
FEBRUARY 2000

G A M E D E V E L O P E R M A G A Z I N E

“A foolish consistency is the hobgoblin of

little minds, adored by little statesmen and

philosophers and divines.”

— Ralph Waldo Emerson

I t’s conventional wisdom in the
game industry that desktop per-
sonal computers have to become
more like videogame consoles or

they will cease to be a viable platform
for which to develop games.

I’m not so sure. No, I don’t dispute
that PC game publishers spend tons of
money on technical support because
PC games rarely work for consumers
out of the box. Similarly, I don’t dis-
pute that selling seven million copies
of a console game in its first weekend
looks very nice compared with selling
70,000 copies in a PC game’s lifetime.
And who would dispute the allure of
developing games for a piece of hard-
ware that’s guaranteed to be there
when somebody runs your game?

Still, I’m going to miss the current
PC architecture if it truly does go the
way of the dodo. The best word I can
come up with to describe the trait I’ll
miss is “wackiness.” The PC is a won-
derfully wacky medium, and I think
even the console industry benefits
from its wackiness.

What do I mean by “wacky”? Take
the original Nvidia NV1 chip, one of
the first attempts at consumer-level 3D
graphics in hardware. Now that was
wacky. The NV1, for you young, TNT-
spoiled whippersnappers, rasterized
quadratic surfaces directly. Who cares
whether quadratic surfaces don’t mesh
well with any known modeling para-
digm in this universe? Who cares
whether anybody ever actually used
this hardware to make a game? It cer-
tainly caused a ruckus and made for
some very interesting conversations
among game developers.

Or how about Aureal’s 3D sound API
that expected you to upload your
world geometry? Definitely wacky.
Intel’s MMX instructions? Wacky. D3D
execute buffers? Beyond wacky. There
are infinite examples.

I actually think the PC 3D hardware
industry is about to go through a renais-
sance of wackiness after the last couple
years of relatively boring fill-rate and

throughput competition. Now that
everybody’s implemented the same clas-
sic SGI-inspired pipeline, no one is quite
sure what features to implement next.
SGI’s not leading the pack anymore on
features, and so this next generation of
3D hardware is going to go every which
way as vendors throw things against the
wall to see what will stick.

This wackiness and volatility is not
necessarily a bad thing. For example,
when you’re trying to maximize some-
thing using mathematical optimiza-
tion, you don’t necessarily always want
to keep going in the obvious direction,
the one that constantly increases your
objective. If you do this, you might get
stuck at the top of a foothill when the
true peaks are a bit farther away. The
top of this foothill is a local maximum,
where every direction from here goes
downhill and reduces our objective,
even though we’re not at the global
maximum — our true goal.

This mathematical concept carries
over to the game industry; these wacky
ideas keep us from getting stuck. Their
randomness bounces us around a bit,
shakes things up, and maybe gives
somebody an insight into a completely
different way of doing things.

Consoles don’t have this level of
wackiness, at least when you consider
the rate at which they change. Sure,
consoles like the Sega Saturn are plenty
wacky when they’re released, but a few
months later everybody’s used to it, and
three years later it’s downright boring.

There’s an intrinsic tie between the
pace of technical innovation and the
stability of a platform, and so it stands
to reason that if we give up our insta-
bility, we’ll have to reduce our pace of
innovation. Don’t get me wrong, I
think consoles are great, especially for
their users. It’s probably inevitable that
the PC will evolve in that direction.
However, I will definitely miss the
technological wackiness of the PC. ■

G A M E D E V E L O P E R F E B R U A R Y 2 0 0 0

4

P L A NG A M E

Local Maxima

D E V E L O P E R

ON THE FRONT LINE OF GAME INNOVATION

600 Harrison Street, San Francisco, CA 94107
t: 415.905.2200 f: 415.905.2228 w: www.gdmag.com

Publisher
Jennifer Pahlka jen@mfgame.com

EDITORIAL

Editorial Director
Alex Dunne adunne@sirius.com

Managing Editor
Kimberley Van Hooser kvanhoos@sirius.com

Departments Editor
Jennifer Olsen jolsen@sirius.com

News & Products Editor
Daniel Huebner dan@mfgame.com

Art Director
Laura Pool lpool@mfi.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Jeff Lander jeffl@darwin3d.com
Mel Guymon mel@infinexus.com
Omid Rahmat omid@compuserve.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook Verant Interactive
Susan Lee-Merrow Lucas Learning
Mark Miller Group Process Consulting
Paul Steed id Software
Dan Teven Teven Consulting
Rob Wyatt Microsoft

ADVERTISING SALES

National Sales Manager
Jennifer Orvik e: jorvik@mfi.com t: 415.905.2156

Publisher Relations Manager
Ayrien Houchin e: ahouchin@mfi.com t: 415.905.2788

Account Representative, Silicon Valley
Mike Colligan e: mike@mfgame.com t: 415.356.3486

Account Executive, Northern California
Dan Nopar e: nopar@mfgame.com t: 415.356.3406

Account Executive, Western Region
Darrielle Sadle e: dsadle@mfi.com t: 415.905.2182

Account Executive, Eastern Region
Afton Thatcher e: athatcher@mfi.com t: 415.905.2323

ADVERTISING PRODUCTION

Senior Vice President/Production Andrew A. Mickus

Advertising Production Coordinator Dave Perrotti

Reprints Stella Valdez t: 916.983.6971

MILLER FREEMAN GAME GROUP MARKETING

Marketing Manager Susan McDonald

CIRCULATION

Vice President/Circulation Jerry M. Okabe

Assistant Circulation Director Kathy Henry

Circulation Manager Stephanie Blake

Circulation Assistant Kausha Jackson-Crain

Newsstand Analyst Pam Santoro

INTERNATIONAL LICENSING INFORMATION

Robert J. Abramson and Associates Inc.
t: 914.723.4700 f: 914.723.4722
e: abramson@prodigy.com

CEO/Miller Freeman Global Tony Tillin
Chairman/Miller Freeman Inc. Marshall W. Freeman
President & CEO Donald A. Pazour
Executive Vice President/CFO Ed Pinedo
Executive Vice Presidents Darrell Denny, John Pearson,
Galen Poss
Group President/Specialized Technologies Regina Ridley
Sr. Vice President/Creative Technologies KoAnn Vikören
Sr. Vice President/Human Resources Macy Fecto

Chris Hecker
Editor-At-Large

h t t p : / / w w w. g d m a g . c o m F E B R U A R Y 2 0 0 0 G A M E D E V E L O P E R

New Products
by Daniel Huebner

You Look Familiar...

FAMOUS TECHNOLOGIES has shipped
Famous Faces 1.5, adding to the influx
of new facial animation software for
3D animators. Unveiled at Siggraph 99,
the package a is stand-alone system
that aims to accelerate character ani-
mation workflow by allowing anima-
tors to extract 3D facial motion from
.AVI files and NTSC video. Designed
for use in the film, broadcast, games,
and location-based entertainment
industries, Famous Faces uses an actor’s
performance to animate dialog and
facial expressions quickly, enabling ani-
mators to create more lifelike and con-
vincing facial animations.

Among the new features for version
1.5 is multiple input support, allowing
for the use of motion capture, video,
puppetry devices, voice recognition,
or a combination of these methods.
The system has also added support for
real-time game animation, an alterna-

tive to keyframe animation. Open
motion-capture channels provide easy
integration with common 2D and 3D
mo-cap sources including Motion
Analysis and Vicon.

Famous Faces 1.5 is available as a
stand-alone for Windows NT, and also
includes plug-in support for most
major animation software, including
Lightwave 3D, Softimage, Maya, 3D
Studio Max, and Filmbox. It is priced
at $4,990.
■ Famous Technologies

San Francisco, Calif.

(415) 835-9445

http://www.famoustech.com

Sew It Up

REALVIZ is serving up another image
processing technology designed to
make life easier for 3D modelers and
special-effects professionals. Stitcher’s
task is to combine multiple vertically-
and horizontally-overlapping 2D
images seamlessly for fast and simple
creation of wide-angle and panoramic
images. Those images can then be
exported into a variety of compositing
and 3D modeling packages, including

Realviz’s own
Imagemodeler.

The minds
behind Stitcher see
it as an alternative
to costly and time-
consuming loca-
tion shoots for the
production of
large-scale back-
ground scenes.
Panoramic images
up to 360 degrees
by 360 degrees can
be created and
exported to build
photo-realistic
matte paintings or
environment maps.
Panoramas are de-

blurred, color-blended, and warped so
they won’t require additional editing,
and Stitcher also provides its own set
of flexible production tools.

Stitcher is available for Windows NT
at a suggested retail price of $2,000 and
an IRIX version is in the works for
release by the end of the first quarter.
Realviz also offers a pay-per-use licens-
ing plan, an appealing alternative for
small budgets that only need the soft-
ware on a limited basis.
■ Realviz S.A.

Sophia Antipolis, France

+33 (4) 92-38-84-60

http://www.realviz.com

Putting Sound In Motion

HUMAN MACHINE INTERFACES has
announced the Inmotion 5.1 Sur-
round Producer, a professional appli-
cation designed to let users create true
multi-channel audio mixed for 5.1,
6.1, 7.1, or any other desired speaker
layout, without affecting the quality
or tone of the original audio stream.
Inmotion’s interface works by allow-
ing users simply to draw the path the
sound should follow to a set of virtual
speakers.

Inmotion’s environmental modeling
capabilities include Doppler motion
effects, air absorption, occlusion mod-
eling, reverberation, and distance
modeling. The system also allows for
real-time updating of all effects para-
meters without audible clicks or pops.
Inmotion supports audio input and
output in standard .WAV and .AIFF file
formats for easy integration, and sup-
ports audio sample rates of 11, 22, 44,
48, and 96KHz.

The Inmotion 5.1 Surround Producer
is available for Windows 95/98/NT at
an introductory price of $995.
■ Human Machine Interfaces Inc.

Eugene, Ore.

(541) 687-6509

http://www.humanmachine.com

New Products: Famous Technologies
ships new Famous Faces, Realviz intro-
duces Stitcher, and Human Machine
announces Inmotion p. 7

Industry Watch: Sony’s on the work-
station warpath, Sega coughs up a $182
million loss, and EA inks a five-year
deal with AOL. p. 8

Product Review: Mel Guymon flirts
with Maya 2.5 and contemplates
whether the package is one-stop shop-
ping for game development. p. 10

7

Famous Faces lets animators work from existing mo-cap or

video to create lifelike facial animations.

News from the World of Game Development

B I T B L A S T S - I N D U S T R Y W A T C H

Industry Watch
by Daniel Huebner

SONY WAGES WORKSTATION BATTLE.
In an interview with Nikkei Electron-
ics, Sony Computer Entertainment
CEO Ken Kutaragi laid out Sony’s
plans for entering the workstation
market. Sony hopes to use the devel-
opment of workstation technology to
drive the development of the
Playstation 3 and other future prod-
ucts. “I don’t think that the worksta-
tion business will be able to turn a
profit, but we will supply the funds
for development work there from the
game machine side of the company,”
said Kutaragi.

Sony is expecting that workstation
competitors such as SGI will be unable
to keep up with Sony’s technological

pace in the
future. “For 2000,
we are preparing
workstations with
capabilities ten
times better than
the development
tools currently
available — and
in 2002, they will
be a hundred
times better,”
explained
Kutaragi. Sony
enjoys the luxury
of being able to
afford the invest-
ment in semicon-

ductor manufacturing technology on
the scale necessary to maintain that
kind of pace, and Kutaragi went so far
as to claim that most companies
would go out of business trying to
keep up with Sony. Kutaragi clearly
isn’t hedging his bets, asserting, “SGI
doesn’t have enough strength remain-
ing to go on competing at the very
cutting edge of technology.”

LOSSES INCREASING, SEGA RESTRUC-
TURES. Citing the cost of promoting
its products overseas, Sega of Japan
announced big losses for the first half
of its fiscal year. Despite increasing
sales by 25 percent and reaching the
one-million mark for North American
Dreamcast sales well before Christmas,
Sega’s losses totaled $182 million. The

company recorded a profit of $11.5
million in the same period last year.

Sega also announced a major
restructuring that will focus the com-
pany more on Internet gaming. “We
are a believer in the Internet, so we
will focus on entertainment on net-
works,” said Sega president Shoichiro
Irimajiri. “We are now aiming to pro-
vide our services on the Net...to
become a network entertainment
kingdom.” Sega plans to list its
Internet-related business in Japan and
the U.S. at the beginning of its next
fiscal year in April 2000.

Sega will also split its research-and-
development, home-game, and
arcade-game units into separate com-
panies as it looks for ways to focus
better on Internet development.
Included in the planned listings will
be ISOA Corp., the joint-venture com-
pany created to handle online services
for the Dreamcast.

In addition, Sega will set up more
than ten new spin-offs from its devel-
opment business. Sega of America’s
senior vice president of marketing Peter
Moore welcomed the announcement,
saying that Irimajiri’s statements rein-
force Sega’s commitment to expanding
upon the Dreamcast’s forward-thinking
gaming and network functionality.

3DFX NAMES NEW CEO. The position
of president and CEO at 3dfx, made
available by Greg Ballard’s departure
in October, was filled when the com-
pany’s board of directors named Dr.
Alex Luepp to the top position. Luepp
is a 25-year veteran of the semicon-
ductor industry and has served as a
member of the 3dfx board since
October 1998. Gordon Campbell,
3dfx’s chairman, cited Luepp’s tech-
nology expertise, leadership abilities,
and strong understanding of the semi-
conductor industry as contributing
factors to the board’s choice. Luepp
joins 3dfx from Chip Express Corp.,
having previously spent 12 years with
Siemens Microelectronics, including
six as chairman and CEO.

EA PARTNERS WITH AOL. Electronic
Arts has entered into a five-year agree-
ment to be the exclusive provider of
games content on America Online’s
Games Channel, as well as for provid-
ing game content for additional AOL
properties including AOL.com, Net-

center, and Compuserve. Electronic
Arts will create new games exclusively
for the America Online Games Chan-
nel and also take advantage of AOL’s
highly trafficked venue to showcase
existing EA titles. AOL’s Games Chan-
nel will be relaunched in the summer
of 2000 with new content ranging
from card games to massively-multi-
player online worlds. EA hopes that
by adding to its own company web
site, EA.com, its strategic relationship
with AOL will enable EA to reach mil-
lions of new consumers.

The same day EA announced its deal
with AOL, the company also acquired
Kesmai Corp., based in Charlottesville,
Va. Formerly a subsidiary of News
Corp., Kesmai is a developer and pub-
lisher of multiplayer online entertain-
ment and a provider of content for
AOL’s Game Channel. ■

G A M E D E V E L O P E R F E B R U A R Y 2 0 0 0 h t t p : / / w w w. g d m a g . c o m

8

Linux World Conference & Expo

JACOB J. JAVITS CONVENTION CENTER

New York, N.Y.
February 1–4, 2000
Conference: $225–$695
http://www.linuxworldexpo.com

Game Developers Conference 2000

SAN JOSE CONVENTION CENTER

San Jose, Calif.
March 8–12, 2000
Cost: $200 and up
(early-bird discounts available)
http://www.gdconf.com

American Association for Artificial
Intelligence Spring Symposia

STANFORD UNIVERSITY

Stanford, Calif.
March 20–22, 2000
Cost: $280 for nonmembers
(student rates also available)
http://www.aaai.org

UPCOMING EVENTS

CALENDAR

Sony chief execu-

tive Kutaragi: not

messing around.

B I T B L A S T S - P R O D U C T R E V I E W

G A M E D E V E L O P E R F E B R U A R Y 2 0 0 0 h t t p : / / w w w. g d m a g . c o m

10

Alias|Wavefront’s
Maya 2.5

by Mel Guymon

A lias|Wavefront’s formidable
Maya software has been gar-
nering support in the games

and feature film industries ever since its
release in early 1998. With its open,
script-based architecture, powerful ani-
mation and rendering tools, and con-
stantly evolving feature set, Maya seems
eminently suited to the task of game
development. It beat out some stiff
competition to pick up a Game Developer
Front Line Award last year, and it
should come as no surprise that an ever-
increasing number of developers have

been choosing Maya as their weapon of
choice for game development. The lat-
est version of the software, Maya 2.5,
adds some real improvements to an
already strong package.
FIRST IMPRESSIONS. It was apparent
immediately that this latest version of
Maya has come a long way since its
initial release. Over the course of the
last two upgrades, there have been
fixes and upgrades in almost every cat-
egory. The interface has been stream-
lined and augmented, adding function-
ality and removing problematic clutter.
Polygonal modeling is much easier in
2.5, and most of the functionality
available in the lower-end programs
has finally been added. Most impor-
tantly, the Artisan module is now fully
functional with polygonal geometry.
Attaching a skinned character to a
skeletal hierarchy is extremely intu-
itive, and a new modeling method
dubbed Subdivision Surfaces has been
added. However, the most impressive
new feature is the much-anticipated
Paint Effects module. Combining the
power of Maya’s particle effects system
with the intuitive interface of Artisan,
Paint Effects will very likely revolution-
ize the workflow for creating 3D con-
tent. But we’ll get to that later.
INTERFACE. One common criticism Maya
has faced has been the number of win-
dows and panels the user must navi-

gate. It’s ironic,
then, that of the
many interface
improvements of
Maya 2.5, the one
that stuck out was
the addition of the
Hypershade and
Visor windows in
the rendering mod-
ule. The Hypershade
window combines
the functionality of
the Multilister and
the Hypergraph
window into one
panel, allowing
artists to manage
the renderable
nodes (materials,
objects, and lights)

with ease. The Visor window is simply a
file browser that facilitates a drag-and-
drop workflow for image files and other
graphical elements. The combination of
the two new panels made texturing and
materials-management a snap, and the
drag-and-drop functionality made creat-
ing and applying the textures extremely
intuitive. Although the Multilister panel
is still included for those die-hard Power
Animator fans, I found that now I could
do without it entirely.

Another huge improvement in gener-
al workflow is the addition of an Inter-
active Photorealistic Renderer, or IPR.
The IPR window is a fully rendered ver-
sion of the scene that updates nearly in
real time. Once the artist performs an
IPR render, a raster file is generated
which stores the results of the rendering
calculations for the scene. Subsequent
changes to the rendering nodes, such as
lighting values or texture and material
changes, are automatically updated in
the rendered image. However, since
most of the transform and lighting cal-
culations have already been stored in
the raster file, the updates take far less
time to generate than re-rendering the
entire scene, and only the affected pix-
els are updated. Even on my relatively
low-end test machine (a 500MHz Pen-
tium II with 256MB RAM and a Dia-
mond FireGL card), the technique was
extremely fast. Despite the limitations
of my system, I found that the IPR win-
dow updated in near-real time (one to
two seconds per change) changes I
made to the textures and lighting in the
scene. For large scenes, selecting a sub-
region within the IPR image can greatly
increase the update speed. With Maya
2.5, IPR is now fully multi-threaded and
the renderer will make use of all avail-
able processors.
ANIMATION. Aside from some interface
adjustments in the Graph Editor and
Dopesheet, the animation features in
Maya haven’t changed much, not that
they needed it. Maya’s animation tool-
box includes a robust IK system with
multiple solvers (including an intuitive,
easily-adjustable spline-based solver), a
fully interactive set of constraints, and
a tool for creating what are termed “set-
driven keys,” which is basically an
extremely fast graphical method for
creating complex expression-based ani-
mations. With this arsenal of function-
ality, it would be hard to find a more
capable character animation tool.

Mel Guymon has been animating in the gaming industry for several years. When he’s
not at his desk pushing polygons, he can usually be found at the local Barnes and
Noble, slumming for reference materials. Mel can be reached at mel@infinexus.com.

The Multilister and two new windows, the Visor (left) and

the Hypershade (bottom).

B I T B L A S T S - P R O D U C T R E V I E W

G A M E D E V E L O P E R F E B R U A R Y 2 0 0 0 h t t p : / / w w w. g d m a g . c o m

12

One of the few updates to the ani-
mation module is the addition of what
are called “Breakdown Keys.” Break-
downs are a special type of key which
maintain the proportional relation-
ships in time with adjacent keys. This
nonlinear editing functionality allows
individual characters within a scene to
have the timing on their animations
adjusted proportionately, independent
of global time. This is especially useful
if a certain frame of the animation is
required to synch up with an event in
the scene, for example when two char-
acters are interacting with one another.
MODELING. Several improvements to the
polygonal modeling tools have been
made, although much of this function-
ality is what would be considered “stan-
dard” on other, less-expensive packages.
Some of the more obvious upgrades
include edge flipping, polygonal object
mirroring, polygonal object cleanup
(removal and optimization of unwant-
ed geometry, such as zero-area faces or
zero-length edges), and a more efficient
NURBS-to-polygons converter (NURBS
to polygons assigns the same texture to
the new polygonal object, and bakes
the NURBS UV values onto the corre-
sponding polygon vertices).

By far the most important upgrade is
the ability to use Artisan tools to select
polygonal components, apply color, and
sculpt polygonal models, mitigating the
necessity of modeling first in NURBS to
gain the benefit of the Artisan function-
ality. Artisan has been further enhanced
by the ability to paint attribute values
on surfaces (for attributes that have

been identified as “paintable”) and by
the ability to paint vertex weights on a
skinned skeletal model. The latter of
these two improvements, in conjunc-
tion with an easily-managed smooth-
skinned weighting technique, was, in
the minds of most animators, one of
the shortcomings of Maya’s earlier
incarnations. With the latest release, I
found that applying a skeleton to a
solid-skinned model and weighting the
vertices effectively was exceptionally
easy. Joint areas that are usually prob-
lematic, such as shoulders and neck
bones, animate and deform correctly

with only a few
minor adjustments.
And the graphical
representation of
the weighting values
is intuitive and easy
to work with.
GAME-SPECIFIC

FEATURES. Much is
being made of
Maya’s ability to
serve as the com-
plete game develop-
ment package, and
many of the game-
specific upgrades are
focused on this. For
instance, the latest
version includes a
Level of Detail inter-
face for setting up

LOD distances within a Maya scene,
and a camera “fly mode,” for flying
through the user-created levels in much
the same way that a player would navi-
gate them. While these features are cer-
tainly useful, what I found impressive
were the IK bone handles and single
chain solvers which are included in
Maya 2.5. The use of IK handles (or end
effectors, as they are termed in other
packages) has long been a mainstay of
hand-generated IK animation. The
source code for this functionality has
been included, so that developers can
replicate this lightweight IK system into
their run-time engines. The intent is
that the notion of an IK handle can be
extrapolated into a game engine, allow-
ing programmers to modify existing
animations procedurally on the fly. The
potential uses for these are legion, for
example to keep a character’s feet plant-
ed on uneven ground during a run
cycle or to “aim” a reaching animation
when a character moves to pick some-
thing up in the world. Given that pro-
cedural IK is presently a pretty hot topic
among developers, this would seem to
be an ideal implementation.
PAINT EFFECTS. When the folks at
Alias|Wavefront first released Maya’s
Artisan tool, they began to define a new
paradigm for digital modeling. The
notion of using a sculpting tool that
conforms and flows over the surface of
a 3D object seems, like most great ideas,

The Interactive Photorealistic Renderer (IPR), shown upper right.

Smooth-skinned weighting techniques make for easy and

accurate deformation and animation.

Excellent Very Good Average PoorBelow Average

G A M E D E V E L O P E R F E B R U A R Y 2 0 0 0 h t t p : / / w w w. g d m a g . c o m

14

to have been obvious in hindsight.
Now, nothing else seems as intuitive.
With Paint Effects, Maya’s developers
have taken the next logical step and
applied this paradigm to the particle
effects system. In doing so, they’ve
come up with a powerful and unique
method for creating both 2D and 3D
content, one that may well revolution-
ize the way we work.

Basically, Paint Effects allows artists to
paint brush strokes and particle effects
quickly and easily on a 2D canvas, on
3D geometry, or between 3D geometry.
The workflow is simple. The artist
selects from a preset list of objects, or
brushes, and commences painting these
objects into the scene or onto the 2D
canvas. With each click of the mouse, a
spline, or “stroke,” is created, and it is
these strokes that control the position
and size of the objects created. The
Paint Effects brush strokes can be paint-
ed onto virtually any surface, and
splines that were not created with Paint
Effects can be assigned to be emitters.
The objects that are painted into the
scene are actually clusters of particles,
which, at render time, get replaced by

procedurally-generated geometry (called
stamps). These static particle systems are
based on splines that exist in 3D space,
and subsequently have depth and
breadth. As such, they will render prop-
erly from any angle.

In the 2D Canvas mode, Paint Effects
can be used as a traditional paint pro-
gram to paint images, or to generate
automatically repeatable textures. The
similarity to a traditional painting pro-
gram ends there, however, since with a
single brush stroke, you can paint entire
particle effects and complex images on

your 2D canvas. In the 3D scene, the
same brush stroke can create these
objects in full 3D. As one of the Maya
artists put it, “Imagine being able to
paint an orchard in your scene where
the painted trees exist as objects that
your characters can move around. You
can also apply dynamic forces to the
effects you paint in your scenes and ani-
mate the display and movement of the
effects. For example, you can make
plants grow, make long hair blow in the
wind, or make a river flow.”

From a game developer’s point of
view, when you consider the amount of
work that goes into generating pre-ren-
dered movies and interface screens, as
well as textures and special effects for
real-time 3D, the timesaving aspects of
Paint Effects are potentially tremendous
(painting on the 2D canvas even gener-
ates the a correct alpha channel for the
texture). This alone is worth the price
of admission into the Maya family.
THE FINAL WORD. Although the interface
still seems a bit overbearing at times
(let’s face it, there are a lot of menus
and windows in this software), I found
it hard to find fault with Maya 2.5.
Most of the functionality that was
oddly missing in the early releases has
finally made it into the package, and
the solid animation features make it a
sound choice for any character-based
project. Regardless, whether or not you
are a dedicated Maya development
house, with the Paint Effects module
thrown into the package it would be
difficult for anyone to argue reasonably
against having at least one suite of
Maya in-house. ■

Alias|Wavefront
Toronto, Ontario, Canada
(416) 362-9181
http://www.aw.sgi.com

Prices:
Maya Builder: $2,995
Maya Complete: $7,500
Maya Unlimited: $16,000

System Requirements:

See the qualification charts
for Maya NT and IRIX at
http://www.aliaswave
front.com/pages/home/
pages/support/pages/
qualification_charts/
index.html.

Pros:

1. Solid character anima-
tion toolset.

2. Excellent particle and
special-effects systems.

3. Exceedingly customiz-
able script-based user
interface.

Cons:

1. Lots of interface to
wade through.

2. Still a bit on the expen-
sive side.

3. Not enough flexibility
with other file formats.

Competitors:

Avid Softimage 3D 3.8
http://www.softimage.com

Discreet 3D Studio Max 3
http://www.ktx.com

Newtek Lightwave 6
http://www.newtek.com

Nichimen Mirai
http://www.nichimen.com

Maya 2.5:

Maya’s Paint Effects palette and some 2D scenes.

Special thanks to Peter Whiteside, Irene

Grubb, Matt Dougan, and Mike Aquino.

Acknowledgements

b y J e f f L a n d e r G R A P H I C C O N T E N T

architectural scenes. Raytracing and
radiosity renderings often fool me
into believing I am seeing actual
photographs. Even in the real-time
game market, techniques such as
multi-pass rendering and precomput-
ed lighting have enabled game players
to run around in a world complete
with reflections, shadows, dynamic
lights, and an impressive amount of
texture detail.

As I write this, QUAKE 3: ARENA has
been unleashed upon the world. This
impressive game takes real-time ren-
dering technology to a new high.
Once again, the graphics capabilities
in id’s latest offering stretch real-time
rendering to its limit, bringing even
the latest “graphics processing units”
to their knees. QUAKE 3 also marks the
industry debut of programmable
“shaders,” which are used for describ-
ing the look of a real-time rendered
image.

A shader is a form of programming
language that describes the look of a
particular surface in a rendered world.
In its most abstract sense, it is a func-
tion that is given a series of properties
and then returns the color of the light
leaving any position on the shaded sur-
face. Normally, the properties given to
a shader include such things as the
lights in the scene, the color of the sur-
face, and some measure of the rough-
ness of the surface.

Game programmers and artists don’t
normally think of the rendered world

in these terms. However, even the
most basic 3D rendered scene can be
described as a collection of surface
properties and light interactions. A
texture map that is applied to a 3D
polygon simply describes the color of
the light that leaves that polygon at
any point on its surface. Likewise, the
Gouraud shading model is a series of
parameters that controls the interac-
tion of the lights in the scene with the
color and roughness of the polygon
surface. The power of a shader lan-
guage, however, goes way beyond
what we have traditionally done with
real-time 3D rendering. Since a shader
describes the color leaving the surface
of a polygon, it can be used to gener-
ate a complex pattern of colors with-
out texture maps.

Most of you are familiar with proce-
dural textures. This is a technique
whereby a texture map is created by
some form of mathematical formula
instead of being drawn in an art pack-
age. Procedural textures are commonly
used for patterns such as noise (like TV
“snow”), lava, water, marble, or fire.
UNREAL implemented procedural tex-
ture techniques for several effects used
throughout its environments. This
allowed its designers to have a nearly
unlimited variety of certain types of
textures without having to store all
those bitmaps on the game CD. How-
ever, the textures still needed to be
generated in order to load them onto
the 3D card for rendering.

Wouldn’t it be nice if those textures
never had to be generated at all? What
if I could simply upload a small pro-
gram that handled all my procedural
textures? Then all I would need to pro-
vide to the rendering hardware would
be a few variable settings for each dif-
ferent material. Sounds kind of futuris-
tic, right?

It is not as far out as you think.
Shading languages have been around
for quite a while. The first, and still
most commonly used, is Renderman.
First described in the late 1980s, this
rendering language has been used to
create some of the most memorable
computer graphics scenes of all time,
including the recent movie Toy Story
2. While it may seem that we are a
long way from creating scenes this
complex for real-time games, you may
be surprised.

Listing 1 describes a Renderman
shader that creates a checkerboard
pattern on a surface. The shader takes
three float variables and two colors
and creates a checkerboard of any size
and frequency. This is done without
any texture map. For a checkerboard,
this may not seem very impressive;
however, it’s the idea of controlling
the look of an individual pixel on an
individual surface that makes Render-
man so powerful. A shader doesn’t
need to be as simple as a checker-
board. Shaders can be used to create
all kinds of surfaces, everything from
highly-detailed wood, marble, and fire
to even a moldy cue ball (my favorite
Renderman shader).

A closer examination of the
checkerboard shader reveals that the
only other thing the shader really

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 2 0 0 0 G A M E D E V E L O P E R

17

Under the Shade of the

Rendering Tree

T he goal of computer graphics has always been to create increasingly realis-

tic images. Faster processors and more sophisticated rendering techniques

have allowed computer artists to create scenes that come very close to sim-

ulating reality. In particular, computer graphics are good at rendering

When not ditching work to catch the latest animated feature film, Jeff can be found
at Darwin 3D trying to convince clients that things can’t look any better. Tell him
how wrong he is at jeffl@darwin3d.com.

needs to know about is the position of
the view and the lights in the scene.
Interestingly, the new generation of
3D graphics hardware such as Nvidia’s
GeForce 256 keeps these positions in
hardware already. I can’t help but
think that the hardware manufactur-
ers are thinking of the implications in
the same way that I am. I don’t know
how long it will take, but I am going
to dust off my Renderman Companion
and start thinking about how to inte-
grate programmable shaders into my
art production pathways. Since I can’t
really envision many artists learning
to program Renderman, I think there
are going to be a lot of tools that will

need to be created. However, until I
get my ultimate shader language writ-
ten, I am stuck with the traditional
texturing and lighting methods to get
the results I want.

Welcome to Toon Town

Ihave lamented before in this column
that creating 3D characters is very

difficult. I can take some comfort from
the fact that even Pixar, with its terrific
Renderman shading system and all the
money and talent possible, has trouble
getting human characters right. They
have hit upon one of the great ironies

of computer graphics. When rendering
3D environments, the technology has
enabled increasingly realistic final
images. With each advance in model-
ing or lighting, the images take a step
closer to what we see around us in the
real world.

With human characters, on the
other hand, the story is entirely differ-
ent. In my experience, as a 3D com-
puter-generated human is rendered in
an increasingly realistic manner, it
paradoxically looks increasingly
strange to viewers. They can’t really
say why it looks odd, just that it’s not
quite right. This is especially notice-
able when the texture maps for the
characters’ faces are created from pho-
tographs of real people.

Particularly frustrating is the fact
that people are able to look at a stick
figure performing an animation and
appreciate the lifelike motion. How-
ever, when that same motion is
applied to a synthetic 3D character,
those same people get hung up on the
look of the character. They no longer
regard the motion of the character as
realistic simply because it looks “odd.”
If the character is a monster or some-
thing else nonhuman, this problem
seems to go away. Well, that’s great if
you’re creating a shooter filled with
mutated zombies and uncontrollable
robots. However, if you’re creating a
realistic scene filled with average peo-
ple, you’re in trouble.

This observation has led me to
think that for now, at least, the focus
for real-time 3D characters should not
be on trying to achieve realism. In-
stead, we should be looking at
approaches to creating stylized charac-
ters. Perhaps Disney had the right
idea. For years, its artists have seemed
to understand and appreciate this
paradox. They were able to create very
realistically painted backgrounds full
of color and depth. For the actual
characters, though, they still rely on
simple pen-and-ink drawings. Even
when the first fully CG character was
introduced in a Disney animated fea-
ture, the magic carpet in Aladdin, it
was rendered in a style that matched
the traditional methods. With this in
mind, is it at all surprising that 3D
animated series such as Mainframe
Entertainment’s ReBoot and Beast
Wars focus on robotic and animal
characters?

G R A P H I C C O N T E N T

G A M E D E V E L O P E R F E B R U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

18
//

// Shader: Checkerboard Shader

// Arguments:Diffuse and Ambient Coefficient

// Number of squares

// Two colors to alternate

//

surface checkerBoard(

float Kd, Ka; // Specular and Ambient Lighting

float frequency; // Number of Squares

color c1, c2 // Two colors

)

{

// S and T vary from 0 - 1 across the surface

float smod = mod(s*frequency,1); // Interval in S direction

float tmod = mod(t*frequency,1); // Interval in T direction

// Ci is the output color

if (smod < 0.5) { // Odd Columns

if (tmod < 0.5)

Ci = C1; // C1 Square

else

Ci = C2; // C2 Square

} else { // Even Columns

if (tmod < 0.5)

Ci = C2; // C2 Square

else

Ci = C1; // C1 Square

}

Oi = Os; // Opacity out = opacity in

// ambient() returns ambient light value

// diffuse(N, I) returns the sum of lights from

// incident vector I and surface normal N

Ci = Oi * Ci * (Ka * ambient() + Kd * diffuse(faceforward(N,I)));

// Ci is final color

}

L I S T I N G 1 . A Renderman checkerboard.

Losing a D

Perhaps it is time to look at using 3D technology to create
much more stylized animations instead of realistic ones.

This technique, called non-photorealistic rendering (NPR) in
academic circles, has emerged as a strong research field at
industry conferences such as Siggraph. That means there are
plenty of fresh, steaming piles of research to get me started.

The character in Figure 1 was created using textures creat-
ed from photographs and scans. I wanted to get something
much more stylized, so we had another model and set of
textures created with a cartoon kind of look in mind. You
can see the results in Figure 2. This character is much more
typical of the kinds of characters you may see in a 3D game.
However, it doesn’t quite capture the 2D look I had in mind.

For one thing, the shading implies too much depth. The
maps really need to be reduced to only a few colors. This is
no problem to do in any image processing program as you
can see in Figure 3. This is much closer to the idea of a car-
toon rendering. However, the image is clearly missing the
bold outlines that characterize cartoon images. To create
those lines, I need to turn to some technology.

GL to the Rescue

T he first lines that I need to create are the silhouette lines.
These lines define the outline of the character. On a 3D

model, the outline of a model is defined by the model’s edges.
Intuitively, I know that a silhouette edge must occur when an
edge connects a polygon facing forward and a polygon facing
backward. This can be expressed mathematically as:

where Ni are the two face normals for the adjacent polygons,
V is a vertex on the edge, and E is the eye point. When this
statement is true, the edge is part of the silhouette.

As you can imagine, this would be a rather time-consum-
ing process on a model that had any significant number of

faces, but this method has the benefit of identifying the
actual edges that define the silhouette. This could be useful
if I wanted to apply some other effects to the silhouette
lines. But for now, I want to look for a faster way that makes
use of my existing 3D hardware.

I can start by drawing the front-facing polygons with tex-
ture. I can then draw the back-facing polygons in line mode.
Since the Z-buffer is already filled for front-facing pixels, the
only pixels drawn will be those pixels along the edge. How-
ever, in order for this to work, I need to set the depth test so
it draws pixels that are at the same depth as those in the
Z-buffer. In OpenGL, this setting is glDepthFunc(GL_LEQUAL). This
gives me a rendering algorithm like this:

1. Draw front-facing textured polygons.
2. Set depth test to LEQUAL.
3. Draw back-facing lines.

Or in OpenGL:
glPolygonMode(GL_FRONT,GL_FILL); // Draw Filled Polygons

glDepthFunc(GL_LESS); // Don’t draw shared edges

glCullFace(GL_BACK); // Draw front facing polygons only

DrawModel(); // Call my draw routine

glPolygonMode(GL_BACK,GL_LINE); // Draw Lines

glDepthFunc(GL_LEQUAL); // Draw shared edges

glCullFace(GL_FRONT); // Draw back facing edges only

DrawModel(); // Call my draw routine

You can see the result in Figure 4. The first frame shows just
the resulting silhouette lines and the second frame shows
the combined image.

With this technique, I can use OpenGL to enhance the
effect. I can make the lines thicker or even anti-alias the
lines with alpha blending (or even anti-aliased hardware
lines, if available). It is even possible to make the lines pop
out from the model using glPolygonOffset(). However, this

N V E N V E1 2 0• −()() • −()() ≤

G R A P H I C C O N T E N T

G A M E D E V E L O P E R F E B R U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

20
F I G U R E 1 . Our original character, outfitted with textures

created from photographs and scans.

F I G U R E 2 . A more styl-

ized, cartoonish version of

the character.

F I G U R E 3 . Reducing the

depth of colors gives a

more 2D look.

can lead to a mess, so
you need to be careful.

Another approach
that may make cleaner
lines requires the use of
an extra pass and the
stencil buffer. In this
technique, the algo-
rithm is:

1. Draw front-facing
textured polygons.

2. Set draw mode to
stencil only.

3. Draw front-facing
edges in line mode.

4. Draw back-facing
lines where stencil
is set.

This will ensure that
only edges that are
shared front and back
are drawn. However,
since the stencil buffer
is not commonly avail-
able across consumer
hardware, it may be
wise simply to test for it and use it
when possible.

In addition to the silhouette lines, I
probably want to add interior lines that
define changes in the material of the
character. This cannot really be done
easily with just rendering tricks. This
requires a pass through the object to
detect edges that share polygons with
different materials. These edges are
marked as material boundaries and are
drawn after the render. Luckily, the
material edges are not viewer-depen-
dent so they can be calculated only
once as a preprocess.

Some Shadier Business

Now that I have a nice method for
creating cartoon-style characters

with silhouette lines, I need to think
about shading. Applying typical
Gouraud shading to these characters
would ruin the effect I am trying to
achieve. I need to change the lighting
model to make this work.

In the Gouraud shading system, the
angles between the viewer, light, and
surface normal are used to determine
the shade of the vertex. For my simple
cartoon rendering, I only want two
shades for each material, light and
dark. In order to do this, I need to cal-
culate the vertex colors myself. The

formula I applied is:

where NV is the vertex normal, V is the
vertex position, E is the eye point, and ε
is the shading threshold. This is very
similar to the silhouette-detection for-
mula. However, in this case, when the
result of the formula is less than a cer-
tain threshold, ε, the vertex is shaded
with the “dark” color. Otherwise, the
standard color is used. However, since
the color interpolates across the surface,
this still doesn’t look right, as you can
see in Figure 5. I want the color to
change at a single point across the sur-
face of the polygon scanline. This will
require the use of a texture-mapping
technique, which I’ll get to next month.

The Squashy and Stretchy Show

Ithink these techniques provide a new
way of thinking about real-time 3D

animation. It’s a classic example of
embracing your limitations. There’s lots

of room for experimentation and explo-
ration. Creating the ideal texture to
work with non-photorealistic rendering
will require some creativity on the part
of artists.

Another intriguing idea would be to
apply some soft-body deformation
techniques to the models (see “Colli-
sion Response: Bouncy, Trouncy,
Fun,” Graphic Content, March 1999).
These new squishy objects can be ren-
dered using NPR techniques to get a
real Road Runner feel. For this month,
play around with the simple cell shad-
er and begin exploring the world of
the less-than-realistic. You can down-
load the source code and the applica-
tion from the Game Developer web site
at http://www.gdmag.com. ■

N V EV • −()() < ε

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 2 0 0 0 G A M E D E V E L O P E R

21

Siggraph 1999 had an entire course on

non-photorealistic rendering. If you are

interested in the topic you should defi-

nitely get the notes or the courses CD:

“Non-Photorealistic Rendering,” Course

17 (Siggraph 1999, ACM Siggraph).

• Markosian, Lee, and others. “Real-

Time Non-Photorealistic Rendering,”

Proceedings of Siggraph 97. New

York: ACM Siggraph, pp. 415–420.

• Uphill, Steve. The RenderMan Com-

panion. New York: Addison Wesley,

1990.

FF OO RR FF UU RR TT HH EE RR II NN FF OO

F I G U R E 4 . To complete the cartoon look of the charac-

ter, black outlines were added with OpenGL.

F I G U R E 5 . Finally, shading is added

with our lighting model.

Thanks to Lisa Washburn at Vector

Graphics (http://www.vectorg.com) and

Tom Knight at Imagination Works (http://

www.imagination-works.com) for the

models and textures used in this article.

Acknowledgements

b y M e l G u y m o n A R T I S T ’ S V I E W

Where There’s Smoke...

F irst off, we need to identify exactly
what kind of fire effect we want to

generate. For our example, we’ll be gen-
erating a bonfire in a real-time 3D envi-
ronment that has a photorealistic art
direction. Therefore, our fire effect will
need to look as true-to-life as possible.
Second, we’ll sit down with the pro-
grammers and outline what tools and
parameters we’ll have to work with. In
this example, we’ll have access to and
take advantage of the following: 32-bit
texture maps up to 256×256 pixels, ani-
matable sprites, RGB vertex color, vertex
alpha, additive blending, and dynamic
projection lighting. Last, we need to
work with the programmers to generate
an in-game particle system capable of
pulling off the effect. In this case, we’ve
prototyped the effect in an off-the-shelf
product, 3D Studio Max, and the pro-
gramming team has duplicated the
required functionality demonstrated
within Max’s particle system.

Now we’re ready to begin. There will
be three main entities for our bonfire:
flames, smoke, and sparks. Each will be
created with groups of quad polygons,
on which an animating sprite
sequence has been mapped (in the case
of the fire, this sequence will need to
loop). The flames and smoke will be
generated by clustering and overlap-
ping these polygons in a random and
chaotic manner. Why do we choose
this method? Why not simply make a
large polygon for the smoke and
another for the fire? Because suspen-
sion of belief must be maintained as
far as possible. Unless we have an inor-
dinately long sequence of sprites, the

viewer is easily going to be able to dis-
cern the looping pattern. Also, without
some kind of random perturbation to
the effect, every fire will look identical
— boring. In Figure 1, you can see the
effect we’ve outlined. On the left are
the untextured polygons, with yellow
representing the flames and blue repre-
senting the smoke. Notice that in the
in-game shot on the right, it’s difficult
to identify the boundaries of a single
individual polygon. This is possible
because of how we’ve created our tex-

ture maps, which is the next step in
the process.

Once the technique for creating the
effect has been determined and the pro-
grammers have created the toolset, it is
up to us as artists to build and iterate on
the effect to get it looking just right.
Before we start creating the textures,
though, it’s good to have some refer-
ence material from which to work. For-
tunately, there are many graphical refer-
ences for flames and explosions, as free
downloads or from within pregenerated

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 2 0 0 0 G A M E D E V E L O P E R

23

Pyro-Techniques:

Playing With Fire

R emember that time your mom told you not to play with matches, but

then you and your friends got together and accidentally burned down

the neighbor’s doghouse? In this month’s column, we’re going to build

an even bigger fire, and we promise your mom won’t ever find out.

Mel has worked in the games industry for several years, and recently finished work as
the art lead on DRAKAN. Currently, he manages a modeling and animation studio
which provides custom content for RT3D games. Contact him at mel@infinexus.com.

F I G U R E 1 . Behind the scenes of the flame effect: the yellow polygons represent

the flame, the blue ones represent the smoke.

sets (Pyromania, ReelFire, and others).
For our example, we’ll be using texture
reference from an off-the-shelf product,
Pyromania 2, while the inspiration for
the effect will come from a picture that
was downloaded for free (Figure 2).

For the smoke entity of our effect,
we’ll use a nonlooping sequence of
animated sprites 30 frames in length.
(The length is arbitrary and should be
tweaked to optimize the visual effect
within the texture-memory require-
ments for the engine.) The smoke’s
color will be matched as closely as pos-
sible to that of the reference graphic, a
dark bluish color. We will approximate
the voluminous, billowing appearance
of the smoke by the patterns in the
texture, which were generated using a
prerendered noise material in 3D Stu-
dio Max. Smoke has a fractal appear-
ance, which means
its edges appear soft
and undefined — as
you zoom into look
at the edge, you
keep finding more
and more detail. To
approximate this,
all of the alpha
maps used for the
smoke will have
soft, fuzzy edges.
(In our particular
case, the smoke’s
alpha components
have been derived
from a Pyromania 2
smoke effect.)

In Figure 3, you
can see how the
combination of
using a procedural

texture with a canned alpha map hides
the individual texture boundaries,
making the smoke particle system
effective. On the right is the smoke
effect as it will appear in the game. On
the left you can see the results of using
a texture with its originally-associated
alpha map. Though the rendered effect
for each individual texture is perfect,
the textures have easily discernable
boundaries, and when composited
together resemble nothing if not a
cluster of cotton balls. The smoke
polygons are generated from random
locations within the volume of the
smoke emitter (this can be an arbitrary
point in space, or can be defined by an
artist as a geometric object). The speed
at which the smoke animation is
played, and each smoke polygon’s ver-
tical and horizontal speed, scale, and

rotation, are all slightly randomized to
achieve a less uniform look. When the
textures on each polygon reach the
end of their animated sequence, the
polygon vanishes.

For the flames entity of our effect,
we’ll use a looping sequence of sprites
12 frames in length (as with the smoke,
the sequence length is arbitrary). We’ll
match the flames’ color with our refer-
ence graphic and the shape of the
flames will be derived from a sequence
of fire animations from Pyromania 2.
It’s important to note here that in the
case of the smoke textures, we had sev-
eral options available for generating
the smoke textures and alpha maps.
Smoke has a generally random, fractal
pattern, and there are many programs
that can generate realistic-looking
cloud or smoke-like effects. In the

worst case, I could
have painted the
smoke textures by
hand in Photo-
shop or some
other paint pro-
gram with little or
no degradation of
the effect. For the
fire, however,
we’re better off
using an off-the-
shelf, canned
effect, at least as a
starting point. The
random, fractal
nature of fire is
extremely hard to
duplicate by hand,
and although cur-
rent procedural
methods for gener-

A R T I S T ’ S V I E W

G A M E D E V E L O P E R F E B R U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

24

F I G U R E 2 . The reference graphic chosen for our bonfire.

F I G U R E 4 . A variety of fire effects generated by different software packages.

F I G U R E 3 . A combination of a procedural texture and an

alpha map make an effective smoke particle system (left).

The in-game effect is shown at right.

ating flames do a fair job, the effect falls far short of the real
thing, as you can see in Figure 4. The first two groups of
flames were generated by the standard flames particle sys-
tems in Paint Effects (Maya 2.5) and Combustion (3D Studio
Max 3). As in the case of the smoke effect, the flame poly-
gons will be generated with a random scaling factor, so that
their horizontal and vertical size will vary slightly, although
the lower edge of each polygon will be aligned. The flame
polygons will also be different from the smoke polygons in
that they will remain rooted to the ground throughout the
entire effect. The rising nature of the flames, in this case, has
been represented within the texture and alpha maps.

Adding the sparks entity to the effect will provide an added
degree of randomness and break up the scale of the polygons
involved (the polygons for the flames and smoke are about
the same size to within a single order of magnitude). There is
no need to generate additional textures for the sparks; tex-
tures from the flames and the alpha maps from the smoke
can be combined for an excellent effect, and the colors will
automatically match. The spark polygons are generated in
much the same way as those for the smoke, though the scale
is much smaller and the velocity much higher. With the tex-
tures created and in place, we’ve got a pretty decent bonfire
going. Now it’s time to use the remaining non-texture-based
tools in our toolbox: vertex colors, vertex alpha, additive
blending, and dynamic lighting.

Vertex Colors and Vertex Alpha

T he vertices on each polygon can be colored to add
graphic variation without additional texture expense.

Most mainstream production tools support vertex-color
editing. In our case, however, the vertex colors will work
just as well. In any case, the vertex colors for our fire will
be adjusted procedurally. I’ve found that this technique
works best with the smoke polygons. Smoke is actually
composed of fine particles that receive light and cast shad-
ows. Consequently, if the smoke is thick enough, its color
will actually be affected by light cast by the fire — the
smoke will be lit from beneath as it rises. To achieve this,
the vertices at the bottom of each smoke polygon will be

varied as a function of their height
from the fire; the closer to the fire,
the more drastic the effect. In our
case, the lowest vertices of each
smoke polygon will be colored red-
dish-orange in accordance with the
color of light being cast by the fire. In
Figure 5 you see the effect. Note that
to make full use of this effect, the
smoke polygons have been subdivid-
ed. This is a level-of-detail option that
can be turned off as the player gets
farther away from the effect. Depend-
ing on the engine and implementa-
tion, you may need to lighten the
smoke textures to see the effect of ver-
tex colors. Although we’ve applied
this effect only to the smoke poly-
gons, the same procedure can be used

to enhance or alter the colors in the flame and sparks poly-
gons as well.

With the random generation of particles, there is always
the problem that a smoke polygon will be created which
goes off on its own, too far from its siblings. If this hap-
pens, the viewer may easily discern the polygonal nature of
the effect and the suspension of disbelief will be lost. To
minimize the impact of this, the errant polygon can be
forced to fade out early. This can be done on a per-object
level, but a more seamless effect can be achieved by
sequentially fading out the individual vertices of the poly-
gon as it crosses a defined threshold.

Additive Blending

F ires cast light, which is why we can see them even from
a great distance. And though we can’t effectively repli-

cate this within the confines of a pixel-based 3D environ-
ment, we can certainly fake it. In order to make the flames
appear to cast light or glow, the flame pixels must be arbi-
trarily brighter than the pixels surrounding them. For us,

A R T I S T ’ S V I E W

G A M E D E V E L O P E R F E B R U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

26

F I G U R E 5 . Adding vertex colors to the smoke polygons

(shown at right) gives the smoke the appearance of being

lit by the fire beneath it.

Animated sprite sequences for our fire effect.

this is equivalent to saying the flame
pixels must be arbitrarily more white.
In fact, the brightest we can ever make
an object appear is to force all its pix-
els to read RGB = 255,255,255.

Additive blending can achieve this
for us. When pixels are assigned to
have additive blending, they increase
the brightness, or whiteness in this
case, of the pixels onto which they are
blended. Thus, by compositing these
pixels in several layers, each succeed-
ing layer creates a brighter, whiter
effect.

This is a perfect application for our
flame polygons. Since they are clus-
tered and overlapping, the densest
portion of the flames will have the brightest (most white)
pixels. This is exactly what we want to achieve, since it will
help us mimic the light-casting nature of real-life flames.
Figure 6 shows the result of additive blending in contrast
with the previous version of the flame effect. (This effect
can even be further improved by adding a slight halo or
lens flare to the flames.)

Dynamic Projection Lighting

T he light cast from a fire jumps and dances in concert
with the chaotic motion of the flames. In order to

approximate this effectively in the game, we need to use a
projection light. The actual implementation of this effect
can vary widely with each engine, but in essence the projec-
tion light should derive its pattern from the same sequence
of alpha maps as that of the flame polygons.

When this is done correctly, the flames will “dance” on any
surface within the range of the light. The effect of the dancing
lights, although difficult to represent in a static image, can be
stunning in game, and will greatly enhance the realism of the
effect. The final in-game product of our fire effect, incorporat-
ing all of the above techniques, is shown in Figure 7.

Fanning the Flames

Many of the effects we used in this month’s example were
not possible a few years ago. The technology simply

wasn’t there, or didn’t have enough of a user base to be
applicable on the target platform. However, the pace of tech-
nology shows no sign of slowing down and we are always
being presented with more tools and methods for content
generation. We need to ask ourselves constantly “What if?” so
we’ll be better prepared to apply new technologies and
become more creative and efficient developers. ■

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 2 0 0 0 G A M E D E V E L O P E R

27

F I G U R E 7. Our in-game scene, showing our final fire effect.

F I G U R E 6 . Additive blending techniques have been added

to the flame pixels, creating the effect seen at right.

H A R D T A R G E T S

could result in eventual career advance-
ment seemed pretty ludicrous. That was
a long time ago.

In November 1999, CMGI, an invest-
ment holding company with a range of
Internet interests, gave $11 million to
Dennis Fong, the champion QUAKE

player better known as Thresh, to start
Gamers.com, a game portal. Around
the same time, Lycos paid more than
$200 million for another online game
portal, Gamesville. In the space of just
a few weeks, the online gaming market
became the next hot Internet invest-
ment. Online gaming is now an impor-
tant part of the Internet market, and
no more so than in the impact it may
have on a company that plans to get 20
percent of its revenues from cyber-
space, Electronic Arts.

Company History

E A was founded by Trip Hawkins in
1982 and funded by legendary

Silicon Valley venture capitalist Don
Valentine to the tune of $2 million. It
took four years for EA to become the
United States’ largest publisher and
developer of PC games. In 1989, EA got
on board the Sega Genesis with JOHN

MADDEN FOOTBALL. EA’s sports titles
were critical to the success of the
Genesis and helped propel the compa-
ny into the more lucrative markets of
console games. In 1990, EA also began
developing for Nintendo, so that by
the end of 1994 three-quarters of EA’s

more than $400 million in revenues
was coming from console games.

Today EA is the world’s leading
independent game publishing compa-
ny. The company markets its products
under seven brand names: EA, EA
Sports, Maxis, Origin, Bullfrog, West-
wood Studios, and Jane’s Combat
Simulations. It distributes products in
75 countries and has development
studios and partners in North
America, Europe, and Asia. EA is the
company against which all other U.S.
publishers are measured. Now, it
appears, EA is going to lead the charge
in online gaming. It’s been a while
coming, but if EA is ready to do busi-
ness on the web, now’s as good a time
as any.

Online Gaming Heat

In November, EA signed an agree-
ment with America Online to

become the premier online game
provider for the country’s largest ISP.
This news came just after the compa-
ny had agreed to take over Kesmai, a
leading developer and provider of
multiplayer online games. Of course,
EA has never made any secret of its
online business ambitions, and it is
the only major game publisher to
have provided a business model that
the game industry and the financial
community can respect. That work-
able business model owes a lot to
ULTIMA ONLINE, which continues to

deliver subscriber revenues to EA
while many other online game initia-
tives falter. Mpath.com, which I ana-
lyzed some months back (Hard Tar-
gets, July 1999), is now more of an
online audio company than a game
company. Total Entertainment Net-
work recently became Pogo.com and
has shifted its focus to the casual-
gamer market. The online world is lit-
tered with businesses trying to take
advantage of the promise of interac-
tive entertainment.

The secret to EA’s strength may be
quite simple: the company is, without
doubt, the most recognized game pub-
lisher in the world after the big three
console makers, Sony, Nintendo, and
Sega. Although most of EA’s products
are targeted at the traditional game
enthusiast, it has a blue-chip reputa-
tion with casual game players, too.
When EA made the deal with AOL,
EA’s stock took a big leap. All the
equity that is invested in the EA brand
can easily translate into a magnet for
online crowds.

At the end of the day, the greatest
competitive advantage that EA has is
that it has shown consistent strength
across platforms and content genres.
In the highly diverse macrocosm of
online gaming, few companies have
the same depth of experience. Most
importantly, EA has excellent distribu-
tion channels. EA’s distribution
strength will be what ultimately
assures its success in the online world,
particularly if you consider the

G A M E D E V E L O P E R F E B R U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

28

Electronic Arts:

Infinite Channels

T here’s an old Gary Larson Far Side cartoon that shows two proud parents

watching over their child who’s playing some console game, and the par-

ents are imagining want ads offering lucrative careers to anyone with

videogame experience. The notion that long-term videogame enthusiasm

Omid Rahmat is the proprietor of Doodah Marketing, a digital media consulting firm. He also publishes research and market
analysis notes on his web site at http://www.smokezine.com. He can be reached via e-mail at omid@compuserve.com.

Internet as one of many channels to
the consumer.

Distribution Magic

Unlike most of its competitors, EA
distributes all of its own products.

The company has a vast distribution
network covering nearly a hundred ter-
ritories on six continents. In addition,
EA serves as a distribution partner for
many other game publishers through
its affiliated label program as well as
through co-publishing deals. In most
of these cases EA holds the upper hand.
Strength in distribution is a key charac-
teristic of any manufacturer that wants
to be a success on the web, and EA has
plenty of it.

For instance, EA offers direct distrib-
ution services in North America where-
by a retailer has EA deliver directly to
the retailer’s outlets as opposed to the
retailer’s distribution centers. This
arrangement saves the retailer signifi-
cant costs associated with handling
and shipping products and ensures
rapid delivery to satisfy consumer
demand. It also gives EA tremendous

experience in addressing consumer
demand directly. The company uses
two large distribution centers in the
United States: one in Hayward, Calif.,
and one in Louisville, Ky. These cen-
ters handle all order processing for
worldwide distribution. They receive
finished goods from the contracted
duplication and packaging vendors
and warehouse the products until they
are needed to fill a specific order. They
handle EA-branded products, co-pub-
lished products, and affiliated label
products. Advanced information sys-
tems, workflow processes, and propri-
etary delivery scheduling software pro-
vide distribution-center managers with
powerful and efficient tools for per-
forming their activities. EA contracts
with all major overnight and tradition-
al delivery services, such as UPS and
Federal Express, for the physical deliv-
ery of goods from its distribution cen-
ters to the customers’ locations, mini-
mizing investment in mobile assets
while continuing to deliver industry-
leading distribution activities.

At present, no competitors have
been able to match the entire collec-
tion of activities associated with EA’s

continued production of hit products.
The company’s combined use of Elec-
tronic Data Interchange (EDI) and
direct store delivery allows retailers to
place online orders any time of day
and receive those orders directly from
EA faster than they would from any
other publisher. While competitors
have the ability to utilize EDI and
direct store delivery, none has matched
the scope of EA’s distribution program.

In effect, EA has already figured out
how to handle the demands of a global
market and a variety of direct channels
to the consumer. Of course, online
gaming isn’t just a matter of distribut-
ing content. I just want to make the
point that the logistics of distribution
are primarily the same as the logistics
of handling any direct interface with
customers, be it Electronics Boutique or
John Q. Public.

Supporting the World

T he real cost of online gaming is in
supporting the consumer. In mak-

ing a pact with AOL, EA has basically
given itself a buffer to the widest possi-

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 2 0 0 0 G A M E D E V E L O P E R

29

b y O m i d R a h m a t

%
ChangeNet Revenues for the Six Months Ending: 09.30.99 09.30.98

Increase /
(Decrease)

Playstation

PC-CD

N64

License/OEM/

online/other

Subtotal

Affiliated

Label

Total

180,688

193,848

165,383

81,509

57,807

15,018

64,533

418,896

352,505

106,111

71,479

525,007

423,984

12,615

(13,160) (6.8%)

83,874 103%

(6,726) (10%)

2,403 19%

66,391 19%

34,632 49%

101,023 24%

0 25k 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k 550k
Thousands

of U.S. dollars

C H A R T 1 . Electronic Arts’ net revenues for the periods indicated, in thousands of dollars.

ble audience on the web today, the
AOL subscriber base. AOL is EA’s shop
window on the Internet. This removes
one level of one-on-one support that
EA doesn’t have to worry about: man-
aging relationship marketing. By that I
mean AOL is the first point of contact.
The fact that both EA and AOL are
blue-chip companies in their respective
markets makes an alliance between the
two very promising. However, EA has
gone on to do something even more
interesting, signing a licensing agree-
ment with Marimba, a provider of
Internet-based software management
tools. This agreement allows EA to use
Marimba’s Castanet technology for
integration with its growing library of
online content.

Initially, Castanet technology will
be used to create a seamless patching
system that automatically updates
software to ensure that EA’s customers
are using the most up-to-date version.
As time goes by, EA is going to lever-
age Castanet to manage the integrity
of its game software at launch. It’s a
very compelling message, and the evo-
lution of EA’s online strategy implies
that the company has taken full

advantage of its expertise in the distri-
bution and support of packaged goods
to create a set of criteria to meet the
demands of building customer rela-
tionships online.

It should also be noted that with
ULTIMA ONLINE, EA has suffered a degree
of criticism on issues related to the
quality of software and the level of sup-
port it has provided online users. Some
users went as far as to take EA to court.

Whatever EA’s past problems, no one
can accuse the company of not learning
from its past mistakes. It has experience
with paying online-gaming customers,
a world-renowned consumer brand,
and successful franchises in almost
every genre and on every platform. On-
line gaming can easily become one
more avenue of distribution, and one
more interface to EA’s consumers.

Perhaps the stock market’s enthusi-
astic reaction to EA’s deal with AOL
was exaggerated. The company isn’t
doing anything revolutionary. In
evolving from its existing distribution
and support structure to one that
incorporates a one-on-one interface to
consumers — through AOL and the
Internet — EA is setting down a blue-
print for every other game publisher,
much as it has done in building its

present global infrastructure. The top
ten game publishers in the world
today have all evolved to emulate EA
in some ways. They may not all agree,
but you can’t argue with success. In
the near future, online gaming may
also evolve to emulate the EA way.
After all, isn’t ASHERON’S CALL, or
EVERQUEST for that matter, the heir to
ULTIMA ONLINE? ■

H A R D T A R G E T S

30

The top ten game publishers in the world
today have all evolved to emulate Electronic
Arts in some ways.

Mark Steven Miller has been studying, producing and commenting

on interactive media since 1989. Having participated in the devel-

opment of more than 100 cutting-edge titles, Mark is currently

the president of Group Process Consulting which provides

technical and strategic consulting services to new

media companies. More about his current project,

the Interactive Media Information eXchange

(iMIX), a developers’ association for producers

of interactive television content, can be

found at http://www.imix-tv.org.

Mark can be reached at

mark@GroupProcess.com.

hile much ado has been made over

the past few years about physically modeling

the interactions between 3D objects in

games, not as much attention has

been paid to another form of

physical modeling — that of

sounds. And according to

some people in the

game develop-

ment indus-

try,

physical modeling synthesis is the “next big thing”

in interactive audio. In the synthesis world,

wavetable produced a huge sound-quality increase

over Frequency Modulation (FM) audio. More

recently, downloadable sound (DLS) technology

broke open the sonic boundaries of General MIDI

(GM) wavetable synthesizers. Yet even wavetable-

plus-DLS solutions do a fairly questionable job

when it comes to rendering certain critical instru-

ments and sound effects in both a realistic and

responsive fashion. Red Book audio may be quite

good at capturing individual performances of such

sounds, but it is still too large for many applications

and too difficult to manipulate for interactivity in

all but the simplest ways.

33

Physic ally Modeled
34 Audio 34

b y M a r k M i l l e r

Fortunately, some recent advance-
ments in physical modeling synthesis
technology and new products that
incorporate this technology may pro-
vide the answer.

Physically modeled audio offers a
solution that other audio technologies
cannot match. Typical FM synthesis is
too abstract and limited to portray
complex, real-world sounds accurate-
ly. Wavetable and its big brother, Red
Book audio, are quite good at such
portrayals but both suffer from being
overly literal — analogous to a photo-
graph for visual representation. Photo-
graphs are excellent for representing a
particular image as seen from a partic-
ular angle, under a particular set of
circumstances. However, unlike a
scene created in, say, 3D Studio Max,
photos do not contain the abstract,
elemental forms or structures that
make up the image. As a result, the
data in a photograph is fairly useless if
you want to know what the subject
would look like seen from the other
side or under different lighting condi-
tions.

Physical modeling, on the other
hand, is much more like real-time 3D
graphics in that sounds are generated
based upon complex mathematical
models of the way sound is created in
the real (or surreal) world. The “mod-
eling” aspect implies that the sounds
are generated based upon abstract
constructs of the objects and/or
processes that create the sounds. The
“physical” part implies that the object
or process exists as, or can be extrapo-
lated from, real-world (or surreal-
world) objects or processes and will
obey the applicable laws of physics
when so stimulated. A good example
of this would be a physically modeled
four-cylinder car engine sound effect
that “revs” correctly when you “step
on the gas.” The combined result is a
flexible method for generating accu-
rate and complex real-world sounds
that respond in sensible ways to
appropriate stimuli.

How could physically modeled audio
benefit a game? Imagine hyper-realistic
race car engines that rev smoothly and
automatically, and accurately modify
themselves as the car takes damage. Or
stadium crowds that respond exactly
how you think they should to simple
“excitement” and “tension” sliders. Or
a dead-on perfect electric guitar that

reproduces the feedback from Jimi
Hendrix’s “Star Spangled Banner”
interactively, just as a knight brandish-
es a magical blade.

This article looks at two companies,
Yamaha and Staccato Systems, which
offer physical modeling software syn-
thesis products to the game develop-
ment community, and at some of the
game companies using these and other
advanced synthesis technologies.

Staccato Systems’ SynthCore

S taccato is a small start-up compa-
ny with roots in the Sondius pro-

ject, which itself was born out of
Stanford University’s Center for
Computer Research in Music and
Acoustics. The Sondius program was
initiated in 1993 to develop physical
modeling technology, algorithms, and
development tools. In 1996, the
Sondius team left Stanford and incor-
porated as Staccato Systems with a
license to 20 fundamental patents, the
Sondius Logo, and source code for
some of the tools that they had devel-
oped. In 1997, Yamaha entered the
picture and created the Sondius-XG
partnership with Stanford. In turn,
Staccato upgraded its license to
include the new Yamaha intellectual
property (which includes more than
400 patents and the XG-Lite sound
set). Around the same time, Staccato
also received a first round of funding
from Yamaha of Japan. Lately, the
company has accumulated engineering
and marketing talent at an astonishing
rate. Former staffers from E-mu, S3,
Yamaha, Apple, and other major music
technology companies have recently
joined Staccato.

Staccato’s initial product, the
SynthCore SDK, draws on the last 25
years of research in the broad field of
algorithmic synthesis. It features
physical modeling, modal synthesis
(primarily for percussion sounds),
waveguide synthesis (primarily for
plucked strings), physical process and
event modeling, virtual analog syn-
thesis, and traditional wavetable syn-
thesis capabilities. Do not, however,
be fooled by these academic roots.
Two of Staccato’s primary goals in
developing the SDK have been to opti-
mize their code for speed and efficien-
cy, and to provide appropriate and

streamlined interfaces (APIs) to and
from the game application. The
SynthCore SDK is priced at $195 and
subsequent use of the technology is
licensed on a standard per-title/per-
platform basis. Custom sound/algo-
rithm development pricing is nego-
tiable and is based on the time and
complexity of the sounds needed.

SynthCore can play back industry-
standard downloadable sounds (DLS)
and also provides the technology to
play back physically modeled sound,
which Staccato refers to as download-
able algorithms, or DLAs. In the
future, downloadable effects (DLEs)
will also be supported. DLEs are pro-
grammable audio Digital Signal Pro-
cessing (DSP) effects such as custom
reverbs or filters. For DLS playback, an
efficient wavetable synthesizer engine
is provided. The SynthCore API can
load DLS banks and then control
them with MIDI note and controller
data. The DLAs, however, are where
the real action is. DLAs are script files
which describe the configuration of
Staccato’s flexible Algorithmic Synthe-
sis Engine. In other words, a DLA is a
analogous to a patch description for
Staccato’s physical modeling playback
engine. DLAs can also encapsulate
DLS files in order to provide an
enhanced control structure for more
varied effects.

DLAs are designed in Staccato’s GUI-
based tool, SynthBuilder. Due to the
complexity involved with designing a
physical model, SynthBuilder is not
currently licensed to customers; the
Staccato team uses SynthBuilder to
design the core models both as an
ongoing library development effort
and as a service to their customers. In
addition, Staccato provides a preset-
editor called Mission Control. Mission
Control loads DLAs and provides a
visual control panel for adjusting any
editable parameters. This allows a
sound designer to tweak the parame-
ters and to audition the model either
with MIDI data or directly from the
interface.

Most often, these editable parame-
ters are high-level controllers that
work in combination to scale numer-
ous low-level controllers. This allows
the designer a reasonably wide degree
of freedom with which to exercise the
useful modifications that can be made
to any particular model without

G A M E D E V E L O P E R F E B R U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

34

P H Y S I C A L M O D E L I N G

breaking it (Figure 1). The edited
results can then be resaved as new pre-
sets. Note that due to the extreme
mathematical complexity — and
hence power — of physical models,
most of the unconstrained edits one
might make to any given model
would render the output entirely
unusable. So, while not being a full-
blown editor, Mission Control is more
like an editor/librarian program that a
sound designer would use with an
outboard synthesizer.

Once designed, the DLA and its pre-
sets can be handed off to the game
programmer to be loaded at run time
and controlled by the game code.
According to Staccato’s senior soft-
ware engineer, Danny Petkevich, “The
beauty of the SynthCore API is that it
is very thin; you can allocate, assign,
and then control via the get controller
and set controller methods. All the
algorithm’s control is encapsulated in
the algorithm itself. Sound designers
only need to use controllers that make
sense (RPM, load factor, engine reso-
nance, and so on) as opposed to terse
API calls.” On the PC, DLS and DLA

outputs are combined and sent either
to the fixed or downloaded DSP
effects and/or to a DirectSound sec-
ondary buffer.

While SynthCore is currently able to
handle both music and sound effects
equally well, Staccato has chosen to
focus on hard-to-solve sound design

problems first. First among these are
game-critical sound effects that are
complex, continuously variable, and
require constant control by the game
engine, such as race car engines. This
type of sound effect has traditionally
been very difficult to create using either
wavetable-plus-DLS or, gulp, FM.
Because such sounds need to be incredi-
bly responsive to the player, Red Book
and digital audio streaming have also
been out of the question. The beta ver-
sion of the SynthCore SDK ships with a
variety of such models including race
car engine, sports car engine, single-pis-
ton engine, prop plane, war plane, jet
plane, helicopter, rumble, brook, rain,
sea, wind, door, and analog synthesizer.
It’s also worth noting that each of these
models can generate a wide variety of
presets with Mission Control.

Electronic Arts was the first company
to license SynthCore’s car engine mod-
els for use in its NASCAR REVOLUTION

titles. Rob Hubbard, EA’s audio techni-
cal director, said the decision to license
SynthCore was based on “pushing the
leading edge in terms of delivering a
better and more entertaining experi-

35

F I G U R E 1 . Mission Control race car

DLA edit window, showing the

exposed sliders of the race car physi-

cal model.

ence to the end user. The Staccato tech-
nology allows us to push the audio
quality up several notches, especially
for things like complex engine sound
effects. We believe that modeling tech-
nologies make it easier for game pro-
grammers to hook up the audio and
they also allow sound designers more
control in the creation and implemen-
tation.” As an example of CPU load for
the models, the race car engine model
that EA used required roughly three
percent of a 266MHz Pentium II.

The SDK does not ship with many
finished musical instrument models,
which is unfortunate because the ones
that I have heard are quite remarkable.
The one exception to this is the virtual
analog synthesizer model that ships
with the SDK. According to Staccato,
this is intended primarily for sound-
effects playback rather than for com-
posing music. The reason cited for not
pursuing this direction for now is that
SynthCore is currently a software-only
SDK. As such, it has a certain degree of
latency, typically fixed at 70 millisec-
onds. Controlling SynthCore with real-
time MIDI data exacerbates the latency
problem. As a result, it is not practical
to play or compose music in real time
with Mission Control as one would
play or compose with a hardware-based
synthesizer because the lag time
between “hitting a key” and hearing a
note is too long for comfort.

Staccato developed a technology
called event modeling to enhance
wavetable-based sound effects. In this
case, an event is a complex sequence
of sounds that occurs over time, such
as the roar of an audience or a car
crashing into a wall. Rather than try-
ing to physically model each of the
implied sound generators (such as dif-
ferent hand claps, whistles, and cheers
for an audience roar) which would
severely tax a typical CPU, the higher-
level event is reconstructed out of
small DLS components. The event
model maintains audio control via a
rule set (or algorithm) which specifies
the volume, pitch, pan, and time
placement of the selected component
sounds during playback.

The event modeling algorithm can
also generate automated responses to
relevant stimuli. For example, an
event model of a crowd at a football
game can respond in a complex,
appropriate, and real-time manner to

simple input from the game program,
depending on user-defined parameters
such as a “quiet/riot” axis or “tension
level” axis. While this technique is
not new (sound designers have been
reconstructing complex sonic events
using MIDI files and component sam-
ples for some time), the added value
that event modeling brings to the task
is the ability to adjust the playback of
component sounds simply and
dynamically in real time, according to
sensible behavioral rules.

In addition to its ongoing develop-
ment of new models for library and cus-
tom applications for the PC, Staccato is
currently porting SynthCore to the
Playstation 2, and the company plans
to bring its technology to the Dolphin,
Linux, and Macintosh platforms and
has indicated that a Dreamcast version
might be developed as well.

Yamaha’s Virtual Acoustic
Technology

Y amaha distributes both hardware
and software products that utilize

physical modeling (or in Yamaha par-
lance, Virtual Acoustic (VA) technolo-
gy). In hardware, Yamaha offers the
VL-70m which is a one-half rack-space
monophonic physical modeling syn-
thesizer module intended for the pro-
fessional market. The VL-70m is also
compatible with the company’s soft-
ware wavetable synthesizers, the
S-YXG50 Plus VL (featuring a single
note of VA) and the S-YXG Poly-VL
(featuring eight notes of VA).

The S-YXG50VL feature set goes well
beyond the current DLS Level 2 (DLS
2) standard. In addition to wavetable
DLS playback and physical modeling,

the S-YXG50 series adds the extended
XG architecture for DSP effects, voice
presets, and real-time expression con-
troller mapping. According to Mike
D’Amore, Yamaha’s business develop-
ment manager for multimedia prod-
ucts, “physical modeling expands
upon the expressive capabilities of
standard wavetable playback by allow-
ing for the physical input provided by
the musician during a performance to
be brought into the electronic world
and expressed realistically by the mod-
eled instrument.”

The low cost of the S-YXG50 allowed
Yamaha to obtain a fairly good OEM
share for new PCs entering the market.
D’Amore says that the S-YXG50 could
ship with 15 percent of all new PCs by
the fourth quarter of 2000. While these
numbers indicate good progress for
OEM distribution, they probably will
not represent the kind of platform
ubiquity required by most game com-
panies to develop for a nonstandard
product. To accommodate this,
Yamaha can provide developers with
either a fixed-fee or per-title license to
distribute the S-YXG synthesizer with
their games. SquareSoft of Japan, for
example, is licensing Yamaha’s
S-YXG50 Plus VL engine and will
include it in the upcoming PC version
of FINAL FANTASY VIII.

While Yamaha expects its hardware
products to be used in traditional
recording and MIDI studios, the soft-
ware-based products are intended
strictly for run-time rendering of MIDI
files on the target machine. One reason
for this distinction has to do with the
most commonly cited pitfall of soft-
ware synthesis: latency. Mike D’Amore
explains that the current degree of
latency (35 to 80ms) remains because
of pricing concerns. To get the price of
the S-YXG synthesizers low enough for
OEMs, certain optimizations simply
cannot be made. One can see this
cost/performance distinction clearly
when looking at more professionally-
oriented software synthesizers such as
Seer Systems’ Reality and Steinberg’s
Rebirth, which run around $500 each.
In addition to being much more flexi-
ble and feature rich than either
Staccato’s or Yamaha’s offerings, they
feature extremely low latencies which
make them, essentially, real-time
devices. Fortunately, the S-YXG soft-
ware synthesizers and the VL-70m are

G A M E D E V E L O P E R F E B R U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

36

P H Y S I C A L M O D E L I N G

The PC version of SquareSoft’s FINAL

FANTASY VIII will include Yamaha’s

S-YXG50 Plus VL engine.

compatible, for the most part. This
allows for the VL-70m to be used as a
real-time development platform for the
S-YXG playback engine.

Currently, Yamaha focuses exclusive-
ly on physically modeling musical
instruments. Its VL products use two
primary physical models, one of a string
and one of a resonating tube. The string
model is used for violins, violas, and
guitars, while the tube model is used for
horns, brass, and woodwinds. Physical

modeling, however, is not appropriate
for all musical instruments, says
D’Amore. For example, a the physical
model of a piano would be extremely
expensive mathematically because one
would not only have to model each
individual string, but also the complex
mathematical interactions caused by the
sound waves emanating from one string
acting upon and modifying the sound
waves being produced by other strings
vibrating in close proximity.

All of the models are developed by
Yamaha internally and locked into the
product. “You cannot change the core
model,” notes D’Amore. “The reason
we do that is because it is very easy to
break a model. If you’ve done any
work with physically modeled prod-
ucts that let you change the core
model, you know that 90 percent of
what results is unusable for anything.
It just won’t make any sound. The
example I use is that on our develop-

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 2 0 0 0 G A M E D E V E L O P E R

37

P icture the omnipresent airship video screens that

hovered above the dying city in the movie Blade

Runner. Then add a visualization of a high-speed

trek through Neuromancer’s Cyberspace and, final-

ly, mix in a pumping, interactive techno soundtrack. The result

describes my first impression of Harmonix Music Systems’ new

music/action product, FREQ. I caught up with Greg LoPiccolo,

Harmonix’s vice president of product development, to talk about

FREQ and its use OF physically modeled audio.

MARK MILLER: It seems like this game will be very demanding
on the audio rendering engine. What is your planned audio
delivery strategy?

Greg LoPiccolo: We are using a high-performance software syn-

thesizer for two reasons. Reason one is that it basically works on

any hardware. We don’t have to try to confirm that some specific

brand of sound card is present for our game to work. Second, we

are trying to do a CD-quality representation of techno or elec-

tronic music interactively. Given that, the kinds of timbre manip-

ulations and effects that we need to accomplish this aren’t really

available using hardware wavetable synthesis right now. The

best-sounding solutions that we have available to us now are

software synthesizers.

What specific features are you looking for in a software syn-
thesizer?

First, we need very low latency. Our game is a real-time game

wherein if you hit a controller button, your brain needs to be con-

vinced that the note sounded when you hit that controller button.

So we need a latency of under 20 milliseconds, which is non-triv-

ial to achieve.

Second, we need flexible handling of sample data, like robust

high-quality support for stereo samples, looping, and velocity

switching. We also need all of the standard professional sampler

features like decent, flexible effects manipulation without huge

cost. Finally, the most important feature — and the one that has

been most difficult to realize — is flexible, high-quality, real-time

timbre manipulation capability, like real filters. For techno, it most-

ly boils down to filters and other modulation sources. With these,

you get real-time control over the music that you simply can’t

reproduce by chopping up samples and blasting them out the DAC.

It just doesn’t sound the same.

So it is important to have real synthesis for this product, not
just PCM sample playback.

Absolutely!

Clearly, there are many methods of synthesis available. What
are the most important methods for your application?

For us, particularly because we are directing our early efforts in

the direction of techno music, it’s pretty much about analog, sub-

tractive synthesis. If we have a good-sounding four-pole reso-

nant filter that we can apply to individual voices, that gets us 80

percent of what we need. We are also working with some physi-

cal modeling. For example, the synth that we are using has a

good physically modeled guitar-simulator patch. We find it

extremely exciting to have real-time feedback and distortion and

so forth. The electric guitar is a great sound to be able to have in

the game in that it’s exciting to play with in real time. But analog

synthesis emulation, such as that which can be done with physi-

cal modeling is the most important capability for us right now.

Emulation is what we are trying to do.

How will the game application interact with the synthesizer to
leverage this during game play?

We have real-time, dynamic manipulation of filter settings, like

resonance and cutoff, as per standard techno-music parlance. We

do a fair amount with effects, especially delay (which is a big

deal in techno music), and we use it to great effect. We also

employ other modulation effects like low-frequency oscillators

for vibrato or filter cutoff. Just having access to those functions

as separate real-time modulation sources and destinations gives

the music a kind of organic, natural feel that you simply could not

get out of a Red Book track or out of chopped up samples.

Which synths have you look at and considered?

We spent some time evaluating the Yamaha XG products, both

hardware and software. We’ve been in touch with Staccato. And

then there is Seer Systems’ Reality, which is the one that we

are currently using for the prototype. It is not really intended as

a game engine, but as a low-latency, non-CPU-hogging, high-

fidelity, flexible analog synth/sampling package, it’s hard to

beat.

Harmonix Music Systems’ FREQ

ment systems, I was able to make an
800-foot-long trombone with a nor-
mal mouthpiece. The problem there is
that because of the physics involved,
there is no way that that it could func-
tion. It looked cool, mathematically it
was cool, but so what?... Once you get
above the core, though, you can take
the model and extend it. You can
change the envelopes. You can change
the materials. You can change how
big the mouthpiece is. You can bow
the mouthpiece. You can bow the
tube. You just can’t change the core.
We don’t allow you to break it that
much.”

To facilitate this kind of editing,
Yamaha provides for free a reasonable,
if somewhat obtusely designed, editor
for its VL-70 hardware. The editor
allows you to match the “Driver” or
input components (bow, pluck, lip
reed, jet reed, single reed, double reed)
with variations of the pipe or string
portion (conical pipe, straight pipe,
flared pipe, or string) to generate a
basic, playable instrument to work
with (Figure 2).

Once a basic model is built, you can
add a number of other modules to the
instrument and tweak their respective
parameters. Figure 3 shows the tenor
reed string being fed through a single-
coil electric guitar pickup, a low-pass
filter, a “full pedal” piano resonator, a
wah-wah, a stereo delay, and a hall
reverb. Also displayed are some of the
available tweakable parameters.

It is these exposed parameters that
make physical modeling worth imple-
menting for music. If one simply takes
a physically modeled instrument and
plays it as one would normally play a
wavetable sound, the result is remark-
ably unimpressive. It’s only when you
begin to feed the instrument large vol-
umes of performance-oriented con-
troller data that the value of the tech-
nology becomes apparent. Why?
Consider wavetable sounds for a
moment. Most wavetable sounds have
all of the nuance and gestural compo-
nents burned into the samples them-
selves. As a result, simply triggering the
sample will produce a reasonable-
sounding performance of the instru-
ment’s sound. The problem is that it is
difficult to manipulate the sample data
in real time in appropriate and natural
ways. So every time you trigger the
sample, you get the same performance,
which is extremely unnatural. In con-
trast, the physical model is more flexi-
ble and more demanding. Simply trig-
gering the model without any
additional gestural data will produce a
very flat performance. Trigger the
model and then feed it appropriate
gestural data and suddenly the perfor-
mance comes to life in a much more
realistic and responsive fashion than
can be achieved with wavetable
instruments.

Of course, this kind of power and
flexibility comes at a cost. In the physi-
cal modeling case, the cost is in CPU
cycles. For an average physical model
running on a 266MHz Pentium II,
developers should expect roughly a six-
percent CPU usage. By contrast, the
standard software-only wavetable syn-
thesizer that comes with Microsoft’s
DirectMusic requires approximately
0.17 percent per “dry” voice at 22KHz.
Adding reverb will cost an additional
2.8 percent globally. The Beatnik
(wavetable) audio engine is about twice
as CPU-intensive as the Microsoft syn-
thesizer, and the DLS 1–compatible

software synthesizer that ships with
RAD Game Tools’ Miles Sound System
uses approximately one percent of a
266MHz Pentium II per voice on aver-
age. (According to John Miles, creator
of the Miles Sound System, this figure
is averaged to include the possible use
of MP3 compression for long DLS voic-
es “and some basic interpolative filter-
ing to clean up resampled instru-
ments.”) Still, one percent per voice is
still a far cry from what is required to
run the physical models on the
S-YXG50VL. If you intend to run mul-
tiple voices of physical modeling with
the S-YXG50 Poly-VL, a 400MHz
machine is strongly recommended as a
minimum.

D’Amore says that Yamaha’s next
development step involves trying to
get the models to interact properly

G A M E D E V E L O P E R F E B R U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

38

P H Y S I C A L M O D E L I N G

Beatnik Audio Engine
http://www.beatnik.com

Harmonix Music Systems’ FREQ
http://harmonixmusic.com

Microsoft’s DirectMusic
http://msdn.microsoft.com/isapi/

msdnlib.idc?theURL=/library/psdk/

directx/dmover_6lk3.htm

http://www.microsoft.com/hwdev/

audio

http://eu.microsoft.com/directx/

overview/dmusic

RAD Game Tools’ Miles Sound System
http://www.radgametools.com/

mssnew.htm

Seer Systems’ Reality
http://www.seersystems.com/

products/reality.html

Staccato Systems’ SynthCore
http://www.staccatosys.com

Stanford University Center for Computer
Research in Music and Acoustics (CCRMA)
http://ccrma-www.stanford.edu

Steinberg’s Rebirth
http://www.steinberg.net/products/

rebirthpc.html

Yamaha XG
http://www.yamaha.co.uk/xg/

index.htm

Yamaha VL Editor
http://www.yamaha.co.uk

FF OO RR FF UU RR TT HH EE RR II NN FF OO

F I G U R E 3 . The Resonator Module

Palette, the Instrument Editor with

six modules loaded and tweakable

parameters displayed.

F I G U R E 2 . A single-reed driver com-

bined with the string model.

with each other. “As true physical
modeling implies, you are modeling
the physical reality. Physical reality in
most circumstances demands physical
interaction between models,” he
explained. For example, two different
models of a trumpet, played together,
interact in quite complex ways with
one another in the real world. Right
now, Yamaha’s synthesizers don’t
replicate this effect. As to the suitabili-
ty of the Interactive Audio Special
Interest Group’s (IA-SIG) Interactive 3D
Audio Rendering Guidelines, Level 2
(the I3D2 standard is based upon
Creative Labs’ EAX technology and
adds obstruction and occlusion model-
ing), D’Amore implied that this would
be insufficient to the task. He said that
something more like Aureal’s A3D
wavetracing technology would be
required to achieve the desired effect.

They also have plans for software
“S-YXG plug-in” versions of the AN1X
(a hardware synthesizer that uses phys-
ical modeling to simulate subtractive
analog synthesis), a DirectX 7–style six-
operator FM synthesizer, and a FS1R-
style “singing” synthesizer, which

D’Amore says is sadly “Japanese-only
for now.”

Recently Yamaha announced that it
would be a middleware developer for
both Dreamcast and Playstation 2.
According to D’Amore, Yamaha is
attempting to bring full XG compati-
bility to both machines, insofar as it is
possible, but he gave no firm date for
when that goal might be realized.

The Next Big Thing?

Physical modeling is undoubtedly a
powerful tool for sound design

and composition. The tools to edit and
play back (if not create) high-quality
models are available today and the
advances in sound quality and run-
time flexibility are obvious. But the real
question is whether the mainstream
game development community is
ready to make the leap and adopt this
new technology. The standard argu-
ment against adoption is the amount
of CPU power that physical modeling
sound requires. In years past, three to
six percent of a 266MHz Pentium II per

model represented a fairly large perfor-
mance hit.

The following factors, however,
might explain why certain leading-edge
developers, such as Electronic Arts and
Square, have chosen to take the leap:

• CPU speed is increasing so rapidly
today that six percent of a 266MHz
Pentium II will likely become
meaningless within the next year
or two.

• Physical model descriptions (such
as Staccato’s DLA files, which are
typically 40K or so) are much
smaller than a commensurate
wavetable sound effect (if creating
such effects is even possible).

• Given an appropriate game or
music type, it may only require a
single, high-impact model to make
a significant difference in the over-
all perceived audio quality of the
product.

So, although the technology is still
new and developer uptake is just get-
ting underway, the trends seem to be
pointing to a bright future for physical
modeling and other advanced forms of
synthesis. ■

39

G A M E D E V E L O P E R F E B R U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

40

S U R F A C E SS U B D I V I S I O N

Implementing
Subdivision Surface
Theory

b y B r i a n S h a r p

n my article last month, I explained what subdivision surfaces

were and why game developers should be interested in them. I also

covered a couple different kinds of subdivision surfaces in their

mathematical forms and briefly discussed their benefits and detri-

ments. Most everything was in English, and the rest was expressed

using equations. There were no code listings last month, not even

a hint of C++, but I promised to discuss an implementation, and

Brian doesn’t need to write a bio for this article, as the Y2K apocalypse will have eradicated all life before the article goes to press.
If he survives the fallout, he'll keep right on evangelizing OpenGL and scalable geometry from over at 3dfx Interactive. Wish him a
happy new year at bsharp@acm.org.

I
so that’s the goal of this article. I’ll cover a sample implemen-
tation of the modified butterfly scheme as discussed in last
month’s article, complete with a shiny, new demo.

Why the Butterfly?

L ast month, I wrote about a number of schemes and
those were only the tip of the iceberg, so it’s worth

spending some time justifying the choice I’ve made for this
implementation. Why use the modified butterfly? To
explain my reasoning, it helps to look at more general char-
acteristics of schemes and their advantages and disadvan-
tages. The major differences tend to hinge on whether a
scheme is approximating or interpolating.

Approximating schemes have a number of benefits. The
surfaces they produce are generally very fair, and they are

generally the favored schemes for use in high-end animation.
For instance, Pixar uses Catmull-Clark surfaces for their char-
acter animation. The downside of approximating schemes are
substantial, though. The major one is that because the
scheme doesn’t interpolate its control net, the shape of the
limit surface can be difficult to envision from looking at the
control net. The caveat is that as the net becomes denser, the
surface will generally be closer to the net. But for games, the
net itself won’t be tens of thousands of polygons, so the sur-
face can differ substantially from the net.

Interpolating schemes are a different story. They can
exhibit problems with fairness, with ripples and undula-
tions over the surface, especially near tight joint areas.
Also, they aren’t used in high-end rendering quite as
much, which can mean that they’re the focus of less
research. But their major benefit is that the surface is sub-
stantially easier to envision by looking at the net. Since the

I

surface passes through all the net ver-
tices, it won’t “pull away” from the net.
The fairness issues are the price to pay
for this, though. Approximating schemes are fair because
the surface isn’t constrained to pass through the net ver-
tices, but interpolating schemes sacrifice the fairness for
their interpolation.

Nonetheless, I feel that the fairness issues present less of a
challenge to intuition than an approximating surface does.
For example, in many cases, existing artwork can be used
with interpolating schemes with some minor adjustments to
smooth out rippling, whereas adapting existing polygonal
art to be a control net for an approximating scheme is a
much more difficult task.

Among interpolating schemes, the butterfly scheme has a
number of things going for it. It’s one of the better-research-
ed schemes. It’s also computationally fairly inexpensive.
Finally, the results of subdivision tend to look good and con-
form fairly well to what intuition would expect. Therefore,
it’s my model of choice.

Butterfly in Review

I f you haven’t already, you probably should read my arti-
cle from last month’s issue for the deeper explanation of

the modified butterfly scheme. But in case you haven’t, I’ll
summarize it here. Given a triangular mesh, the control net,
we want to subdivide it one step. We first add a vertex along
each edge according to specific rules. If the endpoints of the
edge are both of valence 6, then we use the stencil in Figure
1, with the weights:

If one endpoint is of valence 6 and the other is extraordi-
nary (not of valence 6) then we use a special stencil that
takes into account just the extraordinary vertex, shown in
Figure 2. The weights are computed as follows:

If both endpoints are extraordinary, we average the
results of using the above extraordinary stencil on each of
them. Again, if this seems a bit too terse, refer to last
month’s article where I discuss the scheme in substantially
more detail.

As far as the butterfly scheme’s characteristics, it’s inter-
polating because points in a control net also lie on the
limit surface — the subdivision process doesn’t move exist-
ing vertices. It’s also triangular as it operates on triangular
control nets. It’s stationary as it uses the same set of rules
every time it subdivides the net, and uniform because
every section of the net is subdivided with the same set of
rules.

One aspect of the scheme that I mentioned last month
but didn’t define was the tangent mask of the butterfly
scheme. This is the mask used to compute the tangent vec-
tors explicitly at a vertex, which we use to find the vertex
normals. The mask is large and therefore may look intimi-
dating, but it’s just a bunch of numbers, and a few multipli-
cations and additions later, we’ve got the answer.

For regular vertices, the process involves the 1- and
2-neighborhood of the vertex (so it uses vertices that are one
and two steps away.) Between both neighborhoods, there are
18 vertices, and so the scalars, corresponding to the index-
ing shown in Figure 3, are:

Multiplying the vertices by l0 and l1 gives us two different
tangent vectors, the normalized cross product of which is
our normal. For extraordinary vertices the normal is actually
easier to find, as it depends only on the 1-neighborhood of
the vertex. The two tangent vectors in this case can be found
as:

Here, t0 and t1 are the tangents, N is the vertex valence, and
ei is the ith neighbor point of the vertex in question, where
e0 can be any of the points (it doesn’t matter where you
start) and the points wind counterclockwise. Crossing the
two resulting vectors and normalizing the result produces
the vertex normal.

t e
i
N

t e
i
Ni i

i

N

i

N

0 1
0

1

0

1 2 2= =
=

−

=

−

∑∑ cos , sin
π π

N v e e e

N v e e e e

N v e
j

N
j

Nj

= − −

= −

≥ +

+ ∗

3
3
4

5
12

1
12

1
12

4
3
4

3
8

0
1
8

0

5
3
4

0 25
2

0 5
4

0 1 2

0 1 2 3

: : , : , : , :

: : , : , : , : , :

: : , : . cos . cos
π π

/ N

a b w c w: , : , :
1
2

1
8

2
1

16
+ − −

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 2 0 0 0 G A M E D E V E L O P E R

41

F I G U R E 1 . The stencil used for the

regular case of the modified butterfly

scheme.

F I G U R E 2 . The stencil used for the

extraordinary case of the modified

butterfly scheme.

F I G U R E 3 . The stencil used for the

tangent mask of a regular vertex.

Implementation: The Big Idea

The idea behind our implementa-
tion is, at a high level, very

straightforward. Given one control
net, we want some piece of functional-
ity that can take that net and output a
more complex net, a net that has been
advanced by a single subdivision step.

That sounds easy enough, right?
Unfortunately, that description doesn’t
translate very directly to C++ code. So
we need to define some of our terms
and be more specific. First of all, what’s
a control net? We know what it is con-
ceptually, but what kind of data struc-
ture is it and how is it manipulated?
After that, of course, we need to define
that “black box” bit of functionality
that subdivides the net, and quantify
how it works.

To establish our control net data
structure, we start with nothing and
build our way up as needed. So, the first
thing we need is the base representation
that will eventually pass into OpenGL.
That’s just a few arrays. We need an
array for our vertices, our texture coor-
dinates, and our colors. Furthermore,
we’ll need an array of indices into those
arrays to define our faces; every three
indices defines a triangle.

If we can do our tessellating with no
more than that, then that’s great. But
chances are we’re going to need to keep
around more information than just
that. The important thing is that what-
ever information is added to the data
structure needs to be renewable. That
is, since the process is iterative, the
information we have in the simpler net
coming in must also exist in the more
complex net coming out, so that we
can feed the complex net back in to
produce an even more complex net.

It’s worth asking why we’d need
more information than just the ver-
tices and faces. After all, if we need to
determine whether one vertex is con-
nected to another by an edge, we can
determine that by looking through
the faces. Or if we need to find all the
edges, we could just do that by run-
ning through the face list, too. The
problem here is in the running time of
the lookups. When we’re subdividing
an edge, we need to find out a lot of
information about nearby vertices and
faces, and we’d like it to be as fast as
possible. Regardless of the processor
speed, looking through all the faces to

find a vertex’s neighbors will be slow-
er than if we have that information
available explicitly. This is because
looking through the list of faces takes
O(F) time, where F is the number of
faces. On the other hand, if we have
the information stored explicitly, it
only takes O(1) time — constant time.
That means that as we add more faces
to the model, the former solution
takes longer, whereas the latter
remains the same speed.

We don’t have the information we
need to decide what else to add to the
control net data structure, so we’ll
work on the procedure for subdividing
a net and add data to the control net as
necessary.

The Subdivision Step

Our task, then, is this: given a net,
we need to subdivide it into a

more complex net. Working from the
modified butterfly rules, this is fairly
straightforward. We need to add a ver-
tex along each edge of the net. Then
we need to split each face into four
faces using the new vertices.

The first step, adding new vertices
along each edge, tells us quite a bit
about some more information we’ll
need in the control net data structure.
There’s no fast and simple way to find
all the edges unless we store them
explicitly. An edge needs to be able to
tell us about its end points since we
need to use those in the butterfly sten-
cil for computing the new vertex.
Furthermore, the stencil extends to the
end points’ neighbors, so the end point
vertices need to know about the edges
they’re connected to.

The second step, breaking existing
faces into new faces, requires that the
faces know about their vertices, which
they already do. The faces also need to
know about their edges. While they
could find this by asking their vertices
for all their edges and fishing through
them, that requires a fair amount more
work for every lookup, and so we’ll
explicitly store with each face the
information about its edges, too.

That increases the load a fair
amount. Our data structure now has
arrays of vertices, edges, and faces.
Vertices know about their edges, edges
know about their vertices, and faces
know about their vertices and edges.

Graphs and Subdivision

I t’s worth noting that the data struc-
ture we’re working with is nothing

new and unusual. It’s a specific exam-
ple of a general data structure known
simply as a graph. A graph is anything
composed of vertices connected by
edges. For instance, a linked list and a
binary tree are both special kinds of
graphs.

What makes our problem a little
tougher than, say, writing a singly-
linked list class is that the graph of ver-
tices in a model is considerably more
complex than the graph of nodes in a
linked list. First, the nodes in a linked
list have a single edge coming out of
them (pointing to the next node) and
one coming in (from the previous
node.) Our graph has six edges coming
into each regular vertex and potential-
ly many more than that for extraordi-
nary vertices.

Furthermore, in the case of a singly-
linked list or a binary tree, the edges
have direction. That is, you don’t gen-
erally walk backward through the list
or up the tree. Furthermore, these
structures are acyclic — there are no
“loops” in them — so from a given
vertex, there’s no path that leads back
to the same vertex. In our case, the
edges are undirected. You need to be
able to traverse every edge in both
directions.

Discussing graphs in this context is
really just “interesting facts” rather
than being a crucial contribution to our
implementation, but it confirms what
we already know: our data structure is
complicated. The one saving grace is
that our algorithm is based on locality,
so we don’t need to worry about tra-
versing huge distances across the graph
to find information we need to subdi-
vide. This is one benefit of using a
scheme with minimal support. A
scheme with much broader support
would be computationally much harder
to evaluate, and hence be much slower
and far more difficult to implement.

It also confirms the direction we’re
taking to implement the data structure
— it’s based wholly on locality so that
the time it takes to find one vertex
given another is proportional to the
number of edges between them. There
are other ways of representing graphs
for the myriad applications that have
different requirements. Cormen and

G A M E D E V E L O P E R F E B R U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

42

S U B D I V I S I O N S U R F A C E S

his co-authors (see For Further
Info box, p. 45) provide an excel-
lent introduction to graph theory.

Control Net Details

So we know the data we need
in our control net data struc-

ture and we know the steps the
tessellation needs to execute.
We’re ready to dig into the lower-
level implementation details. First,
we’ll go back to the information
in the control net structure and
look at how it should be laid out.

Listing 1 shows the layout of
the data. There tend to be two
schools of thought on data layout.
One method is dubbed the “struc-
ture of arrays” (SOA) and the other
is the “array of structures” (AOS).
The idea is that the SOA method
stores multiple parallel arrays
whereas the AOS method stores all
the data interleaved in the same
array. I’ve personally never run
into a situation where the two
approaches differed greatly in
speed, and so when I lay out data I
generally try to blend the two
approaches for clarity’s sake.
That’s why some of the data in the
listing is shown as separate arrays
of base types and some are stored
as arrays of small objects.

The vertices are stored in
OpenGL-friendly arrays. While
OpenGL allows for interleaved
arrays, many applications tend to
store their data in parallel arrays,
and that’s why I choose to do so
as well. The vertices, texture coor-
dinates, normals, and colors each
have their own arrays. These
arrays are dynamically grown;
when I need to add another ver-
tex and there isn’t sufficient
room, I allocate new arrays that
are twice the size of the current
ones and move the data into the
new arrays. This strategy amor-
tizes the cost of memory alloca-
tion and is one I use for most of
my memory management.

Each vertex also has a VertexEdges
associated with it. VertexEdges keeps
track of the edges that the vertex is a
part of. Following the theme of mak-
ing lookups as fast as possible, the
edges are stored sorted by winding

order, so each successive edge in the
array is the next edge in counterclock-
wise winding order from the previous
edge.

The edges themselves prefer the
AOS format. Each edge is stored as
nothing more than two indices into

the vertex arrays. Adding anoth-
er nitpicking detail, I sort the
indices by value. It comes in
handy as there are many cases
where I can skip a conditional by
knowing that they’re in sorted
order.

The faces are stored simply as
an array of indices into the vertex
arrays, where every three indices
defines a triangle. Since the con-
trol net is totally triangular, I
don’t need any complicated sup-
port for variable-sized faces.

That’s it for the storage of the
control net. Now we need to
understand the details of the tes-
sellation process.

Subdivision Step Details

A s mentioned earlier, the sub-
division step consists of sub-

dividing edges and then building
new faces from them. The top-
level function that does this is
shown in Listing 2. For the edge
subdividing, I iterate over the
edges. At each edge, I check the
valences of the end point vertices
to determine which subdivision
rules to use. Upon deciding that, I
apply the rules and produce the
new vertex. It’s then added to the
end of the vertices array.

Furthermore, the edge is split
into two edges. One of them uses
the slot of the old edge, and one
of them is added to the back of
the edge array. For use in building
the faces, I keep two lookup
tables. One maps from the old
edge index to the index of the
new vertex I just created. The
other maps from the old edge
index to the index of the new
edge that I just added.

Building the faces is somewhat
more involved, as it requires a fair
amount of bookkeeping when
creating the four new faces to be
sure that they’re all wound cor-
rectly and have their correct

edges. For each face, I have the corner
vertices and the edges. From the two
lookup tables I created while subdivid-
ing edges, I also know the new vertices
and new edges.

I shuffle all that data around to get it
in a known order so that I can then

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 2 0 0 0 G A M E D E V E L O P E R

43

class ButterflySurface

{

public:

...

protected:

...

// Information about the vertices

int numVerts;

int vertCapacity;

float* verts;

float* vertNorms;

VertexEdges* vertEdges;

float* texCoords;

float* colors;

// Information about the faces;

// all faces are triangles.

int numFaces;

int faceCapacity;

int* faces;

int* faceEdges;

// Connectivity information,

// needed for tessellating.

int numEdges;

int edgeCapacity;

ButterflyEdge* edges;

};

// Classes used in control net storage.

class VertexEdges

{

public:

VertexEdges();

VertexEdges(const VertexEdges& source);

VertexEdges& operator=(const VertexEdges& source);

int numEdges;

int edges[MAX_VERTEX_VALENCE];

};

class ButterflyEdge

{

public:

bool operator==(const ButterflyEdge& cmp) const;

bool operator<(const ButterflyEdge& cmp) const;

int v[2];

};

L I S T I N G 1 . The data used to represent the con-

trol net.

build faces out of it. I also end up
adding three more edges connecting
the new vertices inside the triangle.
Those new edges need to be added to
the new vertices’ edge lists, and they
need to be added in the correct wind-
ing order. This isn’t much code, but it’s
tricky and bug-prone.

Using this function, I can iterate
over that as many times as I like. Each
iteration increases the polygon count
by a factor of four. When I decide to

stop, only then do I need to worry
about calculating vertex normals.
Iterating over the vertices with the
modified butterfly tangent mask finds
those handily.

Colors and Texture Coordinates

The previously described procedure
finds the vertices and normals, but

not the colors or texture coordinates.
These deserve their own discussion.
Colors are nice because they can be
interpolated using the same scheme as
the vertices. If the butterfly scheme
produces smooth surfaces in XYZ
space, it will also produce smoothness
in RGBA space. It’s certainly possible to
linearly interpolate the colors. That
will result in colors that don’t change
abruptly, but whose first derivative
changes abruptly, resulting in odd
bands of color across the model, simi-
lar to Gouraud interpolation artifacts.

Texture coordinates are a somewhat
more difficult problem. Current con-
sumer hardware interpolates color and
texture over polygons in a linear fash-
ion. For colors, this isn’t what we gen-
erally want: Gouraud interpolation of
color exhibits significant artifacts. But
for texturing, it is what we want. The
texture coordinates should be linearly
interpolated, stretching the texture
uniformly across a face.

Therefore, when I interpolate texture
coordinates during subdivision, I just
linearly interpolate them. Furthermore,
higher-order interpolation doesn’t nec-
essarily make sense at all, as different
faces of the control net might have
totally different sections of the texture,
or even have totally different textures
mapped onto them. While the data
structure doesn’t currently support this
(vertices would need to be capable of
having multiple sets of texture coordi-
nates), it could certainly be desirable.
In this case, neighboring vertices’ tex-
ture coordinates are in totally different
spaces, so interpolating between them
doesn’t make sense.

So, I’ll stay with linear interpolation
for texture coordinates. In terms of ele-
gance, this method is a little disap-
pointing. If we interpolated everything
using the modified butterfly scheme,
we could treat vertices not as separate
vertex, color, and texture-coordinate
data, but as one nine-dimensional vec-

tor, (x,y,z,r,g,b,a,u,v), and just perform
all the interpolation at once. Alas, in
this case, elegance needs to take a back
seat to pragmatism.

Now we know how to start with a
control net and step forward, produc-
ing increasingly detailed control nets,
all the while keeping our data struc-
tures intact and keeping our vertices,
colors, and texture coordinates intact,
and generating normals for the fin-
ished model. What else is there left to
cover?

Animation

W hile it’s beyond the scope of
this article to describe how you

might implement a full animation sys-
tem that uses subdivision surfaces, it’s
worth describing how subdivision sur-
faces and animation can coexist. If
your game is one that stores the ani-
mated model as a series of full models,
clearly you don’t even have to think
about it — subdividing those individ-
ual meshes will just work.

Skeletal animation is a somewhat
more interesting problem. One of the
nice things about subdivision surfaces
is that a skeletal animation system
should be able to transform the con-
trol net before subdivision, saving you
the cost of multiple-matrix skinning
on the high-polygon final model. This
does have some downsides, though.
Depending on the model and a host of
other factors, the skeletal animation
might cause the model to flex in
strange ways or to exhibit increased
rippling or unfairness.

The other downside is that it doesn’t
allow your application to take advan-
tage of forthcoming hardware that
supports skinning on the card. Depen-
ding on the speed of that skinning,
though, and on how many times you
subdivide the model, the savings of
you doing a reduced number of trans-
forms may or may not be worth the
loss of offloading.

Adaptivity

S ince this is a scalable geometry
solution, it’s worth asking if we

can adaptively subdivide based on cur-
vature or distance to the camera. In
my previous articles on tessellating

G A M E D E V E L O P E R F E B R U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

44

S U B D I V I S I O N S U R F A C E S

// This tessellates the surface.

void ButterflySurface::tessellate()

{

// Loop controls.

int x;

for (int level=0; level<maxRecursion;

level++)

{

// This is how we later find the new

// vertices created along edges.

int* edgeVertMap = new int[numEdges];

for (x=0; x<numEdges; x++)

{

edgeVertMap[x] = -1;

}

// This is how we find the new other

// half-edge made when the edge is

// split.

int* edgeEdgeMap = new int[numEdges];

for (x=0; x<numEdges; x++)

{

edgeEdgeMap[x] = -1;

}

tessellateEdges(edgeVertMap,

edgeEdgeMap);

buildNewFaces(edgeVertMap,

edgeEdgeMap);

delete[] edgeVertMap;

delete[] edgeEdgeMap;

}

// Only at the end here do we generate

// our normals.

generateVertexNormals();

}

L I S T I N G 2 . The top-level function

used to tessellate a control net.

Bézier patches (“Implementing Curved
Surface Geometry,” June 1999, and
“Optimizing Curved Surface Geome-
try,” July 1999) such adaptivity was a
major focus.

The problem with adaptive solu-
tions for subdivision surfaces is that,
unlike patches, subdivision surfaces
don’t easily expose a closed-form
parameterization. The only easy way
to tessellate them is through recur-
sion. So we rely on the fact that as we
recurse, we’re converging on a limit
surface. And no matter how we tessel-
late, we should be converging on the
same limit surface.

If we tessellate adaptively, we’ve
changed the control net. Some of the
net might be at a higher level of tessel-
lation than the rest. And so we’ve bro-
ken the rules, and our net is no longer
converging on the same surface. This is
a worst case scenario for scalable geom-
etry — it produces a “popping” that
you simply can’t avoid, since the
underlying surface is now fundamen-
tally different.

Furthermore, although this could
probably be dealt with somehow,
would it be worth it? Consider that a
game probably won’t be subdividing
the control net more than four times.
If your original net is, say, 1,000 poly-
gons, four subdivision steps bring it to
256,000 polygons. The span of low-
end to high-end machines isn’t yet
quite that large. So the end result of an
elaborate adaptivity scheme would just
be a model that was subdivided three
times in some areas, maybe four in
others: a whole lot of work for negligi-
ble benefits.

If you’re using subdivision schemes
for characters, then unless your charac-
ters are gigantic, adaptivity based on
distance from the camera won’t be
worth much, either. Plus, characters
tend to be fairly uniformly curved;
most of them don’t have large flat sec-
tions and jagged spikes in other areas.
Therefore, in the end, you might be
able to squeeze some benefits out of an
adaptivity scheme, but the amount of
work necessary to do so is fairly daunt-
ing. It’s probably sufficient to pick a
subdivision level based on distance to
the camera and field-of-view angle and
tessellate to it.

The Demo and Further Work

A s promised, this month is accom-
panied by a demo built off the

sample implementation provided
above. A few screenshots are shown in
Figures 4 and 5. The demo is available
at my web site (see Further Info. box)
and comes with source code and a cou-
ple of sample models.

I’ll freely admit that the demo is not
at the point where you could drop it
straight into your game and witness a
stunning transformation (unless shiny
salamanders are exactly what your
game needs). There’s a good deal more
to be done with the demo. For starters,

it’s worth asking what to do when even
the base control net is too dense. If a
character is far away from the camera,
maybe you’d only like to draw a 200-
polygon version? In that case, integrat-
ing a separate mesh-reduction algo-
rithm that you apply to the simplest
net when needed could solve the prob-
lem nicely.

Another issue that the demo doesn’t
address is the question of caching. I
currently regenerate the subdivision
from the base net every frame. Is it
worth caching subdivisions? On one
hand, it could make things faster, but
if the models being subdivided are
characters, then the animation proba-
bly makes caching less useful, since
the model you created in one frame
isn’t in the right position by the next
frame.

Whether or not the modified butter-
fly scheme is the right one for you, this
demo should provide a decent starting
point for experimentation. Hopefully,
between these two articles, I’ve given a
solid overview of subdivision surfaces,
and maybe even gotten somebody
interested in using them in a game or
two. Questions and comments are
heartily encouraged, and in the mean-
time, I hope to find myself amazed by
the next generation of fully scalable,
beautiful games. ■

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 2 0 0 0 G A M E D E V E L O P E R

45

The demo and other resources are avail-

able at my web site:

http://www.cs.dartmouth.edu/

~bsharp/gdmag

Additional Resources
Cormen, T., C. Leiserson, and R. Rivest,

Introduction to Algorithms.

Cambridge, Mass.: M.I.T. Press, 1998.

Zorin, D. “Stationary Subdivision and

Multiresolution Surface Representa-

tions.” Ph.D. diss., California Institute

of Technology, 1997. (Available at

ftp://ftp.cs.caltech.edu/tr/

cs-tr-97-32.ps.Z)

Zorin, D., P. Schröder, and W. Sweldens.

“Interpolating Subdivision for Meshes

with Arbitrary Topology.” Siggraph

‘96. pp. 189–192. (Available from ACM

Digital Library.)

FF OO RR FF UU RR TT HH EE RR II NN FF OO

F I G U R E 4 . Subdivision steps of a

colored shape in the demo.

F I G U R E 5 . Subdivision steps of a

salamander model in the demo.

G A M E D E V E L O P E R F E B R U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

46

ver since the release of Westwood’s DUNE 2 in

1992, real-time strategy (RTS) games have become

the hottest-selling computer games around. Countless

RTS games were released soon afterward including

COMMAND & CONQUER (C&C), RED ALERT, WAR-

CRAFT II, AGE OF EMPIRES, and TOTAL ANNIHILATION.

These games have propelled the genre to new heights and have drawn

an increasing number of fans.

After the success of C&C and RED ALERT, the

team at Westwood Studios started work on

TIBERIAN SUN, the sequel to C&C. To build the

game, we assembled a team that consisted of

veterans from C&C and RED ALERT along with a

b y R a d e S t o j s a v l j e v i c

Westwood StudiosÕ
TIBERIAN SUN

P O S T M O R T E M

Rade Stojsavljevic was the producer for TIBERIAN SUN and is currently working on an expansion pack called
FIRESTORM. Before coming to Westwood, he worked on military simulations and adventure games at various
small development houses. When he’s not out getting doughnuts to bribe the team with, you can usually
reach him at rade@westwood.com.

EE

47

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 2 0 0 0 G A M E D E V E L O P E R

couple of new faces, including me. We started with the goal
of taking what made C&C fun and expanding it even
further.

To begin the development process we reviewed what
makes a great RTS game and came up with one answer: tac-
tics. Westwood doesn’t build games based on a specific tech-
nology and we never sell technology over the game play. We
have a firm belief that a great strategy game must have inter-
esting, fun, and new tactics that afford players a multitude
of unique ways to play a game.

We wanted TIBERIAN SUN to appeal to a broad audience,
yet also appeal to core game players and fans of the series.
Towards this goal, we continued to apply a “wide and deep”
approach to designing the tactics we created. Wide and deep
essentially means a nice assortment of diverse yet readily
apparent tactics that, under the surface, contain an even
greater number of tactics. With this approach, you can pro-
vide first-time players with a number of different things to
do while letting more experienced players discover new and
advanced tactics on their own. These design goals made
working on the game more challenging — as if being the
biggest project in Westwood Studios’ history wasn’t enough.

What Went Right

1.MAINTAINED C&C STYLE OF GAME PLAY. One of the most dif-
ficult tasks we had to overcome during the develop-

ment of TIBERIAN SUN was to maintain the feel of the origi-
nal. When making a sequel, the question that always has to
be answered first is, How far do you stray from the original
game to make it compelling, yet still familiar? The intent
with TIBERIAN SUN was to maintain, as much as possible, the
feeling of the original while providing new and interesting
tactics for players to master. To aid in this goal, when
adding a new feature we asked the questions, “Is this consis-
tent with COMMAND & CONQUER?” and “How can we make it
easier and even more exciting?”

In this area, it really helped to have a development team
that worked on the previous games. They were able to draw
from previous experiences to create a consistency in the
game dynamics. This gave the team a great deal of indepen-
dence since everybody already had a good idea of how the
game was supposed to look, play, and feel.

The main areas we focused on in order to be consistent
with previous games were the user interface and unit behav-
ior. We knew we had to keep the sidebar metaphor for unit

construction but we wanted to update it to accommodate
new features, such as unit queuing, waypoints, and
power/energy control. For unit behavior there was a set of
rules that we had to conform to, specifically how a unit
deals with player commands so that its internal logic never
overrides a player’s orders. One of the times we tried to
change the rules was when harvester threat-avoidance logic
was introduced. I remember hearing lead designer Adam
Isgreen screaming at his computer when his harvesters
refused to obey his orders to retreat. We decided to scrap
that idea shortly afterward.

It was important for the overall visual presentation of the
game to bear a resemblance to its predecessors in order to
maintain a consistent artistic style. We decided to alter the
perspective slightly, rotating the camera to create a three-
fourth isometric perspective that afforded a better sense of
depth and realism in a 3D perspective. It was at this point
that we decided not to use a polygonal engine since it
wouldn’t be possible for us to keep the system requirements
low enough to achieve the mass-market appeal that we
wanted. Also, at the time we planned to release TIBERIAN SUN,
3D accelerator cards and systems weren’t fast enough for us
to maintain the visual detail we wanted for the hundreds of
units and structures on-screen at once.

2.WORKING ON A SEQUEL TO A SUCCESSFUL FRANCHISE. Being
the fourth RTS game Westwood has done, there were

a lot of lessons learned that the team was able to carry for-
ward into TIBERIAN SUN. First, we had an established and

Westwood Studios
Las Vegas, Nev.
(702) 228-4040
http://www.westwood.com

Release date: September 1999
Intended platform: Windows 95/98/NT 4.0
Project length: 36 months
Team size: 25 full-time, 15 part-time developers
Critical development hardware: Pentium Pro and Pentium II

machines, 200 to 450MHz dual-processor with 128 to 256MB
RAM, Creative Labs sound cards, Windows 95/98/NT, SGI 02
workstations, BlueICE accelerators

Critical development software: Microsoft Visual C++, Lightwave,
3D Studio Max, Discreet Flint, Adobe Photoshop, Adobe After
Effects, Adobe Illustrator, Avid Media Composer, Filemaker Pro,
Deluxe Paint

TIBERIAN SUN

On location at Red Rock, Nev.

Chandra, McNeil, and Brink pose on

the Kodiak Bridge.Umagon prepares for a take.

streamlined user interface.
This user interface has
been a cornerstone of
Westwood RTS games
since DUNE 2 and we’ve
been gradually improving
it ever since. Anyone who
has ever played a West-
wood RTS is immediately
familiar with the controls
and can jump right into
the action. Additionally,
the interface is simple and
intuitive enough to let
new users become com-
fortable with it in a short
time.

Another nice benefit of
making a sequel is that we
had a set of basic features
we knew worked based on
previous games. These pro-
vided a solid foundation that
could be expanded upon and
modified as needed. We started
with features from the previous
games that we knew we wanted
and updated them to fit a world
that was 30 years in the future.
Tanks evolved into two-legged
mechanized walkers, soldiers
could now use drop pods
launched from space, and cloak-
ing technology advanced to yield
a stealth generator that hid many
units and buildings at once.

When it came time to create the
story, we already had the basic frame-
work in place. There was a very rich
and fascinating world to draw upon
when creating new characters for this
story. The one difficulty encountered
was making sure the story could stand
up on its own and be accessible to new
players without subjecting players
familiar with previous games to mind-
numbing exposition. To solve this
problem, we set the story 30 years after
the end of the original, which provided
an opportunity to create an outstand-
ing introduction that showed players
what had been going on in the world.

3.TEAM EXPERIENCE AND COHESION. The
TIBERIAN SUN development

team is one of the most experienced
and professional teams I’ve ever had
the privilege of working with. For
many of the team members, this was
the fourth RTS game they had done
(the previous being DUNE 2, C&C, and
RED ALERT). This level of experience was

key in allowing the team to conquer all
the obstacles thrown in their path.
Even though I had worked on half a
dozen titles before I started on TIBERIAN

SUN, at first it was a little unnerving for
me to be working with a team of this
caliber.

Several members of the program-
ming team had worked together on
previous Westwood RTS products and
were accustomed to each other’s cod-
ing styles. New programmers were
quickly assimilated into the team and
were able to adapt well. The coding
rules and Westwood libraries allowed
the programmers to familiarize them-
selves with each other’s work with
minimal difficulty.

The designers had worked on previ-
ous RTS games and were very familiar
with the universe before we started the
project. This saved several months
since no one had to familiarize them-
selves with anything except the design
for TIBERIAN SUN. The tools used were

derivatives of the C&C
and RED ALERT editors,
which also minimized
the ramp-up time
required before they
could produce missions.
The designers worked
well together and were
friends; something that
helped a lot when there
were differences of opin-
ion. It proved to be very
beneficial to know that
you could argue your
point and not have to
worry that the person
you were arguing with
would hold a grudge
afterward.

Without the technical
knowledge and creativity
of the artists on the pro-

ject, we would have suffered a
great deal of pain when integrat-
ing artwork. Like most projects,
TIBERIAN SUN had a specific set of
technical criteria that had to be
satisfied when creating art for
the game engine. On this front,
we reaped the rewards of having
artists who had done it all
before. They had worked with
our programming team and
knew the tools well enough that
they were able to head off poten-
tial problems before they could

get out of control. The cinematic artists
had much of the same experience; they
didn’t have as many technical restric-
tions as the in-game artists, which
allowed them to be able to express
unbridled creativity. The cinematic
artists didn't have to deal with frame
limitations or palettes. Also, compared
to previous games, the movie player in
TIBERIAN SUN allowed for full-resolution
movies (as opposed to previous games
where every other line was cut out)
using 24-bit color depth and a 15FPS
frame rate. I still remember the first
time we saw the movie in which the
Mammoth Mk. II laid waste to an
entire Nod base by itself; it left every-
one in the room speechless.

The final piece was the management
team. Under executive producer Brett
Sperry’s strong leadership, we estab-
lished systems to deal with routine
tasks, facilitated communication
between the teams, and were able to
avoid a lot of problems early on. Brett

G A M E D E V E L O P E R F E B R U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

48

P O S T M O R T E M

Concept sketch of a GDI carry-all.

An Orca carry-all transports a hover MLRS.

has always been very protective of the
C&C franchise and with TIBERIAN SUN,
his clear and consistent vision of where
the game should be was absolutely crit-
ical to the project.

4.BALANCING PROCESS. Balance is
one of the things that can

make or break a RTS game. It’s one of
the hardest things to do on the design
side of the product since you’re essen-
tially trying to optimize an equation
with dozens of independent variables.
If you get it wrong, you’ll have a
boring game and a horde of dis-
gruntled fans cursing your name
forever. When the issue of bal-
ancing comes up, you’ll often
hear about the “rock-paper-scis-
sors” idea, but I like to think of it
more in terms of a chess game.
You’ve got a lot of different
pieces, each with a unique func-
tion and set of strategies that
takes a long time to master.

Having made several RTS
games before, the team knew
how to balance a game. We start-
ed with two approaches: one sci-
entific and one artistic.

Using the scientific approach,
we started with the relatively sim-
ple idea that in a steady state
units with an equivalent cost
should do equivalent damage to
one another. The basic idea is
that if I have $1,000 worth of
units and you have $1,000 worth
of units and they fight, the fight
better be really close. From here,
we kept adding variables until we
had a relatively playable game.

The next step was a lot more
artistic and was where experi-
ence really paid off, keeping the
team from long periods of fum-

bling around blindly. We played
countless games with each of us cham-
pioning one side vs. the other, careful-
ly noting how effective units and tac-
tics felt against one another. We would
get together after each game to com-
pare notes, argue our points, get into
fights, and then make one change at a
time to the game and try it again until
we were all satisfied with the results.
The whole process took about three
months for TIBERIAN SUN, compared to

six months for C&C and four months
for RED ALERT. Even after the countless
games we played against one another,
we still got into shouting matches dur-
ing close multiplayer games. When this
happens, you know you’ve got a win-
ner on your hands.

5.MISSION DESIGN. Mission design
is one of the most important

elements of RTS games. Based on expe-
rience with previous games, Westwood
has established a series of processes

that are used whenever a mission is
created. We’ve designed these
processes to foster creativity, maxi-
mize efficiency, and promote com-
munication between the design,
programming, art, and manage-
ment groups. This process has been
refined on every project and we’ve
taken it to the next level with the
upcoming FIRESTORM add-on.

The process begins with a mission
design proposal submitted to the
lead designer and producer. The
proposal is a two- to three-page doc-
ument that contains summary
information about the mission such
as name, side, difficulty, map size,
mission type, and so on. The mis-
sion briefing is included along with
a description of what the briefing
movie should be and all of the criti-
cal information that must be
revealed to the player. Mission
objectives are listed as they would
appear in the game, along with spe-
cific information on how to achieve
the objectives. Win and lose condi-
tions are created, as well as descrip-
tions of the victory and defeat
movies that play at the end of a mis-
sion. The last things included are all
of the new voice and text messages
used in the mission.

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 2 0 0 0 G A M E D E V E L O P E R

49

Nod bikes fire at an underground UFO. Nod bikes flee from the ensuing explosion.

GDI forces destroy a vital Nod caravan.

A Nod obelisk of light incinerates its attackers.

Once this proposal
has been approved,
the map for the mis-
sion is sketched out
on paper. We’ve
found that this
process can save a
great deal of time
since it eliminates dis-
tractions and allows
the designers to get an
overall view of the
map quickly. When
the designers finish
sketching their mis-
sion, they proceed to
the editor and begin
to create the basic bat-
tlefield. Terrain is laid
down first, followed
by buildings, roads,
trees, and pavement.

The final step to complete a mission
is to take a map and add scripting,
which takes approximately two-thirds
of the time to create a mission. One of
the great things about TIBERIAN SUN is
that the editor is tied directly into the
game, which allowed designers to
switch rapidly between the editor and
the game. This feature also proved to
be a liability, however, because if a bug
appeared that prevented the game
from running, we couldn’t run the edi-
tor, either.

TIBERIAN SUN features a good blend of
production (such as building bases)
and non-production missions that keep
the pace of the game interesting and
challenging. We tried not to do the
same mission twice and added variety
by combining mission types into non-
production/production missions that
switch from one to the other when
players reach specific objectives.
Branching missions were added to give
players the option of completing sub-
missions before they tackled the main
objective. By playing sub-missions first,
the player makes the final objective
easier and it gave the designers added
granularity when creating the difficulty
levels for the game.

What Went Wrong

1.UNREALISTIC EXPECTATIONS. The
degree of hype and expectations

that TIBERIAN SUN had to fulfill was
staggering. We had a team of experi-

enced developers who wanted to beat
their own expectations while simulta-
neously building a game that would be
everything the fans of the series
expected and more. This was not a real-
istic goal since it’s just not possible to
make something that will meet every-
one’s expectations.

One of the things that we did not
do was explore all of the new features
to their logical conclusions. This
would have allowed us to do a lot
more with a smaller feature set and
provide an even better game. A perfect
example of a feature that was begging
to be used more is the dynamic-battle-
field concept. The basic idea behind
the dynamic-battlefield concept is
that players’ actions alter the battle-
field. For example, a player could set

fire to trees to burn
a path into an
enemy’s base. We
wound up cutting
this particular fea-
ture because it
caused path-find-
ing problems. Also,
battles with heavy
weapons would
cause cratering of
terrain which
hindered unit
movement.

We could have
used it to create
more new strategies
for players, and
since it was one of
the more expensive
features in the
game, we could

have squeezed a lot more use out of it.
Trying to fill the shoes left behind

by RED ALERT proved to be daunting. If
you had asked a dozen people what
they expected out of TIBERIAN SUN

before it was released, you would have
heard a dozen different answers. We
devoted a lot of effort to add as many
features into the game as possible
instead of just trying to make the best
game we could. Getting into a feature
war is one of the worst things that can
occur during development because it
siphons effort away from adding the
“fun” to the game.

2.FEATURE CREEP. TIBERIAN SUN start-
ed strong and we developed a

robust and large feature set we intend-
ed to fulfill. The project started
smoothly, but as we progressed, the
temptation to add new features not
included in the design document grew.
These features arose out of shortfalls in
the original design, omissions from the
original design, and input from fans.

Everybody stresses the importance
of working off of a design document
and not deviating from it. Unfortun-
ately, this just isn’t realistic since
every product evolves during the
course of development and sometimes
the original design proves to be lack-
ing. A team has to be able to incorpo-
rate new ideas during development if
the final project is to be better. How-
ever, the flip side of this idea is that
the team must be able to cut features
diplomatically when it is in the best
interest of the project.

G A M E D E V E L O P E R F E B R U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

50

P O S T M O R T E M

Concept sketch of a GDI Titan.

GDI Titans lay waste to the Nod base.

TIBERIAN SUN‘s development had
many challenging moments when fea-
tures had to be cut for one reason or
another. A perfect example of this was
the ability to order a limited number of
units through a drop-ship loading
screen before a mission. This sounded
like a great idea on paper and we had
already coded it and incorporated it
into the game. It wasn’t until we actu-
ally played with it that we realized it
just didn’t fit and had to be removed.

Looking back at the project, I think
we could have been more aggressive in
cutting or changing certain features to
make sure their returns were really
worth the development investment.
I’m a firm believer in the idea that less
is more and that fewer but more fully
developed features are the way to go. If
a feature isn’t amazing, you should cut
it or make damn sure it becomes amaz-
ing before you ship the product.

3.POST-PRODUCTION COMPLICATIONS,
COMPOSITING WOES. TIBERIAN SUN

features the most complex and highest-
quality cinematic sequences Westwood
has ever done. These movies help drive
the story elements forward. However,
these movies came at a very high price.

Westwood has a soundstage with a
bluescreen and in-house post-produc-
tion capability that allowed us to han-
dle the entire production ourselves.
We’ve done several different projects
with video, including RED ALERT, DUNE

2000, and RED ALERT RETALIATION for
the Playstation. Based on these past
experiences, it was decided that we
would push the limits of what we
could do in TIBERIAN SUN.

We started by fully storyboarding
every scene in the script. From the
storyboards, we built concept sketches
of the major sets to be constructed
(practical as well as computer-generat-
ed) and proceeded to build the sets.
Before the shoot there was a three-
month lead time for our team of six
3D artists to build the sets. We wanted
to have the sets 100 percent complete
so we would have camera and lighting
information to match up with the live
actors.

For various reasons, the pre-produc-
tion for TIBERIAN SUN was much shorter
than it should have been. If you’ve
ever worked in film or television pro-
duction, you’ve probably heard the
phrase “we’ll fix it in post.” Believe me
when I say there’s a reason why this lit-

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 2 0 0 0 G A M E D E V E L O P E R

51

A disc thrower waits for reinforcements.

A hover MLRS fires a volley.

tle phrase can spook even the most vet-
eran members of any production crew.
Anything you have to fix after the fact
winds up being ten times as difficult
and ten times more expensive than
planning for it in the first place.

Everybody on the team knew this and
we tried as hard as we could to work out
all the details before we started the
shoot. The problem was we didn’t have
enough time and couldn’t change the
date of the shoot because we wouldn’t
have been able to get our two main
actors, James Earl Jones and Michael

Biehn. Going into the shoot, we had a
pretty good idea of how we were going
to work out all of the technical details
such as camera tracking on a bluescreen,
matching lighting to computer graph-
ics, compositing, and so on. However,
we ran into difficulties because we did-
n’t allow enough time for the more
complex shots and were forced to edit
on the fly during the shoot.

An unforeseen problem during the
post-production was that we dramati-
cally underestimated the storage and
network requirements of working with

60 minutes of digitized video. West-
wood has a very robust and fast net-
work with a large amount of storage
space, but it was never designed to
meet the needs of video post-opera-
tion. An amazing effort by the MIS staff
and a couple of called-in favors got us
enough storage space on the network
to keep going.

From the start, the team struggled
to get video from digital beta to the
SGI- and PC-based compositing sys-
tems. Footage was digitized on an Avid
system and copied to file servers for
distribution to the PCs. The SGIs
grabbed the footage directly from tape
using built-in digitizing hardware.
From the compositing stations, various
shots were completed and transferred
back to a file server to be compressed
and put in the game. This, along with
the fact that many individual scenes
were worked on by several artists, mul-
tiplied the storage requirements sever-
al times over. In the end, the video
assets were spread across four separate
file servers and took up well over
500GB of space.

Not only was space a problem, but
moving hundreds of megabytes of files
a day from machine to machine
became a bottleneck. A few minutes
here and there to transfer files doesn’t
sound like much until you add it all
up. If we had it to do over again, we
could have alleviated the problem by
building a very specialized (and expen-
sive) network, by getting hardware that
allowed artists to digitize their footage
directly from tape, or by reducing the
scope of the project and sidestepping
the problem entirely.

4.LOCKED DOCUMENTS TOO EARLY. One
of the side effects of schedule

slippage was that we locked our docu-
ments too early in order to achieve the
localization plan. We knew this was
going to wind up causing us significant
pain, but at the time there was nothing
we could do to avoid it. The result
turned out well, but a lot of time and
effort was spent to make everything
work together.

At the point when we locked the
audio script, mission design and bal-
ancing were not complete. As we
played through the missions, we real-
ized that certain objectives were not
clear and needed to be explained fur-
ther. The previous method for doing
this was to have the in-game AI per-

G A M E D E V E L O P E R F E B R U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

52

P O S T M O R T E M

Devil’s Tongue Flame Tank crashes a gate.

Drop-pod infantry surveys the battlefield.

sona (Eva or Cabal) relay the informa-
tion to the player through voice cues.
This was not an option for TIBERIAN

SUN, however, since we made the
switch to professional voice talent for
Eva and Cabal. Costs and scheduling
didn’t allow us to do as many pickup
recording sessions as we wanted. Also,
the locked audio scripts were already
localized and recorded, which made
recording additional lines out of the
question.

The only option available was to
redesign the missions or add text to the
missions to make the objectives clearer.
Redesigning the missions would have
added at least a month to the already
late schedule, so we quickly ruled that
option out. We wound up going with
text that popped up in the missions,
although the original design called for
all text in the game to be accompanied
by a voice-over.

5.SCHEDULING PROBLEMS. As with
most projects in development

today, TIBERIAN SUN suffered from
scheduling problems; ours resulted in a
nine-month delay. There wasn’t a sin-
gle reason that caused the product to
be delayed, but rather a series of seem-
ingly minor contributing factors.

Brett Sperry has a rule of thumb that
we often refer to when scheduling pro-
jects. When you add one fundamental
new technology to a project, it can
cause slippage up to 90 days. When
you add two fundamental new tech-
nologies it can add a year to the antici-
pated release date. When you add three
or more new technologies it becomes
impossible to predict the release date of
the project accurately.

TIBERIAN SUN features three new sys-
tems that resulted in an unpredictable
schedule. First, we switched our core
graphics engine to an isometric perspec-
tive in order to enhance the game’s 3D
look. This resulted in a cascade effect of
broken systems that weren’t anticipat-
ed. Bridges that could be destroyed and
rebuilt, for example, wound up taking
over ten times as long to program as we
originally estimated. Adding bridges
complicated systems such as path-find-
ing, Z-buffering, rendering, unit behav-
ior, and AI.

Scripting was another area in which
we added a slew of new functionality.
We added an increasing number of
triggers to the game to allow the
designers flexibility in creating the

missions. Each new trigger added was
more specific than the last and was
used for increasingly rarer conditions.
Since triggers could be used in combi-
nation, we ended up with an over-
whelmingly large number of events
that needed to be debugged. We
would often fix one trigger to work in
a specific situation and inadvertently
break the same trigger in a different
situation.

AI and unit behavior was the third
main area that used new technology.
We set out to create a challenging and

fun AI that could react to the player’s
actions and change tactics to compen-
sate. We should have focused on fewer
areas of the AI instead of trying to
redesign the whole package from the
ground up.

Overall Tips

W ith TIBERIAN SUN, we built the
game we originally set out to

build over three years ago. Almost all
of the new engine features we designed

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 2 0 0 0 G A M E D E V E L O P E R

53

Disruptors power up.

Mobile sensor arrays deploy to detect stealth tanks.

were implemented in the final product,
and many more were added along the
way. We built a game that is as easy to
play as its predecessor while offering
up lots of new units featuring interest-
ing tactics. All of this was done while
keeping the system requirements low
enough to run on most systems: a
166MHz Pentium with 32MB RAM and
a 2MB video card.

We learned, or relearned actually, a
few more things about making RTS
games that weren’t listed above. They
are:

• If the game has Internet or multi-
player capability, build this func-
tionality as soon as possible since it
will let you get into the game and
balance it early.

• Don’t shield yourself from reality.
If your game supports Internet
play as well as LAN play, don’t
play only LAN games and assume
that Internet performance is
acceptable.

• Keep the story tightly focused on
players’ actions and don’t treat the
story as a separate entity. Remem-
ber that the player is always the
main character.

• Wherever possible, try not to mix
disparate technologies (3D visual
systems with 2D, for example) that
have inherent problems working
together. Instead, go back and
modify the design.

In the sense that TIBERIAN SUN was a
game with lots of expectations for a
sequel, it was a lot like Star Wars: The
Phantom Menace. No matter how the
final product turned out, there would
be people that complained that it was
too much like the original and others
who thought it wasn’t enough like the
original. As a company, we set out to
deliver what we intended — a fun new
RTS game that offers players a slew of
new tactics.

After three years of working on
TIBERIAN SUN, it was a great feeling to
finally finish the game and see it on
the shelves. No matter how many
products you ship, that feeling never
goes away. TIBERIAN SUN broke Elec-
tronic Arts’ sales record for the fastest-
selling computer game in the 17-year
history of the company with more
than 1.5 million units sold so far. But
best of all, the team is proud of the
product they created and can’t wait to
get started on the next one. ■

G A M E D E V E L O P E R F E B R U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

54

P O S T M O R T E M

Nod laser turrets repel a GDI horde.

Orca fighters escort a transport. Concept sketch of a GDI Orca bomber.

A Wolverine on the firing range.

As you may know, Heavy Metal, both
the movie and the magazine, is defi-
nitely sexually oriented and has lots of
nudity. Yet I’m having a hard time
incorporating even the slightest of
naughty bits into the game. I’m not
advocating sex and pornography in
computer games, but I think our cul-
ture goes way too far in restricting the
exhibition of the unclad physique.

I have been preoccupied with
Americans’ phobia of nudity a lot late-
ly. I may sound over-reactive and per-
haps even juvenile, but after 42 years
of living in this hypocritically puritan
country, I must jump on the soapbox
and protest this prudish disposition of
ours. Maybe it’s the influence of
spending my impressionable years in
the 1960s and 1970s among hippies,
or maybe I’m the one with the true
hang-up and doth protest too much,
but what I see in our country’s atti-
tudes towards the bare human form is
diseased and deviant. I’m not saying
we should all parade down Main Street
in the nude, but as I try to design levels
for a Heavy Metal game, I am becoming
intensely aware of the extreme to
which America is anti-body.

Admittedly, any intentions I have to
include nudity in a computer game are
purely for its suggestive, sexually
provocative, and, yes, even gratuitous
usage. Are these motives at all unnatur-
al? I remember a report that estimated
most people think about sex and nudi-
ty at least 12 times a day. Yet as a game
developer, I am oppressively banned
from even the slightest hint of carnal

exposure. I can’t show a single nipple
in a game without some uptight funda-
mentalist writing a letter to the store
where they bought it and having the
store take it off the shelves. Conversely,
I can put a baby carriage in the very
same game and blow it up with little
retail consequence.

The media have been afire the past
few years because of all the violence in
American entertainment. Although it

has been seen as a problem since the
early 1960s, it still reigns as one of the
underlying mainstays of American
amusement. I, admittedly, do find
entertainment in violence. I’m not sure
if this is an innate behavior due to an
evolution through which the most vio-
lent aggressor is most likely to succeed,
or whether it is indeed simply the
influence of this type of entertainment
during my formative years. Either way,
though, I recognize that it is not cor-
rect and the glorification of violence is
not a good thing.

Nudity, on the other hand is whole-
some and natural. There is simply no

denying that, other than perhaps for
religious reasons. In our hearts, we may
not all be violent, but underneath our
clothes, we’re all naked. I’m all for rat-
ings systems that classify games and
movies so audiences know what to
expect, but what I do not understand is
why nudity, a completely natural state
in which we all arrived in this world, is
lumped into the same category as vul-
gar language and even violence.

By now you must be thinking to
yourself, “Hey, this guy just wants to see
more naked women!” To which I would
be inclined to say, “Yes!” My desire to
put nakedness in F.A.K.K. 2 is strictly for
the purpose of being sexually suggestive
and titillating. Since nudity is natural
and occupies so much of our minds

anyway, I simply don’t see the harm
and I don’t understand the prohibition.

It was my good fortune to have
worked on DUKE NUKEM. The two
things I hear most about DUKE are its
degree of interactivity and its strip-
pers. Not just from immature adoles-
cent teenagers, but from everyone. As
an example of our ridiculous national
phobia, the original box art showed a
stripper with a nipple exposed. A sin-
gle-pixel nipple, one little brownish
square, and we were told that the
major retail stores in America would
not shelve the game.

G A M E D E V E L O P E R F E B R U A R Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

60

b y L e v e l o r dS O A P B O X

Exposing Myself

Iam currently working on the PC game version of

Heavy Metal’s F.A.K.K. 2 movie. First and fore-

most on my mind right now is the major hang-

up we Americans have with nudity.

The Levelord has been tinkering with games since first downloading the DEU editor for DOOM in 1994. He designed the levels for
DUKE NUKEM 3D while at 3D Realms, and the QUAKE add-on pack SCOURGE OF ARMAGON and SIN at Ritual Entertainment, where he
is currently working on HEAVY METAL’S F.A.K.K. 2. Contact him at levelord@ritual.com.

Continued on page 59.

What I would most like to see
change in our industry — the entire
country, actually — is to relax our atti-

tudes about nakedness. Whether an
instance of nudity is gratuitous or ele-
gant, I think all Americans need to
reexamine their hang-ups.

I have visited Europe a few
times and get game-related
magazines from many Euro-
pean countries, and it’s clear
to me that the rest of the
world enjoys a far more
mature perspective about the
naked body (whereas gratu-
itous violence is deplored).
Many foreign cultures allow
nudity (which is generally
handled in good taste) to be

seen by even the youngest of audi-
ences. Anyone who’s ever visited a
beach on the Riviera knows that
Europeans don’t possess the knee-jerk
aversions to nudity that Americans
have. Even their television and bill-
board ads show nudity with the only
connection between the merchandise
and the naughty bits being the fact
that they recognize and celebrate the
allure of the naked body.

Nudity is a natural condition that
will not disappear anytime soon, and
I’m constantly reminded of how frus-
trating our own farcical prohibition
really is. ■

S O A P B O X

59

Continued from page 60.

	back:

