
FEBRUARY 2003

G A M E D E V E L O P E R M A G A Z I N E

L E T T E R F R O M T H E E D I T O R

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief

Jennifer Olsen jolsen@cmp.com
Managing Editor

Everard Strong estrong@cmp.com
Production Editor

Olga Zundel ozundel@cmp.com
Product Review Editor

Daniel Huebner dan@gamasutra.com
Art Director

Audrey Welch awelch@cmp.com
Editor-At-Large

Chris Hecker checker@d6.com
Contributing Editors

Jonathan Blow jon@number-none.com
Hayden Duvall hayden@confounding-factor.com
Noah Falstein noah@theinspiracy.com

Advisory Board
Hal Barwood LucasArts
Ellen Guon Beeman Monolith
Andy Gavin Naughty Dog
Joby Otero Luxoflux
Dave Pottinger Ensemble Studios
George Sanger Big Fat Inc.
Harvey Smith Ion Storm
Paul Steed Independent

ADVERTISING SALES
Director of Sales/Associate Publisher

Michele Sweeney e: msweeney@cmp.com t: 415.947.6217

Senior Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 828.350.9392

Account Manager, Northern California & Southeast
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Account Manager, Recruitment
Raelene Maiben e: rmaiben@cmp.com t: 415.947.6225

Account Manager, Western Region & Asia
Craig Perreault e: cperreault@cmp.com t: 415.947.6223

Account Representative
Aaron Murawski e: amurawski@cmp.com t: 415.947.6227

ADVERTISING PRODUCTION
Vice President, Manufacturing Bill Amstutz

Advertising Production Coordinator Kevin Chanel

Reprints Cindy Zauss t: 909.698.1780

GAMA NETWORK MARKETING
Director of Marketing Greg Kerwin

Senior MarCom Manager Jennifer McLean

Marketing Coordinator Scott Lyon

CIRCULATION

Group Circulation Director Catherine Flynn

Circulation Manager Ron Escobar

Circulation Assistant Ian Hay

Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes

t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas

t: 650.513.4234 f: 650.513.4482 e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall

Executive Vice President & CFO John Day

Chief Operating Officer Steve Weitzner

Chief Information Officer Mike Mikos

President, Technology Solutions Group Robert Faletra

President, Healthcare Group Vicki Masseria

President, Electronics Group Jeff Patterson

President, Specialized Technologies Group Regina Starr Ridley

Senior Vice President, Global Sales & Marketing Bill Howard

Senior Vice President, HR & Communications Leah Landro

Vice President & General Counsel Sandra Grayson

Vice President, Creative Technologies Philip Chapnick

W W W . G A M A N E T W O R K . C O M

✎

N ow is not the best time in

the world to be a third-

party game developer.

Whereas in the past the

natural rhythms of game

industry cycles and fortunes mirrored

big-bang–big-crunch cycles of consolida-

tion and start-ups, the game industry is

now large enough that a long-range fore-

cast of continued consolidation seems

more likely.

Going first-party will provide only

short-term security for some developers if

the next year sees a major shakeout

among publishers, as analysts are begin-

ning to predict will happen. Second par-

ties barely exist as such anymore, most

of the prominent ones having been fully

absorbed or cut loose by their publishers

in this console cycle.

Is the industry headed for a shakeout

in 2003? If there’s one thing to learn

from games, it’s that very few match-ups

don’t end up with winners and losers.

Consolidation has been a consistent fea-

ture of the maturing of most other enter-

tainment media, and currently the odds

don’t seem good that we will see as many

game publishers at the end of 2003 as

there are today. Those that go down will

take their first-party studios with them,

leaving some developers in unfamiliar

hands through mergers and acquisitions,

and leaving others out in the cold entire-

ly. Developers and publishers in all three

major markets — Japan, North America,

and Europe — continue to face unique

but significant challenges in their respec-

tive economies.

The hardware makers are holding —

and exerting — an increasing amount of

power, making tycoons out of winners

and paupers out of losers. On the devel-

oper end of the food chain, budgets are

being clamped down and plum projects

seem to be harder to come by, even for

those studios for whom they used to

come relatively easy. If you now work for

a small studio and the name printed in

the corner of your paychecks hasn’t

changed to that of a larger company in

the past couple of years, you could be in

for a bumpy ride.

New this month. This issue features the

debut of a new editorial property, Game
Developer Mobile. So much information

is swirling around the nascent industry of

games for mobile devices that we’ve set-

tled on a newsletter format, with report-

ing and analysis from Ben Calica, a veter-

an game industry writer and analyst. Our

goal is to cut through the hype with an

independent perspective, while providing

the most relevant, up-to-date information

and trends in a context that keeps devel-

opers’ issues and concerns at the fore-

front. Look for this new feature bi-

monthly, and be sure to let us know what

kinds of news and information you’d like

to see in future editions by e-mailing us at

editors@gdmag.com.

The next 12 months will be crucial

for mobile game developers. In order to

carve out a successful role in this mar-

ket, game developers must provide their

clients real value in the form of well-

executed games, while asserting their

strategic value in a market where most

business deals remain ad hoc and few

workable standard models have

emerged. Handset manufacturers and

mobile operators seem convincingly

committed to supporting a market for

games; let’s hope they give developers

enough leverage and incentive to make

good ones.

600 Harrison Street, San Francisco, CA 94107 t: 415.947.6000 f: 415.947.6090

4

Game Developer
is BPA approved

G A M E P L A N

Jennifer Olsen

Editor-In-Chief

Where’s the Party?

www.gdmag.com

No more Mr. Nice Box. Microsoft has

no plans to ease up on its efforts to

carve out a position in the $10 billion

videogame market, rather than cutting

its losses and exiting from the venture.

Industry analysts expect Microsoft to

spend more than $2 billion in the next

five years on the Xbox. Microsoft’s

Xbox Live broadband service has seen

early success, with a reported 150,000

kits sold in the first week of release.

Metis brands Acclaim. Marc Metis has

joined Acclaim Entertainment as its new

senior vice president of brand. In his

position, he will manage Acclaim’s fran-

chises and new brands.

No rust in Activision deal with
Stainless Steel. Known for the PC

strategy title EMPIRE EARTH, Stainless

Steel Studios has signed an exclusive

multi-title, multi-year agreement with

Activision. Their first title will be anoth-

er historical RTS game.

NewKidCo posts loss. Due to the

delayed release of two titles — LITTLE

LEAGUE BASEBALL 2002 (GBA) and TOM

& JERRY WAR OF THE WHISKERS (PS2) —

NewKidCo announced an operating loss

of $2.4 million for Q3 2002, compared

to a $607,000 operating loss for the

same period in 2001.

PC game sale revenue up for 2002,
but unit volume down. NPDTechworld

revealed that PC game revenues were up

1.2 percent — from $945 million for the

first 10 months in 2001 to $956 for that

same time period in 2002 — but the

number of units sold fell by 6.2 percent,

from 44.4 million in 2001 to 41.6 mil-

lion for those same 10 months in

2002. The research also pointed

out that the average selling price

of PC games rose from $32 in

2001 to $37 in 2002, but it did not say if

this price increase caused the lower vol-

ume of unit sales or if there were other,

outside factors, such as increased compe-

tition from the console industry or other

broader economic trends.

Take-Two takes its own Angel. Take

Two has acquired Angel Studios, develop-

ers of MIDNIGHT CLUB and SMUGGLER’S

RUN, for an aggregate $28 million in cash

and around 235,000 shares of restricted

common stock. Angel Studios will now

be known as Rockstar San Diego.

Send all industry and product
news to news@gdmag.com.

f e b r u a r y 2 0 0 3 | g a m e d e v e l o p e r6

EMPIRE EARTH developers Stainless Steel Studios have signed a multi-title deal with Activision.

G A M E D E V E L O P E R S
C O N F E R E N C E

SAN JOSE CONVENTION CENTER

San Jose, Calif.
March 4–8, 2003
Cost: $150–$1,975
www.gdconf.com

G D C M O B I L E
SAN JOSE CONVENTION CENTER

San Jose, Calif.
March 4–5, 2003
Cost: $895
www.gdcmobile.com

M I L I A (N E W D AT E S)
PALAIS DES FESTIVALS

Cannes, France
March 26-28, 2003
Cost: variable
www.milia.com

Calculate game royalties and pay-
outs. PLX Systems introduced a new

royalty accounting and licensing system

for large game publishers. The product,

PLXware Right Track Suite

(PLXware/RTS), can be used to process

royalties for authors, artists, com-

posers, producers, and other rights-

holders. www.plxsystems.com

New tree creation software. IDV

recently released SpeedTreeRT, a tree

creation tool for game and visual simu-

lation development. The program deliv-

ers low-polygon, realistic trees, with

adjustable wind effects, seamless LOD

transitions, and a library of over 90

trees from 30 core species.

www.idvinc.com

New Intel C++ compiler. Intel’s

newest C++ compiler, version 7.0,

integrates with Microsoft Visual

Studio, and the Linux version provides

GNU compatibility to C++. The com-

piler also include an auto-paralleliza-

tion option that automatically looks

for opportunities in applications to

create multiple execution threads.

www.intel.com

I N D U S T R Y W A T C H; K E E P I N G A N E Y E O N T H E G A M E B I Z | e v e r a r d s t r o n g

P
B

TTHHEE TTOOOOLLBBOOXX
D E V E L O P M E N T S O F T W A R E , H A R D W A R E ,
A N D O T H E R S T U F F

U P C O M I N G E V E N T S

CCAALLEENNDDAARR

C reating a massively multi-

player online game is

game development’s equiv-

alent of a moon shot. It’s

expensive, technically dif-

ficult, and can take years to complete,

and yet everyone wants to give it a try.

The technology required is not easy for

newcomers to develop. Sensing the need

for software that handles a variety of

functions, including billing, patching,

support, administration, client messag-

ing, stable servers, data persistence, and

server clusters, several companies are

developing middleware libraries and

products to ease these hurdles.

Butterfly.net and Zona’s Terazona are

two products that provide nearly com-

plete MMOG solutions. Both supply the

skeleton of an MMOG, leaving only the

skin of a graphics engine, a billing sys-

tem, and the guts of the actual game

mechanics to be defined.

Taken at the highest level, Butterfly.net

and Terazona use the same solution strat-

egy. The details are different enough that

the environment and personality of the

developer will clearly suggest one over the

other. Their highest-level strategy is not

appropriate for all future MMOGs, how-

ever, and whether you would use

Butterfly.net or Terazona depends on if

your game fits into their mold.

Common Parts of the
High-Level Design

M essaging to dispatcher or gateway.
Both systems have a simple API to

connect, validate an account, get avail-

able game characters, and connect with a

particular character. This uses a client-

server messaging system, which is easily

extensible, reliable, and simple to inte-

grate into a game client.

Game servers and their landscape. The

developer divides up their world into

fixed sections, with the size of each sec-

tion dependent on how much action is

expected to occur there. The actor/object

positioning and landscape collision for

each section is simulated on a single serv-

er. There can be multiple sections on a

single server, but there cannot be multiple

servers for a single section. These section

servers are the final destination of the

game client messages. The boundaries

between these world locations are imple-

mented in different ways for Butterfly.net

and Terazona, but both make information

about things on the other sides of these

boundaries available to the game client.

These servers are divided into two

separate halves: the generic landscape

functionality and the game-specific

mechanics. The developer writes the

game-specific mechanics to take care of

the simple rules such as trading, group-

ing, and targeting. In addition, the devel-

w w w . g d m a g . c o m 9

New Worlds, New Battlefields:
Massively Multiplayer Online
Game Middleware

by mitch ferguson and michael bal lbach

A simplified version of Butterfly.net and Terazona architecture.

Game Client Client/Server
Messaging

Gateway
Dispatcher

Game
Servers

Location
1

Location
2

Location
999

Database

Landscape
and Object

Management

NPC Processes

Game-Specific
Mechanics

XXT H E S K I N N Y O N N E W T O O L S
P R O D U C T R E V I E W S

M I T C H F E R G U S O N | Mitch was a lead engineer on Maxis’s THE SIMS ONLINE and
Jaleco’s LOST CONTINENTS, and now works for a MMO startup in San Francisco called
Perpetual Entertainment.
M I C H A E L B A L L B A C H | Mike has been a server engineer at VR1/ Jaleco for six years,
was the lead server engineer on Jaleco’s LOST CONTINENTS, and now works for Perpetual
Entertainment.

oper must write a separate process that

simulates monsters.

Game-specific mechanics. Messages

from the client are forwarded to the

game-specific functionality in case special

physics or movement rules are in play.

Butterfly.net has you write this code in

Python, which is interpreted by the built-

in interpreter. Terazona asks that you

link in a shared library to receive these

callbacks. Either way, this rule-checking

code is used to validate game state and

client messages.

NPCs and monsters. When it comes to

monster AI, both systems pass the buck.

Terazona has NPC servers connect as a

privileged game client. Butterfly.net has a

separate NPC server for every section. In

both cases the developer is in charge of

how these separate servers are designed

and coded. There is an API for receiving

callbacks and sending messages to the

landscape and the game clients.

Persistence. The player data structure

(or parts of it) is automatically persisted

by both systems. Butterfly.net requires

that you define all the state variables that

are needed (also in the database), and it

persists the player’s data in the clear

when it can. Terazona saves out the play-

er data as a block into the database. This

saves you from having to define a table,

but it also prevents you from performing

any simple queries on the player data.

Games that work with these assumptions.
While both systems claim to be very

extensible, in fact both vendors are open

to deals that include the source. It

should then be possible to shoehorn

something unique into either of these

frameworks, though this could offset the

original reason for using one of these

middleware solutions in the first place.

Most of the last generation of massive-

ly multiplayer RPGs would have been

able to use either of these systems. Their

landscapes are stable, the population den-

sity of various areas is easily predicted,

and the NPC load isn’t outrageous. Both

systems allow the tuning of the perform-

ances characteristics to allow for a faster,

twitch style of game.

However, many of the coming genera-

tion of MMOGs are starting to break the

old mold. THE SIMS ONLINE and TABULA

RASA both will have a very dynamic sys-

tem of landscapes and server processes

coming in and out of existence. Also, if

someone decides to try a game with a

random landscape system or an often

modified and persisted landscape, they

might have difficulty.

The Details

T erazona. Terazona server compo-

nents are implemented almost entire-

ly in Java. A lot of components make up

the server suite, including the authentica-

tion server; these include the administra-

tion component; the NPC servers; the

GSS, (or Game State Servers); and others.

Intercomponent communication is real-

ized by an implementation of the Java

Message–oriented middleware standard

provided by ICE Technology.

The Game State Servers require the

developer to implement a set of functions

(their GSAPI, Game State API) in C/C++

and compile them into a DLL or shared

XP R O D U C T R E V I E W S

f e b r u a r y 2 0 0 3 | g a m e d e v e l o p e r10

Selecting Networking
Middleware

When considering networking middle-
ware, things aren’t as straightfor-

ward as you may think. Networking is not
just a numbers game; you can’t look at fill
rate and rendering features as you might
graphics engines. Networking is more
closely tied with players rather than the
game’s features. It’s what allows your
players to play against each other, and
unlike the game, your players aren’t such
a known or predictable quantity.

— Crosbie Fitch

SELECTED PROVIDERS:

TERAZONA
See page 12 for contact details

BUTTERFLY.NET
See page 12 for contact details

OPEN SKIES
Cybernet Systems
Ann Arbor, Mich.
www.openskies.net

VAST
Rebel Arts
Calabasas, Calif.
info@rebelarts.com
www.rebelarts.com

TERRAPLAY
Terraplay AB
Solna, Sweden
+46 (8) 764 91 00
www.terraplay.com

DEX
Horizon, a Glimpse of Tomorrow
Monrovia, Calif.
(626) 446-8925
www.horizongot.com

NET Z AND ETERNA
Quazal
Montreal, Quebec, Canada
(514) 395-4646
www.quazal.com

SIMINTERNET
MÄK Technologies
Cambridge, Mass.
(617) 876-8085
www.mak.com

LITHTECH DISCOVERY SYSTEM
Lithtech
Kirkland, Wash.
(425) 739-1659
www.lithtech.com

TURBINE ENGINE
Turbine Entertainment Software
Westwood, Mass.
(781) 407-4000
www.turbinegames.com

NEL
Nevrax
London, U.K.
business@nevrax.com
www.nevrax.com

TWISTED
Twisted Matrix Labs
www.twistedmatrix.com

object that the server will load and use

for game-state validation. The interface to

the GSAPI proved clumsy; they give you a

header file full of C function definitions

and tell you to implement them. This is

O.K., but it would be preferable to

export a structure of function pointers, or

implement a class with pure virtual mem-

bers and export a factory.

In Terazona, sections are called regions,

but they operate much like we described

the Game State servers. One interesting

thing to note is the fail-over support

inherent to their design. Since entities

(players or NPCs, generally) are ghosted

to the necessary neighbor regions, when a

region server fails, another server will

reinstantiate the region and attempt to get

entity state from servers that had it ghost-

ed. If that fails, it will go back to the

database. GSS servers can be brought up

and down while the game is running,

without restarting other components.

Terazona does not have its own imple-

mentation of a landscape and does not do

landscape validation for you.

Terazona uses the “NPC server as a

trusted client” model. The downside of

this model is that sometimes the most

complicated logic exists in the NPC

servers, and their scalability is left up to

the developer. The client-server protocol

provided is based on TCP, which may be

unacceptable for many applications,

though Zona has promised a reliable UDP

implementation. Because they only ask a

small up-front fee in exchange for part of

the subscription revenue, Zona’s business

model is attractive to new MMOG devel-

opers. This has the extra benefit of

increasing the support and library impro-

vements developers will receive.

Butterfly.net. Butterfly.net is more of a

total solution than Terazona, which is

not necessarily a good thing. In fact they

are proponents of a utility model that

allows you to use their server clusters. As

traffic goes up and down, those servers

are shared with other products that are

also using the utility model. Although

very cost efficient, this prospect could be

frightening to even the most experienced

MMOG live teams. They don’t prevent

you from putting the parts together your-

self on your own systems.

The rules management system that the

server uses to validate game state uses

functions written in Python. This could

greatly simplify game authoring and also

helps with thread safety. The Python

interpreter is built into the game server,

so performance shouldn’t be a problem.

The Butterfly.net system can have a

separate NPC server for every landscape

section (which they call locales). If you

have an NPC-heavy game, this should

help with the distribution of CPU load.

(The NPC server is not written in

Python.) However, human intervention is

required should these NPC servers or

locale servers crash. Butterfly.net has no

automated server management that can

restart processes or bring up another

from a pool of servers.

The suggested operating system is

Linux with a DB2, Oracle, or Postgres

database, but if you were required to use

a different operating system or database,

Butterfly.net claims that much of the sys-

tem can be ported. Tools for porting ter-

rain models from Maya or 3DS Max

into Butterfly.net’s Landscape quad-tree

are also provided.

What would we prefer? Although total

solutions have their place, MMOGs

might be too young of a genre to support

this strategy. A more open-ended toolbox

approach is proving useful for graphics

engines such as Criterion’s Renderware, a

useful model to emulate on the server-

side as well. This would mean a large

collection of smaller functional libraries,

separated by a well-documented API.

Libraries of functions for messaging, per-

sistence, cluster control, and terrain

quad-trees could be combined into what-

ever system a developer might need.

In addition, neither system supports

the concept of an automated generic pool

of servers. This would entail every server

being able to perform any function and

would create a high amount of reliability

with very little human intervention.

Last word. It’s very exciting that the

massively multiplayer market is growing

enough to support the creation of these

types of solutions. MMOGs are fast

becoming too complex and risky to

develop for very much innovation to

occur, and we are all happier if systems

like Terazona and Butterfly.net help alle-

viate that. Still, neither has a well-

known MMOG that has used their tech-

nology yet. Even so, both are strong

contenders in this young market. q
Visit www.gamasutra.com for a longer

version of this review.

XP R O D U C T R E V I E W S

f e b r u a r y 2 0 0 3 | g a m e d e v e l o p e r12

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

BUTTERFLY.NET XXX]

STATS
BUTTERFLY.NET

Martinsburg, W. V.
(304) 260-9520
www.butterfly.net

PRICE
Depends on project and studio size.

PROS
1. Utility model.
2. Almost a complete solution.
3. Persistent data is stored in the clear.

CONS
1. Utility model.
2. Lack of automated disaster recovery.
3. Locales are statically defined.

TERAZONA XXX]

STATS
ZONA

Mountain View, Calif.
(650) 964-1133
www.zona.net

PRICE
Depends on project and studio size.

PROS
1. Portability.
2. Automated game state.
3. Flexible environment model (space,

water, ground).

CONS
1. Persistent data is stored in blob format.
2. Reliable UDP still in development.
3. Regions are statically defined.

S ince 1986, Matt Toschlog has

enjoyed a varied life within the

game development industry.

Starting his journey at

Sublogic, Matt continued

through Looking Glass Technologies, to

Parallax Software (which he co-founded),

and is now Studio Director for Outrage

Games, a company he splintered off from

Parallax and was president of until its recent

acquisition by THQ. One of his most

notable contributions to videogame history

so far includes the DESCENT series.

With what looks to be an ongoing trend

of big publishers and media conglomerates

acquiring once-independent developers, we asked Matt —

among other things — to give us an insight on what things are

like after the Big Change.

Game Developer. Do you think the current trend of third-party
developers being acquired by publishers bodes well or badly for
the industry?

Matt Toschlog. It’s a good thing in that it allows third-party

developers to keep making games. As games and team sizes and

budgets have grown, it’s become increasingly hard for inde-

pendent developers to survive. The stakes are too high, and

publishers are hesitant to spend the money required to make a

great game if they don’t have more control over the process.

GD. How do you see your work changing from the days of Parallax
to the present? Has working for THQ changed your work behavior in
any way?

MT. The biggest change is that I don’t program anymore.

When we wrote DESCENT I was one of three principal program-

mers. Now I’m a full-time manager. Another major change is

that our projects are much bigger. At the end of DESCENT we

had eight people working on the game; our current project,

ALTER ECHO, now has about 25. That means a lot more manage-

ment and coordination, and a much less intimate environment.

At the time we were acquired, we’d been working on ALTER

ECHO for THQ for about a year. When our other publisher ran

into trouble, it was natural for THQ to step in. We were in the

middle of our E3 crunch when the acquisition happened, and

we just kept on working. We had to shift some people around

when our other project was cancelled, but for most people,

Outrage isn’t much different now than before THQ came in.

GD. Do you think the creative process of making a game is
affected by these acquisitions? Is there more paperwork, strategy,
and playability planning going into the making of a game in a big
company than in smaller ones, where things can be a lot more flex-

ible as the game design and programming unfolds?
MT. I think the creative process is affected by

the size of the games. If a company is going to

spend 5 or 10 or 20 million dollars on a game,

they’re going to want to keep close tabs on where

the money is going. You’ve got to be a lot more

careful when you’re spending that kind of money.

GD. What role do you see middleware playing in
the future of game development?

MT. Middleware is starting to be a real factor.

These days, most consumers don’t care as much

about technology. Developers realize that and

want to focus on content; using stable develop-

ment systems make that easier. We’ve always

written out own engines here, and will probably

continue to do so, but we’re placing a high premium on writing

reusable code.

GD. You served as chairman for the International Game
Developer’s Association (IGDA) for a couple of years. How do you
see the organization’s goals compared to when you came on board?

MT. I think the goals of the IGDA have remained pretty con-

stant — to be the voice of the professional developer and to

provide support to the people making games. What’s changed

— steadily, though sometimes slowly — is our ability to fulfill

those roles. We’ve been building membership, establishing pro-

grams, making contacts, and generally creating a foundation.

Many of us who have been with the IGDA for the last few

years got involved because we had a vision of where the associ-

ation could be down the road. We’re still looking toward the

future, but we’ve already come a long way.

GD. Do you miss those garage days when you first started creat-
ing DESCENT? Do you ever wish for a return to those simpler days?

MT. Oh, yeah. It was great being hungry and lean like that.

Sometimes we talk about doing a GBA game to try and re-cre-

ate that atmosphere.

GD. Looking back, what elements made the DESCENT series the
success that it was? Do you think those elements came together by
choice or chance?

MT. DESCENT offered the classic game mechanic of “shoot all

the bad guys” in a way that no one had seen before. At the time,

3D games were still somewhat new, and DESCENT was the most

3D of them all. Piloting a ship through those crazy tunnels pro-

vided a challenge that rewarded those who could master it.

I think success depends a lot of chance. One thing I’ve learned

is that no matter how hard you work and how well you plan,

there’s still a huge amount of luck that determines whether your

game is fun or if the customers will care. If we really understood

how to make hit games, then every game would be a hit. q

f e b r u a r y 2 0 0 3 | g a m e d e v e l o p e r14

P R O F I L E S
T A L K I N G T O P E O P L E W H O M A K E A D I F F E R E N C E | e v e r a r d s t r o n g

Matt Toschlog’s
Descent into Outrage

Outrage’s Matt Toschlog.

F or the past two months I’ve been discussing profil-

ing. I started out by decrying the lack of good pro-

filing tools for games; I talked about the difference

between a “batch profiler,” like VTune or the

CodeWarrior profiler, and an “interactive profiler,”

like the ones we usually build into our games; I then proceeded

to make a big wish list of features that a good interactive pro-

filer might provide.

Chief among those features was the ability to abstract the pro-

gram’s timing measurements into higher-level “behaviors” and to

do some analysis regarding the frequency and consistency of

these behaviors. Modern games don’t exhibit one consistent pat-

tern of resource usage. At one time they might be fill-rate limited

by the graphics card, at another they’ll be slowed down by an

abundance of pathfinding and physics. A tool that helps us visu-

alize these patterns would be valuable.

Finding a Clustering Method

L et’s look at Table 1, which I introduced in last month’s col-

umn (“Interactive Profiling, Part 2: Behavior Analysis,”

January 2003). Here we see three behaviors: behavior A is ren-

dering-heavy, B is physics-heavy, and C is AI-heavy. Imagine the

numbers in the table came from a profiling run of a game in

progress; as each frame is processed, we get a new set of timing

numbers. Now suppose that the next frame is measured, produc-

ing the results: rendering 72%, physics_sim 17%, ai_pathfind 11%.

Those numbers are very much like behavior A. Even though the

numbers do not match exactly, we would expect the profiling

tool to classify this frame as exhibiting behavior A.

That’s not hard to implement when you have a predefined

list of behaviors like Table 1. It’s harder when you start from

scratch with no preconceived notions of program behavior. In

general, we are faced with a clustering problem: given a bunch

of vectors containing timing data, we want to arrange the vec-

tors into groups, where the centroid of each group can be used

as a summary.

Clustering is a common task in computer science and engineer-

ing applications, and many algorithms have been developed, for

example so-called k-means clustering. Here’s how k-means

works: First, randomly partition your input into a set of initial

clusters. Find the centroid of each cluster. These clusters obvious-

ly won’t be perfect yet, so to fix that problem, you iterate over

each input vector and reassign it to the cluster whose centroid is

nearest. Now recompute the centroids. Repeat this reassignment

process until the results converge, and you perform an entire pass

without changing anything.

The name “k-means” indicates that there are some number of

clusters (k of them), and that we are representing each cluster by

its center (by the mean of the input values).

Unfortunately, k-means and most other clustering methods are

batch algorithms. They require you to have all the vectors avail-

able at once and to access those vectors randomly. Since I want

an interactive profiler, which can classify behaviors on the fly

during a single program run, these algorithms are unsuitable.

Nonbatch Clustering

There’s a special term for clustering algorithms that can handle

streaming input: they are called “online clustering algo-

rithms” For example, there’s an “online k-means.”

Online k-means works like this: Start with k cluster centers

arbitrarily distributed through space. For each input vector you

want to classify, find the closest cluster point, classify the vector

into that cluster, and move the cluster point closer to that vector.

(See “Radial Basis Function Learning” in For More Information.)

Online k-means really is an incremental version of batch k-

means, but making the algorithm incremental is a big change, so

the explanations of the two versions sound fairly different.

How do you decide how many clusters are necessary to repre-

sent your data stream accurately? There are some heuristics that

involve removing cluster points when you have too many (some

f e b r u a r y 2 0 0 3 | g a m e d e v e l o p e r16

J O N AT H A N B L O W I Jonathan Blow
(jon@number-none.com) really likes the way
bedrooms in Korea have heated floors. You just
walk around in your socks and it’s all warm.

Clustering

TABLE 1. The CPU usage profiles for three different behaviors A,
B, and C, measuring time spent in three different program sections:
“rendering,” “physics_sim,” and “ai_pathfind.”

Behavior: A B C

rendering 75% 25% 25%

physics_sim 15% 65% 15%

ai_pathfind 10% 10% 60%

j o n a t h a n b l o wI N N E R P R O D U C T

of them are lying idle, never attracting input) and adding cluster

points when you have too few (when the radius of space attrib-

uted to a particular cluster point is too large). Unfortunately,

these heuristics all require some kind of a priori knowledge of the

data: you need to know how many samples is the minimum for

considering a point to represent a valid cluster, or how spatially

large a good cluster is likely to be. In other words, you need a

good guess about the duration and scale of your data.

But we don’t want to have to guess at that stuff in order to get

a good profile. Really, we want the computer to figure out

appropriate values from context. And those values may need to

change. If we are running our game for five minutes and see

some frames that spend 70 percent rendering, 75 percent render-

ing, or 80 percent rendering, we probably want to draw distinc-

tions between these and call them three different behaviors. But

then if we walk into another room in the game and we start see-

ing a lot of behaviors like B and C from Table 1, then perhaps all

of the previous frames should be categorized as A.

Clearly, some kind of hierarchical clustering is necessary. It’s

probably best to let the user decide at which detail level to view

the abstractions; we should maintain a tree of behaviors from

which the user selects a particular view. Unfortunately, the typical

methods, such as hierarchical agglomerative clustering, tend to be

data-intensive batch processes.

Visualization

There’s one other problem we need to solve for effective visu-

alization of our profiling data. In a full-sized game, there

may be a few hundred different subareas of the program for

which we get profiling data. In clustering terms, we’re clustering

data points that have a few hundred dimensions each. Suppose

we manage to do this, and we get a result with 15 different

behavior clusters. Those clusters are still points in a high-dimen-

sional space. We can list them, like in Table 1, but we’d like bet-

ter methods of visualization. Maybe we want to project these

clusters somehow onto a 2D chart and have the clusters that are

most alike placed near each other on that chart. Maybe the two

dimensions of the chart can even mean something, related to the

two biggest ways in which the behaviors tend to vary.

There are some well-known methods for projecting multidi-

mensional data onto a 2-plane. These methods tend to fall into

two categories: ad hoc, producing poor results; and complicated,

slow, and scary. There’s another alternative, though: a hybrid

kind of algorithm that clusters and projects simultaneously, and

does a good job of both.

The Self-Organizing Map

In this month’s sample code, I used this hybrid algorithm, the

Kohonen self-organizing map (SOM) to perform the classifica-

tion of CPU behavior. The SOM is an array of points in the input

space; all the points are initialized to random values. For each

incoming frame of profiling data, we find the closest point in the

SOM. We then move that closest-match point toward the posi-

tion represented by the incoming frame, just like online k-means.

But the SOM does something extra: in addition to giving the

clusters positions in the input space, it treats them as having posi-

tions in another space also. The clusters have fixed positions

along a regular grid, in what I will call “neighbor space.” When-

ever you move a cluster center toward an input in input space,

you also look up its neighbors in neighbor space and move those

neighbors through input space in the same direction, thought not

by as much.

This neighbor space is usually implemented just by storing the

cluster data in a 2D array and by iterating across nearby cells in

that array. You can think of this as applying a “move filter” to

the array, where the filter kernel is high in the center but tapers

off with an increasing radius.

After many such iterations, the clusters in input space will con-

verge, just like k-means. The size of the move filter shrinks over

time as the clusters become settled, until it becomes a point. The

“self-organizing” part of SOM represents the idea that, because

we applied that move filter in neighborhood space, we were con-

stantly influencing neighboring array cells to take on similar val-

ues. So after we are done processing our inputs, we not only get

cluster centers, but the clusters are arranged in the 2D grid

according to similarity. We can generate a 2D display where simi-

lar clusters are drawn near each other, which can help us under-

stand the data.

This is a quick-and-dirty description of the SOM, with some

simplifications. For reasons of isotropy, like we saw when look-

ing at networking (“Transmitting Vectors,” July 2002), it’s usual-

ly better to use a hexagonal tiling than a rectangular grid. Also,

the SOM grid can consist of any number of dimensions, but two

dimensions is the most common choice, since a map with more

dimensions is harder to visualize. Finally, initialization of the

SOM is best done using some attributes of the training data,

since a random spread in a high-dimensional space is likely to

produce points that are not near anything in your data set. In this

case, the only way array elements are used is when they get

dragged into use by a neighbor, so it takes a while before the

SOM is working at reasonable effectiveness.

For some references that explain self-organizing maps in

greater detail, see For More Information.

Adapting the SOM to Real-Time
Tasks

The SOM is a batch algorithm for two reasons. For one, to

produce good results, the algorithm wants a randomly

ordered sampling of the data. Imagine first presenting all your

samples of behavior A, then presenting an equal number of sam-

ples of behavior B, which happens to land in a cluster neighbor-

ing A, so the movement filter for B wipes out most of A — this

process will not produce desirable results.

The second reason the SOM is a batch algorithm is that it

wants to have a global notion of time. Early in training, the

f e b r u a r y 2 0 0 3 | g a m e d e v e l o p e r18

I N N E R P R O D U C T

movement filter is very large; over time it shrinks, until toward

the end of training it’s almost a point. But with live input data,

we don’t know how long we will be running, and we may wish

to run indefinitely. So I made some modifications to the SOM

algorithm to adapt it for real-time data. These modifications are

somewhat questionable, since I have not analyzed them deeply,

and I can already think of some ways they may be problematic.

But to a first approximation they work O.K.

Shrinking the Filter

R ather than using a global time, I introduced the idea of

“local convergence,” which is a value between 0 and 1. The

filter size centered around any given array cell depends on that

cell’s local convergence: a convergence of 0 means a big filter, 1

means a small filter.

Whenever a point in the SOM is generally staying in the same

place, its convergence value increases. If it starts getting yanked

someplace else, its convergence value decreases. I use the IIR fil-

ters I described in “Toward Better Scripting, Part 1” (October

2002) to track the trend of a point’s motion. If many training

steps confirm the positions of some region of the map, that

region will no longer feel the need to upset its neighbors. But if

an area of the map keeps being upset, its “local time” will go

backward and it will jostle its neighbors in a bid to create more

space for the competing values.

This “hardening of the map” does to some extent alleviate the

“B wipes out A” problem but does not solve it. To solve it, I

would implement a hierarchical series of maps, with maps that

change quickly, feeding data into maps that change more slowly.

I haven’t had time to try this yet, but I plan to soon.

One further problem is that there’s no way for the SOM to

grow. To achieve reasonable results, you need to construct it with

enough initial nodes. But I believe hierarchical maps would solve

this problem as well.

Initialization

Iwanted a good way to initialize the SOM. As I mentioned ear-

lier, random initialization is not so good. The way it’s usually

done for batch data is to perform principal component analysis

on all the input, find the two non-axis-aligned dimensions along

which it has the greatest spread, and initialize the SOM array

entries to cover that spread evenly. In other words, you find the

covariance of the data with respect to the mean, then pick the

two longest axes of the multidimensional ellipsoid. This process

is just an n-dimensional version of what I demonstrated in “My

Friend, The Covariance Body” (September 2002).

Since I don’t want to wait for the whole batch of input data, I

collect 10 frames’ worth of “warm-up points” before the SOM

kicks into training mode. Then, because I didn’t want to write n-

dimensional matrix decomposition code, I approximate the

spread as follows: First I pick a random warm-up point, then I

find the warm-up point that is furthest from it. I find the vector

between them, and that is the longest axis of the spread. Then I

remove that dimension from the warm-up data by subtracting

each point’s projection along that axis. Then I choose another

random point, find the warm-up point furthest from that one,

and that is the second-longest axis of the spread. I then initialize

the SOM entries to points evenly spaced across the plane defined

by these two axes, centered on the mean. If the axes are degener-

ate within some numerical threshold, then I seed the SOM with

random offsets from the mean.

Sample Code

This month’s sample code (available at www.gdmag.com) is an

updated version of the toy game world that I described in my

December column (“Interactive Profiling, Part 1”). In addition to

AI-heavy and entity-render-heavy behavior modes, there’s now a

sun in the sky. When you look toward the sun, ridiculous

amounts of lens flare are drawn, bogging the system down.

As you move around the game world, you’ll cause various

behaviors that are mixtures of AI, entity, and lens flare.

Whenever mouselook is enabled so that you can move around,

the game system takes each frame’s profiling data and classifies

it using an SOM. When mouselook is disabled and the SOM is

paused, you can move the mouse pointer over the SOM’s dis-

play and look at the behaviors it has detected.

There are a number of visualizations enabled, which are

explained in the README. These visualizations aren’t as intu-

itive as I’d like, but after a bit of exposure you get used to them

and can infer interesting relationships about the clusters by look-

ing at colored diagrams.

Future Work

S o far this work has been pretty experimental, but I think it

shows some promise. I am going to try some hierarchical

versions of the SOM and online k-means and will report on

their effectiveness in a future column. In the meantime, next

month I’ll go back to a more conventional topic: creating bet-

ter-looking graphics. q

f e b r u a r y 2 0 0 3 | g a m e d e v e l o p e r20

F O R M O R E I N F O R M AT I O N

Kohonen, Teuvo. “The Self-Organizing Map (SOM)”

www.cis.hut.fi/projects/somtoolbox/theory/somalgorithm.shtml

Moore, Andrew W. "K-Means and Hierarchical Clustering”

www.cs.cmu.edu/~awm/tutorials/kmeans09.pdf

Palmeri, Paolo. “Radial Basis Function Learning”

http://miles.cnuce.cnr.it/~palmeri/datam/articles/okmc.ps.gz

Vesanto, Juha, Johan Kimberg, and others. “Enhancing SOM-based Data

Visualization” www.cis.hut.fi/projects/ide/publications/html/iizuka98

I N N E R P R O D U C T

Ihave heard

many

times,

expressed

in a variety

of ways, that the

success of a

game lies firmly

with its execu-

tion rather than

in its design. It is

a fact that many

ideas and their

initial design

documents put

forward what

seems to be an

interesting and exciting

concept, but by the time

the game finds itself on the shelf, it

has turned into nothing more than a

mediocre space-filler that will find a home

in the bargain bins within the month.

I’m sure that any experienced devel-

oper reading my column could write me

a list as long as my arm of the reasons

why a finished game differs substantial-

ly from the original design spec and

why, in general terms, evolution of ideas

through the development process is

always a good thing. Implementation,

rather than initial ideas, usually

accounts for the eventual quality of a

game when it is released.

There is no area more relevant to the

discussion of implementation than that

of a game’s visuals. The irrelevant lan-

guage of a pitch document that promis-

es a game “set in richly detailed fantasy

world of epic proportions” has to trans-

late meaningfully onto the

screen to have any chance of being even

close to the truth. If you run such a doc-

ument through a truth filter, many such

sentences would read, “Set in a routine-

ly realized fantasy cliché, made to

appear large by repeating the same

geometry over 100 times.”

Continuing the theme I began in last

month’s column (“What’s Wrong with

Our Games? Part 1,” January 2003), in

which I covered design, animation, and

character cre-

ation, this month

I’ll look at some

additional areas

in game visuals

that often lose

something in the

translation from

page to screen.

Lighting

O ne indication of

how videogame

technology is improving is the quality

of the lighting available to designers.

Unfortunately, many games still view

lighting as number 138 on their list of

things to pay close attention to, and as a

result, the energy developers spend creat-

ing a world of detail and quality is wast-

ed for many games. They pay little atten-

tion to lighting, or decide not to invest

much time in their light-related technolo-

gy. Nasty lighting can hammer even a

well-constructed scene to death, whereas

high-quality lighting will bring a scene to

H A Y D E N D U V A L L I Hayden started work in 1987, creating
airbrushed artwork for the games industry. Over the next eight years,
Hayden continued as a freelance artist and lectured in psychology at
Perth College in Scotland. Hayden now lives in Bristol, England, with
his wife, Leah, and their four children, where he is lead artist at
Confounding Factor.

What’s Wrong with
Our Games? Part 2

A R T I S T ’ S V I E W h a y d e n d u v a l l

f e b r u a r y 2 0 0 3 | g a m e d e v e l o p e r22

Ill
us

tr
at

io
n

by
 D

om
in

ic
 B

ug
at

to

life. Attempting to re-create the real-

world behavior of light in a 3D scene has

led to a whole variety of lighting solu-

tions over the years.

Initially, severe color-palette restric-

tions made the idea of lighting irrele-

vant, but as we moved through the 8-bit

and then the 16-bit era, the simulation

of lighting effects allowed our early 3D

worlds to appear more solid. Once true

3D began to appear, it wasn’t long

before basic light sourcing was a com-

mon feature. Today, artists

can apply just about any

high-end lighting solution

to some degree in a gaming

context, and the question

of which solution to use

then depends on cost ver-

sus benefit and which plat-

form you’re dealing with.

Up until recently, the

most advanced of these

solutions have been excep-

tionally slow. Unless you

had access to a render farm

the size of Alaska, the mas-

sive amount of numbers being crunched

manifested themselves in single-frame

render times that were measured in

weeks rather than minutes.

Artists now have the tools and the tech-

nology to do more than place colored

point lights around a scene that they hope

will do the job. The approximation of real

light distribution is now more accessible

within the limitations of a game world.

Designers can now use texture baking to

incorporate the subtleties of radiosity,

global illumination, and lighting from

high-dynamic-range images.

Texture baking has been around for a

while, but the newest iteration of many

high-end renderers now brings together

the most advanced lighting solutions

with the ability to render this light

information to textures. Whether the

light information is rendered into a sep-

arate layer to be added on top of more

traditional texturing or added directly

to the textures themselves, the results

one can achieve are far more realistic.

The downside is that texture baking

can destroy texture memory in no time

flat. The price to pay for what is effec-

tively light distribution information,

customized for each surface, is that the

cost to memory can be massive in scenes

with a huge amount of surfaces. Con-

densing multiple light maps into more

economic single textures, applying low-

resolution light maps on top of regular

texturing, and careful level design that

takes these limitations into account can

all make texture baking more usable.

While the cost is high, the quality of the

end result can be worth it.

Textures

The easiest targets for game artists to

pick on when examining the work of

their peers are most probably the textures

and the texturing. Many games now have

extremely large worlds that can be

explored in fairly close detail, and as a

result, it is hard to find a game that has

faultless texture work across its entirety.

That said, there are a few texture prob-

lems that appear time and again in games:

Bad mapping. Bad mapping can take

many forms, some worse than others,

and usually indicates either a lack of time

and resources, or some level of apathy on

the part of the offending artist.

Faced with a significantly large

amount of geometry to texture in a given

time, it is understandable that inconsis-

tencies should appear. Texture streaking

from applying a planar map across faces

that are nearly perpendicular to the UV

plane is one example of careless or hur-

ried mapping that looks very ugly.

Seams that show painfully obvious

joins between mapped sections can also

stand out, especially if the geometry is

large, like a rock face for example. With

many complex objects, especially organ-

ic shapes, it’s all but impossible to map

the entire surface with a continuous,

seam-free texture, so some jiggery-pok-

ery is often needed to reduce

the appearance of problems.

Many designers overlook the

option of placing joins in the

texturing where they will be

the least visible. This may seem

like an obvious solution, but

it’s important to remember

that “the least visible” means

from the player’s perspective,

not that of the artist, so devel-

opers must play through the

sections in question carefully to

assess the least visible areas for

these scenes.

Another crude but nonetheless worth-

while problem-masking technique is

using textures that naturally minimize

the appearance of seams. Such textures

are those that are even in terms of

detail, color, and contrast. Ideally, a sys-

tem that obscures unavoidable seams,

such as multitexturing, works better, as

long as the artist has the time and the

inclination to take advantage of this

method.

Specular and bump mapping. Specular

and bump mapping technologies are not

new, but they are only now becoming

practical in any real sense for main-

stream gaming. Still, heavy-handed

application of just about anything,

regardless of how nice it is, can ulti-

mately do more harm than good. Both

bump mapping and specular effects have

the ability to introduce additional and

dynamically responsive material proper-

ties to surfaces within your game. But if

they are applied with no concept of

restraint, they will end up being intru-

A R T I S T ’ S V I E W

f e b r u a r y 2 0 0 3 | g a m e d e v e l o p e r24

Heavy-handed application
of just about anything,

regardless of how nice it is,
can ultimately do more

harm than good.

sive gimmicks that turn a game’s visuals

into an unsuccessful mess.

Coupled with dynamic light and shad-

owing, bump mapping is a particularly

useful way to achieve the appearance of

fine surface details without using actual

geometry. But many designers are drawn

into making just about everything bumpy,

or at least into adding bumps where they

have no real need to be. Likewise, specu-

lar maps can seduce artists into finding

ways to incorporate specular effects on

every object they create, not a good idea

in most circumstances.

Bottom line: Restraint is key, as the

player’s attention is drawn to the areas

where the techniques I’ve just mentioned

are used judiciously, rather than to excess.

Straight from scan. Any game that is

attempting a certain level of realism is

likely to use photographic sources in its

texture generation. Problems arise when

the initial scan or digital photo finds its

way into the game without any signifi-

cant processing. The end result of

unprocessed images is usually textures

that feel out of place or flat. As most tex-

tures need to be balanced for brightness,

contrast, and other properties to make

them consistent with the game world,

neglecting to process images will usually

make them stand out unnecessarily.

Scaling gone wrong. Another common

problem arises when textures are com-

pletely out of proportion with the envi-

ronment that they are supposed to be

part of. This problem is especially com-

mon in larger areas, where a texture is

likely to be repeated many times, and

artists sometimes cut down the number

of repeats by scaling a texture up.

The problem becomes most apparent

when a character (or player, if it’s third-

person) is in close proximity to the

offending texture, where it is possible to

see that the heads of the nails in the

wooden planks are actually the size of

watermelons. This kind of scaling mis-

match is easy enough to avoid, but it

requires the artist concerned to pay

close attention once again to the player’s

experience, as opposed to building and

texturing geometry in isolation.

Environment mapping. The use of an

environment map, particularly in con-

junction with other layers of texturing

in order to give the appearance that a

surface is reflective, has become one of

the most abused effects of recent times.

It is a toy that needs to be put back into

its box and only brought out when it

genuinely fits.

Especially bad offenders combine

environment maps with such effects as

worn and damaged metal surfaces, so

that a material that should be relatively

unreflective ends up looking like it has

been coated with a very thick layer of

varnish and buffed to a mirrorlike shine.

Here again, restraint is key.

Cutscenes

The art of creating the perfect cutscene

is a large enough topic to warrant sev-

eral columns, but when asking others

what they think most often goes wrong

with cutscenes in a game, the almost uni-

versal answer is that they are too long.

The debate about what the role of the

cutscene actually should be in a game has

several contrasting viewpoints. Still, no

matter how cutscenes are presented,

whether in-engine, 100 percent preren-

dered, partially interactive, or whatever,

the bottom line should always be: do

they improve the player’s experience, or

do they just get in the way of enjoying

the game?

This can be a difficult question to

answer, as my idea of a great cutscene

could be the opposite of what you are

looking for. However, because lots of peo-

ple feel that long cutscenes intrude on the

experience of playing a game, it would be

a good idea to look at ways of reducing

cutscene length where possible without

compromising story or atmosphere. There

is a limit to how much information a

player can retain from a cutscene, so if it

does contain things they need to remem-

ber, then dragging it on will make that

more difficult.

Geometry

Now that polygon counts are less of

an issue than they were a few years

ago, such problems as having to use five-

sided cylinders or being forced to resort to

triangular cross-sections everywhere don’t

exert the pressure they once did. Building

environments that look good isn’t sudden-

ly a piece of cake just because we can be a

little freer with the triangles, but the prob-

lems at present tend to focus more on

such elements as texturing, lighting, or

general design issues.

In this respect, it isn’t the quality of the

geometry that is a problem; it often has

more to do with the variety of geometry

used, particularly when it comes to interi-

or spaces. It’s very easy to decide that the

corridors of a space station would, in real-

ity, all be pretty much identical, so why

not just take a section of geometry that

you are happy with and duplicate it as

many times as necessary? Likewise, the

sewers under the castle are all made from

the same brick, so why build 10 variations

of the same thing?

Repetition is a great time saver, and

when you use it with care it can be vir-

tually invisible to the player. On the

other hand, without enough unique

geometry or some other form of land

marking, a player can get lost quite easi-

ly. Navigating an area may seem simple

to the artist who created it, but often

the modeler’s perspective is completely

different from the player’s restricted

viewpoint. For the player, figuring out

how an area is laid out, even somewhere

that is relatively uncomplicated, may

prove to be quite a task.

Aside from the possibility of becom-

ing disoriented, a player can also bore

quickly if the visuals become overly

monotonous. The artist has failed in his

or her task if players switch off because

they are tired of wandering around loca-

tions that all seem to be essentially the

same thing.

In the end, we can’t expect our games

to be 100 percent perfect in every

respect. But in the quest for greatness,

w w w . g d m a g . c o m 25

f e b r u a r y 2 0 0 3 | g a m e d e v e l o p e r26

No matter how much you

love your favorite piece of

music, if you listen to it

enough times, the repeti-

tion becomes annoying.

In-game music is subject to this kind of

repetition, so how do you avoid irritat-

ing listeners? Given that repeating ele-

ments is a fundamental part of composi-

tion, let’s look at how the game’s audio

engine affects the fundamentals.

Repetition in the structure. Music is

typically structured in patterns. For

example:

A-B-A-B-C-B

denotes a typical rock-song structure,

where A is the verse, B is the chorus,

and C is the bridge. Notice that B actu-

ally takes up half the piece — this is

done purposefully so by the end of the

piece the listener should be able to hum

the chorus.

Even though the point is to hammer

home the chorus, there’s a reason the

song doesn’t simply feature the chorus

all the way through. The contrast of

other musical sections is required the to

avoid boring the listener. Although there

are examples of 20th century music that

push the envelope in the realms of con-

trast and repetition, for the most part a

good balance is required.

But what happens to this balance

when a game’s audio engine loops a

piece of music? Our example structure

would end up looking like this:

A-B-A-B-C-B — A-B-A-B-C-B — A-B-

A-B-C-B — and so on.

In just three loops we’ve heard B nine

times and we’re already sick of it.

However, we can remedy this situation

by breaking some of the traditional

rules of composition.

The trick is to write with the structural

repetition reduced to the point where the

piece needs to be heard many times in

order to “understand” it. An extreme

example of such a structure might be:

A-B-C-D-E

A music professor would give such a

piece an F , because in theory it would

lack coherency. However, when the game

engine repeats the piece over and over

while you’re killing monsters, the player

eventually becomes familiar with all five

parts. It would take considerably more

repetitions than the rock-song example

to get to know this piece, which is exact-

ly what we want.

For most composers, it’s quite hard to

write something completely lacking in

repetition. They have a deeply ingrained

instinct to use repetition, so it’s better to

try easing into it rather than giving it up

cold turkey. If we took the rock-song

structure, wrote an additional D section,

and varied one of the A sections to give:

A-B-A�-D-C-B

we’d have a tune that is much more

loop-friendly without being completely

incoherent.

Repetition in the melody. Just as the use

of structure needs to be reconsidered in

the context of in-game repetition, so does

that of melody. A melody or theme is the

most commonly remembered element of

a piece of music. While the arrangement

and groove may be pleasing, the melody

is what the listener actually remembers.

In a game, this can be bad — every time

that theme pops up, the player notices it.

Themes are built using a structure.

John Williams’ opening theme for Star

Wars uses a single rhythmic motif repeat-

ed four times with a variation on the last

repetition. It’s brilliantly crafted and high-

ly memorable — too memorable, in fact,

to be heard many times in succession.

Many of the preceding suggestions

regarding the structure of a piece of music

can be applied to creating themes. For

example, you could try increasing the

variety in the motifs that make up the

theme. However, we’d like to make the

case for not using full themes at all in

games. Rather than making a coherent

musical sentence using short motifs, try

leaving the pieces unglued, peppering your

piece with smaller fragments instead. By

varying these motifs so that you seldom

hear the same one twice, you can achieve

musical coherency without hitting the lis-

tener over the head repeatedly with a sin-

gle attention-grabbing melody.

The final mix. The result of all this

reduced repetition will be music that plays

well over the course of playing a game but

doesn’t stand up very well to a single lis-

ten. So if you’re presenting music tracks

independently of the game, such as on a

CD, you may need to create different ver-

sions of the pieces that incorporate a more

usual level of repetition. We never prom-

ised that better game music was going to

be easy. q

SIMON AMARASINGHAM I Simon is a composer/sound designer
with dSonic (www.dsonicaudio.com), a company that creates music
and audio specifically for the game industry. Kemal Amarasingham
and Vincent Stefanelli, who are also founding partners of dSonic,
were contributors and consultants for this article. dSonic’s past cred-
its include SYSTEM SHOCK 2, ARX FATALIS, and MASTERS OF ORION 3.

Music That Won’t Give You a Rash:
Taking the Irritation out of

Repetition

s i m o n a m a r a s i n g h a mS O U N D P R I N C I P L E S

f e b r u a r y 2 0 0 3 | g a m e d e v e l o p e r28

One of my favorite jobs as a freelance
designer/producer is doing game/studio
reviews for publishers. Working on a
design on my own can be an isolating
experience, so I relish the opportunity to
get out in the world to visit a develop-
ment studio and essentially do a tune-up,
advising them on business plan, company
or game team structure, and tools and
techniques to manage their games to
completion. But my favorite part of that
experience is tinkering with the design,
looking for ways to help them improve
the game while minimizing production
costs and risks.

I’ve found the growing body of game
rules very helpful in this process. I often
switch roles from sage to scholar as some-
one makes a suggestion about the game
design, and I think, “Rule!” and jot it
down. One such moment came during a
meeting at Firetoad Software in Calgary,
reminding me of one of the very first rules
I learned in the arcade business.

The Rule: Don’t take away points or other
hard-won possessions from the player.

I t’s often tempting to design a

penalty for the player to empha-

size failure at a task or to dis-

courage the player from attempt-

ing to do something in the game

you don’t like. But failing and being dis-

couraged just aren’t fun. There’s always

a way to turn it around and reward the

player for success, or encourage them to

do what you want.

The Rule’s domain. This rule applies to

all games but is particularly important

where points are awarded, as in sports

games.

Rules that it trumps. This rule should

trump the temptation to take things away

from the player for reasons of realism or

to add excitement.

Rules that it is trumped by. Make villain

and opponents evil to the player, not just

the character. There are cases where it

can be a good thing to take things away

from the player — a villain in a game

who is out to destroy the world is well

and good, but when he takes away your

character’s best magic sword, he’s really

evil! The caveat is that in defeating (or at

least challenging) that villain it becomes

possible to win back whatever you have

lost. This technique has been used effec-

tively in games as far back as the thief in

ZORK, or the temporary loss of coins or

rings in many platform games, or as

recently as Daxter’s transformation in

JAK & DAXTER.

Examples and counterexamples. Let’s

consider two frequent violations of this

rule. First, we have racing games that

use timers to deduct from the score

when the player is slow to finish, some-

times to the extent that it is impossible

— dare I say pointless? — to try to fin-

ish the race. Why not, as in the new

Xbox game CHASE from I-Imagine, give

a bonus when the player finishes early?

Or use a countdown bonus timer that

counts more slowly with time, so there’s

always some bonus, but one that

increases geometrically the faster the

player finishes. Second, in some shoot-

ing games when the player hits a team

member or non-combatant, they turn on

him in anger, and points are deducted.

It’s just as easy, and more fun for the

player, to award a bonus for not hitting

them, or even award the player with

extra help or gifts as appropriate from

gratefully spared civilians.

Tidbits from the e-mailbox. Dave

Grossman was one of many who respond-

ed to the “Godfather Paradox” (Novem-

ber 2002) column. He offers some rules

that I’ll paraphrase for brevity:

• Have a realistic budget: Don’t assume

it can be done for less than the original.

• Cut some good stuff: Make room for

new innovation by resisting the tempta-

tion to rehash all the good bits of the

original.

• Pretend it’s not a sequel: Challenge

yourself to think of it as an original

game.

Like a teenager moving out of the

house, says Dave, the sequel must find

its own path. His credentials include

DAY OF THE TENTACLE, an excellent

example of his rules.

Finally, Ray Mazza, a graduate student

at Carnegie Mellon University, suggests

using popular musical themes from origi-

nal games and building on them in the

sequels, and similarly using some recog-

nizable territory as a part of the new, larg-

er world. That reminded me of how nicely

DIABLO II did both of those things by

including the town of Tristam along with

its signature musical theme. q

N O A H F A L S T E I N | Noah is a 22-year veteran of the game
industry. You can find a list of his credits and other information at
www.theinspiracy.com. If you’re an experienced game designer inter-
ested in contributing to The 400 Project, please e-mail Noah at
noah@theinspiracy.com (include your game design background) for
more information about how to submit rules.

Good Points
Down

Don’t Go

The game CHASE awards points for success
rather than taking them away for failure.

n o a h f a l s t e i nB E T T E R B Y D E S I G N

j o h n l a l l yC H A R A C T E R A N I M A T I O N

f e b r u a r y 2 0 0 3 | g a m e d e v e l o p e r30

J O H N L A L L Y | John is the animation
technical director at Insomniac Games. In addi-
tion to RATCHET & CLANK, John has animated
characters for SPYRO 2 and 3 and for several Squaresoft
Games. He is currently working on Insomniac’s newest
Playstation 2 project and can be contacted at jpl@insomni-
acgames.com.

Giving Life to
RATCHET&

CLANK Enabling Complex Character
Animations by Streamlining Processes

w w w . g d m a g . c o m 31

A t first, we were thrilled. As

character animators, we

couldn’t have asked for a

better project. There were

two heroes, dozens of ene-

mies, scores of NPCs, and more than

100 character-driven cutscenes. Enthusi-

asm and artistic latitude made it all ours

for the taking.

But staying true to our shared vision of

RATCHET & CLANK meant that our digital

actors needed to become more than mere

cycling automatons. We regarded each

character as an intermediary through

which we could reach out to players and

draw them deeper into our universe. This

meant our characters needed to blend

physically into their environments, emo-

tionally into their situations, and expres-

sively into our narrative. It was on these

principles that we based both our objec-

tives and our standard of success.

Our team acknowledged that a rift

existed between the level of complexity

we desired and the time we had sched-

uled to implement it. In order to sur-

mount this obstacle, we developed sever-

al methods for using Maya, our artistic

skills, and our time more effectively.

This article will discuss these methods

both in terms of their functionality and

their implementation. To this end, it will

provide technical details on our testing

practices, our MEL shortcuts, and our

real-time animation procedures.

Furthermore, it will explain how each of

these methods saved us valuable produc-

tion time, enabling us to achieve our

artistic goals.

Testing with Prototypes:
Why and How

P art of achieving our goal of tying

our characters closely to their envi-

ronments and gameplay meant prototyp-

ing low-resolution versions of our char-

acters and their respective animations.

Like coalmine canaries, we sent proto-

models into our new levels to nose out

potential animation, programming, and

design problems. We relied on prototyp-

ing throughout the course of our produc-

tion as a means of refining a character’s

move set. This process of refinement was

key to winnowing down unworkable

ideas before animating a character’s high-

resolution incarnation.

As a rule, our prototypes emphasized

function over style. And although we set

the aesthetic threshold low, these previsu-

alization models still needed to be built

and animated accurately enough to func-

tion as valid test cases. For the anima-

tors, this meant that prototype characters

needed to jump to their correct heights,

attack to their design specifications, and

run at their proper speeds.

Generally, we created prototypes using

a character design sketch as a guide.

These proto-characters were constructed

with primitive objects and only roughly

resembled their future incarnations, as

you can see in Figure 1 (on page 32).

Since previsualization models were so

simple to construct, every animator

could assist in building them, regardless

of their modeling experience. Accuracy

was required only in the representation

of the character’s height, proportions,

and posture.

For the most part, our prototypes had

extremely simple skeletons: all geometric

components were assigned to a single

bone with no special deformation.

Though such simplicity made for blocky-

looking models, in practice our anima-

tors had all the flexibility they needed to

test out a move set.

Animating our proto-characters was

similar to sketching a traditional pencil

test. Although animators were given a

designer-approved move set, it was

understood that animations needed only

to be rendered into their roughest forms.

One pass was often sufficient, as polish

and overlap were unnecessary.

The areas where precision did count

were timing, measurement, and interac-

tion with other characters. As they have

the greatest direct impact on gameplay,

these attributes were considered critical

to testing a new character’s behavior

accurately.

Timing has a major effect on both the

readability of an animation and on game-

play. From a distance, a poorly timed idle

can look muddy. An attack animation

can be too slow to make an enemy a

worthy opponent, or too fast to be regis-

tered. Emphasis or a lack thereof on just

a few frames can make or break any ani-

mation, especially within the short cycles

of the real-time universe we were creat-

ing. We discovered that by testing and

fine-tuning our timings in the prototype

stage, we could often avoid reworking

polished animations on final characters.

Making sure that proto-characters

adhered to design measurements was

also important. For example, if the

design document called for an enemy to

attack at a range of 4 meters, animators

would ensure that the prototype did

exactly this. Designers could then get an

accurate idea of whether an enemy trav-

eled at the correct speed, was tuned to

the appropriate difficulty, and was scaled

appropriately in relation to the main

characters.

Prototyping also gave us a means of

pretesting character behaviors and inter-

actions. Whether it was with Ratchet or

Clank, with the environment, or with

another character, proto-models provided

invaluable early glances at interactive

behavior. For artists, programmers, and

designers, previsualization served to tele-

graph character behaviors both in terms

of their technical feasibility and their

gameplay value.

Ultimately we found that our previsu-

alization process was beneficial not just

to animators but to our design and pro-

gramming staff as well. It gave our pro-

grammers a head start on coding game-

play, while designers could test, tune, and

ask for changes at a very early stage,

allowing room for refinements.

Prototyping saved animators time and

energy that otherwise would have been

spent painstakingly modifying or redoing

final multi-pass animations. It provided a

relatively simple means for evaluating

character behaviors with respect to their

timing, specifications, and interactivity.

Moreover, it provided our animators

with a practice run, complete with feed-

back, before moving on to a high-resolu-

tion character (Figure 2).

MEL Shortcuts:
Automating Our Setups

M aya Embedded Language (MEL)

scripts were essential for bridging

the gap between the level of complexity

we desired and the time we had sched-

uled to implement it. Through MEL

scripts, we were able to streamline setup

operations, customize animation

processes, and level our technological

playing field.

Two such scripts (examined later in

this article) allowed our team to take

advantage of driven key functionality

that otherwise would have been too

cumbersome to animate or too tedious

to rig by hand. Another tool enabled our

artists, regardless of technical experi-

ence, to fit characters with IK systems

automatically.

Most of our bipedal characters had leg

setups like the one pictured in Figure 3.

As seen in the hierarchy (Figure 4) our

legs had standard hip, knee, and ankle

joints, a heel joint, and two to three

bones in the feet. (For clarity purposes,

please note that we referred to our foot

bones as “toes.”)

Our IK-rig consisted of three to four

RP (Rotate Plane) IK-handles. These con-

nected hip-to-ankle, ankle-to-toe, toe-to-

toe and/or toe-to-null. All were config-

ured into a hierarchy (Figure 5) that

specified relationships between the IK-

handles, a set of locators, and several

NURBS constraint objects.

Though relatively simple, setting this

IK-system up by hand for every NPC,

enemy, and prototype would have taken

more time than we had. Moreover, we

knew that this time would be better

spent bringing our characters to life.

An actual tools programmer might

scoff at the artist-authored MEL script

we developed to make our leg chains. In

the end, however, our “IK Setup Tool”

reduced an hourlong technical chore to a

simple task that took seconds. Further-

more, the script did not require setup

expertise, and our relatively simple code

could be customized and refined entirely

from within the art department.

Using the IK Setup Tool (Figure 6)

was a three-step process. First, an artist

checked their characters’ leg joint names

against the tool’s presets, making any

necessary changes. Next, a scale factor

for the constraint objects was entered,

f e b r u a r y 2 0 0 3 | g a m e d e v e l o p e r32

C H A R A C T E R A N I M A T I O N

FIGURES 1A–C. The Dog Charger prototype was used to pretest the final character’s animations,
including its walk, run, and attack. FIGURE 2 (bottom left). The final Dog Charger model.

based loosely on a character’s size. The

artist then hit nine buttons in sequence.

These buttons would auto-attach the IK

handles and instantly build the con-

straint hierarchy.

Dissecting the IK
Setup Tool

M EL is a quirky and often inconsis-

tent language. A good portion of

the time we spent developing our IK

Setup Tool was used to track down the

proper commands for the tasks we need-

ed to execute. Still, we managed to

uncover the MEL commands we needed

to actuate the core tasks of each of our

nine tool buttons.

The first button’s purpose was to

place IK handles on a character’s legs. It

read the names of the bones from the

top text fields by using the textFieldGrp

command in its query (-q) mode. These

string variables were then passed to the

ikHandle command, which in turn created

the IK handles.

The second button placed NURBS

cones on a character’s hip, ankle, and

toe joints. These cones, created using

MEL’s cone command, were the primary

constraint objects an animator would

use to manipulate the legs. The xform

command was used to query (-q) the

positions of the leg bones and store them

as variables. The move command then

read these variables and moved the

cones into place. Finally, MEL’s

pointConstraint locked the hip cones to

the character’s hips.

Pressing the third button called

CreateLocator to place a pair of locators in

the scene. Next, the group command

grouped the locators to themselves. Then

xform (-q) queried the positions of the

character’s knees, and move translated the

two new parent objects to the knee joints

and the locators to positions in front of

the knees.

Button number four configured the

cones, locators, IK handles, parent

groups, and constraints into a standard-

ized hierarchy via the parent command.

Again, the new groups were translated

into place using move. New constraint rela-

tionships were created between the knee

locators and main leg IK handles, and the

new constraint hierarchy and the skele-

ton. These were implemented using the

poleVectorConstraint and scaleConstraint

commands, respectively.

Button five added several expressions

to the scene, saving us data-entry drudg-

ery. We added expression code for speci-

fying both constraint and skeletal

behavior using the expression command,

allowing us to automate both the cre-

ation and the specifications of our setup

expressions.

Number six altered the rotate order of

the heel and toe NURBS cones from

XYZ to YXZ using setAttr. We had pre-

viously determined that this rotate order

produced the most reliable rotations in

our quaint Z-up environment.

Buttons seven through nine performed

some final housekeeping tasks. Button

seven grouped custom rotation guides to

w w w . g d m a g . c o m 33

FIGURE 3. This leg setup was used for most
bipedal characters, saving tedious hand-setups
for IK systems for individual characters.

FIGURE 6. The IK Setup Tool streamlined
repetitive, error-prone setup procedures and
kept customization within the artists’ hands.

FIGURE 4. Standard hierarchy for a charac-
ter’s leg, as shown in the Hypergraph.

FIGURE 5. The leg constraint hierarchy viewed
in the Hypergraph, showing connections
between the IK handles, locator set, and
NURBS constraint objects.

a character’s spine using the polyCube and

parent commands. Button eight used

setAttr to ensure Maya’s segment scale

compensate was switched off for all of a

character’s joints. Finally, button nine

keyed a reference frame at –10 on the

character’s skeleton and constraint hier-

archies using setKeyframe. Listing 1 (page

34) shows some of the MEL procedures

we found most useful.

Automating this process with MEL

both saved us time and eliminated the

steps most prone to human error.

Furthermore, by enabling any artist,

regardless of their setup experience, to fit

a prototype and/or character with a func-

tioning IK system quickly, we alleviated

bottlenecks. This conservation of both

time and human resources saved energy

that could then be devoted to artwork.

Low-Tech Animation
Solutions

T he shortcuts and prototypes I’ve

described so far shared a common

purpose: to help us create better anima-

tion more efficiently. Both of these

methods accomplished this by either by

telegraphing problems or by saving

time. Often, however, we would spurn a

high-tech solution due to its specificity,

inefficiency, and/or complexity. And still

at other times, we embraced traditional

CG taboos.

We consistently and repeatedly trans-

lated and scaled our characters’ bones.

True, most of us learned on our grand-

mothers’ knees never to do that to a CG

character. “Use your constraints,” she

would say. “Rotate your bones if you

must. But avoid scaling them, and don’t

ever, ever let me catch you in a transla-

tion!” We all love our grandmothers, but

we found that the tenets of traditional

animation called for — nay, demanded

— that we defy her.

The reason behind our disobedience

was squash and stretch. We found that

by scaling our joints, and especially by

translating them, we could instill our ani-

mations with extra gravity and snap.

Major translations often lasted only a

couple of frames and, borrowing an idea

from Disney, were “more felt than seen.”

Since we had no IK setups to speak of

on the spines and arms of our characters,

translating the bones in these body parts

was quite simple. If needed, we could key

the leg IK solvers “off” in order to

f e b r u a r y 2 0 0 3 | g a m e d e v e l o p e r34

C H A R A C T E R A N I M A T I O N

FIGURES 7A–C. Joint scaling and translation offered animators direct manipulation of poses and gave characters’ moves extra verve for the modest
cost of a low-tech solution.

// A method for querying a bone’s position in world space:

xform -query -worldSpace -translation my_joint_name;

// A method for querying the contents of a text field:

textFieldGrp -query -text my_text_field_name;

// A method for setting a keyframe at frame -10 on a hierarchy:

setKeyframe -time -10 -hierarchy below my_hierarchy_name;

// Basic transformation methods: translation, rotation, and scaling:

// Moves an object to (0,0,5):

move -absolute 0 0 5 my_object_name;

// Rotates an object by 90 degrees on Z,
// relative to its current Rotation:

rotate -relative 0 0 90 my_object_name;

// Scales an object to 3 times its current size:

scale -relative 3 3 3 my_object_name;

// (Note: All flags are listed in their long forms.)

LISTING 1. Some helpful MEL procedures.

manipulate these joints. Translation and

scaling were effective across the board

and worked wonders on anything from

walks to attacks to facial animation

(Figures 7a–c).

Requiring no additional setup, these

low-tech solutions saved us time. Within

limits, this method of animation provid-

ed animators with a direct, tactile, and

expedient method of sculpting their char-

acters’ poses. Although unglamorous,

this technique was as effective as any in

terms of preserving our resources and

improving our animations.

Walks and the Walk
Guide

A nother device we used to aid our

animation was called the Walk

Guide. We used this tool help our char-

acters’ feet stick to the ground during

walk and run animations. Although foot

slippage is commonly forgiven in the

world of games, we hoped that by elimi-

nating it we could add an extra dimen-

sion of believability to our characters’

locomotion.

The Walk Guide was an elongated

cube with many smaller cuboids attached

to it. The smaller cuboids were identical

to the polygonal markers on our charac-

ters’ ankles and toes, which were

grouped to their feet during setup.

By scaling a special parent node, the

Guide’s small cuboids could be adjusted

to match a character’s foot size. Scaling

the large cuboid allowed an animator to

accommodate for the character’s stride

length. A set of constraints and locators

ensured that as the stride length changed,

the preset foot size remained constant.

Since our walk cycles were animated in

place, we needed a way in which to sim-

ulate forward movement while keeping

track of the positions of a character’s

feet. The solution was to animate the

Walk Guide to the speed specified by the

designer (2 meters per second, for exam-

ple). Once the Walk Guide was moving

at the proper speed and the small

cuboids correctly scaled, an animator

could begin working on the character’s

walk cycle.

The trick to using the Walk Guide to

eliminate foot sliding was to keep the

character’s foot markers lined up with

the small cuboids on the Guide. This

applied for every frame in which the

foot made contact with the ground (Fig-

ures 8a–c).

Upon a cycle’s completion, a character

could be put into a level and moved at its

preset speed with little or no foot slip-

page. Additionally, programmers could

scale the playback speed of the cycle rela-

tive to the character’s velocity and still

have the feet stay grounded.

There were several gameplay situations

that were not as clean as the test case I

just described; however, the Walk Guide

did serve to plant our character’s feet

properly in most of our worlds. Once

accustomed to the Guide, we animators

found that using it benefited both our

schedule and our artwork, as it kept

track of the more technical aspects of

locomotion for us.

Making Faces:
Artistic Reasons and
Technical Details

W e knew from the start of devel-

oping RATCHET & CLANK that

facial expression would be an important

component not just to our cinematics

but to our gameplay animations as well.

Once again, we were faced with the

dueling goals of animation depth and

scheduling efficiency. We settled on two

methods for making faces: one simple

one for our enemies and one more com-

plex for our heroes. Expressions exag-

gerated the idles, intensified the attacks,

and sealed the deaths our of enemies

and heroes alike.

When animating our enemies, we drew

on a traditional animation dictum: A

viewer of animation is usually drawn to

a character’s face, particularly to the

eyes. Attention paid to a character’s eyes

and mouth was very important to mak-

ing convincing actions, especially during

our quick gameplay cycles.

Most enemy characters had fairly sim-

ple face skeletons. However, these skele-

tons allowed for a high degree of manip-

ulation of the eyes and mouth. Each eye

had between two and four bones con-

trolling its brow and lids. Mouths were

generally simpler, using only one or two

bones. In most cases, this setup gave us

all the flexibility we needed to exagger-

ate the enemy’s features and thus height-

en the emotion of its actions (Figures 9a

and 9b).

Our heroes’ faces had a more sophisti-

w w w . g d m a g . c o m 35

FIGURES 8A–C. The Walk Guide helped line up characters’ feet on the ground properly every frame to minimize unattractive foot sliding.

cated setup, which they shared with the

NPCs. Though NPC faces were manipu-

lated mostly in our cinematics, RATCHET

& CLANK made heavy use of expression

during gameplay, as well.

Like the enemy setups, hero and NPC

faces were manipulated via their face

joints. Unlike the enemies’, these joints

were animated though a driven key sys-

tem instead of being transformed direct-

ly. Since they clocked more screen time,

hero and NPC faces tended to have a

far greater amount of bones — and

hence expressive range — than their

enemy counterparts.

Figures 10a and 10b show some of the

range of expression Ratchet and Clank

exhibit during gameplay. He smiles when

excited, grimaces when he’s hit, grits his

teeth during combat, chatters them when

he’s cold, and drops his jaw when he

dies. Clank’s expressions change both

while he’s strapped to Ratchet’s back and

when he’s played independently.

As I mentioned earlier, hero and NPC

expressions were animated by combining

preset driven key attributes via a MEL

script slider interface. These presets

allowed the animator to combine and

create a wide array of facial expression

without having to build them from

scratch. Like color primaries, these

attributes could be blended together to

form new combinations.

About half of a character’s 40 or so

facial attributes were dedicated to pro-

ducing a basic expression, either on all

or on parts of the face. These basic

expressions included anger, disgust, fear,

happiness, sadness, and surprise, all of

which would be easily recognizable to a

player. More subtle attributes were dedi-

cated to animating phonemes and con-

trolling individual facial features.

Unique and varied emotional ranges

could then be achieved by combining

expression, phoneme, and feature attrib-

utes together.

Scripting Facial
Presets

A ssigning facial presets to our char-

acters cost us some setup time.

However, we were able optimize some of

the processes with another MEL script.

Like our other MEL tools, this script

automated some of the tedious steps,

allowing a setup artist to spend more

time on the art of sculpting facial poses.

Facial presets were created in a sepa-

rate animation file, where each expres-

sion, phoneme, or feature pose was

stored as a separate keyframe. Upon

completing this file, a character artist

would use our MEL Driven Key Genera-

tor (Figure 11) to set the driven keys

automatically for each pose.

The Driven Key Generator worked by

comparing the transformations of the

keyframed pose to those of a default.

When the script registered that a channel

had changed from the default, it would

set a driven key on that channel based

on its changed value. The script relied

on MEL’s arithmetic functions to identify

value changes, and its setAttr and

setDrivenKeyframe commands to activate

the drivers. Listing 2 shows some of the

Driven Key Generator’s sample code.

The drivers for our facial animations

were stored on a model called the

Control Box, shown in Figure 12. This

hierarchy of cubes served as a visual out-

line of facial attributes, and could also

double as a second interface. For efficien-

cy’s sake, Ratchet, Clank and all of our

NPC characters had identical Control

Boxes, though Ratchet’s had many more

active drivers.

We found our automated setup

method to be advantageous for three rea-

sons. First, it saved a setup artist from

having to manually identify and key

bones, channels, and drivers. Second, it

assigned driven keys to changed channels

only, leaving any non-affected channels

free for animators to keyframe. Finally, it

circumvented Maya’s built-in driven key

interface, which we found to be cumber-

some and even unreliable when simulta-

neously assigning multiple bones and

channels to a driver.

C H A R A C T E R A N I M A T I O N

f e b r u a r y 2 0 0 3 | g a m e d e v e l o p e r36

FIGURES 10A–B. Ratchet and Clank’s gameplay facial animation system (also used for NPCs)
needed more sophisticated setups than enemies’ for the broader range of expression they were
required to show during gameplay.

FIGURES 9A & 9B. With enemy face skeletons, less was more. Bone detail was reserved for the
eyes and mouth to enable simple, exaggerated expressions. Here, during an in-game animation,
the Robot Paratrooper’s face reacts to being knocked down.

Regardless of method, facial animation played a

vital role in breathing life into our gameplay char-

acters. Again, MEL was instrumental both in

granting our artists access to an advanced Maya

feature, and in optimizing our workflow. Whether

a hero or an enemy, virtually every character per-

sonality in our game was strengthened through

facial expressions. In turn, this enhanced interac-

tions both with players as well as between the

characters themselves.

End of Cycle

L ike all character-driven projects, RATCHET &

CLANK presented our animation team with a

unique set of artistic and technical challenges. Our

artistic philosophy was built on the understanding

that our characters were the instruments though

which a player would experience our universe. We

knew that in meeting these challenges, our puppets

would transcend mere game space and become the

entities that our players would identify with, vilify,

and even personify.

However, this philosophy needed to be coupled

with practical methodology if it was to see our

project to its conclusion. From this necessity grew

our testing practices, MEL shortcuts, and real-time

animation procedures. Throughout production,

these methods removed many of the barriers that

would otherwise have obstructed the artistic efforts

of our animators.

As the Insomniac team cycles into our next proj-

ect, we continue to refine and expand upon the sys-

tems and procedures we developed during RATCHET

& CLANK. Though our procedures continue to

evolve, our underlying goals remain unchanged. For

in the end, we can only prove a technology’s worth

by an audience’s response to our characters. q

FIGURE 11. The Driven Key Generator analyzed
a preset facial pose, compared it to a neutral
pose, and assigned driven keys to the affected
channels.

FIGURE 12. Each NPC and hero had its own
Control Box on which its facial drivers were
stored. Facial drivers were actually attributes of
the Control Box’s cubes.

w w w . g d m a g . c o m 37

Poses

Features

Phonemes

Basic

Expressions

Mouth Eyes
MouthHead

Tlids

Brows

Blids Ears

Pupils

LISTING 2. Sample code from the Driven Key Generator.

// The “if” gate checks for changed X-Translation values
// between the Default and Posed frames.

if ($txa != $txb)
{

// Sets the Driver Attribute and the Current Joint’s
// X-Translation to their Default Values;
// Sets a Driven Key Frame for the Default Values.

setAttr $atnm $dr0;
setAttr ($current + “.tx”) $txa;
setDrivenKeyframe -currentDriver $atnm -attribute

translateX $current;

// Sets the Driver Attribute and the Current Joint’s
// X-Translation to their Posed Values;
// Sets a Driven Key Frame for the Posed Values.

setAttr $atnm $dr1;
setAttr ($current + “.tx”) $txb;
setDrivenKeyframe - currentDriver $atnm -attribute

translateX $current;

// Prints command summary to the Script Editor for
// easy reference.

print ($current + “: TX has been keyed for slider
value 0: “ + $txa + “ and slider value 10: “ +
$txb); print “ \n”;

}

// In this loop segment, $current is the current joint,
// and $atmn is the attribute name. $dr0 and $dr1 represent
// Default and Posed Driver values. $txa & $txb are the
// Default and Posed X-translation values, respectively.

// (Note: All flags are listed in their long forms.)

F O R M O R E I N F O R M AT I O N

BOOKS
Gary Fagin. The Artist’s Complete Guide
to Facial Expression. New York: Watson-
Guptill Publications, 1990.

Frank Thomas and Ollie Johnson. The
Illusion of Life. New York: Hyperion, 1981.

RECOMMENDED MAYA TRAINING
MEL Fundamentals (formerly MEL for
Artists): Information available at
www.aliaswavefront.com, click on Maya
Training under “Education”

j e n n i f e r o l s e nG D C P R E V I E W

f e b r u a r y 2 0 0 3 | g a m e d e v e l o p e r38

F rom content spanning the different conference tracks
to the extracurricular parties and events, the organiz-
ers, CMP Media’s Gama Network (which also publish-
es Game Developer), and the GDC Advisory Board
have focused their efforts on honing GDC into an

indispensable event for game developers. The events market is
still feeling the effects of 9/11 and the economic slowdown, and
many development studios that used to spring for annual trips to
GDC, E3, and Siggraph are now scaling back their budgets to
include just one or two events for employees. Others make the trip
on out-of-pocket expenses, hoping that glittering pitch demo or
polished résumé will pay off big returns. Some critics contend the
event has become too “corporate,” leaving the needs of small inde-
pendents, and even the event’s own grassroots beginnings, behind.

Taking into account the changing needs of a rapidly evolving
industry, organizers are always looking at new opportunities to
ratchet up the value of the event. The advisory board has made
careful iterations in the content goals of the various conference
tracks, while emerging markets are finding new prominence

through programs such as the two-day GDC Mobile event.
Creating a stronger sense of developer identity is important,

too. The International Game Developers Association (which func-
tions as an independent nonprofit under a management contract
with the Gama Network) develops its own conference track
focused on developer and community issues, and the IGDA
returns with the third annual Game Developers Choice Awards, a
program that aims to create meaningful peer recognition for game
developers. Meanwhile, the Independent Games Festival, now in
its fifth year, continues to groom itself into a showcase for innova-
tive indie game projects.

Aside from the din of the GDC Expo floor, the blur of parties, and
the impromptu encounters in the hallways, the heart of GDC
remains in the more than 300 lectures, panels, and roundtables
presented, and in the speakers who variously swim or sweat
through their Powerpoint slides for the betterment of industry
knowledge. We caught up with a few of this year’s speakers to find
out what they have in store for attendees and what they as atten-
dees think of this ever-evolving event.

T he 17th Game Developers Conference convenes
again in San Jose from March 4 to 8 this year, and
conference organizers find themselves in a
quandary similar to that faced by many of their
attendees: overcoming sequelitis. Like many devel-

opers working in today’s sequel-driven marketplace, their chal-
lenge lies in satisfying returning customers who expect certain
features and experiences that made forerunners popular, while
innovating and refining enough to attract new customers and
add value for those returning.

w w w . g d m a g . c o m 39

ADAM SCHNITZER
Senior Artist, LucasArts
Visual Arts Lecture: “How to Build a Better Cutscene”

Game Developer: What will your session cover?
Adam Schnitzer: I’ll talk about the reasons for doing

cutscenes, how to plan your cutscenes, the importance of pre-

visualization, and the ins and outs of how to transition from

gameplay to cutscene and back again. I will also spend a little

time talking about production methods that can streamline the

cutscene creation process. Because my background is as a lay-

out artist at Pixar, my perspective is that of someone who is

very concerned with cinematic design, so much of my talk will

focus on that as well.

GD: How do you see the role of cutscenes in games changing in the
next few years?

AS: There are so many different styles of games, it’s hard to

predict with certainty what the role of cutscenes will be. But for

a certain style of story-based game, they are indispensable.

With game engines getting more and more sophisticated, and

the consoles allowing us to create more filmlike environments, I

can envision more immersive cutscenes and more seamless tran-

sitions in and out of cutscenes. With these higher-resolution in-

game environments that are evolving, we will eventually be able

to dispense with prerendered cutscenes altogether, but I would

guess that that day is still five to 10 years off.

GD: The name of your session implies — fairly — that there is ample
room for improvement in the quality of game cutscenes. Why do you
think this area continues to vex developers?

AS: It’s important to be very clear on the purpose of the

cutscene for your particular game. Cutscenes can do a lot to

enhance gameplay, but gameplay always comes first. Having said

that, I think there is a lot of ignorance of the fundamental princi-

ples of cinema in the game world. These are principles which

were codified and haven’t changed for the past 70 years or so.

And when you go from gameplay to cutscene, you are stepping

into the arena of cinematic storytelling. A greater awareness of

cinematic structure and the power of the camera would help

bring cutscenes to a higher level.

GD: How many years have you been going to GDC?
AS: This is going to be my first year at GDC.

STUART ROCH
Executive Producer, Shiny Entertainment
Production Lecture: “My MATRIX Experience: A Survival Guide to
Working with Movie Licenses”

GD: What will your session cover?
Stuart Roch: While working on the MATRIX project, the film’s

interactive producer and I often talked about what a shame it

would be if, once the project was completed, all the knowledge

she and I had gained about the marriage of Hollywood and the

gaming industry were to be lost. We actually felt a little bad, fig-

uring that others in the business might be forced to learn through

trial and error as we have had to these past couple years. So I

hope to share all the lessons we have learned, so others in the

industry can get a step up on a future licensed game. I’ll cover

everything from the initial deal all the way through the postpro-

duction process.

GD: What are the communication challenges developers face when
working with a movie studio on a licensed property?

SR: A number of communication problems can arise, from

making sure the movie and game companies use the same ter-

minology to describe issues, to coordinating schedules

between two entertainment mediums whose pre- and postpro-

duction schedules don’t mesh very well. Perhaps the biggest

communication problem that can arise is when a developer

can communicate to the directors only by going through the

studio office. This indirect communication channel can lead

to delays and potential misinformation. In our case, the

Wachowski brothers recognized this potential problem and set

up communication channels directly between themselves and

Shiny to make sure that accurate information and assets were

flowing as efficiently as possible.

GD: Do you feel that your experience on the MATRIX project carries
over well for future endeavors?

AS: Not only has the development process been easier than

we expected due to the unique communication channels, but

we’ve all learned a lot about how Hollywood approaches simi-

lar development problems, and we applied some of their solu-

tions to our development process. Hollywood is a mature

industry, and through my session, I’ll be sharing some of their

techniques which may be of help to other developers.

GDC attendees descend on the Expo floor as the doors open.

GD: What have been the most significant
changes to GDC since you began attending?

AS: The most significant changes I’ve

seen at GDC are its growth international-

ly and the fact that we have so many

respected overseas speakers flying over to

share their knowledge and experiences.

There’s also been an incredible growth in

new talent looking to work in this indus-

try. GDC gives those people a chance to

widen their perspective and really see

what it’s all about. They can meet the

people that are making the games, they

can meet some of the people they look

up to, they can be inspired by the creativ-

ity of others, and they can take away

concrete advice.

GD: What’s your favorite event at GDC?
What’s your least favorite thing about GDC?

AS: I always really enjoy the lecture

sessions. Unlike other industry shows

throughout the year, this is the one stop I

make where I always have useful take-

away from my industry peers. You never

feel as though the time spent at GDC is

time wasted. The thing that always seems

to be a problem with GDC is that it

inevitably coincides with some sort of

crunch time on one of our projects.

KATIE SALEN
Independent Game Designer
ERIC ZIMMERMAN
CEO, gameLab
Game Design Lecture: “Breaking the Rules
of the Game”

GD: What will your session cover?
Katie Salen: We are presenting a lecture

on rule-breaking and its relevance for

game design. Like it or not, rule twisting,

bending, and breaking are part of games

— but rule-breaking can be positive or

negative, and game designers have a lot

to learn from it. We will look at the for-

mal, social, and cultural ways that players

break rules and how rule-breaking can be

integrated into the game design process.

GD: Why do players want to break the rules?
KS: Players break rules for all kinds of

reasons, but they generally do so not to

break or end the game. Instead, most cre-

ative forms of rule-breaking introduce

excitement, variety, strategy, and fun into

the game.

GD: What will your session cover? What can
game designers learn from rule-breaking?

KS: Because games are systems, it is

always possible for players to drive a

wedge into it, bending the system into a

new shape by breaking the rules. We chal-

lenge game designers to find ways of

including this natural desire of players

into their game designs. When given the

right tools, players will transgress the rules

of the game in pursuit of alternate forms

of expression. How can this desire be

enhanced or slowed, modified or trans-

formed, by the design of the game itself?

This is what we will explore in our talk.

GD: How many years have you been going
to GDC? What has been the most significant
change since you began attending?

Eric Zimmerman: My first GDC was

1998. It was the year in Long Beach

f e b r u a r y 2 0 0 3 | g a m e d e v e l o p e r

G D C P R E V I E W

40

when the entire conference played a giant

game of dart-gun ASSASSIN. The confer-

ence has lost that kind of wonderful

folksiness, but that is inevitable as the

industry grows. For the last two years at

the GDC, gameLab has tried to bring

back a bit of that spirit with our own

massively multiplayer off-line games

(BITE ME in 2001 and LEVIATHAN in

2002). Look for our new game this year

in the IGDA booth.

GD: What’s your favorite event at GDC?
EZ: The best moments at a conference

always happen in the interstices between

the organized talks, meetings, and par-

ties. Surprise encounters between ses-

sions, gab sessions at cheesy hotel bars,

and late-night hotel-room game design

debates are what make GDC so fantastic

for me. I just wish there was more time.

JAKE SIMPSON
Psychology Programmer, Maxis
Programming Lecture: “Animation System
Implementation: What Works and What
Doesn’t”

GD: What will your session cover?
Jake Simpson: My session involves dis-

cussing approaches to building state-of-

the-art animation systems, heavy on the

practicalities of what works and what

doesn’t, what’s worth experimenting with

and what’s not. This information is

drawn from experience in working with

animation systems for third-person

games (HERETIC II), and creating new

animation systems for networked first-

person games (Ghoul 2 for SOLDIER OF

FORTUNE II and JEDI KNIGHT II) and for

next-generation SIMS products.

GD: What’s the single biggest takeaway you
got from developing Raven’s Ghoul system
that you think can save developers time in
planning animation system features?

JS: “Give the animators and coders

more time to learn how to use the new

technology.” Game development being

what it is, it usually takes two or three

games before new technology matures

enough for content creators to really

know where the limits are and how to

use it all in the most efficient manner.

The earlier you get the tech in the hands

of the content creators, the better-look-

ing and more spectacular the results will

be. Great tech depends on artists and

content creators building stuff that uses

it to the best of its ability — you need

everyone to be on the same page for it

all to come together.

GD: How many years have you been going
to GDC? What has been the most significant
change since you began attending?

JS: I’ve been going for about four years

now. From where I sit, the most signifi-

cant thing is what the GDC Advisory

Board is doing. They’ve made such an

effort this year to try to be specific in

what they present, in terms of actually

getting value out of the lectures. I figure

if I have to take notes at a lecture, then

it’s worth my time, and they seem to be

going all out for this effect this year.

Also, every year I feel like we are start-

ing to get more attendees from the rest of

the world, notably the Japanese. We all

have something to learn from people who

have such mastery of our craft, and I for

one applaud this international flavor.

GD: What’s your favorite event at GDC?
What’s your least favorite thing about GDC?

JS: My favorite events are the informal

get-togethers that happen after lectures

and roundtables. Being able to pigeon-

hole people with proven experience

about a specific issue you may be having,

or even just bending their ear about

something that interests you, is great. It

saves time, wasted research effort, and

usually nets a suggestion you would

never have had yourself.

Least favorite? Well, lets be honest,

it’s the hangover each morning. What’s

a GDC without some company-spon-

sored parties?

DAN SCHERLIS
CEO, Etherplay
Business and Legal Lecture: “Doing
Business with the Telecom Industry:
Understanding Their Deal Terms, Culture,
Rites, and Ritual”

GD: What will your session cover?
Dan Scherlis: Many developers are fasci-

nated with mobile games, for many good

reasons. And many developers are have

trouble getting attention from telecom

types, not to mention getting deals and

getting paid. I am not being glib in the

session title; I do feel that the major issues

are downright anthropological. The two

industries speak and act differently.

GD: What has the telecom industry learned
about game developers in the past year, and
has it altered their approach to these new con-
tent creators at all?

DS: Telecom has been a motivated and

attentive student of games and of game

developers. In the last year I have heard

far less talk of games as a commodity

and more respect for the value of quality

product. This is bringing about better

deal terms.

That said, we are still of different

worlds, and there is so little history of

deal-making between us that we do not

have much precedent for basic terms and

structures of our deals.

GD: What’s the single biggest gotcha that
awaits game developers making their first
foray into dealings with telecom companies?

DS: Communication — especially style

of communication: Game developers use

whiteboards; telecom types use

Powerpoint.

w w w . g d m a g . c o m 41

United Game Artists’ Tetsuya Mizuguchi
demonstrates REZ during a game design lec-
ture at last year’s GDC.

Also, a developer should not assume

that a telecom executive knows anything

about games. If you offer an RTS with

FPS action but RPG depth, with down-

loadable mods and ortho view, you will

not be understood. If you give examples

like WARCRAFT, HALF-LIFE, and FINAL

FANTASY, you will continue to strike out.

Test your pitch on a smart nongamer.

Your parent or spouse will have too much

of a clue. Try your dentist or accountant.

GD: There have been many losses, and
much pain, amongst mobile-game startups.
Where do you see an opportunity for profit
from mobile game development?

DS: Mobile games are echoing the his-

tory of Internet games. We see many

basic mobile games, which are hard to

differentiate. Over the Internet, we saw

many ad-supported games, few of which

earned good money for their developers.

The games that make big money online

are fundamentally different: they are of

premium quality, their designs exploit

the network and include persistent social

structures, and they have subscription

economics. I believe that this description

will apply to the most profitable mobile

games. This is why several online-game

veterans are being attracted to mobile

platforms; we see an opportunity to

build profitable communities, without

the multi-million-dollar, multi-year

development cycles.

The greatest challenge is to the design-

er. We need to design explicitly for this

new medium, rather than trying to sell

either shovelware or obvious but deriva-

tive and shallow distractions.

GD: How many years have you been going
to GDC? What has been the most significant
change since you began attending?

DS: I started attending GDC in 1992, I

think, when I joined Papyrus. I’ve missed

only one or two since then.

The most dramatic change has been

the astounding growth. As the common

complaint goes, this growth threatens the

sense of community and collegiality that

attracts many long-time attendees.

I can gripe with the best of them, but in

fact I have been pleased by the degree to

which the community survives. The San

Jose Convention Center has been a chal-

lenge, many industry veterans stay home,

and the sheer size is daunting, but I am

always delighted by the many chance

encounters with colleagues at GDC.

TOMMY TALLARICO
President, Tommy Tallarico Studios
Audio Panel: “Orchestral Panel”

GD: Who’s on the panel and what do you
hope to cover?

Tommy Tallarico: We will have some of

the best orchestral composers for the

videogame industry on the panel: Jack

Wall (MYST III), Clint Bajakian (of

LucasArts fame), Jeremy Soule (HARRY

POTTER), Bill Brown (RAINBOW SIX), and

Dan Irish (producer of MYST III). We

may also have a few special guests and

surprises!

Last year’s orchestra panel was really

tailored toward composers. This year we

felt it very important that the producers

and designers know about live orchestral

sessions as well, so we are tailoring it

more for them. Budgets, production dos

and don’ts, how to convince your boss,

the real value of using live players, union

vs. buyout, as well as other things, will

all be covered in this panel. It is impor-

tant for the project decision makers,

milestone schedulers, and purse-string

holders to find out how to go about get-

ting live music in their projects.

GD: How do you think producers and audio
professionals should best go about deciding
when to use orchestral performances in
games and when not to?

TT: Style of music and game genre is

one big contributing factor. Not every

game warrants live orchestra, but most

would benefit greatly because of it.

Publishers are looking to differentiate

themselves to the consumer from a quali-

ty standpoint, and using a live orchestra

can help do that. Live orchestras don’t

cost hundreds of thousands of dollars to

produce, either — there are many differ-

ent alternatives. You can’t get a 50-piece

live orchestra recorded for less than

$1,000 per minute of music.

GD: How many years have you been going
to GDC? What has been the most significant
change since you began attending?

TT: I used to sneak in and just go to

the parties since 1993. Then I got smart

and became a speaker. The biggest

change besides the obvious sheer number

of people would be the emergence of a

huge audio community coming out to

GDC. In the early years you could count

the number of audio people on three

hands. Since the Audio Pass was created,

hundreds of interested audio profession-

als and nonprofessionals have come

seeking knowledge and understanding of

this crazy profession. In audio you have

to deal with three important elements in

production: creative, technical, and busi-

ness. GDC is a place you can go to learn

about all three.

GD: What’s your favorite event at GDC?
What’s your least favorite thing about GDC?

TT: My absolute least favorite thing

about GDC is trying to get a room every

year. My favorite event is the Game

Developers Choice Awards ceremony. It’s

really nice to see the developers get the

recognition they deserve from their peers.

For the most up-to-date GDC 2003
information visit www.gdconf.com. q

G D C P R E V I E W

f e b r u a r y 2 0 0 3 | g a m e d e v e l o p e r42

Lionhead’s Richard Evans accepts last year’s
Game Developers Choice Award from the
IGDA for Excellence in Programming, for his
work on BLACK & WHITE’s AI.

i a n f i s c h e r a n d g r e g s t r e e tP O S T M O R T E M

f e b r u a r y 2 0 0 3 | g a m e d e v e l o p e r44

AGE OF MYTHOLOGY

Developing Sequels:
The Designer’s

Dilemma

Ensemble Studios’

w w w . g d m a g . c o m 45

I A N F I S C H E R | Ian joined Ensemble Studios as a designer in 1997, just in time for the final stages of AGE OF EMPIRES. In his spare
time he likes playing games and arguing. He can be reached at ifischer@ensemblestudios.com.
G R E G S T R E E T | Greg was a marine biologist up until he discovered AGE OF EMPIRES in 1998 and ended up joining Ensemble Studios
to work as a game designer. Feel free to send your marine crusatcean questions to gstreet@ensemblestudios.com.

O ne is pretty hard. There are a lot of things to

attempt and reject, a lot of mistakes to make, a

lot of lessons to learn. Without a prior success

(or even a prior failure) for comparison, much

of your design relies on instinct. Without an

experienced team, much of your schedule operates at dart-

board-level accuracy. Figuring out both how to work around

long-expected pieces that don’t pan out and how to capitalize

on unexpected miracles is a big part of the job. Mix these fac-

tors in with the usual chaos surrounding a game company on

her maiden voyage and you have a situation often referred to

generously as “challenging.”

Two is easier, although you may not think so at the time.

With your first game out in the wild, you’re able to get real-

world feedback on what worked and what didn’t. You know

more about your team and ideally have a familiar engine and

tool set to work with, providing you with a much better idea of

what’s possible. Additionally, from the lazy designer perspective,

half of your feature set is waiting for you at the start of the proj-

ect — everything you ran out of time for on the first game.

Three is the end of the world. By this time you’ve amassed a

good understanding of what people like about your games.

Unfortunately, you also have fans who’ve played two titles in

the series, plus a few expansions, and are starting to grumble

P O S T M O R T E M

f e b r u a r y 2 0 0 3 | g a m e d e v e l o p e r46

for something different. At the same

time, removal or alteration of any exist-

ing feature will be met with ranting e-

mails, forum petitions, and overturned

cars in your parking lot, so this is also

the time when finding out that preserv-

ing everything the old games had

becomes vital. The engine and tools you

developed for the first game and

advanced in the second are behind the

technical curve by this time, so now you

need to add developing and learning

new ones to the to-do list. And, at some

point, you’re going to get a visit from a

graduate of the this-trend-will-continue-

forever school of projection who, armed

with charts showing that title One

moved a million copies and Two moved

3 million, will tell you Three should

move 9 million copies.

This is where the design team was at

the start of AGE OF MYTHOLOGY. The big

question that haunted us was: Wow,

what are we going to do to top AGE OF

KINGS?

Ensemble Studios’ projects are ambi-

tious, and we ratchet up the ambition

with each new project. As the scope of

the project grew, the size of the team

grew. We were developing a new engine

and a new multiplayer online service at

the same time that we were developing a

new game, a game in which we wanted

to incorporate new features, such as God

Powers and myth units, and a more

ambitious single-player campaign.

Rather than restate the all-too-com-

mon problems of having more ambition

than resources, of having marketing

push for content before it’s ready, and

of having personnel problems every

company goes through from time to

time, we find it more useful to focus on

design aspects in this article. Designers

are Ensemble’s vision-bearers, but we

don’t get to just ram our ideas down

everyone else’s throats (as attractive as

that power sounds at times). The

designers must keep the project in

scope, keep the artists and program-

mers from killing each other, and make

sure feedback is heard without devolv-

ing the game into a design-by-commit-

tee project.

What Went Right

1. Iteration. Ensemble’s basic

design process is to get the game

playable early and then tweak it until

it’s fun. This applied to virtually every

feature in the game. Some features

changed a million times, and we were

willing to abandon things that just did-

n’t work, even when it was painful.

AGE OF MYTHOLOGY’s God Power

feature is a good example of this

process in action. On paper, our initial

concept of God Powers and Heroes

sounded good: Heroes would have but-

tons on the interface to target God

Powers wherever the selected Hero hap-

pened to be — simple enough.

Unfortunately, when we got the fea-

ture in the game and started playing

with it, it was awful. Having to have a

Hero in the place where you wanted a

God Power devolved all combat tactics

to selecting all your units and clicking

on the enemy hero. This led to Heroes

constantly getting killed, prompting

comments like “The Heroes don’t feel

heroic.” Additionally, with all God

Powers targeted with your Hero, if you

called down a meteor, it would land on

his hand. It didn’t damage him but it

didn’t look good.

We tried a new model where the

Heroes built “lightning rods” for the

God Powers (so players could kill some-

thing other than enemy Heroes to stop

an opponent’s God Power, and so that

Heroes could get out of the way of their

own God Powers). This wasn’t fun. We

tried another model where you could buy

all of the God Powers with resources,

like most everything else in the game.

This wasn’t fun. We tried a dozen more

models and variants.

Finally, after a lot of trial and error,

we hit on the model we shipped with.

Heroes were divorced from God Powers

and made the thing used to kill myth

units (which feels decidedly heroic).

God Powers were moved to the main

interface, and we made them single-use

only, which made them feel large and

important and kept them from landing

atop Heroes at every use.

G A M E D A T A

PUBLISHER: Microsoft
NUMBER OF FULL-TIME DEVELOPERS:

50 total employees, 15 programmers
CONTRACTORS: 10 quality-assurance
contractors, no contract programmers

LENGTH OF DEVELOPMENT:
30 months

RELEASE DATE:
October 31 2002

TARGET PLATFORM: PC
DEVELOPMENT HARDWARE: From

Pentium 2, 300MHz, 64 MB RAM, TNT1
graphics cards to Pentium 4, 1.7 GHz, 2
GB storage, GeForce 4 graphics cards

DEVELOPMENT SOFTWARE: MS Visual
Studio 6, Source Safe, 3DS MAX 4.0,

Photoshop
NOTABLE TECHNOLOGIES: Granny,

Bink
PROJECT SIZE: 1,500,000 lines of code

w w w . g d m a g . c o m 47

Because God Powers were so important to the vision of the

game, we couldn’t just yank them from the title after the sixth

or seventh different model didn’t work. Instead, we just con-

tinued to try different systems, brainstorming and then imple-

menting models. Because a new approach often required new

code and new art before it could be evaluated, we ended up

throwing a lot of work away to achieve our end result. But

we did achieve an end result we’re very happy with. Ours is

emphatically not an efficient process, but it continues to work

for us.

2. Everyone play-tests. It’s amazing how many devel-

opers rely on outside testers to tell them if the game is

fun or not. Outside feedback is vital in the later stages of a

project, but if your entire game is designed by polling the fans

or beta testers, you end up with a mushy game with no

vision. At Ensemble, everyone play-tests the game at least

once a week. This strategy keeps the team bought in to the

game that’s being developed. There are mandatory, assigned

play-test times in the morning and multiple pickup games in

the afternoons or evening.

We have found that these play-tests are instrumental in keep-

ing the team informed on the state of the project, giving them

ownership of the process, making sure bugs don’t slip through

the cracks, and figuring out when the gameplay is fun enough to

ship. The earlier implementation of God Powers described in the

previous section made sense until it got out in front of our co-

workers, at which time a mob brandishing torches and pitch-

forks strolled into our office. If the designers had relied solely

on our own instinct about the model, we likely would have

shipped with it.

3. Small meetings. For AGE OF EMPIRES and to a lesser

extent AGE OF KINGS, we kept the entire team involved

in the high-level design. In one particularly long meeting for

AGE OF KINGS we tried, as a company, to come up with a

design for herd animals. Past a certain number of attendees, it

became unmanageable to go around the room even once. So,

as these meetings got longer, we tried to keep focus by includ-

ing the various department leads and trusting them to relay

the feedback of everyone on their respective teams. However,

in a project the size of AGE OF MYTHOLOGY, even the leads’

meetings could have a dozen attendees, making it harder to

reach a consensus on any of the issues.

Eventually we refocused the leads’ meetings on task manage-

ment and progress reports and implemented a new series of

meetings for design brainstorming with a core group of only

four to five people, half of them designers. Features, such as the

list of civilization bonuses, myth unit abilities, and God

Powers, were all compiled in these meetings. When necessary,

we took these meetings offsite to make sure we could get our

business done without distractions. We found that e-mail was-

n’t efficient enough, and as busy as everyone was, impromptu

meetings weren’t always possible. We had to be formal about

scheduling these conferences, which we ended up arbitrarily

calling “small pets” (after “pet features,” since we needed a

name that didn’t sound like we were excluding anyone).

Because it was important to our process that everyone have a

chance to give feedback, we would announce the decisions

made in “small pets” meetings to the company at large. We

heard people’s concerns and ideas, incorporated any changes

we thought necessary, and then implemented the design into the

game. Everyone still had a voice, but ultimately we couldn’t

rely on a large group to come up with design implementations

as fast as we needed them.

Ensemble Studios worked hard to capture the building detail that was a
hallmark of AGE OF EMPIRES in the new 3D engine.Units were first conceptualized to make sure that they both fit with the

common art style, and also could be easily discerned from similar ones
in the game.

P O S T M O R T E M

f e b r u a r y 2 0 0 3 | g a m e d e v e l o p e r48

4. Data-driven tools. Developing data-

driven tools early in the process was a

strategy that really paid off for AGE OF

MYTHOLOGY. It took a lot of programmer time

away at the start of the project, when we were all

anxious to begin playing the game, but the

resource hit paid for itself when designers

could implement new content without

having to wake up the programmers

all the time. For example, although we

targeted 36 unique God Powers, some of

these were implemented in similar ways behind the

scenes. Once the programmers had implemented a

God Power to switch units, we could turn enemy

soldiers into pigs, or allied Pharaohs into the Son

of Osiris, all through data.

There is, however, a potential downside

to spending so much effort on tools.

For one, instead of working on high-

er-visibility game features, program-

mers spend their time on tools that

players may not see. Second, you might

be trading programmer time for designer time.

Near the end of the project, the design team had

all the tools they needed to implement

some features but lacked the time to

enter the changes.

5. Focus on campaign. The cam-

paigns for AGE OF EMPIRES and AGE OF

KINGS were fun but lackluster, largely completed

by one or two designers. At the beginning of plan-

ning AGE OF MYTHOLOGY, we decided that the

single-player campaign would be one of the

game’s big features on the back of the box. We

hired several new content designers, invested a

lot of time in custom animations for the in-

game cinematics, and made two trips to

Hollywood to work with professional voice

actors instead of using local talent or (shud-

der) our own overacting.

We had never before attempted an epic,

character-driven script, and we approached

the task in epic fashion, appointing a story

committee to review progress on the script.

(In retrospect, trying to please so many peo-

ple so early in the project was more trouble

than it was worth.) Near the end of the proj-

ect, the designers working on the campaign,

often with the artists working on animations

for the cinematics, met several times a day

so they could all keep in touch on

progress. The lead designer docu-

mented everything, ensuring changes

were made before testing the various scenarios again.

It was a tremendous amount of work at the

end of the project, when we could scarcely

afford it. But the work paid off, and we

delivered well-received single-player cam-

paign.

What Went Wrong

1. Design drove too much. Sure,

the design department had all of

these fancy tools, but in the end,

designers ended up doing a lot of the

work that a programmer might have been

able to do faster then it took the programmer to

develop the tool in the first place. We had early

frustrations when specs didn’t pan out as

intended in the end product, coupled with the

arrival of new people who had not worked

with us on a title before. We compensated by

heaping so much detail into specs that they

were often not even read. We went so far as to

provide descriptions for what artwork should be

associated with the various icons in the scenario

editor, and the various locations and states for

those buttons.

Since all they were doing was connect-

ing the dots on someone else’s feature,

new employees did not feel empowered.

As a result of days spent writing things

such as, “When you click this button, it

should appear depressed until the user

releases the mouse button, at which

time it should revert to looking un-

depressed; clicking the button in this man-

ner should cause a sound to occur, the

sound should be kind of like a twig snap-

ping…,” the design department took up

drinking in the middle of the afternoon.

In the future, we plan to keep design

driving the process, but at a higher level. We will

trust people at the implementation level to fill

in the details.

2. Scriptwriting n00bs. We knew

we wanted a script that had all

the scope and drama of The Iliad, and we

knew we wanted characters who could slap each

other on the back, make fun of each other, and devel-

op relationships over time. In short, we needed a big

story with a lot of dialogue. While the designers had

some writing experience in various forms,

none of us had ever tackled a script like

this. We also had not yet figured out how the in-game

cinematics would work, or how long we could make them with-

out boring everyone.

We had no idea what we were doing. We did it anyway. The

result was a lot of revisions to satisfy different opinions about

how a story or characters should work. Everyone had their

favorite bit character or script fragment that was

impossible to delete, and deleting anything threat-

ened to collapse the intricate story line. We eventual-

ly had to take a step back and revise with a much

smaller group of just two people. In the future we

will keep early feedback to a smaller group,

which we hope will get us closer to nailing the

correct length, number of characters, and plot

intricacies with fewer revisions.

Developing this sort of material at both a high

level of quality and in something resembling an

efficient manner demands some pain and experi-

ence that can only be gained by actually doing it. If

you’re planning on doing this sort of project and haven’t

done it before, double your estimates for everything

related to the project, then halve your plans for the con-

tent (number of characters, lines of dialogue, number of

scenarios, number of special art objects, and so on).

3. Consensus is hard with large groups.
Consensus is the basis of the game design

process at Ensemble. This company philosophy worked

exceedingly well when there were only a dozen of us.

Even when we grew to 20 or so people, getting

everyone in a room (we usually all had lunch

together) and hashing things out worked well. As

the size of our team grew, however, it became

increasingly less efficient to get everyone in a

room several times a week. Even worse, we stalemated a lot

more and started to resort to compromises to placate all

involved, so some of our design decisions began to

result in bland design-by-committee game models

(“oatmeal design,” in our parlance).

We settled on a strategy where the design

department would gather everyone’s feedback,

mull it over, and then make the call. It was dif-

ficult changing our mode of communication

in the middle of the project, and some of the

squeakier wheels protested that there was a

design black hole that swallowed up their

feedback. This prompted us to redouble our

efforts at documenting and communicating

changes to the team, but this was an ever-

widening gyre; for every e-mail you sent out

explaining a decision, you got five replies that

disagreed with various points of your logic and

required a response. Eventually, we got to the

point where we had to make a decision: the design

team could either do the work we needed to do to

and complete the game, or we could explain and

defend every decision we made.

We came to think of our larger team size as

simply a variable — it changes how we go about

being consensus-based, not whether or not we

use a consensus-based approach. Either way, we

were committed to our consensus-based process.

Our plan at this stage was to formalize what

eventually worked during the latter portions

of AGE OF MYTHOLOGY with our “small

pets” meetings. Our new projects are now

built around small, nimble groups with rep-

P O S T M O R T E M

f e b r u a r y 2 0 0 3 | g a m e d e v e l o p e r50

High-polygon opening cinematics are demanded by the fans. This time around, Ensemble experimented with working with an outside contrac-
tor. Those experiences might make for an entire Postmortem by themselves.

The models used for the in-game
cinematics needed to match their
low-poly equivalents that were
seen during gameplay.

resentation from all of the disciplines. These groups have the

ultimate decision-making authority but also the responsibility

for gathering feedback from the entire team, explaining and

defending decisions, and building a general consensus.

4. How different is “different”? The well-known,

inherent risk of sequels is that you need to keep

what is popular about earlier products while still offering

something new to justify the purchase of a new product. The

AGE OF EMPIRES games are large and complex, and we knew

we couldn’t take AGE OF KINGS and layer several new game

features on top of it; we had to pull out some systems and

change things to make a game that was “different.” While

some of us were (or thought we were) clear on what “differ-

ent” meant, there were many other definitions floating about.

For some members of the team, different meant, “AGE OF

KINGS, but the knights look like Minotaurs.” For other team

members, different meant, “There are no units, and you con-

trol the game with your mind.” When a new feature didn’t

work right away, the differences of opinion led to a lot of

pressure to revert to the tried-and-true.

For example, we went through several variations of our pop-

ulation model. Earlier implementations lacked houses, which

for some of the team was just too great a departure. The team

quickly split into two camps, one that argued for even more

change in the gameplay, and another that was scared that we

were moving too far from the game our fans loved and expect-

ed. The fans are not particularly forgiving in this respect, and

once the game was out, they applauded some of the new fea-

tures while protesting about even the smallest features that

were removed, such as choosing your player color.

Ultimately, there is no ideal solution to the problem of

defining what is different; games today are too complex to be

fully defined by a vision statement, so there will always be

some degree of opinion to factor in. We plan to try to miti-

gate these disagreements in the future by attempting to answer

the big questions such as “How different?” early on, and then

keeping these guidelines in front of the team for the duration

of the project.

5.Unfinished tools. Because we were dealing with a

new engine and there was no shared code from our

previous titles, we made the right decision to reserve a lot of

time early on to develop tools. Unfortunately, since the tools

were for internal use only, it was easy to move people off of

those tasks when other problems came up. Several tools were

never completely finished, and the customers for those tools

(typically designers) waited up until the final days of the devel-

opment cycle to see if improvements of incomplete features

could be added. While waiting for the tool, we hacked a lot of

content in place, figuring that it was better to do some work

than sit idle. A good example was the AI for computer oppo-

nents in scenarios, which came online very late, after the

designers had hacked in fake AI using scenario triggers. This

kind of work was difficult to unhack and left us with less time

to iterate than we would have liked.

For the future, we (like everyone else in the game business)

need to remember the value of tools and not skimp on their

development time. We additionally need to pay particular atten-

tion to those tools that might ship with the game, such as the

scenario editor, which was never completed to our satisfaction.

Here to Four

T he good and bad of getting there aside, the end product of

all this is our Three, AGE OF MYTHOLOGY. Everyone at

Ensemble Studios is immensely proud to have contributed to

this game and we’re now looking forward to the opportunity to

figure out what type of beast Four will be.

At this early stage, we only have one question on the board:

P O S T M O R T E M

f e b r u a r y 2 0 0 3 | g a m e d e v e l o p e r52

One of the goals of AGE OF MYTHOLOGY was to design a beautiful, living world. Ensemble uses bright colors to make inviting landscapes they hope
players will want to spend time in.

S O A P B O X h e a t h e r k e l l e y

f e b r u a r y 2 0 0 3 | g a m e d e v e l o p e r64

A s developers, we place a dispropor-

tionate stake of our medium’s identity in

character-based narrative games. These

games give us something that we can’t

get from the intellectual beta-wave exercise

of puzzle games or the adrenaline-pumping simulation of

sports games. While puzzle and sports games represent a hefty

chunk of game sales and game players, you seldom see a polygo-

nal quarterback, much less a falling brick, on a magazine cover.

We want to reach players emotionally in the best way we know

how; because stories holds a privileged place in our culture — in

all cultures, in fact — we use these games to represent our craft

to the outside world. As humans, we use stories to make sense of

the world, and narrative games are how we achieve that goal in

our medium.

If we don’t make them relevant to wider audiences by

increasing their variety and complexity, narrative games will

ultimately hamper the evolution of games themselves. We must

expand beyond the classic hero story to get these games past

the status of geek recreation. It’s not going to be easy, or pretty,

but it’s what we’ll have to do if we want the game industry to

grow up and achieve mainstream recognition as a form of art

and human expression.

Console publishers and developers have long known that the

majority of the potential game-buying population doesn’t give a

damn that your game has dynamic LOD, bump-mapped decals,

and pushes 1.5 trillion multi-pass lit polygons per second. If we

want a larger audience, we need to shift some focus from the

visual aspects of game technology and focus on innovations in

player experiences.

To accomplish such a shift in narrative games, we need to

innovate on a number of different fronts:

Narrative variety. Most story games are comparable to super-

hero comic books in terms of audience and themes. But why?

Why not explore more varied subject matter? The majority of

superhero comics and narrative games give us a chance to play

with power. But that’s not the only story there is to tell about

being alive. We can innovate through our design and writing to

explore other facets of existence; we can invent situations and

stories that a

player wants to

experience, even if

they don’t fulfill these obvious power fantasies.

This kind of innovation poses a bigger challenge than it

sounds. Hero narratives depend on the triumph of the protago-

nist. Since we embody the story’s protagonist rather than simply

watching the story unfold, such games leave no room for

tragedy or failure. Failure can be an effective emotional experi-

ence as a bystander, but as long as we have choice, we do not

naturally choose to fail. We don’t mind empathizing with a trag-

ic character if we see the machinations of the universe working

their ruin, beyond our control, but we can’t stand to be that

person ourselves and be powerless to prevent it. So we need new

story mechanics that either allow the player to fail and still be

satisfied, or other contexts for success that don’t depend on an

endless string of worlds-in-peril that only we can save.

Multiple fully realized characters. Most narrative games are plot

driven, with no attention given to character subtlety. But this

doesn’t have to remain the case. Some games are already blazing

compelling trails in this arena. For example, SEAMAN integrated

the intimacy of a spoken interface with a nonheroic personal

story arc. Player achievement in SEAMAN was on a much smaller

scale but was as meaningful as saving the world. The day I acci-

dentally killed my carefully nurtured two-month-old Seaman was

probably the most emotionally charged moment I’ve had playing

a game. On a technical level, until we have simulated personali-

continued on page 63

Ill
us

tr
at

io
n

by
 S

te
ve

 M
un

da
y

Narrative
Games: Finding
Another Side
to the Story

ties complete with nonverbal communica-

tion and speech recognition, we at least

need more robust AIs that can make real-

istic personal decisions in a wide variety

of scenarios beyond simple fight-or-flight.

Interface innovation. Button and

thumbstick controllers are especially

good for fighting things but not so great

at other interactions with anthropomor-

phic characters. Interface innovations in

speech and face/gesture recognition, and

the use of input methods such as music

and text, all possess untapped potential

to elevate and vary our emotional experi-

ences in games.

Emotional buy-in. What makes us

care? The size of the stakes? Not neces-

sarily. What’s really important is how

much a given situation or problem

relates to us personally. Everyone agrees

that if “the universe” or “good” as we

know it is destroyed, the situation

would certainly be personally relevant.

But smaller stakes can seem equally

important if they are made sufficiently

personal. One way to achieve this per-

sonal relevance is through a direct

responsibility for another single crea-

ture. SEAMAN and earlier, simpler sim

creatures were examples of this, and

other recent games have successfully

used this formula, such as BLACK &

WHITE and ICO. More importantly, per-

sonalizing the responsibility means that

player responsibility becomes a facet of

gameplay. In ICO you must actively keep

Princess Yorda with you by pulling or

coaxing her forward, and defend her

from the constant threat of capture.

Design for player expression. As world

builders, we can give the players tools

and settings to inject themselves into the

story, supporting a broader freedom

within the constraints of the fictional set-

ting. In GRAND THEFT AUTO 3, the best

example to date of this kind of richly

developed game world, players interact

with the game world to write their own

short story, while playing out the larger

narrative. More often than not, it’s those

player-written stories that make the game

memorable and generate excitement.

That’s why many players spurned

GTA3’s story mode entirely in favor of

the open-ended play mode. To make bet-

ter narrative games, we need to incorpo-

rate the lessons of systemic gameplay and

integrate that play style into fiction arcs

that aren’t so easily discarded.

Development processes that encourage
innovation. Games with characters and

narrative are almost universally expen-

sive. It’s no coincidence so many indie

games are puzzle games, card games, and

space flight sims. Creating living, walk-

ing, talking beings is incredibly labor

intensive. Large teams can saddle such

risk because the potentials are large

enough and because the genre is inher-

ently appealing to established developers.

Publishers in turn like the fact that recog-

nizable characters help sell games. But

indie developers don’t have the same

resources and infrastructure to make rev-

olutionary narrative games. Mods offer

some potential, but availability of better

and cheaper tools for enabling deep char-

acter development will lead to more

innovation, sooner.

For years we’ve survived on easy inter-

activity, and what I’m proposing here is

not the easy stuff. But our medium will

not expand until we make more effort to

tackle the hard and messy problems. Not

all games made with more complicated

technology are going to be masterpieces

of the form — in fact they most certainly

won’t be, initially. The biggest ground-

breakers should try first to entertain.

Mass appeal nabs publishers and others

to fund projects; risk can be incremental,

and amortized. Little by little, our cre-

ative and artistic landscape will grow;

only then will our Anna Kareninas and

Citizen Kanes emerge. q

H E A T H E R K E L L E Y | Heather is a
designer on THIEF 3 at Ion Storm Austin.
She has a master’s degree in radio-TV-film
from the University of Texas and has con-
tributed production and design work to
three published titles during her first five
years in the industry. You can excoriate her
at hkelley@ionstorm.com.

S O A P B O X

w w w . g d m a g . c o m 63

continued from page 64

	04gameplan
	06indwatch
	09prodrev
	14profile
	16innerp
	22artview
	26soundp
	28betterby
	30f-lally
	38gdc_prev
	44postmort
	64soapbox

	return:

