
FEBRUARY 2001

G A M E D E V E L O P E R M A G A Z I N E

600 Harrison Street, San Francisco, CA 94107

t: 415.947.6000 f: 415.947.6090 w: www.gdmag.com

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief
Mark DeLoura mdeloura@cmp.com

Senior Editor
Jennifer Olsen jolsen@cmp.com

Managing Editor
Laura Huber lhuber@cmp.com

Production Editor
R.D.T. Byrd tbyrd@cmp.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Daniel Huebner dan@gamasutra.com
Jeff Lander jeffl@darwin3d.com
Mark Peasley mpeasley@gaspowered.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook Verant Interactive
Susan Lee-Merrow Lucas Learning
Mark Miller Group Process Consulting
Paul Steed Independent
Dan Teven Teven Consulting
Rob Wyatt The Groove Alliance

ADVERTISING SALES
Director of Sales & Marketing
Greg Kerwin e: gkerwin@cmp.com t: 415.947.6218

National Sales Manager
Jennifer Orvik e: jorvik@cmp.com t: 415.947.6217

Account Manager, Western Region, Silicon Valley & Asia
Mike Colligan e: mcolligan@cmp.com t: 415.947.6223

Account Manager, Northern California
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 415.947.6224

Sales Representative/Recruitment
Morgan Browning e: mbrowning@cmp.com t: 415.947.6225

ADVERTISING PRODUCTION
Senior Vice President/Production Andrew A. Mickus

Advertising Production Coordinator Kevin Chanel

Reprints Stella Valdez t: 916.983.6971

CMP GAME MEDIA GROUP MARKETING
Senior MarCom Manager Jennifer McLean

Strategic Marketing Manager Darrielle Sadle

Marketing Coordinator Scott Lyon

Audience Development Coordinator Jessica Shultz

Sales Marketing Associate
Jennifer Cereghetti

CIRCULATION
Group Circulation Director Kathy Henry

Director of Audience Development Henry Fung

Circulation Manager Ron Escobar

Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes
t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas
t: 650.513.4234 f: 650.513.4482
e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall

Corporate President/COO John Russell

CFO John Day

Group President, Business Technology Group Adam K. Marder

Group President, Specialized Technologies Group Regina Starr Ridley

Group President, Channel Group Pam Watkins

Group President, Electronics Group Steve Weitzner

Senior Vice President, Human Resources Leah Landro

Senior Vice President, Global Sales & Marketing Bill Howard

Senior Vice President, Business Development Vittoria Borazio

General Counsel Sandra Grayson

Vice President, Creative Technologies Johanna Kleppe

G A M E P L A N✎

L E T T E R F R O M T H E E D I T O R

T here have been a lot of unusu-

al discussions popping up

around game developer gather-

ings these days. People are

talking about violence in

videogames, whether or not games are an

art form, how games can reach a main-

stream audience, and whether the industry

as a whole is doomed due to its immaturity.

We’re in a stage between garage game

development and mainstream entertainment

art form, and the path from here to there is

not clear. Game developers are casting

about looking for guidance, trying out new

models, and attempting to learn from the

mistakes of other entertainment industries.

The recent hearings by the U.S. Federal

Trade Commission on violence in the media

were a profound wake-up call that illustrat-

ed our growing influence in society.

Though our technology is always

improving, yielding stunning 3D worlds

and dramatic spatialized sound environ-

ments, an emphasis on story is developing.

Developers are recruiting screenwriters

from Hollywood to tune up their game

concepts for maximum impact. Many game

engines are now available, freeing up game

development to focus more on the story

and art. Game modifications also enable

development without the concern for tech-

nical superiority. On most development

projects, the art and design teams are now

larger than the programming teams.

The steep slope of technology can only

take us so far in our quest to go mainstream

and be recognized as an art form. At some

point the environments look the same to the

player no matter how many extra polygons

or texture passes you add. We’ve reached

that point — now we must turn our focus

to story. A good story is much more accessi-

ble to people than snazzy technology. A

look to our past shows that in every culture

there are storytellers, people who pass the

history and mythology from generation to

generation. They didn’t have the technology

we have today, and yet many of those sto-

ries have endured the ages. We are creating

a whole new method of storytelling, which

is a very exciting place to be. But the key to

creating a new art form is to focus on the

art, not the canvas.

This is one reason why the motion pic-

ture industry has made a good model for us

lately. They (for the most part) solidified

their technical conventions decades ago,

and have generations of experience in the

art of storytelling using those conventions.

Many people over the last decade have

hyped the convergence of Silicon Valley

and Hollywood. They were right; it is

happening. Take advantage of it by enlist-

ing the help of excellent screenwriters,

knowledgeable directors of photography,

and seasoned soundtrack composers for

your next project.

This Month

I n this issue we highlight games for kids.

What does it take to make a really great

and fun children’s game? A good story defi-

nitely helps. What do you do when you

can’t judge the quality of your game based

on whether you personally find it to be fun?

We detail games for kids in this month’s

main feature, Postmortem, and Soapbox.

We also have an introduction to game

modifications, better known as “mods.”

Mods are undoubtedly going to continue

growing in popularity and influence, and

with this article, we’re just opening the

floodgates. Check out all the mod web sites

in the article’s “For More Information” sec-

tion and you’ll see what I mean.

Jan Kautz and crew dig into the techni-

cal details of using BRDFs in your games

in this second part of their two-part arti-

cle. Be sure to download their demo

source code from our web site at

www.gdmag.com.

We at Game Developer are always

exploring the nooks and crannies of our

industry for things that you will find inter-

esting. With this issue we’re beginning a

gradual shift over the next few months to

tune ourselves more to the needs of our

community as expressed through reader

response. Watch this space for more on

our transition next month.

Telling Stories

C
Let us know what you think. Send

e-mail to editors@gdmag.com, or write

to Game Developer, 600 Harrison St.,

San Francisco, CA 94107

D E V E L O P E R

ON THE FRONT LINE OF GAME INNOVATION

600 Harrison Street, San Francisco, CA 94107

t: 415.947.6000 f: 415.947.6090 w: www.gdmag.com

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief
Mark DeLoura mdeloura@cmp.com

Senior Editor
Jennifer Olsen jolsen@cmp.com

Managing Editor
Laura Huber lhuber@cmp.com

Production Editor
R.D.T. Byrd tbyrd@cmp.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Daniel Huebner dan@gamasutra.com
Jeff Lander jeffl@darwin3d.com
Mark Peasley mpeasley@gaspowered.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook Independent
Susan Lee-Merrow Lucas Learning
Mark Miller Group Process Consulting
Paul Steed WildTangent
Dan Teven Teven Consulting
Rob Wyatt The Groove Alliance

ADVERTISING SALES
Director of Sales & Marketing
Greg Kerwin e: gkerwin@cmp.com t: 415.947.6218

National Sales Manager
Jennifer Orvik e: jorvik@cmp.com t: 415.947.6217

Account Manager, Western Region, Silicon Valley & Asia
Robert Darden e: rdarden@cmp.com t: 415.947.6223

Account Manager, Northern California
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 415.947.6224

Sales Representative, Recruitment
Morgan Browning e: mbrowning@cmp.com t: 415.947.6225

ADVERTISING PRODUCTION
Senior Vice President/Production Andrew A. Mickus

Advertising Production Coordinator Kevin Chanel

Reprints Stella Valdez t: 916.983.6971

CMP GAME MEDIA GROUP MARKETING
Senior MarCom Manager Jennifer McLean

Strategic Marketing Manager Darrielle Ruff

Marketing Coordinator Scott Lyon

Audience Development Coordinator Jessica Shultz

Sales Marketing Associate Jennifer Cereghetti

CIRCULATION
Group Circulation Director Kathy Henry

Director of Audience Development Henry Fung

Circulation Manager Ron Escobar

Circulation Assistant Ian Hay

Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes
t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas
t: 650.513.4234 f: 650.513.4482
e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall

Corporate President/COO John Russell

CFO John Day

Group President, Business Technology Group Adam K. Marder

Group President, Specialized Technologies Group Regina Starr Ridley

Group President, Channel Group Pam Watkins

Group President, Electronics Group Steve Weitzner

Senior Vice President, Human Resources Leah Landro

Senior Vice President, Global Sales & Marketing Bill Howard

Senior Vice President, Business Development Vittoria Borazio

General Counsel Sandra Grayson

Vice President, Creative Technologies Johanna Kleppe

Game Developer
magazine is

BPA approved

W W W . C M P G A M E . C O M4

6 f e b r u a r y 2 0 0 1 | g a m e d e v e l o p e r

Z F R O N T L I N E T O O L S
W H A T ’ S N E W I N T H E W O R L D O F G A M E D E V E L O P M E N T | d a n i e l h u e b n e r

3DS MAX 4 ARRIVES

3ds Max 4, the fourth version of

Discreet’s flagship modeling, anima-

tion, and rendering software, has been

released. The upgrade will feature a new

inverse kinematics system for character

animation, new subdivision surface and

polygon geometries, and new rendering

abilities with ActiveShade and Render

Elements. Weighted constraints, angle

deformers, and real-time shaded skin are

all integrated into the IK architecture.

3ds Max 4 will be available in early

2001, with a suggested retail price of

$3,495. Upgrades from version 3 will be

priced at $795.

3DS MAX 4 | Discreet | www.discreet.com

ENROUTE TARGETS
PLAYSTATION 2

E nroute has joined Sony’s Tools and

Middleware

program, authoriz-

ing them to begin

offering FirstPerson

toolkits to Play-

station 2 develop-

ers. Enroute’s

FirstPerson system

combines multiple

video streams cap-

tured from any

outward-looking

camera system and

creates a self-navigated 360-degree video

format for playback on PCs and enter-

tainment consoles. Enroute claims the

FirstPerson format

enables viewers to

experience broad-

cast-quality con-

certs, movies,

music videos, or

sporting events in

full motion from

any angle.

Enroute’s SDK is

available on nego-

tiable terms, and

the first game

titles containing

FirstPerson con-

tent are scheduled

to debut in 2001.

FIRST PERSON |
Enroute |
www.enroute.com

RESEARCH
GROUP
RELEASES PIVOT

T he University of North Carolina’s

Chapel Hill Research Group has

released PIVOT (Proximity Information

from VOronoi Techniques), its software

that uses multi-pass rendering to perform

proximity queries between objects. These

computations include collision detection,

computing intersections, separation dis-

tances, penetration depth, and contact

points. PIVOT balances computation

between the CPU and graphics subsys-

tems by localizing the closest features

between the two objects and computing

the proximity information in those local-

ized regions. The

proximity informa-

tion is received

from a computed

distance field.

PIVOT will be

available in early

2001 and will be

free for noncom-

mercial use, howev-

er, commercial pric-

ing has yet to be

determined.

PIVOT | Chapel Hill Research |
www.cs.unc.edu/~geom/PIVOT/

CULT3D
EXPORTER
FOR MAYA

C ult3D Exporter

for Alias|Wave-

front’s Maya allows

users to export models

created in Maya direct-

ly to Cycore Cult3D.

Artists can then create

interactive 3D objects

for the web, Microsoft

Office, and Adobe

Acrobat. It is the first

3D exporter software

available for Maya

from a third-party

developer. Cult3D runs

on PC and Macintosh

over low-bandwidth

connections. The Cult

3D viewer works

under Netscape

Navigator and Microsoft Internet

Explorer, and consists of two compo-

nents: the Cult3D plug-in, which allows

users to view Cult3D objects on the web,

and the Cult3D Designer and Exporter,

which imports 3D objects and exports

them to a web page, or a Microsoft

Office or Adobe Acrobat document.

Cult3D Exporter is available free for

download on the Cycore web site.

CULT3D EXPORTER | Cycore |
www.cycore.com

TERRAPLAY SYSTEMS
RELEASES SDK

T erraplay Systems’ first SDK for PC

game developers provides developers

with the ability to combine Terraplay’s

platform with online games. Terraplay is

an IP-based system designed to speed up

network-based games by formatting

game data for available bandwidth

regardless of whether clients are using

modems, broadband connections, or

wireless connections. Terraplay’s develop-

ment kit is available free on its web site

for downloading.

TERRAPLAY SDK | Terraplay Systems |
www.terraplay.com

The Cult 3D viewer allows users to view
and move Cult3D objects on the web.

UNC Chapel Hill’s PIVOT can turn a 3D scene in to
a 2D collision problem.

3ds Max 4 heads-up display features slider-
manipulators for speedy character animation
with real-time rendering window below.

8 f e b r u a r y 2 0 0 1 | g a m e d e v e l o p e r

I N D U S T R Y W A T C HJT H E B U Z Z A B O U T T H E G A M E B I Z | d a n i e l h u e b n e r

Financial results. Major game publish-

ers are continuing to feel a financial

pinch. Eidos reported a $116.4 million

loss for the six months ending September

30, a figure that more than doubles the

losses reported by Eidos for the same peri-

od one year prior. Though much of

Eidos’s poor performance can be attrib-

uted to a $51 million write-off related to

the company’s failed experiment with

online game retailer Express.com, Eidos

failed to meet sales expections for many of

its mainstay products.

The situation is much the same at

Acclaim Entertainment, which posted a

major loss for its fiscal 2000, which ended

August 31. Acclaim managed revenues of

just $188.6 million, resulting in a net loss

of $131.7 million. In contrast, Acclaim

reached revenues of $431 million and net

earnings of $36 million the previous year.

Acclaim blamed the decline on poor Nin-

tendo 64 game sales, which had been

Acclaim’s main focus, as well as delays in

the introduction of new titles. Though

Acclaim’s operating expenses have been

negatively impacted by the research cost

related to next-generation consoles, the

company believes that the new platforms

will return Acclaim to profitability as

early as next quarter.

Hook exits. Brian Hook has left Verant

Interactive. Hook, formerly with 3dfx and

id, had been working on next-generation

graphics technologies for the company.

Although the departure was amicable,

Hook did reveal in an interview with game

news site Voodoo Extreme that Verant had

become too corporate for his tastes. Hook

plans to take some time off from the game

business before returning to open his own

studio sometime this year.

Nintendo profits. Nintendo managed to

beat many analysts’ expectations by

announcing strong half-year results. A 26

percent drop in Nintendo 64 game sales

wasn’t enough to keep Nintendo from post-

ing a pretax profit of $470.6 million for the

April to September period. Much of this

gain, however, is attributable to an increase

in the appraised value of the company’s

assets and the dollar’s relative strength

against the yen. Game Boy hardware and

software continued to be a bright point,

with sales of 10.2 million Game Boy units

worldwide in a six month period despite

component shortages. Nintendo expects to

sell 23 million Game Boys for the full year,

including one million Game Boy Advance

handhelds following its March launch in

Japan. The company did, however, cut its

N64 forecast to 3.05 million units from an

earlier projection of 3.5 million.

Digital Anvil acquired. Microsoft

strengthened its ability to produce in-

house Xbox titles with the acquisition of

Digital Anvil. The terms of the deal gave

Microsoft full rights to in-production

titles, including Digital Anvil’s long-

anticipated FREELANCER and an unnamed

Xbox project. Digital Anvil will operate

as a part of Microsoft’s internal studio

structure, but unlike earlier Microsoft

pick-up Bungie, Digital Anvil will not be

relocated to the company’s Redmond,

Wash., headquarters. The deal does not

include Digital Anvil founder and CEO

Chris Roberts, either. Roberts is leaving

the company to pursue other creative

endeavors, though he will stay for the

remainder of FREELANCER’s development

as a creative consultant.

Digital Anvil’s president, Martin Davies,

moved to Internet consultancy Sapient as

vice president for games. Davies will pro-

vide strategy and implementation for next-

generation game development at the for-

mer Human Code studio in Austin, Tex.

Infogrames grabs Hasbro. Infogrames

has purchased 100 percent of Hasbro

Interactive’s common stock, and as part of

the purchase gains Hasbro’s Games.com

web portal and a long-term exclusive

license to develop and publish games

based on Hasbro properties. Infogrames’

license on the Hasbro brands will run for

15 years, with an option for an additional

five years based on performance. Among

the properties changing hands as part of

the deal are best-selling game franchises

such as ROLLER COASTER TYCOON and

CIVILIZATION, as well as successful toy

brands such as Monopoly. The purchase

price totaled $100 million; $95 million in

Infogrames SA shares and $5 million in

cash. Subject to shareholder approval,

both sides expect to wrap up the deal by

the first quarter of 2001.

Infogrames made other company

changes with the move of two senior Euro-

pean executives to North America. Rob

Watson, Infogrames’ senior vice president

for worldwide licensing, has moved to the

company’s Los Angeles office, where he

will oversee operations at Infogrames’

I-Stars label in addition to his current

duties. Jean-Philippe Agati, head of Euro-

pean publishing and production in France,

has travelled to Infogrames’ San Jose head-

quarters to take on the role of senior vice

president and general manager for the

company’s operations there. q

G A M E D E V E L O P E R S
C O N F E R E N C E 2 0 0 1

SAN JOSE CONVENTION CENTER

San Jose, Calif.
March 20–24, 2001
Cost: Expo — $145 and up

Conference — $425 and up
www.gdconf.com

A M E R I C A N A S S O C I AT I O N
F O R A R T I F I C I A L
I N T E L L I G E N C E S P R I N G
S Y M P O S I A

STANFORD UNIVERSITY

Stanford, Calif.
March 26–28, 2001
Cost: $295 for nonmembers
www.aaai.org/Symposia/Spring/

2001/sss-01.html

U P C O M I N G E V E N T S

CCAALLEENNDDAARR

ROLLER COASTER TYCOON, one of Hasbro Interac-
tive’s titles now owned by Infogrames.

10 f e b r u a r y 2 0 0 1 | g a m e d e v e l o p e r

Problem

W hen writing a network game, main-

taining synchronization of game

objects can be challenging. The problem is

usually stated as a problem of “latency” —

the delays that are inherent to all commu-

nication systems and that are particularly

noticeable on the Internet.

Network latency is not as simple as it

may appear; a brief review is in order.

There are two related causes of latency:

“path latency” and “queuing latency.”

Path latency is the time it takes for a mes-

sage to get from one place to another,

while queuing latency is created when the

sent data exceeds the bandwidth of the

channel. A highway analogy is useful:

path latency is the time it takes to drive

from home to work at midnight — it is

only a function of distance and any speed

limits. Queuing latency is caused when the

rush-hour traffic volume exceeds the road

capacity. For the network programmer, the

important fact is that the only way to

reduce latency is to reduce data traffic.

Solution

T o reduce latency, predictable state

changes are simply not transmitted.

The classic example of this is linear

motion: instead of sending frequent posi-

tional updates (“the ship is now at X”), a

position and velocity are sent less frequent-

ly (“the ship is at X and has velocity V”);

the resulting positions are estimated by

extrapolation until another update arrives.

This ancient navigational technique of esti-

mating one’s position based on a known

starting point and velocity is called “dead

reckoning.” The name comes from the nau-

tical technique of throwing a floating

object overboard, rendering it “dead in the

water,” and then timing its travel from bow

to stern to estimate the vessel’s velocity.

The Dead Reckoning pattern is more

versatile than simply predicting object

motion. Any game variable whose state is

predictable over time can use this tech-

nique. For example, say a tank locks on

target to another tank and starts firing; the

hit points may be decremented predictably

on the client with few updates. Or, an even

simpler form of the pattern is when the

server orders an effect animation such as

“explode at time T” without any subse-

quent server updates.

Issues

Prediction algorithm. It is often advisable

to use different prediction functions for

different situations. While it may be useful

for an airplane to send acceleration along

with velocity, this may be less useful for an

avatar who can stop on a dime. A common

adaptable algorithm is for the server to cal-

culate the difference between the client’s

predicted value and the actual value and

broadcast a correction once the error passes

a certain threshold. This threshold can be

dynamically adjusted, depending on current

bandwidth availability.

Warping. What if a game client was told

that an enemy airplane was traveling at a

given speed, but before the next update

arrived the plane had radically altered its

course? Upon the next update, the client

must somehow get the plane to its true

position. However, simply snapping it to

the new location might look strange; for

example, what if the predicted position

was inside a mountain? The resolution to

such problems is called “warping,” and

there are too many resolution techniques

to enumerate here.

Time synchronization. If one could ensure

that the computers shared an identical

clock, one could improve the performance

of Dead Reckoning. For example, instead

of transmitting “unit at position P, velocity

V,” one could say, “at time T in the future,

unit will arrive at position P.” This helps

reduce warping problems and is especially

useful when the end of an action is impor-

tant and one wants to ensure good syn-

chronization. For example: “object will

explode and at time T.” (For techniques,

see under References.)

Unreliable transport. When implement-

ed with non-reliable transport protocols

such as UDP, Dead Reckoning algorithms

must account for the fact that a previous

update may not have arrived or may

have arrived out of order. Occasional

“gratuitous updates” must be broadcast,

even if an object has not deviated from

its predicted course, just in case a previ-

ous update did not arrive. The Dead

Reckoning technique is useful under both

reliable and non-reliable protocols,

although the particular choice of algo-

rithm could be substantially dependent

on this choice.

References

C onsiderable research has been con-

ducted by the Department of Defense

for its Distributed Interactive Simulation

(DIS) protocol (www.darpa.mil). Jesse

Aronson discusses DIS and implementa-

tions of Dead Reckoning algorithms in

“Dead Reckoning: Latency Hiding for

Networked Games” (www.gamasutra.com/

features/special/online_report/

dead_reckoning.htm). Also see Zack’s

paper, “A Stream-based Time Synchroniza-

tion Technique for Networked Computer

Games” (www.totempole.net/

timesync.html).

Credits

T hanks to Joel Desjardins of Eternal

Software for significant contributions

to this pattern! q

Dead Reckoning
a.k.a. Motion Prediction

z
P A T T E R N S

G A M E P R O G R A M M I N G P A T T E R N S & I D I O M S | c h r i s h e c k e r & z a c h a r y b o o t h s i m p s o n

w w w. g a m a s u t r a . c o m / p a t t e r n s

This month’s pattern is the last which
will appear in Game Developer maga-
zine. Visit www.gamasutra.com/patterns
to learn more about the Game Program-
ming Patterns Database. Contribute to
our ongoing list of game programming
patterns and idioms by sending yours to
patterns@d6.com.

Look for Patterns on Gamasutra.com

12

XX
P R O D U C T R E V I E W

T H E S K I N N Y O N N E W T O O L S

f e b r u a r y 2 0 0 1 | g a m e d e v e l o p e r

S ince its debut in 1996, Char-

acter Studio (developed for

Discreet by Unreal Pictures)

has been an indispensable tool

for animators in the game,

video production, and film industries.

Character Studio 3 is the latest edition of

the popular package for 3D Studio Max

3.x users. The original Character Studio

consisted of two Max plug-ins: Biped, a

hybrid forward/inverse kinematic skeletal

system, and Physique, which performs

skeletal and muscular deformation. Version

3 updates these plug-ins and adds a new set

of tools (collectively known as Crowd) for

applying semi-intelligent behaviors to large

groups of characters and objects. Character

Studio 3 also adds extensive support for

Max’s scripting system, improved handling

of motion capture data, and a number of

workflow improvements.

Biped Refinements

F rom the animator’s perspective, the

Biped plug-in is the heart of Character

Studio, and version 3 offers a number of

nicely nuanced improvements to the Biped

module. The most significant improvement

is the addition of user-selectable pivot

points in the hands and feet. Each IK key

is set with its own pivot, making it much

easier to model the shifting of weight from

the heel of the foot to the toe during a

walk. Likewise, maintaining positional

consistency as a hand moves and rotates is

now much easier (the demo includes a

“walking fingers” animation that would

have been nearly impossible to create in

Character Studio 2.x). To animators who

have labored to keep a toe on the ground

in the takeoff phase of the footstep, this

will be a very welcome addition. A new

Ankle Tension control offers a shorthand

method of specifying the stiffness of the

ankle (or wrist), neatly complementing the

new pivot points as a tool for keeping

appendages in place (see Figure 1).

Biped’s user interface has also received

some positive attention. Very welcome is a

new option for splitting the keyframe

tracks of hands and fingers (or feet and

toes) from those of their parent limbs. It’s

no longer necessary to set a key on the

entire arm to move a single finger. This

makes combining complex hand gestures

with larger arm motions much easier and

less frustrating than before. In the biped’s

command panel, a new rollout makes it

easier to set the IK attributes of a new key

quickly, and, if desired, automatically lock

it to a previous key position.

A more ambiguous improvement is an

option in the keyframe clipboard to copy

entire animation tracks within or between

bipeds. This offers a quick way to copy

animations from one biped to another, and

is an invaluable aid in creating cycles.

Unfortunately, the behavior is erratic if any

of the keys being copied are IK keys; IK

attributes are not always copied correctly,

and when the IK is pasted onto a new limb,

the pasted keys point at the IK target of the

original — meaning that the position of the

limb may be different when pasted to

another biped or an opposing limb.

Physique

D iscreet claims that the interactive per-

formance of Physique is between

three and ten times faster than in previous

versions. In my tests, however, the results

were less dramatic than this might suggest.

A 740-polygon character playing back a

simple animation went from 11.1FPS

S T E V E T H E O D O R E | Steve is an animator at Valve Software. He is currently working on TEAM FORTRESS 2, and can be reached at

stevet@valvesoftware.com.

Discreet’s Character
Studio 3 b y s t e v e t h e o d o r e

FIGURE 1. Biped’s animatable pivot points (indicated in red on the foot) and new IK interface.

13

XP R O D U C T R E V I E W

w w w . g d m a g . c o m

under Character Studio 2.2 to 13.7FPS

under version 3. The same file without a

Physique modifier ran at 16.7FPS. These

figures came from a 400MHz Pentium II

with 512MB RAM and a 64MB GeForce

GTS Pro; results for multi-processor sys-

tems or models with very complicated

Physiques should be more impressive.

Previous versions of Character Studio

required that all the bones deforming a skin

be part of a single hierarchy. In version 3,

the new Floating Bones option allows users

to add bones that are not connected to a

common root and can move independently

of the other bones in the character. Perhaps

more interestingly, users can add spline

objects as floating bones. The splines will

perform deformations along their whole

length and can be animated. This can be a

particularly useful tool for complicated sur-

face deformations and facial animations too

complex to handle with bones.

3’s a Crowd

T he real innovation in Character Stu-

dio 3 is the Crowd plug-in, which is

intended to aid the animation of large

groups of characters. In essence, Crowd

works like a smart particle system, creat-

ing groups of dummy “delegate” objects

that perform a variety of movements

ranging from random walks to target

homing. The delegate objects can be

replaced with animating characters or

objects. If the characters are Character

Studio bipeds, they can intelligently

choose appropriate animations from a list

provided by the user and smoothly transi-

tion between the animations as they fol-

low their programmatic path.

The amount of control that Crowd

offers is quite impressive and a little

intimidating. The basic movements of the

delegates can be modified with a variety

of avoidance and collision behaviors, and

can be constrained to operate within vol-

umes or on object surfaces. Complex

behaviors can also be scripted directly

using MaxScript. The relative priority

and effect of behaviors can be keyframed

so that a crowd of delegates could con-

verge on a target until a given frame and

then turn and wander away from it.

Related behaviors can also be assigned

based on MaxScript conditionals.

The interface attempts to manage all

this complexity with mixed success (see

Figure 2). To help manage large scenes,

delegates can be grouped into “teams”

which can be controlled together. Cloning

and random placement tools also help

generate large groups quickly. However,

the cramped confines of the Max inter-

face mean a lot of functionality is

jammed into one 218-pixel-wide rollout.

Fortunately, Character Studio’s manual is

comprehensive and contains a series of

tutorials to help users grasp the underly-

ing logic of the process. Very few users

will be able to get much out of the

Crowd system without at least a glance

through the manual.

When all of the various behaviors and

conditions have been assigned, the move-

ment of the entire system is computed, or

“solved,” much like a Max dynamics sys-

tem. Like dynamics, crowd simulations

can be computationally expensive and

may take quite a while to calculate. When

complete, however, the scenes run at the

same speed as a normal Max scene of

comparable complexity. Scenes with ran-

dom elements can be reinitialized and

rerun with new seed values to generate

multiple animations that satisfy the same

set of conditions.

Conclusions

Overall, version 3 is a significant step

forward for Character Studio. How

exciting it seems to you depends largely

on which features will be involved in

your work. The upgrades in Biped and

Physique are useful improvements for a

worthy product, though they are less

than revolutionary. For cinematic anima-

tors, Crowd may be an enormous time-

saver and open a lot of new creative

doors. Animators who don’t have much

call for crowd simulations (one suspects

most real-time game animators fall into

this category) may still find Crowd useful

for creating particle-system-like effects

animations, or even for easily generating

idle animations.

Critics of Character Studio will note

that some long-standing gripes about the

FIGURE 2. The Crowd plug-in in action, showing some of the interface.

package — the inability to animate scal-

ing of limbs, the limitation of bipeds to

no more than four IK-enabled limbs, and

Physique’s difficulties in dealing with

topology changes in a mesh, to name a

few — have not been addressed. Never-

theless, particularly with the new pivot

point mechanism and the interesting pos-

sibilities of spline deformers, the package

is an increasingly powerful tool for char-

acter animation. Equally important is the

fact that Character Studio remains the

only game in town for character anima-

tors on the Max platform. This domi-

nance will be somewhat shaken with the

release of Max 4 (if we can believe the

pre-release publicity surrounding the new

IK tools, at any rate), but for the foresee-

able future Character Studio is and

should be the Max-based character ani-

mator’s tool of choice.

Is it time to upgrade? Character Studio

3 is unfortunately true to Max’s lamenta-

ble tradition of file-format incompatibility.

Max files made with earlier versions of

Character Studio will have to be resaved,

and in most cases, Physique modifiers in

those files will have to be manually reini-

tialized from their initial skeletal poses

before they can be used with version 3.

Although the new MaxScript extensions

make it possible that this annoying task

could be automated, it seems a needless

irritant and will undoubtedly lead to ver-

sion control problems for teams with a

large content base. Also in the worst tradi-

tion of the Max platform, Character

Studio 3 has no mechanism for saving files

in older formats, so any team that wants

to switch will have to switch en masse —

there is no way for version 3 users to

make files available for users of earlier

versions. Unless users have an immediate

need for one of the new features, they

may consider waiting until they upgrade

to Max 4 to upgrade their Character

Studio seats in order to take all of the file-

format hits at the same time. q

STATS
DISCREET

Montreal, Quebec, Canada
(800) 869-3504 or (514) 393-1616
www.discreet.com

PRICE

$495 upgrade, $1495 new
SOFTWARE REQUIREMENTS

Windows 98/ME/NT/2000 with 3D Studio Max
3.1

HARDWARE REQUIREMENTS

128MB RAM with 350MB disk space, mini-
mum 1024×768×32 display

PROS
1. Flexible crowd animation system.
2. Improved IK; animatable pivot points.
3. Faster skeletal deformation with new control

options.

CONS
1. Cumbersome file-format update procedures.
2. New functions difficult to access.
3. No backward compatability with earlier

versions.

CHARACTER STUDIO 3 XXXX

X XXXXX
XXXX
XXX
=XX
X

excellent

very good

average

fair

don’t bother

P R O D U C T R E V I E W

w w w . g d m a g . c o m 17

W hen I left you last time, I had a battle beetle built. To this, I

added a skeletal system and defined bounding spheres at the

joints. These spheres will be used for collision detection. During

the last month, the beetles have scrounged up a couple of paddles

to make the battle more brutal. However, before any kind of bat-

tle can actually begin, I need to find a way to make the beetles budge. The goal is to

create a battle scene like you see in Figure 1.

With a traditional skeleton-based animation system, I would use animation data to set

the orientation of each joint in the character directly. However, there are two problems

with that approach. I want the characters to behave like soft objects. When they are hit,

they should squash and stretch. For this to happen, the “bones” in the characters cannot

be as truly rigid as they are in a normal skeletal animation system. I need to devise a sys-

tem that will allow the animation to guide the bone position, but not be limited by that.

The second problem is that I would like the characters’ bodies to react to hits some-

what realistically. When a character is struck in the arm, the arm should react. In many

games this is handled by creating a series of reaction animations that handle situations

such as a hit to the head or a body blow. I am sure everyone remembers the great piece

of reaction artwork in the “vintage” arcade game PUNCH OUT. When an opponent was

hit in the belly, the character let out an audible “ooof” and his eyes bugged out — great

stuff. Good as it was, however, the character was not truly reacting, it just responded to

a hit by showing you what a canned response looked like. I would like my character

J E F F L A N D E R | Presently, Jeff is probably pondering perplexing problems with polygons.
Jot Jeff a jaunty jingle at jeffl@darwin3d.com.

j e f f l a n d e r G R A P H I C C O N T E N T

“And when they battle in a puddle, it’s a tweedle
beetle puddle battle.” —— Dr. Seuss

FIGURE 1. The Puddle Battle.

The
Battle
Rages

On

response to be physically based. The

bodies should react directly to the forces

of the hit.

In This Corner,
Rubber Man

I n order to accomplish these goals, I

need the skeletal system to be driven

by a dynamic simulation. I could treat

each bone in the skeleton as a chain of

rigid links and then use rigid body

dynamics to simulate the characters.

However, this would not allow me to

achieve the goal of making the charac-

ters soft. The mass-and-spring models

that I have used in the past to create

soft objects are closer to the feel I am

trying to achieve.

I have the skeleton of the character,

which is effectively a series of root

points connected in a hierarchy. I can

make the root of each character bone a

3D particle, and then use a spring to

connect each of these particles to each

of the particles representing the children

of that bone. In Figure 2, you can see

the character and the underlying particle-

and-spring skeleton.

The simulation will have a couple of differences from simula-

tions I have created in the past. I am not going to apply gravity to

the individual particle nodes. Since the character should be able to

support its own arms, this should not be a problem. I also want

to keep the characters largely grounded and upright. If the bottom

of the character were weighted normally, it might be easy to

knock it down. To solve this, I can make the root particle of the

character, which is the top node of the hierarchy positioned on the

ground between the feet, more massive and thus more difficult to

move. This makes my character like those big inflatable punching

clowns that you can knock over, but they pop right back up.

Now I have a character composed of a rubber skeleton tied

together with springs. The next step is to figure out how to move it.

Animated Rubber

A s I mentioned earlier, in order to animate a character with a

skeletal system I would need to take the animation data for

each joint and set the position and orientation directly. However,

to drive the animation physically, I need to apply forces to animate

the character. If it were a hierarchical rigid body, I would use a

controller, such as a proportional integral derivative controller, to

change the orientation of each link. Chris Hecker described this

method in depth in his article on physical controllers (“Physical

Controllers: Re-inventing Game Animation,” April 1999). Howev-

er, since I do not have rigid bodies, these controllers will not work.

Fortunately, the solution is very easy. The animation system

generates a set of values for the joints given the desired animation

targets. This information can be converted easily to world space

locations for the root of each bone. The way I accomplish this is

to build the transformation matrices for each bone in the skele-

ton, and then grab the world space coordinates directly out of

those matrices. This efficiently provides me with target positions

for my physical particles.

To move the simulation particles toward those animation tar-

gets, I once again turn to the ever-useful spring. The spring is

attached to each simulation particle and to the animation target

position. This creates a force on the particle which, when integrat-

ed forward in time, will move the particle to the target. Using this

system, I can make the dynamic control mesh assume any pose.

This system achieves some of my main goals. I get an animated

character that moves in a flexible manner and can respond to

dynamic forces. As an extra benefit, the animating particles gain

and lose momentum as forces are applied. This causes hits to

actually have some “weight” behind them. For example, if you

have the character swing its arm around in a windup followed by

a punch, the impact will have more force behind it than a punch

with no windup. This is a level of realism that is difficult to

achieve with canned animated sequences.

Once the simulation particles have been moved to the desired

positions, I need to make the changes back in the 3D object so we

can see the results. That is basically as easy as you would expect. I

set each of the actual mesh bones to the positions of the simula-

18 f e b r u a r y 2 0 0 1 | g a m e d e v e l o p e r

G R A P H I C C O N T E N T

FIGURE 2. The battling beetle and its skeleton.

f e b r u a r y 2 0 0 1 | g a m e d e v e l o p e r20

G R A P H I C C O N T E N T

tion particles and render. The one thing that the simulation does

not address is the orientation of the bones. Since I am dealing

strictly with point masses, I do not have any orientation data, as I

would in a rigid body simulation. For now we can just use the

orientations that come out of the animation system. This may lead

to visual problems where the bone is bending but not rotating,

but let’s leave that alone for now.

Taking a Pounding

T he simulation now has particles flying all over the place.

Hopefully, some of those particles will be hitting my opponent.

In order for anything to actually happen when this occurs, I need

to add some collision detection and response.

Earlier we attached bounding spheres to the base of each bone in

the skeleton. These are the boundary spheres that I will use for the

particles. So, in order to handle collisions between the characters, I

need to add handling for sphere-to-sphere collision. Fortunately, I

covered this back in my column on billiard physics (“Physics on the

Back of a Cocktail Napkin,” September 1999). To simulate the col-

lision between two spheres, I first need to determine whether the

two spheres are colliding by checking their positions and bound-

aries. I also want to check the relative velocity of the two spheres. If

they are moving toward each other, they are colliding. However, if

they are moving away from each other, I shouldn’t do anything.

You can see the situation in Figure 3 where sphere A is traveling

with a velocity vector V(A) when it strikes sphere B.

Once I have determined that they are colliding, Newton’s third

law of motion takes effect: The forces exerted by two particles on

each other are equal in magnitude and opposite in direction.

I calculate the direction of collision between the two spheres

and use that to determine the normal velocity vector, n, and tan-

gent velocity vector, t. The normal velocity is negated and scaled

by the coefficient of restitution, Kr, and applied as an impulse to

the particle. The opposite impulse, scaled by 1 – Kr, is applied to

the other particle.

Another issue I ran into was that since the character mesh had

quite a few boundary spheres in it, several of them always overlap.

This really messes up the simulator, since it continually believes a

collision is happening. My solution was to create an exclusion

table that ignored collisions between spheres that were initially

determined to be overlapping.

The characters are now able to knock each other’s bones

around using big sticks. However, I now need to create a control

system for the characters.

Maintaining Control

I need a control scheme for allowing the beetles to battle. I

could attach animation poses to keyboard keys and allow the

system to handle the in-betweens, but that wouldn’t look very

nice. It also would not give the user the amount of control I

would like.

The solution is to create “moves” that the user can select from.

Each move will have a starting and ending pose. After the user

selects the move, pressing the mouse button initiates the move.

By moving the mouse, users can interpolate between the two

poses as fast or slow as they desire.

The interpolation is handled using a quaternion spherical linear

interpolation (SLERP) on each bone. This allows smooth steps

between each pose. With my smooth control system, users can hit

as hard or soft as they want.

No Pain, No Gain

I now have a system where the two battling beetles can strike

each other. In order to determine what kind of pain they are

inflicting, I need to create a damage model of some sort. In the

battle with paddles, the greatest amount of pain comes when the

paddle connects with a more fleshy part of the opposing beetle.

Fortunately, this is exactly the sort of information that is

already generated by my collision response system. From this sys-

tem, I know when the boundary spheres in the opposing charac-

ters collide. I can then check to see, for example, if the paddle of

one beetle connects with a head sphere of the other. That would

be a hit likely to cause damage in most players’ minds. But how

much damage has occurred?

As I discussed above, the collision response system calculates that

a collision has occurred and also calculates physical values that are

needed to resolve it. The system calculates the collision normal as

well as the velocity at which the two spheres collided. I can take

that collision velocity and multiply it by the mass of the paddle, giv-

ing me the momentum of the collision between the paddle and the

head. This value can then be scaled by some scoring system that

ensures blows to the head are more damaging than blows to the

arms. The result is then deducted from the damaged beetle’s health.

When a beetle is too injured to continue, a winner is declared.

This damage model provides a fairly standard battle system for

a fighting game. However, by basing the system on an underlying

physical simulation, I can crank the realism up a bit more. Beetle

action poses are achieved through the use of controlling springs.

The strength of those individual control springs regulates how

quickly and accurately an individual move is achieved. It is proba-

bly obvious to many that these spring strengths could be dynami-

cally changed. If the spring strength is reduced proportionally to

A B

n

t
V(A)

FIGURE 3. Two spheres colliding.

22

the damage that an individual control

bone has taken, that control bone will

have difficulty achieving a particular

pose. This reaction simulates the way

that a battered boxer has a tougher time

swinging at his opponent as the fight

goes on. A traditional animation system

based on the playback of motion capture

data does not have an underlying physi-

cal model controlling it. For that reason,

dynamic modification of the animation

system is difficult to simulate using these

traditional methods. That is one of the

reasons that you don’t see that level of

realism in many fighting games. In most

fighting games, the system may track a

stamina variable which determines if and

when you can make a move. However,

once the move is made, it always comes

out the exact same perfect way. With a

physically based animation system,

dynamic changes to the fighter’s abilities

are much easier.

Environmental Issues

Iwanted to create a puddle for the beetles to battle in. Once

again drawing from the archives, I turn to a column I wrote in

December 1999 (“A Clean Start: Washing Away the Millennium”)

describing a well-known algorithm for generating rippled water.

The system uses an array of height fields that represent the water

level. To create a ripple, a drop is generated at a position in the

array by changing the height. The system then applies a filtering

process to advance the system and make the ripples animate.

I can use this system to generate the texture for my puddle. Since

I know the point where the beetle’s feet are standing, I can generate

drops at those positions. The water height-field array is then updat-

ed, and every frame this texture generated by the array is uploaded

to the 3D graphics card for use as the floor texture. You can see the

results in Figure 4.

Since the texture upload does take time, it may not be neces-

sary to update it every frame. However, in this application it

doesn’t seem to affect things too much. To make the environ-

ment even more realistic, the water texture can be used to dis-

place the ground grid. This kind of software displacement map-

ping is fairly computationally expensive, but for a small grid it

may not be too bad.

Bring on the Battle

S o at the end of the day, what have I created? By pulling

together a physically based simulation with a skeletal anima-

tion system we have the makings of a dynamic fighting game. The

decision to use point masses connected by springs is the first item

up for review. It does result in the squash and stretch that you

would expect when two cartoon beetles do battle. However, they

may be a bit too squishy. I certainly

want the characters’ bodies to squash a

bit, but it is unclear if parts such as the

paddle should appear more rigid and

less like a rubber mallet. I can adjust

this quite a bit by playing with the con-

trol springs and making some dependent

links rigid. However, for less cartoonlike

characters, this method would probably

not work as well.

For more realistic characters com-

posed of bones that may not stretch, a

more rigid approach would be more

appropriate. I will take a closer look at

linked rigid characters next month.

These characters are currently unable

to fight without user control. For a two-

player or Internet game, this may be suf-

ficient. However, most players like to

have a computer opponent at least to

practice against. A simple finite state

machine can be used to create a decent

opponent. In a finite state machine, I

create a number of states for the com-

puter-controlled character, and set rules

that govern when the states change.

For my simple fighting character, two states will probably do the

trick. When the character is healthy and ready to fight, the charac-

ter goes into attack state. In the attack state, the character stands in

a ready pose and then initiates various attacks. Whether the attack

is an overhead, sideways slash, or body blow is determined ran-

domly. Once the attack is finished, the character returns to the

ready pose. If, while in ready pose, the character detects that his

opponent will attack, a block move is initiated. If the opponent is

not within reach, the character moves closer.

If the health of the character goes below a specified level, the

defense mode is set. In defense mode, the character does not ini-

tiate any attacks and simply stands in a defensive posture and

attempts to block any strikes. If the health is particularly low,

the character can be made to take a step away from the battle.

This simple system is not nearly enough to make a world-class

artificial fighter. However, it is good enough to provide an amus-

ing battle. The system could be greatly improved by creating more

states and perhaps including a learning system that keeps track of

the opponent’s strategy and refines moves that were successful in

the past. But I will leave those improvements up to you. q

f e b r u a r y 2 0 0 1 | g a m e d e v e l o p e r

Discuss this article in Gamasutra’s Connection!
www.gamasutra.com/discuss/gdmag

FIGURE 4. Beetle in a puddle.

B Hecker, Chris. “Physical Controllers: Re-Inventing Game Animation”

(Game Developer, April 1999).

FOR MORE INFORMATION

G R A P H I C C O N T E N T

T oday’s game development

artist is faced with a vast

array of tasks. With more and

more sophistication going into

the development of games,

users’ expectations and level of acceptance

are pushed ever higher. This is especially

true in the area of graphical user interface

designs. The amount of effort that can be

devoted to the design and implementation

of a game’s interface alone can be stagger-

ing. Over the years, the software industry

as a whole has evolved an awareness of

the science behind interface design and

how it can make or break a product. How

people interact with computers, extract

information, and utilize this knowledge is

becoming a critical element in the develop-

ment of software.

In the game development industry,

developers are devoting more time and

more sophistication to this critical link

between the programming code and the

player. It usually falls upon the game

artist to create this interface between man

and machine.

If you are like most artists on a project,

you wear different hats on different days.

One day you might be texturing, while on

another, you are called upon as an anima-

tor, modeler, or designer. As team sizes

grow, specialization is becoming more

common, but it still seems as though the

game artist is a bit of a generalist. This is

especially true if the project is smaller in

scale than the triple-A, multi-million-dol-

lar megatitle that includes everyone and

their cousin in the development cycle. Or

perhaps you are now an art lead or art

director. Whatever you call yourself, the

chances are good that you will eventually

be called upon to design and create a GUI

for a game.

This can be a daunting task for the

uninitiated. Perhaps you’ve never consid-

ered yourself much of a graphic designer,

or maybe you haven’t really given it much

thought at all. After all, you did design

that web site for your Aunt Gertrude and

it wasn’t that hard — what can be all that

hard about designing a GUI for a game?

You slap some shapes, text, and colors

down, add a drop shadow or two, and you

have yourself an interface — right?

The GUI Isn’t the Game

A whole multitude of elements come

into play when designing an inter-

face. What makes one GUI good and

another great? What are some of the rules

that can be broken without getting into a

lot of hot water?

The first step is to understand what

graphic design is and how it relates to user

interface design. Essentially, graphic design

is nothing more than presenting informa-

tion in a strong, consistent, visually appeal-

ing format. The text and visuals are organ-

ized in such a way as to provide the viewer

with an easy way to retrieve, sort, and store

the information. Composition, layout, and

typography are all balanced to provide the

strongest visual presentation possible. How-

ever, graphic design in the traditional sense

is a one-dimensional medium for conveying

information. It is targeted to a noninterac-

tive, one-way presentation.

User interface design adds many new ele-

ments to the equation. Not only are sound

graphic design principles needed, but con-

sideration has to be given to a whole new

set of design requirements such as user

interaction, navigation and the impacts of

sound, animation, and time. Designers

must consider how they will be controlling

the user throughout the experience: what

sort of feedback mechanisms will be in

place, and how all of these elements will tie

together to form a cohesive unit.

Oftentimes, the best GUI is the one that

is most transparent to the user. The last

thing you want is to have the gameplay

elements impeded by a poorly designed

interface. Depending upon the needs of the

game, a minimalist approach to the user

interface design might prove to be the

most appealing to the player. With all of

this to consider, it’s easy to see why creat-

ing a well-thought-out design can have a

major impact on your time.

Interface Design
for Games

M A R K P E A S L E Y | Mark is currently the art director at Gas Powered Games. Visit his
web site at www.pixelman.com or e-mail him at mp@pixelman.com.

w w w . g d m a g . c o m 25

m a r k p e a s l e y A R T I S T ’ S V I E W

Things to Think About

L et’s first consider some basic graphic

design elements, and how they might

be expanded upon for use within a graphic

user interface design.

Simplicity. The best thing to keep in

mind is K.I.S.S. (Keep It Simple, Stupid).

Every artist I know (including myself) has a

tendency to noodle something beyond what

is needed. In interface design, the simplest

solutions are usually the easiest to use, and

the most effective. Less is more — some-

times more information and greater impact

can be gained by using fewer elements.

Consistency. We are creatures of habit.

We learn through repetitive occurrences

and are quicker to respond to events if we

can predict their behavior. Once users

have learned the function or placement of

an interface element, they will use that

knowledge on new screens in an attempt

to find consistency in the structure. If the

consistency isn’t there, they will be frus-

trated by having to relearn new para-

digms. Consistency also makes a design

seem simpler to use. If users feel that they

inherently “know” how a menu will func-

tion, then they won’t view the interface as

an unpleasant learning experience. By set-

ting up consistent placement of repetitive

elements, such as where to find the cancel

button or how to minimize windows, you

can create an environment that the user

feels empowered to explore. Metaphors

can also add consistency. For example,

your interface might always reveal help

files when the user rolls over an eyeball

symbol. The user learns to associate the

help function with the eyeball symbol,

regardless of its location.

Know your target user. In the broadest

strokes, this means understanding and

predicting how the product will be used

by the target demographic group. The

GUI you design for a kids’ game will be

radically different from a first-person

shooter. Beyond the obvious differences,

you need to consider how knowledgeable

the user is, how they perceive the informa-

tion presented, what sorts of feedback

mechanisms will be used, and how simple

the navigation needs to be. In addition,

consider the cultural implications that

might affect your design, particularly if

the product is going to be international. In

the United States, the color red might

mean “stop” or “danger.” However, that

same color can have an entirely different

meaning in another culture.

Color usage. Don’t rely on color alone to

convey critical information. Use additional

feedback mechanisms. Consider that a cer-

tain percentage of the population (roughly

eight percent of men) has either color blind-

ness or color perception deficiencies (see

Figure 1). Use enough contrast between the

foreground and background elements, espe-

cially where text is concerned. Avoid large

amounts of light text on a dark background;

it is more difficult to read. As with graphical

elements, use color in a consistent manner.

Feedback mechanisms. What is the visu-

al mechanism you will provide the user to

enhance the experience? A common

example of this is standard buttons in

most applications. They usually have a

rollover state that indicates when you are

over a “hot spot” of the button. This can

take the form of a highlight, a special

effect, an animation, a sound, or any

combination thereof. Give the user visual

feedback that they have accomplished a

task such as pushing the button. Also, let

the user know when the computer is

working on something. A progress bar

can satisfy this need easily and prevent

user frustration. If loading a file takes

longer than five to ten seconds, it’s a

good idea to provide the user with some

form of a progress bar or percentage feed-

back. Without these, load delays can

often be mistaken for program crashes.

Design Elements

C reate a flowchart of the design. I

know this seems obvious, but believe

it or not, it’s something a lot of designers

don’t get around to doing. This is espe-

cially critical when the functional design

and the aesthetic design are being done by

two different people. It is fairly common

for the game designer to come up with

the functional requirements of the menu

system, while the artist comes up with

how it will look. Oftentimes a flowchart

will flush out flaws in the logic of the

menuing system well before any time and

effort have gone into creating art assets

(see Figure 2). Always try to get all ele-

ments of the GUI defined as soon as pos-

sible. Without a doubt, the most difficult

GUI design to create is one that needs to

be open-ended enough to allow for unde-

fined design elements. This approach

often leads to having to redesign the

entire GUI from the ground up.

Make navigation simple. Whenever possi-

ble, make the navigation as simple as it can

be. Think of the user’s memory as a RAM

chip, with only a finite amount of space

that can be used before it starts to be over-

written. Our short-term memory works

essentially the same way. Ideally, users

should never be more than three to five

clicks away from accessing the information

f e b r u a r y 2 0 0 1 | g a m e d e v e l o p e r26

A R T I S T ’ S V I E W

Multiplayer
Information

Multiplayer
Maps

Multiplayer
Chat Room

Multiplayer
Stats

Multiplayer
Sign-In

Multiplayer
Select or Host

Multiplayer
Chat Room

Multiplayer
Character

Select

Main
Menu

Multiplayer Menu

LAN Setup

Multiplayer IP

Game
Listing

Waiting
Area

Character
Creation

Multiplayer
Match Up

FIGURE 1 (above). Using color without altering
contrast might give difficulty to users with
color blindness. FIGURE 2 (right). A flowchart
will solidify design and structural ideas as well
as work out errors in the interface’s general
functionality.

they want. Of course, this is sometimes

impossible to maintain, but keeping naviga-

tion to a minimum will increase the user’s

comfort with menus. Grouping multiple

functions or options in one area is a good

practice. This allows users to make more

efficient decisions and keeps them within

the same screen real estate. Avoid giving

users the impression that they are jumping

from screen to screen unless it is by design.

This has a tendency to give users the feeling

that they are navigating a large menu sys-

tem where they might easily get lost.

Establish a grid. Underlying almost all

good design is a grid. The grid is a visual

structure that provides the framework for

the design and gives it balance. Take any

magazine, newspaper, or advertisement as

an example. If you study the piece, you

will soon see a grid that all of the images

and text fall within. At an almost uncon-

scious level, this grid provides the consis-

tency I talked about previously. From a

design standpoint, the grid gives the artist

a logical structure for the layout. A well-

designed grid will give the GUI screens a

look and feel that is consistent and tight.

It also provides a good basis for narrow-

ing down design decisions and establish-

ing a set of rules or style guides that can

be applied to new screens (see Figures 3a

and 3b).

Construct a tiered menu system. The

most powerful menu system is one that

can expand with the user. For the novice,

it contains only the most basic of com-

mands. Break their decision making down

into simple, controlled segments. For the

advanced user, the interface can be made

to reveal a more complex level, allowing

for greater control. As an example, in the

GUI for a flight simulator I worked on

several years back, we had a main menu

with only five choices. One of those choic-

es was a “fly now” mission, where the

designer had predetermined all of the ele-

ments that the novice user would most

likely choose. They were then presented

with a preflight screen where the mission

was described, the settings shown, and the

“fly” button was available. If users pre-

ferred, they had the ability to alter any of

the settings, but they could also simply

press the “fly” button and be in the air

within three menu clicks of the main

menu. For advanced users, we offered

menus within menus that gave them the

ability to customize almost any element of

the game. This proved to be very well

received by the users, and the concept

went on to become a standard for many

of the flight simulators that the company

produced in later years.

Remember localization considerations. If

your product is small and has a limited

target audience, you might not need to

think about the localization impacts.

However, overseas sales make up a sub-

stantial part of the target market for

many of the games under development.

By keeping in mind some of the more

simple localization rules, you can avoid a

lot of rework down the road:

• Don’t embed any text into your art if at

all possible. Text should be handled via code

as either TrueType fonts or bitmapped fonts.

• If you do have text embedded in art

(like in a road sign or logo), then it’s a

good idea to get into the habit of separat-

ing the text onto a unique layer in your

working base art file. That way, the local-

ization of it can be done easily.

• Allow 30 percent extra space in all

areas where type is present. German lan-

guage conversions are notorious for need-

ing extra space.

• Be aware of cultural implications of

symbols, colors, and sounds.

• Always avoid going below 12 pixels

in font height. That is about the mini-

mum number of pixels required to form

the symbols in a Japanese font. If, for

example, you have created a special but-

ton that requires your special eight-pixel

font on it, the localization using a 12-

pixel font will run into some serious

space constraint problems.

Typography
Fundamentals

W hat font should be used? Should

more than one be used? If so,

should it just be a bold version of the same

typeface, or should you go with a different

one altogether? Is it O.K. to mix serifed and

sans serif fonts? How does the font look at

the game’s resolution? These are some of

the questions you will probably ask yourself

when it comes to choosing the right font or

fonts for your interface. A good choice will

help solidify your design, while a bad choice

will look out of place and detract. Here are

some fundamentals to think about as you

begin to narrow in on your selections:

Shape recognition. We recognize letters

and words as shapes, which we have memo-

rized as a meaning or concept. Think about

how you read a page of type. You aren’t

sounding out each letter in the sentence you

are reading. Instead, you have memorized

the combination of letters into words.

When text is written in all uppercase letters,

it is much more difficult to read, since the

pattern recognition is all just rectangles

instead of more distinguishable groupings

found in a combination of upper and lower-

case letters (see Figure 4). A good test of

this is to take any paragraph of text in a

Word document, switch it to all uppercase,

and read it. You will generally find that it is

harder to read, and the speed at which you

progress across the page is slower.

Serifed vs. sans serif fonts. In large bodies

of text, serifed fonts are easier to read since

the serifs provide horizontal structure for

the eye to follow. However, consideration

must be given to the resolution limits of a

game screen. Even though hardware contin-

ues to improve, we often still design for the

lowest common denominator in terms of

screen resolution. On a standard 640×480

f e b r u a r y 2 0 0 1 | g a m e d e v e l o p e r28

A R T I S T ’ S V I E W

FIGURES 3A and 3B. A sample interface (3A, top)
and its underlying grid design (3B, bottom).

screen, small fonts become very cryptic.

Once you get down into the ten-pixel range

for letter height, most serifs and other sub-

tleties are lost in an effort to make the let-

ter’s form even readable. You should gener-

ally avoid mixing serifed and sans serif

fonts unless it is done carefully.

International considerations. If you are

creating a bitmapped font for your game,

you will most likely be opening a large can

of worms you didn’t know existed. This is

especially true when the font is to be used

for localization in different languages. All

of the specialized ASCII characters will

need to be present for localization.

Kerning and the use of bitmapped fonts.
The type we are used to seeing in everyday

print uses kerning, which is the adjustment

of space between characters so that part of

one letter extends over the body of the

next. An example would be two circular

letters such as a c and an o. They would

have a much narrower kerning than two

parallel lowercase ls. Kerning takes a beat-

ing when bitmapped fonts are generated.

The code is usually set so that each letter is

defined as a cell in the bitmapped font.

The cells can be uniformly spaced, but

kerning is a much more difficult proposi-

tion. In most cases it ends up being a low

priority on the programming list and usu-

ally ends up being dropped. If the game

engine supports TrueType fonts, then the

kerning is maintained, but control over

subtle alterations is reduced.

Rapid Prototyping

T here are several programs out there

that allow GUI designers to create a

mock-up of their idea quickly. These pro-

grams are easy to use, don’t require a ton

of ramp-up time, and, more specifically,

don’t require a programmer to become

involved. Programs such as Macromedia’s

Flash or Director can easily create a mock-

up of the navigation elements, with sound

and functionality. These prototypes serve

to solidify artistic elements as well as pro-

vide programmers and other team mem-

bers with a very clear, concise vision of

what you think the GUI should look like.

If time and budget allow, this is a good

way to work the kinks out of your design

ideas without involving a lot of people. It

is often easy for artists to visualize what

the end product will look like, but they

have difficulty describing it to others accu-

rately. These prototypes provide artists

with a means of communicating their

design ideas clearly and with little room

for misinterpretation.

Creating Game-Ready
Art

I t is always a good idea to bear in mind

the repetitive nature of the elements that

make up the GUI for a game. Frequently,

these elements can be made from a com-

mon set of base artwork without a visible

loss in quality. It is often possible to create

a basic set of building-block components

(buttons, surround elements, text boxes,

and so on) that 80 percent of the GUI ele-

ments can be generated from.

When creating art, especially hardware-

only GUI elements, optimization of redun-

dant elements is essential. You may find

that in-game GUIs require special attention,

since texture memory is usually at a premi-

um. You must also consider multiple screen

resolutions. Most games have the capability

to change resolution based upon the user’s

desires. Will you provide a single set of art

that is scaled up programmatically to the

larger sizes? How does this affect the look

of the art? Or, will you provide two or

three sets of artwork that will be used at

the various screen resolutions? Does this

decision essentially double or triple your

art production time on the GUI?

At the End of the Day

Now that you’ve learned a lot of rules of

what to do and what not to do, you

are free to break them. These rules are not

hard and fast, but rather are guidelines that

are to be followed when applicable, and

broken when the design calls for it. But do

so cautiously. These rules are a form of

structure that give you a framework within

which to base your designs. Within that

structure, there is an almost infinite amount

of freedom for the GUI designer. q

30 f e b r u a r y 2 0 0 1 | g a m e d e v e l o p e r

A R T I S T ’ S V I E W

WEB S ITES
B Interface Hall of Shame

www.iarchitect.com/mshame.htm

B IBM — Ease of Use

www-3.ibm.com/ibm/easy/eou_ext.nsf/

publish/561

B Yale Style Manual

http://info.med.yale.edu/caim/

manual/contents.html

BOOKS
B Beaumont, Michael. Type: Design, Color,

Character and Use. London: Quarto Pub-

lishing, 1987.

B Hamlin, J. Scott. Interface Design with

Photoshop. Indianapolis: New Riders

Publishing, 1996.

B Marcus, Aaron. Graphic Design for Elec-

tronic Documents and User Interfaces. New

York: ACM Press, 1992.

B Swann, Alan. How to Understand and Use

Grids. London: Quarto Publishing, 1989.

FOR MORE INFORMATION

FIGURE 4 (above). The differences in shape
recognition between upper- and lowercase
letters.
FIGURE 5 (left). Avoid using text less than 12
pixels in height: smaller sizes pose problems
with both readability and localization.

Do you make games

for young kids?

Would you like to know

how you can stop

flushing a whole load

of cash right down

the crapper?

Please, read on.

T here is a great and tragic battle that has raged

for decades and has taken a drastic toll on our

industry. We have been fighting for dollars, but

we have been losing business and alienating cus-

tomers. And, oddly enough, the key soldiers in

this battle are the musicians and the “sound guys.” While they

themselves may have respect for the unique nature of the terrain

upon which they shed their blood, often the commanders of their

forces do not.

The most important point that gets missed is this: the person

who buys the game (the parent) only experiences the game through

the audio. This is an important point. History repeats itself, but

since I am not yet history, I will paraphrase myself instead: Assum-

ing that the game installs easily and that the kid can play the game

mostly by him- or herself, and that the kid pretty much likes the

game, all of the customer satisfaction, everything the buyer experi-

ences, all of the motivation to buy the next product — comes from

the audio. The parents do not see or play the game. They hear it.

Yet due to the inability of Command to recognize this fact,

never so much as even three percent of resources has ever been

directed to the soldiers at the very important musical front. Histo-

rians are still trying to figure that one out.

The Sound of Money
(Down the Potty)

Common Audio Mistakes in
Kids’ Games

f e b r u a r y 2 0 0 1 | g a m e d e v e l o p e r32

A U D I O M I S T A K E S t h e f a t m a n , g e o r g e a l i s t a i r s a n g e r

T H E F A T M A N | is a big-hearted alien who wears the skins of
cowboy heroes whose bodies he has found in the desert. He finds it
to his liking to hover over Austin in a huge radar-cloaked zeppelin,
composing music for games with his legendary team of Cowboy
Composers, Team Fat. His work on hit games has more than once
changed the face of game music. People magazine called him “a top
candidate for the most prolific — and obscure — living American
composer,” yet as he consumes only ammonia and uncooked brown
rice, his rates remain reasonable, and he is very well-behaved. He can
be reached at fatman@fatman.com.

w w w . g d m a g . c o m 33

Ill
us

tr
at

io
n

by
 T

ad
eu

sz
 M

aj
ew

sk
i

Atomic Weapon: Use with Discretion

A udio, especially game audio, is a powerful weapon. When

used properly, it has the power to involve, immerse, elevate,

and reward. It has the power to excite. It can make an artificial

world appear to be deeper, older, and much more complex and

complete than it actually is. But when misused, audio reveals its

most awesome and deadly power — the power to annoy.

The annoyance situation for any game is already potentially

dangerous. The game developers budget for an hour of music.

That hour is stretched over a 40-hour entertainment experience.

This can be likened to driving cross-country with one audio cas-

sette that you didn’t choose. Furthermore, the scarcity of disk

space requires that the music be played at a low sample rate, or

via MIDI, or, God forbid, through some crazy auto-composing

routine like DirectMusic Composer. So what you’re getting isn’t

exactly a direct view into the heart of Aaron Copland. Add to

that tiny speakers and an audio environment that was

never put through QA with anybody who knew

what to listen for. Of course, I will be more

than happy to send a formal let-

ter of apology to anybody

who can show me — in

writing — that a feedback

cycle exists in their devel-

opment timeline in

which the musician, the

only one who knows

how many times that D-

minor section is supposed to

repeat, is supposed to listen to

the finished game and correct mis-

takes before it ships.

Now add to this dire situation

the multipliers that are unique

to kids’ games. For some reason,

somebody has decided that any

game created for somebody under

the age of nine will have the follow-

ing audio characteristics:

• The compositions will be more

repetitive than those in adults’

games.

• The tones will be pedestrian.

• The tunes will be shorter and

simpler than even normal game music.

• The tunes will all be in the same key,

C-major.

• Half the tunes will be public domain

“favorites” such as “Twinkle, Twinkle, Little Star.”

• Characters will yell in high, squeaky voices the following

phrases: “GOOD JOB!” “VERY GOOD!” “TRY AGAIN!”

“NOT QUITE!” “HEY! YOU’RE GOOD AT THIS!”

“GREAT JOB!” “HEY! YOU’RE GOOD AT THIS!”

“GREAT JOB!”

Why? Because it’s easy. Because people think kids don’t notice

these things. Because people think kids actually like these things.

But that’s insane. None of them is necessary or desirable, ever.

Kids like good music, just like you and me. They get bored, just

like you and me. And even if they didn’t, it doesn’t matter because

you’re never going to drive the kid crazy with good audio. But

you’re sure to drive the parent crazy with that crap you’re giving

them, and that’s the last sale you’ll make in that household.

And Again I Say, History Repeats

T hat is the battle. Repetition is the enemy, so you’ve got to fight

it with everything you’ve got. The following are some tips:

Don’t rely on new technology or clever gimmicks to make things
sound better. That is like trying to build a baby-sitting robot

instead of being with your kids. Always direct all

your audio energy toward making lots and lots

and lots of warm, exciting, varying,

heartfelt audio. You can do this better

with a kazoo and a cassette recorder

than with physically modeled 3D inter-

active vaporware.

Don’t use one repeating tune for an
entire level of a game. That’s old

school, there’s no excuse, and it

will kill the parents. Don’t do it.

O.K.? Just don’t. If any one tune

in your game repeats for more

than five minutes, you should do

one of the following: (1) change to

another tune after five minutes, or

(2) stick a hot fork into your own

eye, you evil moron.

Reuse your resources in different
circumstances. I know you want

special “cinematic” pieces, and

“payoffs,” and a unique piece for the

puzzle with the cute duckies and such. But

the math is simple. If the game’s budget is

for 20 minutes of music, and the game is

constructed so that music plays for an hour

in a given session, the music is going to

repeat somewhat. And remember that three

repetitions of the music would happen only in the

best possible circumstances, meaning all music has the same odds

of repeating. But suppose you get greedy about special-case

music. The more of your music that goes to special one-time

cases, the more the other tunes have to repeat to cover for it.

Reuse that “Binky meets the cougar” tune as a “tense puzzle-

building” or “will we win the pony race?” background piece. The

kids won’t mind — the situation will be different enough that

they’ll experience it as two different pieces of entertainment. The

parents will be grateful for one less repetition of that incessant

“riding the pony” music.

Do not use musical structures that utilize repetition to build famil-
iarity. This is hard to get away from. Sure, conventional musical

theory suggests that we play familiarity against variation to

f e b r u a r y 2 0 0 1 | g a m e d e v e l o p e r34

A U D I O M I S T A K E S

achieve tension. That’s why conventional music uses forms such

as AABA. But in a game, you’re going to get 30 repetitions of the

tune at least. Think about that. How many times have you lis-

tened to the CDs in your house? Even your favorite CD? In a

game, you can concentrate on the variation and relax on

the repetition. An hour into the game, the familiarity

will be there, I guarantee it.

Don’t insult kids with poor tones and yelling,
squeaky voices. Elmo and Barney are beloved,

but so are the softer, lower-voiced characters

such as Mr. Rogers, Captain Kangaroo, and

Marvin the Martian. Kids’ ears are brand new,

and they can probably hear better than you. If

you want to delight kids, play a pretty little bell

for them. Yes, they respond well to high tones.

Yes, they even like those little square waves, by

God. But even though some little girls might be

inclined towards pink, Crayola has not yet rationalized

filling an entire box of crayons with that one color.

Somebody Stop Me!

O .K., the knife is in. Now let’s get down to the twisting.

Picture this typical scenario: Mom works very hard at the

office, then barely has the energy to cook. Somehow she manages.

“Dinner! NOW!” shouts Dad, feeling guilty that it wasn’t he who

cooked it.

“But I’m right in the middle of my game!” comes the kid’s

answer. Good. The game is interesting. The makers of

the game can be proud. But the parents — the cus-

tomers — are getting angry.

“DINNER! Get in here right now or I’ll

throw that damn thing through the win-

dow.”

“O.K.! O.K.! O.K.!” answers the kid, if

the parents are lucky.

The kid comes to dinner. What do we

hear from the other room all through the

meal? Music! It’s the ice cream truck, parked

in our living room, clanking out “Twinkle,

Twinkle, Little Star” over and over and over and

over and over again. And what’s worse, every 45

seconds, a shrill voice yells out, “HEY! ARE YOU

THERE? HEY! ARE YOU GONNA PLAY OR WHAT?

SNORE!!!”

Oh, yeah, the parents are going to love that. Why isn’t there a

“fade to silence after two minutes of inactivity” feature? Were the

designers never in a human family? Are they designing for kids

w w w . g d m a g . c o m 35

who don’t eat, go to school, or play soccer? Is the target kid one

who buys his own software and sets his own bedtime?

And do you know why these games sell as well as any other

games for kids? It’s because even the greatest games in the world

have these design problems, and the parents’ choice is either to

buy no games for their kids or to buy annoying ones. Can you

imagine what would happen to sales of kids’ games if some of

them stopped being deathly annoying?

And Another Thing

I should end the article here, but it is my duty as a Texan to go

into areas I know nothing about. Here is my non-audio gripe:

Who in the world decided to let this happen: “Mom, I can’t

come to dinner now! There’s no place to save my game until I get

out of this battle!” One game even makes you earn a certain

object that allows you to save your game more often.

(Long pause, Texas voice, one eyebrow raised.) Now I’m no

game designer, but I know financial-suicide-by-greed when I see it.

The kid has simply got to be able to save instantly at any time.

Whatever the justifications are for having designated places in the

game from which the player can save, trash them. If you have to

hit your lead designer with a cattle prod until he admits that he

screwed up, do it. I’ll buy you a new cattle prod. If it’s a hardware

problem, and you’d have to solder another chip into every last

cartridge yourself to rectify the problem, do it. I’ll hold the solder-

ing iron. Because that one element of game design has done more

damage to our industry than any other.

Parents might say that the problem is the violence, but it’s not.

It’s the fact that games have committed the unthinkable crime.

They have made parents’ lives even more difficult than they

already are. And they have done this by making it impossible to

get a kid who is playing a game into a car, into his clothes, to

school, to the dinner table, or even out of a burning building if

that kid is in the middle of a game with no save screen. And what

are the parents’ choices? They can say, “O.K., I’ll wait for you,”

which leads to untold misery and a quick undermining of the fam-

ily dynamic, because now the sister, who was all ready to get into

the car, asks if she can start a game too. The parents can say,

“Quit without saving,” which even parents know is a mortal sin

— besides, it can easily lead to an hour of tears. Or the parents

can say, “No more games for you anytime within an hour of when

another activity is planned.” Which is, when you think about it,

exactly what happens, because it’s the only option available.

Given the mistakes I’ve seen and heard, I think it’s a damn mir-

acle that games are even allowed in homes with kids. So pay

attention to the lessons of your industry’s history, and maybe you

can make a bundle and save the world and a family or two. q

f e b r u a r y 2 0 0 1 | g a m e d e v e l o p e r36

A U D I O M I S T A K E S

f e b r u a r y 2 0 0 1 | g a m e d e v e l o p e r38

JAN KAUTZ | Jan is a Ph.D. student at the Max-Planck-Institute for Computer Science in Saarbrücken, Germany. His main research area
is interactive realistic lighting and shading using graphics hardware. He can be reached at kautz@mpi-sb.mpg.de. CHRIS WYNN | Chris is
an OpenGL software engineer working at Nvidia Corp.’s technical developer relations group. You can ask him anything (BRDF and
otherwise) at cwynn@nvidia.com. JONATHAN BLOW | Jonathan prefers the AK-47 and the Colt M4A1. He will use the MP5, though, if
that’s what it comes down to. He reads e-mail sent to jon@bolt-action.com. CHRIS BLASBAND | Mr. Blasband has more than 17 years
of experience in applying BRDF phenomenology to military and commercial applications. He can be contacted at cblasban@flash.net.
ANIS AHMAD | Anis is an undergraduate student at the University of Waterloo, majoring in computer science. You can contact him at
a3ahmad@student.math.uwaterloo.ca. MICHAEL MCCOOL | Michael, who can be reached at mmccool@cgl.uwaterloo.ca, is an associate
professor with the Computer Graphics Lab at the University of Waterloo, Canada. His research areas include real-time hardware-acclerat-
ed shading and illumination.

R E A L - T I M E R E F L E C T A N C E j a n k a u t z , c h r i s w y n n ,

Achieving Real-Time
Realistic Reflectance

Part 2

Achieving Real-Time
Realistic Reflectance

Part 2

w w w . g d m a g . c o m 39

j o n a t h a n b l o w , c h r i s b l a s b a n d , a n i s a h m a d , m i c h a e l m c c o o l

Real-Time Hardware-Accelerated
Techniques

N ow, how can we render materials with sophisticated

BRDFs in real time? As we have seen, a BRDF is a four-

dimensional function representing the reflective properties of a

material.

A BRDF could be sampled using

grids of incoming and outgoing direc-

tions and the results of all possible

parameter combinations placed in a

large 4D lookup table. This is the

most general format, and the way

measured data is often presented.

However, this approach has several

drawbacks for hardware rendering.

To get a decent degree of accuracy

and quality, numerous incoming and

outgoing directions are needed and

this results in an extremely large

table. While the space requirements

may, in some cases, be suitable for

one or two BRDFs, the number of

materials used in a typical game makes this an infeasible

approach.

Fortunately, better real-time techniques for implementing

reflectance models have recently been developed. One such

approach, developed by Wolfgang Heidrich and Hans-Peter

Seidel (see For More Information), uses view-independent pre-

filtered environment maps to produce isotropic reflectance

effects. This approach is simple and effective, and can obviously

handle environment maps, but it is really only suitable for

isotropic reflection models.

A second technique, separable decomposition, was introduced

by Jan Kautz and Michael McCool. This is the technique we’ll

describe in this article. It factors BRDFs into simpler terms that

are then multiplied together using multi-pass rendering or multi-

texturing. It can be considered a compression technique for

BRDFs that uses graphics hardware for decompression. This

technique is suitable for use with anisotropic reflectance models

and can be used to generate approximations for measured data.

However, it can only be used with

point or directional light sources.

The Separable
Decomposition
Technique

S eparable decomposition as a

BRDF approximation technique is

a two-step process. First, as a pre-

process, the four-dimensional BRDF of

choice is decomposed into one or more

pairs of two-dimensional functions that

are stored as textures. Either measured

data or analytical models can be used,

as the approximation techniques are

purely numerical — in the case of an

analytical model, we just sample the reflectance function. Then,

during actual rendering, these textures are parameterized with

texture coordinates that depend on the orientation of the sur-

face relative to a given viewer and to a given light source. The

results of the texture lookups are multiplied together, and then

multiplied with the results of the usual Lambertian lighting

model. This technique requires only simple multi-pass or multi-

texture operations, which are supported on almost all current

consumer-end accelerators. The results, as seen in Figure 3c, are

images generated in real time that are virtually indistinguishable

from those generated by per-pixel software evaluation using the

original BRDF.

Separable decomposition

can be considered a

compression technique

for BRDFs that uses

graphics hardware

for decompression.

I
n last month’s article (“Achieving Real-Time Realistic Reflectance,” January 2001), we

presented the necessary background on BRDFs (bidirectional reflectance distribution

functions) and reflectance. This month, we will detail the separable decomposition tech-

nique and describe how it can be used to implement sophisticated real-time per-pixel

lighting models on current graphics cards.

Generating a Separable
Decomposition

O ur goal in generating a separable

decomposition is to take the BRDF

and create a set of 2N “subfunctions”

which, when combined appropriately, will

approximate the original BRDF:

We can generate a full decomposition

that is in fact exactly equal to the original

BRDF, within the limits of numerical preci-

sion. Unfortunately, such an exact represen-

tation would require too many terms to be

practical for game applications. However,

we can arrange for most of the important

features of the BRDF to be contained in the

first few terms of the preceding series, and

the sum can be truncated to give a good

representation. In fact, in many cases, only

one term is enough.

In this equation, ƒ is the original BRDF

and pj and qj are the result of the decom-

position. The parameter vectors and

are reparameterized versions of the incom-

ing and outgoing directions, respectively.

Reparameterization will be discussed later;

assume for now that both and are 2D

vectors. The first step in decomposing a

BRDF is to tabulate it into a large matrix:

Here, the sequences () and

() each represent a selection

of appropriately spaced parameter values.

There are two approaches to decompos-

ing this matrix: the singular value decom-

position (SVD) algorithm and the normal-

ized decomposition (ND) algorithm. The

SVD approach is more general and pro-

duces better decompositions, and pro-

duces a series which can approximate a

BRDF to arbitrary accuracy, but it is more

complex and consumes a fair amount of

resources. It also produces signed factors,

and so requires signed arithmetic for

reconstruction. This is a problem. Since

we’ll be reconstructing the BRDF by put-

ting the terms into texture maps that are

modulated and added together, we would

require graphics hardware that supports

arithmetic on negative values, which cur-

rently is a rare thing. Signed arithmetic

can be simulated on current graphics

hardware, but it’s painful.

The ND approach produces single-term

decompositions that aren’t typically as

good as those generated by an SVD, but

they are often good enough. The results

from the ND tend to be oversmoothed,

but this is not necessarily a bad thing if

the BRDF data is noisy. However, the ND

approach is far simpler than the SVD, it

consumes much less memory, and it auto-

matically produces positive factors. In

fact, rather than filling out the entire pre-

ceding matrix, the ND can work on the

matrix one row at a time. We will describe

only the ND approach, as it is of the most

immediate practical benefit. See For More

Information to find resources on the SVD

algorithm.

To compute a normalized decomposi-

tion, first compute the average �mk� of

every row mk of the initial matrix, M.

This will give you a vector of N values.

This vector can then be put into the 2D

function p
1
(). The next step is to divide

each row of the matrix by its average

value to get a normalized row. Finally,

average all normalized values in each col-

umn to construct one row vector, and put

the result into the function q
1
(). The

product p
1
()q

1
() is a single-term sepa-

rable approximation to the BRDF.

Choosing an Appropriate
Parameterization

I n order to achieve good results, the

parameterization for the BRDF must be

carefully chosen. By parameterization we

mean the parameter space in which the

BRDF is evaluated. The first constraint is

that it must be possible to interpolate the

parameters using linear interpolation, since

this is what texture coordinate interpola-

tion does. This eliminates a number of oth-

erwise useful parameterizations. Further-

more, if the important features of the

BRDF do not align with the axes of the

parameterization, the separable decompo-

sition will cause significant blurring. This

blurring is particularly visible when the

ND approach is used. Unfortunately, no

single parameterization of BRDFs is ideal

for all cases, because of the variety of phys-

ical phenomena that can influence reflect-

ance. We will discuss two parameteriza-

tions that do, however, support many sur-

face types of interest.

The most intuitive parameterization

(and the one used in most definitions of

the BRDF) simply uses the incoming and

outgoing directions (expressed

relative to a local surface coordinate

frame). An example of a BRDF that sepa-

rates well under this parameterization is

velvet. The reflectance of velvet is charac-

terized by self-shadowing and self-mask-

ing, and for this type of material the

parameterization generally works

well. For glossy types of surfaces, howev-

er, this parameterization is not accurate

and something different is needed.

The following parameterization (which

we will call the half-vector parameteriza-

tion) not only leads to good separability of

glossy BRDFs, it also results in texture

coordinates that can be interpolated cor-

rectly across the surface. The first step in

this approach is to find the normalized

half-vector, . The half-vector is the vector

halfway between the incoming direction

and outgoing direction. In this case, the

incoming and outgoing directions must be

expressed relative to the same coordinate

system that the surface tangents and nor-

mal are expressed in, though not relative

to them. We will use the notation and

for these “global” view and light vectors.

With that caveat, we compute the “global”

half-vector as follows:

This vector, re-expressed relative to the

local surface frame will be used as

our first parameter:

To obtain the second parameter, a new

reference frame is first created such that

the half-vector is the new “vertical” polar

axis. Two new tangent vectors h and h

must be created and oriented so they are

perpendicular to this new polar axis but

ŝt̂

ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

h

h t

h s

h n

g

g

g

=

⋅

⋅

⋅



















(t, s, n) ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ
h

v

v
g = +

+

l

l

l̂v̂

ĥ

, � ˆ o() � ˆ i

and � ˆ o� ˆ i

y–x–
y–

x–

y1, y2, y3,…yn
– – – –

x1, x2, x3,…xn
– – – –

M

x y x y

x y x y

n

n n n

=

ƒ() ƒ()

ƒ() ƒ()



















1 1 1

1

, ,

, ,

L

M O M

L

y–x–

y–x–

ƒ() ≈ () ()
=
∑x y p x q yj
j

N

j,
1

f e b r u a r y 2 0 0 1 | g a m e d e v e l o p e r40

R E A L - T I M E R E F L E C T A N C E

as close to the old tangents as possible.

This can be accomplished by orthonor-

malizing the tangents of the original local

surface frame:

Now we express with respect to this new

coordinate frame and get our second

parameter:

Our reparameterized BRDF now

depends on and instead of .

This yields much better separability for

many “glossy” BRDFs that peak when the

half-vector is near the normal, . It is pos-

sible that other parameterizations can be

found that result in even better separability

for certain reflectance models and/or are

faster to compute. Be sure to let us know.

Separable Decomposi-
tion and Half-Vector
Parameterization

I n order to clarify the relation between

the decomposition algorithm and BRDF

parameterization, we will walk through

how the half-vector parameterization is

used together with decomposition.

As before, we sample the BRDF into a

matrix, but this time using the half-vector

parameterization:

For discrete values of and we sample

our BRDF and store it in the matrix M.

Since BRDFs are usually given in the

parameterization, we have to cal-

culate from and in order to

be able to look up the BRDF value in our

BRDF:

Here dx, dy, and dz are the coordinates of

. Now we can use to sample

our BRDF with ƒ and store the

value in the matrix. Then we can apply the

ND algorithm discussed previously.

Putting the Factors
into Texture Maps and
Texture Coordinate
Generation

T he separable decomposition results in

two two-dimensional functions, p
1
()

and q
1
(). As we want to put these func-

tions into textures, we have to map them

into a 2D texture space in some way that

gives reasonable interpolation. Both of the

parameterizations presented depend on

unit vectors varying over the hemisphere.

In all cases we will have represented these

unit vectors with coordinates relative to

some local coordinate frame, either the

frame given by , , and , or the frame

given by g, h, and h (for). The coordi-

nates of , , and are taken relative

to , , and , and are computed with dot

products against these vectors. For exam-

ple, the coordinates of are computed

with =[(g·), (g·), (g·)]
T
, where g

is the half-vector in world coordinates.

Likewise, we’ve already shown how is in

fact just the light direction parameterized

with respect to h, h, and g.

Now we must map these local coordi-

nates into texture space. There are several

ways to do this: hemisphere maps, para-

bolic maps, and (on graphics accelerators

that support them) cube maps. Both hemi-

sphere and parabolic maps are stored in

2D texture maps, are easy to set up, and

will work on any hardware that supports

2D texture maps (in other words, every-

thing), but cube maps will give better

interpolation in some situations. To store

the factors in hemisphere maps, simply use

the following as texture coordinates (see

Figure 1), where is either , , , or :

Unfortunately, the hemisphere map has

problems when z < 0. In theory this can’t

happen for true surfaces for the parameter-

izations we will give, but it can happen in

practice when polygonal approximations

to surfaces are used with vertex normals,

and these normals align badly with the

surface. Also, the hemisphere map has

poor resolution near its edge. A slightly

better mapping of the unit hemisphere

onto the unit square of texture coordinate

space is the parabolic map, given by

This looks a lot more complicated, but in

fact you can just use the three dot prod-

ucts as homogeneous texture coordinates,

with z as the homogeneous coordinate,

and then set up an appropriate texture

transformation matrix to compute the

parabolic map:

If cube maps are supported, these are

really the best representations for func-

tions defined over a hemisphere, since

1 0 1 1

0 1 1 1

0 0 0 0

0 0 2 2

1









































a

a

a

x

y

z

a–

u
a

a

v
a

a

x

z

y

z

=
+() +

=
+() +

2 1

1

2

2 1

1

2

a–

u
a

v
a

x

y

=
+

=
+

1

2

1

2

d̂ĥ� ˆ o� ˆ ia–

ĥŝt̂

d̂

ĥn̂ĥŝĥt̂ĥĥ
ĥ

ŝt̂n̂
� ˆ o� ˆ iĥ

d̂ŝt̂ĥ
ŝt̂n̂

y–
x–

, � ˆ o() � ˆ i

and � ˆ o� ˆ id̂

ˆ , ,

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

t

t t t h h

s h t

d t d s d h

h h

f

T

h f f

h h

i x h y h z

o i i

= []

= − ⋅()





= ×

= + +

= ⋅() −

1 0 0

2

norm

ω

ω ω ω

d̂ĥand � ˆ o� ˆ i

, � ˆ o() � ˆ i

d̂ĥ

M

h d h d

h d h d

n

n n n

=

ƒ() ƒ()

ƒ() ƒ()





















ˆ , ˆ ˆ , ˆ

ˆ , ˆ ˆ , ˆ

1 1 1

1

L

M O M

L

n̂

and � ˆ o� ˆ id̂ĥ

ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

d

t

s

h

h

h

g

=

⋅

⋅

⋅



















l

l

l

l̂

r

r

r

t t t h h

t
t

t

s h t

h g g

h
h

h

h g h

= − ⋅()
=

= ×

ˆ ˆ ˆ ˆ

ˆ

ˆ ˆ ˆ

w w w . g d m a g . c o m 41

FIGURE 1. Texture map.

interpolation will be over great arcs where-

as linear interpolation in hemisphere and

parabolic maps only approximates this.

The benefits of using cube maps are partic-

ularly noticeable for BRDFs that contain a

significant amount of anisotropy or when

the light direction or view direction is near-

ly parallel to the illuminated surface.

Unfortunately, with all these maps,

some space is inevitably wasted. In all

cases, the “edge” of the function defined

over the hemisphere should be extended

(that is, by extrapolating the value at the

edge of the hemisphere) into the “unused”

part of the map to avoid interpolation

artifacts. These artifacts can occur for two

reasons. First, the bilinear interpolation of

texture maps may pick up values from

outside the hemisphere. Second, for para-

bolic and cube maps, the generated tex-

ture coordinates may lie outside the nor-

mal range if z < 0, although again this

should be an unusual occurrence.

Half-Vector
Parameterization,
Hemisphere Maps, and
Texture Coordinate
Generation

N ow it’s time to show how the texture

map representation and the BRDF

parameterization go together. Assuming we

use a hemisphere map and the half-vector

parameterization, texture coordinates are

computed the following way for a given

light and viewing direction:

Please note again that and are the

light and viewing direction in “global”

coordinates, whereas are by con-

vention relative to the local surface coordi-

nate frame. The vector g is the halfway-

vector between and in “global” coordi-

nates. The value pairs (hu,hv) and (du,dv) are

the texture coordinates for the factors p
1
()

and q
1
() that should have been put into

hemisphere maps. This above computation

has to be done at every vertex of an object

using a separable approximation with the

half-vector parameterization and the hemi-

sphere map representation. Part of the

computation of (hu,hv) and (du,dv) can be

done with appropriate texture transforma-

tion matrices, although this probably won’t

be faster unless you have hardware T&L.

Rendering with
the Separable
Approximation

T o use the separable approximation for

direct lighting, we’ll revisit the point-

source reflectance equation discussed in

last month’s article. This time, however,

we will replace the BRDF with an N-term

separable approximation, use an expan-

sion for K light sources, and use our cur-

rent vector notation:

In order to compute the radiance of the

light source multiplied by the positive

cosine of the angle between the incoming

direction and the surface normal (the term

Li(k)(· k)+
), we will simply rely on the

diffuse component of the Lambertian

model, which is already supported by exist-

ing APIs, and for which Gouraud shading

works well. Note that the Lambertian

reflectance model also multiplies by zero

the parts of the reflectance model that face

away from the light source.

Since multi-texturing is widely supported

on gaming platforms and leads to signifi-

cantly higher performance for this tech-

nique, we will describe the steps required

to render a single-term separable approxi-

mation using one point light source in one

pass using multi-texturing (enhancements

and gotchas will be discussed following):

0. Place the two factors (p
1
() and q

1
()

or p
1
() and q

1
()) into separate tex-

tures t0 and t1. (See Figures 2a and

2b.)

Then, for each frame:

1. Compute the two vector parameters

and generate corresponding texture

coordinates for each vertex of the

model (that is, or and

and then apply the UV texture coordi-

nate mapping).

2. Enable the diffuse component of the

point source to handle Lambertian

lighting.

3. Enable the texture units t0 and t1.

4. Set up the multi-texture combiner unit

to compute t0 * t1 * fragment color.

5. Draw the object specifying (u
0
,v

0
) and

(u
1
,v

1
) as texture coordinates.

This efficiently evaluates the reflectance

equation for all points on the object —

assuming single term approximation and

one point light source. (See Figures 3a–c.)

In order to render the separable approxi-

mation on hardware that doesn’t support

multi-texturing, steps 3 through 5 would be

d̂ĥand � ˆ o� ˆ i

d̂ĥ
� ˆ o� ˆ i

l̂n̂l̂

L v p h q d L no j k j k
j

N

k

K

i k k
ˆ ˆ ˆ ˆ ˆ ˆ() = () ()











() ⋅()
== +
∑∑

11

l l

d̂
ĥ

v̂l̂

ĥ

and � ˆ o� ˆ i

v̂l̂

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

h v

t t t h h

s h t

h t

h s

t

s

g

h g g

h g h

u
g

v
g

u
h

v
h

= +()
= − ⋅()





= ×

=
⋅ +

=
⋅ +

=
⋅ +

=
⋅ +

norm

norm

h

h

d

d

l

l

l

1

2

1

2

1

2

1

2

a–

f e b r u a r y 2 0 0 1 | g a m e d e v e l o p e r42

FIGURES 2A (left) & 2B (right). and texture maps using the hemisphere map parameterization.d̂ĥ

R E A L - T I M E R E F L E C T A N C E

w w w . g d m a g . c o m 43

replaced with two separate passes and the

multiplications would be performed using

compositing operations in the frame buffer.

Implementation for
Games

T o use separable decomposition in a

game, we need to have source data of

the material types we wish to render, so

that we can create our texture maps. As

mentioned in last month’s article, some

collections of measured data, such as the

CUReT archive, are already available (see

For More Information). By choosing the

appropriate analytic function and sam-

pling it, this technique can simulate many

other materials.

For added visual effect, we can combine

a texture-mapped BRDF with gloss maps

or bump maps on the same surface. How-

ever, what we really would like is for the

bumps on the material to respond to light

in accordance with our BRDF. Unfortu-

nately, to accomplish this we would need to

repeat our per-vertex computation at every

pixel and use dependent texturing (a fea-

ture expected in the next generation of

graphics hardware which allows you to use

texture coordinates stored in one texture to

reference another) to get bump maps with

arbitrary BRDFs.

As we mentioned earlier, we can use ordi-

nary texture maps to provide varying color

over the material’s surface to draw things

such as the grain pattern of wood. Whether

the BRDF on a surface should modulate or

add to the surface color depends on the

type of reflectance that is being encoded;

diffuse reflectance should modulate the sur-

face color, and specular reflectance should

add to it. For materials that have important

diffuse and specular components, we will

want to divide their reflectances into two

BRDFs, so that we can use one to add and

the other to modulate.

Enhancements

A s noted, a diffuse texture map may be

added to the result to give the surface

more detail, especially if the BRDF has

only a near-specular component. For this

pass, normal Lambertian lighting can be

used, which also fills in the ambiently illu-

minated part of the model. An alpha map

can also be used to modulate the regions

where multiple BRDFs are applied, so a

single surface can have many BRDFs in a

generalization of texture mapping proba-

bly best termed “material mapping.”

Some BRDFs are a sum of several

effects (for example, the reflectances of

human skin and certain paints are a com-

bination of surface specularity and subsur-

face scattering). For these kinds of BRDFs

it may not be possible to get a single sepa-

rable decomposition to work well, but a

sum of two decompositions parameterized

in different ways should work. In other

words, you may have to layer reflectances

to get more subtle overall effects. You can

fit such BRDFs numerically by finding an

approximation with one parameterization,

subtracting that approximation from the

original data, then finding another for the

residual, iterating if necessary.

To support lighting from multiple light

sources, the separable approximation

needs to be rendered multiple times, once

from each light source. Note however that

the “ambient/diffuse” passes and some of

the computations (such as the normaliza-

tion of the view vector) can be shared.

Finally, one advantage of the separable

approximation technique is that it can be

easily antialiased by using MIP-maps for

each factor of the decomposition. This

prevents highlight aliasing when the cur-

vature of the surface is too high relative to

the pixel spacing by automatically choos-

ing a broader representation of the BRDF

exactly when needed. (See Figure 4.) You

should generate the levels of the MIP-map

by smoothing and downsampling the

BRDF itself before generating a separate

approximation for each resolution level of

the MIP-map. As an approximation, you

can also just blur and downsample the

factors themselves in the usual way. This

approximation reconstructs a slightly

incorrect reflectance for the downsampled

factors because the integral of a product is

not the same as the product of the inte-

grals. However, preventing aliasing is far

more important visually than getting the

reflectance exactly right, so do per-factor

filtering anyway if for some reason you

can’t smooth and decompose the original

BRDF data itself at different scales. It

should be noted that good reflectance

model antialiasing is also possible with

other texture-based reflectance techniques,

such as the prefiltered environment map

technique mentioned briefly earlier.

Gotchas

C urrently, separable approximations

should only be used when necessary.

While good frame rates can be achieved,

separable approximation is still relatively

costly, since the texture coordinates

depend on the light source direction and

view direction, and computation of the

parameters has to be done on the host at

FIGURES 3A–C (left to right). Teapot rendered with texture (A), with texture (B), and with texture * texture * cos() (C).Oid̂h ˆd̂ĥ

the moment. In the near future, extensions

to hardware APIs will support some addi-

tional per-vertex “shader” programmability

which could be used to support rendering

with separable reflectance models (see, for

instance, Nvidia’s vertex shader extensions

to OpenGL).

Most models don’t come with per-vertex

tangents, most modeling programs don’t

export them, and existing APIs don’t know

how to transform them. Ideally, there

would be a “Tangent” call added to APIs

as well to support those new texture-gener-

ation modes. In the meantime, even if you

transform tangents yourself (or back-trans-

form the light and view direction instead),

there is the problem of adding tangents to

object models. If a spline model is used

(such as the teapot used in our examples),

tangents can be found by evaluating partial

derivatives. In fact, the normals for spline

models are usually evaluated by taking

cross products of these tangents. For

polygonal models, take a “global” tangent

and orthonormalize it against the normal

at each vertex to get per-vertex orthonor-

mal tangents. This works especially well

for surfaces of revolution, where the global

tangent can be taken as the direction of the

axis of the model. If a model has already

been texture-mapped by a 3D artist, then

the tangents can also be extracted from the

texture maps. Just take the texture coordi-

nate vector (u,v) = (1,0) at each vertex and

transform it from texture space into model

space. Another technique to generate tan-

gents has been developed by Nvidia in the

context of bump mapping but it is also

applicable here (see Nvidia’s web site for

more details).

In general, though, there is the problem

that it is impossible to give a smooth tan-

gent-space parameterization of arbitrary

closed surfaces in 3D. This is similar to

the texture-mapping parameterization

problem, and should have similar “solu-

tions” in practice.

A final issue is dynamic range and preci-

sion. BRDFs can vary over 0 to infinity,

whereas current graphics hardware com-

putes with values only in the range 0 to 1.

To get the BRDF computation to “fit” in

the available dynamic range, it is necessary

to scale the factors of the decomposition

down and scale the result back up after

multiplication. Since modern multi-textur-

ing units support scale factors of two or

four in a single pass, making the product

of the scale-down factors 1/2 or 1/4 is con-

venient. This scaling unfortunately loses

precision and makes it hard to do certain

high-dynamic-range BRDFs well. This

restriction, as well as the lack of signed

arithmetic (which inhibits use of the singu-

lar value decomposition), has the potential

to be removed with future generations of

consumer-level graphics hardware.

Conclusions

W e hope to have shown the benefits

of using separable approximations

to improve lighting in real-time applica-

tions. The technique can be used to ren-

der many interesting reflectance models,

including anisotropic models, with anti-

aliasing. It scales over a range of cost-

performance trade-offs. It fits well into a

multi-texturing, multi-pass game render-

ing engine, and can be layered with other

effects like specular maps. Finally, it can

be implemented on practically every exist-

ing installed graphics accelerator.

Jonathan Blow of Bolt-Action Software

has written an OpenGL demo of this tech-

nique, which was used to generate the

images in this article. You can download

the source code for this demo from Game

Developer’s web site at www.gdmag.com.

The demo works on ATI Rage and Nvidia

TNT2 and GeForce cards. Nvidia also has

an introductory tutorial on BRDFs as well

as sample source code that demonstrates

the technique available at www.nvidia.com/

developer. Surface Optics Corp. is build-

ing a commercial database of measured

BRDFs, which will be available soon; see

www.surfaceoptics.com for information. q

f e b r u a r y 2 0 0 1 | g a m e d e v e l o p e r44

FIGURES 4A (left) & 4B (right). Close-up of teapot
with and without MIP-mapping. Figure A is with-
out MIP-maps and shows aliasing. Figure B
uses MIP-maps and shows no aliasing.

R E A L - T I M E R E F L E C T A N C E

F O R M O R E I N F O R M AT I O N

PAPERS

Heidrich, W., and H. P. Seidel. “Realistic,

Hardware-Accelerated Shading and

Lighting.” Proceedings of SIGGRAPH

1999. pp. 171–178.

Kautz, J., and M. McCool, “Interactive

Rendering with Arbitrary BRDFs Using

Separable Approximations,” Rendering

Techniques ‘99 (Proceedings of the 10th

Eurographics Rendering Workshop). New

York: Springer-Verlag. pp. 281–292.

WEB S ITES

CUReT BRDF Database

www.cs.columbia.edu/CAVE/curet

Cornell BRDF Measurements

www.graphics.cornell.edu/online/measurements

University of Waterloo Computer Graphics Lab

www.cgl.uwaterloo.ca/Projects/rendering

Jan Kautz’s BRDF Page

www.mpi-sb.mpg.de/~jnkautz/projects/hw_bidir

Nvidia

www.nvidia.com

w w w . g d m a g . c o m 45

46

The Past, Present, and
Future of PC Mod

Development

M O D D E V E L O P M E N T c h a r l i e c l e v e l a n d

S ince the dawn of PC games, players have always hacked on them. The tinker-

er nature of the PC gamer encouraged them to try to figure out how to add

magic items to games, tweak levels, and hack the high-score list. NETHACK

was probably the first game to promote modification and to have widespread

distribution of a modified version of itself. It has been in postpartum devel-

opment now for 15 years, a process which still continues today. The gameplay continues

to evolve and grow, reaching unprecedented depth. A similar thing happened with id Soft-

ware’s DOOM. Players figured out how to create their own levels, then distributed them to

extend the game’s multiplayer lifespan. When id saw how much players modified DOOM,

they intentionally built their next game, QUAKE, to be user-modifiable. After QUAKE was

finished, id released some of the tools they had used to create maps, including a mini-lan-

guage that let players script new behavior into the game. That’s when the PC “mod move-

ment” really started, and id Software is largely credited for promoting it.

Since QUAKE, id Software, Epic Games, Valve Software, and others have all been pro-

moting “mod development,” or game modifications, by designing their games to be easy

to change. In exchange for creating, releasing, and supporting content creation tools, pro-

viding occasional informal technical support, and letting registered owners of their games

use their engine for any noncommercial purposes they desire, these companies have dedi-

cated fans creating unforeseen variants of their games. Modifiable games remain popular

for longer, appeal to more people, and blur the line between game player and game cre-

ator. Making games “open” and modifiable also increases sales: almost all mods require

the original game in order to be played. Therefore, if you find a good free add-on for

a particular game, you might go out and buy the base game just so you can play it.

Recently, both Valve and Epic have profited from releasing newly packaged versions of

their games which include content developed for free by their player communities.

The term “mod” now refers to any code modification of a game and is usually a combi-

nation of new levels, game rules, and artwork. The “mod community” refers to program-

mers, game designers, artists, musicians, and level designers (“mappers”) involved with

using a published game engine in a new way. There are fan-created levels, weapons, mod-

els, “skins,” sounds, and gameplay variants available for free. Sometimes new, complete

games are written, games with no recognizable attributes from the original host game.

These “total conversions” (TCs) are all written with an existing game’s engine and tools.

A “mod platform” is a host engine and game that a mod can be written for, such as

UNREAL TOURNAMENT or HALF-LIFE. This kind of movement to modify and expand was

bound to happen on the PC, where players are technically savvy and have keyboards,

mice, Internet access, and a tolerance for delayed gratification.

The mod movement represents the reasons why many are attracted to game development

in the first place. For me, it’s self-expression, music, breathtaking visuals, and drama. It’s

also the chance to spend all my waking hours and thoughts working on an experience

that could give a sense of awe and wonder to players. Creating a mod is all about good

ideas and content creation, not technology development and compatibility testing. Most

C H A R L I E C L E V E L A N D | When he isn’t
leading an underground game development
coup d’état, Charlie can be found working on
PC strategy games at Stainless Steel Studios in
Cambridge, Mass. The “dictator of freedom”
can be reached at flayra@overmind.org.

f e b r u a r y 2 0 0 1 | g a m e d e v e l o p e r

w w w . g d m a g . c o m 47

of mod development is spent on visible results: game design, non-

engine code, art, levels, music, and sound.

Significant Mods

T EAM FORTRESS for the original QUAKE engine was one of the

first mods to gain widespread popularity. Players are divided

into two teams, each with its own fortress to defend. Inside each

fortress is a flag which the enemy tries to capture. Most important-

ly, TEAM FORTRESS introduced the “class” system, where players

can choose the role they want to play, such as soldier, engineer, or

medic, each with its own special abilities and attributes. TEAM

FORTRESS is one of the earliest and most influential mods.

An innovative but underplayed mod is the atmospheric and

elegant GLOOM, for the QUAKE 2 engine. All players choose to

be either an alien or a marine, whose purpose is to take out the

enemy’s base. Players score points which can be spent to respawn

as a more powerful alien, or a marine with better weapons. The

production values are top-notch and every alien has a unique feel

and tactics.

The most popular mod of all time is COUNTER-STRIKE, a realis-

tic terrorism and counter-terrorism game for the HALF-LIFE engine.

Players choose to play as a terrorist or counter-terrorist and par-

ticipate in a number of objectives. COUNTER-STRIKE is important

because it shows how a talented mod team can make a game that

is fully accepted into the mainstream. Just as Valve brought the

first-person shooter into the mainstream by making the superla-

tively paced HALF-LIFE, COUNTER-STRIKE brings online play to the

masses, using the HALF-LIFE technology as a springboard. Today,

COUNTER-STRIKE has more people playing it online at any given

time than all of the other first-person shooters combined.

While most mods are twists or extensions to deathmatch or

team-based first-person shooters, there are also mods created for

other genres. There is at least one driving simulation (QUAKE

RALLY), QUAKE chess (QUESS), and a real-time strategy game (RTS

QUAKE). There are also entire single-player campaigns with new

stories in new settings (THEY HUNGER, OPPOSING FORCE). Most

mods are first-person shooters because most mod platforms’ tools,

source code, and fan-run servers are all heavily biased toward this

genre. It takes talent and patience to try to make these architec-

tures work for other genres.

Making the Right Choices

Choosing an engine as a mod platform can be a difficult task.

The three all-around best choices right now are the UNREAL

TOURNAMENT engine, the QUAKE 3: ARENA engine, and the HALF-

LIFE engine.

UNREAL TOURNAMENT. With its beautiful engine, powerful IDE

(UnrealEd), and easy-to-learn UnrealScript, the UNREAL TOURNA-

MENT engine is a solid mod platform that is the most accessible

for beginning mod developers. If you don’t want to stray far

from standard FPS gameplay, there is no easier choice. If you

need something more powerful than UnrealScript, it also has

native bindings to let you use C or C++ to build game code. Any

mod that is created using UnrealScript ships with the source

code, meaning that most mods are public and modifiable, a boon

for new progammers.

QUAKE 3: ARENA. It still has the best graphics out there. id started

the whole mod movement and still boasts the most numerous

and highest-quality mods for any platform. The QUAKE 3 SDK is

a well-designed interpreted C which means free cross-platform

support on Mac OS, BeOS, IRIX, and possibly even next-genera-

tion consoles. Because it uses C, it isn’t as well suited to amateur

programmers as UnrealScript is, but it is very powerful. There is

also a large and loyal QUAKE community, making it easier to find

talent and resources.

HALF-LIFE. The HALF-LIFE engine is showing its age, but the

upcoming TEAM FORTRESS 2 engine will bring it up to date and

should be backwards-compatible with existing levels and tools.

LEFT. OPPOSING FORCE for HALF-LIFE features
smart companions and a good story in the
HALF-LIFE tradition.

f e b r u a r y 2 0 0 1 | g a m e d e v e l o p e r48

While id got the mod movement going, Valve is currently the com-

pany most committed to the mod community. They regularly

update their SDK and have even been known to fund promising

mod teams. It’s written in C/C++, so it’s best for more experienced

programmers. The HALF-LIFE mod platform currently boasts many

thousands of players, many more than the other platforms.Finally,

it is the only mod platform to allow complete mod ownership and

resale without negotiations or paying for a license.

Alternative Platforms

T here are other platforms to consider if you have more special-

ized needs. If your main goal is to learn how game engines

are created, the QUAKE I source code is available for free under

the GPL (General Public License). Huge outdoor mods are possi-

ble with the TRIBES or the upcoming TRIBES 2 engine, both of

which are heavily modifiable. If role-playing and interactive story-

telling are your main goals, Nihilistic’s VAMPIRE: THE MASQUERADE

— REDEMPTION or Bioware’s upcoming NEVERWINTER NIGHTS

could serve your needs best. For real-time strategy mods, DARK

REIGN 2 is the most extensible, but TOTAL ANNIHILATION is heavily

modded as well.

What Does It All Mean?

A long with mods and mod tools came a new way to create

games — the distributed development team. Since mod cre-

ators generally work in their spare time on specialized projects,

many mod teams have members that have never seen each other

in person. To stay organized, some teams use CVS or SourceForge

to organize their development, both of which are free. Some teams

have meetings over ICQ or IRC to discuss development challenges

and deadlines. The distributed development team means more

(and more specialized) game development efforts are feasible, but

communication is challenging.

A significant benefit of the mod community is that it can serve

as a gateway to the professional game development industry. It has

always been hard to land your first game industry job. Companies

require experience, but there usually isn’t any way to get experi-

ence without being hired. Mods can help job-seekers get around

this catch-22, because a hard-working and talented person or mod

team can more easily create something that is technically competi-

tive and gets noticed by game companies. Mods bring back the

grassroots style of game development, enabling amateurs to “just

do it.” If you want to show off your game creation skills, creating

a mod is the perfect way to get noticed and get into the industry.

The process for creating a mod is essentially the same as creat-

ing a game at a game company. Of course, you won’t have to deal

with a publisher’s schedule and creative demands, but not every

game company has to deal with that, either. The important things

are those hard skills that take years of experience and working on

many titles to learn: writing design documents; controlling feature

creep; creating, adapting, and communicating a clear game vision

with the rest of the team; creating a cohesive art vision; play-bal-

ancing and player feedback; design iteration; tweaking game

responsiveness and “feel”; cutting features that don’t (or no

longer) fit; managing a team; and, to an extent, public relations

and marketing. Creating your own game mod is the fastest way to

learn game development, period.

It is also likely to be as close to a “pure” game development

experience as you will ever have, with virtually all effort going

directly into game creation instead of finances, publisher and

human relations, and running a company. Leveraging mod tech-

nology instead of writing a game from scratch means a small

team can compete with other titles on the market, and it also

greatly increases the team’s chance of finishing the project.

Because engines have recently become so complex, mods mean

that, for the first time in many years, a small team can compete

with gaming veterans. The core COUNTER-STRIKE team is just two

people, and most mod teams are well under ten people.

LEFT. COUNTER-STRIKE for HALF-LIFE is the most popular mod ever made.
RIGHT. GLOOM is a dark and innovative strategic shooter for the QUAKE 2 engine.

M O D D E V E L O P M E N T

Independent mod development teams can innovate regardless

of financial pressures or market desires. Even mod teams that get

publishers (another exciting trend) are more likely to remain

autonomous because the publisher recognizes that as a strength.

Diverse talent, fresh ideas, and freedom from time-consuming

technology development puts mod authors in the unique position

to push the art form forward. Climbing production costs for tra-

ditional game development ensures more publisher intervention

to protect their interests. Additionally, many mod platforms have

a larger receptive audience than the average traditional title on

crowded store shelves. Unless you have a high-profile title, you’re

likely to have a smaller receptive audience with a published game

than with a mod on an established and popular platform. This is

especially true for multiplayer, where it isn’t uncommon for a

really good game to only have a mere ten or twenty people play-

ing online at any given time, due to marketing or product-place-

ment problems. Leveraging an existing engine means gaining

access to thousands of fan-run servers and many thousands of

players familiar with and loyal to the base game. To some extent,

mod platforms even have the standardization advantage of con-

soles: the host game is already installed, configured, and running

acceptably. The mod should, too.

Mods of the Future

I f the past is any indication, the future of mods is bright. A

handful of mod teams have recently landed publishing deals,

possibly achieving the holy grail of independent but funded devel-

opment. As mods grow in popularity and their social and financial

benefits become obvious, game companies outside the FPS genre

might open up more to the mod community. Mods will become

easier to create, submit, organize, and download. As mods fuel

sales of their host games, those games will popularize the mods by

packaging, selling, and supporting them, although this will proba-

bly remain unique to the PC. With the arrival of next-generation

consoles that have writeable mass storage, keyboards, and Internet

access, there could be mod activity on non-PC platforms as well,

but it’s hard to imagine console gamers staying up all night furi-

ously coding a new game on a joypad in their living room.

Just as the web is moving toward more interactivity, more

gamers will use the game tools to design and create, enriching

their own game experiences and expanding their skills. Promot-

ing the community around a game could become as high a priori-

ty as creating the game in the first place. Instant messaging,

e-mail, and web site creation tools are being added to some

games in development in order to promote mod development

and tighter community bonds.

Lots of Potential

M ods can be used for many purposes. They can be used for

prototyping new game ideas, learning how games work,

getting a job in the industry, creating a great game in record time,

or just for fun and experimentation. While the capabilities of a

mod platform seem limiting, they are extensible. The artificial

intelligence, user interface, physics, and even networking and

graphics can be rewritten or extended. Most importantly howev-

er, unlike traditional game development, the initial lack of these

systems doesn’t prevent or slow development. All team members

can experiment and contribute immediately, with new systems

added as you go. Mod development can be faster, more experi-

mental, more creative, and potentially more profitable than tradi-

tional game development. Games developed as mods have the

potential to be created in only a few months but still compete

with or exceed traditional games in every respect. The mod

movement embodies the innovation and spirit of PC game cre-

ation and it’s happening now. Viva la revolución! q

w w w . g d m a g . c o m 49

M O D S

COUNTER-STRIKE

www.counter-strike.net
GLOOM

http://gloom.teamreaction.com
OPPOSING FORCE

www.sierrastudios.com/games/opposingforce
TEAM FORTRESS

www.planetfortress.com/teamfortress
NEANDERTHAL

www.overmind.org/neanderthal
QUESS

ftp://ftp.zdnet.com/gs/action/quake/quess12.zip
ALIENS VS. HUMANS

www.overmind.org
UNREAL Mods
www.planetunreal.com/modcentral
QUAKE Mods
www.planetquake.com/motw
HALF-LIFE Mods
www.halflife.net/triggerhappy/mdatabase.html

P R O G R A M M I N G

HALF-LIFE coders list (VorteX)
www.topica.com/lists/hlcoders
HALF-LIFE SDK and tools
www.planethalflife.com/half-life/files
QUAKE 3 SDK and tools
www.planetquake.com/quake3/files.shtml
UNREAL Technology Page
http://unreal.epicgames.com

O T H E R M O D P L A T F O R M S

DARK REIGN 2
www.pandemicstudios.com/dr2
TRIBES

www.sierrastudios.com/games/tribesplayers
VAMPIRE: THE MASQUERADE — REDEMPTION

www.vampiremasquerade.com

F O R M O R E I N F O R M AT I O N

Humongous
Entertainment’s

BACKYARD
SOCCER

MLS
EDITION

P O S T M O R T E M e r i c g r o s s w i t h r y a n t o u c h o n

51

G A M E D A T A

NUMBER OF FULL-TIME DEVELOPERS: 1 lead artist,

4 art subleads, 16 artists, 1 lead program-

mer, 3–4 programmers, 1 QA lead,

4 testers

NUMBER OF CONTRACTORS: 5–8 ink-and-

painters, 1 writer, 1 musician, 9 voice actors,

1 additional tester

LENGTH OF DEVELOPMENT: 6 months

PROJECT LENGTH: 174 code files between 100

and 15,892 lines each; 3,075 art files; 6,678

sound files; and 13,765 voice files

RELEASE DATE: September 4, 2000

INTENDED PLATFORMS: Windows 95/98; Mac OS

7.5.3 and up.

CRITICAL DEVELOPMENT HARDWARE: 450MHz

Pentium PCs.

CRITICAL DEVELOPMENT SOFTWARE: Lightwave,

Photoshop, Debabelizer, Codewright, and a

host of proprietary art and archival software

NOTABLE TECHNOLOGIES: Humongous

Entertainment’s proprietary scumm lan-

guage and sputm engine

K
nown for creating engaging interactive con-

tent for children, Humongous Enter-

tainment broke new ground in 1998 when

it introduced an entirely new genre to the

world of interactive sports games for kids.

Sports simulations were nothing new on the PC, but even to

experienced game players and avid sports fans, the overall

experience out of the box was rarely an enjoyable one.

Controls could eventually be mastered and the players would

probably stumble upon most features of interest, but only after a

dedicated effort and a significant amount of time invested. We knew that

kids loved sports, and it was obvious that they were being completely left out by the

current offerings, so our goal was to design a series of great sports simulations

designed for our younger audience. These products would need to be not only true to

their sports, but also easy to navigate, simple to control, and most of all, fun to play.

By the time our first Humongous Sports title was completed, almost every adult in our

studio was addicted to BACKYARD BASEBALL, and we knew we had a winner on our

hands. The game featured an intuitive menu flow with a very kidlike feel, and a simple

mouse-driven interface that allowed kids to jump right into a game with almost no

instruction or ramp-up time. The game enabled the youngest of our players to laugh and

click their way through entire games on the easiest setting, while featuring enough game-

play and statistic-tracking features to hold the interest of even the most sophisticated

sports addict. BACKYARD SOCCER was the next entry in the series, which continued to

push our development system to its limits, while helping to establish our line of fun,

exciting sports games for children of all ages.

ERIC GROSS | Starting at striker for The Programmers is Eric “The Red Menace” Gross.
Standing 5�10� and weighing in at 170 pounds, Eric brings to the field speed, agility, and a
penchant for full-contact programming. His first foray into the Humongous world of
Backyard Sports was as co-designer and co-lead on 1998’s original BACKYARD SOCCER. He
also filled the role of lead programmer on FREDDI FISH 4: THE HOGFISH RUSTLERS OF BRINY

GULCH, then co-designed and led the programming team of the hit children’s adventure
PAJAMA SAM 3: YOU ARE WHAT YOU EAT FROM YOUR HEAD TO YOUR FEET.

RYAN TOUCHON | And on the other side of the
field, starting in goal for The Artists is Ryan

“Billybubba” Touchon. Stretching the
tape at 6�2� and 168 pounds, Ryan

brings everything he has to both
work and play (frequently leaving
parts of himself in his wake).
Starting as a storyboarder, he
worked his way up to 3D ani-
mation lead and then to lead
artist. He has worked on every
sports title that Humongous
Entertainment has released:
BACKYARD BASEBALL, BACKYARD

SOCCER, BACKYARD FOOTBALL,
BACKYARD BASEBALL 2001, and

BACKYARD SOCCER MLS EDITION.

w w w . g d m a g . c o m

The next change to the Backyard Sports

line was the introduction of major-league

team logos and professional players, as

kids, to our neighborhood rosters, which

in our case came in the form of Major

League Soccer players and members of the

U.S. Women’s National Team. Just like

our 30 Backyard Kids, each pro came

with his or her own unique attributes and

characteristics. Also planned for BACK-

YARD SOCCER MLS EDITION were head-to-

head play, keyboard and gamepad sup-

port, art enhancements taking advantage

of 16-bit color, and an entirely new navi-

gation and menuing system, which was

patterned off of the intuitive and success-

ful new system that the BACKYARD BASE-

BALL 2001 team had just developed.

Ryan Touchon and I agreed to lead

what I would later jokingly refer to as the

flaming train-wreck from hell. Our sched-

ule was finalized, our teams were assem-

bled, and what follows is a synopsis of

what we learned.

What Went Right

1. Experienced people are invalu-
able. If there was any single factor

responsible for the successful release of this

product, our team was it. The BACKYARD

SOCCER MLS EDITION development team

comprised three main groups: art, pro-

gramming, and quality assurance.

The art team had five 3D animators

responsible for bringing our 45 on-field

kids into the wonderful world of 3D. Not

only were the animators experienced, but

they were also well acquainted with the

look and feel of the Backyard World, were

familiar with their tools, and were even all

seasoned sports animators. They consis-

tently met or beat their deadlines, which

allowed us to identify and resolve various

small problems with our approval process

early on, and kept a constant flow of art to

the programmers. They rallied for one brief

crunch to hit an overly aggressive mile-

stone, which meant one less inevitable neg-

ative ripple effect on the team.

We also had six 2D animators who were

charged with creating the concept art, play-

er cards, thumbnails, team photo poses,

and bleacher animations for the pro kids.

Again, almost all of these artists were

extremely experienced. They avoided a

group crunch and instead took it upon

themselves individually to work any extra

hours that were required to keep the team

on track, and hit every one of their collec-

tive milestones.

A small but dedicated subset of these

groups was responsible for the game’s

amazingly elaborate intro backgrounds

and animations. They were allowed a

great deal of creative freedom, which con-

tributed to the motivation of everyone

involved. This resulted in the team con-

stantly taking it upon themselves to push

the artistic level without prompting from

their leads.

Also included in the art team was a

four-person group that specialized in all

aspects of the game’s menus, interface,

and logos. The scheduling for this group

faced significant hurdles (more on this

later), but they ultimately turned out some

amazing work.

Rounding out the art side was our

vaunted staff of ink-and-painters, who did

a beautiful job of cleaning up and bring-

ing color to our mountain of 2D anima-

tions. Each of these groups had a dedicat-

ed sublead, and each of these leads report-

ed to Ryan, our art lead.

For most of our cycle, my programming

team consisted of three senior program-

mers. We were able to grab one last engi-

neer just in time for the final month of

development. The programming team was

some of Humongous Entertainment’s

finest programming talent. Their skills

and experience (each had worked on at

least one other sports title) were huge fac-

f e b r u a r y 2 0 0 1 | g a m e d e v e l o p e r

P O S T M O R T E M

52

ABOVE. Pablo Sanchez’s official player card.

RIGHT. Detail from a
character sketch for

Marky Dubois.

tors in actually hitting our scheduled

release date. One of the benefits of a team

with this level of experience and dedica-

tion is their ability to multi-task. When

problems arose, be they art fixes or issues

with bits of legacy code, the programmers

wasted no time in contacting the respon-

sible team member or lead, then delving

into whatever task was next on their list

of priorities. The leads helped complete

the circle by ensuring that issues were

resolved quickly, and that details of the

resolution got back to the programmers

immediately thereafter. This team was

handed a non-revision-friendly code base,

full of redundant arrays, vague and

undocumented variable names, and hard-

coded assumptions. They had to log

ungodly hours to make up for the aggres-

sive schedule we finally established (dis-

cussed later) and still managed to keep

their heads and put out a fantastic soccer

game.

I also worked closely with our QA lead,

Eric Snyder, whose team was made up of

a core of four testers, with others rotating

through when possible. Eric had just come

off of BACKYARD BASEBALL 2001 and was

well prepared for the design we were

implementing. His team did excellent

work despite not having received a fully

playable version of the game until very

late in the process.

2.Our team structure worked
well. We stuck with our estab-

lished project-leadership structure, which

continually proves to be effective. The

roles of each lead and sublead are well

defined and understood. On the art side,

Ryan allowed a high level of creative flexi-

bility, which took full advantage of the

artistic talents of his subleads and their

teams. As a result, the majority of the

smaller issues were resolved without hav-

ing to go through multiple levels of

approval. This was possible only because

of the level of self-motivation exhibited by

the individual team members.

The lead structure is even simpler on the

programming side. We had a small and tal-

ented team of senior programmers working

closely together and reporting to an experi-

enced lead programmer. Our small team

size and high level of experience were both

keys to our success. With so few engineers

involved, there was little to no confusion

over who was responsible for what por-

tions of the code. As you might also guess,

there was a fair amount of overlap with

interlocking aspects of the game, so the

programmers were encouraged to work

closely together. They took this sense of

teamwork to another level, and used

breaks from their own work to lend a hand

when an extra head was needed to puzzle

through another programmer’s perplexities.

They also had a great familiarity with

our development process and the roles our

various artists played. When minor art

fixes or additions were needed, my pro-

grammers were able to approach the

appropriate artists directly. By being able

to describe their requirements directly to

the artist, and without having to explain

the problem to and wait for the associate

producer and all of the leads for every lit-

tle tweak (copying them on an e-mail mes-

sage was sufficient), art was ultimately

able to get into the game quicker. Another

bonus to this scenario was that the pro-

grammers didn’t spend as much time with

their hands tied, waiting for others to

evaluate and respond to their requests,

empowering them to be responsible for

and accomplish more.

3.Outside resources were help-
ful, professional, competent,

and a pleasure to work with. Every

contact we had with our Major League

Soccer representative was sheer joy. Not

only were they businesslike and efficient

where MLS interests were concerned, but

they showed a great deal of interest in the

overall development of our game. They,

more than any other outside resource, had

the potential to devastate our already har-

w w w . g d m a g . c o m 53

LEFT TO RIGHT. Character studies of Kenny Kawaguchi, Reese Worthington, and Keisha Phillips.

LEFT. Keisha’s bio and skill ratings, compiled
from dozens of unique characteristics.

ried timeline and compromise our release

date. They not only completed their

reviews and approvals of the various MLS-

related aspects of our game in a timely

fashion, but were thorough enough in each

of their play-throughs so that no one was

faced with the all too common “I know

we signed off on that beta, but we didn’t

notice how big that guy’s eyebrows were.

Please re-do his face everywhere it appears

in the game” scenario. The individual pro

players’ agents also demonstrated a degree

of professionalism and alacrity that was

not only appreciated, but vital to our con-

strained timeline.

For the game’s music, our musician read

us perfectly. The music for the original

game had been written and performed by

my co-lead, Rhett Mathis. As one of the

lead designers, he had obviously been

intimately aware of

our audio needs.

Unfortunately,

Rhett’s time and musical skills were

unavailable to us, and we were forced to

look outside of our team and studio.

Luckily, Tom McGurk, a talented musi-

cian whom I had recently worked with on

FREDDI FISH 4: THE CASE OF THE HOGFISH

RUSTLERS OF BRINY GULCH, was available.

Ryan and I were looking for exciting new

intro music and a number of pads for the

pro kids that needed to be in the BACK-

YARD style, but also called for a slightly

harder, hipper edge. We met with Tom for

about an hour, gave him all of Rhett’s

original music, picked out a slew of exam-

ples from our favorite artists, passed along

some timing specs, and he was off. The

pads he brought in at his first milestone

were almost all right on the

money. This was the first good

sign. Even more promising was

his ability to interpret our rela-

tively vague and muddled suggestions

and provide at his next milestone exactly

what we were looking for. In keeping

with his first two milestones, and to our

great pleasure, the balance of his work

was delivered on time (a good thing, since

the rest of our development was done in a

frenzy with no room for additional sched-

uling issues), and was the perfect comple-

ment to our new group of characters.

In addition to the outstanding work

from our musician, the recording studio

that we’ve grown to love over the years,

Seattle-based Bad Animals, came through

for us again. First, they set us up with a

great pool of talent to choose from for the

casting of our pro kids. We saw children

as young as five and adults of all ages,

with nothing in common other than a

strong sense of professionalism. The voice

talent we selected, a few of whom hadn’t

had the opportunity to amass much expe-

rience (due primarily to conflicts with their

heavy grade-school schedules), were great

sports and lots of fun to work with. They

came through for us like seasoned veter-

ans, checking yet another potential time

(and money) sink off of our list. Bad Ani-

mals’ engineers also continued their tradi-

tion of working seamlessly with our leads,

and everything from auditions to final

pick-ups was exactly what we needed

them to be — flawless.

4.Good internal team communi-
cation. Whether it’s a tribute to

our entire team’s experience, professional-

f e b r u a r y 2 0 0 1 | g a m e d e v e l o p e r

P O S T M O R T E M

ABOVE. Players see 20 different fields and five different surfaces — grass, dirt, cement, sand, and indoor turf — with the appropriate material-specific
physics and player characteristics. For example sand affects stamina, while cement discourages side tackles.

LEFT. Marcelo Balboa

ism, or personalities, all of the individual

aspects of development worked extremely

well together. Our programmers felt com-

fortable approaching the artists with minor

questions, issues, suggestions, and vice

versa. Having worked together before in

many cases, or at least in the same develop-

ment environment for an extended period

of time, they also had a high level of

knowledge of and confidence in each

other’s abilities. Problems could be dis-

cussed openly and succinctly, leading to

swift and accurate resolutions.

QA could stop by and chat about areas

of the game that were troublesome, while

the programmers never hesitated to offer

suggestions on where to look for potential

problems. This led to quicker bug isolation,

and kept the amount of programming

work lost from compounding faulty code

to a minimum. The art, interface, and pro-

gramming leads were all soccer junkies and

intimately familiar with the sport, but not

all of the team members were necessarily

soccer fans. The important thing was that

everyone had Backyard Sports experience,

giving us a common language and under-

standing, which served as a shared frame of

reference allowing us to communicate more

effectively and keep the need for explana-

tions of background and context to a bare

minimum. This level of communication and

ease of teamwork made the day-to-day

work that much more enjoyable, greatly

aided the workflow, and saved countless

hours of production. Even our marketing,

sales, and creative services departments

were familiar enough with our characters

and sports line that communication

between departments about our game was

virtually trouble-free.

5.Our proven technology and
concept meant two fewer

things to worry about. We had the bene-

fit of starting not only with a well-test-

ed engine and comprehensive

proprietary language, but also

with a proven concept. Our

development environment

and tools

have

under-

gone

dozens

of pro-

duction

cycles, including four

previous sports titles.

This, combined with

our confidence in the engineers that main-

tain our system, allowed for our relatively

short QA cycle to focus primarily on the

higher-level art, design, and gameplay

issues. Even the last-minute additions of

high-color support and relatively late

implementations of gamepad support and

head-to-head play had seen some produc-

tion test time.

We were pleased with the way the origi-

nal BACKYARD SOCCER had turned out.

With much of the general gameplay

already established, our tasks were easier

to identify and attack. In addition,

the entire art team was very well

acquainted with our Backyard

Kids’ physical characteristics

and personalities, which

made designing circum-

stantial actions and

reactions effortless.

What Went
Wrong

1.An unrealistic schedule can’t
be saved without pain. Our

original development schedule was slated

for a nine-month cycle. Shortly after incep-

tion, due partly to our desire to release as

close to soccer season as possible, the cycle

w w w . g d m a g . c o m 55

ABOVE LEFT. Pick-team screen. TOP RIGHT. Scoreboard screen. BOTTOM RIGHT. Penalty kick attempt against Mr. Clanky in single-player practice mode.

RIGHT. Tiffeny Milbrett.

w w w . g d m a g . c o m 57

was shortened to six months, with little

change in design and no additional staffing.

At this point, our schedule was obviously

too tight. It didn’t allow for any unantici-

pated setbacks that could cause milestones

to be missed. When we did miss them, it

created a huge crunch time and resulted in

inadequate testing during the final phases of

production. There was no way to buy extra

time at the end of production, when we

needed it most.

Unfortunately, no additional staff was

available, so the only way this situation

could have been alleviated was by removing

features from the design. Another option

might have been postponing our title in

favor of another, but other circumstances

made this impossible for us to consider.

Given the choices we made, one decision

could have eased our pain immensely had

we chosen to take a different route. When

confronted with our revised release date,

we chose to dive right into production in

an effort to maximize our available staffing

resources. This came at the expense of a

full complement of preproduction aids.

Failure to complete our design documents

cost us more production time in the end

than we would have spent on finishing this

vital stage of development. The immediate

hit of another week or two of idle pro-

grammers and artists would have been a

far wiser choice than the countless hours

spent fixing and refixing flawed and

incomplete design on the fly.

2. Late arrivals and double duty
aren’t tolerable. Several factors

combined to force a late arrival of the all-

important interface team, but the main

contributor was a previous project’s

missed deadline. Several weeks of unre-

coverable production time were lost right

at the start. This combined with the lack

of preproduction time created a very large

hole to climb out of.

The interface lead arrived after three

months of severe crunch on his previous

project. To make matters worse, his time

was divided between two products for

nearly the entire run of the project. Unfor-

tunately, no one else was available to take

over his role on the second project, so he

was forced by default into being the inter-

face lead on two projects simultaneously.

Both deserved his full attention, so he was

constantly forced to compromise.

Had we spent the time to complete our

preproduction, we would have realized

what a huge undertaking the interface was

going to be. With that knowledge, Ryan

would have recognized the need to devote

more of his energy toward the menu-art

layouts and design, taking some of the bur-

den off of the interface lead’s shoulders.

In addition, our main in-house tools

weren’t quite ready for high-color applica-

tions. This caused some pretty big

headaches when dealing with palettes and

the various conversions and manipula-

tions necessary. Trying to take a 16-bit

image and put it into a program that only

works with 8-bit images required adding

several interim steps. While none of these

steps was terribly difficult or time-con-

suming, they added an additional layer of

work to an already overcrowded schedule.

3. Lost team members need to be
addressed immediately. We

had a number of staffing issues. The first,

and one of the most severe, was the loss of

our producer. She had been the driving

force behind the MLS license, and was the

one person keeping abreast of the overall

development of the game in relation to the

other titles in our Backyard Sports line.

Shortly thereafter, our associate producer

was out of the picture as well. One of his

primary duties had been to track the flow

of art files, so his departure created a very

dangerous void.

Compounding this misfortune was the

very short notice we were given with both

of these departures. We did bring on a new

producer, but she ended up wearing both

TOP LEFT. Clubhouse screen. BOTTOM LEFT. Season-mode team page with navigational tabs to the Statistics, Trophy Case, Schedule, Standings, League
Leaders, and Game/Control Options screens. ABOVE RIGHT. Single game setup.

the producer’s and associate producer’s

hats, and was further hampered by insuffi-

cient time to be briefed adequately by the

departing team members.

Less severe but still enormously prob-

lematic was an agreement that we would

shift our test team’s focus to another prod-

uct for a short period of time. This was in

consideration of the other game’s immi-

nent release date, and with the under-

standing that we would get their time

back, with interest. As you might guess,

we never did get that time back, and QA

ended up even farther behind than they

already were, given our accelerated sched-

ule. This resulted in a game that wasn’t

fully testable until very late in the cycle.

The obvious result of all of these factors

was frantic testing with minimal coverage

toward the end of development.

4. Conventions should have been
better documented, commu-

nicated, and adhered to. Although we

had established workflow documentation

to aid in our day-to-day file tracking, it

wasn’t complete. Most of the art files had

their routes in place: animation went from

the artist to production for scanning, back

to the artist for cleanup, then off to the

lead for approval, on to the programmer,

and so on. The routing for the menu-art

files hadn’t been addressed, which resulted

in files being sent to the wrong people or

not being sent at all, and contributed to

the overall confusion and breakdown of

the entire system. Not helping matters

was our lack of standardized terms for a

number of our new menu-related features.

We contributed to the confusion by fail-

ing to establish the order that our new

team names and logos should appear in

their various art files until weeks before

release. The effects of losing our associate

producer, who was in charge of keeping

tabs on all of these files, would have been

minimized had we finalized and enforced

our workflow conventions. Determining

standard names for all of our new art ele-

ments and setting sequences for our logos

and team names up front would have

saved us a fair amount of frustration and

lost time as well. These three items are no-

brainers, and would have been covered

during the course of normal preproduc-

tion, so this turns out to be yet another

tribute to the importance of solid and

complete design.

5.We underestimated the impor-
tance of focus and morale.

During the production of BACKYARD SOC-

CER MLS EDITION, Humongous Entertain-

ment was undergoing substantial manage-

ment changes. Ownership of the company

had recently changed hands, resulting in a

state of upheaval and a number of morale

issues for the staff. This resulted in a high

level of distraction and cost our team

focus during the period of restructuring.

An example of one of the more minor

elements affecting the team’s focus was

the implementation of new office assign-

ments. This company-wide reorganization

into separate studios and teams, while a

positive change overall, came near the end

of production, when most of the BACK-

YARD SOCCER team was in massive crunch.

We should have recognized focus and

morale as top priorities. Instead, we

underestimated the level to which focus

and morale issues could affect project pro-

ductivity. In our attempts to address both

project- and restructuring-related priori-

ties, we neglected to address the issue of

team morale sufficiently. Employee

burnout is a very real phenomenon but

can largely be averted by paying careful

attention to the ebb and flow of employee

satisfaction. Managers

and leads must work

together to develop

and adhere to real-

istic schedules and

recognize all poten-

tial morale issues as

their highest priorities.

The Big Picture

B ACKYARD SOCCER MLS EDITION

had a great team of talented

artists, testers, and programmers and

overcame many obstacles to put out a

clean, fun game on time and under

budget. Our efforts have certainly been

recognized, as the game continues to sell

extremely well. As I write this, BACKYARD

SOCCER MLS EDITION is currently PC

Data’s number-one best-selling chil-

dren’s software title alongside our other

recent sports titles, BACKYARD BASEBALL

2001 and BACKYARD FOOTBALL. Even so,

as I’ve demonstrated, there are some clear

lessons that can be learned from our expe-

rience in developing this product.

First and happiest is the not-so-surpris-

ing news that talented and experienced

developers, both full-time and contract,

are invaluable. Also, a well-conceived and

established organizational structure within

the project plays a positive role on many

levels. Cutting down on confusion is its

most obvious benefit, but the positive

influence it has on overall team communi-

cation is also undeniable.

No matter how short a production cycle

is, complete design and preproduction is

vital. I know this sounds like common

sense, but the reality is that shaving time

off of the front end of your schedule to

pull your release date back is one of the

easiest traps to fall into. The pitfalls you

will head off and redundant work you will

avoid, not to mention the stress and wast-

ed time associated with filling design holes

on the fly, will more than make up for the

time required to complete the design and

preproduction phases of development.

The project development process can be

a fair source of anguish all by itself. If out-

side influences are adding to the overall

stress level of your team members, their

focus and morale should become top prior-

ities. Whether this attention comes in

the shape of off-site team meetings

(to address the problems or to

just chill out and decompress

away from the office),

or constant one-on-

one contact to

ensure that

your team

members

aren’t neg-

lected in any

way, some form

of vigilance is vital.

None of the issues discussed

here is by any means unique to

our company. The more these

issues are recognized, the more

fun we’ll have making

games, and the better off

our industry will be

in the long run. q

f e b r u a r y 2 0 0 1 | g a m e d e v e l o p e r58

P O S T M O R T E M

RIGHT. Jorge Garcia gets a wake up call.

64

S O A P B O X g a n o h a i n e

C hildren’s software isn’t what it used to be, and

perhaps that is all to the good. Cagey old vets in

the children’s software industry can be defined as

having at least five years’ total experience and

having worked at a minimum of two companies.

Perhaps the second sentence somewhat illuminates the first one. I

remember being flabbergasted, after three years’ experience, at

being referred to as “seasoned.” I came from academia, where it

is not unknown for someone to spend several years mulling the

first chapter of a publication, several weeks refining a sentence,

and where research is not a trip to the bookstore for three sev-

enth-grade-reading-level books on a given subject. Stepping from

the abstract, cool passion of the brain-bending activities of schol-

arship to the ship-at-alpha, action-item, oh-they-cancelled-it,

what’s-the-minimum-config, can-you-pull-in-a-quarter world of

software development is impossible to describe, so I won’t try.

I do know, however, why I did this to myself (apart from the

idea that I could make money, I mean). When you’re in theater

graduate school, it’s impossible to tell what the quality of a thing

is by the way it is described. Nearly everyone talks a good game,

but when they stand up to perform, it either is or isn’t good, is or

isn’t entertainment. A software team is a much more immediate

kind of place. While teams are not immune to other types of

agendas — and we all have our war stories — the industry is still

a place where talent is respected among the rank and file, and the

end result is made to be touched and used rather than analyzed.

The success of the end product is vulnerable to all the generally

discussed factors, and a few others that aren’t mentioned except

in whispers. Yet it’s still true that, every once in a while, making

things wins out.

The industry is pretty much an ice field that keeps cracking

open. We jump from ice floe to ice floe, or reorg to reorg, or, in

my case, out of large companies and into the death-defying world

of running a development group and making product that actual-

ly ships. Attachments to company loyalties, brand identities, and

favorite tools, co-creators, or delivery media have to fall away.

Can’t let go? Well, then you’re done. The perfect game stays tan-

talizingly just out of reach, and there is a large human cost that

you can observe in those trying to catch it.

The world of children’s software has some additional obsta-

cles. It has been more difficult to capture the budgets, the place

on the SKU plan, and the talent for a children’s title. Movies,

books, and television don’t have this problem. Within the captive

world of larger companies, not a lot of quality product has been

made. At times it seems that the quality of the packaging is in

inverse relationship to the worth of its contents. From the some-

what staid but worthy days of educational value, to quasi-educa-

tional value (and we’ve had a lot of that), to entertainment prod-

ucts riding on the coattails of the big brands, we’ve arrived at a

full shelf. A-B-C, 1-2-3, entertain yourself with a large blue dog,

a bigger purple dinosaur, or the one and only pink goddess. So

Surviving
Children’s Software

f e b r u a r y 2 0 0 1 | g a m e d e v e l o p e r

continued on page 63

S O A P B O X

why do many of these games cycle around

the same old play patterns? The produc-

tion values are unnamed to protect the

innocent.

CD-ROM was never intended as the be-

all or end-all. It was just a big data deliv-

ery space with incredibly pokey access.

The latest crack in the ice field — and the

boom of the ground opening underneath

our feet is nearly deafening — is the Inter-

net and the digital toy. It’s possible to cre-

ate content without dedicating a team of

six people, ten months (O.K., 14 months),

and a million dollars to it. This is both

good news and bad news to developers.

The good news is that you can experi-

ment; school’s out. The bad news is that

most of the old play patterns can be coded

in Flash or Java in about a month — and

with much the same fidelity of the old

CD-ROM games. And so far, it’s free.

Sure, many families still have one phone

line and don’t want their kids surfing in

the largest unsupervised space of all time,

and kids still fall in love with characters

and want to interact with them over and

over again. The game Concentration is

not news, but it’s news to the four-year-

old who plays it for the first time.

But overall, what does this new phase

mean? Well, it means that we finally have

to do something different in order to be

commercial. Time to put on your skates

and start jumping again. Maybe we

should not think about what is “fun,” or

“educational,” or “worthy.” Maybe we

should just look at what is compelling.

Compelling can be silly or dark, short or

long, 256 colors or made out of sticks. It

has a quality that can’t be analyzed, but

you can see it in the way children — or

players of any age — react to it. So while

we’re surviving, it’s good to remember

why we’re doing it. It’s because people are

at their best while they’re playing, and

that’s the space in which we’re talking to

them. q

G A N O H A I N E | Gano is an interactive designer and writer who has worked in the industry since 1991 at companies such as Sierra On-
Line, Electronic Arts, and Mpath Interactive. She has been a co-owner of Stunt Puppy Entertainment since 1996. Stunt Puppy’s credits include
BARBIE GENERATION GIRL GOTTA GROOVE CD-ROM and BARBIE NAIL DESIGNER. Gano is currently at work on titles for Hasbro Interactive
and LeapFrog Toys.

continued from page 64

	04gameplan
	06frontlin
	08indwatch
	10patterns
	12prodrev
	17graphic
	25artview
	32f-sanger
	38f-kautz
	46f-clevel
	50postmort
	64soapbox

	return:

