHHEESS DDEEGGRREEEESS DDEEGGRREEEESS DDEEGGRREEEESS IINNCCHHEESS IINNCCHHEESS IINNCCHHEESS

00..227722115566 3388..999933556611 --11..119999998811 --44..002222775533 --00..441111008888 11..335544661111

00..441133559977 3388..554422667711 11..993322666666 --44..337711226633 --00..559911113300 11..110000888877

00..556600556688 3388..227799880000 55..118844992299 --55..002200008822 --00..665577002200 00..776688886633

......FFOORR TTHHEE RREESSTT OOFF TTHHEE SSEEGGMMEENNTTSS

L I S T I N G 1 . Sample Biovision .BVA file.

the value in a channel over time, you
get animation. These channels are
combined into an animation stream.
These streams can have a variable
number of channels within them.
Each slice of time is called a frame. In
most applications, animation data has
30 frames per second, though that’s
not always the case.
BIOVISION’S .BVA FORMAT. This is probably
the easiest file format to handle. It’s
directly supported by most of the 3D
animation packages. Let’s take a look at
a piece of a .BVA file (Listing 1).

This is as simple as animation data
gets. For each bone in the skeleton (or
what Biovision calls Segments), there
are nine channels of animation. These
represent the translation, rotation, and
scale values for each bone for each
frame. You’ll also notice that there is
no hierarchy definition. That’s because
each bone is described in its actual
position (translation, rotation, and
scale) for each frame. This can lead to
problems, but it sure is easy to use.

Figure 1 shows the hierar-
chy of a sample .BVA file.

In Listing 1, we see that
HHiippss as the first bone
described. There are 29
frames of animation in the
HHiippss. The frame time is
described as 0.03333 seconds
(per frame), which corre-
sponds to 30 frames per sec-
ond. Next comes a descrip-
tion of the channels and
units used, then the actual
channel data. There are 29
lines of nine values, fol-
lowed by a segment block
that describes the next bone,
and so on, continuing to the
end of the file. That’s all there is to it.
BIOVISION’S .BVH FORMAT. This format is
similar to the .BVA format in many
respects. In practice, I know of no off-
the-shelf way to import this file format
into Alias|Wavefront or Softimage,
although Biovision’s plug-in, Motion
Manager for 3D Studio MAX, reads it.

Still, it’s an easy-to-read ASCII format
that can be useful for importing and
storing animation data. Obtaining data
in this format should be easy because
the format is supported by many
motion capture devices and service
bureaus.

The .BVH format differs from the
.BVA format in several key areas, the
most significant of which is that .BVH
can store motion for a hierarchical
skeleton. This means that the motion
of the child bone is directly dependent
on the motion of the parent bone.
Figure 2 shows a sample .BVH format
hierarchy.

In this sample, the bone HHiippss is the
root of the skeleton. All other bones
are children of the HHiippss. The rotation of
the LLeeffttHHiipp is added to the rotation and
translation of the HHiippss, and so on.

This hierarchy will certainly compli-
cate the game engine’s render loop.
Why would you want to bother? You
can do many more interesting things if
your motion is in a hierarchy. Let’s
take the example of wanting to com-
bine a “walk” motion with a “wave”
motion. In the .BVA format, there is no
relationship between the LLeeffttUUppAArrmm and
the HHiippss. If we were to apply a different
motion to the different bones, nothing
would stop them from separating. A
motion hierarchy allows you to com-
bine such motions fairly easily. Also,
should we ever want to add inverse
kinematics or dynamics to the game
engine, a hierarchy would make this
possible.

Listing 2 shows a fragment of a .BVH
file. The word HHIIEERRAARRCCHHYY in the first line
signifies the start of the skeleton defini-
tion section. The first bone that is

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 8 G A M E D E V E L O P E R

33

HHIIEERRAARRCCHHYY

RROOOOTT HHiippss

{{

OOFFFFSSEETT 00..0000 00..0000 00..0000

CCHHAANNNNEELLSS 66 XXppoossiittiioonn YYppoossiittiioonn ZZppoossiittiioonn ZZrroottaattiioonn XXrroottaattiioonn YYrroottaattiioonn

JJOOIINNTT LLeeffttHHiipp

{{

OOFFFFSSEETT 33..443300000000 00..000000000000 00..000000000000

CCHHAANNNNEELLSS 33 ZZrroottaattiioonn XXrroottaattiioonn YYrroottaattiioonn

JJOOIINNTT LLeeffttKKnneeee

{{

OOFFFFSSEETT 00..000000000000 --1188..446699999999 00..000000000000

CCHHAANNNNEELLSS 33 ZZrroottaattiioonn XXrroottaattiioonn YYrroottaattiioonn

JJOOIINNTT LLeeffttAAnnkkllee

{{

OOFFFFSSEETT 00..000000000000 --1177..995500000011 00..000000000000

CCHHAANNNNEELLSS 33 ZZrroottaattiioonn XXrroottaattiioonn YYrroottaattiioonn

EEnndd SSiittee

{{

OOFFFFSSEETT 00..000000000000 --33..111199999999 00..000000000000

}}

}}

}}

}}

......

}}

MMOOTTIIOONN

FFrraammeess:: 2200

FFrraammee TTiimmee:: 00..003333333333

00..0000 3399..6688 00..0000 00..6655

......

L I S T I N G 2 . Sample Biovision .BVH file.

F I G U R E 2 . .BVH file

hierarchy.

F I G U R E 1 . .BVA file

hierarchy.

defined is the RROOOOTT. This bone is the par-
ent to all other bones in the hierarchy.
Each bone in this hierarchy is defined as
a JJOOIINNTT. Braces contain the root and each
joint. All joints within a set of braces are
the children of that parent joint.

Within each braced block is the
OOFFFFSSEETT and CCHHAANNNNEELLSS definition for that
bone (or JJOOIINNTT). The OOFFFFSSEETT describes dis-
placement of the root of the bone from
its parent. This (x,y,z) coordinate is the
world coordinate offset from the par-
ent bone. In the example, the HHiippss bone
is located at offset (0,0,0) and the
LLeeffttHHiipp is 3.43 world units away from
the HHiippss in the x axis.

The CCHHAANNNNEELLSS line defines which
bone parameters will be animating in
the file. The first parameter is the
number of channels animated for
this bone. Next is a data type for each
of these channels. The possible types
are: XXppoossiittiioonn, YYppoossiittiioonn, ZZppoossiittiioonn,
XXrroottaattiioonn, YYrroottaattiioonn, and ZZrroottaattiioonn. Note
that the scale channels have been
dropped in the .BVH format.
Normally, only the root bone has any
position data — the rest of the bones
have only rotational data and rely on
the root and the hierarchy for their
position. The CCHHAANNNNEELLSS can be in any
order. This order defines the
sequence in which the operations
need to be processed in the playback.
For example, in the LLeeffttAAnnkkllee joint,
the order of channels is ZZrroottaattiioonn
XXrroottaattiioonn YYrroottaattiioonn, meaning that the
bone is first rotated around the z
axis, then the x axis, and finally the y
axis. This becomes important when
we try to display the data.

The branch of the hierarchy ends
with the EEnndd SSiittee joint. This joint is off-
set is only useful in determining the
length of the last bone.

Following the HHIIEERRAARRCCHHYY section is the
MMOOTTIIOONN section. This section actually
describes the animation of each bone
over time. As in the .BVA format, the
first two lines of this section describe
the number of frames and the time
for each frame. However, unlike the
.BVA format, the next lines describe
the animation for all the bones at
once. In each line in the rest of the
MMOOTTIIOONN section, there is a value for
every CCHHAANNNNEELL described in the HHIIEERRAARRCCHHYY
section. For example, if the HHIIEERRAARRCCHHYY
section describes 56 channels, there

will be 56 values on each line of
the MMOOTTIIOONN section. That continues
for the total number of frames in
the animation.

That’s it for the .BVH format.
While it’s a bit more complex, it
gives the programmer designing the
engine greater flexibility.
ACCLAIM SKELETON FORMAT. This is the
most complicated of the three file
formats. It’s also the most compre-
hensive, and supported by most of
the 3D animation packages. An
Acclaim motion capture file is actual-
ly made up of two files; the .ASF,

which describes the actual skeleton and
its hierarchy, and the .AMC file, which
contains the motion data. The separa-
tion of these two files has a nice benefit.
In a single motion capture session, you
can have one .ASF file that describes the
skeleton and multiple .AMC motion
files. The Acclaim format is such a tech-
nical and complex file format that this
overview may not provide all the need-
ed information. Documents describing
the format in greater detail are available
on the Game Developer web site
(http://www.gdmag.com).

The .ASF file is
similar to the
HHIIEERRAARRCCHHYY section
of the .BVH file
in many ways.
Both files
describe the
joints and the
hierarchy, but
the .ASF file
extends this a
bit. Listing 3 dis-
plays a portion
of an Acclaim
.ASF file.

In this file for-
mat, lines begin-
ning with a
pound sign (##)
are ignored. The
.ASF file is divid-
ed into sections.
Each section
starts with a key-
word preceded
by a colon. The
section contin-
ues until anoth-
er keyword is
reached. The
::vveerrssiioonn, ::nnaammee,
and ::ddooccuummeennttaattiioonn

section are self-explanatory. The ::uunniittss
section describes a definition for all
values and units of measure used.

The ::rroooott section describes the parent
of the hierarchy. The aaxxiiss and oorrddeerr ele-
ments describe the order of operations
for the initial offset and root node
transformation. The ppoossiittiioonn element
describes the root translation of the
skeleton and the oorriieennttaattiioonn element
defines the rotation.

The ::bboonneeddaattaa keyword starts a block
that describes all of the remaining
bones in the hierarchy. Each bone is
delimited by bbeeggiinn and eenndd statements.

G A M E D E V E L O P E R J A N U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

34

M O T I O N C A P T U R E

This bone description section is what
makes the Acclaim format very useful.

The iidd and nnaammee elements describe
the bone by number or string. The ini-
tial rest position of the bone is
described by the ddiirreeccttiioonn vector, and
the lleennggtthh describes the physical length
of the bone. The aaxxiiss parameter
describes the global orientation via an
axis vector, and the token letters xxyyzz
describe the order of rotations. Not
included in the sample are two option-
al elements: bbooddyymmaassss, which defines the
mass of the bone, and ccooffmmaassss which
pinpoints the center of mass via a dis-
tance along the bone.

The ddooff element describes the degrees
of freedom possible in the bone. This is
a list of tokens. The possible values are

tx, ty, tz, rx, ry, rz, and l. The first of
these six define freedom to translate
and rotate around the three axes. The
last ddooff defines the bone’s ability to
stretch in length over time. Each of
these tokens represents a channel that
will be present in the .AMC file in that
order. The order of these channel
tokens also describes the order of opera-
tions in the transformation of the bone.

The lliimmiittss element is very interesting.
It describes the limits of the degrees of
freedom. It consists of value pairs of
either floats or the keyword iinnff, mean-
ing infinite. This information can be
useful for setting up an inverse kine-
matic or dynamic 3D character.

The next section in the .ASF file is
::hhiieerraarrcchhyy. Just as it sounds, it describes
the hierarchy of the bones declared in
the ::bboonneeddaattaa section. It’s a bbeeggiinn…eenndd

block in which each line is the parent
bone followed by its children. From
this information, the bones should be
connected together in the proper hier-
archy. Figure 3 displays the hierarchy
in the sample .ASF file.

The .AMC file defines the actual chan-
nel animation. Listing 4 contains a sam-
ple .AMC fragment. Each frame of ani-
mation starts with a line declaring the

frame number. Next is the bone anima-
tion data, which is comprised of the
bone name and data for each channel
defined for that bone. This information
was defined in the ddooff section of each
bone in the .ASF file. The frame sections
in the file continue until the end of the
file. After the complexity of the .ASF file,
the .AMC looks pretty simple.

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 8 G A M E D E V E L O P E R

35

::FFUULLLLYY--SSPPEECCIIFFIIEEDD

::DDEEGGRREEEESS

11

rroooott --11..224444220055 3366..771100118866 77..559911889999 00..995588116611 44..119900004433 --1188..228822999911

hhiippss 00..000000000000 00..000000000000 00..000000000000

cchheesstt 1155..551111777766 --22..880044999966 --00..772255331144

nneecckk 4488..555599660055 00..000000000000 00..001144223366

hheeaadd --3388..333322666611 11..446622778822 --11..775533668844

lleeffttccoollllaarr 00..000000000000 1155..995588778833 00..992211116666

lleeffttuuppaarrmm --1100..331199668855 --1155..004400000033 6633..009911119944

lleeffttlloowwaarrmm --2277..776699117766 --1155..885566665588 88..118877001166

lleefftthhaanndd 22..660011775533 --00..221177006644 --55..554433777700

rriigghhttccoollllaarr 00..000000000000 --88..447700007766 22..889955000088

rriigghhttuuppaarrmm 66..449966114422 99..555511558833 --5577..885544111188

rriigghhttlloowwaarrmm --2266..998833449900 1111..333388227766 --55..771166337777

rriigghhtthhaanndd --66..338877774455 --11..225588550099 55..887766006699

lleeffttuupplleegg 2233..441122226622 --55..332255991133 1122..009999339955

lleeffttlloowwlleegg --66..993333444422 --66..227766005544 --11..336633999966

lleeffttffoooott --11..887777664411 44..445555666677 --66..227755002222

rriigghhttuupplleegg 2200..669988669966 33..118899669900 --88..337777224444

rriigghhttlloowwlleegg 33..444455884400 --66..771177112222 22..004466003322

rriigghhttffoooott --88..116622331144 00..668877880099 99..000000226644

22

rroooott --44..223322443322 3366..772233993344 99..559966110000 --77..005511114477 11..667788111177 --77..771111993377

hhiippss 00..000000000000 00..000000000000 00..000000000000

cchheesstt 3311..886633449999 --1199..001177111111 66..449900554477

......

L I S T I N G 4 . Sample .AMC file.

F I G U R E 3 . .ASF file hierarchy.

::vveerrssiioonn 11..1100

::nnaammee BBiiooSSkkeelleettoonn

::uunniittss

mmaassss 11..00

lleennggtthh 11..00

aannggllee ddeegg

::ddooccuummeennttaattiioonn

DDaattaa ttrraannssllaatteedd aanndd pprroovviiddeedd bbyy

BBiiooVViissiioonn MMoottiioonn CCaappttuurree SSttuuddiiooss

::rroooott

aaxxiiss XXYYZZ

oorrddeerr TTXX TTYY TTZZ RRZZ RRYY RRXX

ppoossiittiioonn 00..00 00..00 00..00

oorriieennttaattiioonn 00..00 00..00 00..00

::bboonneeddaattaa

bbeeggiinn

iidd 11

nnaammee hhiippss

ddiirreeccttiioonn 00..000000000000 11..000000000000 00..000000000000

lleennggtthh 00..000000000000

aaxxiiss 00..0000000000 00..0000000000 00..0000000000 XXYYZZ

ddooff rrxx rryy rrzz

lliimmiittss ((--118800..00 118800..00))

((--118800..00 118800..00))

((--118800..00 118800..00))

eenndd

bbeeggiinn

iidd 22

nnaammee hhiippss11

......

eenndd

::hhiieerraarrcchhyy

bbeeggiinn

rroooott bbooddyy__rroooott11

bbooddyy__rroooott11 hhiippss

hhiippss hhiippss11 hhiippss22 hhiippss33

......

eenndd

L I S T I N G 3 . Sample Acclaim .ASF file.

You should be aware of one impor-
tant aspect of the Acclaim and .BVH
formats. While both formats can store
rotations in arbitrary order, both
Softimage and Alias|Wavefront expect
the order of rotations to be tx, ty, tz, rx,
ry, rz. This is important if you plan on
going back and forth between the game
engine and one of these packages.

Working with Data

O nce you have your data in a for-
mat that you’re happy with, it’s

time to start working on it. I’ve created
an application that loads motion cap-
ture files of different formats and
allows the user to play them back. You
can download it from the Game
Developer web site. When full produc-
tion kicks in, such tools are very useful
for file conversion and formatting.
Also, it serves as a good test application
to try out new ideas and benchmark
code.

I decided to create the motion cap-
ture viewer as a MFC OpenGL applica-
tion — I find it very quick and easy to
create tools this way. If you’re careful
about how you design the tool, much
of the code can be used directly in the
game engine itself. Figure 4 shows a
sample animation that has been loaded
into the application.
DATA REPRESENTATION. As we saw from
the different file formats, there are
several ways to store the animation
data from a motion capture session.
The most important data is the order
of rotations in each stream. You may
remember from 3D matrix math that
matrix multiplication is noncommu-
tative (see “Inspecting the 3D

Pipeline,” Casey
Muratori, Game
Developer,
February/March 1997,
pp.38-41). The order in
which you perform
these operations is criti-
cal to getting the
expected result.

Because I wanted my
motion capture viewer
to support several differ-
ent file formats, it was
important to take opera-
tion order into account.
I created a series of

stream IDs that describe the order of
channels in each stream.

Listing 5 shows the stream types that
I’ve needed. These are not all the possi-
bilities, but they are the ones that I’ve
found useful. By creating separate
stream types for single operations such
as SSTTRREEAAMM__TTYYPPEE__TTRRAANNSS and SSTTRREEAAMM__TTYYPPEE__RRXXYYZZ, I
decrease stream size while animating.
This operation isn’t as important when
the animation can fit in RAM, but it
becomes critical when you have to
stream animation off of a CD-ROM or
the Internet.

Next, I created a data structure to
represent a bone (Listing 6). I chose to
store the transformation information
as separate scale, translation, and
rotation vectors instead of a global
transformation matrix. This made it
much easier to handle the different
channel types. I also find the rotation
values, called Euler angles, easy to
understand while debugging.
Conversion to and from quaternions
for animation or a transformation
matrix can also be done easily. Once
the data format for a game engine is
set, this can be optimized.

Looking at the pprriimmSSttrreeaammTTyyppee,
pprriimmSSttrreeaamm, and pprriimmFFrraammeeCCoouunntt fields, it
seems curious that I would want to
have a motion stream for each bone.
It would certainly be easier to have
one animation stream that contains
all the data for all the bones in the
skeleton. However, this method allows
the flexibility to have different stream
types per bone. This can be useful
because it allows me to attach com-
pletely different motions to the indi-
vidual bones. Imagine a character in a
walk cycle. The legs and hips are

G A M E D E V E L O P E R J A N U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

36

M O T I O N C A P T U R E

////// SSTTRREEAAMM DDeeffiinniittiioonnss //

##ddeeffiinnee SSTTRREEAAMM__TTYYPPEE__NNOONNEE 00 //// NNOO SSTTRREEAAMM AAPPPPLLIIEEDD

##ddeeffiinnee SSTTRREEAAMM__TTYYPPEE__SSRRTT 11 //// SSCCAALLEE RROOTTAATTIIOONN AANNDD TTRRAANNSSLLAATTIIOONN

##ddeeffiinnee SSTTRREEAAMM__TTYYPPEE__TTRRAANNSS 22 //// SSTTRREEAAMM HHAASS TTRRAANNSSLLAATTIIOONN ((XX YY ZZ)) OORRDDEERR

##ddeeffiinnee SSTTRREEAAMM__TTYYPPEE__RRXXYYZZ 44 //// RROOTTAATTIIOONN ((RRXX RRYY RRZZ)) OORRDDEERR

##ddeeffiinnee SSTTRREEAAMM__TTYYPPEE__RRZZXXYY 88 //// RROOTTAATTIIOONN ((RRZZ RRXX RRYY)) OORRDDEERR

##ddeeffiinnee SSTTRREEAAMM__TTYYPPEE__RRYYZZXX 1166 //// RROOTTAATTIIOONN ((RRYY RRZZ RRXX)) OORRDDEERR

##ddeeffiinnee SSTTRREEAAMM__TTYYPPEE__RRZZYYXX 3322 //// RROOTTAATTIIOONN ((RRZZ RRYY RRXX)) OORRDDEERR

##ddeeffiinnee SSTTRREEAAMM__TTYYPPEE__RRXXZZYY 6644 //// RROOTTAATTIIOONN ((RRXX RRZZ RRYY)) OORRDDEERR

##ddeeffiinnee SSTTRREEAAMM__TTYYPPEE__RRYYXXZZ 112288 //// RROOTTAATTIIOONN ((RRYY RRXX RRZZ)) OORRDDEERR

##ddeeffiinnee SSTTRREEAAMM__TTYYPPEE__SS 225566 //// SSCCAALLEE OONNLLYY

##ddeeffiinnee SSTTRREEAAMM__TTYYPPEE__TT 551122 //// TTRRAANNSSLLAATTIIOONN OONNLLYY ((XX YY ZZ)) OORRDDEERR

##ddeeffiinnee SSTTRREEAAMM__TTYYPPEE__IINNTTEERRLLEEAAVVEEDD 11002244 //// TTHHIISS DDAATTAA SSTTRREEAAMM HHAASS MMUULLTTIIPPLLEE SSTTRREEAAMMSS

//

L I S T I N G 5 . SSTTRREEAAMM definitions from SSkkeelleettoonn..HH..

F I G U R E 4 . A sample animation in OGLView.

affected by the wwaallkk stream. Suppose I
then attach a wwaavvee stream to the right
arm. Now I have a walking and wav-
ing character. We can also begin to
plan for the possibility of blending
animations together to create dynam-
ic motions on the fly.
DISPLAY METHODS. Now that I have all
this data loaded, I have to display it
in a way that provides the most infor-
mation possible. In my tool, I chose
to represent each bone of the skeleton
as an axis. The axes are colored red
for x, green for y, and blue for z. An
arrow indicates the positive direction
in each axis. Since I was using
OpenGL to create my motion capture
tool, this seemed like a good opportu-
nity to use display lists. Display lists
are a method that OpenGL uses to
optimize sequences of commands.
Listing 7 contains the OpenGL com-
mands that I used to create a simple
colored axis.

I also created a hierarchy browser
using the CCTTrreeeeCCttll class in MFC. This
gives a nice visual representation of
how the skeleton is laid out. From
there, it’s easy to add dialog boxes to
edit bone settings, a more proper ani-
mation control window, andso on.

The animation is all handled via a
Windows timer event. This isn’t the
fastest way to animate a Windows
application, but it’s plenty fast for this
demonstration. There’s a very good dis-
cussion on animating OpenGL
Windows applications in Ron Fosner’s
book, OpenGL Programming for Windows
95 and Windows NT. I recommend this
book and the OpenGL Super Bible by
Wright and Sweet to any Windows
OpenGL programmer.

The source code and executable for
this application, along with sample
motion files and two documents describ-
ing the Acclaim file format can be found
on the Game Developer web site. ■

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 8 G A M E D E V E L O P E R

37

//// CCRREEAATTEE TTHHEE DDIISSPPLLAAYY LLIISSTT FFOORR AANN AAXXIISS WWIITTHH AARRRROOWWSS PPOOIINNTTIINNGG IINN

//// TTHHEE PPOOSSIITTIIVVEE DDIIRREECCTTIIOONN RReedd == XX,, GGrreeeenn == YY,, BBlluuee == ZZ

ggllNNeewwLLiisstt((OOGGLL__AAXXIISS__DDLLIISSTT,,GGLL__CCOOMMPPIILLEE));;

ggllBBeeggiinn((GGLL__LLIINNEESS));;

ggllCCoolloorr33ff((11..00ff,, 00..00ff,, 00..00ff));; //// XX AAXXIISS SSTTAARRTTSS -- CCOOLLOORR RREEDD

ggllVVeerrtteexx33ff((--00..22ff,, 00..00ff,, 00..00ff));;

ggllVVeerrtteexx33ff((00..22ff,, 00..00ff,, 00..00ff));;

ggllVVeerrtteexx33ff((00..22ff,, 00..00ff,, 00..00ff));; //// TTOOPP PPIIEECCEE OOFF AARRRROOWWHHEEAADD

ggllVVeerrtteexx33ff((00..1155ff,, 00..0044ff,, 00..00ff));;

ggllVVeerrtteexx33ff((00..22ff,, 00..00ff,, 00..00ff));; //// BBOOTTTTOOMM PPIIEECCEE OOFF AARRRROOWWHHEEAADD

ggllVVeerrtteexx33ff((00..1155ff,, --00..0044ff,, 00..00ff));;

ggllCCoolloorr33ff((00..00ff,, 11..00ff,, 00..00ff));; //// YY AAXXIISS SSTTAARRTTSS -- CCOOLLOORR GGRREEEENN

ggllVVeerrtteexx33ff((00..00ff,, 00..22ff,, 00..00ff));;

ggllVVeerrtteexx33ff((00..00ff,, --00..22ff,, 00..00ff));;

ggllVVeerrtteexx33ff((00..00ff,, 00..22ff,, 00..00ff));; //// TTOOPP PPIIEECCEE OOFF AARRRROOWWHHEEAADD

ggllVVeerrtteexx33ff((00..0044ff,, 00..1155ff,, 00..00ff));;

ggllVVeerrtteexx33ff((00..00ff,, 00..22ff,, 00..00ff));; //// BBOOTTTTOOMM PPIIEECCEE OOFF AARRRROOWWHHEEAADD

ggllVVeerrtteexx33ff((--00..0044ff,, 00..1155ff,, 00..00ff));;

ggllCCoolloorr33ff((00..00ff,, 00..00ff,, 11..00ff));; //// ZZ AAXXIISS SSTTAARRTTSS -- CCOOLLOORR BBLLUUEE

ggllVVeerrtteexx33ff((00..00ff,, 00..00ff,, 00..22ff));;

ggllVVeerrtteexx33ff((00..00ff,, 00..00ff,, --00..22ff));;

ggllVVeerrtteexx33ff((00..00ff,, 00..00ff,, 00..22ff));; //// TTOOPP PPIIEECCEE OOFF AARRRROOWWHHEEAADD

ggllVVeerrtteexx33ff((00..00ff,, 00..0044ff,, 00..1155ff));;

ggllVVeerrtteexx33ff((00..00ff,, 00..00ff,, 00..22ff));; //// BBOOTTTTOOMM PPIIEECCEE OOFF AARRRROOWWHHEEAADD

ggllVVeerrtteexx33ff((00..00ff,, --00..0044ff,, 00..1155ff));;

ggllEEnndd(());;

ggllEEnnddLLiisstt(());;

L I S T I N G 7. Display list code from OGLView.CPP

I wish to give a special thanks to those
who contributed necessary information
and assets: House of Moves
(www.moves.com) and Biovision
(www.biovision.com) for sample motion
files; and Richard Hince of Probe and
Richard Barfield of Oxford Metrics Limited
for information on the Acclaim Motion file
format.

Acknowledgements

ssttrruucctt tt__BBoonnee

{{

lloonngg iidd;; //// BBOONNEE IIDD

cchhaarr nnaammee[[8800]];; //// BBOONNEE NNAAMMEE

//// HHIIEERRAARRCCHHYY IINNFFOO

tt__BBoonnee **ppaarreenntt;; //// PPOOIINNTTEERR TTOO PPAARREENNTT BBOONNEE

iinntt cchhiillddCCnntt;; //// CCOOUUNNTT OOFF CCHHIILLDD BBOONNEESS

tt__BBoonnee **cchhiillddrreenn;; //// PPOOIINNTTEERR TTOO CCHHIILLDDRREENN

//// TTRRAANNSSFFOORRMMAATTIIOONN IINNFFOO

ttVVeeccttoorr bb__ssccaallee;; //// BBAASSEE SSCCAALLEE FFAACCTTOORRSS

ttVVeeccttoorr bb__rroott;; //// BBAASSEE RROOTTAATTIIOONN FFAACCTTOORRSS

ttVVeeccttoorr bb__ttrraannss;; //// BBAASSEE TTRRAANNSSLLAATTIIOONN FFAACCTTOORRSS

ttVVeeccttoorr ssccaallee;; //// CCUURRRREENNTT SSCCAALLEE FFAACCTTOORRSS

ttVVeeccttoorr rroott;; //// CCUURRRREENNTT RROOTTAATTIIOONN FFAACCTTOORRSS

ttVVeeccttoorr ttrraannss;; //// CCUURRRREENNTT TTRRAANNSSLLAATTIIOONN FFAACCTTOORRSS

//// AANNIIMMAATTIIOONN IINNFFOO

DDWWOORRDD pprriimmSSttrreeaammTTyyppee;; //// WWHHAATT TTYYPPEE OOFF PPRRIIMMAARRYY SSTTRREEAAMM IISS AATTTTAACCHHEEDD

ffllooaatt **pprriimmSSttrreeaamm;; //// PPOOIINNTTEERR TTOO PPRRIIMMAARRYY SSTTRREEAAMM OOFF AANNIIMMAATTIIOONN

ffllooaatt pprriimmFFrraammeeCCoouunntt;; //// FFRRAAMMEESS IINN PPRRIIMMAARRYY SSTTRREEAAMM

ffllooaatt pprriimmCCuurrFFrraammee;; //// CCUURRRREENNTT FFRRAAMMEE NNUUMMBBEERR IINN SSTTRREEAAMM

......

//// RREESSTT OOFF SSTTRRUUCCTTUURREE DDEECCLLAARRAATTIIOONN

}};;

L I S T I N G 6 . Structure definition from SSkkeelleettoonn..hh.

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 8 G A M E D E V E L O P E R

39

G A M E A I

ing the reasons for particular actions.
We need to define these reasons and
represent them in a way that the com-
puter can manipulate. If we can do so,
then the game’s agents — that is, the
autonomous entities, be they simple
monsters, NPCs, military units, or com-
puter-controlled players — can demon-
strate several intelligent capabilities.
• They can act in terms of goals.
• They can carry out long-term plans.
• They can adapt their behavior to situ-

ations not planned for by the game
developers.
Fortunately, there are means to

improve AI along these lines. This arti-

cle will explore research results in the AI
subfield of planning. This research has
been going on for over 30 years (a very
long time in computer research terms),
and its goal has been to develop rou-
tines for agents to achieve goals in an
environment that the agents themselves
can change. Over time, this field has
explored the representation of actions
and goals, the reasoning about time and
causality, and methods for dealing with
unknown and dynamic environments.

Such a large field can only be
touched upon briefly. The aim of this
article is fairly modest: to explore how
some of the basic ideas of planning can

be used for a game AI. Those who want
to explore the subject further should
check out the references at the end of
this article. While the techniques that I
present won’t give your game’s AI the
reasoning skills of a human, they will
help you understand how reasoning
can translate into action.

What’s in a Plan?

T he parts that go into a representa-
tion of a plan or action become

apparent after some careful analysis.
Think about the plans that you make
on a regular basis. Where should I go
for lunch? Which errands do I have to
do on the way home from work? How
should I schedule the development of
my game? Most plans share common
traits.
• A plan has a purpose — a goal to

reach. Perhaps there are several goals,

Adding Planning Capabilities
to Your Game AI
b y B r y a n S t o u t

Bryan Stout has worked professionally both in applied artificial intelligence and in
computer game development. He has lectured on game AI at several conferences,
including the Computer Game Developers’ Conference, and has been working on a
book about game AI. After a hiatus of a few months, he is pleased to announce that
he has signed a contract with Morgan Kaufmann, and his book, tentatively titled
Adding Intelligence to Computer Games, will appear in 1999.

any complaints about artificial intelli-

gence (AI) in games can be attributed to

a single cause: the AI doesn’t under-

stand what it’s doing. Actions are deter-

mined by a combination of mechanistic

rules and internal dice rolls, but often

there is no explicit means of represent-MM
©

 1
9

9
7

 V
a

d
im

 V
a

h
ra

m
e

e
v

 -
 A

ll
 r

ig
h

ts
 r

e
s

e
rv

e
d

.

G A M E D E V E L O P E R J A N U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

40

G A M E A I

and a meta-goal to achieve them effi-
ciently, but each plan has a purpose.

• A series of subgoals must be achieved
in order to accomplish a plan.
Additionally, subgoals may in turn
have their own subgoals.

• A variety of steps must be be taken in
order to carry out a plan.

• Some steps have prerequisites, or con-
ditions, that must be true before they
can be taken.

• The steps are taken in order to achieve
some part of a goal, or a prerequisite
of some other step.

• The steps in a plan have an order.
Some orderings are necessary because
of prerequisites; other orderings are
arbitrary.

• The steps often use a certain amount
of resources — including items such as
raw materials, money, manpower,
fuel, or time — whose presence must
be accounted for in order for a plan
to succeed.

• Some plans have conditional steps,
which cause branches in the steps
taken depending on some other out-
comes.

Implementing the Plans

O f course, the basic elements listed
previously can be represented in

many ways, from simple to robust.
HARD-CODING PLANS. The simplest way to
represent a plan is to write the plan-
ning directly into the source code. The
quality of the plan being followed
depends on the thoroughness of the
code as it relates to various incidental
situations. The plans can be implicit in

the code — the goals result from the
interplay between different parts of the
code — or perhaps global variables or
objects will keep track of goals that
have yet to be fulfilled and the progress
towards them. It’s tempting to hard
code this functionality into the game,
since it doesn’t require designing spe-
cial data structures. This solution is
perhaps the most difficult to maintain,
however, because any changes to the
AI require modifying and recompiling
the code. It would be better
if we could separate
the knowledge
from the reason-
ing; we need to
put the plans
in data struc-
tures that the
planning rou-
tines can use.
PRODUCTION RULES.
Production rules are
condition/action rules,
which have often been used in
expert systems and other traditional AI
applications. A production-rule system
loops through all the rules, takes note of
which ones apply (that is, which have
conditions that are true), and chooses
one of them to fire (invoke). The basic
condition/ action rule is a very flexible
tool and can be adapted to many situa-
tions. For planning, the action, or right-
hand-side (RHS), of the rule would be
the action to take. The condition, or left-
hand-side (LHS), would be the prerequi-
sites of the action. The regular rules can
be supplemented with variables that
keep track of the desired goals and the
status of the plans to realize them.

Production rules can be hard-coded
or stored in explicit data structures that
are defined either in a code module or
in an external file. Listing 1 shows
some rules (in outline form) that could
represent a plan to get a treasure that is
protected by a guardian monster and a
locked door.

One problem that rule systems must
deal with is how to choose between
multiple rules that are supposed to fire
at the same time. A way to solve this
problem is to assign a priority to each
rule or to the different conditions that
can appear in rules.

Another problem is that if a rule sys-
tem gets too large, it’s inefficient to test
all of the rules’ conditions every cycle.
Fortunately, there are ways to speed up
this process. One way is to index all the
rules by the clauses in their LHSs.
Then, for example, if a monster is
wounded, the inference engine can fig-
ure out what the monster should do by
accessing only those rules whose con-
ditions depend on the monster’s
health.
FINITE STATE MACHINES. Another useful
way to represent a plan is the finite
state machine (FSM), which consists
of nodes (representing states) and the

arcs between them (represent-
ing the transitions from

one state to another).
A node or a state in

a FSM can stand
for a particular
stage in the plan,
and an action
associated with

the node would be
the action to be car-

ried out. The transi-
tions occur when an action

is completed, or some event
interacts with the process of the plan;
conditions on those transitions can
indicate what the next state should
be. Figure 1 shows a simple transition
diagram for the same scenario as
Listing 1.
EXPLICIT GOAL, PLAN, AND ACTION STRUCTURES.
A representation of plans will be more
powerful and robust if you can explicit-
ly represent and reason about these
aspects of plans, rather than get at
them through indirect means. This
requires that you represent plans,
goals, and actions in some explicit way.
There are many ways to do this, and
since the needs of different games can

IIff nnoott ssuuffffiicciieennttllyy aarrmmeedd ttoo ffiigghhtt tthhee mmoonnsstteerr,,

tthheenn llooookk ffoorr wweeaappoonnss..

IIff ddoo nnoott hhaavvee tthhee kkeeyy ttoo tthhee ttrreeaassuurree rroooomm ddoooorr,,

tthheenn llooookk ffoorr tthhee kkeeyy..

IIff ssiiggnniiffiiccaannttllyy wwoouunnddeedd,,

tthheenn hheeaall sseellff..

IIff ssuuffffiicciieennttllyy aarrmmeedd aanndd hheeaalleedd,,

tthheenn aattttaacckk tthhee mmoonnsstteerr..

IIff ffiigghhttiinngg tthhee mmoonnsstteerr aanndd sseerriioouussllyy wwoouunnddeedd

aanndd tthhee mmoonnsstteerr iiss nnoott sseerriioouussllyy wwoouunnddeedd,,

tthheenn fflleeee..

IIff tthhee mmoonnsstteerr iiss ddeeaadd oorr ggoonnee aanndd hhaavvee tthhee ttrreeaassuurree ddoooorr kkeeyy,,

tthheenn uunnlloocckk tthhee ttrreeaassuurree rroooomm ddoooorr kkeeyy aanndd uunnlloocckk tthhee ddoooorr..

IIff tthhee ttrreeaassuurree rroooomm ddoooorr iiss ooppeenn

tthheenn ggeett tthhee ttrreeaassuurree..

L I S T I N G 1 . Sample rules for a plan to get past a monster and locked door to a

treasure.

vary widely (even within the same
genre), I won’t advocate one particular
representation.

The following are possible fields that
you might include in a structure for a
ggooaall class:
• A text string in which to store the

name of the goal, such as “Occupy
City.” You may need text strings for
other needs too, such as comments.

• A defined constant representing the goal
in a form the program can recognize.

• A set of slots that stand for the para-
meters of the goal, such as the city to
occupy in a war strategy game.

• The bindings of the slots. A generic
ggooaall type will have a slot for the city
to occupy. A specific instantiation of
the goal will state to which city it’s
referring. The binding could be a
pointer, an index to an array, a
defined constant, and so on.

• A pointer to a function that can deter-
mine whether the goal is satisfied.

• A pointer to a function that evaluates
how close one is to satisfying the
goal, which measures progress. This
and the preceding could be the same
function, with 100% representing full
satisfaction, or they could be differ-
ent, since progress measurement and
satisfaction tests may be more effi-
ciently represented separately.

• A priority for the goal, to help decide
which goals to work on first.
As mentioned earlier, there are differ-

ences between the ggooaall class structure,
general goal templates, and instantiat-
ed goals. The ggooaall class structure is
defined at compile time within the
code. General goals all use this same
class but represent different specific
goals. Thus, the fields would have dif-
ferent values, such as “defend location”
or “attack unit.” These goals would
probably be created during develop-
ment and saved in a file, to be read in
at run time and allocated as goal tem-
plates. Instantiated goals are goals
assigned to a specific circumstance.
They are like copies of the generic goals
with slots bound to specific objects
(such as “defend Paris” instead of
“defend location”). These two types of
goals are probably best represented by
having different classes for each,
whereby the instantiated ggooaall class
would have a pointer to the appropri-
ate generic ggooaall class as well as the slot
bindings. These same principles apply
to aaccttiioonn and ppllaann classes as well.

The fields for an aaccttiioonn class could
include:
• The action name and other strings.
• A defined constant representing the

action in a form the program can
recognize.

• Slots that represent the subject and
object(s) of the action, such as the
agent doing the attacking, the agent
being attacked, allies, and so on.

• Parameters for the action. For exam-
ple, an action to purchase fuel would
need to know how much fuel to pur-
chase. The slots and parameters could
be represented in the same way.

• Bindings for the slots and values for
the parameters. These would be for
the instantiations, not for the action
templates.

• A pointer to a function that actually
carries out the action (for instance,
“monster attacks player”).

• The prerequisites for the action. If the
program is building a plan from
scratch, the prerequisites give it addi-
tional subgoals for which to plan.
(For instance, needing a key to
unlock a door makes obtaining the
key a subgoal.) While executing a
plan, prerequisites provide a test
whose failure is a reason to abort the
action and perhaps the whole plan
(such as the key that is lost or
destroyed before you can use it).

• The changes the action makes to the
game world (for instance, “the chest
is now unlocked,” or “the city is now
occupied”). If the program builds
plans, this field is used to look for
actions that fulfill goals or precondi-
tions. While executing plans, this
field can be used to see if the action’s
changes have already happened, in
which case the action is skipped (for
example, there is no need to unlock
an unlocked door). The changes
should be represented using the same

defined constants used for the goals,
for easy comparison.

• The resources the actions consume,
whether raw materials, fuel, money,
or something else. The resources
could simply be be part of the prereq-
uisites (for instance, “x tons of iron
are needed to build the ship”), or
they could be represented as a sepa-
rate type of field. The resources con-
sumed also count among the changes
made to the world.

• The time it takes to perform the action,
if that’s important. The time could
just be another resource, or it could be
considered separately, since time has
its own attributes (everyone has the
same amount, it can’t be traded, and
once gone it can’t be taken back).

• The preference associated with the
action. A function that evaluates
which action to invoke can judge
based on the various attributes, but an
extra field can capture information not
directly represented, or provide a short-
cut past the whole evaluation process.
The fields for a ppllaann class could

include:
• The goal of the plan, such as “capture

location x.” While a plan is being
executed, the goal can be checked so
that the plan can be halted if or when
the goal is fulfilled, whether deliber-
ately or serendipitously. If a plan is
being built, the goal needs an explicit
representation, as explained previous-
ly, so that the builder can plan for it.

• The steps that comprise the plan.
Depending on the needs of the game,
these may include subgoals as well as
low-level actions. It’s no coincidence
that the fields for goals and actions
explained previously have many simi-
lar fields. Thus, a class implementation
could define ppllaannsstteepp as a superclass of
the ggooaall and aaccttiioonn classes, for use in
the plan’s sstteepp field and other places.

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 8 G A M E D E V E L O P E R

41

Get KeyGet Weapons Heal Self

Attack MonsterUnlock DoorGet Treasure

Flee

F I G U R E 1 . Sample FSM for a plan to get past a monster and locked door to a

treasure.

• The changes the plan makes to the
world. This is a composite of the
changes that individual actions have
made which aren’t unmade by other
actions. Changes made to the world
are important to know because actions
may have side effects that cause one
plan to be chosen over another.

• The order in which the steps are
taken. The order can be strict (for
example, “do A, then B, then C, then
D”) or it can be a partial order (for
example, “do A before D, and B
before C”). Partial orders are more
powerful and flexible, but they are
more complicated to track.

• The causal links in the plan’s steps.
For example, the action OOppeennDDoooorr is
fired to fulfill the OOppeenneedd((DDoooorr)) prerequi-
site to the RReemmoovvee((CChheesstt,,RRoooomm)) subgoal.
These links are useful during plan
construction to make sure that noth-
ing affects the action’s result before
the goal is fulfilled (for example,
“make sure nothing shuts the door
before the agent can take the chest
out of the room”).

• Control flow information. An advanced
planner can include loops and condi-
tional branches such as those found in
programming languages (for example,
“if the city is found vacated, occupy it;
otherwise surround and attack the
forces there”).

• The time and resources used by the
plan as a whole.

• A preference rating.
Of course, not all of these fields need

to be used. When you’re developing a
plan-building or plan-execution sys-
tem, you’re better off starting simply

and gradually adding functionality. A
simple representation of a plan would
be a linear list of steps, assumed to
occur in their listed order.

You may have noticed that goals and
actions possess a lot of similarities. This
is not a coincidence, since either type
can be used as a step in a plan. You
might want to make both classes descen-
dants of a common ancestor class.

The explicit representations
explained previously offer the most
direct means of applying the planning
algorithms, which I will discuss short-
ly. The explicit plan structure contains
several lists: the steps in the plan
(including their order), the causal
links, and the variable bindings that
refer to the list of steps. The normal
trade-offs in data structure construc-
tion occur at this point — you must
take into account the typical size and
range of size of the list, its usage, and
so on. Usually, lists are constructed as
arrays with their references represented
by array indices, or built as linked lists
and pointers.

Oh, The Plans You’ll Build

H aving examined ways of repre-
senting plans, let’s look at run-

time methods for selecting plans,
implementing plans, and recovering
from failed plans. We won’t cover the
topic of building plans, even though
this was one of the first efforts in plan-
ning research. Building a new plan
from scratch (that is, from only primi-
tive actions), is time consuming for

both AI and for humans. Most plan-
making and following that people do is
based on the adaptation of previous
plans to new situations; similarly, we’ll
assume that you’ll define plans for
your game during development and
save them to a file for the program to
manipulate.

Listing 2 shows the sorts of plans
one can build for an autonomous dun-
geon explorer. The number after the
goals and plans show an assigned pri-
ority. As the explorer moves about, it
acts upon the goals and plans that have
the highest priority — thus, if it’s in a
life-threatening situation, the plans for
self preservation will be invoked and
followed, but if not, then the lower-pri-
ority goals of monster slaying and
exploration are pursued.

Note that there are several levels of
plans, incorporating different subgoals
that can be used. The plans here are
very simple, only one or two actions
long, but longer plans can be devel-
oped. The balance between the number
of subgoals, the number of plans, and
the length of the plans depends on the
needs of the game’s intelligence and
the efficiency needed for dealing with
all the plans. A well-defined set of
plans can meet the needs of several
genres of games and achieve many AI
goals.
• Simple agents in an action game can

be given a sense of operating under a
set of goals. If their plans are com-
plete enough, they will act in a rea-
sonable way regardless of the situa-
tion in which they find themselves.

• In role-playing games, one may
assign nonplayer characters a set of
goals to work from, such as earning
extra money, seeking adventure, get-
ting revenge on enemies, and so on,
which makes them seem more like
real people with separate lives.

• War games can structure their strate-
gic and tactical thinking around
plans. Objectives can be defined and
then attacked or defended according
to how they achieve some higher goal
in the conflict.

• Strategy games can manage resources
with plans as well. Plans can manage
the economic infrastructure, military
buildup, R&D, and so on, according
to the player’s current goals.

• In both action and strategy games,
plans can be used for group move-
ment as well as individual action. For

G A M E D E V E L O P E R J A N U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

42

G A M E A I

Goals:

SSttaayyAAlliivvee [[110000]]

GGeettEExxppeerriieennccee [[5500]]

Plans:

iiff BBaaddllyyWWoouunnddeedd ddoo GGeettHHeeaalliinngg ttoo SSttaayyAAlliivvee [[8800]]

iiff BBaaddCCoommbbaattSSiittuuaattiioonn ddoo RRuunnAAwwaayy ttoo SSttaayyAAlliivvee [[9900]]

ddoo GGeettTTrreeaassuurree ttoo GGeettEExxppeerriieennccee [[3300]]

ddoo KKiillllMMoonnsstteerrss ttoo GGeettEExxppeerriieennccee [[4400]]

iiff IIssHHeeaalliinnggSSoouurrccee((xx)) ddoo ((GGooTToo((xx)),, UUssee((xx)))) ttoo GGeettHHeeaalliinngg [[7788]]

iiff IIssTTrreeaassuurree((xx)) ddoo PPiicckkUUppTTrreeaassuurree((xx)) ttoo GGeettTTrreeaassuurree [[2255]]

iiff IIssMMoonnsstteerr((xx)) ddoo AAttttaacckkMMoonnsstteerr((xx)) ttoo KKiillllMMoonnsstteerrss [[3377]]

ddoo EExxpplloorreeDDuunnggeeoonn ttoo GGeettTTrreeaassuurree [[1155]]

ddoo EExxpplloorreeDDuunnggeeoonn ttoo KKiillllMMoonnsstteerrss [[1155]]

iiff nnoott EExxpplloorreedd((xx)) ddoo GGooTToo((xx)) ttoo EExxpplloorreeDDuunnggeeoonn [[1122]]

iiff DDoooorrCClloosseedd((xx)) ddoo OOppeennDDoooorr((xx)) ttoo GGooTThhrroouugghhDDoooorr((xx)) [[1122]]

iiff DDoooorrLLoocckkeedd((xx)) ddoo ((FFiinnddKKeeyy((yy)),, UUnnlloocckkDDoooorr((yy,,xx)))) ttoo OOppeennDDoooorr((xx)) [[1100]]

L I S T I N G 2 . Sample plans for a simple dungeon explorer.

example, an ambush or a flanking
maneuver can be coordinated by
using either an overall plan run by a
virtual commander who tells the
individual agents what to do, or by
separate plans that tell each agent
what to do when certain other agents
have done their parts.

Plan A, B, or C?

A ssuming that our game has several
plans built, the next issue to deal

with is how to choose which plan to
follow in a given situation. This issue
can be considered from several angles,
leaving a wide range of approaches to
take.

For instance, should you choose a
plan based on optimized or simply sat-
isfied conditions? In other words,
should the game look for the
best plan of all or a plan that
is simply good enough? A
satisfying approach would
take the first plan which
meets some minimal
standard — the first to
score over a given mini-
mum, or perhaps the
first that looks as if it
will work. This approach
can be helped by exam-
ining candidate plans in a
particular order, such as
from simple to complex, or
cheap to costly. For example,
in order to capture a city in a war
game, the player can first try march-
ing into it (if it’s empty of enemy
troops), then can try a simple attack
followed by an advance, and finally
can attempt more involved and pro-
longed attacks.

An optimizing approach would
examine several plans and choose the
best one based upon its score.
Fortunately, not every possible plan
needs to be examined (because the
same plan can have many instantia-
tions with different variables or slot
bindings, such an optimizing approach
can involve huge numbers of plans).
The number of plans can be held down
further by limiting the search to a cer-
tain number of plans or a certain
amount of time spent searching for the
best plan.

When I refer to a plan’s “score,” I
mean some function that evaluates the

goodness of the candidate plan. In
short, the score for a plan will consist
of its “value” minus its “cost.” Value
can be measured in terms of the fulfill-
ment of goals, the value and quantity
of goods received, the importance of
land occupied, the value of good rela-
tionships established, and so on. The
cost could include resources consumed,
time expended, estimated damage
taken or lives lost, the number of units
committed that could also be used else-
where, or some other method of mea-

surement. Both the value and cost
estimates should factor in an

estimate of the certainty
that valuable things will

be gained or lost if that
plan is chosen.

Another issue in
the plan selection
process is whether to
use an agent- or
goal-based system.
In an agent-based
system, an agent tries
to decide what to do

next, including which
goals to work for as well

as which plans to follow
and which actions to take.

The agent is the center of the
focus — individual plans or goals

may be dropped or modified. In a goal-
based system, the focus of attention is
the goal, and agents are used in order to
achieve the goal, rather than vice-versa.
The goal-based system is a more natural
approach when there are many small
agents at the disposal of an overall
deciding entity — it is frequently used
in war games and strategy games. For
instance, if the virtual general in a war
game wants to capture a location, that
goal will look for units to use in that
effort. The units themselves aren’t con-
sidered to have individual goals and
exist only to follow orders.

Another decision you must make is
whether to use a top-down or bottom-
up goal selection process. In the top-
down approach, a high-level goal may
be fulfilled by achieving a few subgoals.
These subgoals will have to be broken

down into further steps, and so on
until actual actions are decided upon.
A bottom-up approach works in the
reverse direction: It looks at the current
situation and decides which actions
can be done at the time, sees how these
actions might work toward achieving
goals or preconditions for other
actions, and then builds up plans from
there. A combined opportunistic
approach is often useful, too, involving
either top-down or bottom-up plan-
ning as is appropriate. For instance, in
a war game, a commander could build
a top-down plan to drive through a cer-
tain part of the enemy’s line. If the
enemy responded by bringing in troops
from another sector, and thereby leav-
ing that sector too weakly defended, a
bottom-up planner should notice the
weakness and plan to send a force to
puncture the line at that point.

Finally, you must decide whether
complete plans, a partial plan, or only
specific goals will satisfy your AI. If a
situation under consideration is fairly
predictable, and the plan takes only a
short amount of time, then making a
complete plan is useful, and the
emphasis is on plan selection. But the
more dynamic and unpredictable the
environment, the less useful it is to lay
out complete plans. In such cases it
may be useful to plan in detail only the
next few actions and leave other sub-
goals for later. In extremely dynamic
environments, your action selection
process is concerned with the very next
action. You can plan this in several dif-
ferent ways. In a top-down approach,
you choose the best high-level plan for
the desired goal, then choose the best
subgoal within that plan, and so on
recursively until an action is selected.
In a bottom-up approach, the action is
selected that best fits the current situa-
tion and seems to advance toward
desirable subgoals and goals. Yet
another approach is to look at several
possible plans for the current goals and
choose the action that fits the greatest
number of plans — in other words, the
one that leaves the most flexibility for
future actions.

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 8 G A M E D E V E L O P E R

43

rreeppeeaatt

ggeett tthhee nneexxtt aaccttiioonn iinn tthhee ppllaann

ppeerrffoorrmm tthhee aaccttiioonn uunnttiill iitt iiss ffiinniisshheedd

uunnttiill tthhee ppllaann iiss eemmppttyy

L I S T I N G 3 . Simple algorithm for plan execution.

Acting upon a Plan

O ur game AI knows how to repre-
sent plans, our agent has chosen a

plan that advances toward a goal, and
now the agent must act upon that deci-
sion. How should this be done? The
simple, straightforward approach is
shown in Listing 3. The agent repeated-
ly looks up the next action in the plan,
and then does it, until all the actions in
the plan are done. This is good enough
for linear plans in a static environment.

If the plans aren’t linear — that is, if
the steps are listed in a partial order
rather than in a complete order — then
getting the next action is a bit more
complex than just reading the next step
of the plan. In this case, one needs to
look at all the unexecuted actions that
have no unexecuted predecessors and
choose one of them to do. You could
choose the first such action found, or
look at several of them and choose the
best one according to some game-spe-
cific criterion, or choose the one with
the highest priority rating (which could
be attached to an action or to a produc-
tion rule if rules are used).

Not all situations are static or pre-
dictable, however, and this can affect
which plan is chosen. These dynamic
situations often crop up in games,
where there are usually multiple
agents, each with its own agenda. As I
stated in my discussion of actions and
plans, you can monitor the plan during
execution and adjust to violated expec-
tations. The first level of monitoring is
action monitoring (an example of
which is shown in Listing 4), so called
because it runs the tests at the action
level and it helps avoid invoking stupid
actions such as trying to open a pad-
locked chest or a chest that is already

open. An action monitor performs
three types of tests:
1. It tests the action’s intended

changes. If they’re already true, the
action is skipped since it would be
superfluous.

2. It tests the action’s prerequisites. If
any of them are false, the action can-
not occur, and the plan is aborted.
(Note that this may also be put in the
search for the next action when using
partial ordering: Find an unexecuted
action with no unexecuted predeces-
sors, whose prerequisites are true.)

3. It monitors the action’s execution,
not only to stop the action when the
desired changes are true, but also to
know when to stop trying. It may
quit the action if the preconditions
are violated during execution, or if a
certain amount of time has passed or
certain number of attempts have
been tried. (The time-out test can
easily be added to the simple loop of
Listing 3 without any reference to an

action’s purpose or preconditions.)
Action monitoring is fairly robust,

but it’s not perfect. It will detect prob-
lems with the current action, but it
won’t detect problems with future
actions. For example, if an AI-con-
trolled general starts assembling forces
to take a city, action monitoring won’t
notice if the enemy abandons the city
until the whole force is assembled and
is actually at the point of carrying out
the assault. For another example, con-
sider an AI-driven character that found
a locked chest and went off to look for
the key. If the character noticed some
imp running off with the chest, the
character wouldn’t do anything about
it until he returned to the scene with a
key. Handling such problems requires a
more robust form of testing called plan
monitoring.

Plan monitors perform tests similar to
action monitors, but on a global level.
First, they test to see if any upcoming
action (or subgoal, if it’s not broken
down to actions yet) has a violated pre-
condition. This test only applies to pre-
conditions whose causally-linked action
has already been executed. If such a pre-
condition is found, the plan has failed.
Second, plan monitors test to see if
there are steps that can be skipped. A
plan monitor checks all unexecuted
parts of the plan to see if their desired
changes have already occurred. If so,
then their preconditions’ causal links
are followed back and marked as being
skipable. When looking for an action to
perform afterwards, if all its changes are
marked skipable (in other words, every

G A M E D E V E L O P E R J A N U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

44

G A M E A I

rreeppeeaatt

ggeett tthhee nneexxtt aaccttiioonn iinn tthhee ppllaann

iiff tthhee aaccttiioonn’’ss ppuurrppoossee oorr cchhaannggeess hhaavvee aallrreeaaddyy hhaappppeenneedd

ccoonnttiinnuuee

iiff tthhee aaccttiioonn’’ss pprreeccoonnddiittiioonnss aarree ffaallssee

aabboorrtt tthhee ppllaann

ddoo

ppeerrffoorrmm tthhee aaccttiioonn

uunnttiill tthhee aaccttiioonn iiss ffiinniisshheedd oorr ttiimmee rruunnss oouutt

iiff tthhee aaccttiioonn’’ss cchhaannggeess aarree ffaallssee

aabboorrtt tthhee ppllaann

uunnttiill tthhee ppllaann iiss eemmppttyy

L I S T I N G 4 . Algorithm for plan execution with action monitoring.

rreeppeeaatt

iiff tthheerree iiss aa pprreeccoonnddiittiioonn ffoorr aann uunneexxeeccuutteedd aaccttiioonn

wwhhoossee vvaalluuee iiss ffaallssee

aanndd wwhhoossee ccaauussaall aaccttiioonn hhaass aallrreeaaddyy bbeeeenn eexxeeccuutteedd

aabboorrtt tthhee ppllaann

ffrroomm tthhee ffiinnaall ggooaall aanndd wwoorrkkiinngg bbaacckkwwaarrdd

iiff tthhee ggooaall’’ss oorr aaccttiioonn’’ss cchhaannggeess aarree aallrreeaaddyy ttrruuee

ffoorr eeaacchh pprreeccoonnddiittiioonn ooff tthhee ggooaall oorr aaccttiioonn

mmaarrkk tthhee aaccttiioonn tthhaatt ccaauusseess tthhee pprreeccoonnddiittiioonn aass sskkiippaabbllee

ggeett tthhee nneexxtt aaccttiioonn iinn tthhee ppllaann wwiitthh aa nneeeeddeedd cchhaannggee

[[iiee.. wwiitthh aa cchhaannggee nnoott mmaarrkkeedd sskkiippaabbllee]]

ddoo

ppeerrffoorrmm tthhee aaccttiioonn

uunnttiill tthhee aaccttiioonn iiss ffiinniisshheedd oorr ttiimmee rruunnss oouutt

iiff tthhee aaccttiioonn’’ss cchhaannggeess aarree ffaallssee

aabboorrtt tthhee ppllaann

uunnttiill tthhee ppllaann iiss eemmppttyy

L I S T I N G 5 . Algorithm for plan execution with plan monitoring.

plan that might have needed this action
no longer needs it), then the action is
skipped. If the final goal is found ful-
filled, you might want to add a special
condition to exit the plan, rather than
marking all remaining actions as
skipable.

Once a plan is instantiated, it may be
a good time to go through and anno-
tate all of the preconditions to be test-
ed before any actions are taken. This
avoids having to do it each time an
action occurs. Since these tests are
more time consuming than action
monitoring, you need to test
carefully to see if plan monitor-
ing is worth the effort. You
may prefer to do only one of
these tests in addition to the
action monitoring, or to do
none at all. If the plan is
linear, using a full order
rather than a partial order,
then it is much easier to do
the tests, since it’s easy to
determine which are the
following or preceding
actions. You can just go up
or down the list, rather than
following causal links around.
Listing 5 shows how the basic
algorithm for plan monitoring
might work.

The Best Laid Plans of Mice and Men
Go Oft Awry

O r, as Von Moltke put it, “No bat-
tle plan ever survives contact

with the enemy.” However you say it,
the truth is that plans often don’t work
out as they should. Whether from a
changing world, an independent
agents’ actions, or deliberate sabotage,
things happen that make plans obso-
lete. Discovering this condition was
the subject of the last section; knowing
what to do about it is the focus of this
one. There is a variety of different
responses an agent can make to recover
from foiled plans.
REPLAN. The simplest act one can per-
form is to completely scrap the old
plan and find a new one to instantiate
and follow. It’s the easiest to program,
and in simple situations, it’s sufficient.
In other situations, though, it may be
inefficient — replanning means redo-
ing much of the work that went into
the old plan.

However, if one is working with
plans in a hierarchical fashion — plans
that have have subplans and so on —
then the replanning can be fairly effi-
cient. This is because you only have to
replan at a low level, leaving the high-
level plans intact. If a situation gets
really messed up, then plans will fail at
higher levels, which may necessitate
replanning at the higher levels.
REINSTANTIATE. One of the simplest ways
to salvage a broken plan is to find

another way to instantiate the
variables or slots of the old

plan. For example, if you
planned to go down a

road that is blocked, you
might look for a differ-
ent road. Or, if one
agent is too damaged
or otherwise involved
and cannot attack,
then attack with
another unit.
FIX THE PROBLEM.
Another approach to
recovering from a
failed plan is to make

the violated precondi-
tion true again. That is,

make the condition a new
goal, and find a plan to

make it true. For instance, if
the road you wanted to travel

down is blocked, find some way to
remove the barrier.
TRY ALTERNATIVE PLANS. You may switch
from one plan to another. For instance,
if the dungeon crawler’s key doesn’t
unlock the door, she may set off in
search for another key, or she may
decide to try destroying the door with
her axe!
USE CONDITIONAL PLANS. The original plan
can have conditional tests meant to
handle contingencies, thereby avoid-
ing the cost of determining what to do
when a problem arises. For instance,
the dungeon crawler may decide to
bring along all her keys, her axe, and a
gunpowder bomb to deal with possible
problems. The drawbacks to this
approach are that you can’t anticipate
all possible problems, you can’t prepare
for all the problems that you can antic-
ipate, and anticipating many problems
simply may not be worth the time to
think about them or the resources to
deal with them. When deciding which
problems to anticipate, it might be use-
ful to consider both their probability

and their impact. For instance, if a
party of dungeon crawlers splits up, it
might be important for each person to
carry a weapon, not because they’re
likely to run into a monster, but
because it would be fatal to encounter
a monster while unarmed.
ABANDON OR POSTPONE THE GOAL. This is a
simple solution to the problem — give
up and do something else. It may be
that circumstances within the game
will change and the goal will become
achievable later.

All of these approaches need not be
mutually exclusive. A routine for deal-
ing with plan problems may consider
several of them — reinstantiation, fix-
ing the problem, using alternative
plans, and dropping the goal — and
choose the option with the best
cost/benefit trade-off.

This coverage of AI planning should
give you several ideas to play around
with — some of them should be applic-
able to your particular game situations.
Good luck! ■

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 8 G A M E D E V E L O P E R

45

This overview has been necessarily

general. Here are some books which are

very useful for further reading:

Allen, James, James Hendler and Austin
Tate. Readings in Planning. (Morgan
Kaufmann, 1990.) A very good collection

of important historical papers covering

various aspects of planning.

Shapiro, Stuart C. Encyclopedia of Artificial
Intelligence. (Wiley Inter-Science, 1990.)
Good article on planning (and many

other good articles).

Russell, Stuart and Peter Norvig. Artificial
Intelligence: A Modern Approach. (Prentice
Hall, 1995.) This has the best discussion

on planning of current AI texts. In fact, I

regard it as the best of all current AI

texts, period, both in general and for

computer game developers. It has the

widest selection of topics, the most

recent research, and uses agents as its

organizing paradigm – rather than pre-

senting the different fields of AI in a

loosely-related manner, it treats all of

them from the viewpoint of software enti-

ties that are trying to perceive their envi-

ronment, make decisions, and act — just

the things that games are full of.

FF UU RR TT HH EE RR RR EE AA DD II NN GG

via DirectSound3D can be found in
various books as well as in Microsoft’s
own documentation, knowing how not
to write to this API is just as critical to a
successful implementation in your
game.

Defining the Vocabulary

Before diving into how and how not
to use 3D audio, let’s clear up some

of the confusion associated with the
technology. Often the terms “3D
audio,” “positional audio,” “spatializa-
tion,” “virtualization,” and “stereo
expansion” are used interchagably. In

reality, 3D positional audio, virtualiza-
tion, and spatialization are three differ-
ent concepts, and their differences must
be understood before they can be prop-
erly applied to games or applications.

Spatialization, sometimes called
stereo expansion, uses signal process-
ing to expand the perceived location of
speakers. It is a nonlocalizing effect,
meaning that it doesn’t localize a
sound or a channel to a specific loca-
tion. In fact, it does the opposite.
Spatialization disperses the perceived
location of the sound so that the listen-
er can no longer determine the exact
location of the speakers. It makes the
listener believe that the sound is com-

ing from an area that is much wider
than the actual speakers. The general
perception of spatialization is that it
makes a stereo stream sound much
richer to the average listener.

Virtualization uses signal processing
to fool the listener into thinking that
there are other speakers present that
aren’t really there. For example, a system
could use only two front speakers or
headphones and virtualize rear or sur-
round sound speakers for a home theater
effect. Virtualization localizes a specific
channel of audio (such as left rear) to a
specific location, as opposed to localiz-
ing a specific sound to an exact location
(which is what occurs in 3D positional
audio). Virtualization is only used when
the source media has more than two
channels of audio — its usefulness for
positioning interactive sound sources
(such as those found in action games) is
limited. Examples of multichannel
source media are Dolby Prologic

G A M E D E V E L O P E R J A N U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

46

A U D I O3 D

Avoiding a DirectSound3D
Disaster
b y R i c h W a r w i c k

Rich Warwick’s experience in the PC industry spans chip, gate array, and board level
hardware design, as well as DSP software development. Rich joined Crystal
Semiconductor Corporation in 1995 as a software development manager. He was
responsible for the software development for Crystal's CS4610 PCI audio accelerator.
He is currently the Manager of DSP Software Technology, leading the development of
software for Cirrus Logic's "Sound Fusion" line of PCI audio accelerators.

D audio can have a tremendous effect on a

gamer’s experience. Unfortunately, if a game

doesn’t use the DirectSound3D API correctly, the

effect can vary between little or no 3D audio

positioning to even more serious problems,

such as accidental system overloading. While

the methods for implementing 3D positional audio33

Surround or Dolby Digital audio
streams. In this article, when I refer to
3D audio, I mean 3D positional audio.

3D positional audio uses signal pro-
cessing to localize a single sound to a
specific location in three-dimensional
space around the listener. 3D positional
audio is the most common effect used
in interactive games, because a sound
effect, such as the sound of an oppo-
nent’s automobile, can be localized to a
specific position. This position,
for instance, could be behind
the listener and quickly
moving around the left
side while all the other
sounds are posi-
tioned separately.

3D posi-
tional audio is
also referred to as
HRTF-based 3D
audio. HRTF stands for
“head-related transfer
function,” a method by
which sounds are processed to
localize them in space around the
player. Although this technique is
acceptable for 3D positioning, it
requires a large amount of processing
power. This is the reason 3D audio
hardware accelerators are becoming so
common in PCs. For an explanation of
the mechanics of 3D audio and HRTF
processing, see “Exploiting Surround
Sound using DirectSound3D” in the
December/ January 1997 issue of Game
Developer.
APPLICATIONS FOR SPATIALIZATION. Spatial-
ization is an effect for processing
music, such as an audio CD or a stereo
music soundtrack in a game. This effect
is especially useful for PC speakers that
are built into the monitor because it
makes the sound appear to come from

a much wider sound field than the
actual speakers, which in this case are
very close together.

Care must be taken never to apply
this effect to an audio stream that has
already been processed by a 3D posi-
tional algorithm, because spatialization
alters the phase of the signal and can
destroy the 3D positional effect.
However, such conflicts are the con-

cern of the audio system designers, not
the developer of game or application.
APPLICATIONS FOR VIRTUALIZATION. Virtual-
ization is an effect that gives the listen-
er the impression of a home theater
environment even when only two
speakers or headphones are present,
which is typically the case with multi-
media PCs. However, to use this effect,
multichannel audio must be available,
and the sounds to be played back on
the virtualized rear speakers must be
encoded onto those tracks during pro-
duction. This makes this solution less
than ideal for the action portion of
games, in which sounds might have to

jump from the front speakers to the
rear (depending on the player’s
actions), but cannot due to prior encod-
ing on a specific channel. However,
multichannel audio and the virtualiza-
tion of these channels are very effective
for noninteractive game intro scenes.

Virtualization is typically used to
play back Dolby AC-3 or Dolby Pro
Logic audio streams on a system that
only has two speakers. For example,

DVD movies can have a 5.1 channel
Dolby AC-3 audio track encoded

on the DVD. (The 5.1 chan-
nels are actually left front,

right front, center, left
rear, right rear, and a

subwoofer. The sub-

woofer
is referred

to as the “.1”
channel of the 5.1.)

3D positional audio
techniques are used to

position a front center
channel as well as right and

left rear channels at their virtual
locations. Virtualization simulates the

additional speakers that aren’t typically
present on a computer. Virtualizing rear
speakers is an example of using 3D
positional audio for a noninteractive
application, because the virtual speaker
locations aren’t moving or responding
to the listener.
APPLICATIONS FOR 3D POSITIONAL AUDIO. One
of the reasons that 3D positional audio
is so popular in action games is because
it can be interactive. Sounds don’t have
to be preprocessed during the game’s
development to position the sound. As
the listener changes location in a virtu-
al world, all the sound objects can
maintain their correct location speed
and path of motion around the listener
as the action unfolds.

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 8 G A M E D E V E L O P E R

47

This is different from applications
that encode the audio into a certain
channel (such as a rear or surround
channel) during development.
Encoding the location of a sound into
a particular channel of a multichannel
stream is an example of noninteractive
audio placement. Multichannel audio
is typically used in an environment
where the listener doesn’t have control
over the sounds — such as when you
watch a movie in a home theater.

Implementing 3D Audio Today

The use of 3D audio in PC games ini-
tially wasn’t widespread, mostly due

to poor 3D audio support in the
Microsoft DirectSound3D 3.0 API. The
first iteration of this API didn’t allow
specialized 3D audio hardware to process
the 3D streams, and as a result, game
developers couldn’t be certain that 3D
sound objects would sound satisfactory
and have the desired effect — even if a
world-class 3D audio accelerator was pre-
sent in the PC. So there wasn’t much
incentive for game developers to incor-
porate 3D audio into their games early
last year. However, when Direct-
Sound3D 5 started shipping in August
1997, the situation changed. That API
supports specialized 3D audio accelera-
tors for processing 3D audio streams.

Using the DirectSound3D API

W hile there are a number of
sources for information about

using the DirectSound3D API, it’s
equally important to know how not to
use it. At last year’s Computer Game
Developers’ Conference, a number of
programmers working on 3D positional
audio for games explained problems
that they had encountered and the
lessons that they had learned during
development. Their problems resulted
in poor performance in their games and
little or no apparent 3D effect, even on
the sounds the developers most wanted
to position in 3D space. I’ve boiled their
comments down to four rules that you
should follow when implementing 3D
positional audio in your own title.
1. NEVER USE VARIABLE FREQUENCY BUFFERS

UNLESS THEY’RE ACTUALLY REQUIRED. It’s
important not to request variable fre-
quency sound buffers when they’re not

necessary. This is a common mistake
because it’s the default in some of the
DirectSound SDK examples. To make
best use of a hardware DirectSound
accelerator, pay attention to the flags
specified in the llppccDDSSBBuuffffeerrDDeesscc..ddwwFFllaaggss
parameter, which are passed to
IIDDiirreeccttSSoouunndd::::CCrreeaatteeSSoouunnddBBuuffffeerr(()). Some of
these flags are straightforward — for
example, DDSSBBCCAAPPSS__LLOOCCHHAARRDDWWAARREE asks for a
hardware-accelerated buffer and
DDSSBBCCAAPPSS__CCTTRRLL33DD asks for DirectSound3D
control. Other flags have implications
for hardware accelerators that aren't so
straightforward. The worst offender is
DDSSBBCCAAPPSS__CCTTRRLLFFRREEQQUUEENNCCYY, which specifies that
you need to be able to adjust the buffer's
playback frequency after the buffer has
been allocated. There are circumstances
where this is a useful capability (some
racing games use it to adjust the pitch of
an engine, for example), but most of the
time it's not required.

You also need to be aware that
Microsoft's default llppccDDSSBBuuffffeerrDDeesscc..ddwwFFllaaggss
value, DDSSBBCCAAPPSS__CCTTRRLLDDEEFFAAUULLTT, includes the
DDSSBBCCAAPPSS__CCTTRRLLFFRREEQQUUEENNCCYY flag (in addition to
DDSSBBCCAAPPSS__CCTTRRLLVVOOLLUUMMEE and DDSSBBCCAAPPSS__CCTTRRLLPPAANN), so
you're not safe from this potential per-
formance-draining trap if you supply
Microsoft's default flag value.

Every buffer that is created with
DDSSBBCCAAPPSS__CCTTRRLLFFRREEQQUUEENNCCYY (that is, set for vari-

able frequency) will assign a sample rate
conversion application to the audio
stream. This consumes additional pro-
cessing resources either on the host
processor or on the audio hardware
accelerator. If the host PC contains a
multitasking audio hardware accelerator
with dynamic resource management,
the resources consumed by these sample
rate conversion applications could have
been used to accelerate more 3D audio
channels. As you can see, blindly creat-
ing all streams as variable frequency
streams will slow down the host proces-
sor and/or prevent 3D audio streams
from being accelerated.
2. NEVER USE 3D WHEN 2D WILL SUFFICE. Only
create 3D sound buffers when necessary.
Many games have created all of their
audio streams as 3D streams, but this
practice results in a poor listening expe-
rience. An accelerated system will quick-
ly run out of resources, and the result
will be a complete lack of accelerated 3D
audio. After all the hardware accelerator
resources are consumed, the host will
apply its 3D audio algorithm to the
remaining streams. These streams will
consume much more processing power
than 2D streams, and further burden
the system. The bottom line is that it’s
very wasteful to play every stream as 3D
when it isn’t necessary.

G A M E D E V E L O P E R J A N U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

48

3 D A U D I O

Company Game
Acclaim TUROK: DINOSAUR HUNTER; FORSAKEN

Activision HEAVY GEAR

Crack dot Com GOLGOTHA

Eidos THE DARK PROJECT

Electronic Arts MOTO RACER

GT Interactive TIGERSHARK; MAGESLAYER; BUG RIDERS

Interactive Magic Online WARBIRDS

Interplay STARFLEET ACADEMY

LucasArts OUTLAWS, JEDI KNIGHT

Maxis SIMCOPTER; STREETS OF SIMCITY; SIMCITY 3000

Microprose MECHWARRIOR III

n-Space TIGERSHARK; BUG RIDERS

Probe FORSAKEN

Raven Software MAGESLAYER

Reality Bytes DARK VENGEANCE

Ripcord Games SPACE BUNNIES MUST DIE

Sculptured Software TUROK: DINOSAUR HUNTER

SegaSoft ROCKET JOCKEY

Sony Interactive Studios TANARUS

Techland Software CRIME CITIES; SPEED THRILL; VIRTUA COMMAND;

CRUSHER; SPEEDWAY MANAGER 3D

Source: http://www.aureal.com/tech/A3Ddevs.html

TA B L E 1 . Games that currently support 3D positional audio or will do so in

coming months.

3. AVOID USING THE DDuupplliiccaatteeSSoouunnddBBuuffffeerr CALL. A
common mistake that game developers
make is not checking for the failure of a
DDuupplliiccaatteeSSoouunnddBBuuffffeerr call. Failure to check
for a bad return code from this call can
lead to audio streams or sound effects
being completely lost. The reason an
application developer would use the
DDuupplliiccaatteeSSoouunnddBBuuffffeerr call instead of using
CCrreeaatteeSSoouunnddBBuuffffeerr is strictly a matter of
convenience. Instead of providing all the
necessary parameters for each 3D buffer,
you can just reference, or duplicate the
parameters of a previously created
buffer. This practice is acceptable only if
you understand what happens when a
call fails and can take corrective action.

Here’s the problem: If a new 3D
sound buffer is created using
CCrreeaatteeSSoouunnddBBuuffffeerr, the buffer will be creat-
ed on the hardware accelerator if there
is a free 3D channel. If no hardware 3D
channels are available, the software 3D
emulation in DirectSound 5 will auto-
matically take over. However, if the
new 3D sound buffer is created using
DDuupplliiccaatteeSSoouunnddBBuuffffeerr, the host emulation

in DirectSound 5 cannot take over.
This is because DirectSound 5 doesn’t
have access to the parameters that
you’re requesting to duplicate. These
parameters only reside in the hardware
accelerator. Therefore, the
DDuupplliiccaatteeSSoouunnddBBuuffffeerr will fail, and
DirectSound 5 won’t play the buffer on
the host. At this point, the buffer is lost
and the sound will never be heard. This
isn’t a problem if the game or applica-
tion checks for the failure and then
reinitiates the call using CCrreeaatteeSSoouunnddBBuuffffeerr
instead. However, the best approach is
not to use the DDuupplliiccaatteeSSoouunnddBBuuffffeerr call.
Only use CCrreeaatteeSSoouunnddBBuuffffeerr, and this
problem can be avoided.
4. ALWAYS CREATE THE MOST IMPORTANT 3D
SOUNDS FIRST. To maximize the 3D
impact on the listener, it’s important to
create the most important sound buffers
first. Each time a 3D sound buffer is cre-
ated using CCrreeaatteeSSoouunnddBBuuffffeerr, the buffer
will be created on the 3D audio hard-
ware accelerator — if one is present in
the system and has a 3D channel avail-
able. If all the hardware accelerated

channels are already consumed, or there
was no accelerator in the system, the
host 3D algorithm in DirectSound 5
takes over and processes the stream on
the host. This process is invisible to the
game or application. The steams that are
relegated to the host won’t be posi-
tioned very well and will use more host
processing power than 2D streams.

Follow the Rules

A lways create the most critical 3D
sound buffers first. That way, if

there is an accelerator in the system, it
will be used for the sounds that will
have the most impact on the listener.

It’s no secret that 3D audio can be an
immersive experience for game players.
However, if you’re going to adopt this
technology, make sure that you avoid
the common pitfalls associated with
DirectSound3D. When followed, these
four rules will maximize the impact of
your audio and reduce unintended
audio processing. ■

49

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 8 G A M E D E V E L O P E R

51

P R O J E C T M A N A G E M E N T

And, you can have your money if… you can ship your
game by Christmas 1998. You glance at your notes and your
impressive-looking Gantt charts, and then confidently say,
“No problem.” If only that were true.

If you’re developing a new, innovative game, you’re going
to have problems. You’ll make mistakes. You’ll struggle to
find solutions. You’ll design and redesign through the
process of trial and error. You’ll be forced to make trade-offs.
Your plans will change. The unexpected will happen. You’ll
be faced with crisis. You’ll have to divert at least one disaster.

When your goals are ambitious, chaos and crisis are the
norm, and anxiety is a constant companion. Creating a new
game can be nerve-wracking, even perilous (financially,
physically, and emotionally). But taking risks also provides
you and your development team with challenge, excite-
ment, and enrichment — perhaps even fame and fortune.

In my September 1997 Game Developer article, “The Game
of Risk,” I presented some techniques to identify and man-
age risk in your development projects. In this article, I pre-
sent some techniques for encouraging, embracing, and
leveraging risk and chaos in product development.

A Chaos
Theory

isten to this and see if it sounds familiar. You want to create

a new game. You think your game is going to be a hit, the

next big thing. You’ve assembled a team of talented people,

who have lots of great ideas and have created some fancy

technology. All that you need is time and

money. You present your idea. It’s well-received. LL
b y M a r t i n S t r e i c h e r

Martin Streicher is an Executive Producer at Berkeley Systems, Inc. in Berkeley, CA. He graduated from Purdue University in 1986
with a Master’s degree in Computer Science, and has been a software development manager since 1989. Most recently Martin
produced YOU DON’T KNOW JACK MOVIES and YOU DON’T KNOW JACK VOLUME 3. Martin is currently the executive producer,
producer, and director of a new CD-ROM game show that he also created. Please send comments or questions about this article to
strike@berksys.com.

Misery Loves Game Companies

G ame development schedules are
notoriously volatile. Why? Because

creating great games is an art. And while
that comparison may be overused and
cliche, I think it’s apropos.

The people that create games —
game designers, developers, artists,
animators, modelers, musicians, and
writers — are all artisans who have
mastered a specialized craft. Like
other craftspeople, the people that
create games require skill, insight,
direction, materials, and time to pro-
duce great work. I would argue that
game developers face even greater
challenges since their materials —

hardware, software, storytelling,
game play, art — are so diverse and
often revolutionary. A new game
makes the unreal real — certainly the
stuff of art.

Additionally, the process of creating
a game — its design, execution, and
implementation — is not a science.
Each software development “model”
has advantages and disadvantages, and
development methodologies vary
greatly. Great games challenge the lim-
its of technology — you should expect
that creating great games will likewise
challenge your status quo and the lim-
its of your own abilities. If your goals
are ambitious, then you should expect
things to change. You should expect to

adapt your current practices and invent
new ones.

You’ll certainly face situations and
problems that you’ve never faced
before, and you’ll be called upon to
make decisions for which you’re unpre-
pared. You’ll make mistakes, but that’s
normal. Game development has no for-
mulas to follow, nor physical laws to
obey. Development has no rules. There
are no good nor bad decisions per se —
it’s up to you to decide what works and
what does not work.

All of this uncertainty can be terrify-
ing, but it can also be compelling. Each
open issue provides you with the
opportunity to excel, create, invent,
and imagine. If you’re a smart develop-
ment manager, you’ll recognize the
chaos, relate to the anxiety it can
cause, and at the same time, harness its
energy. Trial and error is good chaos. It
shows that you’re seeing faults in your
design and trying to address them.
Tweaking performance is good chaos.
Building several game prototypes is
good chaos. Developing more than one
backstory is good chaos. Juggling prior-
ities is good chaos. Finding additional
funding to continue development is
great chaos. Even if you try and fail
several times, your final solution ulti-
mately improves your game.

So how do you do encourage risk-
taking, and embrace chaos and uncer-
tainty without derailing your develop-
ment project? Good question.

To leverage chaos during a project,
you must budget it and then manage it
— just as you budget and manage
money.

Budgeting Chaos

H ow do you budget chaos? You
establish limits for chaos and

then decide how much chaos each part
of your project can afford. Tasks that
you want to control closely are “allo-
cated” little or no chaos. Tasks that
require trial and error to perfect are
usually afforded more chaos.

For example, you may choose to
“allocate” a good portion of your chaos
budget on a task such as level design.
However, a critical task such as 3D
engine development might be afforded
less chaos since it’s critical to your
title’s game play and look-and-feel. To
create a chaos budget, you must first

G A M E D E V E L O P E R J A N U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

52

P R O J E C T M A N A G E M E N T

Things to accomplish:
• Ship PEZ by Christmas 1998 (sound familiar?)

• Stay within budget

• Develop a strong team of writers

• Create a supportive and collaborative culture for content development

• Develop techniques for content testing and refinement

Critical dates:
• 6 October - PEZ funding presentation

• 1 December - End of feature testing; finish all refinements and complete game play

specification

• 7 January 1998 - End preproduction phase; start production phase

• July, August 1998 - External prereleases

• September 1998 - Product ships

People required:
• 3 full-time artists/animators/modelers

• 1 part-time artist

• 3 software developers, a production coordinator

• Myself (acting as producer and director)

• A Software Quality Assurance (SQA) lead and several SQA engineers

• A composer and musicians

• A sound engineer

• An editor-in-chief

• 2 full-time writers

• Several part-time writers

Equipment required:
• A 3⁄4” tape deck

• A video capture board

• A dedicated image scanning system

• A recording booth

• A Web-based database server

Project risks:
• Developing a writing staff and creating content

• Developing and implementing an effective content test plan

• Time (time is always a risk; and if you are independent game developer and not a

developer/publisher, money is also always a risk)

• Creation of the marketing plan

PEZ

identify everything that’s critical to the
success of your project. Specifying
what is critical sets limits and ensures
that you don’t spend so foolishly that
it endangers your project.

At a minimum, your list of critical
items should include:
• A thorough and detailed description

of the new product’s features
• A list of critical dates (this list includes

your ship date and other milestones
such as “feature complete,” “external
prerelease,” and other)

• A definitive list of things that you
want to accomplish in the project

• A list of risks to the project
• A list of dedicated resources that are

required to execute the project plan
(resources include money, people,
information, and equipment)

• A list of the expectations that you
have for each person on the develop-
ment team
For example, the sidebar shows the

critical items that I identified for a
development project that my team just
started (the product is code-named
“PEZ”).

As you can see, my list of crucial
items includes the goals of the project,
a description of the product that I want
to build, critical dates in the schedule,
and the resources required to be suc-
cessful. Armed with this list, I’m happy
to let chaos reign free (or in my analo-
gy, be spent freely) until it conflicts
with or threatens anything crucial to
the project.

My lists are admittedly very broad in
scope; they define limits, but are too
general for day-to-day chaos manage-
ment. To complete a chaos budget,
your team’s lead programmer, lead
artist, and marketing manager should
compile their own lists of crucial ele-
ments. When all of your lists are com-
bined, the entire team can operate
independently within well-defined
boundaries. In fact, reviewing all of the
critical items and individual “chaos
budgets” is an excellent way to manage
the entire project.

As project requirements change —
and we know that they will — redefine
your critical items and reallocate chaos
as if you were shifting money between
investments. Audit how people are
spending their chaos. Work together to
manage chaos as if it were money.

Consider an extreme example (but
not necessarily an uncommon one):

You are developing a new game sched-
uled for a Christmas 1998 release.
Shortly after you begin development,
you learn that your company is run-
ning out of cash and that your ship
date for the game is being moved up to
Summer 1998. Given this new informa-
tion, you and your team have to review
and revise all of your project goals and
your chaos budgets. You may decide to
cut features, expand the staff, and
accelerate development of certain key
technologies. You may decide to take
more risk (spend more chaos) in engi-
neering to match the accelerated
scheduled. Or, you may decide to
severely cut your chaos budget by
greatly restricting the kinds of deci-
sions each part of the
team can make
independently.

Budgeting chaos is oddly similar to
how the Federal Reserve Board controls
interest rates. If risk is costing the team
too much time, effort, and money, cut
back on how much chaos is available.
If your project needs or wants more
experimentation, then make chaos
more readily available.

You may be wondering why my
detailed PEZ development schedule
wasn’t included in my list of project
parameters. In a chaotic environment,
I don’t necessarily care when or how
things happen as long as the team is
achieving its stated goals. Am I advo-
cating anarchy? No. Process and infra-
structure are required for any large-
scale project. You still need design
documents, schedules, reporting struc-
tures, and milestones. Ultimately, how-
ever, a development schedule is only
an estimate of how and when work will
be done. A pro forma schedule (such as
those usually created in Microsoft
Project) is useful only because it initi-

ates a process in which you and your
team analyze, estimate, debate, design,
review, and ratify a development plan.
Once your team has completed the
process of creating a project schedule,
the schedule is useless.

A development schedule, no matter
how detailed, is not a substitute for
your leadership. All of your infrastruc-
ture — Gantt charts, spreadsheets, sta-
tus reports, e-mail, code reviews, design
reviews, staffing, and meetings — are
only a means to an end.

Managing Chaos

T o manage chaos, you have to earn
it, invest in it, keep track of your

investment, invest more when it’s need-
ed, and know when it’s time to cut your
losses. And, to continue the analogy,
you cannot manage your investment
effectively and safely without doing
your research. As the project leader, it is
your primary responsibility to measure
progress, assess risk, prevent and antici-
pate problems, and adapt the project
whenever a critical item is threatened.
It’s your responsibility to lead, partici-
pate, communicate with, and listen to
your team. In fact, accommodating
chaos and encouraging risk-taking puts
an even greater onus on you to interact
with everyone on your development
team. Here’s how I recommend you
manage your project portfolio.
ENGAGE AND PARTICIPATE. As the project
leader you must establish and then
protect the autonomy and indepen-
dence of your development team. To
establish autonomy, you must estab-
lish a creative, collaborative environ-
ment that fosters innovation, risk-tak-
ing, and experimentation. Enable all of
your team members to make as many
independent decisions as possible.
Once you have autonomy, do not treat
it as an entitlement. You have to work
as a team to protect it. For example,
during the development of YOU DON’T
KNOW JACK MOVIES, the art team found
itself five calendar days behind sched-
ule. Rather than ask for additional per-
sonnel or time to complete the work,
the art team decided to work two week-
ends in a row to make up the time. The
art team devised its own solution, exer-
cised its autonomy, and simultaneous-
ly increased the entire team’s cachet of
credibility. The more credible your

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 8 G A M E D E V E L O P E R

53

team is, the more autonomous it will
become.

Work with your development team
first to find solutions to problems, and
try to solve your problems without ask-
ing for additional resources (money,
people, time). However, if you do need
help, by all means ask for it. Asking for
assistance doesn’t discredit your team
— in fact a team that asks for help
when it needs it actually reinforces its
credibility.

If you’ve established a collaborative,
independent environment, your team
should be able to disagree, debate, and
reach consensus on its own. I encour-
age you to foster debates to find the
best possible solutions. Let your soft-
ware developers argue about imple-
mentations — you’ll get better results
if each developer has to present and
defend his or her design. If your team
cannot agree on an issue, it’s extreme-
ly important for you to settle your dif-
ferences within the team. If neces-
sary, study
the facts,
gather
opinions,
and then insert yourself as an
arbitrator. In the worst case, and
if all else fails, make the final deci-
sion. Settle the conflict and rally the
team to support the decision.
COMMUNICATE. As the project leader, it’s
your responsibility to defend your
development team’s priorities, opin-
ions, and decisions. And to best repre-
sent your team, you must be intimately
familiar with every aspect of the pro-
ject. Personal contact and interaction
with every member of your team is the
most valuable technique for gathering
and disseminating information.
Without information, no team mem-
ber, including you, can make effective
and appropriate decisions. Make sure
to communicate regularly with every
team member.

For example, I prefer short, one-on-
one ad hoc discussions instead of large
meetings. I use these quick, frequent
meetings to ask and answer questions,
gauge status, offer advice, change prior-
ities, and assess risk. Talking to every-
one on the team is time consuming,
but it’s extremely easy to do. For me,
it’s one of the most satisfying parts of
my job. I socialize, learn, discuss, and
teach every day.
COORDINATE. Regular communication

with everyone on the team also allows
me to coordinate the team. When you
are managing chaos, this is perhaps the
most important task to perform. If you
don’t communicate and coordinate,
you won’t be able to measure just how
chaotic your project really is. As the
project leader, you have to simultane-
ously envision the “big picture” and
scrutinize the finest level of detail. Do
you remember my critical items for PEZ
development? That’s my big picture.
The lists that the leads created are their
big pictures, yet provide me with
another level of detail. By talking to
everyone on the team, I assemble both
a panoramic and microscopic view of
the project. And that’s how I manage
chaos in my projects — I always know
where to invest or
divest chaos.

REVIEW. Ultimately, your job as the pro-
ject leader is to control chaos and
ensure that the goals of the project are
being accomplished. You need to
spend a good deal of time collecting
information, and once you have it, you
need to analyze it and react. Review
and answer these questions every day:
What worked today? How can that be
leveraged? What didn’t work? How can
we better solve or prevent the problem
in the future? Is each team member
focused on his or her critical list? Did
the parameters of the project change?

Reining in Chaos

R egular communication with every-
one on your team provides you

with qualitative results — information
such as status, plans, design decisions,
and risks. To get quantitative results, you
have to analyze your progress against its
stated goals. The best way to rein in
chaos and yield an accurate appraisal of
your progress is to try to build a run-
ning, playable version of your game.

Set a deadline, broadcast it to your
team, and then focus the entire team on
integrating all completed work. Take
your art and process it with your tools.
Take the data from that step and drop it
into your graphics engine. Attach AI to
the characters in the game and enable
the user interface. Take the output from
your level editor and drop that into
your engine, too. Start the game and see
what happens. Some things will work,
others won’t. Look at the game closely.
Audit your team’s progress. Has the
game improved since the last incremen-
tal build? Why? Why not? Did the team
make the right design decisions? Is any-
thing missing? What adjustments need
to be made? In staff? In assignments? In
priorities? Is the project too chaotic?
Incremental builds are excellent indica-
tors of how your project is proceeding.
Incremental builds as are like mile
markers along a highway — each incre-
mental build gives you an indication of
your project’s speed and location.

There are no rules for game develop-
ment, no physical laws to obey. The
excitement and challenge of game
development is to solve novel, hard,
and critical problems with limited time,
money, and people. At the start of your
project, identify what is crucial to your
success. If you remain true to your orig-
inal intentions and manage with your
end-result in mind, how you ultimately
accomplish your goals is arbitrary.

Manage time, people, and tasks with
your goals in mind. Otherwise, let
chaos reign. ■

G A M E D E V E L O P E R J A N U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

54

P R O J E C T M A N A G E M E N T

I highly recommend the following
books if you are interested in improving
your ability to create and manage a
chaotic environment.

Maguire, Steve. Debugging the Development
Process. Redmond, WA: Microsoft Press,
1994.
McCarthy, Jim. Dynamics of Software
Development. Redmond, WA: Microsoft
Press, 1995.
Peters, Tom. The Tom Peters Seminar: Crazy
Times Call for Crazy Organizations. New
York, NY: Vintage Books, 1994.
Yourdon, Edward. Rise and Resurrection of
the American Programmer. Upper Saddle
River, NJ: Prentice Hall, 1996.

FF UU RR TT HH EE RR RR EE AA DD II NN GG

hadows of the Empire is an action

game originally developed for the

Nintendo 64 video game console. It

formed part of a multimedia Star

Wars event consisting of a novel,

soundtrack, toy line, comic books,

trading cards, and other related merchan-

dising. The Nintendo 64 version was

released in December of 1996, and has

proven to be very popular with over one

million copies shipped to date. The IBM

PC version was released in early September

of 1997, and has enhanced cut scenes, Red

Book audio (both music and voice), and

high-resolution graphics. It requires the

use of a 3D accelerator card.

G A M E D E V E L O P E R J A N U A R Y 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

56

STAR WARS: SHADOWS OF THE EMPIRE

SS
b y M a r k H a i g h - H u t c h i n s o n

Dinner in Kyoto, Japan, August 1996. (Left to right: Don

James, Hiro Yamada, Mark Haigh-Hutchinson, Shigeru

Miyamoto, Kenji Miki.)

P O S T M O R T E M

Why Shadows?

B ack in the summer of 1994,
LucasArts was exploring the pos-

sibility of developing a new 3D title for
one of the emerging “next-generation”
platforms. After some discussion, the
Nintendo 64 was decided upon as the
platform of choice, even though there
was no hardware available at the time.
Due to our close relationship with
Lucasfilm, we were aware that
Lucasfilm Licensing was planning the
Shadows of the Empire event. Jon
Knoles, the lead artist and designer on
the Nintendo 64 game, took an active
part in deciding the timeline of
Shadows. He suggested that it take
place between The Empire Strikes Back
and Return of the Jedi.

The Shadows story line deals mainly
with the criminal underworld of the
Galaxy, and the new period allowed us
to explore some of the things that
weren’t explained in Return of the Jedi.
It also opened up some new characters
that were not bound to the original
story, which gave us more creative free-
dom than using established figures. A
bonus was that it allowed us to make
use of everyone’s favorite bounty
hunter, Boba Fett.

Since we were developing one of the
premier titles for an entirely new game
machine, there was a conscious deci-
sion to attempt to stretch out and cover
a number of different game-play styles.
We wanted to ensure that the player
would have as much variety as possible,
yet still enjoy a satisfying experience.

A Reality Engine for $200?

B y early September 1994, we had
received our Silicon Graphics

workstations and the core team was
working. Initially the three program-
mers were using Indigo 2 Extremes,
with 200mhz CPUs, 64MB of RAM, and

24-bit graphics. Eventually, we would
have to change our programmers’ com-
puters to INDYs (still powerful
machines) to install the Nintendo 64
development systems.

In addition, we were fortunate that
LucasArts allowed us to obtain a Silicon
Graphics ONYX supercomputer. This
impressive and somewhat expensive
refrigerator-sized computer boasted
Reality Engine 2 graphics hardware, four
R4000 CPUs, and 256MB of RAM. It
became an essential part of our develop-
ment equipment, as it was the only
hardware available that could possibly
emulate how the final Nintendo 64
hardware would perform. Indeed,
Nintendo and SGI supplied us with soft-
ware that emulated most of the features
that the real hardware would support.

In late September, the programmers
took a trip down to Silicon Graphics to
discuss the Nintendo 64 hardware
design with its chief architect, Tim Van
Hook. The SGI engineers were rightly
proud of their design, and promised
that they would deliver hardware
matching the ambitious specifications.
Nine months later, we learned that they
had indeed met those specifications.

By Christmas of 1994, we had the
basis of the first level of the game, The
Battle of Hoth, running quite nicely on
the ONYX — “quite nicely” being in
high resolution (1280×1024), 32-bit
color, and at 60 frames a second. By this
point, we had also received a very early
prototype of the Nintendo 64 con-
troller. This consisted of a modified
Super Nintendo controller with a primi-
tive analogue joystick and Z trigger. Due
to our strict nondisclosure agreement,
we were unable to discuss the hardware
or the project with anyone outside the
core team. Consequently, we would
furtively hide the prototype controller
in a cardboard box while we used it. In
answer to the inevitable questions about
what we were doing, we replied jokingly
that it was a new type of controller — a
bowl of liquid that absorbed your
thoughts through your fingertips. Of
course, you had to think in Japanese….

In July of 1995, we received our first
actual hardware as a plug-in board for

the INDY. This later became known as
the Revision 1 board, but on inspection
it was extremely “clean” — no wire
wraps or other temporary items in
sight. Within three days, technical lead
Eric Johnston and second programmer
Mark Blattel had ported the game to
the actual hardware. It was an awe-
inspiring moment when we first saw
the Battle of Hoth running on the
“real” machine. The first revision of
the hardware was very close to the orig-
inal specifications supplied by SGI.
Other than the RCP (Reality
CoProcessor) not running at quite the
final speed, and one of the special
video “dither modes” not being avail-
able, it performed extremely well.

Over the next few weeks, we would
receive an additional two boards, so
that all the programmers were devel-
oping in a similar fashion. Three
months later, we would receive
Revision 2 boards, which brought the
RCP up to full speed as well as fixing a
few minor bugs. Another pleasant sur-
prise was the doubling of the amount
of RAM to 4MB.

A further development was the hard-
ware “dither modes” that perform sev-
eral different kinds of functions at the
video back end — mostly to reduce the
effect of Mach banding, which is com-
mon when using 16-bit color.

Technology

S ince Eric Johnston and Mark
Blattel had extensive experience

with the SGI platform, we undertook to
prototype the game using the
Performer 3D API. This is an OpenGL-
based system that is very flexible.
Eventually, we would write our own

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 7 G A M E D E V E L O P E R

57

Im
ages courtesy of LucasA

rts Entertainm
ent Com

pany LLC, ©
 1997.

Mark Haigh-Hutchinson is a Project Leader and Senior Programmer at LucasArts
Entertainment Company. He has been developing computer and video games as a
hobby since 1979, and professionally since 1984. Cutting his teeth on numerous 8-bit
computers such as the Sinclair ZX Spectrum, he has contributed to 32 published
games, 16 as sole programmer. He may be reached at mhh@lucasarts.com.

subset of Performer’s functionality on
the Nintendo 64. This allowed us to
move the game from a $140,000 SGI
ONYX to a $200 Nintendo 64 in a mat-
ter of just three days.

Level designers used the tool set from
DARK FORCES to construct the first-per-
son levels for the game. This allowed a
crude form of preview using the actual
DARK FORCES engine on an IBM PC. This
worked fairly well, although later in the
project we were able to have a single
SGI for dedicated use by the level
designers. The PC solution, however,
was also useful because the level design-
ers were already familiar with the
processes involved. Unfortunately,
since the game engine wasn’t running
on the PC at that point, the develop-
ment cycle was somewhat slow.

Additionally, the ONYX calculated
the preculling visibility tree for each of
these levels. The way it works is quite
elegant, thanks to Eric and Mark. The
world is subdivided into “sectors” —
that is, polygonal regions defined by
either geometry or some other criteria.
These sectors control collision detec-
tion, have properties relating to game
play, and perform several other related
functions. The visibility program tra-
verses the world rendering the scene
from the center of every sector in a 360-
degree arc as well as three elevations.
For every polygon to be rendered in the
scene from a particular sector, an identi-
fying 32-bit value, rather than texture
information, fills the appropriate pixels
in the frame buffer. It’s then a simple
matter of reading the frame buffer to
determine which sectors are visible from
that location. This process became
known as “pastelization” because the
identifiers written into the frame buffer

(effectively as RGBA values)
caused the scene to appear
as purely pastel colors.

Motion Capture

In the spring of 1995, we
decided to experiment

with the use of motion cap-
ture to control the anima-
tions of the main character
as well as enemies such as
Stormtroopers. Fortunately
for us, our sister company,
Industrial Light & Magic
(ILM), had a capture system

available for use. It was a tethered sys-
tem, using a magnetic field to deter-
mine the position of each of the sen-
sors. The sensors were attached to the
actor at 11 locations using a combina-
tion of a climbing harness, sports joint
supports, bandages, and Velcro strips.

The nature of the system presented
several problems. First, the actor had to
perform on a raised wooden platform,
since the metal construction supports
in the concrete floor would affect the
capture system. Secondly, since the
actor was on a platform as well as teth-
ered, we couldn’t obtain a “clean” run
cycle. Some of our more ambitious
motions also proved problematic. On
the positive side, once the system was
calibrated, we were able to capture over
100 motions in a single day, each with
two or three different “takes.” We
viewed the motions in real time on a
SGI Indigo 2 Extreme computer run-
ning Alias PowerAnimator. This
allowed us to quickly ensure that every
capture was “clean” before continuing
with the next action.

Unfortunately, we were to discover
that after analysis, the motion data
proved to be unusable. This was mainly
because the angle information for the
joints wasn’t consistent on its represen-
tation of the direction around each
axis. Consequently, all the animation
for the characters was redone by hand,
a somewhat time-consuming task.

MIDI Music

O ur initial approach to music for
the game was similar to that

taken on some of our PC titles —
namely, a MIDI-based solution.

However, the first problem that we
came across was hardware incompati-
bilities between the MIDI keyboards
used by our musicians and the Silicon
Graphics computers used to develop
the game. The theory was that the
compositions could be previewed
directly on the Nintendo 64 hardware
as a musician played them on a key-
board. Naturally, this would provide
the best possible feedback to the musi-
cian. Unfortunately, for some
unknown reason(s), note on/off pairs
were lost, causing chords to sound as
one note. Additionally, note releases
were sometimes missed completely.
Before long, other unwelcome behav-
iors surfaced. We worked around these
mysteries by having the musicians cap-
ture the sample set and play it solely
on their keyboards.

After some experimentation, though,
we felt that the MIDI music was good,
but didn’t capture the essence of the
John Williams orchestral soundtrack
that is so closely associated with Star
Wars. Furthermore, each additional
instrument channel would require more
CPU time than we wanted to allocate.

At this point, we tried an experiment
using uncompressed digital samples of
the Star Wars main theme. The quality
was extremely good, even after subse-
quent compression with the ADPCM
encoder provided by Nintendo. After a
little persuasion, Nintendo generously
agreed to increase the amount of car-
tridge space from 8MB to 12MB. This
allowed us to include approximately 15
minutes of 16-bit, 11khz, mono music
that sounded surprisingly good.
Considering that most users would lis-
ten to the music through their televi-
sions (rather than a sophisticated audio
system), the results were close to that
of an audio CD, thereby justifying the
extra cartridge space required.

Art Path

A continuing problem throughout
the development of SHADOWS was

the inability to import and export data
between the various 3D packages we
were using. Eventually, we managed to
circumvent these problems with a
number of translation utilities as well
as by using Alias Power Animator as
our central “hub” format. However,
there were still issues with scale, model

G A M E D E V E L O P E R J A N U A R Y 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

58

P O S T M O R T E M

Jon Knoles directs actor Amos Glick who recoils

from an imaginary shot. Mark Haigh-Hutchinson

wrangles the cables and provides a supporting

hand.

hierarchies, and animation data. It was
sometimes difficult for the artists to see
what their artwork really looked like
until it had been through the hands of
our polygon wrangler (thanks Tom!).
Initially, it was difficult for our texture
artist to visualize the restrictions on
texture size required by the hardware,
as well as color reduction issues.

New Hardware

T here were a number of other issues
that we had to deal with in devel-

oping the game, not the least of which
was that for the first nine months of
the project, we didn’t have any real
hardware on which to run the game.
This deficiency wasn’t insurmountable
by any means, but it restricted our
choices in certain ways, especially in
level design. We were forced to make
some assumptions, especially regarding
to performance. Fortunately, this was-
n’t quite the bugbear that we anticipat-
ed. Still, as is well known, those on the
bleeding edge of technology are often
sacrificed upon it.

Other Issues

There was considerable pressure to
finish the game in time for the

Christmas 1996 deadline. This reality
meant many, many late nights, with
some team members regularly working
over 100 hours every week for the best
part of a year. Hopefully, this sort of
workload can be avoided in future pro-
jects. Time pressure is, of course, a com-
mon thing in the computer games
industry — and we were certainly no
strangers to the phenomenon. However,
since we had to release our game shortly
after launch of the machine, we were
under more pressure than might usually
have been encountered. Game testing
also became an issue because there were
very few machines with which to actu-
ally test the game.

Game Play Variety

W e were able to include a very
wide variety of game play styles

in SHADOWS. In retrospect, this meant
that we couldn’t tune each type of game
play as much as we would have liked. It

also meant an almost Herculean pro-
gramming task in trying to write and
debug what amounted to five different
game engines. These consisted of low
flight over terrain, gunnery action in
space, first/third person on foot or with
jet pack (including a moving train
sequence), high-speed chases on a
speeder bike, and full 360-degree space
flight. Nonetheless, the result was that
most players’ experiences with the game
were always interesting, at the expense
of displeasing some of the more hard-

core game players. A variety of game
play was important for a game that, for
many players, would be one of their first
experiences in a fully 3D environment.

Hardware Performance

A s mentioned before, for the first
nine months of SHADOWS, we had

no real hardware with which to gauge
the performance of the game — other
than a rather nice Silicon Graphics

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 7 G A M E D E V E L O P E R

59

Game Designer/Lead Artist - Jon Knoles

Project Leader/Senior Programmer -

Mark Haigh-Hutchinson

Technical Lead - Eric Johnston

Programmer/Lycanthrope - Mark Blattel

Polygon Wrangler - Tom Harper

Level Designer - Jim Current

Level Designers - Matthew Tateishi and

Ingar Shu

3D Artists - Paul Zinnes, Andrew

Holdun, and Garry M. Gaber

3D Animator - Eric Ingerson

Texture Artist - Chris Hockabout

3D/Background Artist - Bill Stoneham

Storyboard Artist - Paul Topolos

Music Editor - Peter McConnell

Sound Designers - Larry the O and Clint

Bajakian

Lead Tester - Darren Johnson.

Production Manager - Brett Tosti

Extra thanks go to Don James, Henry

Sterchi, Hiro Yamada, Kensuke Tanabe,

and Shigeru Miyamoto. Special thanks

as always go to the staff at LucasArts,

and particularly to George Lucas for his

gift of the Star Wars universe.

The Core Team

Back Row (left to right): Steve Dauterman, Peter McConnell, Jon Knoles,

Andrew Holdun, Paul Topolos, Mr. B. Fett; Middle Row (left to right): Jim

Current, Matthew Tateishi, Bill Stoneham, Brett Tosti, Ingar Shu, Tom Harper,

Chris Hockabout; Front Row (left to right): Garry Gaber, Mark Blattel, Eric

Johnston, Mark Haigh-Hutchinson; Not shown: Paul Zinnes, Larry the O, Clint

Bajakian, Eric Ingerson, and Darren Johnson.

The core team developing SHADOWS from inception to completion consisted of

mainly six people, although twenty people contributed to the game for varying

lengths of time, and to varying degrees. Nonetheless, everyone played a vital role

in the production of the game.

ONYX. Nonetheless, when we finally
received the real hardware, we were
pleased to find that the performance
estimates given to us by SGI proved to
be very accurate. In fact, in large part
due to the parallel nature of the graph-
ics hardware, we were able to use float-
ing-point mathematics throughout
SHADOWS with no significant impact
upon performance.

Additionally, SHADOWS was pro-
grammed entirely using the C language
— it wasn’t necessary for us to use
assembler (a first as far as I was con-
cerned, and a pleasant surprise even
though I’m a long-time hardcore
assembler fan). Since our scene com-
plexity was relatively high (usually
kept to around 3,000 polygons or so,
but variable according to the level type
and design), the graphics task took
longer to execute than the program
code (that is, we were graphics-bound).
Consequently, optimizations to the
program code didn’t significantly
improve overall performance.

NTSC to PAL Conversion

A fter completing the American and
Japanese versions of the game, it

was my task to convert the game so that
it could run on the European PAL televi-
sion standard. Being British, I had a vest-
ed interest in making sure that the con-
version was a good one. This meant two
things: first, that the game used the
whole of the vertical resolution of the
PAL display (625 lines vs. 525 lines of
NTSC); second, I wanted to ensure that
the speed of the PAL game was the same
as the NTSC one, even though the PAL
refresh rate is 50hz rather than 60hz.

Fortunately, when we started work on
SHADOWS, we realized that one of the
most important things to consider was
that it had to be a time-based game,
rather than a frame-based one. This
would allow for update rates that could

vary considerably depending upon scene
complexity, as well as the simple fact
that we didn’t have any real hardware
from which to measure performance
characteristics. Essentially, the program
keeps track of the absolute time between
each update of the game. This value,
which we called delta time, became a
multiplicand for any movement or other
time-based quantity. By this method,
the game runs independent of the video
refresh rate, with all objects moving and
responding at the correct frequency.

The other issue had to do with the
“letterbox” effect that is common to
many NTSC to PAL conversions. In most
cases, there is no extra rendering or
increase in the vertical frame buffer size,
leaving unsightly black bands above and
below the visible game area. Since the
vertical resolution is now greater than
the original NTSC display, the aspect
ratio will also change, causing the graph-
ics to appear stretched horizontally.

While I wasn’t willing to accept this, I
had presumed that I couldn’t afford the
extra CPU time necessary to render a
larger frame buffer, even with the extra
time available due to the 50hz video
refresh rate. There was also a question of
the additional RAM usage required by
our triple buffering of the frame buffer.
My first attempt, therefore, was simply
to change both the field of view and
aspect ratios of the 3D engine. This sim-
ple fix solved the “stretching” problem
quite nicely, although the display
remained letter-boxed, of course.
Unfortunately, it also meant that any
2D-overlay status information remained
“stretched.” There was the potential that
game play could be affected because the
field of view, by definition, would affect
the player’s perception of the 3D world.

Again, this just wasn’t good enough.
What I needed was a solution that did-
n’t require extra rendering, yet would
fix the aspect ratio problems. After a lit-
tle bit of research, I realized that I had
discovered earlier that it was possible to
change the size of the final visible dis-
play area on the output stage of the dis-
play hardware. In reality, it’s possible to
shrink or enlarge the display both hori-
zontally and vertically. To compensate
for the letterboxing, all I had to do was
change the vertical display size by a fac-
tor of 625/525 or 1.19. Once I did this, I
immediately had a full-screen PAL ver-
sion. Or so I thought….

One of things about SHADOWS is that

we had to compress everything in the
game to fit it into the cartridge space
available. This included the thin operat-
ing system that SGI provides as part of
the development system. Therefore,
upon machine reset, it’s necessary to
decompress this OS to run the game. To
perform this decompression, we wrote a
small bootstrap program, which intro-
duced a small amount of time between
the hardware being initialized and the
OS starting. This lag introduced a one-
time glitch on the screen as the video
hardware started. Not very noticeable,
except to me. After many late nights, I
discovered a way to remove the glitch
by directly accessing the Nintendo 64
video hardware registers.

Bad Idea

W e then discovered that because
we had accessed the hardware

directly, it caused an infrequent bug.
Rarely (1 out of 50 times) the Nintendo
64 would crash if the reset button were
pressed at a particular point in the
game. Not only that, I couldn’t repeat
the bug on my hardware (I hate it
when that happens).

After a number of very late nights
(over the Christmas holiday), with the
help of Nintendo of America’s techni-
cal staff (thanks Mark and Jim), we
finally resolved the problem: first, by
removing the code that directly
accessed the video registers, and sec-
ond, by restoring the registers control-
ling the scaling of the output in the
vertical axis upon reset. Sometimes, the
simplest solution is the best.

Support from SGI and Nintendo

W e were very lucky to receive
excellent support from both SGI

and Nintendo during the production of
the game. The SGI engineers (thanks in

G A M E D E V E L O P E R J A N U A R Y 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

60

P O S T M O R T E M

particular to “Acorn”) were very helpful
and would normally have an answer to
our questions within a day, sometimes
within the hour. I would like to thank
Nintendo for their assistance in the pro-
duction of the game. Nintendo of
America’s technical support and QA
departments also proved invaluable. In
addition, three of Nintendo of Japan’s
staff spent some time working directly
with us at our offices.

I was also fortunate enough to visit
Nintendo’s head quarters in Kyoto,
Japan, to discuss SHADOWS with Shigeru
Miyamoto, creator of MARIO 64. His
insights were both fascinating and
extremely relevant. He is simply a
genius with an instinctive understand-
ing of video games.

Of Wampas and Men

W hen developing a project on
the scale of SHADOWS, there will

always be some things that didn’t
progress as smoothly as they could
have…
1) The motion capture process proved

to be a red herring for us. While
originally promising a much more
realistic animation solution, in our
case the data proved unusable.
However, I still believe that it has
great potential and deserves further
investigation, even though we didn’t
get to the point of dealing with the
potential problems matching the
motions to the character’s environ-
ment and so forth. Caveat emptor.

2) Attempting to use a MIDI-based
music solution also proved incorrect
for this game. While it promised to
be an efficient solution in terms of
memory (an important considera-
tion for a cartridge-based game), it
simply wasn’t suitable for an orches-
tral soundtrack such as Star Wars.

3) When we started work on SHADOWS,

a major problem (that continued
throughout the duration of the pro-
ject) was the inability of various 3D
packages to import and export data.
Although we were able, for the most
part, to write our own conversion
utilities, it still proved to be a stum-
bling block and prevented us from
having an efficient art path.
Fortunately, the companies supply-
ing these tools now recognize the
need for importing and exporting
data to other packages, and are tak-
ing steps to remedy the situation —
VRML, for example, is proving to be
a useful format.

4) Time was the biggest enemy of all in
producing the game. This is nothing
new, but was exacerbated by the fact
that we were working on a non-exis-
tent machine for nine months.
Nonetheless, even though this was,
for the most part, out of our control,
we were still able to produce a quali-
ty game.

5) With hindsight, probably the most
important lesson to be learned from
the game’s development is that of
focus. Do one or two things and do
them extremely well. Although our
ambitions were well placed in trying
to provide the player with as much
variety as possible, we effectively
had to write five different game
engines. Additionally, we could have
also used a fourth programmer dedi-
cated to all aspects of the front-end
of the game; that is, level selection,
controller options, and so forth. This
would have taken some of the pres-
sure away from the main program-
mers towards the end of the project.

Out of the Shadows…

T hanks to the talent, dedication,
and experience of the SHADOWS

team, many things went well during
the development process.
1) By using the powerful SGI comput-

ers (fairly uncommon in the games
industry in 1994) to prototype, com-
bined with our programmers’ knowl-
edge of 3D technology, we were able
to develop the game rapidly, yet
remain flexible in terms of perfor-
mance requirements.

2) Our ability to reuse tools from our
earlier DARK FORCES title saved us
time and resources because we did-

n’t have to build all new tools,
although a large number of data
conversion utilities were necessary.
In addition, by reusing familiar
tools, our level designers could be
more productive earlier in the pro-
ject than otherwise might have been
expected.

3) Our decision to use digitized music
proved to be a crucial one. Because
most users would listen to the music
through their televisions, the quality
approximated that of an audio CD as
far as many customers were con-
cerned. This alone justified the extra
cartridge space required and sur-
prised many players who didn’t
expect that level of quality from a
cartridge game.

4) The conversion of the game for the
PAL television standard went
extremely well and was much appre-
ciated by customers in those coun-
tries. It would be fair to say that
SHADOWS has set the standard in that
it runs both full screen and full
speed. There is no reason why all
games from this point on shouldn’t
run just as well on PAL systems as
they do on NTSC.

5) Given that we were working on
completely new hardware and for
the most part had to discover every-
thing that we needed to know by
ourselves, the support from both SGI
and Nintendo was invaluable to us
throughout the project.

Varying Shadows

E ven though we were not able to
spend as much time as we would

have liked tuning the game, SHADOWS

does succeed in supplying the player
with a variety of game-play styles. Its
popularity is a testament to the creativ-
ity and talent of the team of which I
was fortunate enough to be a part. ■

61

G A M E D E V E L O P E R J A N U A R Y 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

experiences with DirectX in general
and Direct3D Immediate Mode in par-
ticular have been less than favorable.
When Direct3D made its initial appear-
ance, my first thought was something
akin to, “What planet are these guys
from?” I’ve been programming
OpenGL on PCs since it first debuted
on Windows NT 3.5, so I didn’t under-
stand why Microsoft would feel the
need to provide another 3D API. I like
OpenGL, I wrote a book on program-
ming OpenGL, and I’m happy with it.
It’s easy to understand, robust, and
there’s plenty of other folks to ask
questions of, plenty of good
books on it, and plenty of pro-
gramming examples. Direct3D
has none of that. Microsoft never
did provide anything resembling
a programming guide, the exam-
ples required an Ouija board to
understand, and they kept
changing the damn interface. All
valid reasons to hate it, all
acknowledged by Microsoft.

But after I read Chris’s article I
reflected back upon what a tem-
pest in a teapot it all was. The
OpenGL programmers derided
Direct3D. Let’s face it, the first
release of Direct3D was abysmal.
The game programmers who
started (or were stuck) with
Direct3D managed to get some
reasonable results in spite of
Direct3D’s shortcomings, and
they, in turn, taunted the
OpenGL folks about lack of dri-
ver support. Hardware vendors
were annoyed because Microsoft
was telling them one thing,
while John Carmack was proving

differently. The 3D graphics industry
in general, and game developers in par-
ticular, were shouting loudly. Very
loudly. All was in a glorious state of
turmoil. Now, is this really a bad
thing?

Stop and think for a minute. If you
went to the Computer Game
Developers’ Conference or SIGGRAPH
or E3 or Win-HEC last year, you
couldn’t help but notice all the video
card makers demoing both OpenGL
and Direct3D software. They were
falling over themselves to show you
this stuff. They supported Direct3D

because they were scared of Microsoft
(and they needed to hedge their bets in
case Direct3D took off), and they sup-
ported OpenGL because GLQUAKE

proved that OpenGL was a viable gam-
ing API (and they needed to hedge
their bets in case Direct3D flopped).
The result of all this is that it suddenly
appears that you really will be able to
program for either OpenGL or
Direct3D, whichever API you like —
although because Microsoft has cut
IHVs off at the knees by dropping MCD
driver support for Windows 95, a lot of
the video card makers are scrambling
around trying to pick up the pieces.

“Yeah,” you might be saying,
“there’s been a lot of frenetic activity
in the past year or so.” And you’d prob-
ably agree with me that Microsoft insti-
gated the whole thing by bringing out
a premature implementation of

G A M E D E V E L O P E R J N A U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

64

b y R o n F o s n e rS O A P B O X

Why I Don’t Hate

Direct3D

I t was with some amusement that I read Chris

Hecker’s “An Open Letter to Microsoft” in the

April/May 1997 issue of Game Developer. I design

3D graphics software for a living, and frankly, my

Contrary to what you may think, Ron isn't a Microsoft employee. He's the author of OpenGL
Programming for Windows 95 and Windows NT published by Addison-Wesley, so his
heart is in the right place. Ron is the chief mechanic at Data Visualization, an OpenGL and
DirectX custom software/driver house. You can reach him at ron@directx.com.

Continued on page 63.

Illustration by R
ick Eberly.

Direct3D and touting it as being “The
only 3D gaming API you’ll ever need.”
So ask yourself what effect this had on
the 3D community. It started the API
wars — an endless stream of vitriolic
Usenet postings, a flurry of examples
and counter examples. It stirred up
every video card maker and even a few
PC makers. Hell, I don’t know about
you, but I had a great time!

Since Microsoft made that big boast
and then tried for two years to deliver
on it, there has been a veritable renais-
sance of activity in 3D graphics. I used
to worry that the adoption of 3D
would be slow, that to write a great 3D
game would require, unreasonably,
that the user have a 3D graphics accel-
erator. Hah! That’s one worry that I can
put to rest. This Christmas, practically
every PC made came with a 3D acceler-
ator. There were an estimated 40 mil-
lion 3D accelerator chips sold in 1997.
That’s a heck of a target market. Just as
you no longer have to special order a
CD-ROM or a fast Windows video card
when you get a PC, 3D chips are replac-
ing the 2D-only systems.

Now, why has this happened? Well, I
think it’s safe to “blame” Microsoft
again. If they hadn’t stirred things up
as they did, and if the normally sedate
3D graphics community hadn’t reacted
so strongly, then we might still be
looking toward a slow adoption of 3D
as a standard feature. Direct3D certain-
ly has lit a fire under the normally
sedentary OpenGL ARB. The frenetic
pace at which Microsoft is revving the
Direct3D API is forcing OpenGL to
move at a faster pace. This is good — it
used to be that OpenGL was the feature
leader. Now, with DirectX 5, we have
hardware-optimized texture support (in
the form of optimized surfaces). That’s
a feature that’s scheduled for the
release of OpenGL 1.2 sometime later
this year. And Microsoft has no inten-

tion of letting up the pace.
They recently gutted their
OpenGL graphics group
and merged them into the
DirectX group (a shotgun
wedding, no doubt). What
this means is that
Direct3D is going to con-
tinue to get better, putting
more pressure on the
OpenGL side of things to
increase the pace as well.

So while I agree that last
year, Chris raised some excellent
points in his article in the OpenGL vs.
Direct3D debate, I take the stance that
while Microsoft did a bad thing with
Direct3D, it did provide a rude wake-
up call of the 3D community. Two
years ago, most game programmers
didn’t have a clue what a BSP tree was,
what the “A” in RGBA stood for, or
how a Z-buffer worked.

Now I see video card makers pon-
dering trilinear and anisotropic tex-
ture filters, while Microsoft and
Hewlett-Packard are introducing APIs
with automatic level-of-detail geome-
try functionality. These are features
that I previously saw only
in ultra–high-end sys-
tems, that I never would
have thought would make
it to the PC before the
next century. While I still
have no love for
Direct3D, I admire
Microsoft for listening
(somewhat) to the criti-
cisms of Direct3D and
addressing them.

If the cost of getting 3D accelerators
on PCs everywhere by 1999 is that I
have to live with Direct3D, then I can
live with it. While I personally feel that
Microsoft was stupid to bring out
Direct3D while they had OpenGL, if
they’re going to support both of them,
then I can live with having two APIs to
choose from. I’m not too happy with
the active lack of support for OpenGL
that Microsoft has demonstrated in the
last few months. I think that this is a
mistake that will do them more harm
than they estimate.

OpenGL on PCs has too much indus-
try support to get killed from lack of
attention by Microsoft. Time will tell.
Meanwhile, I’m just going to bask in
the radiant glow of 3D, giggle when I
get a new 3D board to test, play some
3D games and admire those nice multi-
pass rendering tricks, write some code
that does some effects from Chris
Hecker’s physics articles, and sleep
soundly at night knowing that next
year, even better 3D features will be
around for me to take advantage of. If I
have to blame Direct3D for causing
most of this, then so be it. ■

h t t p : / / w w w . g d m a g . c o m J A N U A R Y 1 9 9 8 G A M E D E V E L O P E R

63

W hile I agree with

Ron's point that the

past year has been

fun in the roller-

coaster sense of the word, I disagree

that Microsoft and Direct3D can take

credit for the quick adoption of 3D hard-

ware. The truth is, it's simply time for

3D on the PC, and IHVs were already

well on their way to making it common-

place by the time Direct3D was even

conceived, let alone shipping. I believe

a coherent argument can be made that

Direct3D's machinations have actually

slowed down adoption of 3D hardware,

while early standardization on OpenGL

would not have had this problem

(although I do agree the ARB moves

much faster these days). However, hind-

sight is a wonderful thing. For now —

and looking towards the future — I only

hope Ron is correct when he says, "You

really will be able to program for either

OpenGL or Direct3D." I'm not so confi-

dent, and I think it will take eternal vigi-

lance from game developers to ensure

we have a viable choice of 3D APIs from

here on out.

Editor-at-Large Chris Hecker Responds:

Continued from page 64.

	back:

