
t w e a k s a n d
b a l a n c e s :
t u n i n g a n
o p e n - w o r l d
r p g

s t a c k i n g
p o s t m o r t e m

magAD_feb_final.pdf 2 1/16/12 12:39 PM

http://www.firefallthegame.com
http://www.firefallthegame.com

WWW.GDMAG.COM 1

P O S T M O R T E M

36 STACKING
STACKING, a matryoshka nesting doll- and silent film-inspired
adventure game, is one of the results of Double Fine's big experiment;
to break its larger teams into smaller chunks, allowing for more
directors, more (smaller) games, and more visions. This model has
proved Double Fine's saving grace, but was not without its pitfalls.
By Lee Petty

F E AT U R E S

7 10 YEARS OF SALARY SURVEYS
Game Developer has been conducting salary surveys for 10 years
now. With that much data, we presumed some interesting trends
might result. This feature is the result of that analysis, showing
ultimately that while individual disciplines have fluctuated, by and
large industry pay has remained relatively stable. By Ara Shirinian

19 ALWAYS ONLINE
In the past, some studios developed online and offline features
separately, due to SDK differences and myriad other issues. With
Insomniac's first multi-platform game OVERSTRIKE, the company has
integrated its systems, and now, author Peter Kao says, "we are all
network programmers." By Peter Kao

27 BALANCING A BIG HUGE RPG
Western-style open world RPGs have proved immensely popular in
recent years. RPGs are huge undertakings on their own, but when you
add the ability to go anywhere at any time, it's tough to know when
players will be leveling up, how they will be buffed, what sword they'll
have in which battle, et cetera. Ian Frazier shares his tips for balancing
an open-world RPG, employed in the creation of Big Huge Games' new
game KINGDOMS OF AMALUR: RECKONING. By Ian Frazier

D E PA R T M E N T S

 2 GAME PLAN By Brandon Sheffield [E D I T O R I A L]

Freedom's Downward Spiral

 4 HEADS UP DISPLAY [N E W S]

IGF finalists announced, what's new with Game Developer,
and top pirated games of 2011.

 44 TOOL BOX By Carey Chico [R E V I E W]

SpeedTree 6.0

 47 THE BUSINESS By David Edery [B U S I N E S S]

What's Mine Is Yours

49 THE INNER PRODUCT By Ari Silvennoinen [P R O G R A M M I N G]

Chasing Shadows

55 AURAL FIXATION By Damian Kastbauer [S O U N D]

Dude, History?

56 PIXEL PUSHER By Ryan Consell [A R T]

Breastplate Vs. Boobplate

61 GDC JOBS By Staff [J O B S]

Recruitment at GDC

63 DESIGN OF THE TIMES By Soren Johnson [D E S I G N]

The Coming Storm

66 GOOD JOB By Brandon Sheffield [C A R E E R]

Q&A with Kenan Alpay, who went
where, and new studios

69 EDUCATED PLAY By Tom Curtis [E D U C A T I O N]

VOID

80 ARRESTED DEVELOPMENT By Matthew Wasteland [H U M O R]

Ask a Frost Dragon

CONTENTS.0212
VOLUME 19 NUMBER 2

http://WWW.GDMAG.COM

GAME PLAN // BRANDON SHEFFIELD

GAME DEvELOPER | FEBRuARy 20122

Freedom's downward spiral
Why you should be angrier about ndaa than you Were about soPa

By now, everyone's aware of the
U.S. House bill SOPA, the Stop Online
Piracy Act. And the related PIPA—
the Senate's PROTECT Intellectual
Property Act. Internet denizens
have correctly rallied against these
bills, which had vague, overly
broad language that would have
given the U.S. Government and
rights-holders the means to block
certain web sites deemed to be
"primarily dedicated" to copyright
and trademark infringement.

These would have bypassed
due process, and given the U.S.
Government and giant media
corporations the power to be
judge, jury, and executioner
over what U.S. internet users are
allowed to access online.

a Greater threat
» The internet blacklist bills have
pretty much united everyone in
game development against them,
and after a recent day of internet
blackouts, voting on them has
been postponed. But another, far
more dangerous bill passed in late
2011, that could limit our freedom
of expression in an even grander
scope than SOPA/PIPA ever would.

No citizen voted for or against
this law. Much like with SOPA, that
opportunity was not afforded
us. The article in question is the
National Defense Authorization
Act, and it is the greatest threat to
intellectual and personal freedom
in America.

NDAA is not new—the bill has
been in effect in various forms for
almost 50 straight years. But the
big deal is some new language
that was added to Title X, Subtitle D
sub-sections 1021–1022 of the bill,
which I encourage you to check out
for yourself. (Alternately, you can
read Salon.com's excellent article,
“Three myths about the detention
bill.”) This new language allows for a)
the indefinite detention without trial
of anyone, American or otherwise,
who is perceived to support
terrorism, and b) an expanded view
of what the war on terrorism entails
(which can now be continued until
“the end of hostilities”).

The ability to imprison anyone
without trial or appeal should make
you angry enough—but before
I lose my audience, let me get
straight to how this relates to games.
Consider Counter-Strike. One team
plays as the terrorists, one as the
counter-terrorists. In this game, Valve
allows players to take on the role of
terrorists, and encourages them to
win. Is this supporting terrorism?
You and I understand the concepts of
fiction and role play, and the power
and intrigue of imagination. But does
our government?

Laws have a very curious
tendency of serving whomsoever
has the authority to twist them, and
governments worldwide have been
in a mad race to remove freedoms
in the name of national security.
Under the new NDAA laws, Counter-
Strike’s designers could absolutely
be detained until the concept of
“terrorism” no longer exists, which,
as things are going, seems a long
way off.

How many of our games allow
players to see war from both sides,
even if briefly? Quite a few, really.
And while President Obama says
that he definitely won't use this
against Americans, even though he
could, who's to say situations won't
change? And even if he doesn't, what
if the next president in line does?

Here's an example from another
angle. Tahadi Games has brought
the Korean FPS Point Blank to the
Middle East. I think of the Middle
East as the birthplace of much of
ancient culture and religion. Others
though, think of the Middle East as
a hotbed of terrorism, and would
swear up and down that giving
Arabic-speaking countries access to
an FPS is akin to training up a legion
of terrorists. If you sell your game
in Arabic-speaking countries, are
you at risk for detention in America?
The incredibly vague law leaves that
possibility open, should someone
have played your game before
committing some malicious act.

Could it happen here?
» While these laws haven't yet
been used to the effect described,

they could, and that should scare
you. Former U.S. Marine Amir Mizra
Hekmati was recently sentenced
to death in Iran for aiding in the
development of kuma\War, which
lets players engage in “real life”
scenarios, including an episode
titled “Assault on Iran.” The Iranian
government says kuma\War
was funded by the CIA to help
"manipulate public opinion in the
Middle East." His sentence has not
been carried out yet. Tommy Vietor,
a spokesman for the White House's
National Security Council, says that
"The Iranian regime has a history
of falsely accusing people of being
spies, of eliciting forced confessions,
and of holding innocent Americans
for political reasons."

And that is precisely the power
that NDAA’s new language grants our
own government. What if Hekmati
had worked on a game like kuma\War
that showed what might happen if
Iranian forces landed on U.S. shores?
We could legally give him nearly the
same treatment we're now decrying.

Free Game development
» As of 2011, video games are
protected as free speech, but that
only goes so far as the letter of the
law, as SOPA, PIPA, and NDAA prove.
When laws are so open ended, an
official with an agenda could cause
serious damage to our industry, and
to America at large. With the outcry
against SOPA and PIPA, we could
be on our way to winning back the
freedom of the internet—now let’s
fight for our freedom of expression
and humanity.

If we want to make games
that address issues like war and
military occupation, we need to fix
NDAA. I urge you to write to your
representatives, or do whatever
you can. Remember though; even
if we fix NDAA and kill SOPA/PIPA,
we only get back to square one.
There's lots more work to be done
to support our industry and our
society's freedoms. But if we don't
fix these problematic laws, we all
lose. Every one of us.

—Brandon Sheffield
twitter: @necrosofty

UBM LLC.
303 Second Street, Suite 900, South Tower
San Francisco, CA 94107
t: 415.947.6000 f: 415.947.6090

w w w . u B m . C o m

suBsCription serviCes

For inFormation, order Questions, and
address ChanGes
t: 800.250.2429 f: 847.763.9606
e: gamedeveloper@halldata.com

For diGital suBsCription inFormation
www.gdmag.com/subscribe

editorial

puBlisher
Simon Carless e: scarless@gdmag.com
editor-in-ChieF
Brandon Sheffield e: bsheffield@gdmag.com
produCtion editor
Jade Kraus e: jkraus@gdmag.com
art direCtor
Joseph Mitch e: jmitch@gdmag.com
desiGner
Cliff Scorso e: cliff.scorso@ubm.com
ContriButinG writers

Tom Curtis
Ari Silvennoinen
Carey Chico
Ryan Consell
Damian Kastbauer
Soren Johnson
David Edery
Matthew Wasteland
advisorY Board
Mick West independent
Brad Bulkley Microsoft
Clinton Keith independent
Brenda Brathwaite loot drop
Bijan Forutanpour sony online entertainment
Mark DeLoura thQ
Carey Chico globex studios
Mike Acton insomniac

advertisinG sales

GloBal sales direCtor
Aaron Murawski e: amurawski@ubm.com
t: 415.947.6227
media aCCount manaGer
Jennifer Sulik e: jennifer.sulik@ubm.com
t: 415.947.6227
GloBal aCCount manaGer, reCruitment
Gina Gross e: ggross@ubm.com
t: 415.947.6241
GloBal aCCount manaGer, eduCation
Rafael Vallin e: rvallin@ubm.com
t: 415.947.6223

advertisinG produCtion

produCtion manaGer
Pete C. Scibilia e: peter.scibilia@ubm.com
t: 516-562-5134

reprints

WRIGHT'S MEDIA
Jason Pampell e: jpampell@wrightsmedia.com
t: 877-652-5295

audienCe development

audienCe development manaGer Nancy Grant
e: nancy.grant@ubm.com
list rental Peter Candito
Specialist Marketing Services
t: 631-787-3008 x 3020
e: petercan@SMS-Inc.com
ubm.sms-inc.com

GAME DEvELOPER
MAGAzINE
www.GDMAG.cOM

http://www.GDMAG.cOM
http://Salon.com
mailto:gamedeveloper@halldata.com
http://www.gdmag.com/subscribe
mailto:scarless@gdmag.com
mailto:bsheffield@gdmag.com
mailto:jkraus@gdmag.com
mailto:jmitch@gdmag.com
mailto:cliff.scorso@ubm.com
mailto:amurawski@ubm.com
mailto:jennifer.sulik@ubm.com
mailto:ggross@ubm.com
mailto:rvallin@ubm.com
mailto:peter.scibilia@ubm.com
mailto:jpampell@wrightsmedia.com
mailto:nancy.grant@ubm.com
mailto:petercan@SMS-Inc.com
http://ubm.sms-inc.com
http://WWW.UBM.COM

Copyright © 2012 Intel Corporation. All rights reserved. Intel, the Intel logo, are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands
are the property of their respective owners. © 2012 Zombie Studios. All Rights Reserved. Image courtesy of Zombie Studios. † GPA refers to Graphic Performance Analyzers.

The Intel® Graphics Performance Analyzers (Intel® GPA) is a powerful graphics tool suite for

analyzing and optimizing your games, media, and other graphics-intensive applications. With Intel

GPA, you can conduct in-depth analysis from the system level all the way down to individual

elements, allowing you to maximize the performance of your applications.

DOWNLOAD INTEL® GRAPHICS PERFORMANCE ANALYZERS
FOR FREE at www.intel.com/software/gpa

Intel® GPA System Analyzer.
Learn whether your game is CPU- or GPU-
bound. Quickly analyze game performance
and identify potential bottlenecks.

Intel® GPA Frame Analyzer.
Optimize graphics performance through
deep frame analysis of elements at the
draw-call level.

Intel® GPA Platform Analyzer.
Visualize performance of your
application’s tasks across the
CPU and GPU.

“ Ultimately, the results of
optimizations we did with Intel
GPA tools made the Blacklight:
Retribution experience better
and better for our players.”

– CHANCE LYON, LEAD DEVELOPER,
 ZOMBIE STUDIOS

ZOMBIE STUDIOS OPTIMIZES WITH
INTEL® GRAPHICS PERFORMANCE ANALYZERS

Intel® GPA† helps Zombie Studios
deliver Blacklight*: Retribution

http://www.intel.com/software/gpa

HEADS-UP DISPLAY

gAmE DEvELoPEr | fEbrUArY 20124

The IGF Awards, where this year's
IGF winners will be unveiled, will
be held on the evening of March
7, alongside the Game Developers
Choice Awards. IGF award recipients
will receive $60,000 worth of
prizes in various categories,
including the $30,000 Seumas
McNally Grand Prize.

The full list of finalists for the
2012 Independent Games Festival,
with jury-picked "honorable
mentions" to those top-quality
games that didn't quite make it to
finalist status, is as follows:

Excellence In Visual Art
» Botanicula (Amanita Design)
» Dear esther (thechineseroom)
» lume (State Of Play Games)
» mirage (Mario von Rickenbach)
» WonDerputt (Damp Gnat)
H o n o r a b l e M e n t i o n s

» Beat sneak BanDit (Simogo)
» Dustforce (Hitbox Team)
» faDer (Chris Makris)
» proun (Joost van Dongen)
» toren (Swordtales)

Technical Excellence
» antichamBer (Demruth)
» fez (Polytron)
» prom Week (Expressive Intelligence

Studio, UC Santa Cruz)
» realm of the maD goD (Wild

Shadow Studios and Spry Fox)
» spelunky (Mossmouth)
H o n o r a b l e M e n t i o n s

» frozen synapse (Mode 7 Games)
» nitronic rush (DigiPen Institute of

Technology)
» refloW (Xymatic)

» super t.i.m.e force (Capy)
» tiny anD Big -granDpa's leftovers

(Black Pants)

Excellence In Design
» atom zomBie smasher (Blendo

Games)
» english country tune (Stephen

Lavelle)
» frozen synapse (Mode 7 Games)
» gunpoint (Tom Francis, John

Roberts, and Fabian van Dommelen)
» spelunky (Mossmouth)
H o n o r a b l e M e n t i o n s

» faraWay (Steph Thirion)
» FTL (Justin Ma & Matthew Davis)

Johann seBastian Joust (Die Gute
Fabrik)

» spacechem (Zachtronics
Industries)

» Where is my heart (Die Gute Fabrik)

Excellence In Audio
» Botanicula (Amanita Design)
» Dear esther (thechineseroom)
» pugs luv Beats (Lucky Frame)
» to the moon (Freebird Games)
» Waking mars (Tiger Style)
H o n o r a b l e M e n t i o n s

» BeatBuDDy (THREAKS)
» Beat sneak BanDit (Simogo)
» fez (Polytron)
» proteus (Ed Key and David

Kanaga)
» Where is my heart (Die Gute Fabrik)

Best Mobile Game
» async corp (Powerhead Games)
» Beat sneak BanDit (Simogo)
» faraWay (Steph Thirion)
» riDiculous fishing (Vlambeer)
» Waking mars (Tiger Style)

H o n o r a b l e M e n t i o n s

» fingle (Game Oven Studios)
» hunDreDs (SemiSecret and aeiowu)
» iBlast moki 2 (Godzilab)
» temple run (Imangi Studios)
» tentacles (Press Play ApS)

Nuovo Award
[Designed to honor abstract,
shortform, and unconventional
game development.]
» at a Distance (Terry Cavanagh)
» Dear esther (thechineseroom)
» fingle (Game Oven Studios)
» GIRP (Bennett Foddy)
» proteus (Ed Key and David Kanaga)
» Johann seBastian Joust (Die Gute

Fabrik)
» storyteller (Daniel Benmergui)
» Way (CoCo & Co.)
H o n o r a b l e M e n t i o n s

» Deep sea (WRAUGHK)
» four letter WorD (Terry

Cavanagh);
» glitchhiker (Aardbever)
» hunDreDs (SemiSecret and aeiowu)
» POP (Rob Lach)

Seumas McNally Grand Prize
» Dear esther (thechineseroom)
» fez (Polytron)
» frozen synapse (Mode 7 Games)
» Johann seBastian Joust (Die Gute

Fabrik)
» spelunky (Mossmouth)
H o n o r a b l e M e n t i o n s

» antichamBer (Demruth)
» FTL (Justin Ma and Matthew Davis)
» proteus (Ed Key and David Kanaga)
» spacechem (Zachtronics

Industries)
» Where is my heart (Die Gute Fabrik)

In addition, the IGF announced that
the festival program has entered
a new multi-year partnership with
Microsoft Studios and its Xbox LIVE
Arcade publishing team, to offer a
new prize to support notable indies.
A stand-alone jury of independent
game creators is working with
Microsoft to identify possible
choices for the "XBLA Prize."

The prize includes a guaranteed
first-party publishing deal to release
the selected title on Microsoft's
LIVE-enabled platforms, including
the Xbox LIVE Arcade service,
Windows Phone, and Windows, and
full game funding to complete the
title, if desired, and its winner will be
announced on-stage during the IGF
Awards this March.

The Independent Games
Festival was established in
1998 by UBM TechWeb's Game
Network to encourage the rise of
independent game development
and to recognize the best
independent game titles, in the
same way that the Sundance Film
Festival honors the independent
film community.

For more information on the
Independent Games Festival,
please visit the official IGF website
at www.igf.com—and for those
interested in registering for
GDC 2012, which includes the
Independent Games Summit, the
IGF Pavilion, and the IGF Awards
Ceremony, please visit the Game
Developers Conference website
www.gdconf.com.

independent games
festival announces
finalists
The Independent Games Festival (IGF) juries have announced the Main Competition finalists for the 14th annual presentation
of its awards, celebrating the brightest creatives and the most influential game designs to come out of the independent
community in the past year.

All finalist games, which were voted on by a discipline-specific set of juries, will be playable at the IGF Pavilion on the Game
Developers Conference 2012 Expo floor from March 7–9, 2012, at San Francisco's Moscone Center, as part of a week of independent
game-related content that also includes the Independent Games Summit (March 5–6), and the IGF Awards ceremony itself.

http://www.igf.com
http://www.gdconf.com

/// Data from download tracker
TorrentFreak.com shows the PC
version of EA and Crytek's Crysis 2
was the most pirated video game of
2011, with more than 3.92 million
confirmed BitTorrent downloads as
of December 30, 2011.

This total falls just shy of the
downloads accumulated by last
year's top game, Call of Duty:

BlaCk ops, which saw more than
4.1 million confirmed downloads
between its November 2010
launch and December of that year.
By comparison, Crysis 2 launched
in March, and thus had much more
time to reach such a high number
of downloads.

On the Wii, Nintendo's Mario
Galaxy 2 took the top spot despite

launching in 2010, with more 1.28
million downloads. The game was
followed by Mario sports Mix and
the highly acclaimed xenoBlaDe
ChroniCles, which was presumed
exclusive to Europe and Japan
until Nintendo announced it for
the U.S.

The Xbox 360's most pirated
title was Epic's Gears of War 3,
which saw 890,000 downloads—
considerably less than the top
games for the Wii or PC. Pirated
games for PlayStation 3 were not
included in TorrentFreak's data.

TorrentFreak.com's complete
lists of illegally torrented games
for 2011 is as follows:

PC Unauthorized BitTorrent
Downloads in 2011
(through December 30, 2011)
1. Crysis 2 (3,920,000)
2. Call of Duty: MoDern Warfare 3

(3,650,000)

3. BattlefielD 3 (3,510,000)
4. FIFA 12 (3,390,000)
5. portal 2 (3,240,000)

Wii Unauthorized BitTorrent
Downloads in 2011
(through December 30, 2011)
1. super Mario Galaxy 2 (1,280,000)
2. Mario sports Mix (1,090,000)
3. xenoBlaDe ChroniCles (950,000)
4. leGo pirates of the CariBBean

(870,000)
5. FIFA 12 (860,000)

360 Unauthorized BitTorrent
Downloads in 2011
(through December 30, 2011)
1. Gears of War 3 (890,000)
2. Call of Duty: MoDern Warfare 3

(830,000)
3. BattlefielD 3 (760,000)
4. forza Motorsport 4 (720,000)
5. kineCt sports: season tWo

(690,000) —Tom CUrTis

crysis 2
named
most-
pirated
game of
2011

/// Astute readers may have
already noticed, but there have
been a number of changes
in the Game Developer suite
of products. First, by popular
demand, there is now an app for
iOS devices. The September issue
is available to try for free—and
while normal subscriptions are
available, the magazine can also
be delivered to Apple Newsstand.
An Android version is in the works
as well, which will be coming in
the near future.

In the meantime, we've also
fully revamped our web site,
www.gdmag.com. It’s more
than just a cosmetic update—in
addition to showing the newest
magazine content, we've also got
a blog, which is updated weekly.
Through the blog, we'll be bringing
to light a variety of curious items,
but perhaps most notable are the
galleries—we get a lot of extra art
when making postmortems, and
don't have the pages to show it
all, so we'll be displaying some of
the best art there.

Elsewhere on the site there's
a fresh new resources tab, with
source code from articles and
past issue summaries, and we've
revamped our contributor page with
updated info on submitting articles,
and added a lot more features and
information about our new and
improved subscription offers.

Talking of subscriptions,
Game Developer has been a print
magazine for over 15 years, but
as our readers change how they
want to interact with media, we've
embraced the digital landscape
with our digital edition, which is
viewable in web browsers, and
then there’s our aforementioned
iPad/iOS version.

With all that work done, it's
time to revise our subscription
strategy. All our digital offerings
have now been wrapped up into
one subscription package for
$29.95 per year, which gives
you 11 digital issues per year,
the iPad app, and digital archives
going back to 2004. It's important
to note that the iPad app only
extends as far back as October

2011, but the digital archives can
be downloaded as PDFs, and easily
read on an iPad or iPhone with an
appropriate reader.

For our other subscription
option, a lot of people still enjoy
the feeling of a print magazine,

and that includes us. The print
version isn't going away any
time soon. For $49.95 per year
(for U.S. residents—$59.95
for Canada/Mexico, $69.95
worldwide), you'll get the print
magazine, plus all the digital

content described above. As a
bonus incentive, you'll get our
special Best of Postmortems
issue, which is only available
to new (or renewing) paid print
subscribers via this offer, and
only available while supplies last.

This special issue has a glossy
cover and perfect binding, with
nearly 100 pages that showcase
14 postmortems from the last 10
years, including games such as
the original Deus ex, neverWinter
niGhts, kataMari DaMaCy, roCk
BanD, and final fantasy XIII. The
issue also gives a glimpse into
how vastly the art direction of
Game Developer has changed over
the years.

The new subscription offers are
available immediately, and will help
Game Developer continue to bring
you the award-winning content
that has helped game developers
do their jobs since 1994. And if you
feel inclined, please feel free to
follow us on Facebook and Twitter
(#gamedevmag), and send us your
feedback to editors@gdmag.com!

www.gdmag.com 5

http://www.gdmag.com
http://TorrentFreak.com
http://WWW.GDMAG.COM
http://TorrentFreak.com
mailto:editors@gdmag.com

http://firefallthegame.com

A R A S H I R I N I A N

Game Developer’s annual salary surveys have measured and reported industry salary data since
2001. Given that it's been 10 years now, we wondered if there were any interesting patterns that
the salary survey data could show across the years. In the coming pages, we'll show the results

of a collective analysis of the data from the past ten years of salary surveys, from the first
edition in 2001 to the tenth edition published in 2011.

WWW.GDMAG.COM 7

http://WWW.GDMAG.COM

GAME DEVELOPER | FEBRUARY 20128

M E T H O D O LO G Y A N D C AV E AT S

t The data collected by salary surveys has been adjusted to various degrees year
over year. In this analysis, only data categories that were present for enough years to
see an interesting trend were considered. For example, data about “writer” salaries was
not included because they were only collected from the fifth through eighth editions.
Also, only actual reported data is considered here. No attempts were made to derive
values from the computation of other reported values.

For the first and second editions of the salary survey, it appears as though data was
collected in the same year it was published. However, for the third edition and onward,
data was collected in the year before that of publication. The years displayed in all of
the charts refer to the year of data collection, not that of publication. For this reason,
“2001” refers to the first edition, where data was both collected and published in 2001,
but “2010” refers from data from the tenth edition, where data was collected in 2010 but
was published in 2011.

Whenever data is missing for a particular year, it is omitted from the chart. For this
reason, some chart lines may have gaps here and there. Also, certain types of data
only were collected after a certain year. For example, average salaries per discipline for
Europe and Canada began in 2005.

Depending on the year, salaries above a certain threshold were not considered for
inclusion. From 2001 to 2005, salaries above $300,000 were not considered. In 2006,
this threshold was reduced to $200,000. For the succeeding years, 2007 through
2011, this threshold was changed again to $202,500. Even though there was a huge
jump between 2005 and 2006, it does not appear as though there were enough salaries
reported in the $200,000 to $300,000 range in 2005 and earlier to make a noticeable
impact in the overall trends.

The margin of error for salary data also varied from year to year. The smallest margin
of error was 1.7% at the 95% confidence interval in 2005 and 2006, the years where the
salary survey enjoyed the largest sample sizes. The largest margin of error was 3.06%
in 2009.

There are some occasional large spikes in salary data. These spikes are most likely
caused by an unusual distribution of samples combined with an unusually low sample
size for a particular data category. It is also possible that some of the spikes reflect
incorrect data. The accuracy of data in this report is wholly dependent on the accuracy
of data in previously published salary surveys and other reports. It should also be noted
that the results come from self-supplied information from working developers. It was up
to the individual developers to represent their salaries accurately, or otherwise.

In some of the filled-area charts, any isosceles triangle shapes you see are artifacts
of having data for one year, (the top of the triangle) but no data for the next or previous
year. It does not mean that the data was 0 for the next and previous years.

Finally, the way “years of experience” have been delineated has also shifted
somewhat over the years of salary surveys. In this report, to reduce the amount of
labeling, years of experience are always labeled as “<3 y.” (less than three years), “3–6
y.” (three to six years) and “6+ y.” (more than six years). However, in 2001, the three
categories were actually 1–2 y., 3–5 y., and 6+ y. Between 2002 and 2004 this became
<2 y., 2–5 y., and 6+ y. It was only in 2005 and onward where the delineations settled
on <3 y., 3–6 y., and 6+ y.

D I S C I PLI N E C AT E G O R I E S

t Game Developer has traditionally organized the industry into five discipline
categories with slightly changing nomenclature over the years: Programming, Art (and
Animation), (Game) Design, Production, and Audio (Developers/Professionals). In 2003,
a sixth category was introduced, Quality Assurance (QA), which was renamed to “QA
Testers” in 2007. In 2004, the seventh category, “Business and Legal” was introduced,
which was renamed to “Business and Marketing” for just 2007.

THE CHARTS

 O v e ra l l Da ta

r This represents the total sample size for
each salary survey over the years. Starting
in 2005, salary sur veys began to collect
European and Canadian data, although this data
is completely separately reported. All of the
sections that follow use only U.S. data except
where noted. The larger the sample size, the
smaller the margin of error.

r This chart shows the overall average salary
across all disciplines, divided by gender. If we just
look at the endpoints of data, the average overall
increase in salary for males is about $1,800 per
year, or roughly 2.6%. For females, the average
overall increase in salary is about $460 per year,
or roughly 0.7%.

 S a l a r y Da ta b y

S ta te a n d R e g i o n

r Salary surveys have divided the U.S. into
four major regions. The “East” region has also
been called “Northeast” depending on the survey
edition, but the way states are grouped into each

r

WWW.GDMAG.COM 9WWW.GDMAG.COM 9

region has never changed across the surveys. The
greatest disparity between regions was reported in
2010, where workers in the West region earned over
$20,000 more than those in the South.

r These charts show the average salary
reported from specific states, generally those
that boasted the highest average salaries. There
appears to be a rather large variance of individual
state data from year to year. This may either be
an indication of a large amount of movement
from state to state between years, or a small
sample size on a per-state basis. Interestingly,
California’s graph is very close to that of the
entire West region, which seems to suggest that
it carries the great majority of respondents for its
region. California is also the highest-paying state
overall, apart from a few unusual spikes.

 G e n d e r Ra ti o

r Overall, 2005 and 2010 showed the highest
proportion of female workers at 10%. 2002 saw
the lowest value at 5.2%. However, the “Business”
category was not polled until 2004, which may
have affected the particularly low gender ratio
numbers during the first few years.

When we break out the gender ratio by
discipline, we see several interesting results.
Production and Business show a dramatically
higher proportion of female workers than any of
the other disciplines. Programming showed not
only the lowest proportion of females, but also
the most consistently unchanging proportion of
gender. On the other hand, Business, Audio, and
QA all showed wildly fluctuating gender ratios
over the years, by as much as 10% from one year
to another.

DATA BY DISCIPLINE

 Pr o g ra m m i n g

r S a la r y S u r veys a l l have a “ Yea r s
Experience in the Industry” for each discipline,
broken up into three strata of experience.
By charting this data, we can see overall
trends about the general age makeup of each
discipline. The programming field shows a larger
proportion of experienced workers, although

it is the most balanced and tightly grouped of
all disciplines in terms of the distribution of
experience. Ostensibly this kind of grouping
is good, as it means that new talent is steadily
coming into the discipline and is staying in it
for at least several years. In 2010 this seems to
have taken a turn for the worse, with a large drop
in the proportion of new talent.

r These charts show average salaries by job
title, further broken down by years experience
in the industry within each chart. It appears
that while salaries are increasing gradually
for highly experienced programmers, salaries
for less experienced programmers are flat or
decreasing slightly.

WWW.GDMAG.COM 9

Programming showed not only
the lowest proportion of females,

but also the most consistently
unchanging proportion of gender.

http://WWW.GDMAG.COM

http://www.twitch.tv
mailto:jonathan@twitch.tv

WWW.GDMAG.COM 11

AD

 A r t

r The ar t discipline’s distribution of
experience seems similar to that of programmers,
with a slightly larger proportion of workers
with 3–6 years experience, and slightly fewer
inexperienced workers. Again, the trend over the
past year or so suggests a reduction of entry-
level artists in the market.

r More so than any other discipline, there

seems to be a gradually increasing gap between
male and female artist/animator salaries. Some
of the unusual patterns in the early history of
artist/animator salaries can be explained by
changes in the way job titles were defined; for the
first three editions of the salary survey, artists
and animators were considered separately, until
they were finally merged into one category in
2004. These charts use the “Artist” data for 2001-
2003, and then “Artist/Animator” data for 2004
onward. Also, starting in 2009 the “Lead Artist/
Animator” nomenclature changed to “Lead Artist/
Tech Artist.”

 Ga m e D es i g n

r Unlike most of the other disciplines, it
seems that the game design discipline enjoyed a
relatively large infusion of new talent around 2006-
2007, which has quickly dropped off since then.

r Salaries for males appear to be steadily
increasing, but for females salaries are not
really trending in an obvious direction, while
simultaneously showing lots of variance from
year to year.

 Pr o d u c ti o n

rq Producers as a discipline have the most
industry experience—those with more than
six years of experience make up over half of

http://WWW.GDMAG.COM

the population. Correspondingly, we find that
there are fewer less-experienced workers in
production than any of the other disciplines, and
this is trending further downward.

r For experienced producers, there is a
marked dip in 2009 which also corresponds
with a dip in the Business category. This could
be a reflection of the large number of studio
layoffs around that period of time, or some
other correction from the steep rise of Producer
salaries from 2006–2008. Remarkably, salaries
in some subcategories here appear to actually
be trending downward, especially for associate
producers.

 A u d i o

r The audio discipline in terms of experience
distribution seems to defy categorization - there
is more variance from year to year with audio

professionals than with any other category.
This is almost certainly the result of the audio
discipline being the least reported in the survey
across the years.

r Audio salary data was not split into
separate title divisions until 2004. Apart from
QA, Audio is also the only other discipline where
female salaries have exceeded male salaries
within the past five years.

 Q ua l it y A ss u ra n c e

r As might be expected, QA is largely made
up of less experienced workers, although in 2010
we see this pattern start to reverse itself quite
suddenly. Now, it seems as though workers are
continuing to stay in QA for many more years
than they used to.

r Female salary data was only available for
five years, but for every year measured except

GAME DEVELOPER | FEBRUARY 201212

2007, female salaries exceeded male salaries
in QA. QA Lead salaries for those with a lot of
experience have dropped off quite dramatically
since 2008.

 B u s i n ess

r The business category’s experience
distribution is most similar to that of production,
but there are even more workers in the 6+ years
category—a whopping 56% in 2010. It appears that
the business category is becoming increasingly
resistant to new talent over the years.

r The pay disparity between males and
females is the largest in this category, roughly
$10,000 larger than any other discipline. The
average salaries are also larger than in any
other discipline. Title-specific data was no
longer reported in this category after 2008.
There is also a lot of variance of salaries from

year to year here, which may be partially
explained by the fact that the job categories
are much more broadly defined here than in
other disciplines.

SALARIES WORLDWIDE

rq These charts compare the average salary
for each discipline between the U.S., Canada and
Europe, all in American Dollars. For the most part,
American workers enjoy better salaries. It appears
as though the better paying the job is, the larger
this disparity becomes—compare programming
to art to QA, for example. It also seems as though
European salaries in general have become
particularly depressed since 2008. Most
interesting is the giant difference in business and
programming salaries between U.S. and Europe -
it’s around $35–40,000 in recent years.

WWW.GDMAG.COM 13

http://WWW.GDMAG.COM

TTTToTo g getetettt i i invnvololveveveveveedd d cococontntntttaaaacact t t ususu a aaaatttt sasaleeees@s@ss@fmffmfmmmmooooododododododdodod o.o.orgrgrg. . .

FiFirereeelilil ghghght t t TeTeTeTeTechchchnonoololooogggggiess PPtytytyy Ltd.

wwwwwwwwww...ffffmodd..ooorg

EffEffEffEffffEffEffEffffEffEffEffEffEffE eeectsts sssssssuuuuuupupuppu pllplpllplplieiieieieieeieieieieieieeed d d ddd d bybybyyy

• New DAW inspired multi-track music and event editing interface

• Fully featured mixing desk with pro effects for mastering

• Create, add, edit and mix audio content live in game

• Integrated profiler captures game events and audio output

• Hardware control surface support, mixer snapshots, VCAs, sends,s, neneneststed events,
source control/mumultlttii ususererr cocc llaboration and more!

Introducing

See us at GDC 2012, Stall 1532

http://www.fmod.org
mailto:sales@fmod.org

ADDITIONAL COMPENSATION
BY DISCIPLINE

r All compensation charts are presented here in
pairs, for ease of reading. Across all disciplines, we
see that most everybody is receiving some manner
of additional compensation over time. Business and
Production lead this category, with QA bringing up
the rear. However, it does appear that all disciplines
are also trending toward parity for the most part.

r Business people receive the largest share
of additional compensation, while QA receives the
smallest.

r The remainder of these charts break down
the manner of additional compensation received
by each discipline. Production, Business, and QA
most frequently receive annual bonuses, while
designers are the least frequent recipients.

kr It seems as though project bonus distribution
is essentially the opposite of annual bonus
distribution. The rank of each discipline is for the
most part reversed compared to the previous charts!

r Royalties are not particularly common,
and indeed they are quickly becoming even rarer
for almost every discipline. However, across
the board a higher percentage of audio workers
receive royalties than any other discipline.

r The proportion of individuals receiving

WWW.GDMAG.COM 15

AD

http://WWW.GDMAG.COM

stock options is also trending downward across
the board, except for a brief uptick for most
disciplines in 2010.

=

r Profit sharing is perhaps the least common
form of additional compensation overall.
Business and audio workers are in the lead in
this category, while QA and production bring up
the rear.

BENEFITS BY DISCIPLINE

r As with additional compensation,it also
appears that more and more workers across the
board are receiving some form of benefits and all
disciplines are trending toward parity.

r Nearly everybody in the industry receives
some manner of medical and dental insurance.

Dental insurance benefits are slightly less
frequent than medical, particularly for business
and QA.

r Slightly fewer people receive 401(k)
or some other retirement benefit. For most
disciplines except QA, this type of benefit actually
seems to be slightly trending downward.

S H O W M E T H E M O N E Y

t Over the last decade, though our industry
has experienced ups and downs, overall
performance appears to be roughly in line with
the economy's rate of inflation. As expected, the
groups, regions, and disciplines that already
make the most money appear to be the most
economically resilient and productive. Across
nearly every discipline, in recent years we find
that we are getting older as a whole—workers
who have been in the industry for several years
tend to stay there, and the number of workers
who are relatively green seem to be thinning
out. Is it a sign of a maturing industry? Strong
competition? Overstaffing? Maybe some
combination of all three.

A R A S H I R I N I A N is a game designer, currently working

at DreamRift on its latest secret project.

GAME DEVELOPER | FEBRUARY 201216

http://red5studios.com/jobs

ADVERTISEMENT

Capcom and CyberConnect2 have combined forces for the
much anticipated brawler, Asura’s Wrath, set for release
on February 21. The action adventure game is set in an alter-
nate reality called Gaea, blending science-� ction elements
with Asian mythology, and featuring innovative gameplay
that combines shooter action with grand-scale combat.
Capcom has positioned Asura’s Wrath to launch a new
franchise, and they chose to develop their � agship game
using Unreal Engine 3 (UE3).

Kazuhiro Tsuchiya, producer of Asura’s Wrath at CyberCon-
nect2, said of Epic’s game engine, “This was actually the � rst
time CyberConnect2 developed a game using Unreal Engine
3, and it provided the most e� ective environment for devel-
oping a game, while managing resources most e� ciently.”

Tsuchiya said UE3 equally reinforces the three core concepts
of the studio: idea, knowledge and technology. He explains,
“These are all important, and although one factor may
weigh more than the other at one given point, overall it
should be even as all are essential.”

CyberConnect2 has been making games for more than 15
years, most notably fueling hit franchises such as .hack and
Naruto: Ultimate Ninja. With such a distinguished record of
development, the team had no problem diving into Unreal
Engine technology to bring this new original IP to life.

The game itself follows the eponymous hero, the demi-god
Asura, one of Eight Guardian Generals known for his victory
against the evil Gohma. But in spite of his impressive mili-
tary career, including slaying the monstrous Gohma Vlitra,
Asura is framed as a traitor by his fellow generals. Asura’s
wife is killed and his daughter taken from him, leaving him
expelled from Heaven, cast to earth, and left for dead. But
after 12,000 years, Asura awakens and is consumed by the
need for revenge and to reclaim his daughter.

Tsuchiya describes the storytelling approach of Asura’s Wrath
as more akin to a TV drama than a traditional game, and the
developers worked to intertwine the mechanics of the game
with the story. “During development, we wanted to bring
something new to the action genre and to blend action
and drama in a new way,” said Tsuchiya. “We also wanted to
blend cut scenes and action scenes seamlessly throughout
the whole game.

“Asura’s Wrath o� ers di� erent play styles in each episode,
rather than simply repeating the same action again and
again in di� erent maps. Instead, Asura’s Wrath allows the
player to be fully immersed in the game world and experi-
ence the drama Asura is going through. This means there
are di� erent game systems like combat action, shooting
elements, quick time events, and so on, as Asura encounters
di� erent situations.”

Tsuchiya’s team utilized UE3 to incorporate a unique art
style into the game’s science � ction and Asian mythology-
fused environments and characters, which he said “stylize
our crazy over-the-top scenes.” The game’s many enemies
include the Shinkoku Army and the hero’s former mentor
Angus, who trained Asura in his former life.

Tsuchiya said UE3 empowered his team to craft a truly
immersive experience that entices the player into the game
world the same way that Hollywood TV shows hook viewers.
Asura’s Wrath was conceived much like a serialized drama,
complete with over-the-top situations, high stakes, and
cli� hangers. The game’s episodes, Tsuchiya hopes, will leave
players wanting to come back for more. Using UE3, the team

was able to add a sense of malleability to the game, and
even cinematics can be interrupted, impacting the outcome.

The gameplay stands out from other action games. Battles,
such as one waged between Asura and Angus, are huge,
boss-style engagements. Gameplay involves combat with
katanas and swords, as well as shooting and evading beams
of energy bullets. Depending on the � ght and Asura’s rage,
he can � ght with as many as six arms or none at all.

Fights take on superhero proportions, with combatants
being sent through walls and into the planet’s atmosphere
with powerful punches and kicks. Aiding players along the
way is a Rage meter, which allows players to power up to
take on the game’s many enemies.

CyberConnect2 is hoping that good things come in threes.
With UE3 bringing this visually impressive, action-packed
game to life, the developer could have a third successful
global franchise on its hands.

UPCOMING EPIC ATTENDED EVENTS

Please email licensing@epicgames.com for appointments

© 2012, Epic Games, Inc. Epic, Epic Games, Gears of War, Gears of War 3, Unreal, Unreal Development Kit, UDK, Unreal Engine, UE3, and Unreal Tournament are trademarks or registered trademarks of Epic Games, Inc. in the
United States of America and elsewhere. All other trademarks are the property of their respective owners.

W W W . U N R E A L . C O M

D.I.C.E. Summit
Las Vegas, NV
Feb. 8-10, 2012

Canadian-born Mark Rein is vice
president and co-founder of Epic Games
based in Cary, NC. Epic’s Unreal Engine
3 has won Game Developer magazine’s
Best Engine Front Line Award eight
times, including entry into the Hall of
Fame. UE3 has won four consecutive
Develop Industry Excellence Awards. Epic

is the creator of the mega-hit “Unreal” series of games and the
blockbuster “Gears of War” franchise. Follow @MarkRein and
@UnrealEngine on Twitter.

UNREAL ENGINE 3
POWERS THE STYLISH,
UNTAMED COMBAT OF
ASURA’S WRATH

GDC 2012
San Francisco, CA
March 5-9, 2012

Gadget Show Live
Birmingham, UK
April 10-15, 2012

http://www.UNREAL.COM
mailto:licensing@epicgames.com

P e t e r K a o

/// Insomniac has a long history of creating online games, from Ratchet
& cl ank: Up YoUR aRsenal on the PlayStation 2 to the Resistance
franchise on the PlayStation 3. However, features were not always
developed with online play in mind. In many cases, features were
implemented offline first with online functionality added afterwards,
usually by a separate team of network specialists. This process was
both error prone and costly, often requiring major refactoring to get
features working online. Beyond that, iteration on features in an offline
environment would often break the existing networked implementation.

It was clear that we needed to change our development philosophy, and the change started
with oveRstRike, the studio’s first multiplatform title. Online functionality is an integral part
of the development process, and features aren’t considered complete unless they work in an
online environment.

a l w a y s o n l i n e
/// One of the key problems Insomniac has faced on past projects was the need to maintain separate code paths
for the online and offline implementation of a feature. This was a result of the networking API only being available
in online games. oveRstRike, however, provides an API that’s always available, allowing us to use the same
implementation in both online and offline modes.

www.gdmag.com 19

http://www.gdmag.com

game developer | february 201220

Overstrike separates its network systems
into two categories: a high-level API and a low-
level network layer. The high-level API contains
basic message-passing functionality and a
synchronized object-management system
known as sync host, which we’ll discuss
later. The low-level layer includes the data and
interfaces for managing a true online session;
network connections, NAT traversal, and hooks
into platform-specific services (e.g. Xbox Live/
PSN) all live in this layer.

This separation allows the high-level API
to run independently of the low-level layer,
making it safe for use in both online and offline
games. Constructs such as clients, which were
once only valid in online games, are now also
available when offline.

Game logic interacts almost exclusively with
the high-level API and has little knowledge of the
low-level layer. For example, one of the functions
in our high-level API allows the user to send a
message to the server:

void SendToServer(...);

When running an online game, this function
determines when the network connection is
being used to communicate with the server and
sends the message over it. In an offline game,
the local machine is considered the server, so
calling this function will route the message
back to the local machine, giving us behavior
consistent with that off an online session.

S y n c H o S t
\\\ As mentioned earlier, part of Overstrike’s
high-level networking API is a synchronized
object-management system known as Sync
Host. It’s divided into two major systems: a
server and a client. While the client runs on all
machines, the server runs only on the machine
designated as the host.

S y n c o b j e c t S
\\\ The Sync Host server contains a list of all
network-aware sync objects allocated for a
game. This list is game-agnostic; the server has
no information about the nature of the objects
that have been allocated. Instead, the server
treats a sync object as a block of synchronized
data and identifies it using a unique object ID
(see Listing 1).

Sync objects can be created by any client
through an asynchronous call to the client API.
The user begins by creating a custom block of
data that defines the context necessary to create
the game actor on all machines. This data block is
an input argument to the client API function that
requests the server to allocate the sync object.

The server responds by sending a message
to all clients containing the newly allocated

object ID and the custom data block. This, in turn,
triggers a predetermined callback function on
each client, with the data block and object ID as
arguments. The client then uses the data block
to create the game actor which it then associates
with the given object ID. Since the object ID
is shared across all clients, it can be used to
reference the created actor across machines.

S y n c F i e L d S
\\\ The state of a sync object is described by a
set of sync fields, each of which is referenced
by a field id. On the client, a field ID is associated
with a particular memory address of the game
actor. Since the server has no knowledge of the
memory layout of the actor, the associations
between field ids and memory addresses are
entirely determined by the client (see Listing 2).

Once a sync object is allocated, updates to
individual fields are routed through the server.
The Sync Host client sends a message to the
server that contains the object id, field id, and
data for the particular field change. The server
uses the message to make the necessary
changes to its local state before forwarding

the change to other clients in the game (see
Listing 3).

A u t H o r i t y
M A n A g e M e n t
\\\ Routing state changes through the server
allows the server to resolve contention for a
sync object among clients. The server does this
by selecting a client, known as the authority, to
give exclusive rights to update the sync fields
of a given sync object. If a client other than the
authority attempts to change a sync field, the
server will automatically drop its request.

Normally, the server selects the client
that requested the creation of an object as
the authority. If the authority is dropped from
the game, the server will then select a new
authority from the remaining clients by default.
Most sync objects in Overstrike use this form of
authority management.

Sync Host also provides a second form of
authority management, where a sync object is
automatically destroyed if the authority drops
from the game. This is useful for actors whose
existence is tied exclusively to a particular
client, such as the player’s character.

j o i n - i n - P r o g r e S S
S y n c H r o n i z A t i o n
\\\ Sync Host was originally developed to
automate the process of join-in-progress
synchronization. This is the process of updating
the game world of a client that has connected to
a game that has already started.

Routing state changes through the Sync Host
server ensures that the server always has most
up-to-date copy of each sync object, allowing it to
service join-in-progress requests without actually
being the authority of these sync objects.

Join-in-progress synchronization happens
in two phases. The server first sends a series of
sync object-creation messages to the new client.
Each creation message contains the object ID and
custom data block required to create the original
sync object. The data block can be used by the
incoming client to spawn the appropriate actor,
just as the existing clients did when the sync
object was originally created. Once the creation
messages are sent, the server then sends the
client a series of sync-field changes to bring the
contents of the spawned actor up to date.

Once the synchronization is complete, the
new client receives normal sync-field changes
to objects, just as any other client would.

d e c o u P L i n g F r o M
t H e g A M e e n g i n e
\\\ As mentioned earlier, the Sync Host server
is game-agnostic in the sense that it has no
knowledge of the nature of the game actors
associated with the sync objects it allocates.

ObjecT Id = 5

Field 0:
 Size = 4
 data = 0x01234567
Field 1:
 Size = 2
 data = 0x0123

ObjecT Id = 7

Field 0:
 Size = 4
 data = 0x01234567
Field 1:
 Size = 2
 data = 0x0123
Field 3:
 Size = 3
 data = 0x012345

ObjecT Id = 1000

Field 0:
 Size = 0
 data = NULL
Field 1:
 Size = 1
 data = 0x01

LISTINg 1 SyNc HOST Server ObjecT LIST.

One of the advantages of this decoupling is that it the server is
relatively lightweight. Its memory footprint is largely dependent on
the number of allocated sync objects and amount of data that is being
synchronized. In practice, this overhead is only a small fraction of the
memory requirements for the game actors themselves. In addition, this
separation avoids the processing cost of running the game logic for
these actors.

As a result, we can run the server on an external dedicated machine
without incurring the cost of running the full game, or we can run it in
parallel with the Sync Host client on a console without having to run a
separate instance of the game world.

D e c o u p l i n g f r o m a n e t w o r k
c o n n e c t i o n
\\\ As part of Overstrike’s high-level network API, Sync Host is required to
operate in both online and offline sessions. Instead of interfacing directly
with a network connection, a Sync Host client writes its operations to
an intermediate message queue and relies on an external system to
determine the appropriate delivery mechanism for contents of the queue.

In an online session, a message from a Sync Host client is sent over
a network connection to the host machine. The host machine receives the
message and then writes it back to the server (see listing 4). In an offline
session, messages are instead directly sent to the server after being read
from the queue (see listing 5).

In either case, the client API is asynchronous on both the server
and client machines. This allows the network synchronization logic to
be identical on all machines and causes game code to be written with
fewer timing guarantees, which in turn makes it more robust in a true
online environment.

S y n c h r o n i z e D c o m p o n e n t S
\\\ The Insomniac Engine utilizes a component-based architecture for
constructing actors, where the logic for a particular actor is split across
multiple sub-objects called components. An actor might have a component
that stores data about its health, another to manage its state machine,
and yet another to run the logic of its current state. A component can be
allocated on more than one type of actor, providing a flexible means of
code reuse.

Because an actor is built from multiple components, the data needed
to properly synchronize an actor is also spread across its components.
Each component now needs to map a particular field ID to a specific
memory address that it owns without knowing about other components
allocated on the same actor.

We accomplish this task by having a system that allocates a
component ID for each component that has sync fields. Said components
then have their component field IDs remapped to a field ID on the sync
object (see listing 6).

S y n c h r o n i z e D S t a t e m a c h i n e S
\\\ One of the most useful network synchronization constructs in
Overstrike is a specialized component called a Sync-State Machine. This
component is used when an actor requires a high degree of fidelity when
synchronizing its state.

The sync-state machine component registers a single sync field,
which is a block of information called state transition data. Transition data
contains the type of state to transition to, as well as additional information
necessary to bootstrap that state. For example, if an actor has a generic
state to play an animation, then the transition data might contain the ID of
the animation to play (see listing 7).

www.gdmag.com 21

Listing 2 CLient vs. server view of an objeCt.

o bjeCt id = 5

// registered as sync field 0
float m_Health = 100.0f;

// Member variable, not synced
float m_scale = 1.0f;

// registered as sync field 1
uint16_t m_state = 1;

C
L
i
e
n
t

v
i
e
w

o b jeCt id = 5

field 0:
 size = 4
 data = 0x42C80000
field 1:
 size = 2
 data = 0x0001

s
e
r
v
e
r

v
i
e
w

L i sting 3 Updating a synC fieLd.

 = reqUest froM gaMe to Update synC fieLd. = forwarded synC fieLd Update froM server.

object id: 5
field: 0
size: 4
data: 0x43C8000

objeCt id = 5

// registered as sync field 0
float m_Health = 100.0f; C

L
i
e
n
t

1 o b jeCt id = 5

// registered as sync field 0
float m_Health = 100.0f; C

L
i
e
n
t

2

object id: 5
field: 0
size: 4
data: 0x43C8000

objeCt id = 5

field 0:
 size = 4
 data = 0x42C8000

http://www.gdmag.com

© 2011 IGT. All rights reserved.

There has never been a better time to join IGT! After all, it’s not just our award-winning
games or the 3D online gaming technology that will reach out and grab you by the eyeballs.
It’s also the unrivaled, industry-leading career opportunity of a $2 billion-plus global gaming
leader with the world’s largest, most popular lineup of licensed games.

Interested? Stop by booth #1414 in the West Hall of the Moscone Center (located in the
Career Pavilion) to learn more about your next career move.

And be sure to connect with us online:

BUILT TO PERFORM™BUILT TO PERFORMBUILT TO PERFORMBUILT TO PERFORM™™™

/IGTIGT.COM/CAREERS /IGT /COMPANY/IGT

PLAY IT FOR ALL ITS WORTH.
IT’S YOUR CAREER.

http://IGT.COM/CAREERS

AD

www.gdmag.com 23

D r i v e r S t A t e S A n D
P r o c e S S o r S t A t e S
\\\ In many cases, a state’s behavior can be
completely pre-determined based on the
transition data that’s used to initialize it. For
states that aren’t sufficiently deterministic,
more fine-grained control is needed. Such
states are split into three separate components:
a processor, a local driver, and a remote driver
(see Listing 8).

The processor component runs on both
authority and non-authority clients and usually
controls the visual and audio aspects of the
state. By separating this functionality into a
separate component and sharing between the
authority and non-authorities, we simplify the
task of making sure that such aspects of an
actor are the same on all machines.

The local driver component runs only on the
authority client, and it is responsible for running
the decision-making logic for the state. This
might be the decision tree of an AI or a system
that polls device input to manipulate the player
character. The local driver communicates
changes to the processor component through a
message called an action.

In order to communicate these changes
to a non-authority client, the local driver
can send a message called a state update.
The non-authority allocates a remote driver,
which reads and translates the state updates
into actions that it then submits to its own
processor component.

A c t i o n S v S . S t A t e
U P D A t e S
\\\ One might wonder why it’s necessary to
have separate constructs for actions and state
updates. In many cases, there is a one-to-one
correspondence between the two.

We make the distinction because the two
types of messages serve different purposes.
An action is a single operation that makes a
specific change to the state. A state update
contains the information needed by a non-
authority machine to generate those changes.
For example, in Listing 8, the action for the
player walk state is a position delta submitted
each frame. The state update, on the other hand,
is a world position that the remote driver uses to
smoothly interpolate the character’s position by
generating multiple actions.

Sending the actions directly over the
network would be bandwidth intensive, since

they are submitted each frame. Such a scheme
would have very little tolerance for latency and
packet jitter, as the quality of the simulation
would be dependent on the non-authority
machine receiving the actions at a predictable
rate (ideally, the frame rate at which it’s
running). In addition, because the actions are
position deltas, this system runs the risk of
getting permanently out of sync, should any of
the actions be dropped due to packet loss.

i m P r o v i n g
S y n c h r o n i z A t i o n
F i D e L i t y
\\\ In some cases, changing states on a non-
authority machine immediately upon receipt

of a network update will cause artifacts in the
simulation, such as animation popping, position
jitter, and so forth.

For example, let’s say that on the authority
machine a player goes through three states.
The player begins in the walk state and moves
toward a low wall. The player then transitions
to the vault state, where he plays an animation
to mantle over the low wall. The player finally
transitions back to the original walk state once
the animation completes.

Unfortunately, packet latency and jitter
can cause a non-authority machine to receive
the state change to transition from vault back
to walk before the animation completes. If we
were to perform the transition at this point, we
would see a noticeable discrepancy where the
character pops from the middle of the vault
animation directly into the walk animation.

To combat this problem, individual states
have the ability to defer transitions until some
condition is met (such as the completion of an
animation). In the meantime, the state machine

Listing 4 OnLine sync HOst OperatiOn.

 = request frOm game tO update

sync fieLd. = respOnse frOm

server back tO game LOgic.

cLient macHine

HOst macHine

game LOgic

sync HOst cLient

cLient
message

netwOrk
cOnnectiOn

sync HOst server

cLient
message

server
message

HOst macHine

game LOgic

sync HOst cLient

cLient
message

sync HOst server

server
message

Listing 5 LOcaL sync HOst OperatiOn.

 = request frOm game tO update sync fieLd.

 = respOnse frOm server back tO game LOgic.

In order to communicate these changes to a non-authority
client, the local driver can send a message called a state
update. The non-authority allocates a remote driver, which
reads and translates the state updates into actions that it
then submits to its own processor component.

http://www.gdmag.com

maintains a queue of new states that the existing state can transition to
once it is ready.

A l t e r n A t i v e s t o
s y n c H o s t
\\\ Not all systems in Overstrike are synchronized through Sync Host.
Actors or events that are short lived tend to use basic network messages
to perform synchronization. Systems that are extremely sensitive to
network latency also tend not to use Sync Host, as doing so would incur
the delay of routing the message through the server.

For example, most projectiles in Overstrike aren’t created as sync
objects. Bullets tend to be extremely short lived and have no state to
update once they are created, so there is little justification for allocating
a sync object for them. Minimizing latency is crucial, as projectiles are

created rapidly and en masse. Instead of using Sync Host, projectiles are
immediately spawned on the client that chose to fire the weapon, and a
basic network message is then broadcast to other clients to spawn the
same projectile.

Overstrike’s damage system is also synchronized using basic
messaging. The event-driven nature of damage messages means there
is no persistent state to speak of that needs synchronization. Actors
that take damage also need react in a timely manner, thus minimizing
latency paramount.

B A n d w i d t H o p t i m i z A t i o n w i t H
m e s s A g e d e f i n i t i o n s
\\\ Due to their sheer quantity, projectiles tend to account for a significant
portion of the network traffic in the game, making it necessary to optimize
their bandwidth usage. Message definitions were created to simplify the
task of defining and optimizing these kinds of packets.

A message definition can be thought of as a dictionary of key-value
pairs, where the key is a field identifier and the value is metadata about that
field. In its most basic form, a field on a message definition is registered
using a string name and its size (see listing 9).

Once a definition is created, a message instance can then be
constructed using the definition, at which point fields can be set or
retrieved. Once the fields have been set, the contents of a message
instance can then be serialized to a network buffer using the P a c k ()
function. This function, however, will only write fields that have been set.
This allows us to use a message definition with more fields than we may
need without incurring the overhead of sending those additional fields
(see listing 10).

Message definitions also suppor t optional compression/
decompression callbacks when registering a field. The compressed size
of the field is inferred from the size of the parameters to the provided
callbacks, which are automatically triggered when a message instance
write to or reads from a network buffer. This allows the programmer to
quickly define the compression policies for the fields of a given message
without having to write a custom serialization function (see listing 11).

m o v i n g f o r w A r d
\\\ Overstrike provides a robust and flexible set of networking
technologies while relieving programmers of the complexities unrelated
to synchronizing the actual feature they may be working on. By making
our network API available in both online and offline sessions, we no longer
need separate code paths for each. Sync Host provides a powerful state
synchronization system without burdening the programmer with the
details of object ID allocation, authority management, and join-in-progress
synchronization.

These tools have enabled our programmers to shoulder the
responsibility of ensuring that their features work online. Insomniac no
longer has a dedicated multiplayer team; on Overstrike, we are all network
programmers.

p e t e r K A o is a senior gameplay programmer at Insomniac Games with an emphasis

on network systems. Prior to Overstrike, he has contributed to all three resistance games

as a network and multiplayer programmer.

Listing 6 ComPonent fieLd id remaPPing.

HeaLtH ComPonent (ComPonent id = 0)

// registered as field 0
float m_Health;

// registered as field 1
float m_maxHealth;

state maCHine ComPonent
(ComPonent id = 1)

// registered as field 0
uint8_t m_state;

WeaPon inventory (ComPonent id = 2)

// registered as fields 0-3
uint8_t m_Weapontypes[4];

fieLd remaPPing tabLe

 0 0 0 0x0f83eCa8
 0 1 1 0x0f83eCaC
 1 0 2 0x00e3faC0
 2 0 3 0x0aC15fb0
 2 1 4 0x0aC15fb1
 2 2 5 0x0aC15fb2
 2 3 6 0x0aC15fb3

ComPonent id
ComPonent
fieLd id trUe fieLd id memory address

Listing 7 basiC synCHronized state transition.

aUtHority maCHine non-aUtHority maCHine
state = Play animation

animation = Crc(“Hit_react_stagger”)

game developer | february 201224

www.gdmag.com 25

Listing 8 state drivers and processors for the pLayer waLk state.

authority

LocaL driver
> pLayer input poLLing
> send worLd positions

action
> position deLta

processor
> Move pLayer By

position deLta

non-authority

reMote driver
> receive worLd positions
> generate position deLtas

action
> position deLta

processor
> Move pLayer By

position deLta

state update
> worLd position

Listing 9 saMpLe Message definition.

// vector structure, for reference
struct vec3
{
 float x;
 float y;
 float z;
};

decLare_Message_def(BulletMessage)
 register_Message_fieLd(“aimvector”, sizeof(vec3));
 register_Message_fieLd(“speed”, sizeof(float));
end_Message_def(BulletMessage);

Listing 10 Message instance construction.

// construct message instance
Messageinstance message(get_Message_def(BulletMessage));

// set aim vector
vec3 direction;
direction.x = 1.0f;
direction.y = 0.0f;
direction.z = 0.0f;
message.setfield(“aimvector”, direction);

// allocate some buffer space for network serialization
// Buffer is 12 bytes, not 16, since only the “aimvector”
// field has been set
uint32_t buf_size = message.getrequiredspace();
void* buf = alloca(buf_size);

// write to network buffer
message.pack(buf, buf_size);

// read from a network buffer
message.unpack(buf, buf_size);

Listing 11 Message definition with coMpression.

// unit vector compress/decompression functions
void compressunitvec(uint16_t* dest, const vec3* src);
void decompressunitvec(vec3* dest, const uint16_t* src);

// float compression using half (16-bit) precision
void floattohalf(int16_t* dest, float* src);
void halftofloat(float* dest, int16_t* src);

// Bullet message with compressed fields
decLare_Message_def(BulletMessage)
 register_Message_fieLd_packed(“aimvector”,
compressunitvec, decompressunitvec);
 register_Message_fieLd_packed (“speed”, floattohalf,
halftofloat);
end_Message_def(BulletMessage);

// construct message instance
Messageinstance message(get_Message_def(BulletMessage));

// set aim vector
vec3 direction;
direction.x = 1.0f;
direction.y = 0.0f;
direction.z = 0.0f;
message.setfield(“aimvector”, direction);

// set speed
float speed = 100.0f;
message.setfield(“speed”, speed);

// allocate some buffer space for network serialization
// packed size is 4 bytes after compression
uint32_t buf_size = message.getrequiredspace();
void* buf = alloca(buf_size);

// write to network buffer
message.pack(buf, buf_size);

http://www.gdmag.com

UMBRA 3 RENDERING OPTIMIZATION

Hao Chen
Senior Graphics Architect

UMBRA 3.COM

“Umbra’s technology is playing an important role in the creation of
our next universe, by freeing our artists from the burden of manual

markups typically associated with polygon soup.”

BOOTH #NH1638

http://www.UMBRA3.COM

I A N F R A Z I E R

If you've ever played an open-world RPG, you know that these games are big. Really, really big. KINGDOMS OF AMALUR:
RECKONING is no exception.

This is a game with hundreds of hours' worth of quests, dozens of combat abilities and skills, 40 different
"destinies" (essentially classes), an obscene amount of dynamically generated loot, and several hundred hand-
crafted unique items. And, being an open world RPG, content can all be consumed (or ignored) by the player in
countless different ways.

With the sheer amount of content in a game of this size, the variety of character build options available in an RPG,
and the complete freedom to go anywhere and do anything that an open-world game provides, we knew that overall
game balance was going to be one of our biggest challenges. As there are very few games of this type being made,
I thought it would be valuable to share with you—especially the systems designers among you—some of what we
learned during the development of RECKONING. Note that much of what I'm going to talk about could be applied to more
linear RPGs or even MMOs just as easily as it could to other open-world RPGs. >>>

WWW.GDMAG.COM 27

http://WWW.GDMAG.COM

game developer | february 201228

GettinG Started
/// At the start of developing
a new RPG, it's reasonable to
ask "where do I begin?" The
temptation can be strong to
immediately dive in to Excel
and start plotting out tables
of values for everything
from XP to enemy armor, but
plotting out actual values
before you've worked out all
the rules for the parameters
and underlying math that
make sense for your game
is setting the cart before the
horse. Instead, let's start at
the beginning.

SettinG Up the BaSicS
/// The first step toward balancing
an open-world RPG is understanding
what the core components of your
game will be, and how they will
relate to one another. In other words,
know the variables before you start
thinking about the numbers. Before
production begins, you want to
know what your damage types are,
how damage can be mitigated, what
the core attributes of the player
character and NPCs are (health,
mana, dexterity, and so forth), by
what means these values can be
buffed/debuffed, what rounding
rules you're going to use, and what
the limits are on buff operations.
Also, don't forget to plot out how
buffs will affect projectiles fired by
either the player or NPCs.

Damage.
What are your damage types? Can
all damage types be mitigated? Are
there any damage types unique to
the player or to NPCs?

Damage Mitigation.
A r e y o u u s i n g p e r c e n ta g e
resistances or an abstraction (such
as an armor rating)? If the latter
is true, does that apply only to
certain damage types (like physical
damage) or to all of them? How
do percentage resistances work
against state-based effects such as
slowing or stunning? Does 50% Stun
Resistance mean that your chance
to be stunned is reduced by 50% or
that you'll still always get stunned
but the duration of the stunning
effect will be cut in half?

Attributes.
What are the basic parameters
affecting your characters? While
there is some room for adjustment
over the course of development,
the overwhelming majority of your
basic parameters for both the player
and NPCs should be determined
from the start, so that you can more
effectively plan how these elements
will affect each other. Bear in mind
that you'll also want to know up front
what sorts of values these attributes
will have (integers or floats, etc.)
Having 2.5 health regeneration per
second may make sense, but having
27.9 health probably does not.

Buffs/Debuffs.
How are you going to buff the various
parameters on your characters? Flat
mods (+10 health), or percentage
(+25% health)? Do you buff values
on the gear the player is wearing
or on the player herself? What's
the order of operations on these
modifications (do we add flat
modifiers and then multiply by the
percentage modifiers, or the other
way around)? What parameters can
be modified with negative values?
You also need to answer the all-
important question of how multiple
simultaneous buffs/debuffs to the
same parameter will stack.

Rounding.
How and when will you round your
fractional values? As a general
rule, the easiest way to handle all
rounding is truncation, but there
may be instances where this
doesn't give you the end result you
want. In either case, it's important
to call out up front exactly how and
when rounding will occur.

Limits.
What limits do you want to set on your
parameters? Will you allow damage
output to be debuffed down to zero,
or do you want to set a floor value that
ensures players will always be able to

deal some amount of damage? Can
any of your parameters go negative,
and if so, what happens when they
do? Will negative amounts of health
regeneration cause a character to
slowly lose hitpoints? Will negative
amounts of fire resistance make a
character take extra damage from fire
attacks? Are you going to allow the
player (or NPCs) to be 100% resistant
to certain types of damage or are
you going to hard-code in a limit
preventing that from being possible?

Projectiles.
Buffs on a character in melee
combat are one thing, but projectiles
can cause unique issues. If I launch
an arrow at a Kobold and then
put on my Helm of Kobold Slaying
(+10 dmg vs. Kobolds) before the
arrow finds its mark, do I expect
the damage buff to be applied? Or
are all conditional buffs checked
and applied at the moment I fire the
projectile?

Share The ruleS
/// After answering the questions
above and laying out the basic
r u les f or the ga me a nd its
underlying math, it's important
to document this information
in a single comprehensive form
that's accessible to the team.
Then make sure that everyone
invested in implementing or tuning
the game’s systems reads and
understands the document before
you proceed, as content you'll
build later in production will rely
on this information. The greater
the understanding of the systems
behind the game, the easier it will be
for other designers to create content
based on those systems.

TeST CaSeS
/// After establishing, documenting,
and sharing the basic rules for your
system, the next step is to plot out
a variety of test cases that describe
the expected results of those
systems in actual gameplay. You'll
want test cases for everything
from the simplest situations (the
player attacks an enemy with
100 HP using a sword that deals
10 damage) to the obscenely
complex (several stacking buffs
and debuffs on both the player
character and the enemy, where

some of the buffs are applied only
when specific conditions are met).

The most important thing about
these test cases is that you need
to keep doing them. Don't just set
them aside after you've verified
that the core systems are built to
spec. Over the course of a project,
a lot will change. New systems will
emerge, new content will be built
that stretches the systems in ways
that weren't originally envisioned,
and the increasing level of overall
complexity in the game can cause
older functionality to break. Because
of these inevitable issues, it's vital to
revisit your test cases on a regular
basis to ensure that the systems
continue to function as designed.

The reason it's so important
to keep running these tests is
because, as we discovered late
in the production of Reckoning,
subtle changes to these core
systems won't cause any obvious
breakage during general play (and
are thus unlikely to be caught by
QA testers), but can cause serious
balance problems in various edge
cases (like when the player is
buffing the same parameter from
a dozen different sources). In our
case, we discovered some changes
to the way we stack buffs very late
in production, which necessitated
the rebalancing of a large amount
of content because it was too late
in production to risk changing

fundamental code. Please, save
yourself a lot of pain and run test
cases on a regular basis.

Figuring OuT The numberS
/// After determining all your basic
variables, how they're modified,
and how they play together, we can
now start thinking about actual
numbers. Most of the numbers we
use in game systems, such as health,
damage, and experience points, are
entirely arbitrary. What matters is
the relationships between those
values. We can make the player's
starting health 853,521 if we want to,
provided that the starting enemies
are dealing 50,000 damage. Because
the base numbers are arbitrary, it
can be difficult to establish your
initial values. My solution may be

unusual—I start with UI. I look at
the UI and think about what values
we're actually going to let the player
see and which ones are going to be
behind the curtain.

In Reckoning's case, the numbers
we show are values on the player
himself: how much health he has, how
much damage his hits are dealing,
and so on. Thanks to some early
usability feedback, we knew that we
didn't want to show NPC health or
damage numbers. Because we knew
this, we could start establishing the
baseline values with things like player
health and player weapon damage,
and then base hidden values like
enemy damage and enemy health
based on their relationship with the
displayed values. So, for example,
we would say that the player is going

Figure 1: The pink and purple blobs on
this heat map indicate places where

players consumed health potions
throughout the Dalentarth region in

one Reckoning playtest session.

www.gdmag.com 29

http://www.gdmag.com

SCOTLAND. SUCCESS LIKES IT HERE.

To see what we can do for your business, visit www.sdi.co.uk

We’ve got quite a reputation for education,

technology and invention. With the highest

concentration of universities in Europe, we have

produced innovations from the ATM to MRI scanning.

Our education system has been the platform for our

contribution to the world. It has helped build one of

the world’s most competitive, reliable and dynamic

technology infrastructures, with particular strengths

in implementing intelligence in to communication

and software technologies. Whether it’s informatics,

cloud computing or games development, we strive

to set standards. Our passion for success and hunger

to win, combined with our world-class academic

institutions, outstanding research and superb

facilities make Scotland truly irresistible location.

We can develop your products and help shape your

business. And that’s what makes Scotland such a

secure investment.

Scotland.
Home to software
innovation and highly
skilled graduates.
We could teach
you a thing or two.

http://www.sdi.co.uk

www.gdmag.com 31

AD
to start with 50 health, and since
we want an enemy to have to hit
the player 10 times to kill him, that
naturally gives us a starting point of 5
damage for enemy attacks.

Once you've established the
broad umbrellas you want to start
with, such as player health and
weapon damage, I recommend
establishing baselines using your
most "average" content first, then
basing everything else off of that.
For us, that means determining how
much health a Rogue (the middle-
ground build between Warrior and
Mage, with a balanced amount of
health and mana) will have at any
given level. And for damage output,
we plotted how much damage a level
1 longsword would do. This gave us
a starting point to base everything
else off of. In general this helps get
everyone on the same page with
regard to what the base combat
experience is. For instance, say the
average enemy dies in 5 hits, and the
player dies in 10 hits from the average
enemy. In turn, this established a
frame of reference for determining
what stats a boss enemy might have
or what sort of damage a "weak but
fast" weapon should deal.

As for how to determine the
actual numbers for whichever
parameters you decide to display
to the user, there are really only
two things to bear in mind:

Aesthetics: As I said earlier, you could
start the player with 853,521 health
... but players would roll their eyes at
you. I'd recommend starting with nice
round numbers, such as 100, that will
let players see some digit-expanding
improvements to their characters
in the early game. Who doesn't love
going from a 7 damage sword to a 12,
or from 93 health to 109?

Granularity: Although you can make
most of these initial values whatever
you want, you do need to bear in
mind the granularity of those values.
If the player starts with 5 hitpoints,
unless you want to allow fractional
health/damage values, your fights
are going to have to get resolved
in only a handful of 1 damage hits,
or have lots of healing/regen going
on. You'll want to make these initial
values big enough to give you a bit
of breathing room with the pacing of
your combat.

ConstrAining Your Content
/// You’ve established the basics,
communicated them to the team,
and plotted out your star ting
variables. Now what? Well, now's the
fun part: building the content! It's
time to design all the swords, bows,
monsters, abilities, and so forth, and
start determining the hard numbers
on all of them, from the damage of
an iron battle-axe to the mana cost

of Magic Missile. Before you craft
a thousand swords, though, you
should establish some constraints.

PArAmeter CAPs
/// There are some values that
you're going to want to carefully
constrain. For instance, if you allow
the player to accumulate 100%
damage resistance, she's going to
be invincible, which stops being fun
rather quickly. If you allow the player
to have a -100% cooldown and/or
-100% mana cost, you've suddenly
lost a major resource management
aspect of gameplay, which provides
a brief surge of fun but is quickly
followed by eternal boredom. Thus,
it's a good idea to decide up front
exactly how high and how low you
want each variable to get, and clearly
document that. Does the game simply
become less fun when your damage
resistance goes from 60% to 70%?
If so, you might want to consider
capping it at 60%.

After you've decided what you
want your parameter caps to be,
you need to decide how you want
to implement them. I propose two
methods, which can be used either
independently or in conjunction.

oPtion 1:
HArD-CoDe tHe CAPs
/// The easiest and safest way to
prevent individual values from

being buffed/debuffed outside of
the optimal range is by directly
setting floor/ceiling values for these
parameters in code.

There are at least two downsides
to this solution, however:

1. You're likely to incur player
wrath when they combine multiple
effects to make an über effect, and
then learn that this doesn't actually
work. Few things make a player
happier than feeling smart, but
few things irritate them more than
discovering that a game won't let
them be smart.

2. You'll likely run into specific
situations where these caps prevent
you, the designer, from doing
something you want to do. Want
to buff the player's resistances to
100% for a few seconds to ensure
they don't die during your cool
scripted sequence? Oops, turns out
they can't get above 60%! Long story
short: If you do go down the hard-
coded cap road, make sure you've
got an easy means to circumvent
those caps with dev-side buff
operations when needed.

oPtion 2:
Design witH CAPs in minD
/// The other way to deal with
parameter caps is to design all
your content with the caps in
mind. This approach boils down to
plotting in advance exactly what
different elements of the game
will be "allowed" to buff different
variables, then settling on individual
parameter caps for the buffs coming
from each of those sources, so that
the grand total of all the stacked
buffs can't cross your global cap for
that parameter.

For instance, let's say you never
want the player to have greater than
60% cooldown reduction. If the only
things in the game that are allowed
to grant cooldown are weapons,
helmets, boots, and abilities, then
we can set up sublimits for those
types of equipment. We can draw
up specific limits and say that
we'll allow a max of 10% cooldown
reduction on two-handed weapons,
5% on one-handed weapons, 5% on
helmets, 5% on boots, and 40% for
a single passive ability at max rank
(with no other abilities allowed to
affect this parameter). Assuming
these buffs stack additively, we've

BHg's design
tools suite.

www.gdmag.com 31

http://www.gdmag.com

now guaranteed that the player
will never get above 60% cooldown
reduction even if he goes out of
his way to get the best possible
cooldown gear available.

As you can imagine, policing
restrictions like this can be quite
time-consuming and prone to human
error. Fortunately you can combine
this approach with option 1, setting
extremely lenient parameter caps
in code to catch the truly egregious
scenarios, but relying on option 2 to
prevent players from ever actually
hitting those invisible walls.

The BeauTy of TelemeTry
/// Now you've got all your rules
and constraints in place, and you're
merrily building content and making
balance tweaks to it as you go. But
how do you know if your balance

tweaks are actually working? Did
your decision to nerf the Warrior-
Rogue hybrid just make the pure
Rogue completely ineffective? Did
your change to the XP-to-level curve
make the early game more fun but
plunge the mid-game into the depths
of tedium? In addition to the usual
response ("play the game, play the
game, play the game!"), there's also
another answer: Use telemetry data.

On Reckoning we used EA's
proprietary Juice system for gathering
data on the game as it was played—
by QA, the development team, and in
extensive multiday testing sessions
with focus testers. This system, when
combined with our internal tool for
aggregating and studying the data,
allowed us to use actual player data
in our balancing efforts. By capturing
key facts about what players are

doing and what states they're in
while doing it, you can easily evaluate
where the balance of various pieces
of content currently stands. You need
quite a bit of user testing to make this
viable, but with a huge open world
game, there's no getting around the
need for a great deal of playtesting.

Over the course of development,
we gathered a large amount of data
from our players, some of which
proved to be useful and much of which
did not. Here are some of the Events
and States that we found especially
useful (I'll leave out the ones that are
entirely specific to Reckoning).

evenTs
/// Each time one of these events
occurs, the system stores the
timestamp, the location of the
event, and a list of all currently

active states, as well as other event-
specific data.

Player death.
If the player dies, we store where
she was and what object or actor
killed her. Our QA spy tool then plots
these event coordinates on the
game map, so we can see a heat
map that will show us where players
are consistently dying.

Potion use.
When the player drinks a health or
mana potion we want to know about
it. Like player death, this is a great
event to see heat-mapped as it gives
us a good sense of overall difficulty
in each area (See Figure 1).

Player movement.
This is a simple event, polled every
few seconds, that notes the player's
current coordinates. We then can
view these events on the map and
see which locations are never (or
seldom) being discovered and what
locations draw the most attention.

Player kills NPC.
This event reports the NPC that the
player killed as well as the particular
attack or ability that served as the
killing blow. Generally when you see
the same ability or weapon being
used overwhelmingly by a particular
build/class, you can assume that
either it's too good, or you haven’t
given the player enough options.

Level up.
This reports when the player has
gained a level. We can use this event
to see the rate at which players are
leveling up as they move through
the world. When viewed along with
skill use, quest complete, and player
kills NPC events, this gives us a good
sense of how effectively different
types of players (explorers vs.
talkers vs. warriors) are leveling up.

Item acquired.
This reports whenever the player
acquires a new item, listing both the
item itself and the means by which
it was acquired (purchased, looted,
awarded, or stolen). It also tracks
the rarity of each item, so we can
see the rate at which players are
acquiring different qualities of loot.

aD

Top: Quest XP chart. Bottom: This chart indicates the minimum frames of animation needed for each basic attack in Reckoning. from here
we can calculate the approximate DPs of each weapon and use that to balance the base damage of weapon classes.

game developer | february 201232

2

http://game.minder-app.com
http://handelabra.com/gmdev
mailto:newgame@minder-app.com

Merchant visited.
This shows whenever the player
visits a merchant, what they
bought and sold, and the exact
a mo u nt o f g old ex c ha ng e d .
Perhaps most importantly, it also
reports the ratio of items the player
can afford to items the player
can't afford each time they visit
a merchant. This helps us ensure
that players always have a good
mix of items within their price
range, but also items to strive for
as they move throughout the world.

 StateS
/// Every time an event occurs, we
store all currently active states. We
can then filter events by individual
players, by checking which events
are active, or a combination of the

two. The filtering ability is critical,
because without it there is far too
much data to parse in any meaningful
way. Some of the most useful states
we tracked are listed here.

Difficulty.
If your game has difficulty settings,
you'll want to have a state that tracks
it. If your data about Mage deaths
comes from an easy playthrough
and you're comparing it with warrior
deaths from a hard playthrough,
that's not a valid comparison. Make
sure that you are comparing two
similar challenges.

Player build.
You'll want states that cover the
player's basic information, such
as race and class. This is the most

common state we used for filtering.

Player level.
This is another great one for filtering,
as it lets you very easily break down
data between the early game and
later stages of gameplay.

Gear loadout.
We've got one state for each
equipment slot on the player
character. This enables us to
compare the kill/death rates of
players in, say, plate mail vs.
those wearing robes, as well as
comparing overall effectiveness of
various weapons.

Skill ranks.
Whatever your system for skills/
abilities/talents, you'll want a state

for every possible rank the player
can have in them. This will help you
isolate and weed out particularly
over/underpowered skills. Notice
the death rate for players with a
maxed out Heavy Armor skill is
nearly zero? You may have gone a
bit overboard with that one.

 toolS
/// A huge component of balancing
a game of this size and complexity
comes down to the tools that you
use. You need the means to easily
view and edit vast swaths of data, a
way to keep your data manageable,
and a good way to understand the
relationships between the different
pieces of content. Fortunately for
our design team, Justin Sargent
and the rest of our amazing
tools programmers have done an
excellent job letting us do just that.
Our tools were the key to providing
us with the ability to build and
balance the game systems and
content for Reckoning, and featured
a number of key components
that allowed us to manage a huge
amount of data and content.

 MaSS Data Viewing anD eDiting
/// One of the trickiest parts of
balancing a game is that you
always need to visualize the
relationships between variables.
To some extent you can just keep
these relationships in your head,
but after the game reaches a certain
size and level of complexity, that
will no longer suffice. At this point
you can resort to referencing docs
and spreadsheets while working in
your tools, or you can give the tools
themselves the ability to let the user
see the relationships between data.
We've tried to do the latter as much
as possible, and it's proven to be
extremely valuable.

Us i ng the s ta nda rd . N E T
PropertyGrid, our design tool allows
us to add any value from a given
piece of content—whether that
value be a number, a string, or even
a texture—into the central viewing
pane, where we can then see it in
context with whatever other values
we want. Data can then be directly
edited—Excel style—within that
central pane for rapid updates.

Additionally, the ability to make
mass edits has proved incredibly

top: armor scaling chart. Bottom: gold economy scaling chart.

game developer | february 201234

helpful. Not only can we do standard
mass editing, such as selecting a
bunch of assets and setting a field
to the same value across all of
them, we can also perform a specific
operation to particular fields across
a swath of assets. For example,
we can select every dagger and
increase the amount of piercing
damage on all of them by -20%.

F i n a l l y , s u p p o r t i n g da ta
inheritance for many of our asset
types has made our lives infinitely
easier, allowing us to edit only
the values that are unique to a
given object rather than those
shared with dozens or hundreds
of other assets. For instance, all
hammers share the same set of
combat animations, so if that set
of animations were to change, we
need only edit a single asset (the
"parent" hammer) and the change
will propagate down to all the
individual hammers.

 ExcEl Workbook AssEts
/// The crowning glory of the
systems tools at Big Huge Games
is our Excel workbook assets. These
lightweight assets let us point to an
actual Excel Workbook file, indicate
the range of cells we want to use
and which worksheets we want
to include, then import the values
from that workbook directly into
the engine. At any given time, a
single button press will re-import
the values from that workbook. We
use these assets for anything from
armor equip requirements, to enemy
hitpoints, to the matrix of items the
player can potentially make with our
crafting systems.

This method of quickly getting
data from Excel directly into the
game often allows us to avoid editing
data in the tools at all, focusing our
efforts instead on Excel, a long-
established tool built specifically for
viewing and managing mountains of
data in an efficient manner.

In addition to the boon this
provides to our workflow, it enables
us to prevent a lot of potential
oversights by linking together the
various spreadsheets we use to
balance the game. For instance, all
the weapon damage in Reckoning
is pulling from a spreadsheet that
contains all standard weapon
damage per level for each weapon

class; meanwhile the amount of
hitpoints each NPC has is driven
from another spreadsheet which
contains all NPC stats. When
I increase the base damage
of hammers in that weapon's
spr eads hee t, ever y ha m mer
in the game will now be more
effective—I'm making hammers
more effective relative to the base
weapon, the longsword.

In this instance, enemy stats
won't change at all. If I change the
longsword's damage, though, the
health of every enemy in the game
will now go up, maintaining the ratio
of hits-to-kill that was previously
working. Meanwhile if I want to
leave weapon damage alone but
universally make enemies easier or
harder to kill, I can go into the enemy

stats spreadsheet and just change
that hits-to-kill number to adjust all
enemy health up or down without
impacting the relationship between
the different weapon classes.

This network of interconnected
spreadsheets (and the ability to
easily import their values into
the game) ultimately allows us to
very quickly make minute balance
changes or global ones, without
needing to worry that we forgot to
account for the downstream effects
of any one particular change. Over
the course of development on
Reckoning, this has been our single
most effective tool in the process of
balancing the game.

 big HugE rEspEct
/// If you're setting out to create and
balance a new RPG, especially one
of the open-world variety, we at Big
Huge Games salute you! You've got
a very long road ahead filled with a
terrifying array of challenges, but if
you can pull it off, it's an incredibly
rewarding experience. I hope that
you can take a little something away
something from this article that will
make your life a little easier along
the way.

i A n F r A z i E r is the lead designer on

Kingdoms of AmAlur: recKoning at Big Huge

Games, but in his heart, he'll always be a

systems designer. Good luck prying Excel

from his cold, dead hands.

top: Health mana scaling chart. . bottom: npc stat scaling chart.

www.gdmag.com 35

http://www.gdmag.com

game developer | february 201236

WWW.GDMAG.COM 37

The true value of the idea was put to the test in late 2009 when, shortly
after the second Amnesia Fortnight had wrapped, a massive publisher
bomb was dropped on the studio: the sequel to BRÜTAL LEGEND had been
canceled. What was once just a creative exercise for the company became
its best hope for survival, and the decision was made to develop four
of the Amnesia Fortnight projects as commercial games. Within a few
months, all four games were signed: COSTUME QUEST, STACKING, IRON BRIGADE

(formerly known as TRENCHED), and ONCE UPON A MONSTER.
Now all we had to do was make them.
In STACKING, the player is transported to a world of living Russian nesting

dolls. The game focuses on the adventures of the world’s tiniest doll, a young
chimney sweep named Charlie Blackmore. His diminutive size turns out to
be his greatest strength, as he discovers his ability to stack into and control
larger dolls. Charlie is then able to harness the “stacked” doll’s
special ability to solve adventure game-style puzzles
on his quest to save his family from the black-hearted
industrialist known as the Baron.

Making STACKING presented several new challenges,
including adjusting to a major shift in the studio’s
production model and finding ways to maximize the
efficiency of a very small team to finish the game on
time. STACKING and the other three projects were also
the first games that Double Fine would make without
game industry luminary Tim Schafer directly leading
the project. This was a decision by Tim to promote
other creative voices in the company, but it also
meant that we had to find a way to make sure that
all four of these games continued and extended
the Double Fine brand.

In other words, we needed to make an
original high-fidelity game that also felt
undeniably Double Fine in a very short time
frame with a small team and a new leadership
structure for new digital platforms.

What could possibly go wrong?

W H A T W E N T R I G H T

1 / a m n es ia f o r t n i g h t .
/// At the heart of Double Fine's new process
for making games is the two-week rapid-
prototyping period that we call the Amnesia
Fortnight (because we forgot what we were
working on for two weeks). Most games begin
their life cycle with a concept document,
concept art, and a long, labor-intensive "proof
of concept" milestone that is followed by more
documentation and planning. Amnesia Fortnight
throws all that out and instead super charges a small
team to create the heart of an entire game in a short amount of time. If all
goes well, the team winds up with a strong initial direction for the mood,
art style, and core mechanics.

Coming from a long background of multiyear projects, I thought
these goals sounded a bit ambitious to say the least—but the process
absolutely worked. Going into Amnesia Fortnight, I had created very little,

just a short presentation, a few sketches, and an idea of how the core
mechanics would work—and that was it.

But after two weeks, the team created a visually appealing, charming,
playable demo that demonstrated many of the core mechanics like
stacking, special abilities, and multiple-solution adventure game-style
puzzles. The demo also emphasized both the diorama and silent film
influences, both visually and in terms of narrative devices.

This was, by far, the best way to start a project that I have ever
experienced. Not only did we create a playable, fun proof of concept quickly,
but the whole team got excited about the game and their contributions to
something new. By the time the demo was done, everybody was on board
with the vision and felt they’d had a role in realizing it.

The other key benefit of this process is that we now had a demo that
we could pitch to publishers to secure financing for the

game; and because STACKING was an unusual game,
it was even more important that we could clearly
demonstrate to publishers what we wanted to make.

We were fortunate to sign STACKING rather quickly,
and a lot of the credit goes to the strength of the
demo that was created during Amnesia Fortnight.

2 / e c o n o m y o f d es i g n .
/// One of our goals in making smaller downloadable
games was to create high-fidelity experiences with
unusual gameplay, visuals, and personality that

might be deemed too risky for large retail titles. A
lot of those characteristics are expressed in both

the details and the overall presentation, but with
such short timelines and limited resources, how

could we create a polished game with a distinct
sensibility? The answer was to approach the
game with economy in mind and look for
clever ways to express that personality.

Many games start out with a “kitchen
sink” approach—huge, overly ambitious,
and with a giant feature and systems list.
As the game is developed, the team focuses
its efforts, inevitably trimming or cutting
features to stay on track. Player verbs are
reduced, and the game eventually focuses on
a smaller, more polished feature set.

For STACKING, we started small from day
one, expanding the idea over time instead
of shrinking it. As one means to accomplish
this goal, we limited our gameplay ideas to
those that could be directly expressed with

the simple core idea and action of stacking. The
way the player solves puzzles and interacts with

the world and other dolls were all directly derived from
the player character's ability to stack inside other dolls. This approach
kept us very focused and also ensured that the game had a thematic
cohesiveness and distinct personality, which are key ingredients to the
Double Fine brand. In addition, by focusing on fewer mechanics, we felt we
would be able to both increase the overall accessibility of the game and
the amount of polish for those mechanics in our short production cycle.

be his greatest strength, as he discovers his ability to stack into and control
larger dolls. Charlie is then able to harness the “stacked” doll’s
special ability to solve adventure game-style puzzles
on his quest to save his family from the black-hearted

 presented several new challenges,
including adjusting to a major shift in the studio’s
production model and finding ways to maximize the
efficiency of a very small team to finish the game on

 and the other three projects were also
the first games that Double Fine would make without
game industry luminary Tim Schafer directly leading
the project. This was a decision by Tim to promote
other creative voices in the company, but it also
meant that we had to find a way to make sure that
all four of these games continued and extended

In other words, we needed to make an
original high-fidelity game that also felt
undeniably Double Fine in a very short time
frame with a small team and a new leadership

/// At the heart of Double Fine's new process
for making games is the two-week rapid-
prototyping period that we call the Amnesia
Fortnight (because we forgot what we were
working on for two weeks). Most games begin
their life cycle with a concept document,
concept art, and a long, labor-intensive "proof
of concept" milestone that is followed by more
documentation and planning. Amnesia Fortnight
throws all that out and instead super charges a small
team to create the heart of an entire game in a short amount of time. If all

The other key benefit of this process is that we now had a demo that
we could pitch to publishers to secure financing for the

game; and because
it was even more important that we could clearly
demonstrate to publishers what we wanted to make.

We were fortunate to sign
and a lot of the credit goes to the strength of the
demo that was created during Amnesia Fortnight.

2 / e c o n o m y o f d es i g n .
/// One of our goals in making smaller downloadable
games was to create high-fidelity experiences with
unusual gameplay, visuals, and personality that

might be deemed too risky for large retail titles. A
lot of those characteristics are expressed in both

the details and the overall presentation, but with
such short timelines and limited resources, how

could we create a polished game with a distinct
sensibility? The answer was to approach the
game with economy in mind and look for
clever ways to express that personality.

Many games start out with a “kitchen
sink” approach—huge, overly ambitious,
and with a giant feature and systems list.
As the game is developed, the team focuses
its efforts, inevitably trimming or cutting
features to stay on track. Player verbs are
reduced, and the game eventually focuses on
a smaller, more polished feature set.

For
one, expanding the idea over time instead
of shrinking it. As one means to accomplish
this goal, we limited our gameplay ideas to
those that could be directly expressed with

the simple core idea and action of stacking. The
way the player solves puzzles and interacts with

the world and other dolls were all directly derived from
the player character's ability to stack inside other dolls. This approach

FOR THE FIRST 10 YEARS OF ITS LIFE, DOUBLE FINE PRODUCTIONS SHIPPED EXACTLY TWO GAMES: PSYCHONAUTS AND
BRÜTAL LEGEND. ALTHOUGH WORKING ON SUCH ORIGINAL AND CRITICALLY ACCLAIMED TITLES WAS REWARDING,
LONG DEVELOPMENT CYCLES CAN LEAD TO CREATIVE STAGNATION. TO RE-ENERGIZE THE STUDIO, DOUBLE FINE
PRESIDENT TIM SCHAFER CAME UP WITH THE AMNESIA FORTNIGHT , A TWO-WEEK GAME JAM THAT SPLIT THE
COMPANY INTO SEVERAL SMALL TEAMS, EACH GIVEN THE CHANCE TO CREATE THEIR OWN GAME IN THAT TIME.

http://WWW.GDMAG.COM

http://perforce.com/try20

www.gdmag.com 39

This approach really paid off when it came to
the art production. The nature of the game meant
that we could represent the 100+ unique denizens
of this world with essentially one character model.
Some early experimentation found that the
personality, variation, and gameplay possibilities
of the dolls was dramatically enhanced with the
inclusion of simple accessories, such as top hats,
bunny ears, or deranged clown wigs.

As we began to add layers of personality
to our dolls, we considered adding some form
of facial animation, but we eventually decided
to try to convey our dolls' emotions purely
through simple rigid body animation because
of the potential production time involved.
There was something immediately charming
about this approach, and it had the added
benefit of pushing us to emphasize our silent

film theme even more. It also meant that our
dialog recording budget could be put into the
game’s music, which was used to great effect
by our genius audio team to express the game's
personality in ways we couldn't have imagined.

Another benefit of having such economical
characters is that their low bone and polygon
count meant that we could put a lot of them on
screen. That really opened up the possibilities
for us to create a rich fantasy world for the
player to explore. We found in early play tests
how much players enjoyed just exploring
the world; experimenting with dolls and their
abilities. This feedback encouraged us to add
a collection-and-reward system for player
experimentation, giving meaning to exploration
and ensuring that the game experience wasn’t
just moving from challenge to challenge.

The gameplay also directly benefitted from
our economical approach to the characters.
Stacking's challenges are essentially adventure
game-style puzzles, but all feature multiple
solutions. As the game was tested, players

would often try to solve the puzzles in ways
that they thought should work but didn't. This
is a classic problem in adventure games, where
players often follow a logical but incorrect (for
the game's purposes) chain of thought in trying
to solve puzzles.

In most adventure games, this can only be
addressed by adding a few signs or some dialog
to dissuade the player from trying these things.
Although we employed these techniques to
some extent, we were also able to easily add new
solutions to existing challenges based on player
feedback because the cost of adding a new doll
to drive that solution was so low. The total cost
of creating a new doll and solution, including all
the modeling, texturing, animation, and ability
programming was often only a few days of work.

3 / ra p i d p r o to t y p i n g a n d
i te ra ti v e d e v e l o p m e n t .
/// Since the start of Brütal legend, Double
Fine has incorporated agile development
methodologies into its production practices.
Although different projects have used it in
varying ways, at the heart of all of our practices
is keeping as small a loop as possible when
developing new features and ideas. Although we
do write design documentation, create paper
maps, and plan our productions, we focus a lot
of our energy on creating “quick specs” for new
features and working collaboratively across
departments to get a rough version in the game
as quickly as possible. For us, the flexibility
to constantly evaluate what is working in a
production, and then to shift direction if it isn’t,
represents the true power of agile development.

This approach was especially crucial on
a small game like Stacking because we really
had to maximize the efficiency of a small team.
Although Amnesia Fortnight answered a lot of
fundamental questions about the game, it was

effectively the only “pre-production” period of
the project. This meant that we still had a lot of
unanswered questions going into production,
which was especially evident when looking at
the game's challenges.

These adventure game-style puzzles were the
foundation of the game's structure. We knew early
on that we wanted all our challenges to support
multiple solutions, both to encourage replayability
and to increase accessibility by trying to avoid
some of the classic adventure game single-
solution shortcomings. In our Amnesia Fortnight
demo, challenges could be replayed to find
additional solutions, but we were unsure of how to
"reset" them. When should players be able to try to
find additional solutions? A second playthrough?
After they've experienced the primary narrative?
On return visits to the location?

We decided that we wanted the player
to be able to choose to immediately replay
any challenge after finding a solution if they
wanted. Although the player had to find only
one solution to most challenges to progress,
we wanted to encourage them to find more.
The challenges would immediately "reset,"
fading the screen down, placing the player to be
directly in front of the challenge, and activating
a UI element that would show the player how
many and which solutions they had found.

Although this solution sounds relatively
straightforward, it took lots of rapid prototyping
to create satisfying challenge solutions of
varying difficulty that had no direct dependence
on each other, since the player could choose to
do them (or not) in any order. An initial write-up
for a challenge would always include at least
three solutions, intentionally leaving room to add
or remove solutions based on playtest feedback.

We learned to rapidly implement quick
versions of solutions and challenges, because
seeing all the multiple solutions together was the
only reliable way to identify things that didn’t work.
We stayed flexible through the whole process,
cutting solutions that were boring or confusing
and replacing them with ones that worked.

4 / es ta b l i s h e d te c h .
/// Many years ago, Double Fine embarked
on the long, arduous task of creating its own
technology from scratch for the game Brütal
legend. Brütal legend was a large, ambitious
game featuring an open-world single-player
campaign, a multiplayer battle mode, scores
of unique units that the player could "double
team" and a ridiculous amount of over-the-top
visual effects and custom sequences.

Starting Stacking with the Brütal legend
engine not only meant that we had an extremely
optimized engine with a diverse and rich feature
set, but also a senior team who knew everything
the engine was capable of and where it could be

AD

Continued from Page 37

http://www.gdmag.com

game developer | february 201240

pushed further. Combining that experience and
engine horsepower with the more constrained
scope of Stacking let us focus our energies
on creating exciting visuals and gameplay,
confident that we had more than enough
technology to ship a competitive title on time.

5 / a l l f o r o n e a n d o n e f o r a l l .
/// Until recently, Double Fine had always been
a one-team studio. People here are used to
helping each other and working toward common
goals. Although shifting to a multiple-project
studio caused a fair amount of adjustment
in our processes and interactions, everyone
worked to continue to foster a cooperative
atmosphere. Everyone felt, rightfully so, that
the success of the studio depended on the
success of all of the projects.

Throughout its history, Double Fine has held
mandatory HOF (“hour of fun”) meetings at

the end of every milestone for its projects. At
these times, everyone is required to play the
latest build of the game and gather together
after an hour to share their feedback on the
game. We extended this practice in our multi-
team structure by making sure that everyone,
regardless of which project they were on, got
an opportunity to play the other games. We
also added online surveys for more detailed
feedback and to track the comments over time.
At one point, we also added beer to the mix,
creating our first Hof-brau.

Not only are these practices good for
keeping everyone aware of and involved in all of
the studio's projects, it also makes it easier for
people to help out on other projects if they have
any downtime between project cycles. This helps
us push the quality of our games in ways we
can't budget for. This not only works because of
the shared vision of the studio but also because

we use a common toolset and engine. There is
literally no ramp-up time for someone to jump on
a project and help for a few days.

This gives an advantage that many
multiple-team or smaller-project studios don't
have, and Stacking definitely benefitted from
extra art, animation, and programming help,
right when it counted the most.

W h a t W e n t W r o n g

1 / s t r e t c h e d th i n .
/// Transitioning from one big team to several
small teams created a lot of growing (or would
it be shrinking?) pains. The most immediate
issue was that several teams were resource
starved in certain roles. We couldn't really
afford to make many new hires during this
transition, so we had to come up with other
solutions, all of which were far from perfect.

For some of the gaps, we "departmentalized"
people with certain skill sets—such as UI,
visual effects/technical art, and audio—in
order to better share their high-demand skills
among the teams. But what was the best way
to share these people? They needed to be fully
dedicated to a project at predictable times for
those projects to hit their milestones, but at
the same time, if any of the projects had no
coverage, then these shared individuals would
not be able to provide important input at critical
stages. To make matters worse, many of our
initial project schedules were bunched up on
top of each other, making it hard to find natural
times during the game's production cycle to
move shared people between projects.

The worst part of the whole experience is
that several talented people were stretched way
too thin as they moved from project to project.
Although everyone in the company worked very
hard, these people unfortunately missed out on
some of the creative flow that results when you
are singularly focused on the task at hand.

However, these growing pains did help
a few positives to develop. Because each of
the new smaller teams needed more leads, it
provided more growth opportunities for people
who were ready to transition to a more senior
or lead role. These games were shipped with
several first-time leaders who wouldn't have
had those opportunities if Double Fine were still
one large team.

In addition, the studio began to embrace
the idea of people developing secondary and
tertiary skills to increase coverage across
projects. On larger projects, people tend to take
on more specialized roles, but for these smaller
projects, people who are strong in multiple
areas are very helpful in making the timelines
and budgets work.

By the end of Stacking, the studio had
improved its internal processes for sharing
people. Departments were given more internal
authority for controlling the flow of their shared
work, taking advantage of efficiencies that only
they could see. Different shared people were
also assigned to be the primary contact for a
particular project, so that, even if they were
currently off the project, the other members
knew who to contact for questions or feedback
on a particular issue. Perhaps most importantly,
we also learned as a studio how to plan better,
and we take great pains to spread out our
production schedules and needs on these
shared departments as much as possible.

2 / o u r f i r s t d a te
a t th e d i g i ta l p r o m .
/// Shipping games on digital platforms was
a new experience for Double Fine. Having
already shipped a large game this generation

with multiple DLC packs (Brütal legend), we
thought we had a pretty good understanding as
to what was involved—but we were a little off.

We underestimated the impact of things
like digital platform-specific TCRs, and profile
and marketplace integration. Dealing with the
nuances of these took a lot of time, right at the
end of our production, and stole away some
of the systems polish work that we would’ve
otherwise been able to do.

Even though we had just shipped coStume
QueSt on the same digital platforms, we hadn’t
yet had the opportunity to create libraries
of code, and most of our in-house expertise
was tied up with other tasks. This made small
technical issues really hard to track down.

In addition to dealing with platform-specific
issues, the bug testing and patching process
for DLC didn’t go quite as expected. With a
smaller production budget comes fewer testing

resources, making tracking down all the bugs
at the end of the project way less efficient than
on larger projects. We had to use most of the
artists, programmers, and designers to help do
bug testing instead of polishing features.

By the end of Stacking, our in-house
expertise in dealing with digital platforms
had greatly increased, but the chaotic
learning process caused a lot of extra stress
and overworked some of our most senior
programmers. The lack of resources for
playtesting reminded us of how important QA
is, and also reinforced that it pays to diligently
address known bugs as early as possible.

3 / d es i g n to o ls .
/// Even though Double Fine has great
technology and solid tools, some of the design
tools can be slow to iterate with and hard to
debug if something goes wrong. Our design tools

www.gdmag.com 41

http://www.gdmag.com

42 F E B R U A R Y 2 0 1 2 | G A M E D E V E L O P E R

http://www.asobostudio.com
mailto:jobs@asobostudio.com
http://gdmag.com/subscribe

AD

facilitate implementation of basic gameplay,
such as repetitive tasks like spawning entities,
applying game states, or adjusting the dialog
response of a character in a particular situation.

Because Double Fine relies on gameplay
programmers for lots of the harder gameplay
implementation, the design side is still almost
entirely based on Lua script. While this
choice gives our games a lot of agility and
flexibility in gameplay implementation, it can
cause problems with some of the more basic
gameplay tasks.

As an example, to place a simple AI character
on a patrol path in Stacking required designers
to edit several different text files. First, locators
to define points in the patrol path were placed in
our world editing tool and exported to the game.
Then, a “task list” text file would be created by
hand that would string together those points
and tell the AI to do things like “idle,” or “patrol,”
or “use ability.” Lastly, another text file was
edited to spawn that particular entity in the
world and assign it the newly created task list.

While none of this work was difficult, if
there was a small syntax error anywhere down
the chain, such as a misplaced semicolon,
things would not work. Most of the time the
error messages that these problems generated
were not verbose enough to be useful.
This unfortunately meant that a gameplay
programmer’s valuable time would be wasted
helping a non-programmer track down some of
these problems.

In the future, we plan on defining our design
workflow more specifically, developing better
tools for repetitive design tasks, and investing
in a Lua debugger. This will not only empower
our designers and speed up their workflow but
also allow gameplay programmers to stay more
focused on their tasks.

4 / s ta c k e d - u p s c h e d u l i n g .
/// Early in the production of Stacking, we made
the decision to keep the entire team focused on
the same level at the same time. We had little
time to spend on organization, so we tried to line
up one “phase” of a level’s production with exactly
one long sprint (about 3.5 weeks) that also
equaled one milestone delivery to the publisher.
The idea was that this would not only remove the
need for advanced dependency planning, which
would’ve been highly inaccurate anyway due to
our lack of pre-production, but also assured that
any level-specific needs and opportunities that
emerged as the game developed could always be
addressed.

While this approach did achieve some of
those goals, it also resulted in some people
being blocked while they waited for work that
was upstream from theirs to be completed.
When the entire team jumped onto a particular

level all at the same time, some people would
be immediately blocked. This was especially
true when we kicked off a brand-new level. We
dealt with this as best we could by frequently
meeting about the blocking tasks and moving
around the workload to try to unblock people.
We also worked in passes, roughing in any
dependent assets so that those downstream
could start their work.

However, despite these efforts, people
(usually gameplay programmers) were still
unable to begin some of their work until later
in a level’s production than was optimal. We
would’ve been able to capture more of the
team’s efficiency if we had done a more detailed
dissection of our production process and
staggered the times when people would start
and end work on a level.

5 / p l a y tes ti n g .
/// One of our goals with Stacking was to appeal
to many different types of gamers, across
the spectrum from casual to core. This is a
notoriously difficult task, and if we were to
succeed, we would need lots of playtesting
to help guide our decisions. Unfortunately,
we didn’t really have a formal playtesting
process at Double Fine. We would quite often
invite friends and colleagues to play our
games and give us feedback, but these people
aren’t a broad enough group to be our only
playtesters.

Because most people working at a game
company and their immediate friends are usually
classified as core gamers, I asked for help
bringing in lots of “casual” gamers—people who
only occasionally played games. The production
staff did a great job finding these types of gamers,
bringing them in, and taking lots of helpful notes
on their play sessions. This information provided
us with lots of good ideas to help tune our game to
suit the more casual player.

Unfortunately all this focus on the casual
gamer unintentionally caused us to neglect
some of our more core audience. We were
so busy making sure that people didn’t get
lost, always had helpful solution hints, and
weren’t confused, that Stacking didn’t quite
have the mechanical depth that it could have.
Some of our hardest challenge solutions
should’ve emphasized things like combining
doll abilities or more specific timing skill,
but instead, they wound up just being more
obscure. Stacking was sometimes critiqued as
not having enough “skill challenge,” and while
that sort of dexterity-based gameplay wasn’t
what the game was striving for, it could’ve
benefitted from offering the core side of our
audience more gameplay depth to sink their
teeth into.

If anything, this process has reminded
us of how valuable playtesting is, and in the
future, we'll strive to get a greater diversity of
playtesters in front of our games.

s t a c k i n g c a s h ! ?

/// Creating Stacking was one of the highlights
of my career. Despite the major challenges
involved, the team created an appealing game
with a unique visual and gameplay style, which
shipped on time to great reviews and very
respectable sales. And more importantly, the
flood of new games and creativity rejuvenated
the studio and created opportunities for new
creative voices.

Even though the game industry is rapidly
changing, creating lots of uncertainty, it’s an
exciting time to be an independent developer.
There is more diversity in games than ever
before, a multitude of platforms to choose
from, and a broader audience to make games
for. In some ways, it feels as if there is endless
possibility for those who can put together an
idea and work hard enough to make it happen.

At the time of writing, all four of the
Amnesia For tnight projects have been
completed in a short 16-month period. All
have shipped on time, under four different
project leads, with four different teams, with
three different publishers, and on three
different platforms. I think that's a testament
to Double Fine’s culture, creativity, and
independent spirit.

L e e P e t t y was project lead on Stacking, and art

director for Brutal legend at Double Fine Productions.

He has been a texture artist, 3D modeler, concept artist,

lighting artist, effects artist, lead artist, and art director,

since he entered the game industry in 1996.

www.gdmag.com 43

Continued from Page 41

PLatforms XBLA, PSN, PC
number of DeveLoPers 13 full time, and some
polish help from others in the studio
Length of DeveLoPment 11 months
reLease Date February 2011
tech useD Double Fine Production’s proprietary
engine, originally developed for Brütal legend. Scaleform
middleware for UI; FMOD middleware for audio.
DiD you know According to a database search, the
word “taint” is used six times in the game.

g a m e D a t a

http://www.gdmag.com

TOOLBOX

game deveLOper | feBruary 2012 44

R e v i e w b y C a R e y C h i C o

IDV Inc.

SpeedTree 6.0

VersIon 6
» While version 5 introduced the
revamped interface for the modeler
that made making trees much easier
and more intuitive, this new version
does offer up a few new tricks. My
last version was 4.2, so to me, version
6 represents a whole new ball game.

Once I got through the Simple
Mode tutorials to get accustomed
to the UI, I was able to very quickly
generate a tree trunk, branches,
and leaves through the node-based
UI. I have to say that I really liked
this generator's interface: it’s clear,
logical, and very polished. All the
elements have a nice drop shadow,
the icons are attractive, and the
mouse-driven usability is quite
fluid. It contextualizes the tree
in small bite-sized pieces, which
makes navigating through what you
wish to do much easier.

The same can’t be said for the
left tabbed side of the UI. It reminds
me of the frustration I had when I
first used 3ds Max and discovered
that much of the UI was hidden,
and that I had to grab the UI and
drag it upward just to find it. It’s just
a bit tedious, and you'll find that
one of your primary actions when
using version 5 or 6 is opening and
shutting the tabbed sections of the
UI to get to the one you want to see.

Branch IntersectIon
BlenDIng
» In this version, SpeedTree gains
a new key feature called Branch
Intersection Blending. This helps
to make seamless transitions
between branches and tree trunks

automatic and easy.
In the previous version, the

software would take the open
edges of each branch and weld
them to the trunk. This helped
make the geometric transition from
trunk to branch more natural and
more pleasant than the old “shove
into tree” method, but this didn’t do
anything to hide the texture seams
at the junction point. That’s what
branch blending does.

Now, when you turn this
function on inside the materials tab
of the UI, the trunk texture borrows
the coordinates from the branch
and maps the UVs to match the
trunk. This texture is then faded off
so that the original branch UVs take
over, and then presto: you have

seamless texture transitions from
the trunk to the branches.

In the end, what you get is a
natural and lovely blend between
the branches and the trunk. As I
mentioned, I’ve used 4.2 before,
and the lack of a branch solution
did affect visual quality. Provided
you support this SpeedTree system
in your engine, this feature will
definitely improve your game's
visual fidelity.

The other good news is that
branch blending is supported by
the FBX exporter, so you can get
this blending goodness out to
your other modeling programs for
cinematics and other uses. The data
is saved out in texture layers 3, 4,
and 5 in the exported format.

other new Features
» While branch intersection
blending is one of the larger features
present in version 6, IDV was still
able to add a host of other tweaks to
improve the user experience.

• Automatic online updates
through built-in software
updater.

• New optional Maya- or
3ds Max-style navigation
modes.

• FBX support gets additional
export features in this
version. Apart from being
able to export the branch
blending, you can also
export the camera-facing
leaf cards and meshes via

with the introduction of speedtree version 6, IDV Inc. offers an improved experience over the previous version of its tree-creation
system. IDV is one of the only developers of software focused completely on tree creation and tree rendering for both real-time
and rendered applications. In fact, apart from Woody3D, which was announced last year, there is no other rendering system that
offers anything similar.

In my experience, trees have always been one of those asset classes with larger-than-normal iteration times. Not only are they
resource hogs for your tech—since you want them to sway with the breeze, burn down when shot, and so forth—they can also be
tedious work for your art team. Since trees provide familiar visuals for players and add volume to worlds, it’s crucial that you find
ways to make them quickly, populate your game efficiently, and give them dynamics to make your game come alive.

speedtree's main view.

www.gdmag.com 45

TooLBoX

FBX, as well as extract and
invert alpha maps.

• You can now add templates
to the scene via the right-
click context menu.

All these tweaks help to improve
usability.

Worth it?
» So the question for many
might be, is it worth investing
in SpeedTree now? My answer
would be yes. There are so many
other higher-priority assets that
need attention in a game. The
amount of work that would have
to be done just to duplicate what
the SpeedTree system does is
not worth the effort—they are
only trees, after all. Additionally,
of all the third-party systems
that could be adopted into your
game, SpeedTree's costs are quite
economical in comparison. The
bang for the buck here seems clear.

SpeedTree 6 picks up where
version 5 left off, and still offers
the best UI for this system to date.

If hindsight were 20/20, I would
have said hold off on 4.2 until 5 and
6 came along—it’s that large of an
improvement in the overall system.

Lastly, the Branch Intersection
Blending feature in this latest
release really does make the
end result shine. The fidelity and
natural-looking quality it adds to
trees is obvious.

What’s not to like?
» The tabbed UI on the left is a
bit tedious to operate. It’s not a
deal killer, but it is something for
the company to improve upon.
Anything else I might add would
just be mincing words. The darn
thing makes trees after all!

Making trees
» All in all, SpeedTree continues to
do what SpeedTree does: turn the
construction of trees into one of
the easiest tasks your team has to
manage. The system alleviates the
iteration burden that these types of
assets can have on your schedule,
which allows your team to focus on
the core assets that are front and
center for your game. But let’s face
it, when we are able to make trees
look as good as these do, we may
be spending more time wandering
the forests than we will fighting the
bad guys.

carey chico is president/chief creative

officer of Globex Studios and a 17 year

veteran of the game industry. Prior to

Globex, Mr. Chico was a founding member

of EA/Pandemic Studios where he oversaw

art direction, production, outsourcing and

tech R&D for multiple projects as executive

art director. He is credited on 16 game

titles including Star WarS: the Clone WarS

and Battlefront series, MerCenarieS, and

full SpeCtruM Warrior.

Intel® Graphics Performance Analyzers

(Intel® GPA) are a powerful suite of

graphics analysis tools designed with

game developers to fit your workflow.

With Intel GPA, you can conduct in-depth

analysis from the system level all the

way down to individual draw calls,

allowing you to intuitively increase the

performance of your game.

DoWnloAD Intel® GPA
for free toDAY at
www.intel.com/software/gpa

Copyright © 2012 Intel Corporation. All rights reserved.

Intel® Graphics
Performance Analyzers
When Optimization is the
Name of the Game

Price

› Contact IDV for quote

systeM reQUireMents

› 2GB Ram, 235MB HD space, Shader
model 2.0 graphics card or better
› The SpeedTree SDK requirements
depend on the type of integration
and platform. Contact IDV for specific
information.

Pros

1 Look, it makes trees!
2 Branch Intersection Blending

offers up a much more natural and
seamless looking tree.

3 Additional FBX export support
increases the value and usability of
the software.

cons

1 Left tabbed side of the modeler is a
bit tedious to work with.

iDV inc.
speedtree 6.0

5446 Sunset Blvd., Suite 201
Lexington, SC 29072
http://www.speedtree.com

Branch intersection blending.

http://www.gdmag.com
http://www.speedtree.com
http://www.intel.com/software/gpa

WE’RE READY FOR YOU TO MAKE
SOMETHING EPIC

Apply Today
 www.epicgames.com/careers

http://www.epicgames.com/careers

www.gdmag.com 47

david EdEry // THE BUSiNESS

What's mine is yours
The ComplexiTies of Revenue shaRing

revenue shares and
publishers
» There are many situations in
which even a large share of your
game's revenue may not result in
the behavior you need or expect
from your business partners. A
publisher, for example, may view
your self-funded game as just one
of a great many small gambles in
their portfolio: something worth
putting a few hours of effort into
and/or maybe a few thousand
dollars, but certainly no more than
that until the game "proves" itself.
The fact that you've given them (for
example) 50% of your revenue after
paying for development yourself
may mean very little to certain
publishers because they view your
game as a lottery ticket ... and you
don't win a lottery by spending
large sums on a single ticket.

If giving a publisher 50% of your
revenue isn't enough to get them
to really get behind it and help you
in significant ways, then what else
can you do? The answer, in some
cases, may simply be "nothing." If
you aren't effective at pitching your
game and your studio, you may
discover that the only publishers
who are interested in getting a
piece of the game are those who
want that piece for free. If, however,
you have a competent pitch and
seem like a developer worth
building a long-term relationship
with, there are certain demands
that you can and should make of
any publisher.

For example, you may demand
a recoupable advance against
your future royalties. If the
publisher believes strongly in your
game, this theoretically costs
the publisher very little (just the

interest payments they would
have received from that money
during the time period in which
they advanced it). It also gives
the publisher a good reason to
get behind the game: they want
to recoup that advance at bare
minimum! An alternative is to ask
for commitments, such as 300,000
downloads. If the publisher can't
get your game downloaded at
least that many times, then their
revenue share should be reduced,
or in the case of an extreme
shortfall, the publishing contract
could be terminated.

revenue shares and
development partners
» Things get significantly more
complicated when sharing revenue
with individuals or companies with
whom you have partnered to co–
develop a game. Such arrangements
are a big leap of faith for everyone
involved, and you absolutely cannot
assume that healthy revenue
shares will keep everyone on the
same page. Here are just some of
the reasons why a co–development
partner might disappoint you (or vice
versa!) despite the fact that you're
splitting revenue:

• Different financial needs.
Someone on the team may not
actually care much about money.
Maybe they are independently
wealthy. Maybe they simply aren't
motivated by money no matter how
little or how much they have. In
either case, a revenue share is no
guarantee that a person will share
your goals.

• Different financial goals. Even
if two people on a team have exactly
the same level of financial need,
one might be satisfied with a ten

thousand dollar payoff while another
might be dissatisfied with anything
under a million. There's a good
chance the latter person is going to
become frustrated with the former
if the project is marginally but not
largely successful right off the bat
(and of course, most projects aren't
that successful at all).

• Different priorities. Even if
two parties have the exact same
financial needs and goals, there
are other priorities to consider. How
important is the success of this
game to each party involved? If
it's a make-or-break project for one
party but something that could
easily fail without consequence
for another party, there may be
problems down the road. If one
party needs income from the
project in three months to survive
while another can plug away for
years without income, conflicts
could easily result, especially if
this isn't discussed before the
project is kicked off. If one party
owns the IP the game is based on
while another does not, once again,
there may be a vast difference in
motivation to perform.

The aforementioned examples
are just a tiny slice of all the
possible differences between
people (and companies) that can
result in serious disputes down the
line, especially once real money is
involved. And unfortunately, there's
no perfect way to predict and
prepare for all possible disputes. To
some extent, when you're splitting
ownership of a game and/or its
revenue, you're always taking a
big gamble. The best way to reduce
the risk of all parties involved is to
carefully talk through your goals,
priorities, and commitments before

kicking off a partnership, and
document in writing the results of
those conversations.

talking it through
» Would you be disappointed if
your partner didn't work at least
20 hours per week on the game,
on average? Discuss it, and put
something in the contract that
specifies exactly what happens
if someone doesn't meet their
commitments (i.e., their revenue
share drops from X% to Y% after
a given period of time). What if
someone gets sick and can't work
for a month? Agree to something
and put it in the contract, too. What
happens if the game launches
and is not successful? How long
are you all willing to keep working
on it? What happens if someone
bails on the project before this
time period has elapsed? Talk it all
through, and put it all in a contract.

Unfortunately, doing this
will not guarantee that you avoid
disappointment or drama. If you
partner with the wrong folks (or
even with the "right" folks but under
the wrong conditions), no contract
is going to help you—but going
through this process is vital. Most
importantly, it may help you avoid
getting into the wrong partnership.
Additionally, it will give you a
framework to rely on in the event
that disagreements arise between
you and your partners.

david edery is the CEO of Spry Fox and

has worked on games such as Realm of

the mad God, SteambiRdS, and tRiple town.

Prior to founding Spry Fox, David was the

worldwide games portfolio manager for

Xbox LIVE Arcade.

some lessons are harder to learn than others. One of the toughest lessons you may ever learn is that granting someone a generous
share of the revenue from your game in exchange for a service (assistance with development, publishing, etc.) does not mean you
can assume your incentives are properly aligned.
Say that you give a publisher 50% of the revenue from your game in order to promote it, to handle customer service, or for some other
reason. Or perhaps you've agreed to develop a game in tandem with a few other individuals and split the future revenue equally. In
either case, you're making the important assumption that a significant percentage of future profits will ensure that all parties will do
their "best" to make the game a success. Sometimes, that's exactly what happens—but not always, unfortunately.

http://www.gdmag.com

http://www.techexcel.com

www.gdmag.com 49

THE INNER PRodUcT // aRI sIlvENNoINEN

Upping yoUr shadow map performance

Chasing shadows

There exists an ever-growing body of literature
on different shadow mapping techniques, most of
which focus solely on improving shadow quality
(see Eisemann in References). Indeed, given a
sufficiently high shadow map resolution, these
methods are able to achieve shadows of very
high quality. Hence, in this article our focus is on
scalable shadow map performance.

We already have a good understanding of
how to render large environments in a scalable
fashion, at least without shadows. Occlusion
culling helps us to get rid of all hidden objects,
and we can apply level-of-detail techniques to
the remaining visible ones in order to bound
the geometric and shading complexity to an

acceptable level. Thus, it is not uncommon
to find out that the performance bottleneck
shifts to shadow mapping (see Silvennoinen in
References).

Shadow map performance can be
characterized by two things: generation cost,
and sampling and filtering cost. Sampling and
filtering are essentially independent of the
geometric complexity of the scene since they
are texture space operators. On the other hand,
shadow map generation, i.e., the rendering
of shadow casters to the shadow map, can
consume a big portion of the rendering budget,
unless we take care to bound the number of
rendered shadow casters somehow. This effect

is potentially amplified when using cascaded
shadow maps because some shadow casters
could be rendered multiple times during the
shadow map generation phase.

BaCkground
» In this article, our goal is to speed up shadow
map generation. A naive solution to this problem
would again use occlusion from the light's
point of view to reduce the number of rendered
shadow casters when rendering the shadow
map. However, as Bittner et al observed (see
Bittner in References), the effectiveness of this
approach is completely dependent on the light
view depth complexity.

Large outdoor environments combined with
a global shadow casting light source such as
the sun or the moon might not gain much from
occlusion culling alone. In the worst case, we
might end up rendering all the potential shadow
casters contained in the intersection of the view
frustum and the light frustum, even though most
of the shadow casters do not actually contribute
to the shadows in the final rendered image (see
Figure 1).

Bittner et al observed that in addition to
using occlusion culling from the light's point
of view, it is essential to cull shadow casters,
which do not cast a visible shadow. The group
first rendered the scene from the camera's point
of view and used occlusion culling to identify
all the visible shadow receivers. Second, they
rendered the visible shadow receivers to a light
space shadow receiver mask to mark the visible
parts of the scene as seen from the light's point
of view. Finally, they applied occlusion culling
from the light's point of view—together with the
shadow receiver mask—to identify the potential
shadow casters, which should be rendered to the
shadow map (see Figure 2).

Compared to the naive approach, the
main overhead in this method comes from
the shadow receiver mask generation, which
is not guaranteed to be optimal in all cases.
In the worst case all visible shadow receivers
are already in shadow, and the receivers are
rendered to the shadow receiver mask, since
the visibility status from the light's point of view
is determined after the shadow receiver mask
is created. In addition, they rely on an efficient
hardware occlusion culling algorithm which
limits the applicability of their method.

Figure 1: The problem with using
only occlusion culling from the light's
point of view. all the triangles are
rendered to the shadow map, even
though they do not contribute to the
shadow in the final image.

shadow mapping is a well-known technique for rendering shadows in 3D scenes.
With the rapid development of graphics hardware and the increasing geometric
complexity of modern game scenes, shadow maps have become an essential tool for
real-time rendering.

Though they’re popular, shadow maps are notoriously hard to get working robustly.
One of the biggest issues with shadow mapping is poor scalability, both in terms of
quality and performance, with respect to the increasing complexity of real world game
scenes. In theory, we should need only one shadow map sample per pixel and the
shadow map generation step should be output sensitive, i.e., the running time of the
shadow map generation step should depend only on the number of objects that cast
visible shadows, instead of the number of objects in the scene. In practice, however,
everyone has their own bag of tricks to cope with shadow map resolution management
and shadow map rendering issues.

http://www.gdmag.com

THE INNER PRODUCT // aRI sIlvENNOINEN

gamE DEvElOPER | fEbRUaRy 201250

In this article we introduce a practical variant
of the shadow caster culling algorithm based on
the ideas of Bittner et al with the aim of making
the method a more viable option in a wider array
of scenarios. In particular, our method only
assumes the availability of the main view depth
buffer, and we will demonstrate a technique for
generating the shadow mask directly from the
depth buffer. Furthermore, the shadow mask
generation step is independent of the geometric
complexity of the scene and solves the worst
case scenario with the method described above.

Shadow MaSking
» The first thing to do is identify all light space
shadow map texels that will contribute to the
shadow in the final image. A shadow map texel T
will contribute to the final image if T gets sampled
during the deferred lighting pass. We call the set of
contributing shadow map texels a shadow mask.
There is a direct connection between the main
view depth buffer and the shadow mask since
each visible pixel in the main view will generate
shadow map lookups during the deferred lighting
pass, and we will use this property to generate the
shadow mask directly from the depth buffer.

Given a fully initialized shadow mask, the
culling part is relatively simple; for each shadow
caster we rasterize the light space AABB of the
shadow caster, and if the rasterized bounding
box does not contain a contributing shadow
map texel, we can safely cull the shadow caster.
Otherwise, we have a potential shadow caster,
which should be rendered to the shadow map.

A straightforward method for generating the
shadow mask from the main view depth buffer
would be to reproject the depth buffer pixels
to light space, by treating each depth buffer
pixel as a world space point and rasterizing this
point cloud to the shadow mask. However, this
approach has two obvious drawbacks. First

of all, the number of points generated from
a full resolution depth buffer creates a non-
trivial amount of work to be executed on the
GPU. Second, we lose all information about the
topology of the original geometry by using the
point cloud approximation, which means that all
bets are off when considering the connectivity
of the projected point cloud. In particular, small
holes or cracks are likely to appear in the shadow
mask, which could lead to false occlusion and
missing shadows. Point splatting could fix the
light space topology, but it adds another burden
to our already-overworked GPU.

We propose a scalable method for shadow
mask generation by subdividing the depth buffer

adFigure 2: (top) a view of a game scene rendered
with shadows. (middle) a shadow map with shadow
casters rendered using a naive application of
occlusion culling from the light’s point of view (gray)
and visible pixels (red). (bottom) a shadow map
with shadow casters rendered using our method
(gray) and visible pixels (red). The scene is part of
Left4DeaD 2 (courtesy of Valve Corp.).

Figure 3: an illustration of a min/max depth pyramid. we compute the minimum and maximum depth for each screen
space tile and construct a bounding frustum based on the depth range.

Figure 4. an illustration of the horizon problem. (right) using only depth values that correspond to geometry, we avoid
extruding the frustum. (left) otherwise the mask will be overly conservative.

TE
C

H
N

IC
A

L
S

C
H

O
O

L
{ A D V E R T I S E M E N T }

“ Coming in from VFS, I was ready to hit
the ground running. VFS prepared me
very well for the volume and type of
work that I do, and to produce the kind
of gameplay that I can be proud of.”

David Bowring, Game Design Graduate
Gameplay Designer, SAINTS ROW 2

Vancouver Film School
Game Design at Vancouver Film School is an intense one-year program that covers
everything you need to join the game industry as a designer or producer, from theory
to hands-on practice to the production of a professional-quality portfolio. There’s a
reason why the L.A. Times called VFS one of the top 10 schools favored by video game
industry recruiters.

VFS Game Design students learn more
than just one side of game design –
they experience the full scope of this
varied and rewarding career through an
in-depth curriculum that includes:

>> Interactive Narrative
>> Analog Games
>> Interface Design
>> Scripting
>> Level Design
>> Pre-Production
>> Project Management
>> Flash
>> Mobile & Handheld Design
>> Game Audio
>> The Business of Games

Led By Industry
In VFS Game Design, you’re mentored
by a faculty of respected industry
pros – your first crucial connections to
the professional world. At the helm is
veteran Dave Warfield, who, as a Senior
Producer for EA, helped produce and
design the NHL franchise for 10 years.
His many other credits include titles
like EA’s NBA LIVE and Konami’s TEENAGE
MUTANT NINJA TURTLES. An Advisory Board
of industry leaders, including luminaries
from Activision, Microsoft, Nokia, and
LucasArts, keeps the curriculum on the
cutting edge.

A Studio Environment
In a process that closely mirrors a
real-world studio environment and
production pipeline, you work in

teams to take games from concept to
completion. Toward the end of your
year at VFS, you get the chance to
present your final playable games to an
audience of industry representatives
and recruiters: a unique chance to prove
yourself and make valuable professional
contacts.

Living & Creating in Vancouver
In VFS Game Design, you have the
advantage of learning in Vancouver, B.C.,
Canada. Along with its strong film, TV,
and animation industries, Vancouver is
a world center of game development,
meaning that VFS is always industry-
current, hosts many guest speakers,
and provides you with vital mentorship
and feedback opportunities throughout
your year. It’s the perfect place to get
your career started.

The Results
Our graduates have gone on to earn
key design and production roles at
top studios around the world. A small
selection of their recent and upcoming
titles includes: PROTOTYPE 2, MASS
EFFECT 3, DEUS EX: HUMAN REVOLUTION,
WARHAMMER 40,000: DAWN OF WAR II,
DRAGON AGE II, PUNCH-OUT!!, FIFA 10, SKATE
3, TRON: EVOLUTION, DEAD SPACE 2, STAR
WARS: THE OLD REPUBLIC, DEAD RISING 2,
and MODNATION RACERS.

Find out about VFS Game Design
and begin your career at
vfs.com/gamecareer.

VANCOUVER FILM SCHOOL
200-198 West Hastings St
Vancouver, BC V6B 1H2
Canada
Phone: 604.685.5808 or 800.661.4104
inquiries@vfs.com

www.vfs.com/gamecareer

http://vfs.com/gamecareer
mailto:inquiries@vfs.com
http://www.vfs.com/gamecareer

into a screen space tile grid. Given the screen space tile grid, we compute
a world space bounding frustum for each tile based on the minimum and
maximum depth values in the tile. Note that after this process each world
space tile frustum contains all the world space points corresponding to the
screen space depth buffer pixels that reside inside the screen space tile.
Then, instead of rasterizing the point cloud resulting from the full resolution
depth buffer we only need to render the frusta to the light space shadow
mask buffer to obtain a conservative approximation of the shadow mask
(see Figure 3).

It turns out that min/max depth pyramids offer an efficient way to
compute the world space tile frusta. Given the full resolution depth buffer,
we compute a min/max depth pyramid by successively downsampling the
original depth buffer until we obtain the grid resolution we want. We store
the depth values in the R and G channels of a single texture.

In order to guarantee that we do not lose any information in the
original depth buffer—and to make sure the tile grid matches the last mip
level in the chain—we round up the depth buffer resolution to the next
multiple of 2^N in each dimension for the lowest mip level (i.e., highest
resolution) in the min/max pyramid, where N is the number of mip levels
in the min/max pyramid, and N-1 is last mip level in the mip chain with the
same resolution as the tile grid. Then, we bootstrap the min/max pyramid
downsampling by upsampling the depth buffer to the lowest mip level of
the min/max pyramid.

Another subtle consideration to make while performing the min/max
pyramid construction is how to correctly downsample the maximum depth
values. Suppose we have an outdoor scene consisting of terrain and a
visible skybox at the infinity with depth 1.0. Now, if we would simply take
the maximum depth value of the four samples in the lower mip level, it
would mean that there would almost surely be a set of bounding frusta
spanning the whole terrain at the horizon (see Figure 4). The correct way to
handle this case is to consider only maximum depth values less than one
during the downsample operation (see Listing 1).

After we have obtained the min/max depth pyramid that corresponds
to the screen space tile grid of the original depth buffer, the next step is
to rasterize the frusta defined by the grid to the light space shadow mask.
In our implementation, we chose to utilize the geometry shader stage and
stream the emitted triangles from the geometry shader directly to the
rasterizer stage, eliminating the need to explicitly compute the bounding
geometry or read back the results to the CPU.

To feed the geometry shader we render an immutable point list, where
each point corresponds to a single tile in the tile grid. During each geometry
shader invocation we emit the frustum triangles by looking up the minimum
and maximum depth values from the last mip level of the previously
constructed min/max depth pyramid. In addition, we disable depth and
color writes, and write out only to the stencil buffer associated with the
shadow map, setting the stencil value to one for each passed fragment. The
final shadow mask will then consist of all the shadow map texels with an
associated stencil value of one (see Figure 5).

In addition to obtaining the binary shadow mask, we could also prime
a conservative depth buffer for subsequent occlusion culling passes by
rasterizing the backfacing triangles of the view frustum. This might be

especially useful in cases where the light depth complexity is high.

Shadow CaSter Culling
» Now that we have obtained a fully initialized shadow mask constructed
from the original depth buffer, we can now run an occlusion culling pass
from the light's point of view using the shadow map as our depth render
target, in a spirit similar to Bittner et al. Depending on the circumstances,
however, we might not need a fully hierarchical occlusion culling pass to
obtain significant performance gains at the shadow map generation step.
In some cases, especially when dealing with low depth complexity from
the light's point of view, it is more beneficial to avoid all forms of GPU read-
backs in order to eliminate any potential synchronization issues, such as
GPU starvation, CPU stalling, or latency, which are usually associated with
hardware occlusion queries.

In our implementation, we keep all the data on the GPU at all times,
and choose to use predicated rendering for shadow caster culling. In
particular, we issue predicate queries for each shadow caster candidate
in the intersection of the light frustum and view frustum by rendering the
shadow caster candidate's world space AABB and checking for intersection
with the shadow mask. We disable both depth and stencil writes during
this pass and set the stencil test for equality with one (i.e., the shadow
mask stencil reference value). Then, in a second pass we issue predicated
draw calls for each candidate and profit each time a predicate culls a
shadow caster candidate.

THE INNER PRODUCT // aRI sIlvENNOINEN

gamE DEvElOPER | fEbRUaRy 201252

l i S t i n g 1 :

Pixel shader code for the min/max pyramid downsampling pass.

float4 MinMaxDownsample_PixelShader(in float4 Position : SV_

Position, in float2 UV : TEXCOORD) : SV_Target

{

 float4 Samples[4] = {

 Texture.SampleLevel(PointSampler, UV, 0),

 Texture.SampleLevel(PointSampler, UV, 0, int2(1,0)),

 Texture.SampleLevel(PointSampler, UV, 0, int2(1,1)),

 Texture.SampleLevel(PointSampler, UV, 0, int2(0,1))

 };

 // Use only valid depth values in the downsampling filter

 for (int i = 0; i < 4; i++)

 Samples[i].y = Samples[i].y < 1 ? Samples[i].y : 0;

 float MinZ = min(min(Samples[0].x, Samples[1].x),

min(Samples[2].x, Samples[3].x));

 float MaxZ = max(max(Samples[0].y, Samples[1].y),

max(Samples[2].y, Samples[3].y));

 return float4(MinZ, MaxZ,0,0);

}

r e f e r e n c e s
real-time Shadows - Elmar Eisemann, Michael Schwarz, Ulf Assarsson and Michael
Wimmer, CRC Press 2011

occlusion Culling in alan wake - Ari Silvennoinen, Hiding Complexity, SIGGRAPH 2011
Talks

Shadow Caster Culling for efficient Shadow Mapping - Jiri Bittner, Oliver Mattausch, Ari
Silvennoinen and Michael Wimmer, Symposium on Interactive 3D Graphics and Games
2011

www.gdmag.com 53

Since the query geometry consists only
of a few vertices, the predicate initialization
pass is completely fill-bound on the GPU. As
an additional optimization to reduce the fill
cost of this process, we could conservatively
downsample the shadow mask to a lower
resolution for the predicate rendering pass.

Software occluSion SyStemS
» Software-based visibility systems have recently
regained popularity, and there are several high-end
game engines and AAA-titles that have adopted
this approach. Regardless of whether the system
is based on potentially visible sets (PVS), cells
and portals, or a more straightforward software
rasterizer with custom occluder geometry, it is
possible to output a conservative depth buffer
based on the visibility query results.

The good news is that as long as we have
a conservative depth buffer available, we can
compute the shadow mask using the min/max
pyramid approach—as described above—by
using a trivial minimum depth bound of zero.
This operation and the subsequent shadow
caster culling is thus perfectly suited for a
software implementation.

concluSionS
» Our shadow caster culling method is compatible
with both hardware and software-based visibility
systems. We assume only the availability of a
(conservative) depth buffer and hence believe
that the presented technique is easy to integrate
into an existing rendering engine.

The shadow mask concept has applications
beyond shadow caster culling. One potentially

interesting direction of future work is to
generalize cascaded shadow maps with the
combination of hardware-supported sparse
textures together with the shadow mask,
aiming for a more flexible level-of-detail
management for shadows. In particular, the
shadow mask could be used to select which
tiles in the sparse shadow texture need
updating as well as aid in selecting the correct
resolution for each tile.

ari Silvennoinen is the research lead at Umbra Software,

where he is currently focusing on next generation

rendering technology. His research interests include all

things related to light, shadows, and visibility in general.

Ari can be found online on twitter @AriSilvennoinen and

his blog www.clownfrogfish.com.

figure 5a: a shadow mask
for the main camera (shown
in orange) is layered on top of
the light space shadow map.

figure 5b: a shadow mask
for the main camera (shown
in orange) and view frustum
(shown in blue) is layered on
top of the light space shadow
map. in this case the shadow
mask is able to cull most of the
geometry in the view frustum
and occlusion culling from the
light's point of view does not
cull any shadow casters.

figure 5c: terrain height field as seen from the
light's point of view.

http://www.clownfrogfish.com
http://www.gdmag.com

http://www.fdg2012.org

www.gdmag.com 55

damian Kastbauer // aural fixation

DUDE, HISTORY?
HOW I FOUND THE FUTURE BY LOOKING BACKWARD

Game Developer magazine has been
publishing sound-related articles
since its inception in 1994. It makes
sense; sound has always been an
integral part of the game experience.
An interesting article in the first year
by Jon Burgstrom broke down a new
audio specification for DOS platforms
which included “digital (WAVE) audio
(8 or 16 bit, mono or stereo), MIDI
(not just FM synthesis), volume
control, minimal three-dimensional
sound effect positioning.” At the time,
our industry was moving away from
“just FM synthesis” and into a sample
playback mentality that has since
taken root. We can now not only play
back compressed or uncompressed
audio files, but we can also stream
uncompressed music and sound
effects in 7.1 and play hundreds of
simultaneous sounds every frame as
a matter of course.

YOUR HISTORY
» Jesse Harlin packed up the
Winnebago and hit the dusty
trail last month after six years of
scribing the Aural Fixation column.
Having had the pleasure of working
alongside him during my time at
LucasArts, and through the splendor
of his writing here each month, I
know that this change will find him
focusing his creative energy into
other aspects of his life and career.
I'm not sure what that means for
the future, but I hope that at some
point he is able to take a step back
and survey the kingdom of game
audio he has helped create through
these pages, knowing that he has
helped us all through the trials
and tribulations of this console
generation in style.

Almost 20 years in production,
the pages of Game Developer have
seen audio articles from Alexander
Brandon, Rob Bridgett, Vincent
Diamante, Aaron Marks, Bobby
Prince, George “The Fat Man” Sanger,
and a host of other wordsmiths
intent on keeping you in the loop.
Game designer Jonathan Blow

contributed articles on real-time
sound filtering (DSP), Andrew
Boyd speculated on the impact
that Microsoft's DirectMusic
would have on interactive music
in comparison to audio engines
like RAD Game Tools, Miles Sound
System, and Headspace's Beatniks
Audio Engine. In his February 2000
article on physically modeled
audio, Mark Miller says, “According
to some people in the game
development industry, physical
modeling synthesis is the 'next big
thing' in interactive audio,” and I
still believe it!

Through three iterations of the
PlayStation console, both Xboxes,
and enough Nintendo hardware
to fill every living room, there
has always been someone here
representing audio and attempting
to keep everyone on the same page
with the challenges of the day.

THAT WAS THEN
» I tend to lean heavily on the side
of nostalgia when it comes to game
sound. I spent my youth dropping
quarters at local arcades, bars,
and pizza parlors. I can still vividly
remember beating the mother

brain in Metroid, trading off turns
mapping and playing with my good
friend and neighbor throughout the
night. The slow crawl of 300 baud
across the telephone lines waiting
for the latest game to land on the
1541 of my executive C64; the slow
intro crawl, all bouncing rasters and
SID chip tonality, communicated
directly into my adolescent skull.

I carry these memories with
me (literally, I just unpacked every
console and cartridge I've ever
owned), and they help inform my
view of how far we've come in game
audio and games in general. They
are the things that brought me here
and, in some ways, help keep me
focused on the future. Similarly,
articles from the past can help us
map well-trodden paths, dead ends,
or secret passages that got lost
along the way.

THIS IS NOW
» In the aforementioned article
on real-time DSP from 1998, we
learn some of the hows and whys
of sound filtering and how it can
be used to interactively enhance
gameplay. These techniques are
still valuable, and they may seem
like veiled secrets if you don't know
where to look for them. Things like
obstruction and occlusion may have
become commonplace in today’s
middleware engines, but they’re less
often used in the expansive ways
described by Blow: “This cannon
blast is happening on the other side
of an echoey ravine, and it’s passing
through a damp fog bank on the way
here, and the weather is very windy,
and by the way I’m listening to the
sound underwater.”

Similarly, in the piece on
physical modeling, while somewhat
focused on the replacement of
musical instruments, the Stacatto
Systems SynthCore Mission
Control tool is shown as part of a
parametrically synthesizing vehicle
engine. What might have sounded
like a great leap forward from FM

synthesis at the time would now
sound like nothing more than a
hungry Midwestern mosquito in
your ear. The value of having this
perspective comes from being
able to see and hear the march of
progress, and then using it to frame
future possibilities.

Anyone looking to jump-start
their own education would do well to
peel back the pages of history and
gain a better understanding of where
we've been. It's been said that those
who don't know history are destined
to repeat it, and in a lot of ways we're
still building on the challenges of the
past. Even with increased fidelity,
new resource challenges, and the
demand for greater interactivity,
we still need every trick in the book
to make today's experiences sing.
Knowing where we've been allows
us to make a firm next step forward
from the edge of a well-worn path.

In the spirit of those that have
come before me, I’ll do my best
to keep things fresh and forward-
thinking. On the shoulders of giants,
guided by the stars, toward the next
generation of game audio.

“...and in the end the love
you take is equal to the love you
make.” —The Beatles

DAmIAN KASTBAUER is a freelance technical

sound designer and can be found musing

on game audio at LostChocolateLab.com

and on twitter @LostLab.

Im
Ag

E
fR

O
m

 W
W

W
.I

ST
O

cK
pH

OT
O.

cO
m

. A
R

T
B

Y
K

El
SE

Y
K

R
AU

S

http://WWW.ISTOCKPHOTO.COM
http://LostChocolateLab.com
http://www.gdmag.com

game developer | February 201256

pixel pusher // ryan Consell

On Fantasy armOr and Lady Bits

The Problem
» There is a commonly-held
understanding in fantasy,
game, and science fiction
communities that female
armor sucks. That is, it
doesn’t really cover any vital
organs. It appears to follow
the relationship described
by equation 1.

Figure 1: Red Sonja,
dynamite entertainment.

Figure 2: night elf, World
of Warcraft, Blizzard
entertainment.

What does that relationship
imply? It means that there
is a wealth of fantasy
artwork trying to sell the

idea that chain bikinis
(Figure 1) and steel push-
up bras (Figure 2) are
things that women might
wear to a sword fight.
Clearly these women are
both poorly insulated and
have no particular intention
of keeping their vitals inside
their bodies.

We know why these
images exist. They appeal
to a specific market. That,
though, is a different
discussion. All we want to
establish here is that there
is a rather strong trend
toward dressing women in
metallic lingerie rather than
protective armor in fantasy
combat.

To predict a
counterpoint: There are men
that wear next to nothing
in fantasy art as well.
Take Conan or He-Man, for
example. Neither of them
wears much in the way
of protection. This is true,
but they aren’t meant to
be armored. Both of the
ladies described earlier
are wearing armor, not
barbarian-style loincloths.
Their metal garments
describe access to real
armor, and their decision
not to wear it.

What can be done?

The hisTorical Problem
» My first choice when
armoring women is to draw
from history. Unfortunately,

there are a few problems
with that:

» Women have
traditionally been
restricted from fighting.

» the few that were
allowed to fight would
have mostly been
commoners unable to
afford quality armor.

» the period in history
in which plate armor
was actively used was
very brief: in europe,
around 1400 to 1600
ad.

This leaves us with barely
any extant examples of

women in armor. Even if
there were women warriors,
they would likely be wearing
the same thing as the men:
hardened lamellar leather,
chain hauberks, or coats of
plates.

Fully kitted in this stuff,
they’d be indistinguishable
from men. In combat that
is just fine, but for artistic
purposes, we usually like to
have our characters clearly
gendered. So, we can’t just
look at what real women
wore and expect to get
very much of value for our
modern designs.

FuncTionaliTy
» We can’t pull much from
historical examples of the
appropriate gender, but we
can still let the expertise of
the ages inform us in terms
of what would make sense.

Plate armor is the
way it is largely out of
necessity. The layout and
articulations of the plates
are the best solutions the
designers could come up
with to balance mobility
with protection. Also, note
that nobody was naked
under their armor. There was
always padding between

breasTPlaTe vs boobPlaTe
a brilliant Tumblr feed, Women Fighters in reasonable armor, inspired me to add my personal thoughts on the subject of female
armor in fiction.

Why does my opinion matter? I’m an armorer. I make actual armor that people wear when they hit each other with swords. When
making armor I have to strike a balance between comfort, protection, range of motion, and appearance. My experience has made me
more than a little opinionated on the subject of fantasy armor.

I intend to set the world straight. What follows is a discussion of how to do it wrong, how to do it right, and why you might care.

Figure 3: Joan of arc, c. 1485.

equatiOn 1: governing relation for apparent female armor quality.

Figure 4: st. george, c. 1504.

www.gdmag.com 57

the metal and the flesh
that absorbed the energy
of the blows. That means
the difference between
male and female plate
armor is relatively trivial,
because once you’ve padded
it out and left space for
movement, you’ve all but
erased the figure of the
person inside. Let’s grab
some examples to show
this in action. The first is
an artist’s interpretation of
St. Joan of Arc (Figure 3),
the second is of St. George
(Figure 4), both of whom
are wearing variations on
German Gothic-style armor.

 Note the differences in
the armor as depicted by
artists of the time period.
There are none. Both are
fully covered and both
have prominent chests
and narrow waists. This is
pretty common because
that is how armor worked; It
was a functional necessity
more than it was a style.
Want another example?
How about a contemporary
interpretation on the
theme?

Figure 5: elizabeth's Armor,
Elizabeth: The Golden Age,
universal Pictures.

The armor shown in Figure
5 is from the film Elizabeth:
The Golden Age. It is
gorgeous. Modeled again on
German Gothic plate, I have
only a minor gripe with it:
no neck protection. That’s
important stuff, but let’s look
more at what they did right.

They made the armor
functional yet feminine with
the detail work. The overall

form could easily go on a
man, but the trim, the collar,
and the cuffs were character
and period appropriate.
Brilliant.

However, artists
aren’t always aiming for
practicality or historical
relevance. Style will often
trump realism in costume
design. Consider one of the
most epic suits of armor ever
worn, by Sauron from The
Lord of the Rings. If this guy
lifted his arms too high, he’d
poke his eyes out with his
own pauldrons. It's awesome
but impractical armor, so
why don’t we deride this
design? Because we believe
that it’s appropriate for the
world and the character.

Breastplates and
BooBplates
» The comparison between
breastplates and boobplates
serves well to illustrate the
competition between style
and function. Breastplates
are what you call the large
metal shell worn over the
torso that protects pretty
much all of the important
squishy bits. They’re
designed to deflect blows
and distribute impact (see
Figure 6).

Figure 6: italian
Breastplates, Palace
Armoury, Malta.

Pretty much all plate armor
uses variations on this
design. Counter-examples
like the Roman musculata
are primarily decorative,
worn by important folk
that didn’t much expect to
actually be fighting in them.

Figure 7: Male
Commander Shepard,
Mass EffEct 2,
BioWare.

http://www.gdmag.com

game developer | february 201258

Figure 9: Combat Archer
Breastplate, ryan Consell.

Boobplates are ostensibly
breastplates fitted to a
female torso. That is, they
have actual breasts dished
out. Figure 9 shows a
boobplate. I made that one
myself. The woman in the
photo asked for it to be like
that. She fights in it. I worry
constantly that she’s going
to fall hard and it will crack
her sternum, even with the
padding. Note also that it
seems almost perfectly
designed to guide sword
points and arrows into her
heart. They still have to
penetrate the armor but,
honestly, that’s a design
flaw. However, it looks good,
serves her specific purposes,
and makes her feel sexy and
badass at the same time.
That’s important, too.

So we have a bit of a new
problem: We want to make
people look good. We want
characters to be sexy. We
want that more than we want
realism in our fantasy art,
but we also want to feel like
what they are wearing makes
sense. The armor should
complement the character
and setting, not distract from
it. How do we do it?

Recommendations
1. Internal consistency.
Any science fiction or fantasy
world runs on its own set of
rules. The fashion, technology,
values, and physics are all
free to be laid out by the
creative minds involved.
Maintaining some logical
consistency in what people
wear for armor adds a lot to

the world. If men and women
are going to be fighting the
same battles, afford them the
same level of protection.

Comparing the armor for
both the male (Figure 7) and
female (Figure 8) versions
of Commander Shepard’s
default armor from Mass
EffEct 2, we can see a good
example of maintaining
a consistent standard. In
contrast, tEra OnlinE did this
very, very badly (Figure 10).

Figure 10: Tera Online,
Bluehole Studio.

2. Go for the eyes, Boo.
Any artist working with
human subject matter will
tell you that the face is the
most important part of the
character. A headshot by
itself can tell you everything
you need to know about who
a person is and how they
feel. Sex appeal can come
entirely from a beautiful
face; the body doesn’t need
to be naked as well.

I argue that just a
face (Figure 11) is more
appealing, sexy, and
descriptive of a character
than an exposed chest
(Figure 12) could ever be.

Figure 11: neverwinTer
nighTs, BioWare.

Figure 8: Female Commander
Shepard, Mass effecT 2,
BioWare.

pixel pusher // ryan Consell

www.gdmag.com 59

Figure 12: NeverwiNter
Nights, BioWare.

The bare chest and metal
bustier add nothing to the
femininity, sexiness, or
appeal of the character. In
design, focus instead on the
face for character appeal;
let the armor be a reflection
of the setting and her role
within it (with the caveat
that you’ll likely need more
close-ups).

3. Unwrapped Christmas
presents aren’t exciting.
So you still want your
fantasy fighters to be sexy?
How about a bit of a tease?
Let our imagination run
away with us.

People will always want
to see more than they’re
allowed. An exposed ankle
will make someone blush
if they’ve always been
denied access to them in
the past. If your characters
are naked, there’s nothing
to tease us with. A well-
considered bare shoulder
can be way sexier than full
frontal nudity. Put a bit of
thought into when and how
you expose your characters.
The anticipation and the
idea can be more enticing
than the full show.

Not convinced? Let’s
consider Tali’zorah (Figure
13). In two full Mass EffEct
games, we have not seen
her out of her armor,
and yet one of the most
compelling moments in the
game was when she took
off her mask to make out
with Shepard. Moreover,
you didn’t see her face
even then; it was sexy
because of the idea that
she was revealing herself.
She’s alluring because of
the idea of what she could

be. The mystery is sexier
than the reality could
ever be.

4. Everybody is naked
under their clothes.
Maybe you still want to
make pictures of pretty
girls in very little clothing.
I won’t stop you. There
is a time and a place for

such things, and I am not
about to try to dictate
terms on that front. This is
just a plea for reasonable
armor. So if you need to
have a female warrior with
exposed flesh, could you
let her be in a state of
undress rather than depict
her default state as being
mostly undressed?

Consider Figures 14
and 15, two women with
rather substantial armor
exposing their figures. We
can have our cake and eat
it, too. Wasn’t that easy?

Figure 14: Samus, Sung
Jin Ahn.

Review
» Historically believable
armor is good (Elizabeth).
Exposed midriffs and
miniskirts are bad (Figure
16). Stylized, figure-flattering
suits are fine (ala female
Shepard). Metal lingerie that

can only be reasonably held
in place with glue is just silly
(Figure 17).

Figure 16: ragNarok
oNliNe, gravity.

Figure 17: tera oNliNe,
Bluehole Studio.

A version of this article was originally

published on MadArtLab.com.

Ryan Consell is an armor smith,

blogger, and avid gamer from

Ontario, Canada. He has been

making armor since 2001 for both

costume and combat purposes.

Figure 13: Tali, Mass
effect 2, BioWare.

Figure 15: Hilde, soul
calibur iv, Namco Bandai
games.

http://MadArtLab.com
http://www.gdmag.com

fullsail.edu/jobs

800.226.7625 • 3300 University Boulevard • Winter Park, FL 32792
Financial aid available for those who qualify • Career development assistance • Accredited University, ACCSC
To view detailed information regarding tuition, student outcomes, and related statistics, please visit fullsail.edu/outcomes-and-statistics.
© 2012 Full Sail, LLC. All rights reserved. The terms “Full Sail,” “Full Sail University,” and the Full Sail University logo are either registered service
marks or service marks of Full Sail, LLC.

Now seeking

Game Faculty
Interested in leading the next generation of game designers, artists,
and producers? Full Sail University is hiring passionate, qualified
faculty for its degree programs.

Full Sail offers a creative, tech-driven working environment,
competitive pay and benefits – and an opportunity to work among
a team of enthusiastic industry professionals who have instructed
some of the gaming world’s brightest stars.

©
 2

01
2

Fu
ll

Sa
il,

 L
LC

To learn about our faculty
opportunities, visit us at the

or visit
fullsail.edu/jobs

Career Pavilion
Booth #1228

http://fullsail.edu/jobs
http://fullsail.edu/jobs
http://fullsail.edu/outcomes-and-statistics

Recruitment at GDC

NE W S AND INFORMATION ABOUT THE GAME DE VELOPERS CONFERENCE® SERIE S OF E VENTS WWW.GDCONF.COM

WHAT ARE HR MANAGERS LOOKING FOR AT THIS YEAR’S CAREER PAVILION?

\\\The Game Developers
Conference, held each
year in San Francisco,
has grown into one of
the industry's best and
most exciting venues to
make new connections
and find jobs within the
game industry. The next
show is set to take place
March 5–9, 2011, and
recruiters from throughout
the industry are primed to
seek out new talent from
all over the world.

For developers looking
to break into (or find a
new job within) game
development, GDC’s
Career Pavilion offers a
perfect opportunity to
connect directly with
recruiters from all types
of companies, ranging
from big budget console
developers to up and
coming mobile studios.
In anticipation of the
show, we talked to a few
recruiters from Nexon, Riot,
Ubisoft, Wooga, and more,
to hear their opinions
about their recruitment
practices at GDC 2012.

Game development
now encompasses a
wide swath of platforms,
and distribution models,
from console gaming, to
Facebook and beyond.
With this diversification,
some companies have
chosen to look for new
recruits that have a firm
grasp of the industry's
flourishing markets and
emerging trends.

"We are hiring far more
people with experience in
online games, including
data analysts, economic
designers, and network
programmers, among
others," said Ubisoft
international events
specialist Anne Rubio. "As

the audience of gamers
expands, so too do the
types of jobs that are
available, which is great
news for people who want
to work in the industry"

In particular, Rubio
emphasized that even
candidates for console
development jobs should
be aware of popular trends
in other sectors, as these
other markets are the
most likely to change
the way players want to
consume their games.

"We think AAA games
will increasingly adopt the
best features from social
and mobile games, and
vice versa,” she said. “To
be successful, we have to
adapt to the way people
like to play."

An anonymous source
from another major game
developer agreed that
candidates should be
well-versed other markets,
so long as their particular
skills remain sharp and
up-to-date with modern
development. At times,
developers can get slotted
into a specific skillset and
lose larger perspective.

"Trouble would arise
if one has been in the
social space or console
for too long and looking
to switch—are their skills
on par for that particular
segment of games?
Moving from one 'genre' to
another is generally not an
issue, unless their skills
have been left on the shelf
too long and are outdated
for what we are looking to
do," the source said.

Crytek's HR manager
Andrea Hartenfeller
agrees.“It depends on
the individual’s skills,
abilities and work history,”
she says. “We can’t say

that moving between
genres poses problems
as a general rule. There
are situations where the
change works, and there
are situations where it
doesn’t work.”

When it comes to
hiring people up from
more junior roles, Wooga’s
head of HR Gitta Blatt had
positive things to say,
reflecting a trend toward
hiring self-starters or self-
taught developers, as was
often done in the early
days of games. “Expert
experience today has
nothing to do with age or
number companies worked
with,” says Blatt. “Some of
these main actors on the
gaming stage are really
such creative, ambitious,
talented and successful
that the old view of
hierarchy is completely out
of use.”

Our anonymous
source agrees. “I think
that if the candidate is that
outstanding—regardless
of whether there is an
opening or not—we would
take the opportunity to
hire them,” said the source.

“Skillsets that are rare or
in high demand don’t just
appear every day, and you
have to be able to seize the
opportunity, and timing is
always everything.”

Interestingly, Riot’s
senior recruiter Valerie
Lee takes the discussion
one step further, valuing
passion above all.
“Ultimately, Riot values
passion and aptitude
above experience, degree,
or institution,” she says.
“If we believe you have
passion and aptitude,
there is probably a role for
you at Riot.”

Students are another
story. Game schools have
become more plentiful
in recent years, with
many students of game
programs going off to do
great things, even forming
their own companies after
graduation. For Ubisoft,
for example, the type of
university a student goes
to is important. Rubio says
the company’s policy is to
“actively recruit from top
universities that provide
students with a strong
education in both its

theoretical and practical
components.”

But sometimes
school isn’t enough. A
little time at a studio, in
whatever capacity, can
convince companies
that a prospective hire
is serious about working
in the industry. Nexon’s
recruiting coordinator/
sourcer Jennifer Di
Pietrantonio explains. “We
always look at students
that come from game
school programs, however,
students that have had
hands-on experience
through part time work
or an internship tend to
have a better chance of
success,” she says. “These
students understand the
business side as well as
the creative side.”

Regardless of your
experience level, in
this rapidly-changing
industry, it behooves any
potential hire to be aware
of the ins and outs of
online games, as much of
the industry is trending
in that direction. Aside
from that, talent is king!
Happy job-hunting!

GDC Career Pavilion.

WWW.GDMAG.COM 61

http://WWW.GDCONF.COM
http://WWW.GDMAG.COM

http://www.gdconf.com

www.gdmag.com 63

design of the times // soren johnson

The Coming STorm
How cloud gaming could cHange games

And for the consumer, cloud gaming
enables cutting-edge graphics on
any connected device, with no
installing or patching ever. Although
the system requires a constant
internet connection, more and
more games—even single-player
ones—are demanding a connection
anyway. Indeed, cloud gaming can
handle internet stutters better
than local gaming does; in Diablo
iii, a dropped connection sends the
player back to a checkpoint screen,
while games on OnLive bring the

player back to the exact frame they
last encountered.

Most importantly, cloud gaming
should change the economics of
pricing. By removing the traditional
retail middlemen, not to mention
secondary drags on the system
like rental and used-game sales, a
developer could easily make as much
money selling a game for $30 via a
cloud service as they could selling it
for $60 via a traditional retailer. The
industry could finally approach a
mainstream price point, with games

priced comparably to movies, books,
and music—instead of the $60 price
point (after buying a $300 console),
which is absurdly out of reach of the
average consumer.

Indeed, the economics could
change for developers, too. If
entirely new business models
emerge, with consumers paying for
a game daily, weekly, monthly, or
perhaps with a single subscription
to all available games (a la Netflix),
the design incentives change. Cloud
gaming could reward developers

for depth of gameplay over ornate,
scripted sequences; infinitely
replayable dynamic games like
left 4 DeaD or StarCraft might
suddenly be more profitable than
handcrafted semi-movies like Call
of Duty or unCharteD.

reThinking ConSoleS
» Cloud gaming also has important
implications for the next generation
of consoles. The ability to run
games from the cloud gives the
console makers a profitable

ever since onlive’s dramatic public unveiling at gDC 2009, the game industry has been watching and wondering about cloud
gaming, at times skeptically, at times hopefully. The technology holds the potential to revolutionize the business, perhaps forever
destroying the triangle that connects consumers with hardware manufacturers and software retailers.

Some of the immediate benefits are obvious. Instant, time-limited demos would allow every developer to showcase its games on
demand with no extra work. Frictionless per-day, or even per-hour rentals would bypass Blockbuster and other rental chains, potentially
meaning that more money goes directly to the people who actually make the games. Similarly, virtual ownership handicaps GameStop’s
ability to resell a single disc multiple times, again making sure that the money flows directly from the consumer to the developer. Further,
if a publisher commits fully to the cloud—with no offline version available —piracy would be virtually impossible.

 Cloud gaming could reward
developers for depth of gameplay
over ornate, scripted sequences;
infinitely replayable dynamic
games like left 4 DeaD or
StarCraft might suddenly be more
profitable than handcrafted semi-
movies like Call of Duty or
unCharteD.

Left 4 DeaD.

http://www.gdmag.com

game developer | february 201264

design of the times // soren johnson

alternative to both the rental
market and the retail middlemen,
all within their own closed systems.
As a bonus, they could even sell
inexpensive “cloud-only” versions
of their next-gen console, without
optical drives or hard disks.
(Microsoft already allows saved
games on the cloud with its 360.)

Going down this path, however,
raises the thorny question of
whether consoles are even
necessary at all. OnLive is already
selling a “MicroConsole” that
provides a current-gen console
experience via the cloud; there
is no reason similar technology
can’t be included by default in
new TVs, or even in any cable box
or satellite receiver. OnLive and
Gaikai both have services that
don't require a console at all. What
defines a console, after all? The
three necessary elements are
the controller, the screen, and the
couch. Soon, anyone with those
three things and an internet
connection to the cloud will be
seconds away from any game.

Also, because cloud servers
already dwarf current-gen consoles
in horsepower, they can bring a
next-gen experience to consumers
today by default. The cloud promises
a “perpetual” virtual console that
gets updated regularly as new, faster
servers come online. Publishers
should be receptive as a perpetual
console promises to end the boom-
bust cycle they experience with each
new generation.

This year in the current
generation’s life cycle should be
when publishers are making record
profits, but instead, many are
fighting just to stay in business;
the next wave of forced upgrades
could wipe them out. Anything that
could prevent the gap years when
consumers are forced to migrate
between consoles would be a
welcome change.

Thus, for the console makers,
cloud gaming’s promise is
mercurial—it could break them free
from the parasitic drag of traditional
retail, but it could also destroy
them by making the hardware itself
irrelevant. The best defense against
the latter is an active and direct
relationship with the consumer, not
tied to any one machine.

On this front, Microsoft, with
its comprehensive LIVE service, is
far ahead of Sony and Nintendo.
Many gamers would be hesitant to
leave behind their Gamerscores,
Achievements, friends lists, and
downloadable games for another
eco system. However, a radical step
could cement this bond.

Because a thin video-
based client can run on almost
anything, any one of the console
manufacturers could start the
next generation tomorrow by
simply buying OnLive or Gaikai
and embedding it in the next
system update. Next, they could
sell cloud-only versions of the
current-gen consoles for almost
nothing ($100? $50?), which
could revolutionize the market and
inoculate the company from the
coming shift. Some are predicting
that the next generation of consoles
will be the last one, but it may not
even be necessary at all.

Rethinking games
» However, cloud gaming’s
potential is much, much greater
than changing the economics
of the industry; in fact, it could
revolutionize the very way
games are made. For starters,
the cloud could solve the number
one problem that plagues most
teams: a lack of feedback from real
players during the early stages of
development when radical change
is still possible. Most game projects
grow slowly from fast and nimble
speedboats to hulking battleships
that can only change course at
great effort and cost.

Using cloud technologies, a
team could expose its game to
fans as soon as it is playable, with
almost no technological hurdles
or security concerns. All players
need is a browser and, if necessary,
a password. Releasing games
early for feedback and buzz is
nothing new for indie developers
(doing so is actually one of their
major competitive advantages);
nonetheless, for major publishers,
the idea is fraught with the potential
risk of leaked games and bad press.

As for prerelease buzz, the
greatest danger, of course, is of
simply releasing a bad game, and
the surest way to do so is to isolate

a development team from the
oxygen of real players. Further, the
cloud’s inherent flexibility creates
myriad ways to target players for
testing: 24-hour passes, GeoLocked
sessions, early press versions,
pack-in codes, and so on.

Further, the cloud promises
more from these early tests than
some simple metrics or private
forum comments. Because the

output of a cloud server is a video
feed, developers would have
access to a recording of every
minute ever played of their game.
Wonder how players are handling a
certain tricky boss? The designer
can simply watch saved videos of
many different players tackling
the encounter.

Still, the greatest change cloud
gaming could bring is the end of
client/server architecture. Many
online games have thin clients, with
the “real” calculations being done
on the server, largely to prevent
rampant cheating. (As Raph Koster
famously put it, “The client is in the
hands of the enemy.”) With cloud
gaming, the client is so thin that
it might be inappropriate to even
call it a client, as it’s simply a video
player that takes input.

The upside of this system
is that developers would no
longer need to waste resources
developing a traditional game
client, plugging its security holes,
worrying about peer-to-peer
connectivity, and optimizing what
minimal, yet necessary, sets
of data need to be sent to the
client. In other words, making a
game multiplayer would now be
essentially trivial.

Writing multiplayer games is
a formidable challenge—keeping
game state in-sync between servers
and clients in a safe, fair, and
accurate manner is no small feat.
With cloud gaming, these issues
evaporate because there are no
clients anymore. Developers simply
write one version of the game, run it
on a single machine, and update it
based on user actions, which is how

single-player games are made.
Taking advantage of this feature

would require some courage, as the
developer would need to go all-in
on cloud technology. Developing an
online game with no client means
that the game could be played
only via the cloud. There are many
benefits to being cloud-only—no
piracy, for one—but the greatest
benefit might be not even needing
a network programmer.

Perhaps the group that has
the most to gain from this new
model would be small, independent
developers, for whom the idea
of building an indie MMO seems
laughable given their tiny resources.
One can’t help wonder what Mojang
could do with a cloud-based version
of Minecraft, seamlessly updated,
playable from any device or browser,
that connects every world end-to-
end. So far, the big question for cloud
gaming is when will it be feasible,
but ultimately, the more important
question is what will it enable.

s o R e n j o h n s o n was the co-designer

of Civilization 3 and the lead designer of

Civilization 4. He is a member of the GDC

Advisory Board, and his thoughts on game

design can be found at www.designer-

notes.com.

Diablo iii.

http://www.designer-notes.com/
http://www.designer-notes.com/

http://www.igda.org/join

Good JoB Hired someone interesting? Let us know at editors@gdmag.com!

H i r i n g n e w s a n d i n t e r v i e w s

Game developer | feBruary 201266

Alpay It Forward
Kenan alpay moves from Ubisoft osaKa to sUperbot

Kenan Alpay is a young designer with whom I’ve worked many times over the years, and who
most recently joined SuperBot in Los Angeles after a long stint in Japan. He’s now working with
AAA designers for the first time, which has opened up a whole new world.

whowentwhere

As part of its planned "move into mass-
market online gaming," RuneScape maker
Jagex has appointed Rockstar Games's
former art and animation director Alex
Horton as its new chief creative officer.

CCP Games has hired David Reid, formerly
Trion Worlds SVP, as its new chief marketing
officer ahead of the launch of its next big
first-person shooter DuSt 514.

Nokia Connect's former program
management execution office head Kaj
Haggman will join Digital Chocolate's
Helskini studio as its new general manager.
Sulake's former user and market insight
director Emmi Kuusikko will join the same
office as product management VP.

new studios
Chinese online/mobile game developer and
operator NetDragon revealed that it is set to
form a new social games studio with Tokyo-
based social and mobile gaming giant DeNA,
with the aim to develop mobile social games
for the Chinese market.

Tapjoy co-founders Lee Linden and Ben
Lewis, along with former Playdom executive
producer Craig Dos Santos, have founded
Andover Games, a new mobile gaming
studio that raised its initial funding by
selling itself to Ascend Acquisition Corp.

Pandemic Studios co-founder Greg Borrud
hopes to find success in the growing social
market with the foundation of L.A.-based
Seismic Games.

Brandon Sheffield: How
different is in-the-trenches
game design from Ubisoft
Osaka to SuperBot?
Kenan Alpay: It's funny,
because everything feels
extremely new. But sitting
down and analyzing it, I'm
doing a lot of the same things
I did at my old company, just
in a larger context. I went from
leading a team of 10 people to
being one of 60+ members,
but I have a core group that
I work with and together we
own a part of the project (as
opposed to the entire game).

Ubisoft has a very specific
process when it comes to
game design. It sometimes felt
constricting, but that exposure
to such an established
structure helped me become
a better designer. At SuperBot
you have this crazy mix of
people from all over the place,
so that experience keeps me
grounded and focused.

BS: You've mentioned to me
that you've learned a lot now
that you're at SuperBot—can
you give some examples of
what and how?
KA: The biggest thing has
just been the team. There's
such a mix of different people
here, many of whom have
worked on hugely popular

AAA titles. I've never been
exposed to that before. So
when I'm approaching a
design problem, I can discuss
it with them and see how they
handled a similar problem in
the past, and compare our ...
designer instinct, I guess you
could call it?

I play a lot of popular
games, but I also play a lot of
fringe, hardcore indie titles,
which I love. In my work I
try to take the spontaneous,
experimental feel that many
smaller titles can afford, and
work it in so that it fits with
our project's structure and
language ... searching for the
best of both worlds. Being
able to bounce these ideas off
my boss and team members
has been refreshing.

BS: What good things did
you take from your time as a
designer in Japan?
KA: One huge thing was the
importance of communication!
With any second language,
there is a realm of nuance
and assumptions that come
with your words that you
might not be entirely familiar
with, but even in English
words can mean completely
different things to different
people. I usually have a pretty
concrete understanding of

what I want, so most of the
effort goes into explaining
it as precisely as possible.
Unless you are coding the
damn thing yourself, you can't
expect someone to create
the exact thing you have in
your head. But I found that
including drawn diagrams
or example videos directly
into my documents worked
well. The more avenues of
communication, the better.

Another thing was
learning about working with
different personalities. I found
that some people really want
to be part of the creative
process, offer opinions, and
contribute to fleshing out
those opinions. And I found
that other people simply
want to be told exactly what
to make. Once I understood
which approach worked best
with which person, things
moved much faster.

BS: How have you found it
culturally coming from east
to west?
AP: Culturally I think there is a
lot of indirectness in Japan. For
the sake of clarity I tried to be
extremely blunt when talking
about work, or reviewing other
people's work. Polite, but
blunt. That took some people
off guard, but I'm confident it
contributed to better games.

Ubisoft Osaka is in a
unique situation. It's made up
of mostly Japanese developers
who have suddenly been
introduced to Ubisoft's unique
brand of design philosophy.
Seeing those two philosophies
mix felt like some kind of
wonderful science experiment.
Working in the middle of that
was extremely interesting.

Runescape.

mailto:editors@gdmag.com

SENIOR SERVER ENGINEER | SENIOR RELIABILITY ENGINEER | SENIOR TOOLS ENGINEER
SENIOR CONSOLE ENGINEER | LEAD 3D ENVIRONMENT ARTIST

SENIOR 3D ENVIRONMENT ARTIST | SENIOR 3D CHARACTER ARTIST | FX ARTIST
LEAD BATTLE.NET DESIGNER | LEAD CAMPAIGN DESIGNER | SENIOR LEVEL DESIGNER

PRODUCTION DIRECTOR | BUSINESS OPERATIONS DIRECTOR

©2012 Blizzard Entertainment, Inc. All rights reserved. World of Warcaft, Diablo, StarCraft and Blizzard Entertainment are trademarks
or registered trademarks of Blizzard Entertainment, Inc., in the US and/or other countries.

We are actively recruiting for the following key positions across our game and online technology teams:

® ® ®

Follow us on Twitter: @blizzardcareers
Visit us in the GDC Career Pavilion at Booth #1408 and scan your GDC badge for a chance to win epic loot.

jobs.blizzard.com

http://BATTLE.NET
http://jobs.blizzard.com

http://www.igf.com

S T U D E N T g a m E P R O F I L E S

EducatEd Play!

Tom Curtis: Can you give
a little background on
the origin of the project?
How did you come up
with the unusual design?
mark Ravindran
(designer): Void was
actually a student
project created for the
production phase of our
course at DigiPen. I think
its eventual design was
actually a product of
our limitations as well
as some technological
breakthroughs that we
had while designing
the project itself. For
example, we didn't
have much time [to
work on] the project,
and with a small team
size, we figured that
designing enemies with
a substantial amount
of AI would actually be
rather difficult, so we
kept things simple and
created a first-person
puzzler. Other things,
like the dimension rip
bubble, were a result of
programmers discovering

new ways of adjusting
the engine.

TC: What technical
challenges did you
encounter?
Chan Sin Huan
(programmer): The biggest
technical challenge was
the Source SDK itself. While
we had access to the code
that made Half-life the
game it is today, the SDK
only provides the code and
assets for the game layer
itself (the AI, weapons,
monsters, and levels);
it does not provide any
access to the internals of
the Source Engine itself.
As the Source Engine is
a "black box," this posed
many challenges to us as
we could not modify the
engine to better suit our
needs.
Leau Tat Sin
(programmer): I was the
graphical programmer
on the team, in charge
of creating the bubble
effect. The first challenge
I had was trying to figure

out how to create custom
shaders on the Source
SDK. There were little
bits of documentation,
and most of them were
a little outdated, since
the Source SDK has
undergone multiple
updates since its release.
There was a lot of trial
and error involved.

Creating the effect
also proved to be much
more difficult than first
expected. The basic effect
was easy enough to
create, but there were a
lot of unforeseen artifacts,
which took up most of
the development time to
fix. There were still a few
issues that I never did
solve, but unfortunately
we ran out of time.

TC: Any design
challenges?
Tan Chee ming
(designer): The key
challenge was the
doubled workload for
everything we wanted
to design and create. For

every level or room we
created, the designers
had to create two layouts,
and the artists had to
model two versions of
assets: a past (perfect)
version and a present
(destroyed) version.

It was also a huge
challenge for both Mark
and I as designers, since
we had to ensure the level
design for both past and
present complemented
each other, and that
there was not any easy
bypass or walkthrough
breaks by changing time
dimensions.

TC: If you could go back
in time and do one
thing differently on this
project, what would it be?
LTS: I would have gone
with the two-world
approach right from the
start. We essentially
wasted the first half of
the production time when
we rebooted and threw
everything away. The
extra development time
would have allowed us to
fix the remaining issues,
or at least find some kind
of workaround.
TCm: On my part, I would
have liked to engage this
project with a clearer
vision, so that the team
wouldn't have had to go
through so much trouble.
Also, I would have liked
to learn to filter feedback
properly, since we received
so much feedback that
it actually caused us to
become confused and lose
our vision.
CSH: As this was part
of a student course, for
most of us, it was our

first time creating games
in an actual production
environment, and it
would definitely have
been better to approach
the whole project more
methodically.
Zou Xinru (animator): I
do sometimes wish we
had the full five months
to concentrate on the
final iteration of Void. It
could have also gone
down the same road of
self-destruction, or it
could have been much
more awesome, with
more levels, a third
dimension, and maybe
some monsters clawing
at your back. At least, I
would like to imagine that
would be the case.

TC: How does it feel to
earn the Best Student
Game award at the IGF
China? What's next for
the team?
LTS: It's surprising, really.
To be honest, throughout
development, we all
thought that we performed
badly. For the longest time,
at least until the reboot,
the game simply sucked.
In fact, we were in danger
of failing the course. Good
thing it all worked out!
mR: It definitely makes
up for all the pain we
had with redesigning
and scrapping the ideas
(Laughs).
TCm: Now that the project
is finished, all of us are
at separate companies
right now, but I definitely
wouldn’t mind coming
back together to further
develop Void if someone or
some company expressed
interest in it.

Void
In Void, players must compare dIfferences between a ruIned world of the present and a perfect past world In order to progress through the
world. It’s a new kInd of fIrst person puzzler—and one that had a lot of potentIal room for exploIts. the team, whIch won best student game at
the Igf chIna awards, dIscusses the makIng of thIs unusual tItle.

w w w . d i g i p e n . e d u / ? i d = 1 1 7 0 & p r o j = 2 3 8 7 6

www.gdmag.com 69

http://www.digipen.edu/?id=1170&proj=23876
http://www.gdmag.com

A unique, one-year graduate-level program
combining art with engineering and balancing
theory with practice

A wide array of interdisciplinary courses from
UPenn's School of Engineering and Applied
Science, School of Design, the Wharton School
of Business and the Annenberg School of
Communication

Access to the LiveActor Motion Capture Studio
for student game projects

Cutting edge research opportunities at the
Center for Human Modeling and Simulation

A world class education at University of
Pennsylvania's Philadelphia-based
Ivy League campus

Penn Engineering’s

MASTERS IN COMPUTER GRAPHICS
AND GAME TECHNOLOGY
offers recent Engineering and
Computer Science grads:

www.cis.upenn.edu/grad/cggt/

GET IN THE GAME

http://www.cis.upenn.edu/grad/cggt/

3D image by Antoine Rouleau

Made in Montréal, Canada

The BEST in 3D Animation...

See what 2.5M+ viewers have been amazed by:

youtube.com/CentreNAD

Twenty years
of providing talent
in 3D animation

http://youtube.com/CentreNAD

ENJMIN | The Graduate School of Games and Interactive Media

121 rue de Bordeaux 16000 ANGOULEME - FRANCE

Phone : +33 (0) 5 45 38 65 68 | contact@enjmin.fr

In the creative media campuswww.enjmin.fr

ENJMIN, a one-stop shop for the

games and new media profession !

Get a Master, Engineering or PhD degree in France,

or get them as an accreditation from your professional experience.

The graduate school of games
and interactive media

A
R

T
IS

T
D

ES
IG

N
ER

P
R

O
G

R
A

M
M

ER
R

ES
EA

R
C

H
ER

Visit us at
GDC EXPO

Booth CP#1026

http://www.enjmin.fr
mailto:contact@enjmin.fr

http://game.colum.edu

http://www.focalpress.com
http://www.focalpress.com

http://www.studica.com/gdm

>>
GE

T
ED

UC
AT

ED

76 F E B R U A R Y 2 0 1 2 | G A M E D E V E L O P E R

http://www.futurepoly.com
http://www.mdm.gnwc.ca

Learn to create the future of games with an Associate’s Degree in Game

Create Game Art

*Length of program and start dates are dependent on course of study and degree option. For more information on our programs and their outcomes visit www.la� lm.edu/disclosures.
©2011 � e Los Angeles Film School. All rights reserved. � e term “� e Los Angeles Film School” and � e Los Angeles Film School logo are either service marks or registered service marks of � e Los Angeles Film School. Accredited by ACCSC©2011 � e Los Angeles Film School. All rights reserved. � e term “� e Los Angeles Film School” and � e Los Angeles Film School logo are either service marks or registered service marks of � e Los Angeles Film School. Accredited by ACCSC

Learn to create the future of games with an Associate’s Degree in Game

A.S. Degree in Game ProductionA.S. Degree inA.S. Degree inA.S. Degree in Game Production Game Production
Start Living The Dream!

800.406.7485

>> GET EDUCATED

77W W W . G D M A G . C O M

http://www.lafilm.edu/disclosures
http://WWW.GDMAG.COM
http://www.northeastern.edu/ci

©
 2

01
1

Fu
ll

Sa
il,

 L
LC

Game Art
Bachelor’s Degree Program
Campus & Online

Game Development
Bachelor’s Degree Program
Campus

Game Design
Master’s Degree Program
Campus

Game Design
Bachelor’s Degree Program
Online

fullsail.edu
Winter Park, FL

To view detailed information regarding tuition, student outcomes, and related statistics,
please visit fullsail.edu/outcomes-and-statistics.

Campus Degrees
Master’s

Bachelor’s

Associate’s

Online Degrees
Master’s

Bachelor’s

ACADEMY OF
INTERACTIVE ENTERTAINMENT

www.theaie.us

>>
GE

T
ED

UC
AT

ED

78 F E B R U A R Y 2 0 1 2 | G A M E D E V E L O P E R

http://fullsail.edu
http://fullsail.edu/outcomes-and-statistics
http://www.theaie.us

V
F
S
 stu

d
e
n
t w

o
rk

 b
y
 B

re
n
d
a
n
 B

o
y
d

VFS prepared me very well for the volume

and type of work that I do, and to produce

the kind of gameplay that I can be proud of.

DAVID BOWRING, GAME DESIGN GRADUATE

GAMEPLAY DESIGNER, SAINTS ROW: THE THIRD

”

“

ACADEMY OF INTERACTIVE ENTERTAINMENT . 78

ASOBO STUDIO . 42

AUTODESK . C2

BLIZZARD ENTERTAINMENT . 67

COLUMBIA COLLEGE . 73

ELSEVIER INC . 74

ENJMIN . 72

EPIC GAMES . 18 & 46

FMOD . 14

FULL SAIL REAL WORLD EDUCATION . 60 & 78

FUTUREPOLY . 76

HANDELABRA STUDIO . 33

HAVOK . C3

IGDA . 65

INTEL . 3 & 45

INTERNATIONAL GAME TECHNOLOGY . 22

JUSTIN TV . 10

LOS ANGELES FILM SCHOOL . 77

MASTERS OF DIGITAL MEDIA PROGRAM . 76

NATIONAL ANIMATION AND DESIGN CENTRE . 71

NORTHEASTERN UNIVERSITY . 77

PERFORCE SOFTWARE . 38

RAD GAME TOOLS. C4

RED 5 STUDIOS . 6 & 17

SCOTTISH DEVELOPMENT INTERNATIONAL . 30

SOCIETY FOR THE ADVANCEMENT OF THE SCIENCE OF DIGITAL GAMES 54

STUDICA . 75

TECHEXCEL INC . 48

UMBRA SOFTWARE . 26

UNIVERSITY OF PENNSYLVANIA . 70

VANCOUVER FILM SCHOOL . 51 & 79

COMPANY NAME PAGE COMPANY NAME PAGE

ADVERTISER INDEX

gd Game Developer (ISSN 1073-922X) is published monthly by UBM LLC, 303 Second Street, Suite 900 South, South Tower, San Francisco, CA 94107, (415) 947-6000. Please direct advertising and editorial
inquiries to this address. Canadian Registered for GST as UBM LLC, GST No. R13288078, Customer No. 2116057, Agreement No. 40011901. SUBSCRIPTION RATES: Subscription rate for the U.S. is $49.95 for twelve
issues. Countries outside the U.S. must be prepaid in U.S. funds drawn on a U.S. bank or via credit card. Canada/Mexico: $69.95; all other countries: $99.95 (issues shipped via air delivery). Periodical postage
paid at San Francisco, CA and additional mailing offices. POSTMASTER: Send address changes to Game Developer, P.O. Box 1274, Skokie, IL 60076-8274. CUSTOMER SERVICE: For subscription orders and changes
of address, call toll-free in the U.S. (800) 250-2429 or fax (847) 647-5972. All other countries call (1) (847) 647-5928 or fax (1) (847) 647-5972. Send payments to gd Game Developer, P.O. Box 1274, Skokie, IL
60076-8274. Call toll-free in the U.S./Canada (800) 444-4881 or fax (785) 838-7566. All other countries call (1) (785) 841-1631 or fax (1) (785) 841-2624. Please remember to indicate gd Game Developer on any cor-
respondence. All content, copyright gd Game Developer magazine/UBM LLC, unless otherwise indicated. Don’t steal any of it.

>> GET EDUCATED

79W W W . G D M A G . C O M

http://WWW.GDMAG.COM
http://vfs.com/enemies

ARRESTED DEVELOPMENT // MATTHEW WASTELAND

gAME DEVELOPER | fEbRuARy 201280

Ask A Frost DrAgon
Real Talk wiTh an EldEr ScrollS V: Skyrim STaR

today we’re excited to
present an interview with a
dragon from—
Frost dragon, actually. You
can tell by the spikes here,
and the ice breath.

okay—a frost dragon, then,
from The elder ScrollS V:
Skyrim! We’re very excited
to have you!
Thank you. I’m excited to be
here as well.

so to start out, what’s it
like being one of the most
feared and recognized
characters in one of last
year’s standout games?
Well, first let me say that
Skyrim is a pretty darned
good game, and I’m proud
to be a part of it. It’s also
really fun. I have a blast
flying around attacking
and freezing things, and
the world has a ton of big,
wide-open spaces. It really
gives me this sense of total
freedom. There are also
a lot of ruins I can perch
on, which is important for
dragons. Most importantly,

there are a lot of helpless
villagers to terrorize. That’s
sort of what I do, you
know—just swoop down
and freeze folks. I love
seeing them freak out and
run around when I show up.

At the same time, I had
a couple ... well, I guess I’d
call them quibbles, with
the way the team chose
to present me. Not that
I’m complaining, mind
you—like I said, I do love
the game, and the world
and everything, and I,
personally, have been a big
fan of the EldEr ScrollS
series since morrowind.

However ...
However ... gosh, I don’t
know quite how to put it.
[Thinks for a moment] Like,
do you know how annoying
it is to sit there breathing
ice all over this player, and
then they just gulp down
a couple potions, or eat
a bunch of goat legs and
cheese wheels and they’re
totally fine? I mean, that
kind of thing comes close

to ruining the immersion
for me. I want to freeze this
human right now! It’s not
fair to just let them pause
the game and recover.

Well, it is a video game, so
one could argue that—
Sure, I get that aspect of it.
I get that it’s a game, and
that it’s about the player’s
experience. And I think I did
a pretty good job of playing
my role and all.

Don’t get me wrong. I
love the big skies and dense
forests and watching those
dead town-watch guys
ragdoll down the cliff sides
after I’ve frozen them—
man, that last one is terrific.
I could do that all day.

 The problem for me
really only starts when the
player shows up. It just feels
like there’s way more power
given to that character than
anyone else in the world,
and that kind of bothers me.

the player does seem to be
the only one who’s able to
effectively combat dragons,

but isn’t that because the
player is the Dragonborn?
Doesn’t it have to be that
way, you know, because of
the prophecy?
Yeah, I don’t know if
I believe in all of that
determinism stuff.

Well ... alright.
I don’t mean to sound
dismissive, but what’s the
point in believing all your
actions are preordained?

no point, I guess.
Anyway, I’m just saying I
don’t think it’s a hundred
percent balanced.
Everything seems to skew
toward the player, you know,
“oh, what does the player
think, what does the player
want.” Hello, I’m here too!
I hate to be the one calling
“bias,” but in this case, I
really think it’s true.

Any words of feedback for
your developers, then?
[Considers the question]
No, not really on that,
because like I said, I do

know why they make those
choices. What I would say
to the people at Bethesda
Softworks is, thank you all
for giving me such good
art, animation, sounds, and
behaviors! Thanks for saving
the cool music for me, too.
And—oh yeah, I did have one
question for you guys:

Why am I a frost dragon
in a country composed
almost entirely of people
with an inborn frost
resistance? Do you even
know how disappointing it
is when you go to breathe
icy death on a whole bunch
of people and they turn
out to be mostly fine?
Next time, put me in with
a bunch of humans, trolls,
daedra ... I don’t care who
as long as they have a
crippling weakness to frost.
I just want to have a proper
rampage at some point. Is
that so unreasonable to
ask for?

Alright, got that off my
chest.

Understandable, I think.
thanks for taking time out
of your busy schedule to
chat with us.
Of course. It’s my pleasure.

Oh, one more note for
you players. I know some of
the Jarl’s men came by and
left that bounty letter to kill
me. You should know they’ll
only give you a hundred
gold for your trouble! It’s
probably not worth it.

mAttHeW WAstelAnD writes

about games and game

development at his blog,

Magical Wasteland (www.

magicalwasteland.com). Email

him at mwasteland@gdmag.com.

erp.

http://www.magicalwasteland.com
mailto:mwasteland@gdmag.com
http://www.magicalwasteland.com

See where we’re taking

Physics next...

Technology for the Future

More Info @ www.havok.com/GDC

Learn more about the future of Havok Physics.

Meet us at GDC booth #BS900.

Thank you to all our customers and fans who voted for Havok Physics for the 2011 Game Developer Front Line Awards!

Havok™ Technologies Include:
Havok Physics • Havok AI • Havok Animation • Havok Behavior • Havok Cloth • Havok Destruction • Havok Script • Havok Vision Engine

Physics

With the changing needs of the game development community we are constantly

pushing innovation in our tools and technologies, always looking forward to what’s

ahead. Havok Physics offers the fastest, most robust collision detection and physical

simulation solutions available.

http://www.havok.com/GDC

http://www.radgametools.com

	Contents
	POSTMORTEM
	STACKING

	FEATURES
	10 YEARS OF SALARY SURVEYS
	ALWAYS ONLINE
	BALANCING A BIG HUGE RPG

	DEPARTMENTS
	EDITORIAL- Game Plan
	NEWS- Heads up Display
	REVIEW- Tools Box
	BUSINESS- The Business
	PROGRAMMING- The Inner Product
	SOUND- Aural Fixation
	ART- Pixel Pusher
	JOBS- GDC Jobs
	DESIGN- Design of the Times
	CAREER- Good Job
	EDUCATION- Educated Play
	HUMOR- Arrested Development

