
T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E V O L 1 8 N O 2

F E B R U A R Y 2 0 1 1 I N S I D E : S H A N K P O S T M O R T E M +

T O U G H L O V E : E N G A G I N G P L A Y E R S W I T H C H A L L E N G I N G

G A M E P L A Y

T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E V O L 1 8 N O 2

F E B R U A R Y 2 0 1 1 I N S I D E : S H A N K P O S T M O R T E M &

T O U G H L O V E : E N G A G I N G P L A Y E R S W I T H C H A L L E N G I N G

G A M E P L A Y

G A M E D E V E L O P E R M A G A Z I N E

GAME DEVELOPER MAGAZINE

All trademarks and registered trademarks are property of their respective owners.

Our global support teams are always available to share their

expertise in person – no scripted responses, answering services,

or dispatch centers. At Perforce Software, our highly experienced

technical support engineers take pride in providing fast

turnarounds with precise answers.

Keeping your projects on track requires a support team that is

ready to help right when you need it. You can count on Perforce’s

Fast SCM System and legendary technical support to give you the

winning advantage.

Perforce Technical Support
Fast Turnarounds. Precise Answers.

Perforce The Fast Software Configuration Management System

Download a free copy of Perforce, no questions
asked, from www.perforce.com. Free technical support is
available throughout your evaluation.

Perforce_PStop_GameDev_HI: Page 1

http://www.perforce.com

WWW.GDMAG.COM 1

CONTENTS.0211
VOLUME 18 NUMBER 2

WWW.GDMAG.COM 1

CONTENTS.0211
VOLUME 18 NUMBER 2

D E PA R T M E N T S

 2 GAME PLAN By Brandon Sheffield [E D I T O R I A L]

Declaration Of Independence

 4 HEADS UP DISPLAY [N E W S]

Best XBox Live Indie Games of 2010 and CANABALT goes open source.

41 TOOL BOX By Spellbound Entertainment [R E V I E W]

Trinigy's Vision Engine 8 and product news

47 THE INNER PRODUCT By Geoff Evans [P R O G R A M M I N G]

Behind The Mirror

 55 PIXEL PUSHER By Steve Theodore [A R T]

Signs of Life

58 DESIGN OF THE TIMES By Damion Schubert [D E S I G N]

Narrative and Player Agency

 61 EYE ON GDC [G D C]

2011 GDC Full-Day Tutorials

63 THE BUSINESS By David Edery [B U S I N E S S]

 Embracing Risk

64 GDC CAREER PAVILION By Mathew Kumar [G D C]

 Level Up

67 GOOD JOB! By Brandon Sheffield [C A R E E R]

 Mariel Cartwright Q&A, Who Went Where, and New Studios.

69 EDUCATED PLAY By Jeffrey Fleming [E D U C A T I O N]

 Sash MacKinnon's CHAOS INVADERS

71 AURAL FIXATION By Scott Lawlor [S O U N D]

 Only Three Little Things

80 ARRESTED DEVELOPMENT By Matthew Wasteland [H U M O R]

Welcome To Our Operation

P O S T M O R T E M S

15 KLEI ENTERTAINMENT'S SHANK
 When Klei Entertainment's nearly-completed online project lost its

publisher support the studio was abruptly forced back to the drawing
board. It was a lean time for the studio but from the set-back came
the freedom of independence. Work on SHANK began almost immedi-
ately, and thanks to a mature toolset the studio was able to deliver
the game after only 18 months of work.

 By Jamie Cheng

24 MOJANG'S MINECRAFT
 MINECRAFT is an indie dream: Self-funded, largely the result of one

 person's vision, and an immediate, runaway success. However,
 behind the scenes, MINECRAFT's development was struggle to stay
 ahead of ever increasing user demands, a complete code rewrite,
 and the studio's explosive growth from a one-man hobby to an
 ongoing business.

 By Markus Persson

F E AT U R E S

7 DISSECTING THE POSTMORTEM
Each month, game creators put their work on the dissecting table
so that Game Developer readers can learn what went right and what
went wrong during the project. Here, Ara Shirinian looks at the big
picture and collects data from past postmortems to identify the
common issues affecting the game development process.
By Ara Shirinian

33 PRESSED BY THE DARK
 The Two-Factor Theory of Emotion describes how emotional states can

be modulated by physiological changes. Stressful situations increase
engagement and can give rise to often contradictory emotions. It's an
idea that has wide implications for game design and goes against the
conventional wisdom regarding easy difficulty in games.

 By Chris Pruett with illustrations by unomoralez

http://WWW.GDMAG.COM

GAME PLAN // BRANDON SHEFFIELD

United Business Media, 600 Harrison St., 6th Fl.,
San Francisco, CA 94107
t: 415.947.6000 f: 415.947.6090

W W W . U B M . C O MGAME DEVELOPER | FEBRUARY 20112

DECLARATION OF INDEPENDENCE
WHAT IS AN INDIE TODAY? DOES THE TERM EVEN MATTER ANYMORE?

IT FEELS AS THOUGH THE GAME INDUSTRY IS IN
constant flux these days, which is part of what makes
this an exciting place to work. For a while, that change
had a lot to do with growing pains. Some folks used to
(or still do) lament bloating budgets, huge teams, and
giant marketing budgets. We longed for the time of the
bedroom programmer.

Then it started to happen—small teams like The
Behemoth were making console games on their own.
Tiny dev shop Introversion Software was releasing
its own titles on PC. Back then, there was a lot of
discussion about who was indie, who wasn’t, and
what indie meant. Could The Behemoth be indie
while releasing games on console, using external
distribution? Many said no, at the time. Indie games
had to be smaller, more independent.

Later, along came Steam, the App stores, Xbox
Live Arcade, PlayStation Network, and Xbox Live
Indie Games. Suddenly anyone could self-publish
(or essentially be “published” by the service itself).
Likewise, self-publishing on browsers or Flash
portals has gained widespread acceptance. Newer
business models such as free to play, pay for items,
or the “pay what you want” model also allow greater
flexibility than ever.

INNOVATION ENVY
» This framework supports a new breed of indies,
much less reliant on outside income or big publishers
for survival. Small companies are also more nimble,
which makes it easier for them to adapt to (or
innovate) new trends. By and large, innovation is the
purview of independence these days.

There isn’t a massive talent bleed from the
triple-A game houses to the indie market, but it has
gotten to the point where the idea of the bedroom
programmer isn't such a rarity. It’s still exciting to
see indie successes, but it’s no longer a surprise.
While big companies are slashing profits or trying
desperately to catch up to the social space, the one-
man project MINECRAFT has sold over a million copies,
most at 9.95 euros each.

MINECRAFT developer Markus Persson didn’t even
integrate any social features. Could he have? Yes,
and it might have made his game a bigger success.
But he didn't need to spend ages figuring out his
social strategy before he could deploy his game. Had
he delayed it in the interest of assessing market
conditions and building a social brand first, it’s
unlikely that he’d be where he is today.

WHO’S INDIE NOW?
» Those old debates about who is indie and who
isn’t now seem a bit odd. What's the difference
between The Behemoth releasing CASTLE CRASHERS
on XBLA, and Mommy’s Best Games releasing SHOOT
1UP on XBLIG? CASTLE CRASHERS received support and

some QA from Microsoft, but when it comes to code
issues and updates, the dev team is responsible.
SHOOT 1UP was released on XBLIG with no help from
anyone—but in the grander scheme, both games are
essentially published by Microsoft’s platform.

Who then, is indie? People often refer to John
Blow and his seminal game BRAID as indie—is Blow
more indie than The Behemoth because his team is
smaller? Both BRAID and CASTLE CRASHERS live on the
same service. Does “indie” have a staff size limit? If
so, what is it? The MINECRAFT team began as one man,
and is now seven, with aims to get larger. Did that
team cease to be indie, as its only game now reaches
beta? How about Team Meat—that’s pretty much
just Edmund McMillan and Tommy Refenes with a bit
of help. But their game has sold like gangbusters on
XBLA proper—does this tarnish their indie cred?

Some refer to the indie spirit as a defining factor.
There, John Blow fits the mold. He’s making unusual
games for unusual people, with a spirit that often
flies in the face of the traditional industry. Where
does ThatGameCompany come in, then? That team
comes at games from a decidedly different direction,
espousing ideals of experimentation with genre and
development practice. But with a three-game Sony-
funded deal, is it harder to call them indie?

A ROSE BY ANY OTHER NAME...
» Our terms and designations are failing us. We
distinguish between types of games in order to
help categorize our jobs, describe what we like, and
as badges of honor. The term "indie" is most often
a drive for authenticity, which is a nebulous and
subjective term. That's likely why it's so consistently
debated. Perhaps it’s best to define “indie” as any
company that’s independently funded, but that
leaves a lot of triple-A developers eligible as well.

But why not? It’s clear that the lines between
“indies” and triple-A studios are getting very blurry.
Where does one end and the other begin, if they’re
all operating in a very similar sphere? Facebook
games are tiny, and often made by small groups of
people, but I can’t foresee anyone calling them indie.

Then there are the IGF awards. MINECRAFT is
nominated for several awards there—but it’s also
nominated in the main Choice Awards competition.
Is this a conflict? In the current game climate, I dare
say it isn’t. Nowadays, one can be indie and compete
with the “big boys”—especially when the big boys
are looking to you for their next idea.

The term “indie” has lost its meaning as the
scope of games has expanded. Maybe we need new
terms—or maybe they're now irrelevant. What’s
clear is that the opportunity for making games is
wider than ever before, and indie or not, that can
only mean good things.

—Brandon Sheffield, twitter: @necrosofty

SUBSCRIPTION SERVICES

FOR INFORMATION, ORDER QUESTIONS, AND
ADDRESS CHANGES
t: 800.250.2429 f: 847.763.9606
e: gamedeveloper@halldata.com

FOR DIGITAL SUBSCRIPTION INFORMATION
www.gdmag.com/digital

EDITORIAL

PUBLISHER
Simon Carless l scarless@gdmag.com
EDITOR-IN-CHIEF
Brandon Sheffield l bsheffield@gdmag.com
PRODUCTION EDITOR
Jeffrey Fleming l jfleming@gdmag.com
ART DIRECTOR
Joseph Mitch l jmitch@gdmag.com
PRODUCTION INTERN
Tom Curtis
CONTRIBUTING EDITORS
Jesse Harlin
Steve Theodore
John Graham
Dave Mark
Soren Johnson
Damion Schubert
ADVISORY BOARD
Hal Barwood Designer-at-Large
Mick West Independent
Brad Bulkley Neversoft
Clinton Keith Independent
Brenda Brathwaite Lolapps
Bijan Forutanpour Sony Online Entertainment
Mark DeLoura THQ
Carey Chico Independent

ADVERTISING SALES

GLOBAL SALES DIRECTOR
Aaron Murawski e: amurawski@think-services.com
t: 415.947.6227
MEDIA ACCOUNT MANAGER
John Malik Watson e: jmwatson@think-services.com
t: 415.947.6224
GLOBAL ACCOUNT MANAGER, RECRUITMENT
Gina Gross e: ggross@think-services.com
t: 415.947.6241
GLOBAL ACCOUNT MANAGER, EDUCATION
Rafael Vallin e: rvallin@think-services.com
t: 415.947.6223

ADVERTISING PRODUCTION

PRODUCTION MANAGER
Pete C. Scibilia e: peter.scibilia@ubm.com
t: 516-562-5134

REPRINTS

WRIGHT'S MEDIA
Ryan Pratt e: rpratt@wrightsreprints.com
t: 877.652.5295

AUDIENCE DEVELOPMENT

TYSON ASSOCIATES Elaine Tyson
e: Elaine@Tysonassociates.com
LIST RENTAL Merit Direct LLC
t: 914.368.1000

MARKETING

MARKETING COORDINATOR Nahal Agahi
e: nahal.agahi@ubm.com

GAME DEVELOPER
MAGAZINE
WWW.GDMAG.COM

http://WWW.GDMAG.COM
mailto:gamedeveloper@halldata.com
http://www.gdmag.com/digital
mailto:scarless@gdmag.com
mailto:bsheffield@gdmag.com
mailto:jfleming@gdmag.com
mailto:jmitch@gdmag.com
mailto:amurawski@think-services.com
mailto:jmwatson@think-services.com
mailto:ggross@think-services.com
mailto:rvallin@think-services.com
mailto:peter.scibilia@ubm.com
mailto:rpratt@wrightsreprints.com
mailto:Elaine@Tysonassociates.com
mailto:nahal.agahi@ubm.com
http://WWW.UBM.COM

The imagery is
breathtaking.

The level of realism has been known
to wipe out social calendars for months.

Take visual entertainment to a higher level of reality. GeoEye puts a world of high-resolution
satellite imagery at your fi ngertips for the kind of realism gamers are buying. You can easily
integrate actual locations and cities on a global scale to create photo-realistic environments
for greater engagement, depth and immersion. Give your business the edge seen in today’s
top-rated video games. Look to GeoEye for jaw-dropping imagery.

For more information or to receive a quote, call 303.254.2245 or email gamer@geoeye.com www.geoeye.com
© 2011 GeoEye. All Rights Reserved.

© 2011 Ubisoft Entertainment. All Rights Reserved. H.A.W.X.2, Tom Clancy’s, the Soldier icon,
and Ubisoft are trademarks of Ubisoft Entertainment in the U.S. and/or other countries.

Cape Town, South Africa

 Pub: Game Developer “Gamer Ad” TRIM: 7.75 x 10.5 LIVE: 6.75 x 9.5 BLEED 8 x 10.75

Visit us at Booth #613
during GDC 2011 and
receive an exclusive DVD
containing jaw-dropping,
high-resolution sample
satellite images.

mailto:gamer@geoeye.com
http://www.geoeye.com

HEADS-UP DISPLAY

gAmE DEvELoPEr | FEbrUArY 20114

AstromAn
starQuail Games

+ Astroman’s spaceship
has crash-landed on an
alien planet, so naturally
it’s up to you to navigate
Metroidvania-style levels
and search for pieces of
the wreckage with naught
but a simple laser gun for
company. This lovingly-
crafted exploration
platformer features plenty
of puzzles to solve, aliens
to blast, and planets to
explore, along with a
gorgeous comic visual
style. As you collect pieces
of the ship, Astroman can
fly further out into areas
unknown, discovering new
levels as he goes.

rAdiAnGAmes
Crossfire 2
radiangames

+ The sequel to an
already popular arena
blaster on the Xbox Live
Indie Games service,
Crossfire 2 honed the
best parts of the original
version to create the best
Radiangames release to
date. One or two players
control a nimble ship that
can jump from the bottom
of the screen to the top
and back again, allowing
it to shoot enemies from
behind. Along the way,
there are opportunities to
upgrade your ship, giving
an advantage against
the later, more powerful
enemies.

BreAth of deAth Vii:
the BeGinninG
Zeboyd Games

+ Breath of Death Vii is
definitely not the seventh
in a series of retro role-
playing games, but rather
a parody of classic RPGs
of old. Taking control of
a team of old school era
stereotypes, players
journey through an
undead world with turn-
based battling, character
customization and plenty
of exploration that will
please both younger and
more experienced gamers
alike, although the older
players may appreciate
the well-written and
constantly humorous
dialogue a lot more!

PrismAtiC solid
Yoi Kimori

+ PrismatiC soliD is a

forced-scrolling space
shooter, with the player
following a set 2D plane
while environmental
elements move around
a 3D space. Huge boss
battles duck and dive
around the hero, while
each level sports a unique
visually-impressive
theme, matched with
music from Namco
composers Shinji Hose
and Akayo Saso. While
the harsh difficulty curve
may put the more casual
gamer off, PrismatiC
soliD is easily one of the
most gorgeous, visually
stunning and intense
titles on the Xbox Live
Indie Games service.

PlAtformAnCe:
CAstle PAin
magiko Gaming

+ If you’re looking for a
hard-as-nails platformer
to tide you over between
suPer meat Boy sessions,
then PlatformanCe should
be your poison. Your
mission is to guide a small
knight through a series of

difficult and utterly mental
obstacles, with plenty of
deaths guaranteed. Once
you’ve got the hang of it,
there are harder difficulty
modes that introduce an
instant-death ghost who
follows your route, laying
the pressure on as you
dodge those swinging
knives and deadly fireballs.

Chu’s dYnAstY
tribetoy

+ Imagine a version of
the Nintendo classic
suPer smash Bros in
which players could
mess with time, and
you’ve got a rough idea
of what Chu’s Dynasty
is all about. Up to four
players battle it out over
a series of platforming
environments, laying
into each other via street
fighter style combo
attacks. On top of that,
each player has their
own special time-shifting
abilities, allowing you to
confuse your opponents
and completely alter the
flow of battle.

//
/

T
H

e
 X

b
O

X
 L

Iv
e

 I
N

D
Ie

 G
A

M
e

S
 S

e
R

v
Ic

e
 H

A
S

 f
IN

A
L

L
Y

 S
TA

R
T

e
D

 T
O

 D
IT

c
H

 I
T

S
 N

O
T-

S
O

-I
M

P
R

e
S

S
Iv

e
 I

M
A

G
e

 O
f

 M
A

S
S

A
G

e
 A

N
D

A
v

A
TA

R
 G

A
M

e
S

,
P

R
O

v
ID

IN
G

 S
O

M
e

 O
f

 T
H

e
 M

O
S

T
 M

e
M

O
R

A
b

L
e

 G
A

M
IN

G
 e

X
P

e
R

Ie
N

c
e

S
 O

f
 2

0
1

0
.

W
IT

H
 T

H
e

 X
b

L
IG

 c
O

M
M

U
N

IT
Y

e
v

e
N

 R
U

N
N

IN
G

 I
T

S
 O

W
N

 W
IN

T
e

R
 U

P
R

IS
IN

G
 P

R
O

M
O

T
IO

N
,

T
H

e
 S

e
R

v
Ic

e
 I

S
 R

e
A

L
L

Y
 c

O
M

IN
G

 I
N

TO
 I

T
S

 O
W

N
,

A
N

D
 c

A
N

 O
N

L
Y

G
e

T
 b

e
T

T
e

R
 f

R
O

M
 H

e
R

e
 O

N
 I

N
.

H
e

R
e

 A
R

e
 O

U
R

 P
Ic

k
S

 f
O

R
 T

H
e

 1
0

 b
e

S
T

 X
b

O
X

 L
Iv

e
 I

N
D

Ie
 G

A
M

e
S

 O
f

 2
0

1
0

.

—

M
Ik

e
 R

O
S

e

PrismAtiC solid.

www.gdmag.com 5

canabalt goes open source
Semi Secret Software
commemorated a $25,000
iPhone indie game charity
sale by making its popular
iOS “auto-runner” game
Canabalt open source.

Studio co-founder
Adam Saltsman said
in a blog post that the
Canabalt source is now
open, including the game’s
engine and the Flixel
framework.

The game released
in 2009, and according
to Saltsman, has sold
225,000 copies to date.
Saltsman created a
prototype for the game
in five days, while the
studio’s Eric Johnson
ported it to iOS in 10 days.

Saltsman offered a
disclaimer for those who
plan to use the code:
“We wanted to offer our
condolences to everyone
who downloads this and
goes poking around in
there,” he wrote. “This

was a rushed Flash game,
ported, in a rush, to the
iPhone, before iPads or
iPhone 4s even existed.”

“We try very hard to
stay up to date and do
good work, but we’re just
two dudes—it’s possible if
not likely that some of the
way we do things is not
ideal or optimal,” he added.

The indie developer
plans on supporting the
code as time goes on. The
current code that’s available
provides 60 frames per

second performance and
iPad and iPhone 4 Retina
display support.

Saltsman clarified
that while the source is
open for Canabalt and
users can copy-paste
engine code and sell
games based on the
code, developers cannot
redistribute Canabalt’s
specific game code, art or
sounds. “Engine stuff is
ok to distribute, Canabalt-
specific stuff is not,” he
said. —Kris Graft

a number of Small
rural Japanese
towns have struck up
partnership deals with
video game publishers,
hosting events for games
that have some relevance
to the area in order to
attract gamers and boost
local tourism.

Japanese newspaper
The Mainichi Daily News
reported that Capcom
chose the Shibu hot spa
resort in Yamanouchi,
Nagano Prefecture, as
the location for a Monster
Hunter 3 event thanks
to its similarities to the
fictional town found within
the game.

The event attracted a
large number of attendees

including Noriko
Hasegawa, a 26-year-old
video game fan from Kobe,
who said to the paper: “I
may have stayed out of
this town had it not been
for the event.”

The Monster Hunter 3
event is just the latest in
a slew of similar themed
events held at locations
around the country
seen to be relevant to a
particular video game.

Last summer, Konami
struck a deal with a
hotel in the Atami hot
spa resort in Shizuoka
Prefecture to promote
the company’s virtual
dating game love Plus
while Yunin Co. and the
Hokkaido town of Yuni

promote their specialty
crops there through a
farming video game.

Meanwhile, The
Shakunagenomori
botanical park in Mimata,
Miyazaki Prefecture,
has seen huge spikes in
attendance since striking
a cross-promotional deal
with Colopl Inc.’s game
Colony na seikatsu Plus.

Players of the game
who visit the park and
buy its products can
receive special cards only
available at the location.
Park head Yoshinori
Ikebe said he has been
“amazed” to see the
enthusiasm for the game
lead to strong sales.

—Simon Parkin

game tie- ins boost local tourism

epic Dungeon
eyehook games

+ There’s never a moment
to blink in this fast-
moving roguelike RPG,
with enemies constantly
attacking as you make your
way down through the ePiC
Dungeon. Along the way
your character can level
up, grab stronger weapons
and armor, and upgrade
his or her skills to keep the
nasties at bay. Every floor
is randomly generated, so
no two playthroughs are
the same. You can even
find gravestones marking
where your last character
died, obtaining an item
from that playthrough’s
inventory.

SoulcaSter 2
magicaltimebean

+ As fantasy dungeon
crawlers go, soulCaster
2 is definitely one of the
more unique offerings
you’ll come across.
Players take control of a
mage who cannot attack
enemies directly, but must
instead call on mystical
guardians to act as both
his attack and defense,
like a cross between an
RPG and a tower defense
game. Each guardian has
its own strengths and
weaknesses, so placing
them down in the optimal
formation is a must,
especially against the huge
and powerful hordes.

Shoot 1up
mommy’s best games

+ sHoot 1uP is a shooter
that revels in complete and
utter chaos. One ship just
isn’t enough, so why not
deploy and take control
of more than thirty ships
at the same time? With
so much mayhem to keep
watch over, players can
then arrange their fleet
into formation and fire off a
huge Plasma Auger attack,
annihilating the enemy
with extreme overkill.
Throw a second player in
to help deal with some of
the strangest backdrops
and enemies you’ll ever
see, and watch the armada
double.

protect me Knight
ancient

+ Created by video game
music composer Yuzo
Koshiro’s own development
studio Ancient, retro-
themed ProteCt Me knigHt
is a cross between raMPart
and an action RPG. Up to
four players work together
to keep a princess safe,
as hordes of ruthless
enemies attempt to take
her prisoner. Barricades
can be put in place to hold
them back, while magic
points are used to upgrade
your stronghold and level
up your character’s abilities
for the more challenging
levels.

http://WWW.GDMAG.COM

N
ew

fo
un

dl
an

d
an

d
La

br
ad

or
.

A
 p

la
ce

 w
he

re
 y

ou
 c

an
 r

es
ta

rt
,

re
fr

es
h

an
d,

 o
f

co
ur

se
,

re
ch

ar
ge

.
It

’s
 w

he
re

 in
sp

ir
at

io
n

w
as

 b
or

n
an

d
a

cr
ea

ti
ve

 a
nd

 u
ni

qu
e

cu
lt
ur

e
re

si
de

.
 A

nd
 it

’s
 n

ot

fa
r

aw
ay

 –
 j
us

t
of

f
th

e
ea

st
 c

oa
st

 o
f
C
an

ad
a,

 b
ri
dg

in
g

th
e

ga
p

be
tw

ee
n

N
or

th
 A

m
er

ic
a

an
d

Eu
ro

pe
.

 G
am

e

de
ve

lo
pe

rs
 a

re
 a

lr
ea

dy
 d

is
co

ve
ri
ng

 t
ha

t
cr

ea
ti
vi

ty
 li

ve
s

he
re

,
an

d
th

at
 o

ur
 w

or
kf

or
ce

 is
 h

ig
hl

y
pr

od
uc

ti
ve

an
d

lo
ya

l.
 E

ve
ry

 y
ea

r
ou

r
ed

uc
at

io
n

fa
ci

lit
ie

s
re

le
as

e
to

p
ta

le
nt

 f
ro

m
 h

ig
hl

y
re

co
gn

iz
ed

 p
ro

gr
am

s
su

ch
 a

s

D
ig

it
al

 A
ni

m
at

io
n,

 C
om

pu
te

r
S
ci

en
ce

,
S
of

tw
ar

e
En

gi
ne

er
in

g
an

d
IT

.
 R

un
 t

he
 n

um
be

rs
 a

nd
 y

ou
’ll

 fi
nd

 t
ha

t

N
ew

fo
un

dl
an

d
an

d
La

br
ad

or
 is

 a
 le

ad
er

 f
or

 e
co

no
m

ic
 g

ro
w

th
 in

 C
an

ad
a.

 A
nd

,
th

at
 o

pe
ra

ti
ng

 a
 b

us
in

es
s

he
re

 c
an

 h
el

p
yo

u
le

av
e

th
e

co
m

pe
ti
ti
on

 b
eh

in
d.

W

e’
re

 r
ea

dy
 t

o
st

ar
t

w
he

ne
ve

r
yo

u
ar

e.

D
ep

ar
tm

en
t

of
 B

us
in

es
s

 G
ov

er
nm

en
t

of
 N

ew
fo

un
dl

an
d

an
d

La
br

ad
or

,
C

an
ad

a

8
7

7
.7

2
7

.6
3

5
3

/

bu

si
ne

ss
@

go
v.

nl
.c

a
 /

w

w
w

.n
lb

u
si

n
es

s.
ca

it
’s

 h
ap

pe
ni

ng
 h

er
e.

E
s
c
.
.
.

t
o

a

p
l
a
c
e

w
h
e
r
e

g
r
a
p
h
i
c
s

c
o
m
e

f
r
o
m

l
i
f
e
.

mailto:business@gov.nl.ca
http://www.nlbusiness.ca

www.gdmag.com 7

A r A S h i r i n i A n

After hAving pArticipAted in numerouS gAme projectS throughout my career as a
designer, including many failures and successes, I noticed that certain types of development
mistakes appeared to recur with surprising frequency. Was this just another Twilight Zone-
inspired idiosyncrasy of my career? Or is there something more going on here? I imagined a
development hell where throngs of teams all ran into the same pitfalls over and over, without
knowledge of what they were doing wrong, and without the realization that anyone else might
be making similar mistakes.

As developers, we have our own career histories to depend on for knowledge and
experience about the rights and wrongs in game development. Beyond that, we can only rely
on other developers’ willingness to relate their own experiences, mistakes, and solutions
to us. To that end, things like postmortems, conferences, and just plain open discussion
amongst developers are great tools. But these are only vignettes in a sense, and often highly
contextually dependent. For example a team’s troubles with Lua integration are not helpful
if you never use Lua. Beyond that, I was curious whether there was a bigger picture, what it
looked like, and if the results could help us learn something new about game development in
general. That, in a nutshell, is the motivation behind this analysis. >>>>

i n c l u d e d p o S t m o r t e m S :

Age of Booty, Aion, AkrAsiA, BrütAl

legend, the Conduit, dArksiders, deAdly

CreAtures, fAr Cry 2, finAl fAntAsy

CrystAl ChroniCles: My life As A king,

free reAlMs, golden Axe: BeAst rider,

infAMous, little Big PlAnet, the MAw,

n+, Penny ArCAde Adventures: on the

rAin-sliCk PreCiPiCe of dArkness, sAints

row 2, sCriBBlenAuts, tAles of Monkey

isl And, toMB rAider: underworld,

triAls hd, unChArted 2: AMong thieves,

wizArd 101 , the world ends with you

http://WWW.GDMAG.COM

game developer | February 20118

collecting data about game development

√ Without any expectations about whether I would find any interesting
trends or commonalities across game development projects (or whether
I’d even find anything coherent in the first place), I decided that Game
Developer’s extensive history of postmortems was the best and most
consistent source of data.

Conveniently, postmortems written for Game Developer all share a
similar structure: the developer writing the postmortem is required to
select and illustrate five things that went right during the project, and five
things that went wrong. Despite the enormous range of project types and
sizes, this made it relatively straightforward to collect and organize data
about the good and bad things that were reported about projects.

The data set for this analysis consists of 24 successive postmortems
published in Game Developer, covering a period of two years, from articles
that were published from February 2008 to January 2010.

collecting data about common issues

√ Before data collection began, I defined a set of various issues
or situations that I thought would be interesting to track across all
postmortems. For example, whether the postmortem mentioned using
scrum or some agile process, whether a successful experience with
outsourcing was reported, and so on. For each of these items, each
postmortem was scoured for mention of that issue or situation. I didn't just
search for specific words; collecting the data required a lot of extensive
re-reading to ensure that if the postmortem was counted in a certain
category, there would be no question about its inclusion.

results part 1: postmortem metrics
Here are some metrics that characterize the projects whose
postmortems were included in this analysis.

team sizes reported

√ The largest project was Far Cry 2, boasting a team of 265 members.
The smallest projects were age oF Booty and n+, both reporting just 5
team members. Four postmortems reported a range of team size; of
those, the maximum was recorded. Two postmortems did not report a
team size and were excluded from this section. Team sizes tended to fall
into four clumps, with the smallest teams consisting of 5–10 members.
The next five largest teams consisted of 30–40 members. There was
another clump representing 68–90 members, and six projects reported
over 100 team members.

multiplatform vs. single-platform

√ Slightly more than 1/3 of the projects were released on multiple
platforms.

platforms represented

√ Multiplatform projects are counted once for each platform they were
released on (there were no PSN games represented in this selection of
postmortems).

development time

√ The average development time for projects was 2.4 years. Two projects
did not report a development time and were excluded from this section.
Interestingly, development time also seems to clump at yearly or half-
year marks, although this is probably an artifact of how durations were
reported. There is also a large jump between the 2-year mark and the 3.5-
year mark.

www.gdmag.com 9

use of contractors or outsourcing

√ Eleven of 24 postmortems reported utilizing contractors in the
project. Only 7, or about 29 percent, reported outsourcing work to separate
companies.

results part 2: how things went right
and wrong
As described in the Methodology section (Pg. 11), each
“thing that went right” and “thing that went wrong” that was
reported in each postmortem was classified into one of six
categories. Each of these categories generally corresponds
to a major discipline involved in game development. In total,
this supplied 240 data points: 120 “rights” and 120 “wrongs.”

If we look at the all of “right” issues under this classification, we see some
interesting results:

What’s going on in this pie chart? When things go well, production is most
often credited for it, with design running second place and issues external
to the team a close third. Art issues appear to take a disproportionately
small slice of responsibility for the good things that happen on projects,
and testing gets the least amount of representation.

Now, let’s take a look at how issues were classified when things went
wrong.

Immediately we see that production issues take an enormous share of
the problems when things go wrong. What this means is that when things
go wrong on a project, most often it’s not inherently because of design

I t ’s i mpor ta nt to mention some
qualifications that are inherent in the
nature of postmortems intended for public
consumption. The first thing that’s called
into question is the sincerity of the report
itself. Is the writer deliberately holding
back certain information that would be
considered “bad PR” for the company
to reveal? Some writers appear to be
more forthright about dramatically bad
outcomes of their projects than others.
It seems safe to say that there is likely
some amount of this type of informational
restraint, but of course we can never really
know who is writing with candor and who
has one or more fingers tied behind their
backs for whatever reason. Fortunately, I
have been pleasantly surprised about the
willingness of many authors to expound
on some quite disastrous situations in
their postmortems.

The second major qualification is one
of completeness of information. Because
postmortem authors are free to pick their
favorite five “bad things” and “good things”
about their projects, and because each
postmortem is written independently,
there is no guarantee that any given
topic will be mentioned at all in any given
postmortem. What’s more, the absence
of mention of any given topic gives us
no information about that topic one way
or the other. For example, if there is no
mention of “working crunch” in any way,
we still don’t know if the team worked
crunch or not. Either way, if the team did
work crunch and it wasn’t mentioned, we
wouldn’t even know if it was a brief finish-
line crunch with everyone cheering to
complete their most polished work, or a
morale-obliterating death march with far-
reaching casualties.

In short, we’re at the mercy of the
collective of postmortem authors, as the
quality of information presented here is a
function of their ability to present honest
and complete information about their own
projects.

http://WWW.GDMAG.COM

http://www.havok.com

www.gdmag.com 11

mistakes, art mistakes, or coding mistakes, but problems in the way the
process of development is prioritized, conducted, and managed.

In general, this seems to indicate that development teams are just
much worse at planning, coordinating, and conducting the work required
to produce a game as a whole, more than anything else. I think this
finding will resonate with a lot of developers—poorly managed projects
unfortunately appear to be much more common than well-managed ones.
Mind you, our sample of postmortems was all games that shipped, and at
least by that account can be considered successfully managed projects.

There were a total of 68 individual “what went wrong” issues classified
under the “production” category. Within this group, the most common
issues were related to scope, feature creep, and resource problems; this
accounted for 16, or about 23 percent of production problems. The second-
largest subset of problems within production was team-communication
related, which accounted for 8, or slightly more than 10 percent of the
issues. Six issues involved various critical events happening later than
they should have in the development cycle.

While production increased dramatically in the “wrongs” versus the
“rights,” all other issue types decreased in frequency of reports (except for
testing, which nearly doubled, but was still a small number).

It should be noted that the “wrong” issues related to testing were
all about planning, managing, and being unprepared for the logistical
burdens of the testing process, and not related to testers doing a bad job.
For these reasons, most of the testing-classified items could arguably also
be included in the production category instead.

Another interesting statistic is that programming issues decreased
only by 1 percent, while design, art, and external categories decreased by
7 percent, 5 percent and 9 percent respectively. This also seems to make
sense, as when things do go wrong, technical issues can easily have much
more salient effects on the health of a project. However, design issues
are still the second most represented type, which also seems to indicate
that designers may be creating more problems for projects than the other
traditional disciplines.

Here’s what the distribution of issues looks like if we combine all the
rights and wrongs together:

Data from the 24 postmortems was collected and organized in two different ways. These were the methods undertaken for each.

organizing and summarizing things that went right and wrong
√ The body of each postmortem consists of five expositions about things that went right and five about things that went
wrong. Each of these atomic “things” was then classified into one of the following seven categories, defined as follows:

design Relating to
game design, level
design, gameplay
and rule designs, and
overall game vision.
external to team
This category covers
all situations and
decisions that
were made that
are clearly external
to the direct team
and development
process, including
business logistics,
hiring, partnerships,
funding, marketing,
studio-wide
decisions, and so on.
art Relating to art
decisions, direction,
or specific art
processes.

production/ process
This relates to
scheduling, work
prioritization,
production
methodologies,
development plans
and processes,
scope, team morale,
team communication,
team assignment,
team management,
and so on.
programming This
category covers
all technical
issues, including
tools, technology
implementation,
and anything code-
related.
testing This
category includes

all traditional QA
functions, including
bug testing,
gameplay/usability
testing, localization,
gameplay data
collection, and
metrics.
other There were
only two items that
did not fit any of the
above categories, and
were omitted from
the results. Together
they represented less
than 0.5 percent of
the data overall. One
was a “right” item
about sound direction
(interestingly, this
was the only item that
could be categorized
as relating to audio).

The other was a “right”
about obtaining nice
office space.

√ A couple of specific
types of challenges
were encountered
in categorizing each
reported item from
the postmortems.
First, sometimes the
original title of the
item was not a good
characterization
of what was
explained. This
issue was avoided
by categorizing
the item based on
the content of the
explanations, not on
how the explanations
were titled. Second,

sometimes the
discussion on a
certain item would
have crossover
with or would
otherwise veer into
other subjects. For
example, an item
ultimately classified
as “design” might
make mention of
some production
process or
something about
art, or vice versa. In
these cases, a good
faith effort was made
to select a category
based on what the
primary gist of the
entire explanation
appeared to be
about.

http://WWW.GDMAG.COM

game developer | February 201112

This aggregate graph might be best understood as the amount of overall
impact or significance a certain discipline can make on the smooth-running
of a project’s development. As expected, production is almost half of the pie,
with design taking the number two spot again, and coding taking roughly
equal weight to external issues. Note that since postmortems are explicitly
about the process of game creation, this is not an indication of what is most
important to making a game successful or artistic—just to completing it.

results part 3: common themes
are small teams important?

√ Seven, or just under a third of postmortems, reported a “small team”
as a positive aspect of the project. Interestingly, three of those projects
actually consisted of 30–40 member teams, with the other four being
reported from the smallest teams.

developer-publisher relationships

√ Fifteen out of the 24 projects were developed under a typical developer-
publisher system, where the entity publishing the end product is not the
same as the entity developing it. Projects that were developed at a separate
studio entity, even if owned by the publisher, were included in the count of 15.

Of those postmortems, we found that 40 percent, or 6 out of 15,
reported a positive developer-publisher relationship. Three out of 15, or 20
percent, reported problems with their relationship with the publisher, while
the remaining 40 percent did not report anything good or bad about their
publisher.

planning for the team

√ Five out of 24, or 21 percent, reported deliberately planning their game
with respect to the capability or expertise of the team. All of the projects
that were in this category completed their development in under 2 years,
and the majority of development cycles were completed in a year or less.
These teams were not all “small,” however—two of the projects had 37- and
50-person teams respectively.

crunch, time extensions, and scope

√ Nine projects, or 38 percent, reported receiving a time extension to
finish their project. A few also reported the length of the time extension,
which was anywhere from “a few extra weeks” to a whopping total
extension of 17 months (Brutal legend).

The same number also reported some manner of a crunch period
during their project, although few actually reported the duration of the
crunch, which varied anywhere from six months to “almost a full year” to
“always in crunch mode” (My life as a King).

Most interestingly, 17 postmortems, or 71 percent, reported scope
problems where there was either not enough time or resources to
complete the game, or there was too much design that had to be cut, often
repeatedly throughout the project. This is the most obvious trends across
the postmortems: teams are consistently underestimating the required
amount of time and resources needed to create their titles. However,
it’s unclear how many of these scope problems are due to pressure to
complete the game under a convenient timeframe for the publisher, and
how many are the result of poor estimating from the developer.

Along similar lines, half of all projects reported making last-minute or
exceptionally late feature additions or changes.

development agility

√ Five projects, or 21 percent, reported using some flavor of scrum or
other explicitly agile development process.

Nine projects reported using a deliberately flexible design approach to
at least one of the game elements they described.

Eighteen, or 75 percent of projects, reported iteration or rapid
prototyping as a valuable component to development.

Conversely, a surprising 29 percent, (7 postmortems) actually reported
that they committed to an inflexible design or plan partway through
development. Five of those projects were 2.5 year-long cycles or longer.

management and communication

√ Eleven projects, or roughly half, made mention of some variety of team
management problems, which included problems like overwork (separate
of crunch mentions), lack of focus, problems with staffing, and morale
issues.

Nine projects, or 38 percent, reported some kind of significant problem
with communication across teammates, which included deliberate refusal
of team members to communicate with each other, confusion about game
vision and direction, and the ineffectiveness of leaders to adequately
convey changes to the rest of the team.

pipeline problems

√ Nine postmortems also mentioned explicit problems with asset
pipelines. These include pipelines making work unusually time-consuming
or painful, not coming online early enough in the project, or otherwise not
adequately supporting the actual work process of team members.

so how did the outsourcing go?

√ Of the seven postmortems that reported outsourcing some of
their work, three reported an overall successful experience, and four
reported problems of some kind. The variety of problems included a lack
of preparation, starting the process too early with respect to the overall
cycle, underestimating the amount of management involved, and hiring a
company to perform work that they did not have sufficient expertise in.

conclusions

√ From looking at postmortems over the past two years and considering
the data presented here, it would seem that the biggest takeaway is the
importance of managing the development process itself. Of course, we’re
not talking about just the “existence” of management, but good, methodical,
careful management that keeps the interest of the game and the team at the
forefront. Unlike some of the other disciplines, project and team management,
when done well, may be able to compensate for inadequacies in other areas.
However, when executed poorly, it seems as though project management has
the potential to unravel and destroy even the best creative work.

Beyond that, one of the most common and disturbing trends is
the inability for game development projects to be properly scoped and
scheduled. We developers are constantly fighting a battle (that we aren’t
winning as often as we should be) between the resources we have
available and the end product we are attempting to realize—whether those
factors are imposed by ourselves or by those paying our checks.

ArA ShiriniAn is a game designer and writer. Notable games he has worked on include The

Red STaR, NighTSky, and dood'S Big adveNTuRe for the uDraw Wii tablet. He can be reached

at www.shirinian.net.

http://www.shirinian.net

W W W . E P I C G A M E S . C O M

Canadian-born Mark
Rein is vice president and
co-founder of Epic Games
based in Cary, North
Carolina.

Epic’s Unreal Engine 3
has won Game Developer
magazine’s Best Engine
Front Line Award four times

along with entry into the Hall of Fame. UE3 has won
three consecutive Develop Industry Excellence Awards.

Epic is the creator of mega-hit “Unreal” series of
games and the blockbuster “Gears of War” franchise.

Follow @MarkRein on Twitter.

UPCOMING
EPIC
ATTENDED
EVENTS

DICE Summit
Las Vegas
Feb. 9-11, 2011

GDC
San Francisco
Feb. 28-Mar. 4, 2011

Please email: mrein@epicgames.com for appointments.

© 2011, Epic Games, Inc. Epic, the Epic Games logo, Gears of War, the Powered by Unreal Technology logo, Unreal, Unreal Engine, Unreal Kismet and Unreal Matinee are trademarks or registered trademarks of Epic Game Games, Inc. in the United States and
elsewhere. All other trademarks are the property of their respective owners. All rights reserved.

ADVERTISEMENT

UNREAL ENGINE 3 FOR
MOBILE: INFINITY BLADE
KICKS OFF THE PARTY
Anyone looking for proof that Unreal Engine 3 is ready for
the world of mobile game development got their answer in
December 2010. Epic and ChAIR Entertainment’s own
Infi nity Blade created a major stir the moment it was released
for the iPhone, iPad and iPod touch for a simple reason: it
showed that mobile gaming is ready for console-quality
graphics and gameplay.

“We were able to make Infi nity Blade in fi ve months using a
team of 10 developers,” said ChAIR Entertainment Creative
Director Donald Mustard. “The advantage of using Unreal
Engine 3 to make a game like this is that it saves you years
of work – you spend your development time creating a fun
game as opposed to creating underlying technology.”

Upon release, Infi nity Blade shot to the top of the iTunes App
Store charts in countries around the world. IGN named
Infi nity Blade the best iPhone game of the year. It won
TouchGen’s Best Action Game, Best Graphics and Game of the
Year honors along with many other awards. Fast Company
has named Infi nity Blade among the seven most innovative
iPad Apps of 2010 and many sites reported Infi nity Blade to
be the “fastest grossing app ever”. The game’s fi rst free update
has already shipped adding in-app purchases to the mix, and
more features, including multi-player, which is on the way.

The fl oodgates have been opened for a new phase of game
development for mobile devices. Not only has Infi nity
Blade shown that mobile devices can support high-fi delity
graphics, it’s also proved that there’s a large market of mobile
users whose trigger fi ngers have been itching for the kind of
quality mobile games made possible for the fi rst time with
Unreal Engine 3.

Dungeon Defenders: The First Wave
Infi nity Blade isn’t the only UE3-powered mobile game
making a splash. Trendy Entertainment’s Dungeon
Defenders: The First Wave is the fi rst UDK-powered game
to debut on Android as well as the iOS devices.

“Developing mobile games with Unreal technology
allowed our small team, with no prior experience on
mobile platforms, to produce several titles in just a handful
of months – just in time for the holiday season,” said Trendy
Entertainment Development Director Jeremy Stieglitz.
“Unreal’s combination of robust tools, seamless art-driven
pipelines, and powerful graphics has given our team the
power to create high-end games which clearly stand out
from the crowd.”

And that’s just the beginning. Plenty of developers are us-
ing the Unreal Development Kit (UDK) for free to test the
waters of mobile gaming, now that it’s clear they won’t
have to compromise their vision or creativity to go mobile.

”UDK for mobile development brings the power of Unreal
Engine 3 to virtually anyone, allowing them to realize
their own game ideas, and make them come to life on
their own mobile devices,” said Epic’s Shane Caudle. “Now
with UDK, anyone can be a game developer and sell their
games on Apple’s highly successful App store.”

A “Jazzy” tutorial: Using UDK for iOS
Caudle created a tutorial to demonstrate how to use
UDK to prototype an iOS game using the visual scripting
language Unreal Kismet without touching code. If noth-
ing else, it’s worth watching just to see Jazz Jackrabbit
in action again – Jazz starred in one of the fi rst games
Epic ever made, back in 1994. In the tutorial, the game is
designed to be a top-down dual-stick shooter.

“This Jazz tutorial is just a simple example of how quickly
you can get something fun up and running without having
to write any code, due to the power of Kismet,” said Caudle.
“It’s amazing how quickly you can iterate on your game
using Kismet, the Mobile Previewer, and our UDK Remote
app. UDK Remote is freely available on the App Store, and
allows you to test your game on your computer while using
your iPhone, iPad or iPod touch as a remote input device.
If you’re into mobile game development, I suggest giving
UDK a shot!”

After getting Jazz armed and running, Shane takes the
game further by adding multiple enemy types, pickups and
powerups, particle eff ects, music and sound eff ects, HUD
elements for health, and score and custom input zones.

It’s GDC time!
If you’re interested in using Unreal Engine 3, let’s talk at GDC
this year. Whether you’re making a game for console, PC or
mobile, you should see our latest tools and technologies
in action. Contact us at licensing@epicgames.com with
several day and time combinations that suit your schedule
to arrange a meeting.

MOBILE EDITION

mailto:licensing@epicgames.com
http://WWW.EPICGAMES.COM
mailto:mrein@epicgames.com

http://www.techexcel.com

It was January 2009. We had
just spent over a year working
on a free-to-play, four-player
brawler titled Sugar Rush, and
the game was scheduled to
go to public beta in less than
two weeks. After a couple stress tests,
and running hundreds of fake clients on the
Amazon EC2 virtual cloud environment, we were
fairly confident that our architecture would hold
up, and the game was getting decent numbers in
attachment. Then the whole thing came crumbling
down. Our publisher, Nexon Publishing North
America, abruptly announced that it was shutting
down, scuttling our game with it. It hardly seemed
like it at the time, but this turned out to be the best
thing that ever happened to us.

In retrospect, our studio had become
complacent with the steady cashflow, and
although I still think back fondly to the game and
believe we executed at a high quality, it was clear
the project was losing its independent identity.

The meltdown forced us to re-examine our
studio goals. Eventually, we decided to forge on and
create our own game, exactly the way we wanted
to create it. Through that journey, we created an
unforgettable experience and rediscovered our
identity as an independent studio. >>>>

www.gdmag.com 15

http://WWW.GDMAG.COM

game developer | February 201116

W h a t W e n t R I G h t

1} PaX 2009. Exhibiting at PAX
and announcing the game with
a playable demo was one of the
best decisions we made during
development. It forced us to polish
our game and really nail down what
the core concepts were, and gave
us far more publicity than we
thought possible. Honestly, it was
unclear to us what the reception
would be; of course, we loved the
game and felt others would enjoy
it, but the actual response far
exceeded our expectations.

Because we didn’t yet have
a publisher and the game wasn’t
approved for any console, we hid
the consoles under question-mark
boxes. I remember a particularly
interesting conversation with a
potential publisher, who requested
and cautioned us not to show a
playable demo at the show for fear
that it would impair their ability to
market our game later. However, in
my experience, publishers tend to
market your game exactly as much
as it’s already gained traction,
so we felt strongly about getting
out early and often.

Thus, throwing caution to
the wind, we showed our entire
hand, and with the magical help

of Carolyn Carnes (our wonderful
PR representative who has moved
on to become Digital Marketing
Manager at Microsoft), we created
a dialogue with the press and a
solid following within the game
community. This gave us the
momentum to continue building the
product and ultimately sign on with
EA Partners.

2} tools and PIPelIne. One of the
benefits of being independent, of
course, is that you can develop
with a constant focus in the
long term. Without impending
milestone deliverables, it’s okay
to have months at a time where
nothing seems to be getting done
while the tools and engine are
being created. While the back-end
engine was being built, we also
lovingly created three essential
tools for content creators:

¬ The Shanker—our level
creation tool, to allow level
designers and level artists to
create levels and script the
experience.

¬ A custom animation pipeline
from Adobe Flash to allow
artists to work naturally in
Flash while still pushing the

boundaries of what can be
rendered on screen.

¬ A stategraph engine for
game object behavior, to allow
designers to create enemy
behaviors, interactive objects,
and Shank controls.
In the end, we built 13 levels in
three months using these tools
(this shows up in the “what went
wrong” section), and the fact that
our programming team worked a
total of possibly three overtime
weekends throughout the entire
project is a testament to how
robust our tools are.

3} audIo InteGRatIon. The audio
component of Shank was one of
the most painless integrations
we’ve ever encountered. It was so
painless that I almost didn’t want
to include it in this section, as most
of the staff never had to care about
it, but that’s also exactly why it was
something that went right. From a
technical perspective, we spent a
couple days integrating FMOD, and
from then on had only very small
issues all the way up until launch.

When it came to music, we
auditioned the role to a number
of different composers, but none
of them seemed to really fit our

theme. Then Vince de Vera and
Jason Garner—two local Vancouver
musicians—gave us a sample tune,
and we knew immediately that they
were perfect for the role. Neither
had worked on games before, and
our collaboration was incredibly
refreshing. Music transitions were
done using the Music Designer
in FMOD, transitioning between
segments at key points in
the gameplay.

We also worked with a local
sound designer to help with some
of our integration, including leveling
the sounds. On one eventful day,
Alan suggested that I add reverb
and ambience to different sections
of the levels, and within a day our
entire world felt full and wonderful
as Shank stepped in and out of
different environments. For a team
with no expertise, the audio was a
fun and painless ride, and with the
experience we gained from Shank,
we’re confident we can create an
even better aural experience for our
next outing.

4} a CleaR VIsIon. From the
beginning, it was clear what
Shank was meant to be. We set
out to revive the 2D beat-em-
up experience, inspired by the
Rodriguez-created Desperado,

PublIsheR EA Partners

deVeloPeR Klei Entertainment

numbeR of deVeloPeRs
Average of about 10

lenGth of deVeloPment18
months

Release dates August 24, 2010
(PSN), August 25, 2010 (XBLA),
October 26, 2010 (PC)

budGet More than EEtS, less than
Sugar ruSh

softWaRe Adobe Flash, Adobe
Photoshop, FMOD Designer, Visual
Studio 2008, Hudon CI, The Shanker,
SVN, Python, and Scite, among
others

PlatfoRm Xbox LIVE Arcade,
PlayStation Network, PC

www.gdmag.com 17

http://WWW.GDMAG.COM

www.gaikai.com/jobs

Get picked first.

Gaikai_Spread_GDC.indd 1 1/11/11 9:42 AM

www.gaikai.com/jobs

Get picked first.

Gaikai_Spread_GDC.indd 1 1/11/11 9:42 AM

http://www.gaikai.com/jobs

among other modern Westerns. We
dubbed it a “cinematic brawler,” and
within a month of development,
the art style, aesthetics, and feel
of the controls were set. Being an
independent project, there was
no self-censorship, no political
meetings, and no second guesses.
This clarity allowed us to focus
all our efforts on fine-tuning that
experience, and to not waste our
efforts trying to find the “hook.” We
knew what it was—now we just had
to execute it.

This is in sharp contrast to EETS.
In 2003, I built a small physics
engine in my free time, and then
posed the question “Okay, how
do we build an actual game out
of this?” This is not necessarily
a poor way to build a game—the
experimentation was extremely
fun—but it did lead to a very long
development cycle (three years!)
before we understood why anyone
would play the game.

The last time I worked on a
game with as much clarity as SHANK

was WARHAMMER 40,000: DAWN OF

WAR. Jay Wilson led that project as
lead designer; there was never any
confusion as to what the product
was, and the entire team worked
together to achieve the goal. It went
on to become the most efficient,
profitable, and crunch-light project
Relic had shipped to date.

5} RELATIONSHIP WITH EA
PARTNERS. Our relationship with EA
Partners has completely changed
our view on how publisher-
developer relationships can work.
During our negotiations with
different publishers, we were
adamant that we keep creative
control of the project. In this case,
EA Partners clearly trusted our
abilities. They gave us the freedom
to execute our vision, and perhaps
more importantly make tough
decisions—some of which would
make a producer cringe. It was
clear that we were in this together,
and that any problems we had
were not simply our own, but the
entire team’s.

The clearest example of this is
that our producer, Mike Doran, would
answer the phone saying, “How
can I help?” and after hearing our
current blockers, would respond by
saying, “On it.” EA Partners actually

felt like a resource to our studio
rather than overhead that needed to
be managed. Obviously, we worked
hard to earn this relationship,
and in the end, both parties came
out incredibly satisfied with the
whole experience.

When a budding independent
developer asks whether they
should strive to obtain a publisher,
the answer is usually “It depends.”
In this case, due to the size of
the project, we needed additional
financing, but we were able to find
a partner that enhanced the entire
process. I believe this relationship
proved to us that it’s possible to
stay creatively independent while
working with a large publisher.

W H A T W E N T W R O N G

1} SCHEDULE AND ART LOCK DOWN.
One of the biggest issues we had
was the late stage at which the
art was locked down. Although
we had great tools, many of the
levels were done in parallel and the
final art was delivered all at once,
scant weeks before we went into
certification. In addition, cutscenes
were delivered right up to the final
days, and UI artwork was also
relegated to the end.

This caused no end of
cascading headaches; in particular,
programmers had to deal with
content blowing our budgets at
the last moment. The late FX we
implemented used features that
were not fully tested, and days were
spent debugging and optimizing
tools that should have been used
months earlier. The UI became a
huge headache due to synchronous
loading of textures, and the
cutscenes deadline for the ratings
board tested the endurance of the
art team.

The designers got the worst
of the problems. It was their job
to polish the levels after the final
content was delivered—making
sure the cameras were framed,
the enemies were in place, the
cutscenes transitioned properly,
and so on. As the content slammed
in, suddenly the designers had
a Herculean amount of work. In
the end, the team pulled through
because of the strength of our
tools, and because we worked our
butts off.

GAME DEVELOPER | FEBRUARY 201120

2} THE PLAYER LEARNING
EXPERIENCE. For the two PAX
demos we created, we tailored
them specifically for manned
demos, where we could guide the
users with very simple instructions
on how to play. Since we were
guaranteed that we would be next
to them, we didn’t worry as much
about the learning curve as the
overall experience.

This was a valid strategy for the
exhibitions, and worked incredibly
well, but turned out to be a downfall
for the final game. As the primary
demo man, I quickly learned that
only very few key tips needed
to be mentioned for a player to
really understand the combat
mechanics—after all, responsive
combat was something we’re
passionate about. Letting them
know that weapon transitions are
key, for example, or that pressing
grapple opens up a whole new
moveset was all we needed to get
players to “grok” the system and
have a lot of fun.

What we didn’t realize was
how hard it would be to translate
that into an in-game tutorial. Those

simple phrases, precisely placed
just as I could feel a player’s need
to hear it, were nearly impossible
to implement, especially as the
tutorial was done after the level
was already art-complete. What
we needed was a more thoughtful
approach to the whole learning
experience, and the tutorial is only
a small piece of that equation.

Given additional time, greater
full-experience playthrough testing
would have been immensely
useful in finding out common
blockers, pacing problems, and
control frustrations in the game.
For example, although we found
offensive players enjoyed our
control scheme immensely—often
calling the combat system the most
responsive they’d ever played—
defensive players felt that they
were sticky and unresponsive. This
could have been easily resolved
had we done rigorous, empirical
playtesting with a wider range of
players earlier in the process.

Sadly, this seems to be a
common theme in postmortems,
and it’s something we’re extremely
mindful of for our future titles.

3} MULTIPLE PROJECTS WITHOUT
THE RESOURCES. For the majority
of the time we were developing
SHANK, we were also actively
trying to build another project.
However, we simply didn’t have the
resources to do so, and the result
was that the staff was pulled in
multiple directions.

I had probably one of the worst
months in my professional life in
my attempts to have both projects
live up to the quality that we were
proud of. For weeks we pulled some
unspeakable hours in the office

switching between two projects,
working with the staff to try and
make them both work. Thankfully,
our partner on the second project
worked with us to put it on hold,
allowing us to focus on delivering
one great product at a time.

There are many reasons why
this came to pass. Ultimately, it
was a combination of incomplete
information—we didn’t know when
or if projects would be greenlit—as
well as poor resource management
on our part. We also made the
classic mistake of underestimating

WWW.GDMAG.COM 21

http://WWW.GDMAG.COM

game developer | February 201122

the differences between the two
projects, thinking that our in-house
engine and tools would support
both projects. Indeed, there were
definitely efficiencies to be had,
and features from one very much
benefited the other—but there
were enough differences that
significantly more effort than
planned was needed to move the
projects along.

4} Cash flow. For the first half of
development, the company slowly
bled the war chest we had saved
up over that first four years in
business. Doing contract jobs here
and there, we kind of bobbled along,
but ultimately spent a lot more
than we earned. This caused us to
really back-load our tasks, since we
couldn’t hire, and a lot of our staff
was working on other projects that
brought in some money.

At the end of 2009, running on
fumes, we asked the shareholders
(who are also employees) for short-
term loans, temporarily reduced
salaries, and Jeff and I signed
an agreement to take out a loan
against our personal assets to keep
the studio afloat until our finances
were figured out.

Many of the cons in this section
were exacerbated by the lack of
resources, and once the cash
starting flowing in again, we had to
try and catch up on all the lost time.
In particular, the cutscenes were
delayed to the very last moment
because we simply didn’t have the
funds to pay for contractors to help
out earlier in the project.

Thankfully, we’ve fully recovered
to past our previous peak, and I’m
looking forward to future projects
benefiting from not being resource
starved early in the project.

1} No iNterNal Qa. Shank

benefited both from an outsourced
QA studio as well as EA Partners’
small QA staff. However, as the
builds went out for testing more
frequently, it became more and
more obvious that we needed a
better process for smoketesting
builds before they left our office.

We use continuous integration
in the office, and our turnaround
time for an internal build was
counted in minutes—fast enough
that people didn’t really think about
it. However, when it came to doing
a deploy for the QA team, we went
through a multistage process of

rebuilding all three platforms,
pre-processing data, running the
platform package scripts, and
finally packaging it all up. This takes
about an hour. Because we didn’t
want the team to simply twiddle
their thumbs and wait for an hour,
often everyone would go home as
the designers continued working
and waiting for the build. When
the build finished, we’d smoketest
it, and only briefly since by then
it was getting really late. If we
could fix it, then we’d have to start
the whole cycle again. Two things
happened more often than I liked.

First, sometimes we didn’t do a
good enough job at smoketesting,
and a broken build was delivered.
I’d get a call very early in the
morning to let me know that this
was the case, since our test team
was based on the East Coast and
we’re on the West Coast. Second,
whoever smoketested (usually the
designers) went home extremely
late, causing us to be less effective
the next day.

In retrospect, we needed
dedicated in-house QA, a staggered
delivery schedule, and preferably
an external QA team in the same
time zone.

C o N C l U s i o N

/// After two years of developing a
game in tandem with a publisher
and their designers, it was
incredibly satisfying to once again
work on a project that is entirely
our own. For much of the team,
this is the first game they’ve ever
shipped, and for all of us, it’s been
an incredible journey filled with
amazing lessons.

The words in this article can’t
possibly capture all our learnings,
but hopefully over time we can
share them with everyone and can
all continue to improve the medium
that we care so deeply about.

The concept of Shank

happened to be conceived by Jeff
Agala and I, but it was the entire
team that brought it to life. I think
the most exciting thing for me
is to see what games we’ll build
together in the future.

Jamie CheNg self-funded Klei

Entertainment in 2005. Prior to founding

Klei, Jamie was an avid AI programmer

for Relic Entertainment. He also co-wrote

an article on planning systems for Game

Programming Gems 5 and the Best of

Game Programming Gems.

http://www.insomniacgames.com/careers

GAME DEVELOPER | FEBRUARY 2011 24

I had been working as a game programmer
at king.com for four and a half years,
making games both at work and during
my free time. When I started that job, we
were eight people, and when I left, we
were 10 times as many. Initially, my hobby game
development wasn’t a problem for the company, but once they
informed me that they technically owned all games I made during
my free time and any prizes I won in competitions, I quit.

I got a job at a more liberal company as a web developer, so I
could focus a bit more on my hobby. Initially, MINECRAFT started out
as a top-down strategy game where you moved characters around in
a dynamic cube-based world, kind of like a crossover between DWARF

FORTRESS and ROLLERCOASTER TYCOON.
While playing around with a first-person mode, I realized the

world was much more interesting as a first-person adventure game.
The low-resolution textures I had used got really blurry and awful,
so I thought I had to try to get some higher resolution art. It wasn’t
until playing INFINIMINER that I realized I could just turn off the texture
smoothing and end up with a charming pixely look, and that’s how
the seeds of what MINECRAFT is today were born. After talking about it
on a couple of Internet forums I frequent, and putting out a free alpha
version for a few weeks, I decided to try to charge for the game, and
added premium accounts. Initially, these had very minor benefits
over free accounts. I sold about five to ten per day. Over time, the
sales increased to 15, which was enough to support me full time, so
I dropped down to part time on my day job and spent three days per
week on MINECRAFT.

Then it sold 30 copies per day. Then 50. I quit my day job and
went full time on MINECRAFT exactly one year after leaving the job
at king.com. Now it’s seven months later, we just released the beta
version, I’ve started a game studio with a couple of friends, and we’ve
hired a few talented people.

If you’ve never played it, MINECRAFT is a sandbox fantasy
adventure game set in a world made up entirely of one-meter blocks
of different materials. The player can pick up those blocks and move
them around, and use them to craft items and tools. Monsters can
spawn in dark areas and during the night, which plays nicely into a
general fear of the dark. During alpha, the development focus was on
experimenting with features and seeing what works. In beta, we will
focus more on cleaning up the game, fleshing out existing content,
and improving performance and stability.

The game is currently selling over 6,000 copies per day, and
we’ve gotten lots of awards, including PC Gamer UK’s 2010 Game
of the Year, and Machinima User’s Choice Game of the Year. We've
also been nominated in three categories in the Independent Games
Festival. This portmortem covers the early days of MINECRAFT,

M A R K U S P E R S S O N

http://king.com
http://king.com

WWW.GDMAG.COM 25

alphaalpha

http://WWW.GDMAG.COM

GAME DEVELOPER | FEBRUARY 201126

specifically the period during which the game
was in alpha.

W H A T W E N T R I G H T

1} LETTING THE GAME FUND ITSELF. MINECRAFT’s
always been fully self-funded. I developed the
initial versions in my free time as a hobby, and
hosted it on my private servers. Once the game
made enough money to pay for a server on its
own, I signed up for a real server and moved
everything there. My income was coming from
my day job, which I kept working at part time until
working on MINECRAFT full time was risk free.

It turns out I could’ve gone full time earlier, so
perhaps I was a bit too careful, but since I had a
lot of free time then, there wasn’t a problem with
me working on MINECRAFT during my spare time.
As a result of never taking any risks and letting
the game fund itself, MINECRAFT and Mojang are
fully independent with no external investors, so
we haven’t made any promises to anyone other
than the players. This means I can keep focusing
on making the game I want to make, and to work
with the people I want to work with.

The success of the game also meant we got
hundreds of applications once we started looking
for more developers, and we ended up snagging
some really talented people like Jens Bergensten
from Oxeye and Junkboy, an awesome pixel artist.

2} OPEN DEVELOPMENT. From the start, I was
very open about MINECRAFT’s development. I

talked about it on forums, primarily those on
TIGSource, and told people what I was doing and
where I wanted to take the game. Fairly soon, we
set up an IRC channel for MINECRAFT for more rapid
discussion, and after a while, I set up a Tumblr
blog in order to get information out to more
people more easily.

Discussing with the players and listening to
suggestions, I learned a lot about how the game
could be played and what directions were most
interesting to others. Usually, people played it in
completely different ways than I did. For example,
when I added more complex game rules to the basic
game engine, it turned out a lot of people really
liked the free building from the engine test, so I kept
it around and called it “creative mode.” Sometimes
players manage to convince me that something I
originally thought was a bad idea actually is a great
idea, like with lighting and custom texture packs.
With the texture packs, players were hacking the
client to replace the textures for a long time, and
I resisted the change until I saw a PORTAL server
mod that basically was a simple version of PORTAL

by Valve Software. It wouldn’t have been nearly as
cool if it weren’t for the custom textures that really
helped set the mood (see www.youtube.com/
watch?v=4PBIqoBP_y4).

Another example of the players being right is the
ladders. I resisted this for a long time on the basis
that I’ve never ever enjoyed ladders in any game
ever, but gave up after being convinced that having
huge stairwells took up too much space. It turns out
ladders don’t get used as frequently as I feared.

3} NOT LISTENING TO ADVICE. While I did
appreciate the advice I got from people who
were supposed to know what they were talking
about, a lot of it would’ve severely limited what
I was able to do. People tend to give you advice
based on personal experience, and just because
something worked or didn’t work for them in the
past, it doesn’t mean that it’s valid for me now.

If I had listened to advice I never would’ve left
my day job to start work on MINECRAFT in the first
place, nor would I have charged for the game as
early as I did. Without the early funding from early
adopters, MINECRAFT would never have taken off.
Another piece of advice I shouldn’t have listened
to, but unfortunately did, was to not quit my
day job too early. It provided some economical
security, but it turns out that really wasn’t
needed. I’ve ignored some advice that would’ve
helped as well, such as suggestions to change
the company form, which is expanded on later on
under “what went wrong.”

When someone starting their own thing asks
me for advice, I usually tell them not to listen to
advice. Then I give them advice anyway!

4} MAKING A GAME FOR MYSELF. I’ve always made
games that I myself want to play and that I think
are missing from the market, partially out of
frustration of not being able to play those games.
The great thing about making games where the
target audience is people like yourself is that it’s
really easy to know whether you’re appealing to
that audience with your game.

http://www.youtube.com/watch?v=4PBIqoBP_y4
http://www.youtube.com/watch?v=4PBIqoBP_y4

DeVry University’s bachelor’s degree program in Game & Simulation Programming (GSP)

positions students for success with an innovative experiential education.

Our graduates are well-rounded and ready to make an impact on today’s ever-changing,

demanding simulation and video game industries. The GSP curriculum includes training

in a broad range of programming languages and software applications. These courses

are integrated with a general education curriculum to reinforce essential critical

thinking skills.

Discover education working at devry.edu

Visit us at The Game Developers Conference, booth #2408

February 28–March 4, 2011 | Moscone Center | San Francisco, CA

changing
THE GAME

DeVry University is accredited by The Higher Learning Commission of the North Central Association, www.ncahlc.org. In New York,
DeVry University operates as DeVry College of New York. DeVry University operates as DeVry Institute of Technology in Calgary, Alberta.
DeVry is certifi ed to operate by the State Council of Higher Education for Virginia. AC0060. DeVry University is authorized for operation
by the THEC. www.state.tn.us/thec. Nashville Campus – 3343 Perimeter Hill Dr., Nashville, TN 37211. Program availability varies by location.
©2011 DeVry Educational Development Corp. All rights reserved.

Preparing Students for 21st Century Careers

14722-01 DVU_GDC_MagAd_7-75x10-5_0111 v2.indd 1 1/7/11 3:07 PM

http://devry.edu
http://www.ncahlc.org
http://www.state.tn.us/thec

GAME DEVELOPER | FEBRUARY 201128

WWW.GDMAG.COM 29

It seems obvious, but a lot of people seem to
try to make games that appeal to a vague notion
of a “general public.” If I like my own game, there
probably are more people out there who would
like the game as well, and the Internet is a huge
market. That translates into quite a lot of potential
customers. And fortunately for me, I seem to
represent a fairly profitable target audience.

5} PURE LUCK. If you’re not making a sequel, it’s
basically impossible to have any idea how well a
game will do, especially if you don’t have many
years of experience like most publishers. I’ve
tried to analyze why MINECRAFT has sold so well
several times, and I come to slightly different
conclusions each time. For example, I think
it’s usually fun to watch other people play the
game, so that will drive the viral aspect, or that
the random levels in the game made it feel more
personal, so people would be more prone to talk
about their experiences. However, I can’t escape
the fact that a large factor is that I just happened
to make the right game at the right time just as
the audience was starting to warm up to the idea
of paying for indie games.

Platforms like the iPhone, XBLA, and Steam
meant players were getting used to paying for
games made by small teams, and MINECRAFT

happened to come around at the same time. I had
never even considered this, so it came down to
just pure luck. I like to tell myself the success is
mostly because the game is awesome, though.

The only paid marketing I tried was throwing
about $500 dollars into Google AdWords, which
resulted in the game getting a very small number
of clicks at a cost per user that was way higher than
the conversion rate. Talking about the game with
media and being public about my content patches
always seemed to have the greatest results.

W H A T W E N T W R O N G

1} THE WRONG COMPANY FORM. Initially, I had a
sole proprietorship, which meant that I was the
company. In that company form, you can’t keep
money in the company at the end of the year
and have to take out all the money as salary. In
Sweden, getting a salary that high means you pay
a lot of tax. Like over 60 percent. If I had started a
limited company (“Aktiebolag” in Sweden) earlier,
I would’ve been able to save more money for
future development, and we wouldn’t have had to
spend several weeks working out the details for
the new company.

Long hours with lawyers, waiting for papers,
and talking to banks really take the fun out
of running a company. Fortunately, now that
everything's in place and we’ve got a really
talented CEO to help run the company, I can just
focus on the products again.

2} SUPPORT. Email doesn’t scale well. At all.
Initially, I replied to all emails I got. Then I started
just reading them all and replying to the things
that needed replying to. Then I started getting
several hundred emails per day and was unable to
keep up with them all. Unfortunately, this meant
that a lot of support issues also went unnoticed
when I failed to see them while skimming through
the subject lines.

Now that we’ve got a company, we’ve got more
people reading email, and we’re trying to set up a
better support system that doesn’t use email at
all. We’re still struggling to catch up to the support
need. I’m not sure how we’ll deal with this in the
coming months. We’re setting up some systems,
but it might end up with us outsourcing support.
Outsourced support might be bad, but at least you
can get replies from them.

3} TOO MUCH STRESS. When I find inspiration and
get in the groove of programming, I can be very
fast. As a result, I sometimes set up goals that are
too tight, and when something happens that delays
development speed, like an illness, or just an extra
tricky bug, I get really stressed trying to get things
out in time. On top of this, not being able to keep up
with email meant I had a constant feeling of having
missed some important information.

The biggest crash I had was before going full
time on MINECRAFT, which resulted in me taking a
three-week vacation where I did absolutely nothing
other than play games and sleep. And recently,
during the push to release beta, half the company,
including myself, got sick. I did a couple of 12-hour
days full of painkillers and coffee, and it really
drained me. This is obviously not healthy. So for
beta, if I realize a deadline will be hard to reach, I
will say so instead of trying to reach it. We’re putting
some proper development methodology in place.

4} CODE REBOOT. After many months of working
on the same code base, I was growing frustrated
with it and decided to start over on a new engine
mostly written from scratch. I guess this happens
to most programmers. You get frustrated with
some structure you put in place early on, or you
think of a feature you don’t think you can work
into the current code base, and you decide to do a
rewrite. This is almost never a good idea. Not only
do you waste time duplicating work, but you end
up with fewer features, because you either forget
to add them or just never get around to them.

Sure, there were a bunch of cool new features
as a result of the code rewrite, like the lighting
engine and the infinite map size, but this could’ve
been added to the old code as well. It might’ve
taken some restructuring to do so, but it wouldn’t
have taken as long as the rewrite did and I wouldn’t

http://WWW.GDMAG.COM

GAME DEVELOPER | FEBRUARY 201130

have lost important features like multiplayer. If you
ever get the urge to do a rewrite, resist it!

5} WAITING TOO LONG TO ADD MULTIPLAYER. As a
result of the code rewrite, I split up the game into
“classic,” which was the old code, and “alpha,”
which was the new game. I hadn’t ported over
the multiplayer code to alpha. I decided to just
focus on the single-player version of the game
and cram in new features at a really high pace.
This was probably my most creative time during
development, but once it was time to implement
multiplayer, the amount of work I needed to do
was massive.

Huge features had been written without
any concern for distributing it, game logic code
was mixed with rendering code, and lots of
assumptions had been made that don’t hold up
in multiplayer, such as the idea that there would
only be a single player for monsters to target.
The huge workload meant that my motivation
dropped, and so did development speed.

One particularly bad example is the inventory.
The version I first implemented was basically just a
UI hack to try out how it could be done, and when it
came to moving this server side, there was a lot of
work just simply separating logic from rendering.
Even after that, no effort had been made to prevent
clients from cheating and using items they hadn't
made yet. It ended up with me having to rewrite
most of the code, and server-side inventory alone
took several weeks to fix. These days, when we
add a new feature, we try to make sure to test it

in both single player and multiplayer as soon as
possible. Moving forward, we will probably change
the game so that even when playing single player,
you’re actually playing the multiplayer version of
the game against a local server.

J E E P E R S C R E E P E R S

/// The development of MINECRAFT has been chaotic
and organic from the start, with me adding features
that I felt were missing and fixing bugs when they
were annoying. Some bugs, like pigs looking like
tall pillars with four small stumpy legs, I kept and
made part of the game. The way they moved had a
very creepy feel to it, so I named them “Creepers”
and painted them green. Turns out this was a good
move, as Creepers have become something of an
icon for the game by now.

When I started work on MINECRAFT, I was
expecting it to be a 6- to 12-month project, and that
it would hopefully make at least enough money to
fund itself and the development of the next game.
Now it’s been over a year and a half and we only
just now got out of alpha. It’s time to focus on the
full version, and the first step is for me to try to
define what the full version actually is. We’ll keep
releasing expansions and keep the game alive, but
there needs to be some kind of final version that
you can point at and say, “I did this!”

I’m not sure why I feel a need to have
something to call the final version if we’re just going
to keep updating it, but it just feels wrong to never
have reached some kind of goal. Having the game

constantly be under development also seems
to confuse the press. I’ve heard people question
whether the game is actually released, and if so,
what year did we release it? It feels like a good idea
to have a point in time that represents the cut-off
between building toward a fully self-contained
game, and adding new content to that game.

We recently started looking more into
integrating social media into the game, like
perhaps the ability to record videos in-game
to post to video sharing sites, or Facebook
integration to allow players to find friends who
also play the game, but it really seems to me like
social media has its own ways of organizing itself
around content it likes. There are several hundred
thousand videos about MINECRAFT on Youtube,
there’s a subreddit dedicated to it, and at least
one 24/7 live streaming channel for it. While it can
certainly help to have better integration to those
services, I don’t think it’s a good idea to start with
that aspect. If the core game isn’t interesting
enough to show up on those channels, having
good integration is just a waste of time.

The company has grown fast, and we’re
seven people strong now in an office that could
potentially house up to 15. We’ve got another
game in the prototype stage, and more game
ideas for the future.

MARKUS PERSSON is 31 years old, and developed

MINECRAFT from his home office. In the past, he worked

on WURM ONLINE, and has made several games for game

development competitions.

PUBLISHER None

DEVELOPER Mojang

NUMBER OF DEVELOPERS 1, but I got
help with music and sound effects

LENGTH OF DEVELOPMENT 18 months

RELEASE DATES The first version of
Minecraft went live in June 2009, and the
Beta version was released in December
2010

LINES OF CODE 80,000

DEVELOPMENT TOOLS LWJGL, Eclipse,
Paint.net, Audacity, Red Bull

PLATFORM Mac, Windows, Linux

http://Paint.net

http://www.6waves.com
mailto:bd@6waves.com

IRVINE, CALIFORNIA I AUSTIN, TEXAS I VELIZY, FRANCE I CORK, IRELAND
SINGAPORE I SHANGHAI, CHINA I TAIPEI, TAIWAN I SEOUL, SOUTH KOREA

SAO PAULO, BRAZIL I BUENOS AIRES, ARGENTINA I MEXICO CITY, MEXICO

jobs.blizzard.com

©2011 Blizzard Entertainment, Inc. All rights reserved. World of Warcaft, Diablo, StarCraft and Blizzard Entertainment are trademarks
or registered trademarks of Blizzard Entertainment, Inc., in the US and/or other countries.

We are actively recruiting across all disciplines for the following locations:

® ® ®

Visit us in the GDC Career Pavilion at Booth #2432.

BLIZZ_HR_GDC_AD_2011_m01_300.indd 1 12/6/10 4:44:26 PM

http://jobs.blizzard.com

WWW.GDMAG.COM 33

C H R I S P R U E T T I L L U S T R A T I O N S B Y U N O M O R A L E Z

Respect for the player is a common theme in modern game design. Ramp difficulty up slowly. Secretly
assist the player with aiming and jumping. Allow cut scenes to be paused or skipped. Reduce difficulty dynamically to
allow failing players to progress. Let the player save anywhere. These methods are intended to lower player frustration,
and to allow an audience wider than hardcore players to enjoy a game. Like good user interface design, this approach
removes friction from the experience and lets the player focus on the content of the game.

But often this idea also manifests as easier gameplay. After all, one way to reduce frustration is to simply scale back the level of skill that the
game requires. One recent example is KINECT JOY RIDE, a launch title for Microsoft’s new motion controller, which has received some criticism for
the dramatic levels of steering assistance that it provides (in one humorous online video, a player is able to place third in a race without actually
steering at all).

There is some evidence, however, that harder, or perhaps more intense play can cause the player to be more emotionally affected by game
content. The evidence is found in the Two-Factor Theory of Emotion, defined by Stanley Schachter and Jerome Singer in a psychological study in 1962.

The theory states that the brain normally generates emotional responses based on external stimuli, but can sometimes be tricked into
generating a false response based on the body’s physiological state. When the body is aroused and the brain does not have an obvious way to
explain that arousal, it can misread the situation and cause us to respond emotionally in a way that we normally would not. I first read about
Schachter and Singer’s theory in a 2007 Gamasutra article by Dan Cook (see Resources, pg. 37). In "Constructing Artificial Emotions: A Design
Experiment," Cook makes the case that the Two-Factor Theory of Emotion has a number of interesting implications for game designers. In this
article, I’d like to delve into the theory itself, and consider how it might apply specifically to difficulty in games.

T W O FA C TO R S O F E M OT I O N
/// Schachter and Singer’s theory defines emotion as the combination of two “factors:” physiological change and a cognitive label to explain that
change. Their research grew out of a string of experiments in the ‘40s and ‘50s that attempted to establish a link between aggression and sexual
arousal. Some research suggested a link, like the 1965 study by psychologists Barclay and Haber that compared levels of sexual arousal in
students who were angrily berated by their teacher to those who were not. Schachter and Singer’s approach was more general: they postulated
it was the physiological effects of being the subject of aggression, rather than aggression itself, that lead to a rise in arousal.

building emotions with
high-stakes play
building emotions with
high-stakes playhigh-stakes playhigh-stakes playhigh-stakes playhigh-stakes playhigh-stakes playhigh-stakes playhigh-stakes playhigh-stakes playhigh-stakes playhigh-stakes playhigh-stakes playhigh-stakes play
building emotions with
high-stakes play
building emotions with building emotions with
high-stakes play
building emotions with building emotions with
high-stakes play
building emotions with building emotions with
high-stakes play
building emotions with building emotions with
high-stakes play
building emotions with building emotions with
high-stakes play
building emotions with building emotions with
high-stakes play
building emotions with building emotions with
high-stakes play
building emotions with building emotions with
high-stakes play
building emotions with building emotions with
high-stakes play
building emotions with building emotions with building emotions with building emotions with

http://WWW.GDMAG.COM

GAME DEVELOPER | FEBRUARY 201134

WWW.GDMAG.COM 35

Our bodies react to a lot of different types of stimuli,
but often the mechanics of that reaction are similar. For
example, fear, trauma, and sexual arousal can all lead to the
release of adrenaline and an increased heart rate. Schachter
and Singer’s test attempted to separate this type of reaction
from obvious context to see how the brain would respond.

The experiment they performed involved giving two
groups of college students injections: one group received
a shot of adrenaline and the other a placebo. Some
students were told about the contents of the shot, but
the rest were not told or were mislead to believe it to be
something else. Once injected, each student was paired
with another student who was actually a confederate of
the psychologists. The confederate was instructed to act
in a certain way, either as though they were experiencing
a euphoric high or as if they were very angry. The
three important data points (psychologists call them
“dependent variables”) were the actual contents of the
shot, what the student was told about his shot, and how
the student behaved in the presence of the confederate.

The results of the test showed that students tended
to follow the emotional response of the confederate. If the
confederate acted angry or high, the students reported

feeling the same. But this only worked on the students
who had received adrenaline and were not told what it was;
those who received a placebo and those who were informed
that they had been given adrenaline showed no increased
emotional response. The effect was particularly strong in
students who had been told to expect bodily responses not
associated with adrenaline, like dullness and headache.

Schachter and Singer explained this result with the
Two-Factor Theory. They suggested that when the body
becomes excited and the brain does not know why (as
was the case with the students who were unwittingly
injected with adrenaline), it looks to external stimuli for
clues on how to best emotionally label that response.
In this case, subjects who were in the same room as a
peer who acted high or angry misidentified their body’s
reaction to the adrenaline as an emotional response, and
felt high or angry themselves. We might also guess that
the students who were verbally abused in Barclay and
Haber’s experiment may have mislabeled physiological
change that resulted from anger or fear as sexual arousal.

This is an interesting cognitive theory, but it gets really
fascinating when we consider Donald Dutton and Arthur

Aron’s 1974 experiments involving the link between fear
and sexual arousal. Building on earlier Two-Factor studies,
Dutton and Aron sought to test whether lust could be
instigated in people by putting them in a scary situation. If
the Two-Factor Theory of Emotion is correct, they thought,
it should be possible to cause a person’s body to react to
fear and then confuse the person into thinking that they
are aroused by introducing sexual symbols.

Their first experiment took place on a high bridge,
the Capilano Suspension Bridge in Vancouver, BC. This is
a wobbly bridge with low handrails that spans a 70-foot
drop to a ravine, and as Dutton and Aron observed, most
people cross it very slowly and very carefully because it’s
quite scary. They placed an interviewer on the bridge itself
and asked men between the ages of 18 and 35 to answer
a questionnaire and write a short story. At the end of the
survey the interviewer provided their personal phone
number in case the interviewee wished to call back later to
learn more about the experiment.

Dutton and Aron performed this procedure twice,
with two different interviewers: a man and an attractive
woman. They also repeated the experiment on another
bridge that was not so scary: it had solid construction, high

handrails, and rose only about ten
feet off the ground. The dependent
variables for this experiment
included whether the subjects
accepted the interviewer’s phone
number, whether they called back
later (probably looking for a date),
and the level of sexual content
present in the subject’s survey
answers.

For men who met the male
interviewer, the responses were
pretty clear: low sex content scores
in the survey and few bothered to
call back (most subjects did not
even accept the phone number).
This result was consistent
regardless of whether the survey

was performed on the scary bridge or the safe bridge. The
responses from men who spoke with the attractive female
interviewer on the safe bridge were similar: There was some
minor increase in sexual content, but results were overall
consistent with those of the male interviewer.

But those subjects who met the female interviewer
on the scary bridge behaved very differently. The
sexual content in their surveys increased dramatically,
almost every person interviewed accepted her phone
number, and 50 percent of them called her back later.
By each measure, the subjects on the scary bridge were
considerably more aroused by the attractive woman than
they were on a safe bridge. This appeared to be strong
evidence to support the Two-Factor Theory; Dutton and
Aron suggested that the physiological effects of being
scared by the bridge were indeed being misidentified by
the male subjects as lust when the attractive woman was
added to the situation as shown in Figure 1. (It's worth
noting that the psychologists did not control for sexual
orientation, but did select men that were not with a female
companion. Their results suggest that the majority of their
test subjects were heterosexual.)

http://WWW.GDMAG.COM

“The Morpheme engine and tools enable fast and compelling content creation,
driving the animation quality in bodycount to new heights of realism.”
Bryan Marshall, CTO at Codemasters

© 2010 The Codemasters Software Company Limited ("Codemasters"). All rights reserved.

bodycount

Image courtesy of Codemasters

www.naturalmotion.com

http://www.naturalmotion.com

WWW.GDMAG.COM 37

But Dutton and Aron are careful scientists, and performed a couple
of follow-up experiments to confirm this result. One potential flaw of the
previous test was the “lady in distress” syndrome—the idea that men might
be responding to the situation because the female interviewer on the high
bridge appeared to be in danger or helpless.

To address this problem, their last study took place in a lab. It tested the
sexual content of questions answered by male college students who believed
that they were about to be painfully shocked. In this study, college men were
led to believe that they were participating in an experiment about the effects of
pain on learning, and were paired with an attractive female student, who was
actually a confederate. Both students were told that they would receive either
a painful shock or a light shock, but before that they were asked to privately
answer a questionnaire. The theory here was that men who experienced
anxiety about the upcoming shock might mislabel their body’s reaction to that
anxiety as sexual arousal due to the presence of an attractive woman.

The results of this study confirmed the previous experiments. Men who
believed that they were about to receive a painful shock reported higher levels of
sexual interest in their counterpart, and scored higher on sexual content in their
survey results. The “lady in distress” syndrome was shown not to be a factor
because men responded with higher levels of arousal regardless of whether
they believed that the confederate would receive a painful shock as well. Men
who were about to receive only a light shock showed no significant arousal.

These studies support Schachter and Singer’s original thesis: Dutton and
Aron argued that the men in their studies reacted with lust because their
bodies mislabeled physical responses to fear. They also showed that the
same effect did not occur in safe situations; lust could only be generated
when a sexual context was paired with anxiety about something else.

F R O M T H E O R Y TO P R A C T I C E
/// The Two-Factor Theory of Emotion is an interesting idea, but what does it
have to do with game design? Consider this: have you ever become really
excited while playing a game? I mean, the type of intense play where your heart
rate is up, the blood is pumping, and you are acutely focused on the screen? I
know I’ve felt this way; my hands used to cramp from holding the GameCube
controller too tightly during particularly intense games like RESIDENT EVIL 4. If
a game can increase your heart rate and cause the release of adrenaline, it’s
already accomplished the first of the Theory’s two factors. If Schachter, Singer,
Dutton, and Aron are correct, all the game needs to do now is to provide some
context for your brain to respond to; conveniently, you’re already looking
straight at the screen.

The Two-Factor Theory suggests that there is a very good reason to
make games hard, or at least intense: By stressing the player out, the game
has a better chance of causing an
emotional response (see Figure 2).

Consider a horror game. If the
goal of the game designer is to scare
you, the Two-Factor Theory suggests
that you’ll be much more likely to
feel afraid if you are in an elevated
physical state because your brain
may mistake that state as the result
of the images on the screen.

Indeed, many of the best horror games also feature extremely unforgiving
mechanics. Classic RESIDENT EVIL games strictly limit player ammunition,
health, and even saves. Games like DEAD SPACE are often reported as being
more effective when played on harder difficulty levels. Combat in FATAL

FRAME is about high-precision timing in an interface that severally limits your
peripheral awareness. And games like SIREN and MANHUNT induce stress with
sneaking and punishing combat mechanics. And at the same time, these
games are filling the screen with zombies, flesh monsters, and long-haired
ghost girls. They are providing both of the factors that the theory requires:
difficult mechanics to prompt a physiological change, and scary content to
provide a label for that change.

R E S O U R C E S

"CONSTRUCTING ARTIFICIAL EMOTIONS:
A DESIGN EXPERIMENT," by Dan Cook,

Gamasutra, 2007: www.gamasutra.com/
view/feature/1992/constructing_artificial_

emotions_.php?page=1_

http://www.gamasutra.com/view/feature/1992/constructing_artificial_emotions_.php?page=1_
http://www.gamasutra.com/view/feature/1992/constructing_artificial_emotions_.php?page=1_
http://WWW.GDMAG.COM
http://www.gamasutra.com/view/feature/1992/constructing_artificial_emotions_.php?page=1_

GAME DEVELOPER | FEBRUARY 2011 38

But the implications of Two-Factor do not end at horror games. Games like
SUPER MEAT BOY and DEMON’S SOULS are widely loved despite their reputation
for intense difficulty, and perhaps we can attribute that to a combination of
stressful play and rewarding visuals. Is the effect of the trite sexual content
in GOD HAND increased because of that game’s hardcore combat system?
How about the feeling of urgency caused by METAL GEAR SOLID 4’s memorable
finger-destroying button mash finale? Reviewers of MAXIMO: GHOSTS TO GLORY
consistently praised that game’s unrelenting difficulty as well as its ability to
make you feel incredibly awesome with each completed challenge.

Heavy difficulty can, of course, lead to heavy frustration, which is the
enemy of fun. But if the goal is to increase the player’s heart rate, perhaps
difficulty is not as important as intensity of play. ICO, for example, is not a
particularly difficult game, but the threat of losing Yorda to the shadow
monsters is stressful. Every time the player must leave her somewhere to go
complete a puzzle, the level of tension starts to increase because we know
she can be abducted quickly.

The mechanics of ICO are not unforgiving, but the threat of failure is strong.
Perhaps anxiety induced by that threat increases the player’s connection to
Yorda, and strengthens the impact of the final bridge scene. CONDEMNED, another
horror game, features intense combat but also provides plentiful health items
all over each level. The level of stress in the midst of a fight is very high, but
the game is not difficult overall. Still, the Two-Factor Theory suggests that this
intensity makes the player more vulnerable to the game’s frightening content.

Maybe a better way to apply the Two-Factor Theory is to think about
high-stakes game \play. Even if the mechanics themselves are easy, players
may react to stress when the cost of failure is very high and the threat of
failure is imminent. MAXIMO and RESIDENT EVIL both ration saves. FATAL FRAME,
SUPER MEAT BOY, and RESIDENT EVIL 4 all put a huge emphasis on precision

maneuvers. Even short-term periods of stress, like a challenging boss fight,
may be enough to get a physical reaction out of the player. From that point,
the research suggests that content designed to provoke a specific emotional
response, particularly a response that can be associated with an elevated
physical state, has a better chance of affecting the player.

Or how about this angle: if exciting the player’s physiological state makes it
easier to convince them that they feel a certain way, why not accomplish that
with actual exercise? Between Sony’s Move, Microsoft’s Kinect, and Nintendo’s
Wii, there are a lot of opportunities for players to break a sweat while playing
a game. As long as the player does not consciously associate their movement
with their body’s arousal, the Two-Factor Theory suggests that physical exercise
may open the player up to cognitive mislabeling. In this light, Marvelous’
recently announced IKENIE NO YORU (lit. “NIGHT OF SACRIFICE”), a horror game that
somehow involves the Wii Balance Board, might actually make sense.

Modern game design theory places a premium on respecting the player.
But the Two-Factor Theory of Emotion suggests that games that err on the side
of easy and relaxing gameplay may be shutting the door to a potential tool for
emotional manipulation. Curiously, this means that one gateway to emotional
relevancy (another recent buzz-word) may be play that encourages physical
stress or exercise. Though it may be counter to many contemporary ideas
about accessibility, high-stakes mechanics combined with suggestive
content might actually be a better way to get an emotional message across.
Perhaps the real way to a player’s heart is through the adrenal gland.

C H R I S P R U E T T is a game developer advocate at Google, focused on Android. Under

the cover of night he writes indie games and blogs about horror game design. The views

expressed in this article are his alone and not those of his employer. Chris lives with his wife

and daughter in Cupertino, California.

FIGURE 1

FIGURE 2

A unique, one-year graduate-level program
combining art with engineering and balancing
theory with practice

A wide array of interdisciplinary courses from
UPenn's School of Engineering and Applied
Science, School of Design, the Wharton School
of Business and the Annenberg School of
Communication

Access to the LiveActor Motion Capture Studio
for student game projects

Cutting edge research opportunities at the
Center for Human Modeling and Simulation

A world class education at University of
Pennsylvania's Philadelphia-based
Ivy League campus

Penn Engineering’s

MASTERS IN COMPUTER GRAPHICS
AND GAME TECHNOLOGY
offers recent Engineering and
Computer Science grads:

www.cis.upenn.edu/grad/cggt/

GET IN THE GAME

http://www.cis.upenn.edu/grad/cggt/

 Team up with the creators of League
 of Legends, PC Gamer's Free-to-Play
 Game of the Year.
 Join a fun culture of passionate gamers.
 Take on leadership and responsibilities
 in a fast-paced work environment.

www.riotgames.com/careers

Apply today at Careers@riotgames.com
or view all job opportunities at

© 2010 Riot Games Inc. All rights reserved. League of Legends and Riot Games Inc. are trademarks or registered trademarks of Riot Games, Inc.

mailto:Careers@riotgames.com
http://www.riotgames.com/careers

TOOLBOX

www.gdmag.cOm 41

Spellbound iS a long-
established German PC and
console game development studio.
We have completed a number of
games using Trinigy’s Vision Engine
over the years, the most recent of
which has been ArcAniA—Gothic
4. We have also been working
extensively with the latest Vision
Engine release (Vision 8.0) that
came out in spring 2010.

As a studio, Spellbound mainly
develops large-scale games
for next-gen consoles and PCs,
but we’ve also begun working
on small, web-style projects.
We find that the Vision Engine
provides us with a practical and
full-featured solution for getting
game prototypes up and running,
and then provides the flexibility
that we require to add in our
own optimized solutions for our
projects’ specific needs.

geTTing acQuainTed
» Focused primarily on high-
performance rendering, the Vision
Engine is a software development
kit comprising a 3D engine and
a set of tools. The SDK and tools
are all actively maintained and
improved with regular minor
updates, containing miscellaneous
fixes and enhancements, and one
or two major upgrades per year. The
runtime engine is multiplatform; it
runs on PC, Xbox 360, PlayStation 3,
and Nintendo Wii.

In addition to support for
building classic stand-alone PC
applications, the main new feature
of Vision Engine 8.0 is called
WebVision. It allows studios to
integrate full 3D applications into
web pages with minimal effort.
WebVision is promoted as being
compatible with most major

browsers, and although we haven’t
tested this extensively ourselves,
we had no problem with the Internet
Explorer and Firefox browsers that
we use in-house.

The Vision Engine provides
a toolbox of state-of-the-art
graphical features for building
rich 3D environments and
content. The engine is well suited
for large outdoor scenes as it
natively handles levels of detail
and streaming of large areas. We
have prototyped a web-based
project that makes use of these
techniques to very good effect,
streaming the data from the
Internet in the background as the
player progresses.

The engine supports a wide
range of graphics hardware and
comes with all the common
features that one might expect,
including an animation system,
2D overlays to display GUI objects,
a particle system, shadowing
technologies, and so on. The core
engine also supplies solutions for
multithreading, data streaming, and
optimized memory management,
as well as a large collection of
ready-to-use shaders for both
forward and deferred rendering.
For those of us who like to hone
the engine to our needs, there is
support for custom render loops
that allows studios to directly
control the rendering process.

The Vision Engine’s interface
is highly modular and easily
complemented with external
libraries. The SDK ships with plug-
ins for many popular third-party
middleware packages ranging from
physics (PhysX and Bullet Physics)
to AI (Kynapse and xaitment) and
dynamic vegetation (SpeedTree).
At the time of writing of this article,

there were 18 of these integration
modules available and more that we
know of in development.

Taking tree rendering in Gothic
4 as an example, the SpeedTree
integration provided by the
Vision Engine was used during
prototyping. It was great for the
small test scenes in the prototype,
but we knew that we needed to
support upwards of 50,000 trees
in the full game. With the Vision
Engine, we found that we could
effortlessly extend the integration
package to support the additional
features that we wanted to add to
make this possible.

Trinigy provides a wide variety
of licensing options depending
on the needs of the development
studio. Smaller indie studios
can take advantage of the fact
that Trinigy factors in a project’s
budget when determining the
licensing fee. They also provide a
free, time-limited fully featured
evaluation version.

a looK undeR THe Hood
» Before going any further, it
is worth noting that the Vision
Engine is a SDK for C++ application
development and not a stand-alone
scriptable game engine. Although
there is support for LUA scripting,
including a LUA debugger, the
main API is in C++ and is clearly
designed for programmers with
a good grasp of object-oriented
programming techniques.

From a technical perspective,
the Vision Engine provides a great
deal of flexibility and has allowed
us to do pretty much anything that
we’ve been able to dream up. This
has been one of the biggest reasons
why we continue to work with the
game engine today.

New developer-specific features
are implemented by extending
Vision base classes and registering
their types in the engine’s type
management system which
encompasses all objects based
on Vision’s API, including both the
built-in types and the user-defined
entity types. New features can also
be exposed in dedicated plug-ins
that can be used by the WYSIWYG
editing tool vForge.

TRinigy
ViSion engine 8
Review by Spellbound enteRtainment team

Trinigy
ViSion engine 8

¤ STaTS
trinigy GmbH
inKa-businesspark
arbachtalstr. 6
72800 eningen
Germany
www.trinigy.net

¤ pRice
license costs are negotiated on
a sliding scale based on project
budget. no royalties.

¤ SySTeM ReQuiReMenTS
microsoft windows operating
system. visual Studio 2005 or
newer.

¤ pRoS
1. Highly flexible.
2. High performance.
3. top-notch competency and

availability of support team.

¤ conS
1. Requires familiarity with basic

math and rendering concepts.
2. documentation sometimes lacks

precision.
3. Running out of addressable

memory space in 32-bit version
of the vForge editor.

http://www.trinigy.net
http://WWW.GDMAG.COM

TOOLBOX

game deveLOper | FeBruary 201142

On the subject of documentation,
our views are a little more mixed. The
reference documentation is succinct,
sometimes to the point of lacking
the details that one is looking for.
This can be a little irritating at the
beginning, but the SDK does ship
with numerous samples, showcasing
nearly every feature of the engine,
which is really helpful when it comes
to getting a better grasp on the Vision
Engine’s inner workings. Trinigy also
hosts a developer site with a support
forum that provides quite a lot of
useful information.

The place where Trinigy really
shines is in technical support,
which is exemplary. The support
team is reactive, professional,
knowledgeable, and in direct
contact with the engineers writing
the software.

Just to illustrate, during the
development of Gothic 4 we had
several situations where we

discovered an issue that was
critical for us and that required a
change or fix on the engine’s side.
Even when we reported the issue
quite late at night, we typically
ended up with a fix or work around
for the issue the same day! This
gave us real peace of mind.

Before closing the hood, it's
worth mentioning engine updates
(major releases once or twice a
year). In our experience, integrating
a new Vision Engine version has
required only a minimal amount of
work on our side, and we have never
seen an update introduce major
bugs. Trinigy’s testing and version
release processes are clearly sound.

DOWN THE PIPELINE
» The Vision Engine comes with
a comprehensive set of tools to
generate and modify game data:
an animation tool, a bitmap font
generator, viewers to display

textures, 3D models, 3D scenes
and visibility zones in a scene,
as well as a tool dedicated to
profiling and runtime tracking of
in-game resources. The engine also
includes a script debugger to track
errors in LUA script.

An editor called vForge serves
as the main content integration
platform for the Vision Engine.
It’s a nice tool that provides
an array of different dedicated
editing layouts that allow studios
to manipulate different types of
game content efficiently. Because
vForge uses the game code to
display the 3D scene, studios get
true WYSIWYG editing, which cuts
down enormously on the number
of iterations that are required to
achieve the desired result. Its
interface is user friendly and we
find that new recruits are able to
learn to use it very fast.

The tools are ergonomic, and
Trinigy has always proven to be
receptive to input and requests
from our content creators. They
include a lot of cool options to
help studios find objects with a
smart search function, to help
modify properties of several
objects at a time, to modify the
lighting result on an object by
placing a virtual position for the
object and taking the lighting
from this position instead of the
real position, and so on. There
are far too many of these very
useful small options to list here,
but they all make one’s life easier
and contribute to our team’s
enthusiasm for the tool set.

vForge also offers a lot
of really helpful profiling and
debugging information, such as
displaying scenes with debug
shaders that show only the
lighting result, the normal map
result, the amount of overdraw,
and texture mip levels. It also
has debug flags, which add the
number of polygons, the object
render order and suchlike, over
each object in the scene.

The complete pipeline for
level creation in Vision Engine is
composed of the following elements:

• Creation of a height field terrain
and the painting of textures over it.

• Placement of small objects and
vegetation on the terrain with
the aid of randomized systems
that allow one to paint zones
and choose different types of
random distribution for each
object type.

• Height field editing in vForge (for
games using height fields).

• Scene assembly, integrating
objects exported from 3ds Max,
Maya, or Softimage.

• Building level logic with the
Vision Engine's component
and script editors by placing
actors with custom classes
and properties in the scene,
assigning them paths, and
so on.

• Configuration of both dynamic
and fixed pre-calculated lighting
(for light maps and light grids) in
the vLux tool.

• Creation of particle effects in
vForge‘s particle editor (another
tool that our team likes), and
previewing the results directly in
the scene.

• Creation of new shaders using
either an integrated editor
designed mainly for programmers
and technical artists or a new
node-based, artist-friendly
visual shader editor (which we
don‘t have significant hands-on
experience with).

• Assignment of shaders to objects
and configuration of rendering
properties (specula intensity,
color, and so on).

• Placement of visual effects
of different types such as
volumetric cones, sun glares,
water effect with real reflection,
cloth simulated objects, and so
on—a library of these effects is
provided with the engine.

http://www.finalbuilder.com/game

www.gdmag.com 43

For all the good we have to
say about the Vision tools, our
experience during Gothic 4 was a
little more difficult. We used a very
high-resolution height field (25 cm
grid spacing) for a terrain of several
kilometers by several kilometers
in size. We were using the 32-bit
vForge executable, as the 64-bit
version had not yet been developed,
and we ran into big problems with
vForge running out of addressable
memory space, and crashing. This
problem would not appear when
using a 64-bit executable, so one
can consider it fixed for the future,
but it was extremely troublesome
at the time.

For Gothic 4, we also developed
our own editor for setting up AI,
quests and the like. At the time,
this made sense (quite apart
from anything else, to avoid
running out of memory), but it did
introduce some overly complicated
workflows. For the future, we are
working on integrating our own

editing code back into vForge (via
plug-ins) in order to profit from the
tool's advantages.

VISION ON THE WEB
» As mentioned above, Vision
Engine 8 comes with the possibility
to build embedded games for the
web. A WebVision game is basically
a Vision Engine game that runs
in a web page, with its data being
streamed over the network and
decompressed in the background
on the fly. The WebVision plug-in
handles the communication with
the browser and forwards external
events via a messaging system to
the user application. Although fairly
new and not yet quite as mature as
some of its competitors, it offers
many of the same performance
and features found in stand-alone
game engines, such as forward
and deferred rendering, post-
processing, special effects, and
streaming of large environments,
among others.

Via the WebVision system,
any project based on the Vision
Engine may also be deployed over
the Internet and played within a
browser, provided that the game
logic supports streaming of
game data which, packaged into
encrypted archives, are streamed
from the server and uncompressed
at runtime in system memory.

Trinigy provides WebVision
plug-ins for nearly every leading
PC web browser, including the
most recent versions of Internet
Explorer, Firefox, Opera, and Chrome.
Currently, WebVision is free of
charge for studios that license the
Vision Engine.

ClEar VISION
» The Vision Engine has been
used successfully in the past by
Spellbound on multiple projects and
platforms, the most recent being
Gothic 4 on PC and Xbox 360. It has
provided the flexibility, toolset, and
support that we’ve required.

Trinigy’s licensing options
are more flexible than some of its
competition, and middle-to-large
game developers will definitively be
enticed by its feature set, toolset,
multiplatform availability, excellent
support, and affordable price.

WebVision is a new middleware
in the web space, providing a
flexible and feature-complete game
engine capable of exploiting the
full power of a user’s PC. Where
competing middleware focus more
on accessibility, providing solutions
where simple games can be
assembled with a few mouse clicks
and a few scripts, Trinigy’s solution
is designed for creating larger and
more complex applications—paving
the way for a new generation of
browser-based games.

S p E l l B O u N d E N T E r T a I N m E N T is

the creator of the Airline Tycoon series as

well as the developer of ArcAniA - GoThic 4,

the studio's latest title, which was released

in October 2010.

dynamic light placement can be easily adjusted in the vForge editor.

http://WWW.GDMAG.COM

TOOLBOX

game deveLOper | FeBruary 201144

Asus Using
PrimeSenseTech
www.asus.com

Computer hardware maker Asus
has announced it will team up
with Kinect hardware maker
PrimeSense to bring a similar
controller-free, natural motion
interface to a PC-based living room
system later this year.

The WAVI Xtion system will use
a dual camera sensor—similar
to that used in the Xbox 360‘s
Kinect—designed to hook up
to a living room TV and connect
wirelessly to a PC up to 25 meters
away. Using the system, Asus
promises users will be able to
browse PC multimedia, internet,
and gaming content from the
comfort of their living room using
nothing but their body movement.

Asus is targeting a 2nd
quarter 2011 commercial release
for the setup, though a "Pro"
software development kit is being
readied for February release. The
company is also readying an
online store for distribution of
Xtion-powered software.

The Xtion development
environment is built on top of
PrimeSense‘s OpenNI initiative, a
set of open source natural motion
middleware and drivers PrimeSense
released to the development
community in December.

Unreal Dev Kit Arrives For iOS
www.unreal.com

Epic Games‘ Unreal Engine dev
kit, used to create the App Store
graphical powerhouse InfInIty
Blade, is now available for other
developers on iOS devices.

UDK for iOS will allow iPhone,
iPod Touch, and iPad developers to
create games using the same tech
behind games including Gears of
War, Mass effect, and dozens of
other Unreal Engine-powered PC
and console titles.

Like standard UDK agreements
on other platforms, developers
can experiment with the engine
or make free Unreal Engine-
based games without incurring a
licensing fee. Developers that want

to sell UDK apps for iOS will have
to pay a $99 licensing fee and 25
percent royalties after the first
$5,000 in sales.

Epic recently released its first
iOS game, InfInIty Blade, an action-
RPG developed by subsidiary studio
Chair Entertainment, creators of
the Xbox 360 downloadable title
shadoW coMplex.

NaturalMotion Releases
Morpheme 3
www.naturalmotion.com

The latest release of
NaturalMotion‘s animation
middleware, Morpheme 3.0, is
available now, with support for
Microsoft‘s Kinect and Sony‘s
Move controller interfaces.

NaturalMotion describes
specific nodes for Kinect that
filter and re-target data onto
existing rigs or allow for indirect
gesture-based character control.
The company also says Morpheme
3.0 features performance
enhancements like reductions in
memory usage, improved workflow

and more debugging tools.
Morpheme 3.0 also features

new transitions including
"Active State" and "Self," aimed
at making the creation process
faster and more transparent.
The tool‘s preview functions
have been enhanced, according
to NaturalMotion, with the
aim of easing prototyping and
testing interactions among
multiple characters.

A new asset management
system has been introduced with
the intent to help developers
better organize their clips and
build physical characters more
quickly. A "Node Wizard," intended
for programmers, has been
introduced to allow for more
customization and better visibility
on runtime executions and
debugging within Connect.

OnLive Built Into Vizio TVs,
Blu-ray Players, Mobiles
www.onlive.com

Cloud gaming company Onlive is
partnering with the rapidly-growing

HDTV company Vizio to incorporate
the game streaming service into
internet-enabled TVs, alongside
apps like Netflix and Pandora.

TV-integrated OnLive will
be a new venue for consumers
to play games including World
of Goo, BraId, MafIa II, BatMan:
arkhaM asyluM, Borderlands, and
other major releases available on
the service.

OnLive‘s cloud-based
infrastructure relies on remote
servers that host games that
users access through broadband
connections.

These servers handle the
brunt of the processing for
games, and don‘t require a local
download, installation or disc-
based consoles like the Wii, Xbox
360, or PlayStation 3. OnLive
offers various payment methods,
including a full "PlayPass" and a
Netflix-like subscription plan.

Onlive CEO Steve Perlman said
because Onlive is cloud-based and
dependent on constantly-upgraded
remote servers instead of local

p r o d u c t n e w s

InfInIty Blade.

http://WWW.ASUS.COM
http://WWW.UNREAL.COM
http://WWW.NATURALMOTION.COM
http://WWW.ONLIVE.COM

www.gdmag.com 45

hardware, the TV may age over the
years, but the service will continue
to improve as datacenters get more
and better servers.

Sales of the recently-released
MicroConsole will continue following
the Vizio deal. That device, released
in 2010, connects televisions to
OnLive‘s remote servers via a
broadband connection.

Rad Game Tools Launches
Telemetry
www.radgametools.com

Rad Game Tools recently launched
Telemetry, a new tool the company
describes as a programmer-driven
profiling system that visualizes
execution flow for game developers.

The Kirkland, WA-based
company said Telemetry utilizes a
client/server architecture in which
the game relays performance
information to a server, which then
processes that data.

Telemetry‘s client, Visualizer,
lets programmers more easily
identify performance issues, Rad
stated. The firm expects Telemetry
to reveal performance problems
that game makers otherwise
wouldn‘t know exist.

Currently, the tool is only
available for Windows, but Rad said
support for other platforms will be
announced at a later date.

Rad is also the company
behind the Bink video codec,
the Miles Sound System for
game audio, and the Granny 3D
animation toolkit.

Sony Bravia TV Includes
Built-In PS2 In UK
www.sonystyle.com

Just before the holidays, Sony
released a new 22-inch, 720p
Bravia television with a unique
feature—a full-fledged disc-based
PlayStation 2 integrated into the
television‘s stand.

Also onboard the unit is Bravia
Internet Video, which allows
access to select on-demand media.
As of press time, there was no
word of plans for a U.S. release of a
similar PS2 TV.

The television features two PS2
memory card slots, two controller
ports and two USB ports built

into the TV/console‘s face, plus a
USB port behind the monitor. The
integrated console also has its own
Ethernet port, separate from that of
the television monitor. Additionally,
the TV itself has four HDMI ports.

The new model could serve as
a rudimentary hint of the future,
as companies examine the role
of gaming- and internet-ready
television sets in the marketplace.

SoftKinetic Coming To
GameTree TV Set-Top Boxes
www.softkinetic.net

After Microsoft’s Kinect and ASUS’
Xtion, Transgaming has announced
a new, purely gesture-based control
system for its on-demand GameTree
TV games, which are available on
many TV set-top boxes.

Using iisu-branded middleware
from SoftKinetic, a new software
development kit will allow
developers to create and
distribute gesture-controlled
games through select set-top
boxes equipped with Intel CE
Media Processors, including
many cable boxes and
Blu-ray players.

SoftKinetic’s iisu
middleware is compatible with
Adobe Flash, Unity 3D and
3DVIA Virtools development
environments and allows
for easy multi-platform
development of games with a
gesture-sensing component,
the company says.

Transgaming’s GameTree
TV service launched last
Fall with 30 casual games
that can be controlled using
a remote control, including
Plants vs. Zombie and World
of Goo. The platform is
currently available in select
European markets, though the
company says it’s planning
for global expansion this year.

Intel Announces Sandy
Bridge Microprocessor
www.intel.com

Intel recently unveiled the
new, second-generation
core i7 processor at the
Consumer Electronics Show,
where Valve placed its vote of

confidence behind the new “Sandy
Bridge” microprocessor, and even
designed Portal 2’s PC version
with the processor in mind.

Valve’s Gabe Newell claimed
the integrated CPU and graphics
technology would allow for a
“console-like experience on
the PC.”

The new 32-nanometer
microprocessor includes
sophisticated built-in capabilities
for 3D graphics, as opposed to
previous CPU-heavy Intel chips.

Intel claims it performs tasks
like Microsoft spreadsheet work
hundreds of times faster than the
previous generation chip.

Mad Catz To Release
Cyborg Gaming Lights
www.madcatz.com

Peripheral manufacturer Mad
Catz announced a partnership

with entertainment lighting
company amBX to release the
Cyborg Gaming Lights, a system
for PC games that synchronizes
colored lighting effects with in
game events.

Users place a series of lights
around their monitor or desk,
connect them to their PC, and the
system will light up to provide
ambience and spatial awareness.

Mad Catz says the system will
help players identify the location
of enemy fire, for instance, as the
lights illuminate in certain areas to
communicate direction.

To fully take advantage of
the system’s features, games
must include support for the
abBX technology. Titles already
supporting abBX include Command
and Conquer 3, far Cry 2,
and Crysis.

http://WWW.RADGAMETOOLS.COM
http://WWW.SOFTKINETIC.NET
http://WWW.MADCATZ.COM
http://WWW.SONYSTYLE.COM
http://WWW.INTEL.COM
http://WWW.GDMAG.COM
http://WWW.UNITYWORKSHOP.COM

mailto:cryengine@crytek.com
http://mycryengine.com

www.gdmag.com 47

THE INNER PRodUcT // gEoff EvaNs

Behind the Mirror
Adding Reflection to c++

Reflection is a programming language feature that adds the
ability for a program to utilize its own structure to inform
its behavior. Reflection has its costs, but those are often
outweighed by the ability to automate the serialization of
objects into and out of a file, cloning, comparison, search
indexing, and network replication, type conversion (copying
base data between derived class instances), and user
interface generation.

Of course, all these tasks can be accomplished without reflection
capabilities, but you will likely pay higher costs having to write code that is
very rote and prone to error. A good implementation of reflection can provide
a platform on which each of these problems can be solved without glue code
in every class that desires these features.

At the highest level, reflection can encompass many different features,
such as runtime knowledge of class members (fields and methods),
dynamic generation and adaptation of code, dynamic dispatch of procedure
calls, and dynamic type creation.

However, for the purposes of this article, I will define C++ Reflection to
mean "having access at runtime to information about the C++ classes in
your program."

rtti
» Before diving headlong into how to add reflection to C++, it’s worth noting
what type of information is already built-in. The C++ language specification
provides minimal information about the classes compiled into a program.
When enabled, C++ Run Time Type Information (RTTI) can provide only
enough information to generate an id and name (the typeid operator), and
handle identifying an instance’s class given any type of compatible pointer
(dynamic_cast<>).

For the purpose of game programming, RTTI is often disabled entirely.
This is because its implementation is more costly than a system built
on top of C++. Even if a program only makes a handful of RTTI queries,
the toolchain is typically forced to generate, link, and allocate memory
at runtime for information about every class in the application (that has
a vtable). This significantly increases the amount of memory required
to load your program, leaving less memory available for face-melting
graphics, physics, and AI. It's better to implement your own RTTI-like
system that only adds cost to the classes that need to utilize it. There are
plenty of practical situations where vtables make sense without needing
to do runtime-type checking.

Thus, the first step in implementation of a reflection system is typically
a user implementation of RTTI features. This can be accomplished with only
a couple of steps. Type information can be associated by a static member
pointer (which also makes a good unique identifier for any given type within
the program). In addition, some virtual functions allow querying an object's
exact type, as well as test for base class types:

// Returns the type for this instance
virtual const Type* GetType() const;
// Deduces type membership for this instance
virtual bool HasType(const Type* type) const;

GetType returns a pointer to the static type data, and HasType compares
the provided type against its static type pointer as well as every base
class' type pointer. This gives us all the information needed to reimplement
dynamic_cast<>, but it only adds overhead to classes that are worth paying
the added cost of type identification and type checking.

Visitor Pattern
» The simplest technique for implementing reflection is to take a purely
programmatic approach. Virtual functions can be a mechanism for the
traversal of all fields in a class. The visitor design pattern provides an
abstraction for performing arbitrary operations on the fields as in Listing 1.

This is a textbook implementation of the visitor design pattern. Objects
deliver the visitor to each one of its fields and the visitor gets an opportunity
to transact with each field in series. It offers excellent encapsulation since the
object does not know or care about any implementation details of what the
visitor is trying to accomplish.

This technique does not require data from an external tool to do its job
since it’s implemented entirely in the code compiled into the program. It’s
simple to step through and debug, and extensible since many operations
can be implemented as another class of Visitor.

With this approach, the development cost is small. A single line of code
for each field in every class in your codebase is a fair price to pay to attain
the benefits reflection can provide. However, there are some drawbacks with

il
lu

st
r

at
io

n
 B

y
ju

an
 r

aM
ir

ez

http://WWW.GDMAG.COM

http://indiePubGames.com
http://WWW.INDIEPUBGAMES.COM

www.gdmag.com 49

using a visitor function for reflecting upon your objects. There are a lot of
virtual function calls happening to interact with each field in a class. This
is a concern for performance-critical code, and on certain platforms. Also,
this technique is best suited for operations that want to visit every single
field of a class. There are many situations where this work is not required,
and iterating over every field just to access a few is wasteful and time
consuming (depending on the size of the object).

Data MoDel
» To really take reflection to the next level, it's necessary to be able to
address specific fields and read and write data without iterating over
every field in the class. A data model that represents the classes and fields
specified in the code is needed to accomplish this. At runtime, your program
can reflect upon this model to interface with objects and their field data.

This data model is owned by a central registry of type information.
This singleton object owns all the type information in the program and
can have support for finding type information by name. It's also a central
point where a map of the entire inheritance hierarchy of classes can be
built. The registry can be populated by employing a parser tool to analyze
your source code, or by adopting a method similar to the visitor function
approach to populate this data model at program startup.

to Parse or Not to Parse...
» Using a parsing tool to analyze your code introduces a lot of complexity.
C++ has a very complex syntax. While there are some tools you can take off
the shelf to do the parsing, there is still a lot of work to do to make that data
usable at runtime. Typically, you want to extract just the necessary data
from the abstract parse tree and write out a meaningful representation of
only the data that is required for what you want to reflect upon. Templates,
typedefs, functions, and other language features are generally overkill for
the purpose of reflecting upon fields in a class.

A parsing tool is probably going to do one of two things: write a data file to be
loaded at runtime (or packed into the executable as a global variable or resource
section), or generate some code that gets compiled into your program.

If you choose the data file route, you have the added task of computing
member size and offset information. This information is compiler specific
and target platform specific. By choosing this approach, you are committing
to abide by the padding and alignment rules of whatever compiler you use
to build any given version of your program. Another source of complexity
comes from the existence of two independent pipelines processing
information about your code: the compiler and the parsing tool. This
necessitates synchronizing the data output from the tool with the specific
version of the compiled program, which will make packaging and deploying
your program harder. Synchronization is a very important problem to solve
in this approach because not detecting out-of-sync reflection information
can cause nasty bugs (and potentially mangled data).

If you choose to generate source code to be compiled into your
program, you inherit the burden of the complexities that come with creating
a code generator that is most likely specific to your particular needs. The
code generation tool will probably need to make a bunch of decisions about
how your code needs to be decorated and organized. These requirements
will change as your codebase evolves, and it will require you to be diligent
about releasing and configuring your own build tool. Also, maintaining a
tool that governs the ability to compile your game is risky because it has a
tendency to break at the worst possible time (during a milestone).

The reward for using these approaches is tangible. You don’t have any code
that needs to be written by hand to reflect upon your classes. If you choose to
generate code, then you will also probably get great performance since you
can generate function bodies that do specific operations on every field of your
classes, just like you would have done if you weren’t using reflection at all.

In reality, there are a ton of moving parts when using this approach. Things
can break in hard-to-trace ways if any step of the pipeline doesn't work as

THE INNER PRodUcT // gEoff EvaNs

expected. Having implemented and maintained this technique for many years,
I can tell you that there are days when it feels like the planets have to align for
all the parts in this complex pipeline to actually work together in harmony.

HaND CoDiNg
» Alternately, code can be written to populate the reflection data model
when our program starts up. This code creates class information structures,
populates them with information about every field within the class, and adds
them to the registry. Writing this code sounds arduous, but C++ template
support provides some excellent tools to accomplish this with remarkably
concise and manageable code. A good goal for this is to extract as much
information as possible in a single function call per field, per class (just like
our visitor function). This allows us to avoid any time spent at build time
processing source, managing dependencies on build tools, dependency
checking generated code, and synchronizing externally loaded data.

PolyMorPHiC Data
» Because containers in C++ are template types instead of concrete types,
function overloading can only take us so far. Since each template instantiation
is a completely different type, trying to support containers using a visitor
pattern could lead to a combinatorial explosion in the number of overridden

l i s t i N g 1

// a base class for any object that wants to reflect upon any class'
// fields
class ObjectVisitor
{
public:
 virtual void VisitField(int32_t&, const char*) = 0;
};

// an example of a class that would write/read from/to each
// field to/from a file
class SerializeVisitor : public ObjectVisitor
{
public:
 virtual void VisitField(int32_t& value, const
 char* name)
 {
 // do serialization work
 }
};

// a base class for some of your reflection-aware objects
class Object
{
public:
 virtual void Accept(ObjectVisitor& visitor) = 0;
};

// an example of a derived class that has a reflected field
class Foo : public Object
{
public:
 virtual void Accept(ObjectVisitor& visitor)
 {
 visitor.VisitField(m_Number, "Number");
 }

private:
 int32_t m_Number;
};

http://WWW.GDMAG.COM

gamedeveloper_Feb11_A4_substance-FINAL.pdf 1 10/01/11 20:23

http://www.allegorithmic.com

www.gdmag.com 51

functions. Enumerated data types present the
same challenges. It's not easy to support them via
overloading, since every enum in the entire game
would need a different overload.

A solution to this shortcoming is to delegate
the handling of any piece of data to a separate
class of object that can interface with individual
fields using a pointer. This will give us the ability
to operate on any data in a polymorphic manner,
including integer, floating point, and enumerated
data types. Many languages that require derivation
from a canonical Object class do this already.
Adding support for treating simple types with
polymorphism doesn't mean that it's necessary
to use the polymorphic versions of these types
everywhere in your code. They will only be used
to abstract away the implementation details of
dealing with serializing, comparing, and converting
data to and from human-readable strings (which is
very handy for generating property UIs).

Truly polymorphic data can solve many
edge cases and provide extensibility for user
types like enums and exotic containers. It can
also support user data types that need custom
processing during serialization. If these data
classes store a value in addition to working
through a pointer, they can be used to interface
with fields and store standalone data. This
allows for interoperability between versions of
the program that have slightly different fields
without discarding this "unknown" information.
This is a major coup for game development tools
that revise sets of properties frequently between
releases. You can publish a test release with a
very different set of properties and know that,
if content creators check in some of those files,
they probably won't break anything for folks
still using the stable production tools (since the
stable tools data is still there in the files).

Every field in the reflection information will
specify a class of object that will handle the
details of reading and writing the necessary data
to a persistence interface or other objects of the
same type. With this in mind, it's time to declare
some data structures to store Class and Field
information, as seen in Listing 2.

PoPulating the Data MoDel
» To help populate the data model, some
template functions can help extract useful data
via template parameters (see Listing 3).

A template function with parameters for

THE INNER PRodUcT // gEoff EvaNs

l i s t i n g 2

// Class stores all of the information for a class of object in your code (client object or

// data object):

struct Class

{

 const Class* m_Base; // our base class

 Array< const Class* > m_Derived; // our derived classes

 const char* m_Name; // our name (user-friendly)

 Array< const Field* > m_Fields; // fields of this class

 Class(const char* name)

 : m_Base(NULL)

 , m_Name(name)

 {

 }

};

// Field stores information about a particular member variable in a class. Fields are stored

// in an array in the Class object that owns them.

struct Field

{

 const Class* m_OwnerClass; // the class this is a field within

 const Class* m_DataClass; // the class of data that serializes the field

 const char* m_Name; // name of the field

 size_t m_Size; // the size of the field

 uintptr_t m_Offset; // the offset to the field

 Field(const Class* owner, const Class* data, const char* name, size_t size, uintptr_t offset)

 : m_OwnerClass(owner)

 , m_DataClass(data)

 , m_Name(name)

 , m_Size(size)

 , m_Offset(offset)

 {

 }

};

l i s t i n g 3

template< class ObjectT, class DataT >
Field* AddField(Class* owner, DataT T::* field, const char* name,
const Class* data = NULL)
{
 // call out to a template function that is specialized to return the appropriate data
 // class for this type of field
 // also compute the offset from the base pointer using the pointer to the member variable
 Field* field = new Field(owner, data ? data :
DeduceDataClass< DataT >(), name, sizeof(DataT),
GetFieldOffset(field));
 owner->m_Fields.Push(field);
 return field;
}

Helium is an open source game engine toolkit that
contains an implementation of C++ Reflection. Much
of the code in this article was derived from it. It
uses a BSD-style license, and is available at www.
heliumproject.org. The reflection system itself is located
in the Foundation/Reflect folder within the source
repository.

R e s o u R C e s

http://www.heliumproject.org
http://WWW.GDMAG.COM
http://www.heliumproject.org

www.gdmag.com 53

the object type and variable type provides an easy way to extract the
size of the variable and its offset from the base instance pointer (using
a pointer to member variable), while also supporting the use of template
specialization to deduce which type of data object is applicable to this field.
Three important things are happening in this function to extract data for our
reflection data model: pointer to member variable C++ syntax, translation
of this syntax into an offset from a base object address, and the use of
deduction using explicit specialization.

Pointer to MeMber Variables
» Pointer to member variables are a pretty infrequently used aspect of
C++. It does what you might expect, but its syntax is strange if you haven't
seen it before:

int32_t Object::* pointer_to_member_variable =
&Object::m_Member;
// These are typically dereferenced with an instance of the object
// type (just like member function pointers):
Object object, *pointer = new Object;
int32_t value1 = object.*pointer_to_member_variable;
int32_t value2 = pointer->*pointer_to_member_variable;

// To compute the offset from a pointer to a member variable
template< class ObjectT, class DataT >
uint32_t GetFieldOffset(ObjectT DataT::* field)
{
 // a pointer-to-member is really just an offset value
 // disguised by the compiler
 return (uint32_t) (uintptr_t) &(((ObjectT*)NULL)->*field);
}

This function doesn't bother with allocating an instance to dereference
the pointer to member variable. It substitutes a NULL pointer, deferences
the pointer to member variable, and uses the address operator to yield the
offset (from NULL) at which the pointed member exists. Some of this syntax
may seem strange, but it's a perfect fit for maximizing what information is
needed to describe a field in a single function parameter.

exPlicit sPecialization
» DeduceDataClass is a good example of template deduction using explicit
template specialization. This deduction technique is a way of using the C++
template mechanism to allow for the automatic selection of some information
by the template compiler based only on a template parameter. The default
template function's implementation returns NULL, indicating that the deduction
failed since no specialization was found to find the associated data, as below:

template< class DataT >
Class* DeduceDataClass()
{
 // unknown data!
 return NULL;
}
// Then create an explicit specialization for every type that can
// be deduced:
template<>
Class* DeduceDataClass<uint32_t>()
{
 // this specialization associates the uint32_t built in
 // type with an object class that can
 // process data of type uint32_t with respect to other
 // persistence / cloning / mining code
 return SimpleData< uint32_t >::s_Class;
}

In this case, a pointer is returned to the class reflection information for the
type of data object to be used when dealing with the built-in type passed
into the template argument. One more template will help keep the code that
registers classes at startup concise, as seen in Listing 4.

conclusion
» Reflection can imbue an enormous amount of flexibility to your game engine,
but this flexibility doesn't come without cost. However, the extra memory
reflection data consumes is balanced by the time saved implementing features
more rapidly. The ability to deliver changes to your users quickly, and with
minimal engineering overhead, will pay dividends as your user base grows and
your production time stretches across multiple titles.

Geoff eVans is a senior engineer at WhiteMoon Dreams. He was a founder of the Nocturnal

Initiative open source project at Insomniac Games and is a founder of the Helium Project at

WhiteMoon Dreams, which aims to build an open source commercial quality game engine.

Contact him at geoff@heliumproject.org and follow him on Twitter @gorlak.

THE INNER PRodUcT // gEoff EvaNs

l i s t i n G 4

template< class ObjectT >
static Class* CreateClass(const char* name)
{
 Class* result = new Class(name);

 // populate the field information for this class
 ObjectT::Populate(*result);
 return result;
}

Finally, an example class and main that will put all of this code to
work:

class Foo
{
private:
 uint32_t m_Number;

public:
 static Populate(Class& c)
 {
 // AddField is a template function that will deduce
 // everything but what the desired name is.
 Field* numberField = c.AddField(&Foo::m_Number,
 "Number");
 // Its easy to imagine Field having extra
 // information to inform all sorts of program behavior
 // numberField->SetRange(0, 10);
 // numberField->SetCategory(Advanced Settings);
 // filePathField->SetFileFilter(*.png);
 }
};

void main()
{
 Registry::RegisterClass(CreateClass< Foo >(Foo));

 // program

 Registry::UnregisterClass(Registry::GetClass< Foo >());
}

mailto:geoff@heliumproject.org
http://WWW.GDMAG.COM

JOIN OUR GAME DEVELOPMENT SEMINAR AT GDC: MARCH 2ND, 3-4PM, ROOM 302

ENROLL NOW AT HTTP://GAMETREE.TV/COMPETITION
OVER $50,000 IN PRIZES | CELEBRITY JUDGES | SHOWCASE AT GDC

TM

HTTP://GAMETREE.TV/COMPETITION
http://gametree.TV

pixel pusher // steve theodore

www.gdmag.com 55

SignS of Life
Dual Quaternions, a neat new skinning techniQue

it’S the beginning of the year,
and tender new shoots of life are
slowly stirring all around. Perhaps
you’re still actually going to the
gym and watching your carb
intake—2011 is young enough
that anything is still possible. So,
in the spirit of the moment, let’s
stop and look at the landscape of
real-time graphics and see where
the new sprouts of green are
coming up.

Looking for interesting new
bits of graphics tech is a harder
business than it used to be. As
we’ve chronicled before, the
breakneck pace of game technology
has slowed a lot in recent years.
The current console generation
started with a frantic arms race as
we assimilated a host of unfamiliar
tech, but in its sunset, things
have slowed down a lot. Throw in a
slower economy and the fact that
what growth we do see is coming
from underpowered platforms like
mobile phones and lowest-common-
denominator browser games,
and you’ve got the makings of a
graphics bust.

This doesn’t mean that nothing
interesting is going on, though.
Instead, what’s happening is a
lot of long-standing sore spots
are gradually being addressed.
Our focus this month is a good
example of some new tech that
doesn’t change the world, but can
make a very positive difference in
artists’ lives.

Dual quaternion skinning
(“DQS”) has been around for a
couple years in the academic world.
This year both the Unreal Engine
and CryEngine have added support
for it, but it’s still unfamiliar to
many artists.

As the name implies, dual
quaternion skinning is an
alternative to the traditional
skinning method we use to bind

meshes to skeletons. It’s almost
the perfect paradigm of a late-cycle
technology, offering a refinement of
an existing technology rather than
a radical innovation. Nevertheless,
it’s got some really compelling
advantages over the familiar
system. All this means it’s worth a
closer look.

out with the oLd
» The workings and limitations
of traditional “linear” skinning
techniques are pretty well
understood, but a quick review
is a good way to understand
what the new dual quaternion
technology does.

The conventional linear skinning
technique is pretty simple. Every
vertex is “bound” to one or more
bones in the skeleton. As the
skeleton moves, the vertices
maintain their positions relative to
the binding bones, moving along
with the animation of the skeleton
(see Figure 1).

The well-known drawback
to linear skinning is the way it
handles vertices that don’t want
to move rigidly with a single bone.
Large changes in pose tend to
produce unpleasant collapsing
artifacts. Highly mobile joints like
elbows and knees are especially
susceptible, as are bones like the
wrist and neck which twist around
their own major axis.

These painful-looking
artifacts come from the way
the linear skinning interpolates
the position of vertices that are
bound to more than one bone. The
algorithm is extremely simple:
the skinning system or shader
simply calculates the vertex
position for every bone that
affects the vert and then does a
weighted average between these
positions to get the final “smooth-
skinned” result. Unfortunately,

that average position will always
be closer to the joint than the
un-averaged vertices, hence
all those collapsing elbows and
knees. That’s why so many game
characters have flat butts and
sloped shoulders.

The customary fix for this
behavior is to add extra bones
that disguise the collapsing joints.
These “fixup” joints have been a
standard part of the rigger’s toolkit
for a long time now (we covered
them back in the February, 2004
edition of Game Developer) and
can be done with a variety of tricks.
The most common fixups are done
entirely inside of Max or Maya,
using expressions or constraints
to subdivide the problem rotations.
Binding verts to these fixup bones
produces a more reasonable
behavior than the vanilla linear
skinning. Just as important, riggers
and character artists can add them
in with no help from engineering.

Fixups have a long and
honorable track record, but they
come with significant memory
cost. It only takes between 20 and
25 bones to completely describe a
full-body pose (excluding fingers,
toes, and facial bones). But a
complete set of fixups may almost
double that number, once you factor
in things like twist bones in the
biceps and forearms, and multiple
gradated fixups for tricky areas like
shoulders. Even a less complete
set will be expensive, because each
of those fixups means a complete
set of animation frames. Even a
minimal set of fixups on shoulders,
elbows and wrists can add 20
percent to the overall animation
cost of the character!

in with the new
» Here’s where dual quaternion
skinning comes in. Although the
name is somewhat scary, the

idea is simple enough for artists.
Where linear skinning blends vertex
positions, the dual quaternion
technique blends rotations. A vertex
weighted equally between the
bicep and forearm, for example,
will rotate around the elbow joint
as the forearm moves (see Figure
2). Essentially, this is how we’ve
been using fixups for the last
decade, only with no extra joints,
expressions, or the weight painting
hassles that come with fixup bones
sitting exactly in the same place as
major joints.

If it’s all so simple, you might
wonder why it’s taken so long for
this idea to appear. The description
is, indeed, pretty straightforward,
but the magic that happens behind
the scenes to make it work does
verge on rocket science (the
mathematically fearless can check
out the original SIGGRAPH paper
that introduced the idea with a
flurry of equations here: http://
isg.cs.tcd.ie/kavanl/papers/sdq-
tog08.pdf).

Luckily for us mere mortals,
it’s not necessary to understand
how it works to appreciate the
benefits. A quick glance at
Figure 3 will show you the basic
appeal of the dual quaternion
technique. While it's still not a
fancy Hollywood muscle system,
it definitely sucks less. The key
advancement is, of course, that
the dual quaternion interpolation
doesn’t collapse around the
joints. If you compare the width
at the bend in Figure 2, you’ll
see that the volume of the linear
skinned version has shrunk by
about a quarter, while the DQS
version has maintained its cross
section nicely. The improvement is
particularly pronounced for things
like shoulders and wrists, which
rotate on three axes at the same
time as seen in Figure 2.

http://www.gdmag.com
http://isg.cs.tcd.ie/kavanl/papers/sdqtog08.pdf
http://isg.cs.tcd.ie/kavanl/papers/sdqtog08.pdf
http://isg.cs.tcd.ie/kavanl/papers/sdqtog08.pdf

pixel pusher // steve theodore

game developer | February 201156

Reality bites
» Before getting too excited,
remember that DQS is still,
fundamentally, a very simple
approximation of what happens
when a living creature moves a
limb. It doesn’t create the really
difficult, eye-catching effects like
the bulge of a muscle or the way

skin slides over underlying bone.
As we have already said, it’s an
improvement, but not a revolution.
The example in Figure 3 is skinned
with very smooth weights to
clearly accentuate the limitations
of DQS. The DQS version doesn’t
show the annoying shrinkage
you see in the linear skinning

example. Instead, it shows an
almost opposite behavior: the
rotational blending above and
below the bend actually cause
the bent area to inflate a bit.
Moreover, on the inside of the fold,
both systems show the familiar
pinching that comes from overly
smooth weights inside an elbow or

knee, although to be fair, the DQS
pinch is less obvious.

Luckily, these artifacts can be
controlled with some attention to
the vert weightings. By tightening
up the weights on the outside,
the bulging can be reduced
to manageable proportions. It
doesn’t take much fiddling to get
something that looks like the
compression of a muscle rather
than an irritating flaw in the math.
(see Figure 4). On the inside of the
bend, use the same kind of tricks
you’d use for linear skinning: fairly
tight weighting and a lower vertex
density to hide the pinches. The
result is still not going to look like
Avatar, but it’s a lot better than you
could do in the old linear skinning
without a lot of dedicated rigging.

As with any piece of art
software, technical examples
like these can give you an
introduction, but only first-hand
experience will tell how this
technique suits your aesthetic.
Fortunately, after several years
as an almost mythical rumor,
DQS has recently become easy to
check out for yourself: Maya 2011
now supports dual quaternion
skinning as a standard feature.
You won’t even need to re-weight
an existing model—just open
your character and flip a switch
on the skin cluster node to see
the difference between vanilla
skinning and DQS. Softimage XSI
also supports dual quaternions,
and again allows you to toggle
between the new method and the
old. The current version of Max
does not offer DQS support out
of the box, but there are some
free plugins floating around on
the net (here, for example: http://
klaudius.free.fr/download.htm).

tRadeoffs
» Of course, this new ability
doesn’t come for free. Dual
quaternion skinning requires a
more complex vertex shader than
the old-fashioned linear method.
Implementations will vary, of
course, but as a reference point,
you might note that the dual
quaternion shader introduced

figuRe 1 Why joints collapse: the brown vertices are weighted 50 percent to each bone. When the blue joint bends, the position of the
brown vertices are calculated by averaging the position they would have had if they were attached solely to orange or blue bones. this
produces the collapsing and pinching typical of linear skinning.

figuRe 2 dQs-style interpolation: the vertices blend rotationally rather than linearly, so a vert weighted half to one bone and half to
another doesn’t collapse toward the joint.

http://klaudius.free.fr/download.htm
http://klaudius.free.fr/download.htm

www.gdmag.com 57

in the original SIGGRAPH paper
back in 2008 used 52 shader
instructions, as compared to 36 for
a conventional linear blend shader.
Depending on the way your engine
pushes animation data to the
engine, there might also be a cost
for converting animation data into
the correct format.

At runtime, the choice between
linear and dual quaternion skinning
is really just the latest incarnation
of the classic game technology
trade-off between memory and
processing power. DQS will consume
more of the horsepower of your GPU
for the same number of characters
on-screen. However, it will relieve
you from the necessity of animating
the host of fixup bones you need
to combat the limitations of linear
skinning. If your game is heavy
on sophisticated shader effects or
has tons of vert-heavy characters
on-screen, DQS may not be fast
enough for what you need. On
the other hand, if you’re worried
about your animation budget or
the cost of pushing lots of bones,
DQS can be a godsend: it delivers
better looking visuals while cutting
down on animation storage and
decompression costs.

In the rare case where the
question “Do we need more
CPU or more memory?” doesn’t

answer itself, DQS offers one
more important advantage. Fixup
systems, though they are meat
and potatoes for experienced
riggers, do represent an ongoing
support cost. A DQS-based
pipeline will free up valuable
tech artist time for other tasks,
such as building tools or fetching
coffee. Character rigs will be
simpler, animation retargeting
more robust, and vert binding
more straightforward. It’s rare for
studios to pick technology based
solely on the convenience factor

for artists‚ but if they did, DQS
would be the preferred choice for
most of us.

Future’s so bright ...
» That’s a quick overview of
what dual quaternion skinning
does, and what it might do for
you. It’s a neat new approach,
even though it won’t set the world
on fire. You can certainly expect
to see more of it in the coming
year. As with many graphics
techs that have gone before, you
can also expect to hear some

pretty cringe-worthy gushing
from fanboys and marketing
types. But hey, spring’s around
the corner and everybody has to
get their jollies somehow.

s t e v e t h e o d o r e has been pushing

pixels for more than a dozen years. His

credits include Mech coMMander, half-

life, TeaM forTress, counTer-sTrike, and

halo 3. He's been a modeler, animator,

and technical artist, as well as a frequent

speaker at industry conferences. He’s

currently the technical art director at

Seattle's Undead Labs.

Figure 3 this example from the softimage documentation clearly shows the advantages of dQs (right) for traditional problem areas
such as shoulders. the traditional implementation is shown on the left.

Figure 4 dQs is not perfect. using the same weightings, the dQs technique (center) does not collapse like the linear skinned example (left), but it does exhibit an annoying bulge
above and below the bend. With tighter weightings (right), the effect is fairly easy to control.

http://WWW.GDMAG.COM

game developer | February 201158

design oF the times // damion schubert

Narrative aNd
Player ageNcy
Planning for choice

coNtiNuiNg oN from last
month’s column, there are many
ways to leverage story in games,
ranging from passive background
information to being the primary
driver throughout all the game
content. However, quite often that
story is passive; it is useful for
guiding people through the content,
but gives the player little avenue to
actually change the flow of the story.
Many great story games, such as
Uncharted 2 and Starcraft, present
stories that the player might find
deep and engaging, yet provide very
little ability to make changes.

Some games try to go further,
allowing players to make choices
that shape and change the narrative.
The patron saints for these games
are, of course, tabletop RPGs like
Dungeons & Dragons, where a
room full of dice-rolling adventurers
are free to take their quest in any
direction they choose while a frantic
dungeon master tries desperately
to get them to the front door of the
dungeon he brought to the table.

This freedom is a hallmark of
these tabletop RPGs, and it should
come as no surprise that developers
try to bring the tabletop experience
to life on the PC and consoles. I
work at one of these companies
today, and seeing BioWare put
these games together up close has
given me a new appreciation for
the remarkable design intricacies
involved in their construction.

How mucH cHoice?
» How much choice can you
actually give the player? In a
tabletop game, players can go in
any direction they want to seek
content and narrative, with a
Dungeon Master there to steer them
in the direction of certain ideas and
to decisions. In a tabletop game, the

answer may not necessarily be to
save the princess or sacrifice her to
save the village, but instead to find a
middle road, an ingenious grey area
where both might be possible. This
kind of emergent problem solving
provides some of the most magical
moments of the tabletop experience.

In video games, this third path is
likely one you can’t afford to provide
the player. Designers have to account
for and predict all of the player’s
likely choices; if you provide a third
door to open, there had better be
content behind it. Each choice you
allow the player to make is content
that you have to create, support and
run through QA. And when choices
are stacked on other choices, you’re
creating a spider web of content,
of which your average player will
only see one path. Each mediocre or
lukewarm choice you offer reduces
the odds that players will see your
best stuff.

And choice must be constrained
for other reasons. In a tabletop
game, players can feel free to kill the
king that grants the quest because
the gamemaster is there to rescue
the narrative, perhaps spinning the
story towards a lesser duke or rival
who might have similar reasons to
send the players into the Dungeon
of Whatever. Providing this level of
responsiveness, and still providing
content delivery (cinematics, VO)
at a high level of polish, is nearly
impossible in the computer RPG.

iNvalid cHoices
» In the tabletop game, the
gamemaster could just let the
game be broken, and declare the
dungeon lost to the sands of time.
The players chose to invalidate the
quest, so let them, right? Players
are less patient with electronic
narrative that stalls because they

made some unfortunate choice,
regardless of whether it was
accidental. I suspect the $45 dollar
price tag might be a factor.

Most writers who aspire to join
the ranks of BioWare understand that
narrative choice is a cornerstone of
our game design philosophy. Still,
many applicants stumble with the
pitfall of ensuring that all choices are
valid. Letting the princess die or the
village burn might be an unfortunate
choice. It might have deep
ramifications that affect the players
further within the game, or require
the player to perform supernatural
acts to atone for his decisions. But
a choice cannot leave the player’s
game in a broken state.

Even if this were somehow
desirable, it wouldn’t particularly
be good game design. Sid Meier
once said that a game is a series
of interesting choices. Choosing
between a viable story path
and a narrative dead end is not
a particularly interesting one,
because there is so obviously a
right choice to be made. If you let
the princess die or the village burn,
there must be value to that choice.

comPartmeNtalize
» Choice is hugely important,
but it only really truly begins to
shine once the player can see the
results of their actions in-game.
Choosing to save the princess and
letting the village burn doesn’t
carry much weight if the village is
still there after the fact. Seeing the
results of your actions bear fruit
is what truly makes these choices
matter, whether it’s inside the
narrative (i.e., turning an enemy
into an ally for the endgame) or
through mechanics (such as when
MaSS effect 2's conversations and
quests increase your standing

with your companions). Otherwise,
these choices are transparently
inconsequential.

But having those reactions
appear in the world can be
tricky, especially when they can
compound. Consider that you’ve
completed three quests for the king,
and in one, you saved his son, in
another, you killed his treacherous
daughter, and in a third, you erred
and let a village burn to the ground.
Even if each choice were only
binary, there are eight possible
outcomes the player could choose,
which means even crafting a return
conversation with the king is likely
to be a heroic task. Writing dialogue
when you’ve done one good thing,
one terrible thing, and one tragic
thing is almost entirely doomed
to be a contradictory, muddled
narrative mess—especially if it
must be spliced together at runtime
through a dialogue tree.

One way to work around this
is to compartmentalize your big
decisions. Instead of having one
king grant all three quests with
momentous decisions, divide them
up between three nobles, each
reacting strongly to the results
of the quest of most interest to
themselves but are relatively
complacent about the troubles of
his other nobles. One can see this
in action in dragon age, for example:
the elves are quite concerned about
their own problems in the forest,
and care only for how the player
handles their woes. They care little
about the player’s interference with
the likes of wizards or dwarves. The
narrative is compartmentalized.

Too much compartmentalization
can undermine the sense that
the player’s choice matters all
that much if overdone, but it
doesn’t take all that much for the

www.gdmag.com 59

designer to grant that sense of
accomplishment. A couple of well-
placed NPCs or the pronouncements
of a town crier can create the sense
that the player’s actions have
consequences. In Dragon age, they
go a step further by making the
choices you make helping the elves,
dwarves and wizards affect which
allies you have by your side in the
final confrontation.

Player alignment
» It’s impossible for NPCs to react
to every combination of choices
that the player has made, especially
if the design of these stories has
been heavily compartmentalized.
As such, many designs centering
on narrative agency include a
summary score that describes the
player’s actions so far. Dungeons
& Dragons had alignment, of
course, but it was meant to be more
prescriptive than descriptive. Since

then, dozens of games have had
similar systems.

The Ultima series is one early
notable game—its virtue system
tracked the actions of the player
thus far. However, this system was
not really about narrative agency—
the player had little choice but to be
virtuous in order to beat the game.
Since then, though, many games
(mostly RPGs) have attempted to
provide some sort of moral choice,
quantifying all choices combined
into a single meter.

Knights of the olD repUblic,
for example, gave the stark choice
between the Light Side and the
Dark Side that fans of the Star Wars
movies would expect, but choices
are frequently more interesting
when they aren’t strictly good or evil.
Vampire: blooDlines allows players
to choose between embracing their
humanity or their budding bestiality.
mass effect allows the player

to choose between playing as a
do-gooder Boy Scout, or a Jack Bauer
renegade bent on getting the right
thing done no matter the cost. reD
DeaD reDemption allows the player to
choose between honor and dishonor.

These systems must be
designed with care. Reaction to both
sides of the meter must be given
by the game or the NPC inhabitants
within, or the system will be seen as
a waste of time. On the other hand,
if spiking one of these scores give
tangible, powerful rewards of some
sort, then players will likely choose
to “game” the system, choosing
distasteful choices for material
gain (whether this is a good design
result is one that will vary from
game to game). Worse, if spiking
a score gives strong, tangible, and
important results, the question
quickly arises as to how to quantify
and reward the “grey” player who
walks a middle path.

the Story thuS Far
» If games truly are about providing
meaningful choices to the player,
then allowing players to determine
the flow of the narrative itself is one
of the most powerful and effective
ways that games can truly claim to
be interactive. Interactive fiction is
not about merely allowing the player
to make a couple of inconsequential
choices inside a dialogue tree that all
leads to the same place. Interactive
storytelling should make players
feel like they aren’t just agents in the
world, but actively making decisions
that shape it.

Damion Schubert is the lead systems

designer of Star WarS: the Old republic

at BioWare Austin. He has spent nearly a

decade working on the design of games,

with experience on Meridian59 and

ShadOWbane as well as other virtual worlds.

Damion also is responsible for Zen of Design,

a blog devoted to game design issues.

il
lu

St
r

at
io

n
 b

y
St

eF
an

 P
o

ag

http://www.gdmag.com

Windows® and Linux Dedicated Servers
High Availability & Low Latency
24 / 7 / 365 Live U.S.-based Support
Unmetered Bandwidth
99.9% Uptime Guarantee
SAS 70 Type II Certified

Optimize your gaming infrastructure at:
www.codero.com/gamers

1.866.2.CODERO

Infrastructure Optimized

Infrastructure. Optimized.

Codero 2011. All rights reserved 03.GDM.11

http://www.codero.com/gamers

GAME DESIGN WORKSHOP
This two-day tutorial, hosted by
Mind Control Software’s Marc
LeBlanc, will explore the craft of
game design by putting attendees
in the thick of the process, offering
hands-on exercises and group
discussions to break down game
design into its core elements.

Attendees will play and
analyze games as well as take
part in activities that task groups
with adding features, fixing
design flaws, and more, providing
applicable ideas for the iterative
game design process.

ADVANCED VISUAL EFFECTS
WITH DIRECTX 11
Hosted by a collaboration of
the industry’s leading hardware
and software developers, the
“Advanced Visual Effects with
DirectX 11” tutorial will teach
attendees how they can create
impressive PC game graphics
using the Direct 3D technologies in
DirectX 11.

The tutorial explores the
details of rendering advanced
real-time visual effects, and also
covers a series of vendor-neutral
optimizations developers should
keep in mind when designing
shaders and engines.

LEVEL DESIGN IN A DAY: BEST
PRACTICES FROM THE BEST IN
THE BUSINESS
Bringing back last year’s highly
rated tutorial, some of the most
experienced AAA-game level

designers in the industry will
offer an all-new line-up of best
practices, lessons learned,
interactive audience participation,
and case studies.

Titles discussed will span
BRINK to DEAD SPACE, and GEARS OF
WAR to FALLOUT 3, with takeaway
lessons for all those “responsible
for crafting moment-to-moment
gameplay.” Speakers include Epic’s
Jim Brown, Zipper’s Ed Byrne,
Bethesda’s Joel Burgess, Visceral’s
Matthias Worch, Splash Damage’s
Neil Alphonso, and more.

EMERGING ISSUES IN GAME
DEV DEALS—BUILDING ON
THE PRESENT AS WE CAREEN
INTO THE FUTURE
In this extensive tutorial, attorney
Jim Charne will cover the ever-
changing technologies and
platforms that developers should
understand when making a game
in today’s market.

By examining the emergence
of online platforms, this
session will explore the new
legal and management issues
that arise when dealing with
global audiences.

AUDIO BOOT CAMP
The ever-popular “Audio Boot
Camp” offers an introduction to
the complex and evolving audio
industry, focusing on harnessing
the tools and technology to best
serve the needs of a title.

SCE Europe’s Dan Bardino
and Microsoft’s Scott Seflon will

discuss various realms of audio
development, from musical
scores, ambience, sound effects
and dialog, and how to use AI to
dynamically blend these various
elements into a cohesive package.

LEARN BETTER GAME
WRITING IN A DAY
Marvel Comics editor and writer
Evan Skolnick will present the fifth
“Learn Better Game Writing in a
Day” tutorial, incorporating lectures
and exercises to help beginning
and intermediate writers learn the
basics of story structure, character
development, and more.

The tutorial will feature
examples from several games
including RED DEAD REDEMPTION,
MASS EFFECT 2, DRAGON AGE:
ORIGINS, and MARVEL ULTIMATE
ALLIANCE 2, on which Skolnick
was the lead writer.

PHYSICS FOR PROGRAMMERS
The intense, technical “Physics
for Programmers” tutorial brings
together some of the best
practitioners in gaming physics—
from Insomniac and Blizzard,
through Sony and Havok—to
continue this storied session’s
10-year-plus tradition.

Over the course of a day,
attendees will “get up to speed in
the latest techniques and deepen
their knowledge in the topic
of physical simulation.” These
presenters will provide a toolbox
of techniques for programmers
interested in creating physics

engines, with references and
links for those looking for
more information.

PRODUCER BOOT CAMP
 A special one-day “Producer Boot
Camp” is being assembled by key
GDC Advisory Board members
including Laura Fryer, VP and
General Manager of WB Games
Seattle, Epic Games executive
producer Rod Fergusson, and
Media Molecule’s Siobhan Reddy
(LITTLEBIGPLANET franchise).

The trio will assemble a
full day tutorial—including
themselves and other announced
speakers—that “focuses on
some of the key skills required
by producers, both new to the
role and seasoned veterans,
to be successful in this
challenging industry.”

TECHNICAL ARTIST BOOT
CAMP: LESSONS IN HOW
TO CREATE AND BE AN
EFFECTIVE TA
In another first, “Technical
Artist Boot Camp” will cover the
sometimes-neglected technical
art area, offering insight from
well-respected TAs from Volition,
Valve, Blizzard, BioWare, and other
top studios.

The presenters’ hope is that
by exposing academia, studio
management, and displaced
industry professionals to technical
art, they will “foster discussion
and expand educational and
professional boundaries.”

The 2011 Game Developers Conference features a packed full-day tutorial line-
up—including notables from Epic, Blizzard, and Valve—for the 25th edition of
the industry’s leading event for game creators. • These lower-capacity, first-
come, first-served tutorials will once again be held alongside the GDC Summits
on the first two days of the San Francisco-based event, Monday, February 28th
and Tuesday, March 1st. • They will be open to those with a Summits & Tutorials
or All-Access Pass, and interested parties can select their preference during the
registration process. • GDC 2011 tutorials include the following:

The Brass Tacks

NE W S AND INFORMATION ABOUT THE GAME DE VELOPERS CONFERENCE® SERIE S OF E VENTS WWW.GDCONF.COM

2011 GAME DEVELOPERS CONFERENCE REVEALS FULL-DAY TUTORIALS

WWW.GDMAG.COM 61

http://WWW.GDCONF.COM
http://WWW.GDMAG.COM

C

M

Y

CM

MY

CY

CMY

K

http://INVESTINGCANADA.COM

www.gdmag.com 63

Ask Anyone over the Age of
30 how many times they’ve had
to “learn something the hard
way.” Most people can’t count
that high. Businesses are similar
in this regard: they need to
experiment in order to gather the
data that will enable executives to
make informed decisions—and
experimenting often means failing.

Despite this, most game
publishers and developers
are profoundly averse to
experimentation and risk. “Little”
mistakes, like failed prototypes,
are not embraced. “Big” mistakes,
like failed attempts to capitalize
on new markets, are assiduously
avoided until those new markets
“prove” themselves, by which
point it is deemed necessary
to spend a fortune acquiring a
successful competitor.

Dan Ariely, the author of
Predictably Irrational, has noted
that there’s plenty of research
to explain this behavior. In his
own words: “Experiments require
short-term losses for long-term
gains. Companies (and people)
are notoriously bad at making
those trade-offs.”(1) Put another
way, short-term risk aversion is
a major psychological handicap
for businesses—one worth
recognizing and confronting.

Case in point: EA’s $300m to
$400m acquisition of Facebook
game developer Playfish. Whether
EA paid a fair price for Playfish is
probably irrelevant. The company
decided that it needed to get into the
social gaming space, and Playfish
was a good option (not to mention
comparatively cheap, relative to
Playdom and Zynga). The more
interesting question is whether this
acquisition was necessary.

Big Money, Big prizes?
» The first social games that really
took off generally cost less than
$100k to initially develop. EA could
have funded 10 independent, tiny
social gaming studios working on
such games, empowered them
to experiment with new business

strategies and game designs, while
spending a tiny fraction of Playfish’s
acquisition price. Assuming roughly
$2m in cost per studio, that’s
about 1/20th the price of Playfish.
And don’t forget that unlike other
publishers, EA already had a pool of
experienced casual game developers
within its Pogo group that it could
have tapped to seed this initiative.
So why didn’t EA do that?

Some might argue that it was
impossible to know social gaming
would become so popular, and
thus, that it was worth investing
in. So let’s say that for every
emergent opportunity on par with
social gaming, another four that
look similarly appealing turn out
to be complete duds. Now the
price of attempting to create the
next Playfish has increased by
fivefold. Which, by my admittedly
rough estimate, still means it
would have cost 1/4th the price of
acquiring Playfish.

I don’t mean to pick on EA; in
many ways, it has been one of the
most forward-thinking publishers
in recent years. I’m trying to
illustrate the fact that, contrary
to popular wisdom, it may not be
more cost effective for publishers
to acquire innovative companies
than it is to actually innovate.
And when you consider the fact
that many research studies have
demonstrated that somewhere
between 50 percent to 80 percent
of all big acquisitions end up being
viewed as failures for the acquiring
entity(2), it becomes clear that
growth by acquisition is not a low-
risk strategy.

The other justification I hear
for M&A spending sprees is that
internal innovation is simply too
hard for big companies. They can’t
hire the right people. They can’t
adapt their development processes.
They can't learn new tricks. And
worst of all, they can’t protect
innovative teams from the politics
and bureaucracy that tend to doom
groundbreaking projects. These are
unquestionably major challenges
that I don’t mean to trivialize. And

yet, given the astronomical cost
of recent high-profile acquisitions,
and given the odds that those
acquisitions will look bad in
hindsight, it’s time to reevaluate
the cons of organic growth.

A proposAl for studio
innovAtion
» So what’s the best way to
encourage internal innovation? (Kim
Pallister gave an excellent lecture on
this at the IGDA Leadership Forum.
(3)) Here’s my take:

First: Given the perils of internal
bureaucracy, new teams should
be spun up in separate locations
and treated as wholly independent
studios, while still benefiting from
certain shared resources like legal
counsel and financial services.
They should be tasked with seizing
an opportunity but be given the
flexibility to attack that opportunity
however they wish, even if that
means stumbling through a few
relatively inexpensive failures. And
they should be kept small, as in
four to six people. It doesn’t take
an army to experiment in most
emerging games markets.

Second: The initiative needs
protection from the top.
Otherwise, the mini-studios will be
cannibalized the instant a “more
important” project comes along. It
is not beneath a CEO or senior vice
president to make this a priority, no
less than deciding to greenlight a
half-a-billion-dollar acquisition.

Third: The initiative needs to be
overseen by a small group of
people who understand that they
are managing a portfolio of high-
risk investments. It is not only
likely but a given that a significant
percentage of those investments
will not pan out. In other words,
preventing failure is not the key
goal. Supporting promising new
experiments and helping the mini-
studios share learnings with each
other is the goal.

This issue is not only
relevant to large companies.
Indie developers may not have
EA’s resources, but that doesn’t
mean they can’t adopt a portfolio
strategy. My studio, Spry Fox,
amounts to just 18 people in
total when you include partners
and contractors. But as of the
time of this writing, we have
five F2P games in simultaneous
development, with five completely
independent, tiny teams working on
them. Each team is experimenting
with original game designs and/
or new business strategies, and
each team is fully aware that the
experiments they are conducting
may not ultimately be successful.

It is possible that all our
projects will fail. But if we succeed,
we’ll have accomplished what very
few large companies in our industry
have been able to: a true portfolio
process for developing innovative,
original IP within new markets. I
look forward to sharing the results
of our efforts, be they successful or
not, in my upcoming columns.

In the meantime, I invite you
to ask yourself a question the next
time you’re weighing the pros and
cons of conducting a business
or game design experiment: "Am
I focused on all the ways the
experiment could go wrong, or
am I focused on how to make
the experiment as efficient and
educational as possible?"

(1) http://danariely.com/2010/04/10/
column-why-businesses-don%E2%80%99t-
experiment

(2) www.examiner.com/mergers-and-
acquisitions-in-jackson/why-do-most-
acquisitions-fail-to-add-value

(3) http://blip.tv/file/4350642

dAvid edery is the manager of the

consulting firm Fuzbi and CEO of the Spry Fox

game development studio. He is also an IGDA

board member and a research affiliate of

the MIT Comparative Media Studies Program.

He was the portfolio manager for Microsoft’s

Xbox Live Arcade service and is the co-author

of Changing the Game: How Video Games are

Transforming the Future of Business.

eMBrAcing risk
How aversion to risk can cost you time and money

david EdEry // THE BUSiNESS

http://danariely.com/2010/04/10/column-why-businesses-don%E2%80%99texperiment
http://blip.tv/file/4350642
http://www.gdmag.com
http://danariely.com/2010/04/10/column-why-businesses-don%E2%80%99texperiment
http://danariely.com/2010/04/10/column-why-businesses-don%E2%80%99texperiment
http://www.examiner.com/mergers-and-acquisitions-in-jackson/why-do-most-acquisitions-fail-to-add-value
http://www.examiner.com/mergers-and-acquisitions-in-jackson/why-do-most-acquisitions-fail-to-add-value
http://www.examiner.com/mergers-and-acquisitions-in-jackson/why-do-most-acquisitions-fail-to-add-value

game developer | February 201164

good Job: Career

2010 saw the games industry
in a period of transition. The rise of
social gaming, new motion-control
inputs, the promise of 3D, digital
downloads, and cloud-gaming are
not only challenging developers
as they plan for the future, but
also offer great potential to those
looking to expand and grow
their career by taking advantage
of their established skills in
new opportunities.

As a result, the Career Pavilion
at the 25th Game Developers
Conference—held this year on
Wednesday, March 2nd to Friday,
March 4th in Moscone South
Hall (accessible with all GDC
passes, including Expo or Student
passes)—offers an ideal chance
for developers, both established
and new, to meet with recruiting
studios and publishers.

We’ve talked to some of the
top recruiters, from companies
including Insomniac, Ubisoft,
and Sony, to ask them what
they’re looking for, and with that
knowledge at hand, we hope we
can help you focus your search to
discover a new role in this ever-
changing industry.

Be the Best you Can Be
» With an industry in transition,
we were fascinated (though
not surprised) to find that the
recruiters we surveyed had a wide
variety of differing needs they
were looking to fill within a range
of positions. One requirement was
consistent, though: the need for
experienced senior staff.

Despite industry upheaval, “the
fundamentals haven’t changed,”
said a recruiter for Ubisoft, whom
is attempting to fill roles globally
for franchises such as Splinter
Cell (being developed in Toronto,
Canada), ASSASSin’S Creed (being
developed in Malmo, Sweden;
Annecy, France; and Sofia, Bulgaria,

as well as Montreal, Canada), and
rAymAn: OriginS (being developed
in Montpellier, France.). “We have
a larger proportion of positions
that require previous multiplayer
or related online experience,”
they explained, “but we are
always looking for talented senior
professionals who can bring
something to the group. After all,
the quality of our games reflects the
quality of the teams behind them.”

Angela Baker, a recruiter for
Insomniac Games (currently
working on titles including rAtChet
& ClAnk: All 4 One and reSiStAnCe
3) said, “I think we (like everyone
else) are always looking for senior
talent to come in and really help
solidify an already great team.
While we may not have dozens of
openings, the ones we have are
fantastic opportunities to make a
huge impact on the games we’re
making right now.”

Of course, simple experience
is not enough to stand out in
a marketplace like GDC, with
surveyed recruiters hoping that
potential applicants can ensure
that the “huge impact” they make
is a positive one.

Ryan MacDougall, a recruiter
for Capcom Studios Vancouver
(neé Blue Castle Games, developer
of deAd riSing 2) said, “Over the
last couple of years there have
been numerous layoffs within our
‘recession-proof’ industry. The
market is saturated with people
with previous games industry
experience, but many companies
have had to shift to a different kind
of model: leaner and more flexible;
able to accomplish more with less.”

As a result, the overwhelming
advice from recruiters was, as in
the words of Karen Chelini, Sony
Computer Entertainment’s Director
of Talent Acquisition, “Be the best
that you can be at where you are
in your career.”

“We need people who have
high growth potential,” she said,
“While we may need to fill a
current role, ideally we look for
people who can move up and
contribute at a higher level.”

meet Both your needs
» Amongst other new
developments, the growth of
social gaming has changed the
playing field for game developers,
with many recruiters looking to
fill positions that offer different
perks from traditional game
development, such as alternative
work-life balance via more flexible
development schedules.

One such example is BigPoint,
a social game developer that
continuously develops its
titles such as casual-focused
FArmerAmA or shooter ruined
Online. A BigPoint recruiter
explains the company isn’t about
“meeting specific deadlines
for putting a game in a box and
getting it on a store shelf.”

However, the company
still requires traditional game
development chops. “Skilled
engineers (Unity, C++, C#, PHP,
and Flash) and 3D artists are
at the top of our list,” he said,
though with the expectation that
prospective developers would
recognize the “unique experience”
of developing online, free-to-play
browser games.

That’s not to say that
“traditional” game developers
aren’t keenly aware of the
importance of work-life balance to
potential hires—especially those
with experience in the industry.
Insomniac’s Baker opined, “I think
‘quality of life’ means something
different for every employee—and
we certainly offer flexibility in
response to that.”

“It can mean working on a
stellar title to someone, or getting

five weeks of vacation to another.
One of our concerted efforts for
everyone is to manage schedules
and the scope of projects, so that
the evil ‘crunch’ is minimal and
short in duration. This is something
that we work on every project, and
have really seen positive results.”

Ubisoft’s recruiter agreed
with the challenge in dealing with
“crunch” mode and noted, “Each
of our studios tries to adapt itself
to its local reality, meaning both
in terms of geographic location
and studio size. For example, our
Montreal studio offers an on-site
daycare, and when it comes to
having to put in extra hours during
the final stretch of production,
most studios offer specific post-
project time-off so that people
have the necessary time to relax
with their friends and family.”

Just as with examining if
you can fit into a studio in a
role that will meet your current
needs, it pays to research if the
companies you are interested in
can offer you the kind of life and
career you are aiming for. Some
studios attempt to offer a “flat”
structure—MacDougall offers
that Capcom Studios Vancouver is
“proud” that “everyone has a voice
to speak their opinions and pitch
ideas,” while Baker says Insomiac
“look[s] for ways for employees
to grow within their jobs, not
just up and out of them,”—while
others offer more of a traditional
hierarchy. At Ubisoft, it’s
“important to offer a clear career
path,” according to the company’s
recruiter, so “people have visibility
and realize that they achieve their
career goals within the group.
We are able to not only offer a
classic growth trajectory, but also
propose mobility opportunities
abroad or between projects. And
of course, we try to convey the
multitude of jobs that are open to

LeveL up
By MATHEW KUMARMaking the Most out of the gDC Career Pavilion

www.gdmag.com 65

someone as they advance in their
career in function of the type of path
they wish to take and the evolution
of their interests.”

Plan and PrePare
» Whether you are fresh out
of school, a developer who has
suffered in a round of layoffs, or
even just looking for a change,
one of the main challenges facing
you at the Career Pavilion will be
standing out to recruiters as the
best in your chosen field. While
some of the tips our recruiters offer
might seem like common sense,
what is surprising is how often
they claim they get overlooked:

Resume: Unless you are Shigeru
Miyamoto himself, you aren’t going
to get anywhere without a stack of
paper resumes to hand out (and
no excuses if you think you’re the
next Miyamoto). Keep it clean (spell
check!), tight (no more than one two-
sided sheet), and ensure it highlights
the very best of your career.

Portfolio: Even with multiple
completed titles under your belt,
it isn’t enough to list them on your
resume and expect that to show
your potential. Delano Lobman,
HR Manager for Guerilla Games
(currently working on Killzone
3) states that they need to be
“knocked off [their] feet” by the
quality of art portfolios or code
samples provided. Established
developers need to be able to
provide samples that show their
importance to completed projects,
and developers who have been out
of work—even if only for a short
time—would do well to show that
they’ve kept their skills intact and
up-to-date with samples of work
created during the downtime.

Insomniac’s Baker emphasized,
“We see a lot of people.” Standing
out “without being creepy”
can be hard, she admitted, but
offered an eye-catching tip:
keep your best work to hand for
quick demonstration. “With the
advancement of portable tech these
days, it’s super cool to check out
a reel in real time. The best way to
stand out is to have a solid portfolio

that you can show either digitally
or in a book, or have a snippet of a
game that people can play. “

Research: We can’t emphasize
this enough. Every recruiter we
speak to is full of tales of meetings
with job seekers that not only
don’t seem to know what their
company does, but don't even
know what they would like to do
as part of it. Being familiar with a
company’s titles and where their
studio location is a good start, said
Ubisoft’s recruiter, but being able to
recognize a company’s needs and
sell yourself to them is key. “Check
out developers’ careers/recruitment
pages and see what open positions
and projects they are recruiting for;
find out if you have experience in
related platforms, technologies, or
genres. And know if you are willing
to relocate.”

Insomniac’s Baker agrees,
stating furthermore that successful
applicants should be able to clearly
state why they want to work for a
company—and it is for more than
just a job.

Don’t overshoot, however.
Capcom Studios Vancouver’s
MacDougall argues that while you
must aim to be the best in your
field, you should also recognize
your current skill level. “People

applying for roles out of their reach,
such as graduates applying for lead
programmer or art director, happens
far too often. Companies track that
kind of thing: you are remembered
for the roles that you applied to.”

The Early Bird Catches The
Worm: Insomniac’s Barker notes
that “everyone in the booth is
fresher at 10:00 a.m.,” so you’re
likely to make a bigger impression—
and beat out those still nursing
hangovers—if you turn up early.
Indeed, one anonymous recruiter
warned applicants away from trying
recruitment booths towards the end
of the day: “People have been on
their feet all day and won’t give you
the time you might get otherwise,”
they said.

Be Respectful: Get to the
pavilion on time, but don’t skip a
shower to do it! While having fully
researched companies that you
speak to might seem to cover it
otherwise, Guerilla Games’ Lobman
offers three important don’ts:
“Don’t act like you’re ‘all that,’
and don’t instantly talk about the
salary we could offer.” The last
one is potentially most important
to established developers who
might be nursing bad feelings over
previous jobs: “Don’t trash other

studios or former employers. It’s
very unprofessional.”

Follow Up: Even if you’ve
wowed everyone you’ve spoken to
with your portfolio and sparkling
professional manner, it’s essential
to stay in contact with the
companies you are most interested
in—even if it’s just to receive
feedback on your meeting and
portfolio. And don’t be disheartened
if the meeting didn’t go as well
as you hoped. Insomniac’s Baker
offers, “Just because we spend 5
minutes with you, doesn’t mean
we’re not interested in following up
with you. It just means that the line
behind you has grown and we need
to chat with other people. It’s all
good. So don’t be offended!”

Go For it!
» The Career Pavilion is an
exhausting and packed three
days not just for job-seekers, but
recruiters too. By placing your best
foot forward through research,
preparation, and organization, you
can make it easier not only for
yourself, but for the very people you
are trying to impress. Good luck!

M a t h e w K u M a r is a freelance

journalist based in Toronto and a

contributing editor at Gamasutra.com.

G
d

C
Ph

ot
o

Gr
aP

h
y

B
y

Vi
n

Ce
n

t
d

ia
M

an
te

http://Gamasutra.com
http://www.gdmag.com

66 F E B R U A R Y 2 0 1 1 | G A M E D E V E L O P E R

>>
CR

EA
TI

VE
 C

AR
EE

RS

http://dreamtools.com
http://www.wms.com

www.gdmag.com 67

good JoBHired someone interesting? Let us know at editors@gdmag.com!

H i r i n g n e w s a n d i n t e r v i e w s

whowentwhere
Industry veteran Graeme Devine has left a
post at Apple’s iPhone Game Technologies
Division, where he oversaw the company’s iOS
gaming strategy, to pursue his passion for
game development.

After departing from Codemasters in 2010,
game industry veteran Stuart Black, senior
designer on the 2006 Criterion shooter Black,
will head up a new London-based in-house
development studio at City Interactive.

The PC Gaming Alliance named Intel’s Matt
Ployhar as its new president, as the two-year-
old group continues its efforts to promote and
advocate the PC as a gaming platform.

Former EA vice president Rod Humble has
taken the reigns as CEO of Second life
developer Linden Labs after the departure of
Mark Kingdon in 2010.

Atari’s worldwide CEO Jeff Lapin has left the
company, and deputy CEO Jim Wilson will
expand his role to fill Lapin’s position.

new studios
Outsourcing firm Streamline Studios, which
has worked on content for titles including
GearS of War, GhoSt recon, and SaintS roW,
announced it has founded a new studio in
Kuala Lumpur, Malaysia.

Five months after Amsterdam-based game
publisher PlayLogic filed for bankruptcy, the
company said it would relaunch with “a focus
on digital video game publishing” for consoles.

working 9 to 5
Mariel CartwrigHt CoMes in out of tHe Cold

Mariel Cartwright has always lived the freelance life, working non-stop as an artist and animator
for games like Scott Pilgrim in Montreal and Batman: the Brave and the Bold. As part of the
art collective mechafetus.com, which includes cult indie artists such as Paul Robertson and
Jonathan Kim, she developed her odd hybrid style of anime and Western illustration. Most
recently, she’s joined a new team in Los Angeles—her first office job—as lead animator on an
upcoming original 2D fighting game for consoles.

Brandon Sheffield: after working on the
critically acclaimed Scott Pilgrim game,
how did you decide where to go next? Was
location a factor?
Mariel CartwrigHt: The project I’m currently
on was started by a good friend of mine, and I
had already been helping with animation on it
while I was working on Scott PilGrim. After Scott
PilGrim wrapped up, it made sense to move
my focus onto this project. I was kinda worried
about having to move back to LA for this job; I
was working freelance and traveling a fair bit,
but I figure I had to settle down eventually and I
didn’t want to pass up being part of this team.

BS: What about this project
appealed to you as an
artist?
MC: The style of the game
lends itself to my own
style really easily, and
I’m able to take a bit of
creative direction and be
a big part of the project. I
feel like I’m getting to work
on something I would’ve
volunteered to be a part
of anyway, but it’s still something that
forces me to think a bit differently and work
outside my comfort zone, so I’m learning a
lot as well.

BS: how has the transition from artist to lead
animator been? Was it at all intimidating?
do you have to manage outside contractors
as well?
MC: It’s not only a transition to lead, it’s
actually my first time working in an office too.
I was totally nervous before it started. Being
freelance meant I could work when I wanted
and live anywhere, and I didn’t like the idea
of settling down for an office job. It’s been
okay though! It turns out I wasn’t very good
at scheduling my freelance work and felt like I
was always crunching, so having hours makes
things easier. I do have to manage contractors
a bit, but our in-house team is small enough
that we all provide some feedback to our
outside artists. I just write more e-mails is all.

BS: You’re now in charge of people you’ve
worked alongside and known for years, how
does that affect the working dynamic?
MC: It’s been fine. I think because it’s people
I’ve worked with before, we all know what we’re
capable of and it makes work pretty efficient.
I don’t think technically being in charge has
made a drastic difference ... because our team
is so small everything is totally collaborative,
being lead just means I have to manage a few
more things.

BS: The popularity of 2d fighters fell a lot
in the early aughts, but has recently been

bolstered by SfiV, BlazBlue,
and others. do you see
the 2d fighting revolution
continuing? and if so, what
will push the genre forward
on the art side?
MC: I’m definitely not an
expert on fighters, but I don’t
think 2D fighters are going to
disappear anytime soon—the
community supporting them
is huge. On the other hand, I
think fighters are still fairly

niche compared to more mainstream genres. I’d
love to see titles that are able to push the power
of 2D with cool designs and fluid, fun animation
that don’t cater exclusively to niche audiences
that many existing fighters do, and push things
in ways that 3D can’t.

BS: for a long time you have been part of the
art collective Mechafetus. Would you say
that association changed your art style or
development practices at all? if so, how?
MC: Sure, I think I’ve taken a lot of influences
from my friends. They’ve introduced me to a
lot of weird, interesting stuff that I probably
wouldn’t have discovered otherwise. I think
the past few years of knowing them has
helped me settle into the cute/gross style
that people seem to know me for. Of course,
I’m always hoping to push my stuff even
further just on my own, but being part of that
team of sorts definitely impacted how my
style developed.

Second Life

mailto:editors@gdmag.com
http://www.gdmag.com
http://mechafetus.com

THE 13TH ANNUAL
INDEPENDENT
GAMES FESTIVAL

CELEBRATING OVER 600 INNOVATIVE GAMES ACROSS THIS
YEAR’S MAIN, STUDENT, AND NUOVO AWARD COMPETITIONS

VIEW THIS YEAR’S SUBMISSIONS AT WWW.IGF.COM
PLAY THE FINALISTS AT THE IGF PAVILION ON THE GDC 2011 EXPO FLOOR, MARCH 2-4, 2011

PLATINUM SPONSOR GOLD SPONSOR PLATFORM SPONSOR

IGF MAIN COMPETITION

» Seamus McNally Grand Prize

» Excellence In Design

» Excellence In Visual Art

» Excellence In Audio

» Technical Excellence

» Audience Award

» Best Mobile Game

IGF STUDENT SHOWCASE

» Student Showcase Finalist

» Best Student Game

NUOVO AWARD

IGF AWARD CATEGORIES

WEDNESDAY, MARCH 2, 2011 • 6:30PM – 8:30PM
SAN FRANCISCO MOSCONE CONVENTION CENTER, HALL D

http://WWW.IGF.COM

HEADS-UP DISPLAYEDUcAtED PLAY!

Jeffrey Fleming: How did you
arrive at the core experience of
Chaos Invaders?
Sash MacKinnon: The core
experience of Chaos Invaders
is chaos, so I put a lot of work
into making the game frantic,
adrenaline filled, fast-paced, and
visceral. Things like music and
sound effects, the timer, large
amounts of enemies on the screen,
and even the user interface were
all designed specifically to create
this experience.

Deciding on this direction was
actually a bit tricky. I had the idea
to remake spaCe Invaders, and
within a few days had knocked out
a prototype with all the mechanics
in place, but it wasn’t fun.

Originally I had planned on
making it a slow-paced game with
the emphasis on growing your
ship into a huge tower that would
reach out to new, larger enemies.
I’d even thought of putting in some
RPG mechanics based on the
types of enemies you collected.
Even with these mechanics in
place, it lacked the stickiness that
the final game has; I didn’t know
how I wanted the player to feel
while playing it.

After I stumbled upon this idea
of chaos, the game was instantly
brought into a new light. I decided
I wanted the player to feel excited,
stressed, frantic, and above all,
powerful. I wanted them to breathe
a sigh of relief after every level. After
deciding on that direction, ideas just
poured out and Chaos Invaders was
born. This struggle really taught me
that mechanics alone often aren’t
enough to make a game fun. To
make the game really appealing,
it helps to know what experience
you want the player to have while
playing and build around that.

JF: What has your game
education experience been like?
SM: I’m doing a degree of Computer
Science at University of New South
Wales and it's been great. I don’t

encourage people to go in expecting
they’ll be taught exactly how to
become an amazing designer, but
it’s really helped to give me the
tools and knowledge to start out.
It’s also put me in contact with
some really helpful people.

That being said, all the
games I’ve made have been done
individually, so my knowledge of
game design and development
has been mostly self taught. I’ve
found that learning game design
through courses and books can be
great for table talk, but no matter
how much you learn, when you
really get stuck in the nitty-gritty
decision making of designing your
first game, it's going to be hard!
There is a lot to be learned through
experiencing the creative process
personally. Formal education can
build on this, but not replace it.

JF: One thing your games seem to
have in common is a real sense
of speed.
SM: Speed is something which
really resonates with me as a
gamer, but pulling that kind of
performance out of ActionScript is
tough as nails.

On my current project, Mr
runner 2, I’ve really been pushing
AS to its limits: I’ve got in-game
motion blurs on a 700x400 screen,
lots of particle effects and lots of
layers. The truth is it's really hard
to keep the frame rate up in Flash;
you have to optimize every little bit
of code you write and think things
through to the nth degree. As if this
weren’t enough, there will always
be computers which are slower
than the one you’re testing on. It
can be a bit nightmarish, actually!

There are two really important
techniques that I use when trying
to bang out high performance.
First, object pool everything that
is created and destroyed more
than a few times, especially if it is
instantiating an embedded graphic
of .swf; they have a tendency to
memory leak and slow things

down pretty badly (there's a great
object pooling explanation and
library at: http://lab.polygonal.de/
index.php?s=objectPool).

Secondly, use libraries wherever
you can. TweenMax for tweening and
delayed calls, Box2D for physics,
AS3DS for any tricky data structures,
Away3D for 3D. They’re all so useful
and will save you a whole bunch
of work. They’ll also speed up your
project quite significantly.

JF: In screenshots, Chaos
Invaders has a deceptively simple
graphical look, but in play, the
screen comes alive with motion
blurs and transparency effects.
SM: All of those effects—the blurs,
glows, and transparencies, are
actually built into AS3. The only
trick is getting them to run fast
enough to still have a playable
game. There was one big trick which
I used to speed Chaos Invaders
up, and that was to use bitmap
blitting (which means working with
individual pixels) and to scale the
game up five times. This achieved
the pixel style that you see in game,
but also meant that effects you
see weren’t very CPU intensive
since they had to do five times less
calculation! This really let me go
wild with these effects, which were
all part of the frantic experience.

The funny thing about this is
when you look at my "enemy.png"
files, they’re all so tiny you can
hardly see them. They look a lot
less ominous at their original size!

JF: What advice do you have for
someone who is considering
trying to make some money as an
indie game developer?
SM: Aiming to make money can
be a bit overwhelming. Often, it
puts a whole lot of pressure on
the developer to go in directions
which they wouldn’t otherwise. That
kind of pressure can really limit
creativity. My advice is to make a
game which you personally would
love to play, and then do everything

you can to make it as unique and
fun as possible. Don’t worry too
much about time or money, just
stick with it until the end. If you
have a good game, by the end of
the long haul, you’ll make money
off of it.

The other important lesson
I’ve learned is that the amount of
revenue is unpredictable. Chaos
Invaders made me almost 10 times
less than Mr runner. I’ve heard of
amazing games getting very poor
sponsorships, and small games
getting amazing sponsorships. It
can be a little bit daunting.

If you’re trying to penetrate
the Flash game market, I
would highly recommend
FlashGameLicense.com, which is
essentially eBay for Flash games.
It allows sponsors from all around
the web to view your game and
bid on it. It’s great for people who
don’t have connections in the
industry just yet.

Even if all this seems
overwhelming, don’t lose hope!
Despite these issues, developing
Flash games part time has
funded my education and social
life so far throughout my time at
the university, and has been an
experience I would have paid for
myself. Finally, my most important
piece of advice is to just make a
game! Get something out there!
And if you’re doing it for the first
time, start small.

—Jeffrey Fleming

chaos invaders

S T U D E N T g a M E P R O F I L E S

While simultaneously studying for a computer science degree sash macKinnon has been releasing speed-infused games that are a modern
return to the arcade action of youth. here he shares some tips for getting high performance out of flash.

Chaos Invaders
http://bitbattalion.com/games/chaos-invaders

www.gDmAg.com 69

http://bitbattalion.com/games/chaos-invaders
http://lab.polygonal.de/index.php?s=objectPool
http://lab.polygonal.de/index.php?s=objectPool
http://FlashGameLicense.com
http://WWW.GDMAG.COM

The 11Th AnnuAl The Game Developers Choice Awards are the premier accolades for peer-

recognition in the digital games industry. Every year at GDC, the Choice

Awards recognize and celebrate the creativity, artistry and technological

genius of the finest developers and games created in the last year.

AwArD finAlisTs will be AnnounCeD in februAry.
stay updated at: www.gamechoiceawards.com.

PresenTeD by ProDuCeD AnD hosTeD by

AwArDs Are PresenTeD in The followinG CATeGories:

2010 AwArD CATeGories
• Best Audio
• Best Debut
• Best Downloadable Game
• Best Game Design
• Best Handheld Game
• Best Technology
• Best Visual Arts
• Best Writing

• Best New Social/Online Game
• Innovation
• Game of the Year

sPeCiAl AwArDs CATeGories
• Lifetime Achievement
• Pioneer
• Ambassador

GAM1012_GDCA_GDMag_f.indd 1 12/6/10 12:29 PM

http://www.gamechoiceawards.com

www.gdmag.com 71

Scott LawLor // auraL fixation

Only Three liTTle Things
Managing The needs of MulTiple projecTs

here aT Obsidian
Entertainment, we have
a relatively small audio
department of five people
who are tasked with making
very large games. Being
that we’re an independent
developer with a centralized
audio department, we’re
also constantly juggling
multiple projects and
supporting various needs.
Handling all this can be
a bit overwhelming. In
order to manage multiple
deadlines, minimize crunch
time, and keep our games
sounding great, we have
had to change the way we
scope our projects, task the
audio team, and review our
work. Since implementing
these changes, we’ve been
able to keep a high level
of quality while managing
our workload and keeping a
good work/life balance.

scOpe: The big picTure
» When deadlines are
looming and the pressure
is on, I find it useful to
step back and do a quick
gut-check to assess our
progress on each project.
It all boils down to three
little things: music, sound
effects, and dialogue.
While this may seem like
an oversimplification,
viewing it in this way can
sometimes bring some
sanity to the chaos of game
development. I know that
if these three things are
covered, we’re in good
shape. If not, I can help
divert resources to the area
that is lacking.

Normally, when one
of these areas is in poor
shape, it’s because it is

out of scope. Obsidian
makes very large games
with up to a hundred
hours of gameplay.
Because of this, scope is
of constant concern. With
the constraints of time,
money, and quality being
immovable, our only course
of action is to manage
scope. We do this in two
ways: limiting features and
variations of sounds, and
by using templates.

For Fallout: New Vegas,
we relied on templates to
make a first pass layout of
music and ambient sound
for the game. With so
many locations, we had to
generalize ambiance into
categories like rural house,
bunker, vault, and so
forth, while for music, we
categorized by emotions,
such as creepy, peaceful,
rural, and mystical. Doing
this allowed us to first
cover the scope of the
game, and then allowed
us to go back and refine
those areas that were truly
important with a unique
music and ambient pass.

Tasking and
develOpmenT: geTTing
iT dOne
» Let me first say that I
am not a fan of bug tracking
software for tasking on
a project. Having to deal
with strict formatting while
managing priorities seems
to hinder productivity more
than help. We have found
that working off of simple
lists, generated through
group playthroughs, are
much more effective. When
in a creative mindset, it is
important to keep focused

and minimize clutter. By
keeping these lists simple
and deleting the items once
they have been reviewed,
we keep a clear and concise
list of what needs to be
worked on, which allows
a certain level of creative
freedom. However, since
these lists are not tracked,
it is especially important
to have a strong follow-
through to make sure
everything is getting done.

When it comes to
scheduling, we’ve also
found that simple is good.
I tend to only schedule
the project we’re going to
be working on, and what
milestone goals we’re trying
to achieve. We have found
that strict schedules that
attempt to manage specific
workloads and assets on a
day to day basis are almost
always out of date as soon
as they’re written. Game
development is such a fluid
process that I have found it
much more useful to assign
areas of ownership to each

of the team members and
allow them the autonomy to
make their own schedules.
This level of ownership
allows everyone to feel that
their contribution is unique
and important, and it shows
in the quality of their work.

QualiTy cOnTrOl: dOes
iT sOund gOOd?
» It all comes down to that
simple question: Does it
sound good? I believe the
only way to say "yes" to this
question is to constantly
iterate on a project—to play
it, and refine it again and
again. At Obsidian, the audio
team gets together and
constantly plays through
our games and makes
refinements. This process
is fairly time intensive, but
doing so is the only way to
keep everyone on the same
page. It’s also good for the
morale of the team because
it allows us to see the
progress that’s being made
on a day-to-day basis. This
format also allows for a lot of

peer feedback, and we are all
open and honest about our
criticisms and responses.

When working on an
individual system in a
game, it can be easy to
get lost in the specifics of
what you are doing and
lose perspective of the
project as a whole. Maybe
that footstep sound you
are working on in your DAW
sounds amazing, but in
the game, it doesn’t quite
fit into the soundscape. By
stepping back and viewing
the project as a whole,
you regain some of that
perspective. That is where
all the individual elements
of a project come together
as a whole. The music, the
sound effects, and the
dialogue all come together
to form the complete
picture. As long as these
three little things are
alright, you’re all good!

scOTT lawlOr is the

audio director at Obsidian

Entertainment.

Obsidian's Fallout: New Vegas

http://WWW.GDMAG.COM

{ A D V E R T I S E M E N T }

Vancouver Film School

VFS Game Design students
learn more than just one
side of game design - they
experience the full scope of
this varied and rewarding
career through an in-depth
curriculum that includes:

// LED BY INDUSTRY
In VFS Game Design, you’re
mentored by a faculty of
respected industry pros –
your first crucial connections
to the professional world.
At the helm is veteran Dave
Warfield, who, as a Senior
Producer for EA, helped
produce and design the NHL

franchise for 10 years. His
many other credits include
titles like EA’s NBA Live and
Konami’s Teenage Mutant
Ninja Turtles. An Advisory
Board of industry leaders,
including luminaries from Ir-
rational Games (2K Boston),
Microsoft, Nokia, and Ubisoft,
keeps the curriculum on the
cutting edge.

// A STUDIO ENVIRONMENT
In a process that closely
mirrors a real-world studio
environment and production
pipeline, you work in teams to
take games from concept to
completion. Toward the end of
your year at VFS, you get the
chance to present your final
playable games to an audi-
ence of industry representa-
tives and recruiters: a unique
chance to prove yourself and
make valuable professional
contacts.

// LIVING & CREATING
IN VANCOUVER
In VFS Game Design, you have
the advantage of learning in
Vancouver, B.C., Canada. Along

with strong its film, TV, and
animation industries, Vancou-
ver is a world center of game
development, meaning that
VFS is always industry-cur-
rent, hosts many guest speak-
ers, and provides you with
vital mentorship and feedback
opportunities throughout your
year. It’s the perfect place to
get your career started.

// THE RESULTS
Our graduates have gone on
to earn key design and pro-
duction roles at top studios
around the world. A small
selection of their recent and
upcoming titles includes: War-
hammer 40,000: Dawn of War
II, Marvel Ultimate Alliance
2, Prototype, Dragon Age:
Origins, Punch-Out!!, Mass
Effect 2, FIFA 10, Skate 3, True
Crime, Dead Space 2, Star
Wars: The Old Republic, Dead
Rising 2, Pirates of the Carib-
bean: Armada of the Damned,
and ModNation Racers.

Find out about VFS Game
Design and begin your career
at vfs.com/gamecareer.

“It was a really mind-opening
experience for me, in terms of
what is possible creatively. VFS
was really instrumental in me
being successful today.”

– Armando Troisi, VFS Graduate
Lead Cinematic Designer

Mass Effect franchise

CONTACT INFO

Vancouver Film School
200-198 West Hastings St
Vancouver, BC V6B 1H2
Canada
604.685.5808 or 800.661.4104
inquiries@vfs.com
www.vfs.com/gamecareer

Game Design at Vancouver Film School is an intense one-year program that
covers everything you need to join the game industry as a designer or producer,
from theory to hands-on practice to the production of a professional-quality
portfolio. There’s a reason why the L.A. Times called VFS one of the top 10 schools
“favored by video game industry recruiters.”

» Interactive Narrative
» Analog Games
» Interface Design
» Scripting
» Level Design
» Pre-Production
» Project Management
» Flash
»Mobile & Handheld

Design
» Game Audio
» The Business of

Games

Vancouver_Narr 1/7/11 11:58 AM Page 1

http://vfs.com/gamecareer
mailto:inquiries@vfs.com
http://www.vfs.com/gamecareer

Ahead
of the Game.

BURLINGTON, VERMONT | (800) 570-5858

The video game industry is booming, and gaming
companies are struggling to employ highly skilled
developers and designers to keep up with this
explosive demand. Led by an expert team of seasoned
faculty, Champlain College students acquire a complete
set of technical skills while refining their creative abilities.

Champlain College’s unique team-based structure spans
multiple programs to merge video game entertainment
with emergent immersive technologies, 2D and 3D art,
animation, storytelling, and interface design—providing
their students with real-world experience—reflective
of the best practices the most successful game and
interactive media companies use today.

W W W. C H A M P L A I N . E D U

Game face. Market focus.

The career you want – the benefits you expect!

An Equal Opportunity Employer M/F/D/V.

Careers in Applications Development

Crunching vast amounts of data in lightening speed. Designing flashy

graphic user interfaces. Exploring experimental hardware that’s

never seen the light of day. Developing algorithms that will automate

millions of decisions. Jumping in and building solutions from the

ground up. Test it. Support it. Beat the competition. Change the

game...Sound familiar?

This is a career in Applications Development at Citi. Here, you’ll apply

skills you already have and learn things you never imagined, all in a

collaborative team environment that supports you to go even further.

Apply to Citi’s Applications Development opportunities today at:

careers.citigroup.com

>> CREATIVE CAREERS

73

>> GET EDUCATED

W W W . G D M A G . C O M

http://careers.citigroup.com
http://WWW.GDMAG.COM

game.colum.edu

Columbia College Chicago’s Interactive Arts

and Media Department o�ers majors in:

Interactive Arts & Media

Game Design

with concentrations in:

Game Art

Game Development

Programming

Sound Design

He’d like to talk to
you about majoring
in Game Design.

Screen shot from 2011 Senior Capstone Project, �e Warden of Ra’al

>>
GE

T
ED

UC
AT

ED

74 F E B R U A R Y 2 0 1 1 | G A M E D E V E L O P E R

http://game.colum.edu
http://mdm.gnwc.ca

C

M

Y

CM

MY

CY

CMY

K

gameDev_gdc.pdf 1 1/10/2011 1:00:06 PM

http://www.fiea.ucf.edu

Game Art & Animation
Associate’s Degree

MADISON
MEDIA INSTITUTE
College of Media Arts

MINNEAPOLIS
MEDIA INSTITUTE

College of Media Arts

MADISON: 2702 Agriculture Drive | Madison, WI | madisonmedia.edu MINNEAPOLIS: 4100 West 76th St. | Edina, MN | minneapolismediainstitute.com

Launch your career today!
Madison: 800.236.4997 Minneapolis: 877.416.2783

Careers Include:

Animator
Modeler
Technical
Animator
Level
Designer

Additional Emphasis:

Story development

Performance

Cinematography

Traditional art

Color theory

Program Highlights:

Motion Capture
facilities

Utilizing: Unreal
III Engine, Maya,
Motion Builder,
Mudbox, Body
Paint, & more

©
 2

0
1

1
 F

u
ll

 S
a

il
,

In
c

.

Game Art
Bachelor’s Degree Program

Campus & Online

Game Development
Bachelor’s Degree Program

Campus

Game Design
Master’s Degree Program

Campus

Game Design
Bachelor’s Degree Program

Online

fullsail.edu
Winter Park, FL

nää°ÓÓÈ°ÇÈÓxÊÊUÊÊÎÎääÊ1��ÛiÀÃ�ÌÞÊ	�Õ
iÛ>À`

���>�V�>�Ê>�`Ê>Û>��>L�iÊÌ�ÊÌ��ÃiÊÜ��ÊµÕ>��vÞÊÊUÊÊ
>ÀiiÀÊ`iÛi��«�i�ÌÊ>ÃÃ�ÃÌ>�Vi

�VVÀi`�Ìi`Ê1��ÛiÀÃ�ÌÞ]Ê�

-

Campus Degrees

Master’s

�ÌiÀÌ>���i�ÌÊ	ÕÃ��iÃÃÊ

 �>�iÊ�iÃ�}�

Bachelor’s

��«ÕÌiÀÊ����>Ì���

��}�Ì>
Ê�ÀÌÃÊEÊ�iÃ�}�

�ÌiÀÌ>���i�ÌÊ	ÕÃ��iÃÃÊ

��
�

 �>�iÊ�ÀÌ

 �>�iÊ�iÛi
�«�i�Ì

�ÕÃ�VÊ	ÕÃ��iÃÃ

,iV�À`��}Ê�ÀÌÃ

-
�ÜÊ*À�`ÕVÌ���

7iLÊ�iÃ�}�ÊEÊ�iÛi
�«�i�Ì

Associate’s

�À>«
�VÊ�iÃ�}�

,iV�À`��}Ê
�}��iiÀ��}

Online Degrees

Master’s

Ài>Ì�ÛiÊ7À�Ì��}

`ÕV>Ì���Ê�i`�>Ê�iÃ�}�ÊEÊ/iV
��
�}Þ

�ÌiÀÌ>���i�ÌÊ	ÕÃ��iÃÃÊ

��ÌiÀ�iÌÊ�>À�iÌ��}Ê

�i`�>Ê�iÃ�}�

 iÜÊ�i`�>Ê��ÕÀ�>
�Ã�

Bachelor’s

��«ÕÌiÀÊ����>Ì���

Ài>Ì�ÛiÊ7À�Ì��}Êv�ÀÊ
�ÌiÀÌ>���i�Ì

��}�Ì>
Ê
��i�>Ì�}À>«
Þ

�ÌiÀÌ>���i�ÌÊ	ÕÃ��iÃÃ

 �>�iÊ�ÀÌ

 �>�iÊ�iÃ�}�

�À>«
�VÊ�iÃ�}�

��ÌiÀ�iÌÊ�>À�iÌ��}

��L�
iÊ�iÛi
�«�i�Ì

�ÕÃ�VÊ	ÕÃ��iÃÃ

�ÕÃ�VÊ*À�`ÕVÌ���

-«�ÀÌÃÊ�>À�iÌ��}ÊEÊ�i`�>

7iLÊ�iÃ�}�ÊEÊ�iÛi
�«�i�Ì

>>
GE

T
ED

UC
AT

ED

76 F E B R U A R Y 2 0 1 1 | G A M E D E V E L O P E R

http://madisonmedia.edu
http://minneapolismediainstitute.com
http://fullsail.edu

When you take online classes from FUTUREPOLY, you’ll

learn how to create professional video game art from the

leading artists in the industry, all from the comfort of your

own home.

Although, truthfully, the instructors would probably feel

more comfortable if you at least pretended to have pants on.

KEKAI KOTAKI | THOMAS SCHOLES | JAMES KEI | HORIA DOCIU

FEATURED INSTRUCTORS
DANIEL DOCIU | RICHARD ANDERSON | LEVI HOPKINS | MATTHEW BARRETT

Visit www.futurepoly.com to register.

FUTUREPOLY | RELEVANT EDUCATION

C

M

Y

CM

MY

CY

CMY

K

FuturePolyGameDeveloper.ai 1 1/7/2011 2:42:18 AM

http://www.futurepoly.com

>>
GE

T
ED

UC
AT

ED

78 F E B R U A R Y 2 0 1 1 | G A M E D E V E L O P E R

http://www.ci.neu.edu
http://www.enjmin.fr
mailto:contact@enjmin.fr

“The staff at VFS provided a foot in the door
that gave me an opportunity to prove myself.”

ARMANDO TROISI | GAME DESIGN GRADUATE
LEAD CINEMATIC DESIGNER, MASS EFFECT 2

Game Design at VFS shows you how
to make more enemies, better levels,
and tighter industry connections.

In one intense year, you design and develop
great games, present them to industry pros,
and do it all in Vancouver, BC, Canada,
a leading hub of game development.

Our grads’ recent credits include
Mass Effect 2, ModNation Racers,
and Dead Rising 2. The LA Times
named VFS a top school
“most favored by video
game industry recruiters.”

Find out more.
vfs.com/enemies

ZBRUSH
®

V
FS stu

d
e
n
t w

o
rk by M

axim
ilian

-G
o
rd

o
n
 Vo

gt,
co

m
p
lete

d
 fo

r th
e
 Evo

lve
C
G

 h
u
n
te

r co
n
te

st.

6 Waves . 31

Allegorithmic . 50

Blizzard Entertainment . 32

Champlain College . 73

Citigroup . 73

Codero . 60

Columbia College . 74

Course Technology . C3

Crytek . 46

DeVry University . 27

Dolby Laboratories . 52

ENJMIN . 78

Epic Games . 13

Full Sail Real World Education 76

FuturePoly . 77

Gaikai . 18–19

GeoEye . 3

Government of Newfoundland & Labrador 6

Havok . 10

Insomniac Games . 23

Invest In Canada Bureau . 62

Madison Media Institute . 76

Masters of Digital Media . 74

NaturalMotion . 36

Northeastern University . 78

Perforce Software . C2

Rad Game Tools . C4

Riot Games . 40

Simpson Strong-Tie . 66

TechExcel . 14

TransGaming . 54

Unity Workshop . 45

University of Central Florida 75

University of Pennsylvania 39

Vancouver Film School 72, 79

VSoft Technologies . 42

WMS Gaming . 66

Zoo Entertainment . 48

COMPANY NAME PAGE COMPANY NAME PAGE COMPANY NAME PAGE

ADVERTISER INDEX

gd Game Developer Magazine (ISSN 1073-922X) is published monthly by United Business Media LLC, 600 Harrison St., 6th Fl., San Francisco, CA 94107, (415) 947-6000. Please direct advertising and editorial inqui-
ries to this address. Canadian Registered for GST as United Business Media LLC, GST No. R13288078, Customer No. 2116057, Agreement No. 40011901. SUBSCRIPTION RATES: Subscription rate for the U.S. is $49.95
for twelve issues. Countries outside the U.S. must be prepaid in U.S. funds drawn on a U.S. bank or via credit card. Canada/Mexico: $69.95; all other countries: $99.95 (issues shipped via air delivery). Periodical
postage paid at San Francisco, CA and additional mailing offices. POSTMASTER: Send address changes to Game Developer, P.O. Box 1274, Skokie, IL 60076-8274. CUSTOMER SERVICE: For subscription orders and
changes of address, call toll-free in the U.S. (800) 250-2429 or fax (847) 647-5972. All other countries call (1) (847) 647-5928 or fax (1) (847) 647-5972. Send payments to Game Developer, P.O. Box 1274, Skokie, IL
60076-8274. Call toll-free in the U.S./Canada (800) 444-4881 or fax (785) 838-7566. All other countries call (1) (785) 841-1631 or fax (1) (785) 841-2624. Please remember to indicate Game Developer on any correspon-
dence. All content, copyright gd Game Developer Magazine/United Business Media LLC, unless otherwise indicated. Don’t steal any of it.

>> GET EDUCATED

79W W W . G D M A G . C O M

http://vfs.com/enemies
http://WWW.GDMAG.COM

ARRESTED DEVELOPMENT // MATTHEW WASTELAND

gAME DEVELOPER | FEbRuARy 201180

Welcome To our operaTion
Can You Spot the Warning SignS?

excuse me, i haven’T seen you around before. are you...? oh, man,
please tell Johnny I’ll have the money real soon now—wait a second, I’m
sorry. You’re the new art director, aren’t you? Ha, sorry about that. I had you
confused with ... well, nevermind all that. Welcome to our company! Thanks
for showing up; we weren’t totally sure you would. No, I’m just kidding.

It’s great to have you on board! Getting your artistic abilities onto
our team is really going to go a long way toward keeping our investors
happy with our progress. I mean, our game is totally awesome in all other
respects, but those money guys are just so dumb! They just don’t get it
unless there’s slick art to gawk at, you know?

Anyway, that’s where you come in and why I’m thrilled that you’re joining
our team today. Come on in. Let me give you the tour and get you set up.
Now, here’s the office—as you can see, lots of room to grow. We’re still in the
midst of a, uh, a re-shuffling of sorts, just to better deal with changing project
requirements and so on. So it’s a bit scattered right now. And we still need to
fix that window. It broke one day, just like that. Weird, huh?

And here’s your desk! Hm, it looks like Bob left some things. Let me just
take care of that quickly—Liz, could you put this stuff in a box and leave it
outside the door and tell him to come by and grab it? Thanks.

This is your computer: our standard workstations here are top-of-
the-line, brand-new netbooks running Linux. Now, I see the look on your
face there, but I guarantee you’ll be surprised; I know I was! Netbooks are
serious computers these days. They can easily run all of your standard
high-powered game development applications: Microsoft PowerPoint, the
Internet, and so on. Of course, if you need anything extra for your netbook
in order to do your job, such as a mouse, you can put in a requisition to the
IT department. That trackpad should be good for most everyone, though.

“Photoshop,” you say? I’ve never heard of that. Are you sure you need
this? We aren’t asking you to take photographs. Is there something that
this “Photoshop” does that the software included with the netbook doesn’t
do? Well, I might be able to swing you a copy ... I’ll have to take a look at the
balance sheet for this quarter and check with some, uh, sources.

For now, let me get you set up with the project. One thing to note is that
we don’t use source control here. I don’t believe in it. We keep the latest
version of everything on a shared folder on my machine. Just type in the
password—it’s “coolgame2”—and you should see the project directory. It’s
the folder called “Second Prototype.”

We also have a dev kit, just like the big boys! I’ve been using it to keep
my monitor at the right height. I can’t leave it with you because that would
be unfair to the rest of the guys, you know? But you can e-mail me some
instructions on how to use it, and I could test out the art for you. I’ll do that
thing where I paste the art into that window that runs the game—that’s how
it works, right? And then I’ll tell you, “It’s good,” or “It’s no good,” and you
can take that information and work on the art some more. I know you won’t
need to do that too often, though, since you’re such an awesome artist.

Alrighty, let’s boot up the game here. As you can see, we’re still in
a pretty early state. We’re still trying to figure out if it’ll be an FPS, an
RTS, an MMO, or what! What we want to do is create a hybrid of all those
genres: basically, take everything good about each and put them together
and leave out all of the bad parts. Everything you see here is completely
temporary. But as you can see, we’ve got objects loading up and being
displayed, you can move the camera around, and so on. We’re still working
on support for texture mapping, but I’m pretty sure that part is on its way,
at least as soon as we can get the frame rate up. I know it looks kind of

primitive right now, but that’s what you’re here for: you’re going to take this
and make it look amazing.

Well, that’s it for now, since I’ve gotta run to a meeting with our
investors—they said they wanted to have an urgent meeting just yesterday
night! No notice or warning or anything ... no idea what that’s all about. But
whatever. I’ll leave you here and check back later.

In the meantime, you can, uh, well, you can browse the project wiki.
There’s a design doc in there that you should read, but it’s really old and
totally out of date. There’s also some technical documentation that could be
useful, but I think most of what we’ve done has changed around since that
was written, since the original author of that document is no longer with
us. Um, and there’s also a “meet the team” page with photos of some of the
team, but I’ve been kind of bad about keeping that current.

With that, I’ll leave you to—what’s that? A chair? You mean you don’t
want to work standing up? Ha, that was a joke. Actually, some people do
work standing up. It’s more ergonomic and better for your body. I’ve seen a
lot of standing desks at some of the bigger game studios. But yeah, we’ll get
you a chair. I mean, if that’s really how you want to work. Give me like, 10, 15
minutes to have this quick meeting with the investors, and we’ll get that chair
thing solved just as soon as I’m done, okay? Welcome to the team!

m a T T h e W W a s T e l a n d writes about games and game development at his blog,

Magical Wasteland (www.magicalwasteland.com).

your new desk.

http://www.magicalwasteland.com

GDC 2011 attendees, be sure to visit the GDC bookstore to browse and purchase
our comprehensive list of game development titles.

Available from Amazon, Barnes & Noble, Borders, and other retailers nationwide and online.
Visit us online at courseptr.com or call 1.800.354.9706.

Attending GDC 2011? Visit the GDC bookstore to Purchase These Titles and Others!

courseptr.com

Game Programming Gems 8

1-58450-702-0 • $69.99

Video Game Optimization

1-59863-435-6 • $39.99

C# Game Programming:
For Serious Game Creation

1-4354-5556-8 • $49.99

iPhone 3D Game Programming
All in One

1-4354-5478-2 • $39.99

Torque for Teens, Second Edition

1-4354-5642-4 • $34.99

Multi-Threaded
Game Engine Design

1-4354-5417-0 • $59.99

PSP Game Creation for Teens

1-4354-5784-6 • $34.99

Visual Basic Game Programming
for Teens, Third Edition

1-4354-5810-9 • $34.99

Game Development with Unity

1-4354-5658-0 • $39.99

Beginning C++ Through
Game Programming, Third Edition

1-4354-5742-0 • $34.99

Beginning Java SE 6
Game Programming, Third Edition

1-4354-5808-7 • $34.99

Your Ultimate Resource

Introduction to Game AI

1-59863-998-6 • $39.99

CoursePTR_Feb2011GameDevAd.qxd 1/7/11 7:52 AM Page 1

http://courseptr.com
http://courseptr.com

http://www.radgametools.com

	Contents
	POSTMORTEMS
	KLEI ENTERTAINMENT'S SHANK
	MOJANG'S MINECRAFT

	FEATURES
	DISSECTING THE POSTMORTEM
	PRESSED BY THE DARK

	DEPARTMENTS
	EDITORIAL
	GAME PLAN

	NEWS
	HEADS UP DISPLAY

	REVIEW
	TOOL BOX

	PROGRAMMING
	THE INNER PRODUCT

	ART
	PIXEL PUSHER

	DESIGN
	DESIGN OF THE TIMES

	GDC
	EYE ON GDC
	GDC CAREER PAVILION

	BUSINESS
	THE BUSINESS

	CAREER
	GOOD JOB!

	EDUCATION
	EDUCATED PLAY

	SOUND
	AURAL FIXATION

	HUMOR
	ARRESTED DEVELOPMENT

