
FEBRUARY 2002

G A M E D E V E L O P E R M A G A Z I N E

G A M E P L A N
L E T T E R F R O M T H E E D I T O R

The Joys of Self-Regulation

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief

Jennifer Olsen jolsen@cmp.com
Managing Editor

Tor Berg tberg@cmp.com
Production Editor

Olga Zundel ozundel@cmp.com
Art Director

Audrey Welch awelch@cmp.com
Editor-At-Large

Chris Hecker checker@d6.com
Contributing Editors

Daniel Huebner dan@gamasutra.com
Jonathan Blow jon@bolt-action.com
Hayden Duvall hayden@confounding-factor.com

Advisory Board
Hal Barwood LucasArts
Ellen Guon Beeman Beemania
Andy Gavin Naughty Dog
Joby Otero Luxoflux
Dave Pottinger Ensemble Studios
George Sanger Big Fat Inc.
Harvey Smith Ion Storm
Paul Steed WildTangent

ADVERTISING SALES
Director of Sales & Marketing

Greg Kerwin e: gkerwin@cmp.com t: 415.947.6218
National Sales Manager

Jennifer Orvik e: jorvik@cmp.com t: 415.947.6217
Senior Account Manager, Eastern Region & Europe

Afton Thatcher e: athatcher@cmp.com t: 415.947.6224
Account Manager, Northern California & Southeast

Susan Kirby e: skirby@cmp.com t: 415.947.6226
Account Manager, Recruitment

Raelene Maiben e: rmaiben@cmp.com t: 415.947.6225
Account Manager, Western Region & Asia

Craig Perreault e: cperreault@cmp.com t: 415.947.6223
Sales Associate

Aaron Murawski e: amurawski@cmp.com t: 415.947.6227

ADVERTISING PRODUCTION
Vice President, Manufacturing Bill Amstutz
Advertising Production Coordinator Kevin Chanel
Reprints Stella Valdez t: 916.983.6971

GAMA NETWORK MARKETING
Senior MarCom Manager Jennifer McLean
Marketing Coordinator Scott Lyon
Audience Development Coordinator Jessica Shultz

CIRCULATION
Group Circulation Director Catherine Flynn
Circulation Manager Ron Escobar
Circulation Assistant Ian Hay
Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes

t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas

t: 650.513.4234 f: 650.513.4482 e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall
Executive Vice President & CFO John Day
President, Technology Solutions Group Robert Faletra
President, Business Technology Group Adam K. Marder
President, Healthcare Group Vicki Masseria
President, Specialized Technologies Group Regina Starr Ridley
President, Electronics Group Steve Weitzner
Senior Vice President, Business Development Vittoria Borazio
Senior Vice President, Global Sales & Marketing Bill Howard
Senior Vice President, Human Resources &

Communications Leah Landro
Vice President & General Counsel Sandra Grayson
Vice President, Creative Technologies Philip Chapnick

W W W . G A M A N E T W O R K . C O M

✎

W hat kind of kid
were you? Did
your mom have to
nag you endlessly
to clean your

room, your constant refusals erupting
into all-out wars? Or perhaps you were
cheerful and obedient, always cleaning
your room as you were told. Sometimes,
if you did it without your mom having to
ask, she might give you a cookie.

The game industry got its cookie in
December when the Federal Trade Com-
mission issued its latest report to Congress
on “Marketing Violent Entertainment to
Children,” a follow-up to a report submit-
ted in September 2000 which criticized
marketing practices in the music, film, and
videogame industries. The conclusion was
that since the first six-month follow-up
report released in April 2001, the film and
videogame industries have continued to
improve their rooms’ tidiness with respect
to diverting their marketing of violent-
themed or otherwise objectionable enter-
tainment away from minors. (The music
industry, apparently, is still running away
from Mom, screaming and slamming
doors, and seemingly oblivious of the fact
that Mom usually wins in the end.)

The self-regulatory efforts of the game
industry’s trade organizations, in particular
the Interactive Digital Software Associa-
tion and the Entertainment Software
Rating Board along with its Advertising
Review Council, are commendable for
willfully assuming responsibility for indus-
try marketing practices while rightfully
continuing to defend our First Amendment
rights. What they’ve so deftly realized is
that when you address one critique pur-
posefully and with measurable success,
you fend off outside agencies who would
regulate this industry without its best busi-
ness and creative interests in mind.
Successful self-regulation also helps to
dilute criticisms lobbed at other aspects of
our trade. But we’re not out of the public-
opinion woods yet.

The most important thing for our indus-
try to do now is to continue to defend

itself against errors of fact in public opin-
ion, such as the persistent and pernicious
misperception that videogames are pre-
dominantly made for and played by chil-
dren. When Australia’s Office of Film and
Literature Classification devised its first
videogame rating system in 1994, “...con-
cerns were expressed about the interactive
nature of computer games and the possible
adverse effects on children, who were seen
as the primary target audience for comput-
er games.” (OFLC Discussion Paper, “A
Review of the Classification Guidelines for
Films and Computer Games,” 2001). Later
guidelines established a 15-and-over rating
for some games, but decreed — in a tri-
umph of ambiguity — “the stronger com-
puter games are banned.” (OFLC
“Guidelines for the Classification of
Computer Games,” 1999).

The same week the FTC released its
updated report in the U.S., copies of clear-
ly mature-themed games such as GRAND

THEFT AUTO 3 and GHOST RECON were
reportedly being whisked from store
shelves in some Australian jurisdictions, at
the height of the Christmas shopping sea-
son, in order to undergo reclassification.
The head of Sony Computer Entertain-
ment Australia can tell a reporter for the
Sydney Herald Sun that half of Playstation
2 owners are over 30 years old, yet the
country’s regulatory body concluded just a
few years earlier that there was no need
for a mature rating for games as there was
for film, because games were for children.
Clearly there is a lot of confusion coming
out of and real money evaporating into
this non-self-regulatory system.

Lessons abound about the virtues of
successful self-regulation and the perils of
yielding control to outside interests. The
U.S.-based industry has fortunately been
rewarded with praise for its efforts so far,
but now is not the time to rest on our gos-
samer-thin laurels, nor will it ever be.

600 Harrison Street, San Francisco, CA 94107 t: 415.947.6000 f: 415.947.6090

2

Game Developer
is BPA approved.

Game Engines, or Are
They?

I object to Andrew Kirmse and Daniel
Sanchez-Crespo’s classification of

NetImmerse and Alchemy as “game
engines” in “Test Drive: On the Open
Road with Two of Today’s Most
Powerful Game Engines” (December,
2001). They don’t qualify as engines at
all; they’re component sets.

Anonymous

via e-mail

DDAANNIIEELL SSAANNCCHHEEZZ--CCRREESSPPOO RREESSPPOONNDDSS: The
term “game engine” is pretty slippery.
Traditionally, it has referred to “closed
solutions,” which allowed the developer
to concentrate on content creation. In
this respect, NetImmerse and Alchemy
should be better called “game develop-
ment toolkits.” Both Andrew and I took
care that this idea was clearly stated in
our reviews.

Still, this semantic precision is a dou-
ble-edged sword. Being “traditional”
engines, Quake & Unreal should allow
teams to concentrate on content, right?
Still, when Valve used the Quake 2
engine to create HALF-LIFE, some compo-
nents were reworked or written from
scratch. Does that make Quake 2 less of
an engine? Now, consider HIRED GUNS, a
game built on top of Unreal. What’s so
interesting about it? Well, it’s a real-time
strategy game, clearly not what the peo-
ple at Epic had in mind when they coded
their software. The whole interface was
replaced, and I can guess lots of AI/logic
code needed some major reworking.
Should we change the naming of those
packages in that case?

Most teams working on classical game
engines are in fact using a toolkit
approach: analyzing the available com-
ponents and reworking those that need
it. Should we totally drop the “engine”
term if even the most representative
products violate the definition? Lots of
precision can make it impossible to clas-
sify items into groups, as each item has
specific features that make it unique.
Being practical (and, yes, adding some

imprecision), we can consider Quake
and NetImmerse members of a same
family which, for historical reasons, we
can call engines. You will always have
closed engines, which will offer a faster
time to market, and toolkits, which give
us greater flexibility. In the end, all these
products are nothing but close relatives,
so the incurred imprecision in the nam-
ing is, in my opinion, justified.

Kudos for “The Inner
Product”

Ihave just read Jon Blow’s first “Inner
Product” column (“Mipmapping, Part

1,” December 2001). I am currently on a
game project and the information he has
supplied is more than enough to get my
team thinking on how we could imple-
ment a better mipmapping algorithm.

Steve Marth

via e-mail

Don’t Forget to Gamma
Correct

I’m so glad to see that Jonathan Blow’s
“Inner Product” column has picked

up the technical torch at Game Dev-
eloper (“Mipmapping, Part 1,”
December 2001).

Besides the ringing mentioned in the
article, another effect usually ignored by
game programmers (and almost every-
one else) is the effect of gamma correc-
tion (or lack thereof) on PC monitors.
Since I didn’t see this effect mentioned in
the article, here’s a brief rundown.
Imagine your base texture is a checker-
board, 2�2, two black and two white
squares. The pyramid derived from this
texture is a 1�1 gray, usually stored as
0.5. However, the answer should really
be more like 0.73, if you factor in
gamma correction for CRT monitors
(LCD monitors screw up the equation
usually, as their response is different).

Who cares? Well, in this case, if you use
0.5 then the object is far away and
appears dim, and as it comes closer, it gets
brighter. Not a huge deal, but it’s so easy

to avoid if you’re precomputing mipmaps
using elaborate filters (such as the article
describes). You might as well get gamma
correct, too.

If you’re smart, you do all this with at
least 12 bits of precision per channel, to
avoid banding (Jim Blinn talks about this
precision problem with gamma conver-
sion in his books).

Eric Haines

via e-mail

JJOONNAATTHHAANN BBLLOOWW RREESSPPOONNDDSS: Actually, in an
upcoming column, I talk about gamma
correction. Rumor has it that the next
chip design from A Major 3D Accelerator
Maker has deep enough channels and a
versatile enough RAMDAC or page copi-
er that you can just keep the frame buffer
in light-linear space and exponentiate
everything after the whole frame is
drawn. This has good connotations for
lighting (in other words, it becomes basi-
cally free to actually do lighting at the
proper falloff rate).

Teaching Games

Ienjoyed Celia Pearce’s “Learning
Curves: The Present and Future of

Game Studies” (Soapbox, December
2001).

Six years ago I proposed a videogame
programming course to Paloma College,
a community college in San Marcos,
Calif., which I have been teaching part-
time for the past five years. We recently
decided to expand our program by offer-
ing two new courses. The first will be
offered this spring semester: “An
Overview of the Videogame Industry.”
The second class to be started next year
will be a game programming course. We
will be offering a videogame specialist
certificate, but hope to expand it to an
A.A. degree in videogame programming.

Ed Magnin

via e-mail

f e b r u a r y 2 0 0 2 | g a m e d e v e l o p e r4

S A Y S Y O U
A F O R U M F O R Y O U R P O I N T O F V I E W . G I V E U S Y O U R F E E D B A C K . . .C

C
Let us know what you think: send e-mail

to editors@gdmag.com, or write to

Game Developer, 600 Harrison St.,

San Francisco, CA 94107

Christmas console launches. The
month leading up to the all-important
holiday period saw
the start of the sec-
ond round the ongo-
ing console wars, as
Xbox and Gamecube
finally made their
long-awaited debuts
just days apart.
While both new con-
soles initially seemed
to sell out as quickly
as stores could stock
them, in the weeks
following the launch-
es it was difficult to decipher the num-
bers to conclude who actually had the
better launch.

Nintendo claimed that sales of nearly
600,000 consoles in the first 15 days of
Gamecube availability made the launch
the most successful console debut ever.
While Microsoft had just half as many
units ready for launch and hadn’t publi-
cized its sales numbers at press time, the
company claimed the most successful
launch title for Xbox, asserting that
Bungie’s HALO was out-selling Nintendo’s
LUIGI’S MANSION. Both companies hoped
to have more than 1 million consoles in
consumers’ hands by the end of the year.

The other consoles. Sega was moving
the final Dreamcasts out the door after
cutting the price on remaining consoles
from $79.95 to
$49.95. New pricing
has moved the dis-
continued machine at
a brisk pace, pushing
Dreamcast sales past
the 10 million mark.
Said Sega’s Peter
Moore of the too-
late sales surge,
“Ironically, we now
wish we had more.”

Sega’s post-Dreamcast recovery is
moving along slowly, as the company
posted a $169 million loss in the six
months ended in September. Sales were
down 18 percent from the previous year.

Sony set a new price for Playstation 2
at the end of November, but the new rate

didn’t extend to
North America, at
least for the duration
of 2001. The 15 per-
cent price reduction
was credited to
reduced production
costs rather than as a
response to console
launches from com-
petitors Nintendo and
Microsoft.

Bleem emulator
gives up. Bleem, the company that made
Playstation emulators for PC, Macintosh,
and Dreamcast, has shut its doors after
protracted legal battles with Sony over
copyright infringement. Sony first sued
Bleem over its products in May 2000.
Bleem counter-sued, claiming Sony was
exercising an illegal monopoly over the
videogame industry.

Nvidia replaces Enron on S&P 500.
The sudden demise of energy firm Enron
Corp. was good news for chip maker
Nvidia. Standard & Poors announced at
the end of November that Nvidia would
replace Enron in the prestigious Standard
& Poors 500 Composite Index.

Square CEO quits after poor show-
ing by Final Fantasy. Game software

maker Square
announced that president
and chief executive officer
Hisashi Suzuki would
resign after the company
reported its worst-ever loss
for the first half of its fiscal
year due to a disappointing
showing by Final Fantasy:
The Spirits Within. Square
reported a group net loss
of $106.8 million for the

six months ended September 30. Chief
operating officer Yoichi Wada was sched-
uled to take the top position on
December 1, while Suzuki remains as the
chairman. The film generated box-office

revenue of about $30 million in the U.S.
market, well below the targeted $80 to
$90 million, and interest among Japanese
consumers has also been weak.

Konami group net profit plunges.
Konami announced a drop of 78.3 per-
cent in group net profit in the first half
of the company’s fiscal year. Most of of
the deficit was attributed to profit short-
falls for the company’s Yu-Gi-Oh card
game. Group net profit dropped to
$20.74 million from $94.64 million for
the six months through September,
despite total sales rising nearly 20 per-
cent to $725.48 million. Growth in sales
of its videogames business, however,
could not offset a sharp decline in oper-
ating profit in its card game business.

Interplay reports few bright spots in
third-quarter financials. Interplay
reported net revenues of just $4.2 million
for its fiscal third quarter, a drop of 87
percent from last year. The net loss for the
period was $20.6 million, a disappointing
result after reporting net income of $0.1
million in the same period last year. Most
of the drop can be attributed to failing to
ship games; Interplay didn’t have any new
titles in the third quarter and had shipped
just seven for 2001 as of mid-December.

Interplay released a total of
26 titles in 2000. q

f e b r u a r y 2 0 0 2 | g a m e d e v e l o p e r6

I N D U S T R Y W A T C H
T H E B U Z Z A B O U T T H E G A M E B I Z | d a n i e l h u e b n e r

SUPER MONKEY BALL proved to be a pop-
ular Gamecube launch title.

J

D . I . C . E . S U M M I T
HARD ROCK HOTEL

Las Vegas, Nev.
February 28–March 1, 2002
Cost: variable
www.interactive.org

G A M E D E V E L O P E R S C O N F E R -
E N C E 2 0 0 2
SAN JOSE CONVENTION CENTER

San Jose, Calif.
March 19–23, 2002

Cost: $195–$1,950 (early-bird discounts
available)
www.gdconf.com

U P C O M I N G E V E N T S

CCAALLEENNDDAARR

Microsoft proclaimed HALO the best-selling
console launch software for the holiday
shopping season.

XX

w w w . g d m a g . c o m 9

P R O D U C T R E V I E W S
T H E S K I N N Y O N N E W T O O L S

N ewtek’s latest release of
its 3D modeling and ani-
mation package is
crammed full of good-
ness. So what do you get

for the upgrade price? You get some new
features, some great enhancements to the
established ones, and an occasional sim-
ple but elegant refinement.

Motion Mixer. Finally, Lightwave 3D
gets its very own nonlinear animation
system. Lightwave users have been wait-
ing for a long time, and it’s finally here:
Motion Mixer. With this tool, you can
define a character and then build a
library of its motions. Once you’ve iden-
tified the motions (such as a run cycle
and a walk cycle) you can edit them
together and easily blend from one to
another. Additionally, Motion Mixer
allows you to set pre- and post-behaviors
for motions (such as repeat and oscil-
late), scale, load, and save entire hierar-
chies of motions. It also has a nice
motion mapper tool that lets you load
motions from a different character.

Motion Mixer is a great tool, but after
I used it for a little while, it left me want-
ing more. Unfortunately, Motion Mixer
restricts its motions to a minimum of five
frames. This means that you can’t work
with simple poses. Motion Mixer also
lacks the ability to load in standard
motion capture files. Nevertheless, if you
still do character animation in Light-
wave, this feature alone is worth the
price of the upgrade.

Spreadsheet editor. Another great new
feature in Lightwave is the spreadsheet
editor. This view looks similar to the
scene editor, except that you can expand
it spreadsheet-style with tons of item
properties. All of these properties can be
selected en masse and tweaked. You can
reset them all to a new value or add/sub-
tract/multiply an offset to every one.

You can make a massive change, preview
it in real time, and if you like it, you can
apply it to the scene. It also has a time-
line, just like the scene editor, where you
can move and size motions. You can
make custom workspaces and save them
with your scene. You can sort by any
property and use its powerful filter for
the items list. It took me all of two sec-
onds to figure out and love this feature.
I really wanted this feature when I had a
scene with 78 lights that needed lens
flares. Just for fun, I loaded that old
scene up and was sorely disappointed to
find that the speadsheet editor doesn’t
do lens flare properties. In short, the
spreadsheet editor adds some extremely
useful functionality, but you still might
have to resort to a text editor every once
in a while.

Sprites. Some might not consider this
feature to be a big deal, but coming from
game land, sprite-based particles are a
huge deal to me. Both hypervoxels and
volumetric lights have sprite options
now. There’s nothing to it, just click the
sprite checkbox and let Lightwave take
over. It renders the sprite version of your
hypervoxel internally and assigns it to
each particle. (Of course, you can also
assign your own texture if you want.)
This is a very useful option for game
developers. You can see the particle
sprites animating in layout in real time.
Even though it’s not exactly the sprite
that being rendered, it’s great for tweak-
ing timing. When rendered, both the
voxel and volumetric light sprites look
just fine, even when flying through them.
And they render a lot faster than in pre-

Newtek’s
Lightwave 3D 7b

by sergio rosas

S E R G I O R O S A S | Sergio is currently acting as lead artist for THIEF 3 at Ion Storm.
He can be reached at srosas@ionstorm.com.

LIGHTWAVE 7B. Motion Mixer is Lightwave’s long-awaited new nonlinear animation system.

XP R O D U C T R E V I E W S

10 f e b r u a r y 2 0 0 2 | g a m e d e v e l o p e r

vious versions. This makes hypervoxels
actually usable for me.

Rendering speed. Speaking of speed
increases, Newtek added quite a few
with Lightwave 7b. Besides being able to
use sprites to speed up hypervoxels, you
can also bake a hypervoxel cloud to get
great rendering speed increases.
Radiosity got a new “backdrop only”
setting that renders faster even if it does-
n’t look quite as good. Also, a new
“shading noise reduction” global illumi-
nation option can make the low-end
area light and radiosity settings look less
grainy while rendering much faster than
the higher settings.

Enhanced particle system. Lightwave
comes with an integrated particle sys-
tem, and (although it might not be as
good as the third-party systems) it’s get-
ting much better. With this release, the
particle engine got interparticle colli-
sions, particle respawning, and collision
spawning. This means that you can sim-
ulate rain — each particle spawns little
splash particles when it hits the floor.
You’re now able to attach an object or
hierarchy to a particle, so you can make
giant meteors crashing into each other
and breaking into tiny pieces. Particle

emitters also got a bunch of new nozzle
types, such as sphere, cone, and object
vertices. Newtek also added a bunch of
new wind types, such as turbulence, vor-
tex, and explosion. The wind types are
powerful and have a great visual repre-

sentation that makes them a snap to use.
Everything about the internal particle
system feels a lot more integrated than
in previous versions — they even interact
with motion designer soft bodies.

Graph editor improvements. With every
new version of Lightwave, the layout
graph/curve editor gets better and better.
This time Newtek added an OpenGL
interface, which the company claims is
able to do hundreds of curves at once. It
does feel much smoother and faster than
it ever did before. Another new feature
that’s a great time-saver, the graph editor
will now open with the curve for the cur-
rent item selected. Unfortunately it doesn’t
open all of the curves if you have multiple
items selected. Some other enhancements
include match footprint, key reduction,
curve filtering, and key bins.

Modeler enhancements. Compared to
the Layout interface, the Modeler got very
few new features. Newtek added a round-
ed box primitive and a more useful curve
tool. The new face collapse command lets
you select adjacent polygons and collapse
them all to a single point. This is a real
time-saver for optimizing models. You can
also now airbrush between morphs.
(Neat, but it’s no Artisan.) Additionally,

LIGHTWAVE 7B. Sprite options for hypervoxels and volumetric lights make these viable effects for
game animators.

LIGHTWAVE 7B includes Sky Tracer, a powerful and elegant feature for creating atmospheric
effects.

being able to save a single layer as an
object and to flatten all layers will come
in handy to game animators.

LScript Commander. This new tool
keeps a list of all the behind-the-scenes
commands that are executed when you’re
clicking around the Layout interface. You
can create macros easily by copying and
pasting selected commands into the work
area and hitting the Execute button. You
can also install your own macro button
from there. LScript Commander is not as
slick its Maya or 3DS Max counterparts,
but it’s a start.

Sky Tracer 2.0. Sky Tracer got a facelift
for Lightwave 7b. It’s now fully integrat-
ed into Viper and seems easier than ever
to use. It has a great Suns feature, which
lets you type in the month, day, year,
geographical location, and time, then it
instantly pops out a great looking sky. It
also has a Baker feature that easily
exports a skybox — another old plug-in
made usable for game developers.

Toon shading. For those of us who like
stylized renders, Lightwave 7b ships with
BESM (Big Eyes Small Mouth), a great
shader for cartoon rendering. It has
plenty of great options such as unlimited
zones of shading and variable blending
between zones. Each zone has opacity,
brightness, and saturation settings.
Specularity options, gradient overlays,
edge options, and much more make this
my favorite toon shader.

To Buy or Not to Buy?

L ightwave 7b has some very useful
and long-awaited new animation fea-

tures that might seem a little rough
around the edges to some. Those accus-
tomed to other character animation
packages will probably not be tempted to
make the switch. Still, these new features,
along with all the great refinements made
to existing features, are a must-have for
veteran Lightwave animators. In the
realm of special effects, Lightwave’s
hypervoxels are top notch and continue
to refine. The addition of sprites makes
Lightwave game developer friendly. For
the low-polygon modelers, this version of
Modeler has few new features, but it
continues to be the best polygon modeler
for the money. If you are doing UV map-
ping in Lightwave, you should upgrade
to 7b. For anyone doing cinematics, or
for rogue contract artists, I would make
this my tool of choice. To cut a long
story short, the “b” in Lightwave 7b
stands for “bang for buck.”

ACCUREV 3.0.1
by michael saladino

R evision control software is the
safety net that allows multiple pro-

grammers to work together on the same

code base without trampling on each
other. Most systems fall into one of two
camps: either a low-cost solution, such as
Microsoft’s Visual SourceSafe, or a mas-
sive system requiring a team of experts to
keep it running, such as Rational’s
ClearCase. Accurev is trying to carve a
niche for itself between these two
extremes.

I was able to get my trial copy up and
running within minutes of downloading it.
The server setup was simple and painless.
I had slightly more difficulty when work-
ing with the client side, but that’s
undoubtedly because the client is where
the greatest amount of functionality is
located. My test case was to take my cur-
rent game project and copy it to Accurev.
More than 2,000 files were uploaded into
the system in a matter of minutes, my first
indication that Accurev is extremely fast.
Soon after this, I was able to get complete
source for my client machine with all the
basics, including difference, history, and
checkout control. My next task was to
time basic operations, and what I found
was impressive. From checkouts to history
differences, Accurev performed standard
functions many times faster than the
Visual SourceSafe equivalents.

However, where Accurev really shines is
in its solutions to the subtle “gotchas”
that often slow production when one uses
low-budget software. One of the classics is
when a programmer checks in a large
group of files at the same time that anoth-
er programmer is getting the latest code.
The person getting code will only receive
part of the total check-in, which in most
cases will render the build unable to be
compiled. Accurev disallows this by keep-
ing transactions such as large check-ins
from applying publicly until it is complete.

A more severe test that I ran was to
begin a check-in of multiple files and
then disrupt the transaction by pulling
the plug on the Accurev server (a little
extreme, but I’m testing reliability here).
I know from experience that losing
power during a Visual SourceSafe trans-
action can be a dangerous event, result-
ing in corruption of the database.
Accurev, however, was able to survive
nicely. When I restarted, everything was

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

w w w . g d m a g . c o m 11

STATS
NEWTEK

5131 Beckwith Blvd.
San Antonio, TX 78249
(210) 370-8000
www.newtek.com

PRICE
$2,495 (upgrade price is $495)

SYSTEM REQUIREMENTS
Windows: Windows 98/ME/2000 (Service
Pack 2)/NT 4 (Service Pack 6a), TCP/IP
network protocol installed, 128MB RAM.
Macintosh: PowerPC Processor (G3 or
higher recommended), Mac OS 9 or Mac
OS X (recommended), 384MB RAM for
Mac OS 9, 128MB RAM for Mac OS X.
All systems require 32MB available hard
drive space, CD-ROM for installation,
and a minimum screen resolution of
800�600 pixels.

PROS
1. Motion Mixer nonlinear animation tool
2. New spreadsheet editor
3. Sprite-based hypervoxels and volu-

metric lights

CONS
1. New features (Motion Mixer, spread

sheet editor, vertex paint) seem discon-
nected and inconsistent with the rest of
the package

2. Motion Mixer nonlinear animation tool
can’t use single-frame poses

3. No motion capture import

LIGHTWAVE 7b XXXX

functioning and the check-in process
could be restarted on the client with no
loss of data.

My only serious concern with Accurev
is its interface design. While certainly
easier to use than industry standards
such as ClearCase, it still lacked the sim-
plicity of Visual SourceSafe. The suppos-
edly simple matter of bringing new files
into the database was something that
kept me stumped for far too long. Not
surprisingly, I found it easier to integrate
SourceSafe with Microsoft’s Visual
Studio. And while a cursory inspection of
the software might remind you of
SourceSafe’s look and feel, its internals
are definitely different and do require
time to learn. I found that by the end of
a couple hours of testing, I was begin-
ning to feel more comfortable.

Accurev 3.0.1 is available for
Windows 95/98/M/NT 4.0/2000/XP and
an impressive host of other, more obscure
platforms. The evaluation version is not
time-limited, but is limited to two users.
Accurev will provide interested parties
with a price quote for extended licenses.

For my next project, I will certainly
experiment more with Accurev to deter-
mine whether it would be a worthwhile
change. From my initial tests, it’s a prom-
ising new option for software developers
no matter what the size of the project.

XXXX | Accurev 3.0.1 | Accurev
www.accurev.com

Michael Saladino is senior programmer
at Presto Studios in San Diego.

METRIC HALO’S
SPECTRA FOO

by gene porfido

M etric Halo appeared on the audio
radar a few years ago with a daz-

zling new program called Spectra Foo.
“Spectra who?” you ask. That’s Spectra
Foo and it’s an RTAS and MAS plug-in
with an incredible array of functions that
make it as easy to remember as its name.

Since its introduction, Spectra Foo has
become the Macintosh standard for every
imaginable audio-monitoring or test-job
function one could dream of, and it has
matured well in later versions. Some call

it the Swiss Army knife of audio applica-
tions. And for professionals from master-
ing engineers to sound designers, it’s like
having a toolbox full of ultra-accurate
meters, an expensive oscilloscope, and
waveform displays built into your Mac.

There are two versions of “Foo,” as it
is commonly called, including the $400
standard version and the $800 Spectra
Foo Complete. Each version is capable of
high-resolution metering and measuring
spectral analysis, phase correlation,
waveforms, power, envelope, and spectral
histories, as well as a number of highly
configurable input/output configurations
for matching or comparing audio signals.

While the standard version of Foo is
extensive on its own, the complete version
adds quite a few top-end features that
augment its already impressive functions.
There’s a world-class signal generator that
performs Pink and White noise, Burst,
FFT, and direct-to-audio signal generation
at 24 bits and with up to nine simultane-
ous sine wave sweeps. A Transfer function
measurement system can handle equip-
ment and test verification, acoustic correc-
tion, and time-alignment for studios or
labs, and takes direct measurements,

including frequency and phase, of acoustic
and equipment signals. Add the Capture
and Analysis system to record and open
sound files directly into Foo, and you can
begin to see how incredibly intricate this
software package is.

The program runs well on a PowerPC
604e chip at 180MHz, but I’d recom-
mend a G3 or G4 for heavy-duty work.
It’s very easy to set up as a plug-in inside
of Pro Tools or Digital Performer (RTAS
and MAS audio systems, respectively),
but can also be opened as a stand-alone
application. Setting up Foo to take audio
inputs from your Mac I/O, CD, or other
input source is no harder than it would
be with your favorite DAW. With suffi-
cient processing power, multiple instances
can be opened simultaneously to monitor
a mix or any number of individual tracks
within your DAW program. Window
Sets, which are customizable and can be
assigned to a hotkey for quick access,
offer a snapshot feature of every para-
meter for instant recall or retrieval as a
preset. And a new Link feature keeps all
of your parameters from any set of
instruments and meters associated with as
many groups of instruments as needed.

XP R O D U C T R E V I E W S

f e b r u a r y 2 0 0 2 | g a m e d e v e l o p e r12

SPECTRA FOO gives sound engineers a stable and feature-laden toolbox for analyzing digital
audio.

Spectra Foo is a name worth remem-
bering if audio has any importance in
your life. Whether your mastering the
next Pink Floyd record or just making
sure your game’s sound effects are
panned and in phase, this is an applica-
tion that will come in handy in more
ways than you’ll ever imagine. Count on
superlative support from Metric Halo’s
Dan Metivier, along with the company’s
incredible (and growing) lineup of excep-
tional audio software and hardware, and
you’ll soon be singing the praise yourself.
This is what great software is all about.

XXXXX | Spectra Foo | Metric Halo
www.mhlabs.com

Gene Porfido has been making music
for over 25 years and game sound design
for nearly a decade. He is currently an
independent sound designer and compos-
er in San Francisco.

MUSICLAB’S RHYTHM
‘N’ CHORDS 2

by todd m. fay

R hythm ‘n’ Chords is a plug-in for
Cakewalk and Steinberg’s Cubase

series sequencers that takes advantage of

proprietary performance-modeling tech-
nology. Performance modeling focuses on
emulating the nuances of human instru-
mentalists through computer technology.
Rhythm ‘n’ Chords models rhythm guitar
performances specifically. Creating realis-
tic guitar parts by hand via MIDI can be
an extremely time consuming activity.
Rhythm ‘n’ Chords alleviates MIDI musi-
cians from having to stress over those all-
important guitar parts.

Musiclab delivers the plug-in directly
from their web site, and here are four
different versions for download. Rhythm
‘n’ Chords Lite is a free download avail-
able as a demo. Rhythm ‘n’ Chords 2
Standard, Rhythm ‘n’ Chords Pro, and
Rhythm ‘n’ Chords Pro Gold all support
an increasing number of features.
Musiclab also offers libraries of strum-
ming and picking patterns programmed
by a team of engineers and musicians for
use with the Rhythm ‘n’ Chords plug-in,
but most of the libraries are included
with the Gold version of Rhythm ‘n’
Chords. There are currently 18 different
libraries featuring popular styles such as
jazz, oldies, blues, rock, world, and funk.
These libraries provide musicians with

starting points for creating
rhythm guitar parts in a
particular style.

For those of you seeking
the ultimate in guitar per-
formances, there is still
only one tried and tested
method for capturing truly
inspiring work — that is,
of course, recording a gui-
tarist. For the musician
working on a budget or
composer working on a
preproduction version or a
recording, however, this
plug-in can be a real time-
saver. After using Rhythm
‘n’ Chords to lay the
groundwork for the
rhythm guitar parts, the
arranger is free to further
“humanize” the content.
The plug-in makes it possi-
ble to create hours’ worth
of work in mere minutes.

With more and more games taking
advantage of interactive MIDI-based
music production, a tool that can aid in
the production of realistic musical per-
formances via MIDI is a welcome addi-
tion to any game audio professional col-
lection. This plug-in can help raise the
production value of a piece while still
allowing for the advantageous small file
size associated with MIDI.

Knowledge of the guitar helps, but is
not required. The interface is similar to a
jazz chart. You select chords from a list
of supplied voicings and enter them into
the measure. Then you either select a
rhythm pattern from a library or use one
that’s been custom created. The arpeggia-
tion time of the strum, chord voicing,
and tone can all be adjusted quickly via
an easy-to-use interface. Chord voicings,
for example, are spelled out on a minia-
ture graphical keyboard, so even those
with no exposure to guitar playing can
create the right harmonies. You can even
control the amount of muting without
having to switch to a different guitar
patch. This is done using Rhythm ‘n’
Chords’ virtual sliders. There is also a
manual play feature that allows the plug-
in to be used with a keyboard. This way,
chords can be voiced by playing them on
the keys while the plug-in plays through
the user-selected rhythm patterns. This
feature is especially useful for those who
like to spend time with their hands on
the keyboard and off the mouse.

Note that Rhythm ‘n’ Chords is only
available for use in Cakewalk and
Cubase products and only on the PC.
Like everything else in computer music
production, you win some and you lose
some. Except in this case, players with-
out access to this plug-in maybe losing
out big-time. Unless you’re a master gui-
tar player with access to a MIDI guitar, I
strongly recommend you pick up this lit-
tle beauty right away.

XXXX | Rhythm ‘n’ Chords 2
Musiclab | www.musiclab.com

Todd M. Fay (aka LAX) is an audio
consultant and content creator working
in and around the games industry. E-mail
him at todd@lax-element.com

XP R O D U C T R E V I E W S

f e b r u a r y 2 0 0 2 | g a m e d e v e l o p e r14

RHYTHM ‘N’ CHORDS offers an interface that will be familiar to
musicians.

In the world of game development, Sid
Meier is as close as one can get to
being a man who needs no introduc-
tion. Since co-founding Microprose in
1982, Sid has designed and pro-

grammed dozens of games that have been
heralded as nothing less than revolutionary,
ingenious, and influential to all who follow in
his footsteps. Sid lends his experienced hand
to Firaxis Games as chairman and creative
director of the recently released CIVILIZATION

III and the upcoming SID MEIER’S SIM GOLF.
This month’s questions were provided by

Warren Spector, who has designed numerous
critically acclaimed games for Origin Systems,
Looking Glass Studios, and Ion Storm. Warren
is currently executive producing Ion Storm’s
upcoming DEUX EX 2 and THIEF 3.

Warren Spector. What are Sid Meier’s inspirations? Do you play
a lot of games? Do you look to the cultural zeitgeist? Do you
specifically and consciously look outside the universe of games
for fresh insights and ideas?

Sid Meier. Most of my game ideas trace back to my child-
hood, to things that I became fascinated with at some point
during my childhood. Pirates, airplanes, trains, history, and the
Civil War were all interests of mine at one time or another.

WS. How do you start the game design process? Do you typically
have a moment of gameplay in mind? Or maybe a story or fictional
context? Maybe a single game mechanic you think would be cool? A
particular fantasy you want to allow players to experience or an
overall experience you want them to have? A mood you want to
evoke or a message you want to convey? Where does a design start
for you?

SM. In starting a design I focus on two key moments. The
first time a player starts the game, he or she needs to be quickly
drawn into the game. At the end of the game, the player should
have a sense of having come a long way since the beginning to
a satisfying conclusion and be tempted to play again.

WS. How much documentation do you do before beginning to
work? Are you a preplan-as-much-as-possible guy or a prototype-
and-revise guy? I’ve always heard the latter, but I want details!

SM. There’s really no preplanning when we start a new
game. We build the game using stuff we already know, with
the idea that our players will already know this stuff too, and
they’ll be able to jump right in. Later we do research to add
depth, create scenarios, and get the details right, but not until
we have a fun game.

WS. How much “real work” do you do these days, and how

much of your time is spent conveying a vision to a
team, or melding various team members’ spins on the
game into a seamless whole, or just dealing with
team and studio management issues?

SM. Actually, I enjoy programming and I don’t
enjoy management, so I’m generally the lead pro-
grammer on at least one project.

WS. How do you explain your success? You’ve prob-
ably worked in a greater variety of genres than any-
one else in this business — science fiction, historical
sims, pirate games, espionage adventures. Do you
think your greatest successes were driven by the
appeal of a specific genre or fiction, or were there
gameplay differences that made the difference,
sales-wise?

SM. I don’t really know how to predict the suc-
cess of a game. In hindsight, it might seem that

doing CIVILIZATION was a no-brainer, but at the time it was a
real departure for Microprose. At the time, strategy games
were considered boring and complicated. I write games that I
think I would like to play and hope there are some other peo-
ple out there who will like them as well.

WS. How tight is the link between genre and gameplay? In other
words, can the same mechanics be applied to a sci-fi game as to
a historical sim? Does genre dictate gameplay and game mechan-
ics, or do the mechanics come first and then the genre?

SM. We pick the game topic first and then worry about the
mechanics. CIVILIZATION started out as a real-time game and
switched to turn-based. PIRATES! was a combination of story-
telling, adventure, and action. I tried three different approach-
es to the DINOSAUR game — turn-based, real-time strategy, and
a card game approach — before finally giving up.

WS. A lot of folks in my studio look at some elements of ALPHA

CENTAURI in particular as a model for some of the things we hope to
do in future immersive simulation games. Do you ever look at
other people’s games, regardless of genre or game style, and see
some of your own ideas embodied in them? Conversely, do you ever
ask yourself why more game developers don’t adapt your ideas to
their own work? In other words, how do you feel your games have
influenced the development of games and gaming?

SM. I think there is a continual sharing, borrowing, and
building upon game ideas among the design community. As
long as each game also introduces some new ideas and innova-
tion, this is one of the strengths of our industry. Certainly the
standardization of interfaces and controls has made games easi-
er to play. I still love to play games. I hope other designers will
continue to create great games so that I can play them, and
occasionally borrow an idea or two. q

Warren Spector’s

f e b r u a r y 2 0 0 2 | g a m e d e v e l o p e r16

P R O F I L E S
T A L K I N G T O P E O P L E W H O M A K E A D I F F E R E N C E

Sid Meier!

Sid Meier: Happiest when
programming.

I N N E R P R O D U C T j o n a t h a n b l o w

f e b r u a r y 2 0 0 2 | g a m e d e v e l o p e r18

T his month, I’m going to talk about
how to represent lines and planes,
the sorts of linear entities that

programmers manipulate all the time.
In high school I was taught that the

equation y = mx + b is a groovy way to
represent a line in 2D. The equation is
useful because m represents the slope
and b is the y-intercept — that is, the
line intersects the y-axis at (0, b). This
representation is good if you don’t have
a lot of higher math experience and you
just want to draw a line on a piece of
graph paper: b gives you a starting
point, and m gives you the direction to
go from there.

Years passed, until one day I was pro-
gramming some pretty advanced 2D
games; by then I had used y = mx + b for
visualization so often that I thought of it
as the primary way to talk about lines.
So I tried to make systems that represent-
ed lines with two floating-point numbers,
m and b.

But what happens when a line is ver-
tical? Its slope is undefined. In that situ-
ation, in high school, you’d just write
x = k, which seemed simple enough. But
with games, you have to think about
more complex situations, like lines that
are smoothly rotating from frame to
frame. And you’re writing code that
uses limited-precision numbers, so your
computations become numerically ill-
conditioned when the lines are steep,
because m is such a huge number. To fix
this problem, you put a bunch of if
statements into your code to change the
computation based on what neighbor-
hood the slope is in. That’s not desirable
from a software engineering standpoint,
and the computational discontinuities

(these happen as your parameters cross
from one if scenario to another) may
cause subtle but disturbing things to
occur. See the pseudocode in Listing 1
for an example.

These problems go away when you
make a simple mental adjustment and
use ax + by + c = 0 as your line equation.
This is like the slope-intercept equation,
but before a division has taken place; if
you divide ax + by + c = 0 by b (the b
from this equation, not the b we were
talking about before), you get the slope-
intercept form. The slope and intercept
shoot toward infinity when b is near 0,
meaning the line is vertical. So ax + by +
c = 0 is more robust because it doesn't
divide by b.

As a bonus, the surface normal of the
line is (a, b), and the distance from the
line to the origin is c. You can easily
read these features out of the equation,
and being a game developer, you’re
more likely to care about these things
than the y-intercept. Though we now
need three floating-point numbers to
talk about our line, a, b, and c, that
extra number buys convenience and
software reliability. The software
becomes more reliable because the pre-
cision of our computations is more
isotropic. In other words, it doesn’t
matter so much what direction the line
goes in.

To sum up, my learning of y = mx + b

as the way to talk about lines had
impacted my effectiveness in making
games; the alternate representation
removed those blockades.

Extending Lines to 3D

A fter a while, I’d made enough 2D
games and decided to try 3D.

When I first tried to formulate line
equations in 3D, I got confused. In 2D,
ax + by + c = 0 had been the best thing
since sliced bread, so clearly I wanted to
extend that equation to 3D. The obvi-
ous candidate is ax + by + cz + d = 0. I
knew from reading books that this was
the equation for a plane. Extending my
line equation to 3D requires adding z in
somehow, right? How else could I possi-
bly add a z that would make any sense?

The problem is that ax + by + c = 0,
which I’d thought was an enlightened
way of representing a line, is not a line
equation at all — and neither is y = mx
+ b, for that matter. It’s a plane equa-
tion, and it only worked because lines
and hyperplanes in 2D are the same
thing (where my temporary definition of
a hyperplane is “that which divides
space into two halves”).

There is an equation that works for
all lines regardless of the space’s dimen-
sion. It is L = p0 + vt, where L represents
the set of points comprising the line, p0

is an arbitrary point known to lie on the

Mathematical

J O N A T H A N B L O W I Jonathan is a game technology consult-
ant living in San Francisco. Film that influenced this article:
Mulholland Drive, the GREATEST FILM EVER. They can pretty
much stop making movies now. It’s time to work on games. Jon’s
e-mail address is jon@bolt-action.com.

Growing Pains

line, v is the direction vector that the
line travels in, and t is the time parame-
ter. When we get used to thinking about
lines this way, we build up intuition that
is valid no matter how many dimensions
we’re dealing with. We say that this is
the parametric form of the line, as vary-
ing the parameter t will give you every
point in L. If n is the dimensionality of
your space, then this equation requires
2n numbers’ worth of storage if you’re
being lackadaisical, or 2n – 1 if you’re
being hardcore.

Simultaneous
Equations?

So why is ax + by + etc. the equation
of a hyperplane and not a line? It’s

because it takes n degrees of freedom (rep-
resented by the coordinate variables x, y,
. . .) and, by binding them together with
the equal sign, places one constraint on
that system of variables. This linear con-
straint removes one dimension; it flattens
the space in the direction of the gradient
of the equation (this gradient is the same
thing as the normal of the hyperplane).
The resulting space has n – 1 dimensions:
in 2D, you get a line; in 3D, a plane; and
in 4D, you get a 3D hyperplane.

Suppose we didn’t want to use the
parametric form for a line in n dimen-
sions. Instead, we could represent the line
by starting with the full n-dimensional
space and squashing it n – 1 times,
because n – (n – 1) is 1, the dimensionali-
ty of a line. We can do this using n – 1
linear equations simultaneously.
Simultaneous linear equations are the
same thing as a matrix. So we’re storing
an n by n – 1 matrix, which uses a lot of
storage space, and furthermore, it’s not
guaranteed to behave nicely. Suppose two
of our equations try to squish the space
in the same direction. After the first
equation acts, there’s nothing left for the
second one to do; so the second equation
doesn’t reduce the space by a dimension
(in fact, it leaves it unchanged). After all
our n – 1 squashings, the remaining enti-
ty will have one more dimension than we
expected; instead of a line, it will be a
2D plane.

We then need to break out some
advanced linear algebra to deal with the
situation. Naive game programmer code,
just consisting of a big hand-derived vec-
tor equation worked out on paper, will
end up dividing by 0 somewhere and
freaking out. More experienced program-
mers might use a matrix equation, but
black-box matrix methods get screwy
too; we end up with a situation where
the determinant of a matrix is 0 and we
want to invert it. The matrix has no
inverse. Badly written code tries to invert
it anyway, and thus produces inaccurate
results or NaNs. Better matrix code takes
stock of the situation with an if state-
ment and, if the determinant is within

some epsilon of 0, reduces the dimen-
sionality of the matrix and solves a
reduced-dimension problem. But picking
suitable epsilons is not easy, and numeri-
cal discontinuities are introduced by the
if statement.

All this should sound familiar from an
engineering standpoint — it’s the kind of
thing we were doing with y = mx + b
when the line became vertical, and all
the same problems arise. Cases of deter-
minant 0 are often called “degenerate,”
but I think they are quite natural and
inability to deal with them indicates
weak methodology.

Imagine that you have three different
planes, all passing through the origin,

w w w . g d m a g . c o m 19

LISTING 1. An example of how a singularity in mathematical representation affects code.

struct Line {
float slope, y_intercept; // 'slope' == m, 'y_intercept' == b
bool is_vertical; // or else declare this, meaning the above are invalid
float x_value; // used only if the line is vertical.

};

bool intersect_with_vertical_line(Line *vertical, Line *non_vertical, float *x_result,
float *y_result) {

*x_result = vertical->x_value;
*y_result = non_vertical->slope * vertical->x_value + non_vertical->y_intercept;
return true;

}

bool intersect_nonvertical_lines(Line *line_1, Line *line_2, float *x_result, float
*y_result) {

// Hope this denominator is not small.
*x_result = (line_2->slope - line_1->slope) / (line_2->y_intercept - line_1-

>y_intercept);
// Choice of line_1 below is arbitrary, hope we're well-conditioned.
*y_result = line_1->slope * (*x_result) + line_1->y_intercept;
return true;

}

bool intersect_lines(Line *line_1, Line *line_2, float *x_result, float *y_result) {
if (line_1->is_vertical) {

if (line_2->is_vertical) return false;
return intersect_with_vertical_line(line_1, line_2, x_result, y_result);

}

if (line_2->is_vertical) {
return intersect_with_vertical_line(line_2, line_1, x_result, y_result);

}

return intersect_nonvertical_lines(line_1, line_2, x_result, y_result);
}

rotating freely in 3D. You want to find
the intersection of those planes. Most of
the time, they intersect in a point; but if
two of the planes coincide, then all three
intersect in a line; and if all three coin-
cide, the answer is a plane.

To solve this intersection problem
using beginner’s linear algebra, we write
a matrix equation p = A–1d that finds the
solution; but hard-coded into this equa-
tion is the assumption that the answer is
a point. When the answer is not a point,
A has determinant 0, so the equation is
unsolvable. But what’s the big deal?
Sometimes planes are coplanar, just like
sometimes lines are vertical. Why should
that be a problem? The problem goes
away when we stop treating matrices as
black boxes that we want to invert, and
instead start decomposing them and
looking at their intrinsic properties. The
QR and singular value decompositions
become useful to us at this point.

Common
Mathematical
Misconceptions

Istarted this article with the question of
how to represent a line. As 3D pro-

grammers we get past these problems
early on, if only because we can’t do
lines in 3D otherwise. About the varying
representations of a line, I want to devel-
op an analogy: they are like other con-
cepts that we work with from day to day,
rooted in the core of our thinking, that
are misleading in 3D and don’t even
work in higher dimensions. I’ll now
describe the biggest ones, the axis of
rotation and the cross product.

The Axis of Rotation

W hen learning 3D math, once we
get past the inconvenience of

Euler angles, we find that all rotations
can be represented by an axis vector,
about which we rotate, and an angle,
representing the magnitude of the rota-
tion. Perhaps we visualize a rotation as a
wheel turning on an oriented axle.

The problem is that the whole concept
of “axis of rotation” only works in 3D.

In 2D, rotations occur around a central
point, and maybe we think of a nonex-
istent axis sticking out of the plane to
help us visualize this. But a much more
reasonable way to think of rotations is
to speak of the “plane of rotation”
rather than the axis. In n dimensions,
any rotation occurs within a two-dimen-
sional plane, and the object rotates
“around” however many dimensions are
left in the space. In 2D space, you rotate
around a zero-dimensional subspace, a
central point. In 3D, you rotate around
a one-dimensional vector subspace. In
4D, you rotate around a two-dimension-
al planar subspace. (In 3D, the surface
normal of the plane of rotation is the
axis vector we are used to thinking
about. In higher dimensions, using this
definition of rotation, it’s no longer true
that you can reproduce an arbitrary ori-
entation with only one rotation.)

I tend to think of rotation as “the thing
that binds together any two dimensions
of our space.” In 3D, we have three
canonical planes of rotation: the xy plane,
which binds things that leave x to enter-
ing y, and likewise for yz and xz planes.
Any rotation occurs within a 2D plane
that is a linear combination of these three
canonical planes. In 4D, there are six
such canonical planes.

David Hestenes (see For More Infor-
mation) uses a different terminology from
what I use here; he speaks of “simple
rotations,” which occur within two
planes, and “arbitrary rotations,” which
can reproduce any orientation in the
space. I find this terminology unappeal-
ing, since in some higher-dimension
spaces, such as 4D, a non-simple “rota-
tion” may have no eigenspace — that is,
no “axis” of nonzero dimension around
which the rotation pivots. So I find it
hard to visualize the thing he calls a
“rotation.” But your mileage may vary.

The Cross Product

T he cross product is a fundamental
piece of 3D math that we use all the

time. But we were taught incorrectly what
the cross product is and how it works,
with the result that we often use it

improperly, in subtle ways.
We are usually taught only about the

cross product in 3D. But what is the
cross product in four dimensions and
higher? Does the concept even make
sense? Because two linearly independent
vectors determine a 2D plane, it is possi-
ble for us to interpret the results of the
cross product in n dimensions as the
subspaces we were rotating around just
a few paragraphs ago: in 2D, the result
is a scalar; in 3D, a vector; and in 4D, a
2D-planar thing.

Following this scheme, when we take
the cross product in 3D, we think of it as
returning a vector result. Unfortunately,
this result is wrong, and we see this in a
few places. A prominent symptom is that
“surface normal vectors” can’t be trans-
formed in the same way that plain vanil-
la vectors can; if you are transforming
vectors by some transformation T, you
need to transform normals by (Tt)–1.
Beginning 3D programmers may not run
into this problem, because if T is just a
rotation, its inverse is equal to its trans-
pose: (Tt)–1 = T.

This difference in transformations is
necessary because the cross product is
weird. We are providing two vectors as
arguments of the cross product, and
those vectors determine a 2-plane if they
are not colinear. But the cross product
implicitly returns to us the dual of that
plane, its normal vector. So we think
we’re talking about a vector, but we’re
really talking about a plane through the
origin. The plane occupies whichever two
dimensions its normal vector does not;
because of this, transformations can
affect the plane in ways that we would
not see if we considered its normal vector
in isolation.

To ensure that we always pick the right
transformation, we can say that the out-
put of the cross product is a thing called
a form, which one might think of as a
transposed vector. The form interacts
with matrices in all the ways you’d expect
a row vector to behave. Smart physicists
have been dealing with the differences
between point-like and plane-like things
for a long time; eventually someone
invented Einstein index notation, which

I N N E R P R O D U C T

f e b r u a r y 2 0 0 2 | g a m e d e v e l o p e r20

helps demystify things. Jim Blinn (see For
More Information) wrote two articles
that discuss the Einstein notation from a
graphics programmer’s point of view. But
this whole tensor algebra approach gets
pretty complicated, so some new-school
physicists are evangelizing Clifford alge-
bra (also known as geometric algebra) as
a method of simplification.

Clifford algebra defines the “wedge
product” of two vectors in a way that is
similar to the cross product, but it
returns a nonvector result; that result is
a plane-like thing called a bivector. You
can take the wedge product of a bivector
and another vector to get a volumetric

trivector, and so on. The Clifford prod-
uct of two vectors gives you a result con-
taining both scalar and bivector parts; it
is the dot product and cross product all
wrapped together. This unification
enables us to do things that make life
easier, like dividing an equation by a
vector or a plane.

In some references, the 2D version of
the cross product is called the “perp-dot
product” (see F. S. Hill’s Graphics Gem in
For More Information). Pertti Lounesto’s
book describes higher-dimension cross
products that are different from the one
I’ve mentioned here.

Why We Should Care
About N-Dimensional
Generality

R ecently, to generate levels of detail
for humanoid character meshes, I

was implementing Garland-Heckbert
Quadric Error Simplification (see For
More Information). The basic version of

this algorithm, which only takes mesh
geometry into account, operates on 3D
vectors; it uses 3D plane equations that
are derived and evaluated using the
cross product and the dot product. But
to take vertex color and texture coordi-
nates into account, we need to general-
ize the algorithm to higher dimensions.

We hit a wall when we try to move the
algorithm to higher dimensions, because
each face of our mesh imposes a two-
dimensional constraint on the quadric
error metric. When we’re in three dimen-
sions, this constraint can be represented
as the hyperplane ax + by + cz + d = 0,
which we’re used to playing with. But

when we go up to five dimensions (three
spatial dimensions plus two texture coor-
dinates per vertex), we no longer have
such a tidy hyperplane equation to repre-
sent what’s going on. Each face of the
mesh defines a 2D plane, but now a 2D
plane is just a small strand in the 5D
space, so we need to represent it paramet-
rically. This is exactly analogous to the
way ax + by + c = 0 stopped working for
lines when we jumped from 2D to 3D.

Another way of looking at the prob-
lem is this: in 3D we usually get a plane
from two vectors by taking the cross
product. But if we’re not conversant in
advanced linear algebra, it is unclear how
to perform this process in 5D. So be sure
to eat your multi-dimensional Wheaties.

In their paper, when the time comes to
elevate above three dimensions, Garland
and Heckbert shift gears away from the
hyperplane approach and re-derive their
algorithm differently. But if you start with
an all-encompassing approach (such as
Clifford algebra) from the beginning, the

algorithm works no matter what dimen-
sion you deal with, and you never have to
get confused or change your mode of
thought. You also end up with a shorter
derivation than that used in the Garland-
Heckbert paper.

So the traditional tools of 3D vector
math definitely hinder us in these kinds
of pursuits, and broader approaches can
help us. I must emphasize that Garland-
Heckbert is not an obscure algorithm;
it’s one of the best, simplest, and most
widely used methods of performing
mesh simplification. q

I N N E R P R O D U C T

f e b r u a r y 2 0 0 2 | g a m e d e v e l o p e r22

When we get used to thinking
about lines and planes parametrically,

we build up intuition that is valid
no matter how many dimensions

we’re dealing with.

F O R M O R E I N F O R M AT I O N

Blinn, Jim. Jim Blinn’s Corner: Dirty Pixels.

Morgan Kaufmann, 1998.

Dorst, Leo. “GABLE: A Matlab Geometric

Algebra Tutorial.”

http://carol.wins.uva.nl/~leo/clifford/

gable.html

Garland, Michael, and Paul S. Heckbert.

“Simplifying Surfaces with Color and

Texture Using Quadric Error Metrics.”

Proceedings of IEEE Visualization, 1998.

http://graphics.cs.uiuc.edu/~garland

Hestenes, David, and Garret Sobcyk.

Clifford Algebra to Geometric Calculus:

A Unified Language for Mathematics

and Physics. Kluwer Academic

Publishers, 1987.

Hill, Jr., F. S. “The Pleasures of ‘Perp Dot’

Products,” in Graphics Gems IV, ed.

Paul Heckbert. Academic Press, 1994.

Lounesto, Pertti. “Clifford Algebras and

Spinors.” London Mathematical Society

Lecture Note Series #239. Cambridge

University Press, 1997.

ACKNOWLEDGEMENTS

Thanks to Chris Hecker for redirecting the

overly negative energy that originally per-

meated this article concept, and for some

pointers regarding matrix decomposition.

A R T I S T ’ S V I E Wh a y d e n d u v a l l

How many times as an
artist have you wished
that you were working on
TETRIS? Those small, col-
ored blocks, slotting

together — simple, Spartan, square. It

may not be creative nirvana, but at least
you know where you are with a square
— four sides, four corners; you can’t
really go wrong. Other shapes are some-
what less forgiving, and those that relate
to the real world are usually amongst the
most awkward.

Those Were the Days

A s we rocketed out of the 1970s and
through the 1980s, toward the 16-

bit wonders of the early 1990s, we left

the minimalist angularity of PONG and
the harsh, blocky SPACE INVADERS behind
us, heading for the world of graphical
beauty that glimmered on the horizon.
Videogames slowly made the transition
from the symbolic, where the sports car
in our racing game looked like it had
been drawn by my three-year-old brother,
to the representational, where a Ferrari
had at least a passing resemblance to the
vehicle it was portraying. Figure 1 shows
three transformations videogame cars
have gone through over the ages.

Suddenly, games were no longer judged
simply on how much fun they were; they
also had to look fantastic. Teenagers
across the globe found themselves hud-
dling together around a single copy of a
magazine they’d smuggled into school,
breathing heavily, and letting out the
occasional sigh of rapture. This time,
however, it wasn’t Marlena (21, enjoys
skiing and topless volleyball) stoking the
fires of their desire, it was a game. The
centerfold had stepped aside; the pinup
had given way to the pixel.

As with most things technological, the
increase in graphical quality continued to
grow exponentially. A palette of 256 col-
ors soon became one of over 65,000.
Screen resolutions grew and animation
broke free from the confines of a simple
loop. And then 3D hit us. Like a stam-
peding herd of hyperactive rhinoceroses,
the 3D revolution trampled the sprite

and all its flat friends under its huge,
polygonal feet. The irresistible bulk of an
industry ready to move on, backed by
the widespread availability of the hard-
ware necessary to do the job at an
affordable price, moved games and their
graphics to the next level.

And here we are. By the time I finish
writing this article, there may well have
been another wave of graphics cards
released, capable of real-time volumetric
refraction with a dedicated subprocessor
specifically created to deal with dynamic
nasal hair deformation. By the time my
cup of coffee gets cold, the next genera-
tion of consoles may well be on the shelf,
promising to draw things so fast that the
only way to prevent your TV from melt-
ing is to immerse it periodically in liquid
nitrogen. Today’s game players want
more than a yellow circle with a mouth
being chased around a maze by ghosts.
They want their games to be set in a
world they can believe in.

Whether a game is trying to re-create a
location that is real or it takes place in a
world of fantasy, more often than not
certain elements of the environment
occur in both. Rocks are usually rocks,
whether they’re on an ancient Egyptian
battlefield or in the lair of the mighty
demon Aarath’ak the Unhelpful. Whether
you find yourself snowboarding in the
Rockies, or racing through the valleys of
the planet Sprag-Thurman VIII, a tree

Making Trees Work

w w w . g d m a g . c o m 25

H A Y D E N D U V A L L I Hayden started work in 1987, creating
airbrushed artwork for the games industry. Over the next eight years,
Hayden continued as a freelance artist and lectured in psychology at
Perth College in Scotland. Hayden now lives in Bristol, England, with
his wife, Leah, and their four children, where he is lead artist at
Confounding Factor.

FIGURE 1. Formula 1 cars through the ages.

(excepting certain localizing factors) is
basically a tree.

I Hate Trees

F rom the outset, we have a few prob-
lems when it comes to trees. First,

just like most things that nature creates
for us, trees were never designed to be
modeled economically in three dimen-
sions. The whole branching concept is

death to even the most robust polygon
budget, and that’s before we get to the
leaves. Second, besides the fact that each
specific species of tree is distinct from
every other species, every single tree is
always, in itself, unique. And finally, a
tree is very rarely found in isolation;
more often than not it will be in a group,
and these groups (clump, copse, woods,
or forest), are going to be outside, which
is usually quite a large place to fill.
Figure 2 shows the differences between
two different species of tree.

There is a clever solution to this
problem: simply set your game in a sub-
marine. There are no trees in sub-
marines. Or how about space? A space
combat game will remove any need for
trees. Just as long as you don’t land on
a deciduous planet, that is. However,
chances are that neither of these scenar-
ios will fit with your current project,
and so a strategy to deal with trees will
definitely come in handy.

Context

T o begin with, it is worth looking at
how trees fit in with your game

design. This may seem like overkill, but
it will ultimately affect the choices you
make about the best way to approach
building your trees.

As is often the case, some of the first
questions to ask have to be: What kind
of world are we building? Will players
have full access to the whole landscape,
or will they be limited to certain prede-
fined areas? How much space will a
level represent, and what percentage of
this is likely to be exterior space? Will
trees generally be used to beautify the
background during bouts of tightly
scripted action, or will they most likely
be used to break the monotony of large,
open plains? Do trees have a more
important role within the gameplay?
Will their placement be carefully inte-
grated with the level design as cover to
be used by players when they creep
around, stealthily to avoid detection by
the enemy? Do they provide a hiding
place from which the Giant Spleen-
Beast of Gaarg will charge at the end of
the level?

Obviously, approaching any element
of a game’s visuals in isolation from its
context is like painting a portrait over
the telephone. Chances are, you’re going
to have to do it again. In this respect,
the items of primary concern are: Are
the trees themselves likely to be under
close scrutiny by the player? What level
of detail will strike the best balance
between quality and speed?

It is entirely possible that your engine
is able to apply some form of dynamic
level-of-detail adaptation to geometry,
which gives you extra breathing space
when it comes to limiting your model’s
complexity. However, regardless of what
hardware manufacturers around the
world would have us believe, you and I
both know that unless your engine
draws its power from the Dark Prince
himself, economical design is what
we’re after.

What Makes a Tree?

Before we set about building one, it’s
worth having a quick look at what

makes a tree. Chances are, you’re pretty
familiar with the basic tree. Bear with
me, however, while I break it down into
a few basic elements:

Roots. Depending on the species,

roots are generally underground, but
particularly with larger, older trees,
roots have a significant presence above
ground.

Trunk. This fairly straightforward cen-
tral mass of the tree typically starts fat,
ends thin.

Branches. Mainly quite random, but
some species, such as firs, have surprising-
ly uniform (fractal) branching structures.

Bark. There is enormous diversity
from species to species.

Leaves/needles. Again, these are
hugely diverse in shape, as well as rela-
tive size, when compared to the parent
plant.

So that, more or less, is a tree. No
problem. Couldn’t be easier. Familiarity
with the subject when trying to re-create
it, whether in paint, plaster, or poly-
gons, is bound to make the process easi-
er, isn’t it? Unfortunately, a faithful re-
creation of something as complex as a
tree will, by the time you’ve scattered
trees across your level, most likely have
your engine cowering in a corner, beg-
ging for mercy. In this instance, as is
often the case when considering graph-
ics for a game, achieving realism will
involve a certain element of stylization
and a level of approximation that fits
within the restrictions of your particular
project.

Cheap and Cheerful

B efore you create a single vertex, it is
helpful to divide the trees up into

two groups: generic, or filler trees, and
those that will have a more prominent
place within a level, the feature trees (for
want of a better name). A filler tree, as
the name suggests, is most likely used in
numbers to break up empty background
space, and to create a more attractive,
detailed exterior. The feature tree is gen-
erally the setting for some important
action, whether gameplay or cutscene,
and as such the player spends more time
looking at it. Because the feature tree is a
more central part of any scene you are
creating, its level of detail, while depend-
ent on engine limitations, is considerably
higher than that of the filler tree.

A R T I S T ’ S V I E W

f e b r u a r y 2 0 0 2 | g a m e d e v e l o p e r26

FIGURE 2. Two different species of tree.

It is unlikely that you have either the
time or the resources to create a vast
array of individual trees that mimic their
uniqueness in the real world. It is impor-
tant, then, to design your filler trees to
work well as a set that can be distributed
as well as possible to create the illusion
of variety. Scale variations and rotation
(as long as the trees are not symmetrical)
can be mixed with vertex coloring as
well as light and shadow variations
across a landscape to increase the appar-
ent number of different trees that have
been created. Figure 3 shows three asym-
metrical trees with rotation.

Once you’ve chosen your basic species
of tree (and here I mean, fir, palm, decid-
uous, and such, not Chamaecyparis law-
sonia), you can create the object that will
form the trunk. For a filler tree, this
should have as simple a shape as possible
(a triangular cross-section should be per-
fectly adequate in most cases), with the
number of branches kept to a minimum
and no secondary branches needed. Most
of the work for this kind of tree can be
done in texture. Detailed branch and leaf
structures can only be represented eco-
nomically in texture, and this is especial-
ly true in the case of the filler tree.

Foliage

T he extreme economy of the past, with
two crossed polygons displaying a

complete tree in texture, may be some
way behind us. However, using a combi-
nation of solid geometry for the trunk
and major branches and some crossed
planes representing the foliage can pro-
vide an adequate compromise.

Creating a useful texture for this part
of the tree is of particular importance,

and the following are four methods that
are worth considering.

Hand Painting

Hand painting is useful if your visu-
als are adopting a particular style,

and it’s especially worth considering if
you plan to work at a resolution of 128
dpi or lower. You can create leaves and
branches in most decent paint packages

and use features such as cloning and
image hoses to distribute elements such
as leaves in a variety of ways. Benefits of

this method include the relative ease
with which an alpha channel can be cre-
ated, as well as the level of control the
artist has over the exact positioning of
the features within the texture.

Scanned Illustrations

Often overlooked as unsuitable
source material, paintings and illus-

trations of trees can be a very useful
starting point for textures. O.K., if you
choose Van Gogh’s Poplars on a Hill
(Figure 4) as inspiration, you may find
yourself struggling to make use of his
mad wavy lines, but there are some
examples that are more friendly. Illustra-
tions of different tree species, found in
botanical encyclopedias for example, are
often highly detailed and accurate. The
advantage of this kind of image is that
lighting is often very diffuse, without the
hard shadows that can make photo-
graphs unusable. Also, the foliage is gen-
erally on a white background, which
makes it easier to separate out than a
busy photo.

Photographs

A scanned or digital photo is easily
the most common source of tex-

tures, and perhaps the most difficult
part of the process of turning a photo
into a useful foliage texture (see Figure
5) is generating an alpha channel. A
solid mass of leaves will be of limited
effect when trying to give the impression
of complex branching, and so it is
important to use transparency within
the texture to create the shapes that are

far too costly to build into the geometry.
Supposing you have a fairly standard

photo of a leafy canopy, the question

w w w . g d m a g . c o m 27

FIGURE 4. Van Gogh’s unhelpful poplars.

FIGURE 3. Asymmetrical trees with rotation.

FIGURE 5. Photo to texture (stages one through four, from left to right).

then becomes how best to select only
the areas that are to be left visible, so
that the others can be masked out. I
may be wrong, but Photoshop doesn’t
yet come with a “choose a good selec-
tion of leaves” tool. The problem is that
most selection methods can’t discrimi-
nate between the leaves and branches
that you want to keep and those which
will leave the texture too cluttered.

Unfortunately, as with so many
things in life, for a completely satisfy-
ing result, you’ll have to do the job
yourself. Selecting by color and altering
the fuzziness, or creating a threshold
layer and adjusting the levels, may pro-
vide a rough starting point for selec-
tion. Still, you’ll have to refine these
characteristics manually.

Rendered Images

A useful addition to the essentially
two-dimensional source material

mentioned thus far is the rendered tree.
Most major packages have a selection
of tree-generating programs with
names like “Tree Master Plus” and
“Auto Foliage 500.” While each is dif-
ferent, they all produce similar results
that are too detailed to be used as in-
game geometry but can be extremely
useful for creating textures. Perhaps
the most appealing aspect of this
approach is the automatic generation
of an alpha channel when the image is
rendered, which both saves time and
increases accuracy (see Figure 6).

Whichever method you use to create
the textures, assembling the geometry
on which they will be mapped in order
to create the appearance of a tree’s
canopy must be done carefully and
take into consideration the way in
which the trees will be encountered. If,
for instance, the trees will be viewed
from beneath, the orientation of the
geometry containing the branch and
leaf textures needs to take this into
account. The same holds true for the
trunk geometry; extra detail can be
worthwhile around the lower trunk
and root region if players are likely to
spend their time in this area.

In the end, finding the best way to
make trees is a bit like finding the best
way to bake bread. There are a million
different recipes. Clever use of texture,
coupled with economical modeling, can be
the best compromise between detail and
practicality, and while the process may be
awkward, getting the right result is cer-
tainly well worth the effort. q

A R T I S T ’ S V I E W

f e b r u a r y 2 0 0 2 | g a m e d e v e l o p e r28

FIGURE 6. Render plus alpha channel equals
texture.

B ack before Al Gore
invented the Internet,
back when 64KB was
more memory than any
computer would ever

need, there was a time when memory
managers didn’t exist. But gradually, new
computer systems came out with larger
amounts of memory (Figure 1). Game
designers discovered ways to eat up RAM
faster than any system could dish it out.
It became obvious that managing all this
data with a simple static memory map
was too much work. Programmers need-
ed a way to create memory maps that
could change dynamically at run time
depending on the state of the program.
Thus, the memory manager was born.

For an excellent introduction to how a
basic memory manager works, check out
www.memorymanagement.org/articles/
begin.html. This article will assume this
basic knowledge and focus instead on
things to think about when writing your
own memory manager and point out
some of the problems you may
encounter in using a memory manager.
This discussion is based on our experi-
ences in writing and rewriting the mem-
ory manager for MADDEN NFL 97 to
MADDEN NFL 2002. This article is also
slanted toward the C language as written

for console game machines. The same
principles would apply to C++ and
Windows programming, but the details
are likely different.

Growing Your Own

S o you know that memory managers
are great, but what’s wrong with just

using malloc and free? They are part of
the standard C library, so they should be
the best, right? One major problem is
that you don’t really know what they are
doing. If you write your own memory
manager, you can generate statistics, add
debug code, and add advanced features
that might not be found in the default
memory manager — features like han-
dles, heap compaction, and virtual mem-
ory. The ultimate weapon of game pro-
grammers is context. You know the
needs of your game and can tailor the
memory manager accordingly.

Developing a successful memory manag-
er requires addressing five different issues:
ease of use, performance, memory over-
head, fragmentation control, and debug-
ging support. Unfortunately, these attrib-
utes are all interconnected, and optimizing
one can result in substandard results for
another. The memory manager designer
must govern a delicate balancing act.

Play by Play:
Effective
Memory
Management

M E M O R Y M A N A G E M E N T

f e b r u a r y 2 0 0 2 | g a m e d e v e l o p e r30

B R I A N H I X O N | Brian has a B.S. in
math/computer science from Carnegie
Mellon University. After losing his mind
from playing too many computer games,
Tiburon took pity on him and gave him a
job in 1998. Brian is a lead programmer for
MADDEN PS2, Gamecube, and Xbox.

D A N I E L M A R T I N | Daniel has a B.S.
and an M.S. in computer sciences. After wast-
ing years of his life outside the gaming indus-
try, he saw the light and joined Tiburon in
1998. Today, Daniel is a lead programmer
for MADDEN PS2, Gamecube, and Xbox.

R O B M O O R E | Rob has a B.S. in elec-
trical engineering. After working on graph-
ics chips and APIs for the Nintendo 64 and
Gamecube, Rob decided to see why game
developers were always griping at hardware
guys. He joined Tiburon in 2000 and now
it all makes sense; currently he is Tiburon’s
chief technical officer. Send comments on
this article to MMarticle@tiburon.com

G R E G S C H A E F E R | Greg has a B.S.
and an M.S. in computer science. Greg
spent many years working on telecommuni-
cation and network applications prior to
joining Tiburon in 1998. He now leads
MADDEN PC network development.

R I C H A R D W I F A L L | Richard has a
B.S. in electrical engineering. He got started
in the game industry on 16-bit consoles.

b r i a n h i x o n , d a n i e l m a r t i n ,

At a lower level, memory manager
design also requires paying attention to
platform-specific requirements. In addi-
tion, it may be possible to utilize hardware
support to assist the memory manager.

Ease of Use

W ith respect to a memory manager,
the ease of use consideration

really comes down to a single question:
Should the memory manager support
pointers, handles, or both? When design-
ing a memory manager and dealing with
the problem of fragmentation, the use of
handles can be very appealing. Unfortu-
nately, while handles provide a straight-
forward solution to the fragmentation
problem, they are much more difficult to
use than pointers. A memory manager
that supports only handles is essentially
pushing its internal complexity back onto
the user.

While supporting both handles and
pointers is possible, the resulting memory
manager is more complicated than one
that supports a single method. MADDEN

used to support both handles and point-
ers until an analysis showed that pointers
were being used 99 percent of the time.
Not surprisingly, when given a choice,
programmers used pointers, since they

were the easiest solution. Therefore, we
simplified the latest MADDEN memory
manager by removing handle support
and optimizing the pointer support.

Performance

P erformance must be addressed both
in terms of speed and consistency. A

memory manager that is fast most of the
time but slows down dramatically at
unpredictable times is unacceptable in a
gaming environment. Therefore it is
important to understand the issues that
contribute to performance. From the
memory manager user’s point of view,
two operations
will impact the
game: allocations
and recycling.

Allocation
performance is
determined by
allocation poli-
cy, free list man-
agement, and
the use of gar-
bage collection.
The most popu-
lar allocation
policies are best
fit, first fit, and

next fit. By organizing the free blocks as
a linked list, best fit has consistent O(n)
performance, while first fit and next fit
have worst-case O(n) and on average
O(n/2). By organizing the free blocks as
a size-sorted binary tree, best fit has
worst-case O(n) and on average O(n log
n). By organizing the free blocks as a
balanced binary tree, best fit has consis-
tent O(n log n). Garbage collection
applies only to memory managers with
handle support, and generally involves a
fairly significant performance penalty
when it occurs, as it essentially makes a
copy of the entire memory heap during
compaction.

w w w . g d m a g . c o m 31

r o b m o o r e , g r e g s c h a e f e r , a n d r i c h a r d w i f a l l

FIGURE 1. Main memory growth for console game machines.

Recycling performance is based on free
list management and the use of free block
coalescing. Free block coalescing requires
the ability to locate the blocks immediate-
ly preceding and following any arbitrary
block. Some memory structures, such as
boundary tag (see Donald Knuth’s
Fundamental Algorithms under Refer-
ences for more information on the bound-
ary tag), allow this in O(1) time, while
those that don’t require an O(n) scan of
the free block list. The current MADDEN

memory manager uses boundary tags to
allow O(1) access to previous/subsequent
blocks and organizes the free list as an
unbalanced binary tree. The result is allo-
cation and recycling performance both in
the O(n log n) to O(n) range.

Memory Overhead

M emory overhead is the cost we
have to pay to manage memory,

since each allocation will cost some
memory. Memory overhead is an impor-
tant consideration, especially if the mem-
ory manager will be handling a large
number of objects. The first decision is
whether the memory map state should be
stored internally or externally to the
memory being managed. If it is stored
internally, then the maximum number of
allocated blocks does not need to be
known in advance, but memory that is
not directly CPU-addressable cannot be

managed. If it is stored externally, you
must know the maximum allocated and
free blocks in advance and set aside
memory for this state, but address spaces
that are not directly CPU-addressable can
be managed.

MADDEN previously used external stor-
age for the memory state, but this
required additional overhead because it
was impossible to predict accurately the
maximum number of allocated and free
blocks. We had to include a “safety fac-
tor,” which turned directly into wasted
memory. The new memory manager uses
internal storage as shown in Figure 2,
thus avoiding the entire issue. All alloca-
tions are 16-byte aligned and each block
has 16-byte overhead. By limiting alloca-
tions to a minimum of 16 bytes, every
block is guaranteed to have this much
storage available. Therefore, when an
allocated block is released, those 16 bytes
can be used to organize the block into
the free list.

It is worthwhile to digress slightly and
consider the management of non-CPU-
addressable memory. Because consoles
are designed for low cost and high per-
formance, they sometimes incorporate
special-purpose memory that is not
directly CPU-addressable. For example,
the Gamecube has 16MB of auxiliary
memory (ARAM) that supports only
DMA access. A memory manager that
stores its state internal to the memory it
is managing cannot be used in such
cases, while a memory manager that
stores its state externally can.

While it may seem appealing to use
external state storage in order to support
all kinds of memory, our experience with
MADDEN has shown this to be a mistake.
Memory that is not directly CPU-
addressable is normally used only for
special types of objects, due to the com-
plexity of using the memory, and often
contains only a small number of objects.
Therefore, MADDEN now uses a single,
general-purpose internal storage memory
manager for all CPU-addressable memo-
ry and an additional, customized exter-
nal storage memory manager for any
special-purpose case, such as the
Gamecube’s ARAM.

Fragmentation Control

M emory fragmentation is a condition
that occurs over time as memory is

allocated and released and isolated free
blocks form. This is not usually an imme-
diate problem, but as more fragments
form and they get smaller, the opportunity
for an allocation failure due to fragmenta-
tion increases. Eventually, if fragmentation
gets severe enough, an allocation may fail
because no single free block is large
enough to accommodate the request even
though the total amount of free memory
is (Figure 3). Therefore, a good memory
manager needs to either take steps to limit
the amount of fragmentation that occurs
or be able to consolidate fragmentation
periodically through garbage collection.

An allocation failure is often a lethal
error for game code and must be avoided
at all costs. While it is generally fairly
easy to determine the maximum memory
required by an application, fragmenta-
tion can make such a calculation mean-
ingless. Allocation policy, free block coa-
lescing and multiple heaps all play a part
in minimizing fragmentation.

Free memory coalescing is a straight-
forward technique for limiting fragmenta-
tion that attempts to merge a newly
released memory block with its neighbors.
If the block immediately preceding or fol-
lowing the newly released block is also
free, merging the blocks together results in
a single, larger free block. This particular
technique is almost mandatory, as without
it, fragmentation occurs very quickly. In
addition, this limits the size of the free list
to the minimum number of blocks, which
generally has a positive performance
impact on allocation. Since this technique
has no impact on how the memory man-
ager is used externally, it is incorporated
into most memory manager designs.

The choice of allocation algorithm has
a definite impact on fragmentation.
Unfortunately, because the size and timing
of allocations and releases vary for every
application and are often different from
run to run of an application, it is impossi-
ble to say that a particular algorithm is
always better or worse than another.
However, in general, it has been found

M E M O R Y M A N A G E M E N T

f e b r u a r y 2 0 0 2 | g a m e d e v e l o p e r32

STATIC MEMORY
Pros. Fast
Cons. Difficult to maintain

Memory can’t be easily reused

DYNAMIC MEMORY
Pros. Objects can be designed to only use

memory resources when the object
exists
Can support higher level concepts
like virtual memory
Easier to support threads

Cons. Fragmentation
Additional overhead

STATIC vs. DYNAMIC MEMORY

that “best fit” algorithms tend to exhibit
the least fragmentation. See Johnstone and
Wilson’s “The Memory Fragmentation
Problem: Solved?” in References for more
information on the impact of allocation
techniques on fragmentation.

A technique that requires more
involvement from the memory manager
user is to allocate blocks with similar
lifetimes close to each other. If the life-
time of a memory block is known when
it is being allocated, the allocation algo-
rithm can attempt to place it by other
blocks with a similar lifetime. When
these blocks are released, they will be
merged into a single large free block.
The problem is that this requires the
caller to specify both the lifetime of each
block as well as the total size of the
group of blocks of similar lifetime. As a
result, a simpler version of this tech-
nique is usually implemented through
the use of multiple heaps. By allocating
blocks with similar lifetimes within their
own heap, a similar effect is achieved,

though there are generally practical limi-
tations on the number of heaps that can
be effectively utilized.

Debugging Support

O ne of the main benefits of writing a
memory manager is the ability to

add capabilities that are not provided in
the supplied memory manager. By adding
some debugging features you can make
sure that you are managing the memory
rather than stepping in the heap.

To avoid stepping in the heap, you’ll
need to be able to see the heap. Adding
information and tools to help visualize
memory usage can be a big help when
managing memory. This can be done in a
number of ways.

The debugging techniques used by the
MADDEN memory manager include the
ability to audit memory usage, collect
usage statistics, check for consistency,
and follow the memory map from a
debugger. Auditing is really nothing more
than being able to mark a group of
blocks when they are allocated and later
check to see if they were all released.
Usage statistics, such as maximum num-
ber of allocated and free blocks, as well
as maximum allocated memory, are valu-
able for evaluating the memory utiliza-
tion of the application.

Consistency checking goes through the
memory map and makes sure there are no
detectable errors in it. This means verify-
ing block sizes, checking boundary tags,
ensuring matching block counts, and so
on. By performing consistency checking

prior to every allocation and release (in a
debug build), certain forms of memory
corruption can be detected quickly.

Also, the memory map contains ASCII
debugging information that can be viewed
from within the debugger. Prefixing every
allocated block with a text string indicat-
ing the module and line number of the
caller that allocated the memory greatly
assists when debugging after a crash.

Naming the memory blocks is a neces-
sity. Imagine going to a store where every
item was in a plain box that only had its
UPC code and box size printed on it.
Finding the item you wanted to buy
would be a big challenge. Likewise, if you
have a list of memory blocks that only
contains their address and size, locating
memory blocks is going to be difficult
unless you give those memory blocks
names. Using the source file name and line
number where the allocation occurred
would be a good start. In C, this can be
accomplished quite easily through the use
of macros and the C preprocessor.

Now you can recognize your blocks in
a crowd, but it sure would be nice to
know who they hang out with. By
adding a group label or flags, you can
group your allocations at the conceptual
level rather than being limited to group-
ing your blocks by source file. This way
you can know that a memory block that
was allocated is really being used by your
main character, even though the actual
memory allocation occurred in your tex-
ture library.

Figure 4 shows an example memory
dump as seen by a (slightly drunk)
debugger. Including debugging informa-
tion in textual form within the memory
map allows you can make sense of it
from the debugger. For example, if you
had an invalid address access at
0x007cfea4, you could find that address in
the debugger and page around it to see
that it occurred in the Joystick Driver
library and that the memory in question
was allocated by pJoyDrvr.c at line 225.

With all this information available,
you will need to find ways to view that
information that can help you when
managing your game. A linear list of
memory blocks can be useful for spotting

w w w . g d m a g . c o m 33

FIGURE 2. Memory structure image.

256 used bytes

32 free bytes

512 used bytes

64 free bytes

96 used byte

80 used bytes

32 free bytes

–12: header pointer
–8: type (head)
–4: data length

0: header data
+n: data length

–12: header pointer
–8: type (used/free)
–4: data length

0: user data
+n: data length

–12: header pointer
–8: type (used/free)
–4: data length

0: user data
+n: data length

...

–12: header pointer
–8: type (used/free)
–4: data length

0: user data
+n: data length

–12: header pointer
–8: type (tail)
–4: data length (0)

0: data length (0) FIGURE 3. Although 128 free bytes are
available, the largest possible allocation is
only 64 bytes due to fragmentation.

potential memory fragmentation, while a
list of memory blocks sorted by name can
be useful when you have memory leaks.
If you do find a memory block that has
leaked, you will know from its name
exactly where the allocation occurred. With
group labels you can print out compact
memory maps that show how each con-
ceptual module in your code is using
resources. By tracking this throughout the
project, you can easily spot modules that
are using more or less memory than you
had budgeted in your original design.

You can also create functions to
check whether groups of memory allo-
cations have been freed. This can help
prevent memory leaks if you know that
in certain situations some groups have
no allocations.

Keeping track of worst-case situations
is also important. Have the memory
manager save the lowest amount of free
memory it has ever encountered (update
this every time an allocation occurs). If
you are using some sort of node system
to keep track of your memory blocks,
keep track of the highest number of
nodes that the memory manager has ever
used so that you know if you are close to
running out of memory blocks.

Sentinels added to the beginning and
end of memory allocations can help
detect overflow situations that would
normally corrupt other data in memory.
If the sentinels don’t check correctly
when the memory is freed, then some
code has been bad.

Filling memory with recognizable pat-
terns can be extremely useful. We use a
different pattern for unallocated, allocat-
ed, and freed memory. This way, we can
tell in the debugger at a glance what the
situation of a particular piece of memory
is. When someone forgets to initialize
memory they allocated properly, the
“allocated” pattern shows up.

You can also have functions that scan
free/unallocated memory and make sure
that it all still matches the prespecified
patterns. If it doesn’t match, some code
out there is incorrectly writing to
memory locations that it doesn’t own.

Finally, make sure that you set up an
extra heap for debug memory and put
all this extra debug information there.
You want your game memory to be as
similar as possible between a debug and
final build.

Platform Specifics

Amemory manager presents a logical
view of memory in the same way

that a file system provides a logical view
of a disk drive. Most often, memory
managers are concerned with managing
dynamic RAM of some sort. Some con-
sole makers like to make things more
interesting by providing a relatively large
main memory but also scattering other
smaller chunks of RAM around the system.
The memory manager allows us to
abstract away the physical details of the
memory subsystem and deal instead with a

nice, logical model of
memory. For exam-
ple, on the PS2 we
don’t necessarily
need to know that
the first megabyte of
RAM is reserved for
the operating system.
It’s enough that the
memory manager
knows. By abstract-
ing away some of the
details of the physi-
cal memory system,
our game can
become more plat-
form independent.

Most console hardware has alignment
requirements that, not so surprisingly, dif-
fer from platform to platform. Many plat-
forms require anywhere from 4- to 64-
byte alignment for buffers in graphics ren-
dering or file IO. Each type of hardware
might need the memory manager to be
tweaked to better fit the needs and abili-
ties of the platform. Often this informa-
tion can be passed to the memory manag-
er using a heap setup structure.

Finally, you should be wary of third-
party libraries that may use malloc and
free, effectively bypassing your memory
manager’s interface. The printf function
in the PS2 standard C library uses malloc
and free; our solution was to write our
own printf function.

Hardware Support

O n most modern computers, the issue
of fragmentation has been greatly

reduced by the use of a hardware-based
paged memory manager unit (PMMU).
Obviously, the fact that virtual memory
provides an application with lots of
addressable memory means that even an
inefficient memory manager can be used.
However, the more interesting point is
that the PMMU without any secondary
storage can dramatically help with frag-
mentation. The PMMU takes a very large
address space (larger than the physical
RAM it represents) and maps it onto
physical memory. Obviously, this map-
ping is not one-to-one, but rather it maps
a subset of the memory space onto a
“working set” of memory pages.

The key impact of using a PMMU in
terms of fragmentation is that when a
memory block is released, any portion of
that block completely spanning one or
more PMMU pages can be remapped by
the PMMU. The result is actually two
forms of fragmentation: address-space
fragmentation and memory fragmenta-
tion. While this effect might seem to
make a bad problem worse, it actually
simplifies things. Because the PMMU
provides a large address space, the
address-space fragmentation can be
largely ignored. Instead, the allocation
algorithm concentrates on minimizing

M E M O R Y M A N A G E M E N T

f e b r u a r y 2 0 0 2 | g a m e d e v e l o p e r34

FIGURE 4. Memory blocks with debug information as viewed in the
debugger.

memory fragmentation by first attempt-
ing to utilize the unused portions of allo-
cated memory pages (pages that contain
some allocation but are not completely
full) before remapping unused memory
pages back into memory.

Managing Your Memory
Manager

M emory managers are like most real-
life managers. You have to keep

them under control, or else they tend to
wander off without adequate information
and make strange decisions. Your memo-
ry manager sometimes needs your help to
stay on the right track too. Let’s look at
some common problems that can occur
and how to work around them.

Fragged again. One of the major side
effects of hand grenades and memory
managers is fragmentation. Previously,
we discussed fragmentation in the con-
text of designing the memory manager to
avoid or reduce the effects of fragmenta-
tion. However, there are also some appli-
cation-level techniques that can reduce
fragmentation.

The use of static allocation (memory
defined within a module with storage allo-
cated within the application image) avoids
the memory manager completely and thus
avoids fragmentation. Of course, this
usage really only makes sense when a sin-
gle object will be represented and when
the lifetime of that object is approximately
the duration of the entire application. In
such cases, static allocation can provide a
benefit by limiting utilization of the
dynamic memory manager to those mem-
ory objects that are truly dynamic.

Another strategy that relies entirely on
the memory manager user is to perform
submanagement of memory based on
specific program knowledge. For exam-
ple, if a module knows that it needs to
allocate X objects of size Y, it may be far
more efficient for the user to allocate a
single block of X * Y bytes and perform
its own management within that larger
block. By reducing the number of blocks
that the memory manager has to deal
with, the user has generally made the job
of the memory manager easier. There is,

of course, a caveat. Depending on the
amount of fragmentation and the size of
X * Y, it is possible that the application
could find itself in the situation where an
allocation of X * Y fails due to fragmen-
tation, whereas X allocations of Y would
have succeeded. We also try to discour-
age this practice when possible, as there
is code-maintenance overhead.

One way to help avoid memory frag-
mentation is to always free memory in
the opposite order from which it was
allocated. In fact, if you were always able
to allocate and release in such an order,
you would never have memory fragmen-
tation. Realistically, it’s not possible to
follow this practice all the time, but
doing it as much as possible will help.

Memory fragmentation is going to
occur, and at some point you will proba-
bly run into a situation where it causes a
problem in your game. You might
have fragmentation that is occurring in
one part of your game that is causing a
memory allocation to fail in a totally
unrelated area. Fragmentation might even
manifest itself as a situation where your
game will fail only when arriving at part
of your game through a specific path (that
causes the fragmentation). If you don’t
have some advanced form of garbage col-
lection, you are going to have to use other,
more crude methods to limit this problem.

One possibility is to change the code
that is causing the fragmentation to use a
different allocator so that it doesn’t cause
fragmentation. A common way to accom-
plish this is to have an allocator that allo-
cates from the other end of memory.
Depending on your game, fragmentation
can become more problematic over time
(especially if your allocations don’t have
close locality of lifespan). You can use
brute force to minimize these effects, such
as shutting down and restarting code
modules between levels as a brute-force
garbage collection technique.

Release builds. When running a
release build, there isn’t any debugging
information in the game, as it will con-
sume extra memory. But you still need a
way to know where the game runs out
of memory. For MADDEN, we assume in
the code that we will never run out of

memory. If the game does run out, it will
crash and optionally dump some memo-
ry info. With a special build, we display
some partial information about the
memory manager and the game state so
that we can determine if it ran out of
memory because of fragmentation or
other reasons.

Getting on the Field

W hen talking about memory man-
agement, programmers often

resort to words more often associated
with cow pastures than games. Terms
like heaps, stacks, and chunks are
thrown around like flies buzzing around
you-know-what. To see how important a
memory manager is to a game, you have
to get past the abstract poo. A good
memory manager allows you to have
more animations, more characters, more
textures, more sounds — in short, more
of everything that your game-playing
customers love.

In this article we have described some
of the issues that may come up in writing
and using your own memory manager.
After years of writing and rewriting
memory managers for the MADDEN

series, one piece of advice that bears
highlighting is simply to make sure you
schedule adequate design time on this
very important piece of your system;
you’ll be glad you did. q

w w w . g d m a g . c o m 35

R E F E R E N C E S

The Memory Management Reference
Beginner’s Guide:
www.memorymanagement.org/
articles/begin.html

Johnstone, Mark S., and Paul R. Wilson.
“The Memory Fragmentation Problem:
Solved?” In Proceedings of the
International Symposium on Memory
Management. ACM Press, 1998. pp.
26–36. www.cs.utexas.edu/users/
wilson/papers/fragsolved.pdf

Knuth, Donald E. The Art of Computer
Programming, vol. 1, Fundamental
Algorithms. Reading, Mass.: Addison-
Wesley, 1973. pp. 435–444.

M AX PAYNE. ELITE

FORCE. THIEF. ICO.
DEUX EX. ODDWORLD.
MEDAL OF HONOR.
BALDUR’S GATE. The

more recent FINAL FANTASY games. More
and more developers are pushing the
game design envelope, forging new enter-
tainment experiences and art forms that
draw on the roots of traditional gaming,
but also partake of more sophisticated
storytelling and characterization.

As the production values in games
continue to soar, the trend toward equiv-
alent advancement in storytelling is
inevitable. For game designers involved
in creating each successive advancement,
these are exciting times.

Remember in Braveheart when Mel
Gibson charged into battle holding a
handkerchief his wife gave him before
she was murdered? That handkerchief is
a symbol. This article will explore four
different ways to use symbols to evoke
emotional response from an audience.

But first, let’s look at some of the funda-
mental issues relating to the role of emo-
tion in games.

Why Put Emotion into
Game Stories?

T his is an important discussion, and
probably one that deserves its own

article. But, in a nutshell, other than the
inherent joys of creating a rich work of
art, the reasons also boil down to poten-
tial profits.

First of all, many more people watch
film and television than play games. Most
will never be lured into playing games
until games begin to offer the emotional
range and depth of the entertainment that
they’re used to enjoying. Also, a more
involving game experience means better
word of mouth and more buzz. The press
likes to write about these kinds of games,
which results in more sales. Seeking out
better profits also means staying ahead of
the competition. Certain game developers

are working hard to advance emotion in
gaming. Those creating games with sto-
ries and characters without investing in
putting emotional depth into their games
will find themselves further and further
behind, and their games will be eclipsed.
And, the better game visuals get and the
more games look like films, the more
people will want to compare them to
films. Thus, weak writing and shallow
emotional experiences in games featuring
stories and characters will increasingly
stand out negatively in consumers’ minds.

Many of the challenges that designers
face in creating emotionally rich game
experiences have already been addressed
in other media. Traditional screenwriters,
deprived of the game designer’s ability to
actually insert an audience into a film,
have figured out perhaps thousands of
ways to induce emotional involvement.
Game designers will want to test the
applicability of these techniques to their
new games and modify them so they’ll
work within an interactive experience.

A big part of successful communica-
tion between a writer and his or her
audience is writing outside of the audi-
ence’s conscious awareness. No one
expects the game player to pick out every
sound used in a game’s sound design, nor
every instrument utilized in a piece of
music, nor every tiny shadow. So too, an
extraordinary amount of what a writer

Four Ways to
Use Symbols

to Add
Emotional

Depth to Games

Four Ways to
Use Symbols

to Add
Emotional

Depth to Games

U S I N G S Y M B O L S d a v i d f r e e m a n

D A V I D F R E E M A N | David contributed to the script for THE MATRIX sequel game
(in production at Shiny Entertainment). As a writer and producer, David has had scripts
and ideas bought or optioned by MGM, Paramount, Columbia Pictures, Castle Rock, and
many other film and television companies. David teaches “Beyond Structure”
(www.beyondstructure.com), a popular Los Angeles–based screenwriting class, which has
been taken by writers from many top films and television shows, as well as by many well-
known game designers. He welcomes your thoughts on this article at
freeman@dfreeman.com.

f e b r u a r y 2 0 0 2 | g a m e d e v e l o p e r36

does is designed to affect a game player
emotionally but not be consciously
noticed. This article will focus on the use
of symbols, which are almost always
employed in a way so that they’re just on
the edge, or preferably just outside, of a
game player’s conscious awareness. A
workable rule of thumb is that no more
than 25 percent of the players who come
upon a symbol should be consciously
aware that it actually is a symbol.

The five arenas of “deepening.” I use the
phrase “deepening techniques” to
describe all those writing techniques that
impart a sense of depth to a piece of dia-
logue, a character, a relationship between
two or more characters, a scene, or a
plot. Other words that mean something
similar to deepening include poignancy,
soulfulness, layers, and emotional or psy-
chological complexity. When people talk
about these things, they’re talking about
what I call emotional deepening. Symbols
are always a deepening tool.

One game designer who has taken some
of my story and writing workshops point-
ed out that to focus on more subtle or
sophisticated techniques such as the use of
symbols is putting the cart before the
horse. Many game designers might benefit
from learning more basic techniques for
creating rich, complex, and compelling
characters and natural dialogue. This is
true. But one nice thing about symbols is

that, with very little effort, you can easily
and precisely enhance the depth of your
scenes and plots.

When you create a symbol, you’re not
trying to create an intellectual puzzle in
which the player tries to figure out what
the symbol means. Such an intellectual
exercise would work directly against the
goal of increasing emotional immersion.
Instead, symbols, when employed artful-
ly, should evoke emotions — even
though, when you do your work well,
most players won’t consciously notice the
symbols that you use. It’s not necessary
for a game player to notice a symbol in
order to be emotionally affected by it.

It’s certainly O.K. that a small percent-
age of players who consciously notice
your symbol might stop and think about
the symbol’s meaning or meanings. But
it’s only acceptable if, at the same time,
the symbol generates in those players an
emotional experience as well. Following
the guidelines in this article will help
ensure that this is what the player actu-
ally experiences.

Another advantage to using symbols in
game design is that games often offer an
opportunity that films do not. In film,
symbols, when used artfully, enhance
emotional depth. As we’ll see, when used
in games, symbols can not only perform
this function, but can also be used or
given a function in gameplay as well.

Symbol Type #1:
Symbol of a Character’s
Condition or Change in
Condition

T his use of symbols is what I call a
scene-deepening technique, because

you use it in a specific scene and might
never use the same symbol again. Its use
can be either visual or verbal, meaning
that there must be either something
visual on screen or something said by
one of the characters that reflects what
an on-screen character is going through
emotionally.

Example #1: Visual. In a particular
episode of Star Trek: Voyager, Captain
Janeway (Kate Mulgrew) finds herself in
an extended battle with the captain of a
rogue Federation ship. The captain and
crew of that ship are killing harmless
aliens in order to use the chemicals in the
aliens’ bodies to propel their ship. But
Janeway herself becomes so obsessed
with stopping the rogue captain at any
cost that she crosses the bounds of ethics
and good judgment and imperils her
crew. This conflict generates a series of
arguments with Chakotay (Robert
Beltran), her first officer.

A metal plaque with the words
“U.S.S. Voyager” falls off of Voyager’s
bulkhead during the battle with the
rogue ship. This plaque is a symbol that

w w w . g d m a g . c o m 37

Illustration by Ben Fishman

the spiritual core of Voyager — includ-
ing the moral codes of the Federation,
the Starfleet tradition of honor and
humanity, and the moral center of the
people who uphold these codes and tra-
ditions — has been damaged. It’s a sym-
bol of Janeway’s and Chakotay’s condi-
tions or changes in condition.

The plaque falling off of the bulkhead
affects us emotionally. If viewers make
only an intellectual connection between
the plaque and the abandoned Feder-
ation values, then the writer hasn’t been
artful enough in his or her creation of
the symbol.

Example #2: Visual. The 1957 war film
Bridge on the River Kwai won many
Academy Awards and still stands up as a
masterpiece. Alec Guinness plays Colonel
Nicholson, who commands a group of
British soldiers captured by the Japanese
and forced to work as slaves in a POW
camp in Burma. I won’t reiterate the con-
voluted plot, but in short, due to his ego,
Nicholson has his men help the Japanese
build a strong and beautiful bridge. In
effect, he has helped the enemy. But, near
the end of the film, during a battle at the
bridge, he has a powerful revelation, and
says, “What have I done?”

At that exact moment, he reaches up
and touches his commander’s cap. This is
a symbol of the character’s condition or
change of condition. His touching the
cap is a symbol of his changing back to
becoming what he once was — an hon-
orable British soldier.

An explosion goes off nearby that
knocks him to the ground, wounded by
shrapnel. When he stands up, his cap lies
on the ground, but he’s too dazed to
notice immediately. He reaches for the
top of his head and realizes that the cap
is gone. He then bends down and picks it
up off the ground. His reaching toward
his head for the cap, and then his picking
it up off the ground, again is the same
kind of symbol, signifying that he’s
become the honorable man he once was.

He puts his conversion into immediate
action. As he dies from the shrapnel
wound, he directs his fall onto a dyna-
mite detonator, which in turn blows up
the bridge he had so painstakingly built.

As was the case with the Voyager
example, most people in the audience
wouldn’t consciously notice this element.
And yet it would still contribute to the
depth of the audience’s emotional experi-
ence. It’s a strange moment for a writer
when he or she realizes that a great deal
of writing involves trying to create emo-
tional effects that no one will consciously
perceive, perhaps ever.

Example #3: Verbal. Perhaps you saw
the provocative film American Beauty, in
which Wes Bentley plays Ricky Fitts, a
teen without fear of social pressures, who
has an honest appreciation for the beauty
all around him. He seems, in some ways,
to be enlightened.

Contradicting his supposed enlighten-
ment is the fact that he sells drugs, is
completely emotionally detached, and is
fascinated by death. In fact, his veneer of
serenity is what I call a “mask,” or a
false front. (Masks, in all their various
forms, are very sophisticated character-
deepening techniques.)

At a certain point in the film, Lester
Burnham (Kevin Spacey) drops in on
Ricky to buy some dope — in particular
the really potent stuff that he’d smoked

with Ricky a few nights earlier. Ricky
pulls out a bag of dope and explains that
it’s “. . . top of the line. It’s called G-13.
Genetically engineered by the U.S. gov-
ernment. Extremely potent. But a com-
pletely mellow high, no paranoia.”

LESTER: “Is this what we smoked last
night?”

RICKY: “This is all I ever smoke.”
Why is this a verbal symbol of a char-

acter’s condition or change of condition?
Because Ricky, unknowingly, has just
described himself. Ricky had been a pas-
sionate young man, until his father, as
punishment, had him committed to a
mental institution for two years, where
he was heavily drugged. This experience
broke his spirit. So Ricky himself has
been government-engineered, and his
fake serenity (his mask) is that of a
“completely mellow high.” But like all
chemical highs, the effects aren’t real.

Example #4: Verbal. Sometimes, in the
television business, you need to write a
sample script just to show that you can
adapt your writing style to different
shows. I recently wrote a sample X-Files
script. In the story, Mulder no longer fits
in professionally with Scully and

U S I N G S Y M B O L S

f e b r u a r y 2 0 0 2 | g a m e d e v e l o p e r38

In Sony’s ICO, the main character’s quest to save a beautiful girl with mystical powers contains
symbols that engage the player’s emotions and affect gameplay.

Doggett. He had always been driven in
his paranormal quests by the search for
the truth about his missing sister. But,
with that case solved last season, he no
longer has a dream or ambition to push
him forward.

In the middle of a conversation with
Scully, Doggett, and Skinner, Mulder
notices Skinner’s office clock. Checking it
against his own watch, he says, “Is that
clock right?”

No one responds to the question — the
conversation merely proceeds. (Quite fre-
quently, in dialogue, not every statement
or question gets a response.) Why the
throwaway line about the clock? It’s a
symbol of Mulder’s condition or change in
condition. In this case, it symbolizes that
he’s out of sync, or out of step, with all
the others. In effect, his time has passed.

Will anyone reading the script con-
sciously note that line of dialogue?
Unlikely, any more than they would note
Wes Bentley’s line in American Beauty
about the government-engineered pot. As
with the other examples, the symbol
operates outside of the audience’s con-
scious awareness.

Game example. In the game ICO, a boy
in a faraway land helps lead a beautiful
girl with mystical powers out of a tower-
ing castle where both are trapped. He
bravely overcomes many terrifying obsta-
cles in his journey, which is more focused
on freeing the girl than himself.

Near the very end, he gets a magical
sword that crackles with a kind of spiri-
tual electricity. This is a symbol of the
boy’s condition or change in condition. It
symbolizes that he’s attained a level of
power; the demonic creatures that once
attacked him now flee him and the
sword. And it symbolizes that he now
belongs with the girl, for the electricity
that the sword exudes looks exactly like
the mystical energy that the girl can
wield when she needs to, and which has
the same magical abilities.

Since the boy uses the sword to
accomplish his final tasks, this is what I
call a usable symbol. It serves double
duty by both working to deepen the
emotional experience and also playing a
role in gameplay.

Hypothetical game example #1. Let’s
say we have a sword-and-sorcery game
in which, during a fight to save some
villagers, the wisest and most beloved
village elder is killed. The villagers are
stunned. A cloud could pass in front of
the sun at that point, throwing a shad-
ow over the village (during either a cine-
matic sequence or gameplay). The shad-
ow would symbolize the villagers’ sad-
ness — and perhaps yours as well, if
you had found the old man endearing
(and you would have, if the character
was rich enough and the dialogue was
compelling).

Hypothetical game example #2. After
great effort and many struggles and bat-
tles, you have attained the highest rank a
warrior can attain. At that moment, an
eagle flies diagonally overhead in the sky.
It’s a symbol of your lofty achievement.

It’s important to reiterate here that it
doesn’t matter if no one consciously
notices the impact of these symbols. They
deepen the experience nonetheless.

Symbol Type #2:
Symbolic Subplot

U sually at least one of the characters
(although sometimes more) in a

story has what I call an emotional fear,
limitation, block, or wound. Quite often,
this person is the lead character,
although not necessarily.

In the first Star Wars movie,
Luke Skywalker had to learn
who he was (a Jedi knight),
Han Solo had to learn
responsibility and how to act
as a member of a group
(instead of operating solo),
Princess Leia had to learn to
be vulnerable in love, Obi-
Wan had to learn he could
still make a difference, and
C-3PO had to learn
courage. Each of these char-
acters was forced to con-
front their respective fears,
limitations, blocks, and
wounds (FLBWs, for short).

Usually, the character
doesn’t know he or she has an

FLBW. If you pointed it out, the charac-
ter would probably disagree; in fact,
they’re usually quite oblivious. It’s
unlikely, for instance, that Han would
have agreed with you if, at the start of
the film, you accused him of being
unable to function as part of a team. It’s
unlikely Luke would have agreed if, at
the start of the film, you accused him of
having no idea who he was.

A character’s path of growth through
his or her FLBW is a rocky one; quite
often the character resists growing. A
character’s path of growth through the
FLBW is called a character arc. In
many stories, some of the most com-
pelling emotional moments are wrapped
around a character’s process of
wrestling with and eventually growing
through his or her emotional fear, limi-
tation, block, or wound.

Some writers insert a symbol into the
story that represents the character’s arc.
That is, as the character changes and
grows, the symbol changes right along
with the character. Therefore, a symbolic
subplot is a plot-deepening technique
because it continues throughout all or
most of the plot (unlike the symbol of
the character’s condition or change in

condition, which
occurs in a single
scene or a small

w w w . g d m a g . c o m 39

part of the plot).
Example #1. In the new Star

Trek series, Enterprise, one of the
crew, Ensign Hoshi Sato (Linda
Park) is a woman with extraordi-
nary linguistic abilities. In one of
the early episodes, she’s having a
hard time adapting to life on a
starship. She wants to go home,
back to Earth.

She has brought a pet along with her
— a yellow slug. The slug isn’t doing well
aboard the ship. Environmental conditions
threaten its health.

By the end of the episode, after discov-
ering how much the crew needs her, she
has made her peace with being in space.
She drops the slug off on an Earth-like
planet, where it will survive just fine.

Thus the slug is a symbolic subplot.
The slug not doing well in space equates
with Sato not doing well in space. The
slug being put on a new planet and doing
well there thus equates with Sato surviv-
ing and thriving away from Earth.

With a symbolic subplot, the audience
can stay abreast of a character’s progress
in his or her character arc just by check-
ing up on what’s happening with the
symbol. Just as in the case with the sym-
bol of a character’s condition or change
in condition, a symbolic subplot may or
may not be consciously noticed by the
audience or game player.

Let’s revisit the example from the
Enterprise episode. In this case, unlike
most, we are quite aware that the slug is
a symbolic subplot, for the doctor on
board the ship even points this out to
Ensign Sato. While speaking to her, he
compares her difficulties to those experi-
enced by the slug.

This bit of dialogue violates the guide-
line of having the symbolic subplot oper-
ate just outside of most people’s con-
scious awareness. In my opinion, this
was a mistake. The slug symbol would
have generated more emotion if it hadn’t
been pointed out to the audience. “Look,
here’s a symbol” is usually not the best
way to go. However, as every writer
knows, to every guideline there are
always successful exceptions.

Example #2. In the film Wonder Boys,

Michael Douglas plays a character who
wrote a great novel decades ago and is
now a washed-up creative writing profes-
sor at a prestigious liberal arts college.
His life’s a mess. He’s depressed, and he’s
been working forever on a sprawling
novel that he hasn’t shown to anybody.

The symbolic subplot is the novel he’s
writing. The novel is analogous to his
life. We learn that the he’s been working
on the book for decades. Then we learn
that it’s a sprawling jumble, with plot-
lines going off in all directions but no
focus, just like his life. It comprises tons
of details without a unifying thread, just
like his life.

Further along in the film, the pages of
his manuscript — the only copy he has —
are blown to the wind (symbolic of his
life falling apart). Later still, when some-
one asks him what the novel was about,
he can’t answer — meaning he has no
idea what his life is about. By the end,
once he feels his life has again assumed
meaning and direction, he starts a new
novel, a novel that has power and focus.

Using this technique in games. Trying to
build in a character arc for your player
opens up a can of worms, because in a
symbolic subplot, the changes in the sym-
bol reflect the changes that your
character undergoes as he or she pro-
gresses through the rocky path of his or
her character arc. And how do you man-
age how a character goes through a char-
acter arc when that character is con-
trolled by the game player?

This question takes us right to the cut-
ting edge of story-based games. To
explore all the ways in which game
designers are tackling or could tackle this

problem would be an article in
itself, if not several.

Furthermore, it opens up anoth-
er problem. On one hand, how
do you tempt players into see-

ing themselves in a role and
making decisions appropri-
ate to that role? On the other

hand, how do you allow players to
play the game the way they want to

play?
Still, this is one direction in which

story-based games are moving. For
instance, let’s take Raven Software’s
action-adventure game STAR TREK:
VOYAGER — ELITE FORCE. The game tries
to create a character arc for Alex, the
main player character (what I call a
“first-person character arc,” since the
person who’s supposed to undergo emo-
tional change is the player). The attempt
to cast the player as the Alex character,
thereby helping the player to experience
character growth during the story, is
done through a variety of methods:
observation of a character’s behavior and
speech during cinematics; watching how
other characters respond to the player
character; hearing the words coming out
of the player character’s mouth (what I
call “self auto-talk”), spoken in Alex’s
voice and with his personality; and the
player’s changing responsibilities as the
game progresses.

While these first-person character arcs
are a fascinating and critical area of dis-
cussion, I’ll bring the subject back to
where we began. How can a designer
use a symbolic subplot to deepen a plot
by echoing a player’s first-person char-
acter arc?

Let’s imagine a game in which the
player is a samurai swordsman. He’s a
master of many weapons. Armed with a
full range of finely honed steel instru-
ments of death, he leaves his samurai
master’s training to rescue his master’s
niece from an evil warlord. This mission
will set a much bigger plot in motion.

The obvious character arc follows the
player character from his origin as a
novice swordsman to becoming a master
himself. Because this is the most typical
character arc, let’s toss it out. As I often

U S I N G S Y M B O L S

f e b r u a r y 2 0 0 2 | g a m e d e v e l o p e r40

tell my writing students, when it comes
to characters, lines of dialogue, scenes, or
plots, a good general guideline is, “Find
the cliché, then throw it away.” (This
guideline also dictates that the master not
be a clichéd wise Asian character either.)

So let’s make our character’s arc to
“attain a spiritual connection to the uni-
verse.” As the samurai character attains
spiritual wisdom or abilities, perhaps the
world will start looking different in some
way. Perhaps he’ll be able to perform
extraordinary moves akin to those demon-
strated by the fighters in Crouching Tiger,
Hidden Dragon. Could you give this char-
acter arc a symbolic subplot?

Hypothetical game example #1. Perhaps
the samurai’s master has given him a
sword. It makes a harsh, ringing noise
when swung. But as the player character
progresses along the character arc, the
noise becomes beautiful and harmonic.

Hypothetical game example #2. Suppose
the player character recharges his life
force by returning to a beautiful little
bamboo meditation hut suspended over a
small stream. In the beginning of the
game, the stream is muddy. But as the

player progresses along the character arc,
the stream gets clearer and clearer.

In either of these two examples, the
player may or may not notice the change
in the symbol. This situation is just what
a game designer generally wants: a sym-
bolic subplot that works just at the edge
of the player’s conscious awareness or
just outside of it.

Making usable symbols in gameplay. In
the first example, perhaps when the
sword makes its most beautiful, harmon-
ic sound, something extraordinary hap-
pens. A frail old man in the village is, in
fact, much more than the peasant he
appears to be. When he hears that beau-
tiful sound, he knows the samurai is spir-
itually ready and gives the player charac-
ter some special weapon, amulet, potion,
or secret that is essential to the accom-
plishment of the game’s final and most
dangerous task. Or, taking a cue from
ICO, perhaps it’s only when the sword
makes this beautiful sound that it’s fully
charged and thus useful against the final
and most formidable enemy.

You could also find a way to turn the
river (in the second example) into a

usable symbol. Maybe the master built
the meditation hut over the river and
imbued it with magic of which the
player character is unaware. Let’s say
the master dies during the course of the
game. But, when the character arc is
complete and the stream becomes clear,
the master’s face can be seen in the
river, from which he dispenses advice
that is crucial to accomplishing the
game’s final tasks.

A symbol doesn’t need to be used in
gameplay to justify its being there, for its
main purpose is to enhance the depth of
the emotional experience. However, a
symbol that can also function as an ele-
ment of gameplay obviously represents
an opportune situation.

Game example. In the game AIDYN

CHRONICLES: THE FIRST MAGE, one of
the player character’s close friends is an
NPC who’s a reluctant knight. Though
the knight has sworn off the violence of
battle, he’s continually forced to fight
for his king, for honor, and to support
an honorable cause. He carries a pole
bearing the banner of the kingdom he
serves. As a tool of gameplay, the ban-
ner has certain protective functions.
Because of this, the banner is often
ripped in battle, symbolizing that the
knight’s heart is torn every time he
violates his decision to abstain from
fighting. Furthermore, the banner, when
torn, prompts discussions by the knight
and those around him as to the ethics
of his fighting in battle versus being a
man of peace. The banner is a symbolic
subplot, indicating, at any given
moment, the knight’s state of mind as he
wrestles with the decision to be, or not
to be, a warrior.

This is one of those examples in which
a symbol serves a double duty. Not only
does it deepen the emotional experience,
but it also is a usable symbol with a
function in gameplay.

Symbol Type #3:
Foreshadowing

F oreshadowing is another plot-deep-
ening technique. Although it only

appears in one specific scene, it prepares

w w w . g d m a g . c o m 41

In the first-person action game STAR TREK: VOYAGER — ELITE FORCE, players assume the role of a
character named Alex. One way we know Alex is growing in maturity and wisdom is that he’s
given more and more responsibility for the Elite Force team.

us for a later plot development. In fore-
shadowing, once again you’re creating a
symbol that usually operates outside the
conscious awareness of the player or
audience. The symbol, or what occurs
to the symbol, suggests something that
will occur later in the story to one of
the main characters — usually some-
thing bad.

Example. In the film The Shawshank
Redemption, Tim Robbins plays a man
who has been unjustly sent to prison.
There he runs afoul of the warden, and
the two become enemies. Later in the
film, another man who has information
that could clear Robbins is sent to the
prison. The warden finds out about this
and asks the man to step out with him
into the prison yard at night. The warden
grills the new prisoner, who confirms his
knowledge of information that could
help Robbins.

The warden, finished with his inquiry,
tosses his cigarette on the ground and
steps on it to put it out. He walks away,
and the prisoner is shot from an unseen

source in a guard tower. The extinguish-
ing of the cigarette was the foreshadow-
ing that the prisoner, or at least the infor-
mation he had, was going to be snuffed
out. As such, it evokes an ominous feel-
ing when we see it happen.

Hypothetical game example. Let’s go
back to our samurai swordsman. His
master has a bonsai tree that is 150 years
old, cultivated and handed down to him
by his own master, who is long since
deceased. The samurai’s master has used
the careful cultivation of the small tree to
perfect his patience.

Then, either during a cinematic or dur-
ing gameplay, the villain destroys the
tree. This would foreshadow the master’s
impending demise.

The bonsai tree could also be turned
into a usable symbol with a function in
gameplay if its magic heals the samurai
when he’s injured or restores his life
force when it’s been depleted. Thus, the
tree’s destruction would not only fore-
shadow the master’s death, it would also
affect gameplay by depriving the samurai

of a source of healing and thus increasing
his jeopardy.

Symbol Type #4:
ASymbol That Takes
on More and More
Emotional Associations

T his is another plot-deepening tech-
nique, as it too tends to extend

throughout an entire plot. It can be
either a visual object or a verbal phrase.

One symbol of this type is a very famil-
iar one: the American flag. What does the
flag mean? It means a lot of things:
democracy; courage; the right to live the
life you choose; freedom of speech and
religion; a nation ruled by law; Yankee
ingenuity; and more. Yet when we look at
the flag, we don’t consciously think of all
these things, we just experience the emo-
tions that these associations evoke in us.

When a symbol reappears over and
over again during emotionally charged
moments, some of the emotion rubs off
on the symbol, and the symbol thus takes
on more and more emotional associa-
tions as the plot advances.

Visual example. In the film Braveheart,
Mel Gibson plays William Wallace, a his-
torical revolutionary leader in Scotland.
There’s an interesting symbol used
throughout the film — a thistle, and a
handkerchief with a picture of a thistle
sewn into it. This symbol takes on more
and more emotional associations as the
film goes along.

When Wallace is young, a little girl,
Murron, gives him a thistle at the funeral
of his father and brother, who have been
killed by the English. So the thistle is
associated with love. When they’re older,
the two begin dating, and he gives her
back this same, dried thistle. Once again
it is associated with love. When Murron
marries him, she gives him a handker-
chief with a picture of a thistle embroi-
dered on it. It is still associated with love.

Later, Murron is murdered. Had this
been the only way the handkerchief had
been used, whenever Wallace looks at it
with sadness, we would understand and
feel his personal anguish. It would evoke
in him (and in us) emotional memories

U S I N G S Y M B O L S

f e b r u a r y 2 0 0 2 | g a m e d e v e l o p e r42

This billboard is littered across the rooftops in MAX PAYNE. As the story evolves, so does the signif-
icance of the associations the slogan carries, heightening the player’s emotional involvement in
the game.

and feelings about her uniqueness, the
beauty of their love, and the sadness of
her passing.

At this point, we could call this a
highly personal symbol, as it would be
highly personal to him for reasons we
can understand and which move us too.
A highly personal symbol, and a charac-
ter’s reaction to it, can be an effective
way to evoke a lot of emotion. It’s a
character-deepening technique. However,
in Braveheart, the handkerchief goes on
to take on more and more emotional
associations throughout the plot, and so
it becomes a plot-deepening technique.

After killing the English magistrate
who had murdered Murron, Wallace
stares at the handkerchief. By now it’s
begun to be associated with revenge. The
handkerchief will be with him as he
becomes a leader of the Scots in their
fight for independence, so it eventually
comes to be associated with freedom.
And finally, after Wallace is killed, wishy-
washy landowner Robert the Bruce takes
up the fight. Robert leads his men into
battle holding the handkerchief, which is
now associated with courage.

Throughout the film, the handkerchief
with the thistle keeps reappearing,
always during emotionally charged
moments and always associated with
love, revenge, freedom, or courage. By
the end, the handkerchief is simply satu-
rated with emotional associations, sort of
like the American flag. An important
point to make here is that when we see
the handkerchief in Braveheart, we don’t
consciously think about all of these
meanings and associations. Instead, the
handkerchief evokes feelings in us from
the many emotional experiences with
which it has come to be associated.

Hypothetical game example: Visual. Let’s
say you’re designing a game with a
Tolkien-like story. (Yes, it’s overdone, but
we’re just talking hypothetically.) So
you’ve got your meek, Hobbit-type play-
er character going up against a fearsome
enemy with supernatural powers. Maybe
the player character’s motivation is that
the villain wiped out his family. His
father had given him a pendant with his
family crest, handed down through the

generations.
The first time we see the pendant is in

a cinematic, when the father, as he lies
dying, gives it to the son. So the pendant
is associated with love. As the player
character goes on his quest to bring
down the villain, he can recharge his life
force (if he doesn’t do it too much) by
clenching the pendant. So the pendant
comes also to be associated with life. At
some point the player character needs to
give the pendant to a fallen, dying
friend, to save her by recharging her life
force. Now the pendant is associated
with the act of self-sacrifice for a friend.
And if the pendant eventually comes
back to the player character and gives
him a decisive superboost of life force
for the final battle, it would then be
associated with victory.

Although it would operate outside the
player’s conscious awareness, the pen-
dant would be a symbol that takes on
more and more emotional associations,
thereby adding emotional depth to the
story. However, because the pendant also
plays a role in gameplay, it’s doing dou-
ble duty as a usable symbol.

Game example: Visual and verbal. In
MAX PAYNE, above the rough-and-tumble
squalor of the city float billboards for the
mysterious Aesir Corporation, with its
logo (the r in Aesir has a little wing on it)
and its slogan, “A bit closer to heaven.”

At first, the billboards have the emo-
tional quality of taunting the residents of
the city by reminding them of class dis-
tinctions. After Max (the main character)
discovers that the Aesir Corporation is
responsible both for the city’s decrepit
condition and the murder of his wife and
child, the logo and slogan become associ-

ated with the enemy. And when Max tri-
umphs in the end and finally attains some
inner peace, he adopts the slogan “A bit
closer to heaven” as his own. The phrase
is now associated with transcendence.

If this symbol only made MAX PAYNE

players think about these different associ-
ations, then despite the fact that it was a
wonderfully bold and inventive attempt,
it was, to a great degree, unsuccessful.
But if it evoked in players a variety of
emotions that accompanied these differ-
ent associations, then it was successful.

Going Deep

T his article has covered four distinct
techniques for evoking emotional

depth with symbols. Each use is quite
different from the other, and they can be
used in combination. If no one notices
your work after it’s done, that’s just fine
— in general, they’re not supposed to
notice.

When using symbols, you’re not creat-
ing intellectual exercises for your audi-
ence, forcing players to try to figure out
what a symbol means. Using a symbol
for that kind of mind game would
detract from any emotional impact.
Instead, when you use one or more of the
techniques presented here, you deepen
the player’s emotional experience in the
game by letting the symbol evoke the
player’s emotions.

While many of the examples of these
techniques come from film, their use in
games presents a unique tool to design-
ers in the form of usable symbols func-
tioning in gameplay. Games with stories
have come far, but still have a distance
to go. When game designers and writers
master techniques to create complex
characters and artfully evoke emotions

dur-
ing

cine-
mat-
ics
and
game-

w w w . g d m a g . c o m 43

A C K N O W L E D G E M E N T S

Thanks to Wagner James Au,
David Perry, Chris Klug, Jason Bell,
Henry Jenkins, Mike Morhaime, and
David Taylor for their very helpful
feedback in preparing this article.

play, this new entertaining art form will
truly have come into its own. q

F E A T U R E A R T I C L E

f e b r u a r y 2 0 0 2 | g a m e d e v e l o p e r44

G A M E D A T A

PUBLISHER: Mythic Entertainment/Abandon
Entertainment/Vivendi Universal Interactive

Publishing
NUMBER OF FULL-TIME DEVELOPERS: 25

NUMBER OF CONTRACTORS: 5
ESTIMATED BUDGET: $2.5 million

LENGTH OF DEVELOPMENT: 18 months
RELEASE DATE: October 9, 2001

PLATFORMS: Windows 98/ME/2000/XP
DEVELOPMENT HARDWARE (AVERAGE): 900MHz

Pentium IIIs
DEVELOPMENT SOFTWARE: 3DS Max, Photoshop,

Visual C++, Linux GNU C++, various pro-
prietary in-house tools

NOTABLE TECHNOLOGIES: NetImmerse, Linux
open-source server and database products

Mythic Entertainment’s
DARK AGE OF

CAMELOT
Mythic Entertainment’s

DARK AGE OF

CAMELOT

P O S T M O R T E M m a t t f i r o r

f e b r u a r y 2 0 0 2 | g a m e d e v e l o p e r44

D ARK AGE OF CAMELOT was the best-
selling computer game in the United
States for the week of October 7,
2001, and is still comfortably in the
top five as I write. This Postmortem is

an overview of how this successful title was conceived
and developed. My role on the project was as the
game’s producer.

Mythic Entertainment has been developing online
games as a company since 1995 — forever in this field
— but the company’s founders had made online games
even before then. In fact, as a company, we probably
have more experience than any other company in
developing online games of all types — over the years
we have developed role-playing games, first-person
shooters, top-down spaceship shooters, and strategy
games. When I last wrote a Postmortem here in the
pages of Game Developer, it was back in May 1998
for ALIENS ONLINE, our online first-person shooter
based on the well-known Alien movies.

After ALIENS ONLINE, a nonaccelerated game, we
created our first 3D-accelerated game, SPELLBINDER:
THE NEXUS CONFLICT. During that project, we
developed a relationship with NDL, makers
of the NetImmerse 3D engine API toolkit.
We learned a lot about 3D engine develop-
ment over the course of that project and
became very comfortable with software
and art development in this environ-
ment. We finished SPELLBINDER, which
went on to be a mildly successful
Internet shooter, and it still has a
small but loyal following.

After completing the
SPELLBINDER project, we
decided to create a
graphical online role-
playing game to com-
pete with the then-
new wave of
online RPGs
such as
ULTIMA

ONLINE

and
EVERQUEST,
which were tak-

ing traditional text-based games and adding a
graphical front end, with very successful results.
Over the years, we had developed several nongraph-
ical online role-playing games, including DRAGON’S
GATE and DARKNESS FALLS: THE CRUSADE. Because of
our experience developing RPGs, we knew that we
had to have a slightly different slant on our new title
in order to distinguish it from the RPGs that were
already on the market. DARKNESS FALLS: THE

CRUSADE (DFC) featured a built-in player-versus-
player (PvP) conflict in which three different teams,
called Realms, fought each other for control of mag-
ical artifacts, known as Idols. We really liked this
concept, which served to keep DFC players hooked
on the game — especially because no other online
game featured such team-based conflict as a core
part of the game design. So, in late 1999, we decid-
ed to make a graphical version of DFC. The project
was dubbed “Darkness Falls 3D,” and we began
preliminary work research-
ing client engine and serv-
er technology.

w w w . g d m a g . c o m 45

M A T T F I R O R | Matt has been producing online games since the infancy of the industry. He has produced more
than a dozen online games, including SILENT DEATH ONLINE, ALIENS ONLINE, ROLEMASTER: MAGESTORM, and of
course, DARK AGE OF CAMELOT. He splits his time between a horse farm in Hunt Valley, Md., and a tiny apartment
in Arlington, Va. Matt can be reached at mattf@mythicentertainment.com.

Right off the bat it was obvious that
we had two major factors going in our
favor. First, we determined we could use
a much-enhanced version of the SPELL-
BINDER graphics engine as DFC3D’s
client, just as we were able to use DFC’s
server code as a platform for the new
game’s back end. Having such a solid
client and server right at the start — with
associated client/server messaging —
alone saved us at least a year of develop-
ment. Second, and even more advanta-
geous, DFC’s server came with that
game’s database of objects, monsters, and
weapons. Indeed, we went into the
CAMELOT project with a huge head start.

We were proceeding along under the
DFC3D concept until our president,
Mark Jacobs, came up with the idea of
basing the game, at least partially, on the
Arthurian legends. It was a great idea,
since the stories of King Arthur are in the
public domain, which meant we could
use them with no fear of licensing issues.
Of course, because the game was based
on the idea that three Realms were in
conflict, we quickly came up with the
idea of basing the other two Realms on
Norse Viking myths and Celtic Irish leg-
ends, respectively. Having the myths and
legends of three cultures gives CAMELOT

the feel of being three games in one, since

each Realm has different races, classes,
guilds, terrain, and monsters.

Because everyone knows what hap-
pened in Arthurian England, we based
the game after Arthur’s death and devel-
oped a back story of conflict among the
three Realms. The game was rechristened
DARK AGE OF CAMELOT, and around
January 2000 we began the project in
earnest. A year and a half and untold
numbers of Monty Python jokes later, we
finished the game.

The initial versions of DARK AGE OF

CAMELOT used the rights for a tabletop
role-playing game called Rolemaster as a
basis for the class and spell systems. Not
long into the project, the company that
created Rolemaster, Iron Crown Enter-
prises, filed for bankruptcy, and we lost
the rights. This turned out to be good
for us, however, because we were no
longer required to adhere to a set of
rules based on the license — although
we did have to scramble for about a
week to rename and retune spells and
classes and otherwise clear Rolemaster
content out of the game.

As a company, Mythic had never before
been able to devote all of its resources to
any one game — we’d never had a project
big enough to pay for it. Because of the
sheer size and scope of CAMELOT, we

wanted to ensure that everyone at Mythic
devoted themselves fully to the project.
Doing so required an influx of money, and
that’s where New York’s Abandon Enter-
tainment stepped in. Abandon owns a
couple of small companies, each of which
specializes in different types of entertain-
ment: a film studio, a web company, and
a couple of game content development
companies. Abandon wanted to become
more involved in game development, so it
purchased a minority stake in Mythic.
This money allowed us to devote everyone
on staff to the CAMELOT project, while
also expanding and hiring much-needed
programmers and artists. Our spread-
sheets showed that we had enough money
to support exactly 18 months of develop-
ment starting from January 2000, giving
the project a hard end date of September
2001.

By the summer of 2000, we had nearly
our entire team in place. We had about
25 developers working full-time on the
project — quite a small number com-
pared to other online RPGs, but our
existing technology allowed us to reduce
substantially the amount of technical
programming staff required. We had five
programmers, ten world developers,
seven artists, and several other people
working on the game.

P O S T M O R T E M

f e b r u a r y 2 0 0 2 | g a m e d e v e l o p e r46

The NetImmerse graphics engine from NDL proved flexible, stable, and
packed with features players expect. Cities, creatures, world objects,
and spell effects were created entirely in 3DS Max and exported using
NetImmerse’s Max plug-in, MaxImmerse.

CAMELOT’s engine and client/server technology proved remarkably
stable, displaying spell effects and combat animations, parsing system
messages and chat, dispensing quests and tasks, and sending count-
less client/server messages with minimal effect on gameplay.

Rob Denton, Mythic’s vice president
and chief technical brain, was responsible
for all client and server programming, as
well as the client/server messaging that
tied the two together. His input was criti-
cal during design discussions, as he could
tell us whether an idea would work or
not. He immediately categorized features
into “doable,” “not doable,” and the
dreaded “on the list,” which meant that
it could be done, but he wouldn’t commit
to it. Brian Axelson was in charge of
server programming as well as design of
the game’s combat system — a critical
component in a PvP-centric game. Jim
Montgomery provided CAMELOT’s client
interface coding and also designed and
coded the game’s magical spell system.

CJ Grebb and Lance Robertson led the
art team. CJ was responsible for the
game’s look and feel, while Lance han-
dled figure modeling and animations and
managed the team’s deadlines. Their team
used 3DS Max and Character Studio to
create CAMELOT’s character and monster
models and animations. The character
models were technically advanced, as
each in-game character has several differ-
ent parts buried in it that can be turned
off and on by the game. So, each model

can have a helmet head and a regular
head (with hair) without having to load
in a new model. Mike Crossmire created
the game’s spells in 3D Studio, tweaking
the NetImmerse system to display animat-
ed spells with spectacular results.

The other major group in CAMELOT’s
development was the world team, led by
Colin Hicks. This group was responsible
for quests, monster placement, object
placement, and just about everything
else having to do with creating the world
of DARK AGE OF CAMELOT. CAMELOT’s
economy was designed by Dave Rickey.
This economic system ensures that play-
ers must continue to spend money as
they rise in level, which limits the
amount of money that stays in the game.
Dave and Mark Jacobs designed
CAMELOT’s trade skill system, which
enables players to make armor, weapons,
and other objects in the game — all tied
to the economic system.

Among the myriad tasks that I did as a
producer (writing, designing, persuading,
arguing, and such), my job was to make
sure all the teams worked together. I
hosted an almost-daily morning meeting
(at the wretched hour of 8:30 A.M.)
where Colin, Rob, CJ, Lance, and I got
together to make sure that we were all
on the same page. I was also responsible
for maintaining the master game client —
all files added to the game had to be
given to me, so I could verify they
worked and then integrate them with
the rest of the game.

For the game’s sound and music, we
contracted with Womb Music, based
in Los Angeles, which had provided
music for some of our previous titles.
Rik Schaffer, the main guy at Womb,
composed a wonderful soundtrack
that consisted of several long main
scores, as well as many shorter pieces
in the style of Celtic, Norse, and old
English folk songs, adding a sense of
depth and quality to the world.

What Went Right

1. Community management/
beta program. From the

beginning of the project, we knew we

had precious few dollars available for
marketing, and that our best chance to
capture public attention would be to
have a big presence on the various role-
playing fan sites around the Internet.
One, the Vault Network, provided us
with some message board space, a news
page, and a couple of moderators, and
we were off and running.

We devoted a lot of time over the year
and a half that DARK AGE OF CAMELOT

was in development to interacting with the
future fans of the game. We hired a com-
munity relations manager whose sole job
was to read different message boards and
report back to us what was happening in
the community. From the beginning, we
took our fans seriously and made many
tweaks and additions to the game based
on their commentary and ideas.

2. No bureaucracy. Since the
founding of Mythic, we have

striven to have little bureaucracy. We
have no levels, no directors, and few
managers. We have a president, a vice
president, and a producer. That’s it for
management, although for CAMELOT we
did have to assign a lead world developer
and art co-leads, just to streamline the
day-to-day processes of the project.

Because of this simple command chain,
we experienced no power struggles. We

w w w . g d m a g . c o m

It all starts with a concept. The troll, a playable
race, changed the most over the course of
development from a hulking, human-like
creature the more mythologically inspired ver-
sion seen here.

47

feel this is the best way to make
a solid, cohesive game — a
small group controls what the
game is and how it is presented
to the user. Because of this
approach, decisions are made
quickly, and features can be
implemented without an endless
line of approvals and politics.

3. Smart business decisions.
Our close relationship with

Abandon Entertainment was a critical
factor in the success of the game.
Abandon’s purchase of a minority inter-
est in Mythic ensured that we had
enough money to fund the game from
start to completion. Abandon’s manage-
ment was smart enough to realize that
we knew more about game development
than they, so they largely left us to make
game-related decisions ourselves. They
were involved in the project, of course —
some Abandon employees even became
avid beta players of the game, even
though most had never played an RPG
before. Abandon’s investment meant that
we did not have to rely on any outside
influence in designing or creating the
game, which means that CAMELOT is
wholly ours.

With Abandon teaming with us, Mark
Jacobs, our president, decided to take a
big chance and wait until the game was

almost complete before looking for a dis-
tributor. In most cases, game companies
seek out publishers, which typically have
a hand in the design and production of
the game and then distribute the game to
the retail chain. With Mark’s gamble, we
produced the game ourselves (with criti-
cal financial help from Abandon and
business advice from our business devel-
opment person, Eugene Evans) and then
looked only for a retail distributor. This
gamble could have placed us at the end
of the project with a great game but no
way to get it into the hands of our cus-
tomers. It all worked out in the end, of
course, with Vivendi Universal stepping
in and distributing — but on our terms.

4. Sweet serendipity. The
CAMELOT project was helped

immensely by factors completely out of
our control — in other words, blind luck.
Several high-profile online RPGs that
were slated to launch at about the same
time as CAMELOT were either pushed off
(SHADOWBANE) or canceled outright
(DARK ZION, FALLEN AGE). Also, the week
we launched was originally scheduled to
be the same week as the launch of WAR-
CRAFT III, which will almost certainly be a
huge seller. That project was also delayed,
which ensured that CAMELOT launched as
the only large-scale game, and the only
online RPG, when it debuted on October
9, 2001. This little bit of good fortune
gave the game a big initial boost, as there
was little direct competition from other
new products.

5. The joys of open source
software and stability. Long

ago, during the development of our early
titles, we decided to use Linux wherever
possible as our server back-end OS, and
we kept to this same practice when creat-
ing DARK AGE OF CAMELOT. We have
extensive Linux experience in-house, and
it made sense for us to stay with a plat-
form that we knew could handle the task
and also was, well, free.

Because running CAMELOT would
require a considerable amount of data

P O S T M O R T E M

f e b r u a r y 2 0 0 2 | g a m e d e v e l o p e r48

Balancing the races and classes for effective and challenging player-
versus-player combat became one of Mythic’s greatest challenges.

It was essential to provide players with plenty of player-versus-
environment conflict, such as with the forest giant seen here.

management, we initially planned on
using Oracle to store account and
character information. However, Oracle’s
quoted license fee of more than $900,000
quickly removed them from contention.
Once we got over our shock and amuse-
ment at Oracle’s pricing, we turned to a
Linux-based freeware solution, MySQL,
to manage CAMELOT’s data storage,
which so far has worked admirably.

Everyone developing games should at
least investigate open source solutions
for their servers. It’s saved us a pile of
money and has been stable and reliable.
In fact, prior to CAMELOT’s launch, it
was axiomatic that MMORPGs were
unstable and prone to crashing during
their first month or so. From the outset,
we were determined to buck this trend.
We co-located our servers directly at
UUNET, on the network backbone,
which ensured a wide network pipe to
the Internet. With this Internet con-
nection, we can increase our band-
width with just a few hours’ notice
to UUNET.

With the combination of reliable server
code and a stable Internet connection—
all running on open source software —
CAMELOT went live on October 9, 2001,
with virtually no problems. That first
night, the game went down for about an
hour and a half due to a database configu-
ration problem, but since then, the game
has been remarkably solid and stable. As
of this writing, it hasn’t been down due to
server error for more than a few minutes
ever since the first night.

What Went Wrong

1. Development of customer
service tools. We really tried to

avoid the customer service problems that
are characteristic of some recently
launched online games. One of the most
important factors in keeping customer
service reasonably effective was a smooth
launch. Obviously, giving players fewer
problems results in fewer calls to cus-
tomer support. We did an excellent job
with the launch — it went very smoothly.

However, we could have better foreseen
other parts of our customer service plans.

First, we had a lot more players in the
first week after CAMELOT went live than
we ever could have forecast — 51,000
boxes were sold in the first four days alone.
Our forecast numbers called for a much
smaller number, and we hired our customer
service staff based on this smaller number.
Also, we put off creating customer service
tools until much too late in the development
cycle — some had yet to be developed
when the game went live. These missing
tools really hurt the customer service staff
and added to the time it took to help each
player with in-game problems. Eventually,
wait times became much too long, and
customer support as a whole suffered
because of it. As I write, we still are try-
ing to work ourselves out of this hole.

2. Lack of a cohesive market-
ing plan. We went into the

CAMELOT project with a lot of experience
in developing software, but no real experi-
ence in creating a marketing plan. We got

w w w . g d m a g . c o m 49

In addition to designing CAMELOT’s many outdoor areas, Mythic’s world development team had to
populate those areas with interesting encounters and dynamic quests — no small task, consid-
ering they had not one but three distinct Realms to accommodate, as well as a finite amount of
creatures available to them. Work on this content is ongoing, with new updates added to the
game on a regular basis.

A look at the final version of the Troll. Every
race within each Realm was designed to wear
the same clothing, so the chain mail seen on
this troll had to work equally well on the more
diminutive Dwarven race.

a lot of help with advertising from Aban-
don Entertainment, but there was no over-
all project plan. Basically, we took out ads
in magazines that we thought were impor-
tant and tried to keep on top of the
Internet community. We didn’t regularly
issue press releases nor attempt to do a
press tour or invite reporters to the
Mythic offices to show off the game.

It’s difficult to gauge just how much
this hurt us. Our focus on Internet mar-
keting gave us strong support among
fans of the genre, but our lack of com-
mercial marketing kept our company
profile low, and we never received much
mainstream media coverage because of it.
Fortunately, we made up for our slow
start, and then some, by our successful
presence at E3. Abandon funded,
designed, and staffed a large booth for us
at the show, complete with medieval
motif and lots of giveaways.

3. O Dungeons and Cities,
where art thou? The first

major update we made to CAMELOT’s
graphics engine to differentiate it from
SPELLBINDER was to put in the rolling ter-
rain system that makes the world so life-
like. We spent a long time making the
outdoor areas of the game beautiful and
well stocked with monster encounters.
The ease with which we did this gave us
a false sense of security when it came to
developing our dungeon/city technology.

These areas in the game
required a large number of mod-
els and characters in a much
smaller space than the out-
door terrain, so creating
dungeons and cities
proved to be a much
more difficult job than
we thought. Because
we put off doing the
technical designs for the
interior spaces for so long,
in the end we simply didn’t
get enough of them done.
The game launched with
only three capital cities
(one per Realm) and
about 15 dungeons.

4. We have a
great game

but no servers! In a
great “Why didn’t they tell us about this
in college?” situation, we went into the
final months of the project with no credit
rating. Mythic Entertainment has been
around for a long time, but we simply
hadn’t ever borrowed any money, and so
we didn’t have a credit history. This
turned out to be a problem when we
went out to lease our servers from Dell
and were flatly denied. We pointed out
that we had plenty of money in the bank,
but to no avail. Dell simply wouldn’t
lease us the computers until we had a
credit history. In the end, we were forced
to purchase the servers outright from
Dell, which obviously had a much
greater impact on our bottom line.

5.Postrelease fan communica-
tion. As good as our communi-

cation with CAMELOT’s fan base was
during the game’s design and beta peri-
ods, it began to suffer soon after the
game’s release. The community simply
grew too large to communicate with in
the manner we had during beta, when
we simply went out to Internet message
boards and posted our thoughts and
plans. With the game live, it was obvi-
ous we needed a much more coherent
way to communicate with our fans, one
that would not send them to numerous

different fan sites to sift through literal-
ly thousands of messages.

This situation grew into a big problem
when players became extremely frustrat-
ed by what they perceived as a lack of
communication from us. About six
weeks after release, we realized that we
needed to create our own web site to
publish information about the game:
release notes, plan files, server status,
Realm War status, and many other little
things that we knew but our players
didn’t. This web site, dubbed “Camelot
Herald,” launched the following week
and so far has been a great success. Fans
of the game can now go to one web site
to get all the information about the game
in one place and with no interference.

For the Ages

I t was a great pleasure to create DARK

AGE OF CAMELOT, as it is the first big
title that Mythic Entertainment has ever
worked on. It was a wonderful thrill to
see our names on top of the best-seller
lists for those couple of weeks in October
2001, and we hope to be working on the
game for a long time to come. As long as
players are interested in playing the
game, we’ll be there adding content and
updating it. q

P O S T M O R T E M

f e b r u a r y 2 0 0 2 | g a m e d e v e l o p e r50

Creatures were modeled and mapped using
3DS Max and animated with Character Studio.
Rumors that this zombie is a portrait of the
producer after too many meetings are totally
unfounded.

L et’s imagine games are an art form. I know, I know
— for many of us in contact with the so-called real
arts, the notion sounds pretentious. It also makes
developers who are former computer science
majors edgy, because it challenges assumptions

that games are founded upon technology. Still, it’s a useful con-
cept. It’s especially useful when we start to think about the
mediocre state of our profession, and about ways to elevate our
aims, aspirations, and attitudes.

Art is what people accomplish when they don’t quite know
what to do, when the lines on the road map are faint, when the
formula is vague, when the product of their labors is new and
unique. Sound familiar? This is the everyday challenge facing
game developers: create something new and unique. Incredibly,
we often succeed. The real problem is, new and unique isn’t
enough — most of us also want to build games that are actu-
ally good. Good by any standard. Good today, better than
yesterday, and worthy enough for tomorrow. Good even when
we can’t exactly define what “good” means.

How can we focus our energies on such a lofty and elusive
goal? It’s tough enough to focus on shipping our next title. The

best method I know comes directly from some of those “real”
arts: the annual round of awards when movie, television, and
music academies honor their members’ achievements of the pre-
vious year.

I believe that awards are an inspiration to all of us —
whether we’re ever nominated or not. Seeing our colleagues
honored raises our sights and ambition above the petty require-
ments of the marketplace, and also above the dismal recogni-
tion that comes from what passes for a trade press in our busi-
ness. Awards mark the framework in which a consequential
meta-discussion about excellence takes place among game
developers — buzz translated into votes.

The process is already in place, and while some newer
awards programs try to improve on the problems of the older
ones, they nevertheless generate struggle and controversy.
Should we honor titles or people? Developers or publishers?
Should we accept sponsorship? Should we control the nominat-
ing process? Should we aim for a marketable entertainment
package with our award ceremonies? These issues are impor-
tant. Establishing a firm basis for our awards will contribute to
industry growth and maturity.

I hereby cast a vote in favor of maximum exposure. Awards
should discover and celebrate as many of the arts and crafts of
game development as possible. We need to spread far and wide
the idea that individual human beings are responsible for the
games we play. We may spin idle dreams about theoretical pos-
sibilities, but what spurs us to action are real achievements,
against all odds, by real people toiling in the real world.

S O A P B O X h a l b a r w o o d

f e b r u a r y 2 0 0 2 | g a m e d e v e l o p e r56

continued on page 55

Ill
us

tr
at

io
n

by
 D

eb
or

ah
 S

te
ph

en
s

Envelope,
The

Please

If we honor by title, then we risk
award sweeps, as one fad or another
dominates in any given year. If we honor
by artist and engineer, we stand a chance
of delving beneath the surface far enough
to acknowledge important, if less trendy,
work. It doesn’t necessarily follow, for
example, that the best game of any year
has the best sound, or the finest anima-
tion, or the most capable engine.

I cast another vote for simple integrity.
Awards should be as free from politics as
possible — otherwise they don’t mean
much. Publishers, manufacturers, and
allied companies have their PR machines,
their marketing agendas, their bottom
lines. Self-interest is built into their char-
ters of incorporation. Awards should not
contribute to their further aggrandize-
ment, whether by naming them as recipi-
ents or by allowing them to sponsor our
ceremonies.

To further ensure community confi-
dence in our awards, we also need to
improve our procedures. There’s a natu-
ral tension between art as craft and art as
experience. Here, Hollywood seems to
have hit upon a satisfying compromise:
Oscar nominations are made by peers,
and the final awards are voted upon by
all. We should follow this practice. Level
designers are the only developers quali-
fied to identify the best levels, for exam-
ple, yet the rest of us can readily judge
the fun factor among selected nominees.

If we work at it, the result will not
only be better games, but clout. Holly-
wood, home of the rudest pop entertain-
ment, has become immune to unfair pres-
sure simply by declaring, through its web
of awards, that movies are an art form.
Establishing our own well-conceived
awards should help protect us against the
slings and arrows of outraged congress-
men and social busybodies who imagine

that good art is like good nutrition — the
five food groups of character formation,
as it were.

It took decades for the Oscars to
become the show-biz phenomenon they
now are. Yet Frank Capra’s win for
directing 1934’s It Happened One Night
is as well remembered as Steven Spiel-
berg’s award for 1998’s Saving Private
Ryan because the process was solid from
the beginning. Similarly, it may take a
while for game awards to acquire public
cachet. But to developers, those honored
and those voting, the benefits are imme-
diate and lasting. q

S O A P B O X

w w w . g d m a g . c o m 55

H A L B A R W O O D | Hal is a project
leader at LucasArts, where he is working on
a new console title. He is also a member of
the Academy of Motion Picture Arts and
Sciences. He was given a Spotlight Award
for INDIANA JONES AND THE FATE OF

ATLANTIS at GDC many long years ago.

continued from page 56

	02gameplan
	04saysyou
	06indwatch
	09prodrev
	16profiles
	18inprod
	25artview
	30f-hixon
	36f-freema
	44postmort
	56soapbox

	return:

