
FEBRUARY 1999

G A M E D E V E L O P E R M A G A Z I N E

L ast fall, I had the fortune to
find myself in a little town
in France called Amboise,
located about two hours

outside of Paris by train. While wan-
dering around town one day, I came
upon an impressive estate which I
quickly learned was Leonardo da
Vinci’s final residence. Da Vinci was
given this residence (called Chateau du
Clos-Luce, or “house of light”) by King
Francois I in 1516. In return, the king
wanted da Vinci simply to continue his
artistic and scientific explorations. If
some invention suited Francois’ mili-
tary objectives (as some did), so much
the better for the king. Essentially, da
Vinci was given free creative reign to
do what he was already doing, and in
return his patron enjoyed the fruits of
da Vinci’s ideas.

While at Clos-Luce, I couldn’t help
but think about an analogy to this sce-
nario within our own industry. Like
Francois, today’s consumer hardware
manufacturers rely on the technical
and creative talents of game developers.
To a large extent, games are the raison
d’être for these hardware manufacturers.
That’s why these hardware companies
throw you parties at trade shows, send
you free hardware, help you market
your game, get you retail shelf space,
offer bundling deals, and on occasion a
hardware manufacturer will simply
shower you with some cash. In short,
they need your talents. But while incen-
tives can be difficult to refuse, especial-
ly if you’re a small developer in need of
all of the above, Rob Wyatt of
Dreamworks Interactive suggests that
you ask the following questions before
you sign on the dotted line.

The first question you should pose is
to yourself: “Why me?” Why do you
think this hardware manufacturer is so
hot to get your support of its upcoming
product? Sure, you know your game
will be incredible, but does your
prospective patron have the same
vision for it as you? Understand what
that company expects from your game
before you agree to implement any
changes in it. If there are differing
expectations for the game, you’ll have
problems down the line.

Second, decide early whether the fea-
tures or performance gained warrant
the extra work. If what’s being asked of
you won’t make your game better, the
deal may be skewed substantially in
their favor. You’re lengthening your
development cycle and/or cutting out
the development of important features
in order to implement irrelevant (or
worse yet, harmful) “features” to the
game. Remember that by far your most
important customer is the player, and
that all decisions should be made with
that fact in mind.

Third, find out how exactly your
patron hardware manufacturer will
support your efforts. Will they actually
help code certain sections of the game?
Find out how much documentation
and developer support will be provided
before you agree to anything. If you hit
a roadblock while trying to implement
something for this company, you
should be able to get answers to techni-
cal questions quickly and easily.

Inquire about the exclusivity of your
deal. If you agree to support the Brand
X API, does that preclude you from
working with another hardware com-
pany? Knowing what you cannot do is
as important as knowing what you
must do.

If you are planning to reuse or
license your game engine to others
some day, how does an agreement with
a hardware company affect those
strategies? Find out what lasting lega-
cies you’ll have to live with after the
current game ships.

Finally, in the event that you’ve just
finished this column and thought to
yourself, “I wish I had the problem of
too many suitors — where’s my
patron?”, take heart. Remember that
the universe of game developers is far
larger than the combined developer
relations staffs at all of the consumer
hardware companies out there. Don’t
wait for them to find you. After all, it
was da Vinci who first introduced him-
self to Francois and offered his services,
not the other way around. ■

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 9

6

P L A NG A M E

Landing the da Vinci Deal

www.gdmag.com

600 Harrison Street, San Francisco, CA 94107
t: 415.905.2200 f: 415.905.2228 w: www.gdmag.com

Publisher
Cynthia A. Blair cblair@mfi.com

EDITORIAL

Editorial Director
Alex Dunne adunne@sirius.com

Managing Editor
Tor D. Berg tdberg@sirius.com

Departments Editor
Wesley Hall whall@sirius.com

Art Director
Laura Pool lpool@mfi.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Jeff Lander jeffl@darwin3d.com
Mel Guymon mel@surreal.com
Omid Rahmat omid@compuserve.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook id Software
Susan Lee-Merrow Lucas Learning
Mark Miller Harmonix
Paul Steed id Software
Dan Teven Teven Consulting
Rob Wyatt DreamWorks Interactive

ADVERTISING SALES

Western Regional Sales Manager
Alicia Langer alanger@mfi.com t: 415.905.2156

Eastern Regional Sales Manager/Recruitment
Ayrien Houchin ahouchin@mfi.com t: 415.905.2788

ADVERTISING PRODUCTION

Vice President Production Andrew A. Mickus

Advertising Production Coordinator Dave Perrotti

Reprints Stella Valdez t: 916.983.6971

MILLER FREEMAN GAME GROUP MARKETING

Group Marketing Manager Gabe Zichermann

MarComm Manager Susan McDonald

Marketing Coordinator Izora Garcia de Lillard

CIRCULATION

Vice President Cirulation Jerry M. Okabe

Assistant Circulation Director Mike Poplardo

Circulation Manager Stephanie Blake

Circulation Assistant Kausha Jackson-Crain

Newsstand Analyst Joyce Gorsuch

INTERNATIONAL LICENSING INFORMATION

Robert J. Abramson and Associates Inc.
President Libby Abramson
720 Post Road, Scarsdale, New York 10583
t: 914.723.4700 f: 914.723.4722
e: abramson@prodigy.com

Chairman-Miller Freeman Inc. Marshall W. Freeman
President/COO Donald A. Pazour
Senior Vice President/CFO Warren “Andy” Ambrose
Senior Vice Presidents H. Ted Bahr, Darrell Denny
Galen A. Poss, Wini D. Ragus, Regina Starr
Ridley, Andrew A. Mickus, Jerry M. Okabe
Vice President/SD Show Group KoAnn Vikören
Senior Vice President/Systems and Software
Division Regina Ridley

BPA International Membership
Applied for March 1998

Miller Freeman
A United News & Media publication

News from the World of Game Development

9

New Products
by Wesley Hall

Motion Capture Made Easy

KAYDARA is shipping Filmbox 1.5, its
real-time production software.

A suite of motion capture, anima-
tion, and interactive rendering tools,
Filmbox is designed to simplify
motion capture mapping and editing.
The suite integrates into the produc-
tion workflow for game, television,
and film productions, and supports all
major 3D packages. Feature highlights
in Filmbox 1.5 include: HumanIK,
Motion Sculpting, and Open Reality.
HumanIK is a new tool for automati-
cally attaching motion capture data to
skeletons. It connects capture data
and character joints for you. Motion
Sculpting’s new control curves allow
you to apply offsets to captured ani-
mation, and give you a secondary
level of animation control. Open

Reality is a cross-platform C++ devel-
oper kit designed specifically for the-
creation of real-time plug-ins for
Filmbox. Developers have complete
access to Kaydara’s performance archi-
tecture, as well as import/export
access to all major 3D products such
as Alias|Wavefront Power Animator/
Maya, Kinetix 3D Studio Max, Newtek
Lightwave, and Softimage 3D.

Available on both the Windows NT
(Intel and Alpha) and Silicon Graphics
IRIX operating systems, Filmbox 1.5 is
immediately available with pricing
starting at $4,995. The Open Reality
SDK is also available separately, direct-
ly from Kaydara.
■ Kaydara Inc.

Montreal, Quebec, Canada

(888) 842-6842

http://www.kaydara.com

Affordable Frame Factory

NEWTEK recently launched and shipped
Frame Factory, its first professional
hardware and software digital video,

paint, and anima-
tion solution.

Frame Factory is
an affordable hard-
ware/software inte-
grated solution (it
sells for under
$4,000) that is
specifically designed
for 3D animation,
real-time video cap-
ture and playback,
2D animation,
video paint, 2D and
3D video manipula-
tion, and video pro-
cessing. It gives you
complete control
over modeling, tex-
turing, painting,
animating, render-
ing, rotoscoping,
compositing, and

final output from one desktop system.
The package includes an uncom-
pressed ITU-R-601 video I/O board,
Lightwave 3D 5.6, and Aura, Newtek’s
video paint production software tool
— all optimized to work together on
Windows NT.

Newtek's Frame Factory for Intel is
immedeately available for a suggested
retail price of $3,995. Minimum sys-
tem requirements are Windows NT
with service pack 3, a Pentium
166MHz, 96MB RAM, drive system
capable of 21MB/Sec sustained data
rate, and available bus mastering PCI
slots for Frame Factory board and
SCSI controller.
■ Newtek

San Antonio, Tex.

(210) 370-8000

http://www.newtek.com

Ready-Made Models

CREDO INTERACTIVE has released
Powermodels, a collection of
ready-to-animate 3D character
models.

The Powermodels collection includes
24 multiracial human characters from
Zygote Media Group, 13 human char-
acters from Geo-Metricks, and six origi-
nal insects created by Credo
Interactive. With Powermodels, Life
Forms users (as well as users of Max
and Lightwave) can now populate
their projects with diverse characters,
create multiple character interaction,
and quickly create large crowd scenes
— even if the crowd is a swarm of
Pixar-inspired bugs and ants.

Powermodels is immediately avail-
able and sells for a suggested retail
price of $249. The models are compati-
ble with Life Forms, 3D Studio Max,
and Lightwave 3D formats.
■ Credo Interactive

Vancouver, B.C., Canada

(604) 291-6717

http://www.credo-interactive.com

New Products: Kaydara’s Filmbox,
Newtek’s Frame Factory, and Credo’s
PowerModels p. 9

Industry Watch: Game Grammys,
Senators’ ratings, and medical break-
throughs p. 10

Product Reviews: Paul Steed reviews
Surface Suite Pro pp.12-14

h t t p : / / w w w. g d m a g . c o m F E B R U A R Y 1 9 9 9 G A M E D E V E L O P E R

Filmbox supports a number of motion capture devices and

displays the virtual character in real time. Filmbox also

supports mutiple characters.

Industry Watch
by Alex Dunne

GAME GRAMMYS? For all of you com-
posers out there who complain that you
don’t get enough credit for your work,
maybe a Grammy Award will ease your
suffering. It was recently revealed that
the National Academy of Recording Arts
and Sciences met with about a dozen of
the game industry's top music profes-
sionals (including George Alistair
Sanger, Bobby Prince, Mark Miller, Rob
Hubbard, and Tommy Tallarico) in San
Francisco, Calif., to discuss the feasibili-
ty of establishing a Grammy Award for
our industry. Think of something along
the lines of “Best Original Soundtrack
from an Interactive Game.” You can
thank Chance Thomas, a composer at
Yosemite Entertainment, for getting the
ball rolling with the Grammys.

MGM INTERACTIVE AND ELECTRONIC
ARTS entered into a worldwide develop-
ment and distribution agreement for
MGM’s next slate of interactive titles. In
the deal, MGM’s upcoming titles,
including TOMORROW NEVER DIES and
ROLLERBALL, will be sold, marketed and
distributed by EA worldwide.

SEGA SOLD 150,000 DREAMCASTS on
its first day of sales in Japan, and the
company is shooting to sell one mil-
lion units by the end of March.

SOFTIMAGE AND NINTENDO announc-
ed a partnership to design and create
game development tools for the N64
home video game console. Under the
development agreement, Nintendo and
Softimage will collaborate on defining
NIFF (Nintendo Intermediate File
Format) 2.0 and Softimage is adding
new features to Softimage 3D 3.8 to
support N64 development. The
Nintendo NIFF 2.0 development envi-
ronment and the Softimage tools will
ship concurrently to all authorized
Nintendo developers in January 1999.

PSYGNOSIS AND CLOTHING FIRM
DIESEL announced that they will co-
promote the upcoming title, G-POLICE

WEAPONS OF JUSTICE. Diesel has designed
jackets, pants, T-shirts and sweatshirts
based on the futuristic game world, for

sale in the U.S. and Europe. A looping
G-POLICE video, point-of-sale material,
and themed areas will be present in all
Diesel stores. This is the second time
that the two companies have worked
together to promote a game (they pro-
moted the original G-POLICE together).

SENATORS Joseph Lieberman (D-Conn.)
and Herb Kohl (D-Wis.) released the
fourth annual “Video Game Report
Card” on the state of game morality,
which was conducted by the
Minneapolis, Minn.-based National
Institute on Media and the Family.
Perhaps not surprisingly, the industry
took it on the chin once again. Kohl
and Lieberman simultaneously praised
the industry for adhering to the five-
year-old ESRB voluntary ratings system
and blasted the gore found in its most
violent games. In citing the worst
offenders on the market this past
Christmas, the report gave DUKE NUKEM:
TIME TO KILL the lowest “KidScore” rat-
ing, followed closely by BIO FREAKS and
MORTAL KOMBAT 4. The report, and rat-
ings for individual games, can be found
at http://www.mediaandthefamily.com.

GT INTERACTIVE signed affiliate label
agreements with Sega PC and Sega Soft
Networks, whereby it will handle the
North American sales and distribution
of PC titles from both Sega companies.
The agreements cover upcoming Sega
games including ENEMY ZERO, VIGILANCE,
and SEGA RALLY 2 CHAMPIONSHIP.

DOCTORS AT THE ROYAL FREE
HOSPITAL in London announced the
results of a test they conducted to treat

patients with stress-induced irritable
bowel syndrome (which you’d be sur-
prised to know affects almost 10 percent
of the population). The patients were
treated using a game developed by a
company called ULTRAMIND, which relied
on sensitive sensors to monitor stress
levels and provide real-time biofeed-
back. The more relaxed the patient, the
better the progress in the game. The
software developers hope that their sys-
tem will be help reduce anxiety levels,
improve workplace performance, train
and educate children to deal with vari-
ous situations, and treat a variety of
psychosomatic disorders. Ah, the won-
ders of our craft.

B I T B L A S T S

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

10

February 9-12, 1999

Milia 99
Palais des Festivals
Cannes, France
Cost: $655
http://www.reedmidem.
milia.com

February 17-20, 1999

TED 9
Monterey Convention Center
Monterey, Calif.
Cost: $2,250
http://www.ted.com

UPCOMING EVENTS

CALENDAR

DUKE NUKEM: TIME TO KILL earned the

lowest “Kidscore” from Senators.

Psygnosis and Diesel team up to cre-

ate game fashion.

B I T B L A S T S

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

12

SurfaceSuite
Pro for Max

by Paul Steed

O ver the past six months, I’ve
done quite a bit of research
on the manipulation of UV

coordinates. My goal is to get the most
effective coverage I can on a given
mesh for our upcoming title, QUAKE 3:
ARENA. Because I’m the animation and
modeling department at id Software,
speed is of the essence for me to do my
job effectively.

When creating a character, I typical-
ly use a cylindrical mapping projection

and make sure the texture tiles, thus
avoiding any unsightly seams. If, how-
ever, the UV coverage needs tweaking,
I turn to UV Unwrap (a modifier that
comes free with Max). Always looking
for the next better thing, I got wind of
a nice little third-party plug-in for 3D
Studio Max called SurfaceSuite Pro by
Sven Technologies.

Advertised as the ultimate texture-
mapping application, SurfaceSuite Pro
for 3D Studio Max consists of four plug-
ins: Texturizer, Multimask, Gaussian
Blend, and Global Map Generation.
Texturizer is the main mapping plug-in
and allows you to manipulate UV coor-
dinates. Multimask and Gaussian Blend
handle the texture-blending features,
and Global Map Generation creates a
single composite map from multiple,
blended, overlapped textures. Sven also
offers all these functions in a stand-
alone application called simply
SurfaceSuite Pro. But since Texturizer is
a plug-in for the modeling and anima-
tion package that I use (Max), I decided
to give it a closer look.

Installing Texturizer was easy
enough. After launching Max and
authorizing the plug-in with Sven, I
added it to my button set of modifiers.
For this exercise, I used a prebuilt mesh
based on the head of John Cash, a pro-
grammer here at id. Before loading in
the head, though, I had to make a
material to apply to it. I used a
256×128 texture created in Adobe
Photoshop from front and side shots of
old Cash. I designed the texture to
wrap-around the mesh, joining seam-
lessly at the back of the head (Figure 1).

Next, I loaded up Cash’s head model.
After assigning the texture in the
Modifier menu, I assigned Texturizer to
the head. A standard mapping gizmo of
the planar variety immediately popped
up, oriented from the top. In the man-
ual, Sven recommends using a planar
projection instead of a cylindrical or
spherical one (although SurfaceSuite
supports all three types). Although this
is contrary to the technique that I nor-
mally use, the manual explains that a
planar projection works for 95 percent
of the jobs for which you’ll use
SurfaceSuite. Hmmm…

I rotated my viewport so that Cash’s
untextured head appeared straight on.
The manual directs you to apply
Texturizer in the perspective viewport,
but I would have preferred to use a
front viewport. I clicked on Subobject
and brought up Projection. As planar
projection is already selected by
default, I clicked on Viewport Align to
align the mapping gizmo to the view-
port. Finally, selecting Fit expands the
gizmo a little to “fit” the object’s front-
on dimensions (Figure 2).

So far, so good. Clicking Association
under the Subobject menu beneath
Projection presented me with a menu to
create association points. As association
points are like making your own UV
points on the fly, this sounded neat.

Sven suggests laying down five
points on the object’s mesh and five
corresponding points on the texture
that will wrap around it, and then
naming them (such as, “Right Eye,”
“Left Eye,” and so on). These five mark-
ers, which should correspond to each
eye, the nose, and the two corners of
the mouth, are used as reference points
to apply the texture onto the object
properly. Naming these points in that
fashion is way too time consuming so,
with the Define Texture Points window
open, I’d lay a couple points on the
texture then a couple points on the
mesh. This approach worked fine until
I added a point at each ear. Ouch.
Unfortunately Texturizer didn’t like
that too much (Figure 3).

I was pretty sure that the problem
was with the planar mapping, so I
thought I’d lump myself into that five
percent that uses something other than
the planar mapping scheme and give
cylindrical mapping a poke. I changed
the Projection subobject under the
Texturizer modifier from Planar to

F I G U R E 1 . Front- and side-views of

Cash’s head and the resultant seam-

less texture.

F I G U R E 2 . Fitting the mapping

gizmo to an object.

Paul Steed has been making low-polygon models and animating since 1992. He’s
been at id for more than two years now, having worked on QUAKE 2 and the current
project: QUAKE 3 ARENA. He very much enjoys being a guy and equally enjoys doing
very stereotypical guy things.

Excellent Very Good Average PoorBelow Average

h t t p : / / w w w. g d m a g . c o m F E B R U A R Y 1 9 9 9 G A M E D E V E L O P E R

13

Cylindrical, and as you can see, the
results weren’t pretty (Figure 4). So I
deleted the old association points and
created new ones using the new cylin-
drical mapping type. Starting over
again, I laid down the prescribed five
points in the Define Texture Points
window, and did the same on the
mesh. That did the trick (Figure 5).

Okay. I have a few small complaints
with this process up to now. First,
although the texture I was previously
editing in the Define Texture Points
window was still loaded when I went
back to it, Texturizer didn’t remember
my previous window setting (I previ-
ously had a zoom factor setting of 2:1
on the source image). The second
quirk I noticed was that, while I could
delete editing points on the mesh
using my keyboard’s [Delete] button,
deleting association points in the
Define Texture Points window didn’t
support the [Delete] key. You have to
use the Delete button in Texturizer.
Finally, when you create a point in the
Define Texture Points window, it’s
given a number value that is consecu-
tive from the number value of the last
point created. When a point is deleted,
the numbering system still marches
on. I guess this is because the random

numbering is simply a temporary
name for you to change. It’d be nice if
the numbering tied itself directly to
the association points.

Adding more association points tight-
ens up the map-to-mesh relationship
even more, but I found that knowing
where to create these points is an
acquired skill. I created some points at
each ear, but that caused the mapping
to go haywire yet again. I was more suc-
cessful when I tried tightening up the
forehead by creating two points at the
front hairline. By creating a point at the
back of the head, I was able to remove
some weird texture-mapping effects at
the side of the mesh. Overall, the cylin-
drical mapping method worked well,
except at the top of the mesh, where
cylindrical mapping schemes invariably
have problems (Figure 6).

In an attempt to fix problems associ-
ated with the placement of the charac-
ter’s hairline, I moved some association
points around. It’s interesting to see
what happens when you move these
points: the entire mapping outline of
the mesh seen in the window moves
around and is updated in the viewport.

However, I found that attempts to cor-
rect the hairline came at a cost: the
glasses started looking kind of droopy.
So I decided to delete the current asso-
ciation points at the hairline and cre-
ate new ones at the different spots, but
that didn’t work. The glasses still
drooped (Figure 7).

So I tried adding more association
points around the glasses. Here, I got
to play with one of the more interest-
ing aspects of Texturizer: the Move to
Surface button. When it’s on, this fea-
ture lets you select and move associa-
tion points while staying “glued” to
the mesh. This deforms and changes
the texture as the points are moved
around. Unfortunately, it didn’t do me
much good because I couldn’t figure
out a comfortable correspondence
between moving the association points
in the Define Texture Points window
and moving points on the surface of
the mesh. When do you need to move
one and not the other?

I decided to live with the droopy
glasses for the time being and concen-
trate on a problem on the side of the
head. In the process of wrapping the
texture around the object, an ear disap-
peared. Because my last attempt to cre-
ate an association point at the ears
turned out to be a failure, I trod careful-
ly, cursor near the Undo button. I creat-
ed a point by the right ear of our texture
subject, but I simply couldn’t get the ear
to align to the mesh properly.

At this point, I deduced that the
default naming of the association
points had to do with the dilemma.
More specifically, the default names
given to the points on the mesh had
to correspond to the like-named associ-
ation points on the texture. And
because I’d been adding and deleting

F I G U R E 3 . Something’s wrong with

these association points.

F I G U R E 6 . Relative success using

the cylindrical mapping method.

F I G U R E 4 . Switching from planar to

cylindrical mapping in the middle of

the operation isn’t advisable.

F I G U R E 5 . Assigning new associa-

tion points with a cylindrical mapping

type works pretty well.

F I G U R E 7. Manipulating association

points at the hairline led to problems

around the glasses.

B I T B L A S T S

14

points haphazardly during the course of
fitting the texture to the object, default
names for corresponding points on the
mesh and texture were being assigned
different numbers.

To solve the problem, I went to the
mesh and created a series of points and
then deleted them to resynchronize the
default point names. However, even
with this problem solved, the results
weren’t great, as you can see (Figure 8).

Finally, I decided to cut my losses and
accept the fact that using Texturizer,
poor Cash would have a permanent bad
hair day on the right side of his head.

JUDGES SAY… In my opinion, Texturizer
is a decent tool, but it has some
annoying aspects to it. I found the
necessity to name association points in
order to get better mapping results to
be a bad time sink. This product does
feature some powerful multitexture
blending capabilities and animatable
texture mapping, but I don’t find these
compelling enough to switch from UV
Unwrap. While SurfaceSuite possesses
some pretty good functionality, it did
nothing to boost my productivity.

Overall, I think SurfaceSuite’s
Texturizer plug-in for 3D Studio Max is

promising, but ultimately outmatched
by UV Unwrap. However, if you’re not
using Max and don’t have a utility of
this nature, you should check out
Sven’s stand-alone version of
SurfaceSuite. Softimage, Lightwave,
Maya, and Photoshop files can be easily
brought into SurfaceSuite Pro, and the
package offers the same features as the
set of plug-ins — Texturizer, Multimask,
Gaussian Blend, and Global Map
Generation — without tying you to
Max. Texturizer has promise, but for
now, my money’s on UV Unwrap for
UV manipulation in 3D Studio Max. ■

F I G U R E 8 . Synching up association

points still didn’t fix the ear problem.

Company: Sven Technologies
Palo Alto, Calif.
(650) 852-9242
http://www.sven-tech.com

Price: $495 (stand-alone
version is $595)

System Requirements:
Windows 95/98/NT, 3D
Studio Max, 32MB RAM
and an SVGA video card

Pros

1. Easy to set up.

2. Four plug-ins instead of
one.

3. Moving association points
around on the mesh is
very slick.

Cons

1. Tutorials are a little weak.

2. The editing window
doesn’t remember
settings.

3. Naming infinitely num-
bered association points
slows down the work flow.

SurfaceSuite Pro for 3D Studio Max:

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

b y J e f f L a n d e r G R A P H I C C O N T E N T

Last month, I discussed the use of the
dot product and cross product to han-
dle collision detection for 2D applica-
tions. This month we’ll look at how to
apply the same principles to 3D. Most
discussions of collision detection for
real-time game applications begin with
bounding spheres and bounding boxes.
These two tests are very rough indica-
tors of whether or not a collision has
occurred. Bounding spheres are a very
fast method for testing collisions.
However, as we saw last month,
bounding spheres don’t generally pro-
vide the best approximation of an
object’s extents.

Don’’t Box Me In

A n axis-aligned bounding box
(AABB) is also a very quick way of

determining collisions. The fit is gen-
erally better than a bounding sphere
(especially if the object you are
bounding is a box itself). You can see
an AABB on an object in Figure 1.
However, once you rotate the object a
little, the bounding box may not be
nearly as efficient, as you can see in
Figure 2.

This discrepancy could clearly lead
to cases in which you mistakenly
assume that a collision has occurred.
But, as a first step, calculating an AABB
may not be too bad. We could allow
the original bounding box as calculat-
ed in Figure 1 to orient along with the
object (Figure 3). This is called an ori-
ented bounding box (OBB). It’s defi-
nitely a better fit than Figure 2, howev-
er, I have lost the key benefit of AABBs.
Aligned axes make AABBs easy to use
in collision detection. Checking

whether a point has entered the box
involves only a trivial calculation.
With OBBs, checking for collisions is
more complicated. In many applica-
tions, OBBs may be worth pursuing
further, but for a quick first check, I
want to stick with AABBs.

So what are the main problems with
coding up AABBs? Well, the biggest
issue with using AABBs is that they
need to be recreated every time the
object changes orientation. This means
that every vertex must be transformed
by the object’s matrix and the mini-
mum and maximum extents must be
calculated. Listing 1 contains a routine
that calculates an AABB for an object.

The noteworthy line in this code is the
MMuullttVVeeccttoorrBByyMMaattrriixx(()) call. This function
transforms each vertex coordinate of

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 1 9 9 9 G A M E D E V E L O P E R

19

When Two Hearts Collide

F ebruary is Valentine’s month. Spring is in the air. People can meet, fall

in love, and have their hearts broken all before their first cup of coffee.

I don’t think we’ve reached the point, yet, where we can adequately

simulate a broken heart. However, I do think we can reasonably detect

whether two people are close enough for their hearts to collide.

Jeff watches over a vast empire at Darwin 3D. He is also responsible for any collisions
involving his e-mail box at jeffl@darwin3d.com. Test his collision response efficiency
by sending him questions and comments.

F I G U R E 1 . Axis-aligned bounding

box on an object.

F I G U R E 2 . Axis-aligned bounding

box on a rotated object.

F I G U R E 3 . Oriented bounding box

on a rotated object.

the object into world space, given the
current object orientation.

In the best case, this transformation
can be reused when it comes to draw-
ing the model. However, in the worst
case, you’ll be duplicating transforma-
tion work. In any case, the CPU is han-
dling the matrix transformation for
these bounding boxes. With the
appearance of transformation hardware
on graphics cards (such as the 3Dlabs
Glint GMX and Diamond Fire GL
5000), this is a very costly operation.
As this kind of hardware begins to dip
into the consumer 3D hardware space,
programmers need to be very careful to
avoid using techniques that require
vertex transformation by the CPU.
Calculating a bounding box for a
model with many vertices is a fairly
expensive process. If your models are
large, this can be a big frame-rate vam-
pire that sucks the life right out of
your game.

Getting More Bang For My Buck

Y ou may wonder if there is any
way to avoid having to transform

every vertex into world space in order
to find the bounding box. There is a
way. However, like many things in
computer game programming, there is
a trade-off. Because I’ve already calcu-
lated the bounding box of the object
in its rest position, it’s possible to
transform only those extreme points
by the current orientation and get a
new bounding box. In other words, I
can take the vertices of the object’s
OBB and use the maximum and mini-
mum of those positions to create a
new AABB. I’m guaranteed that the
new bounding box will completely
contain the object because I’ve used
the extreme extents of the initial posi-
tion to create this new box. It may not
be a tight fit, but it will fit. The good
part is that this solution only takes
eight transformations to calculate this
new box — quite a bit of savings if
your model contains many vertices.
You can see the difference in Figure 4.
The image on the right is the true
AABB for the object. The image on the
left is created using the yellow OBB as
the source for the AABB. Listing 2 con-
tains the code for calculating a bound-
ing box this way.

Obviously, for some cases, this

G R A P H I C C O N T E N T

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

20

//

//// PPrroocceedduurree:: RReeccaallccFFuullllBBBBooxx

//// PPuurrppoossee:: RReeccaallccuullaatteess tthhee BBBBooxx aassssoocciiaatteedd wwiitthh aa bboonnee bbaasseedd oonn tthhee

//// nneeww ppoossiittiioonn ffoorr tthhee vveerrttiicceess.. TTiigghhtteerr ffiitt iinn

//// mmoosstt ccaasseess.. HHoowweevveerr,, hhaass ttoo pprroocceessss aallll vveerrttiicceess

//

GGLLvvooiidd CCOOGGLLVViieeww::::RReeccaallccFFuullllBBBBooxx((tt__BBoonnee **ccuurrBBoonnee,, ttVVeeccttoorr **mmiinn,,ttVVeeccttoorr **mmaaxx))

{{

////// LLooccaall VVaarriiaabblleess //

ttVVeeccttoorr **tteemmpp,,tteemmppRReess;; //// XX,,YY,,ZZ VVEECCTTOORRSS

ttNNoorrmmaallVVeerrtteexx **nnvvDDaattaa;; //// VVEERRTTEEXX WWIITTHH NNXX,,NNYY,,NNZZ,,XX,,YY,,ZZ

tt__VViissuuaall **vviissuuaall;;

//

vviissuuaall == ccuurrBBoonnee-->>vviissuuaallss;; //// GGEETT AATT TTHHEE VVIISSUUAALL AATTTTAACCHHEEDD TTOO AA BBOONNEE

nnvvDDaattaa == ((ttNNoorrmmaallVVeerrtteexx **))vviissuuaall-->>vveerrtteexxDDaattaa;; //// TTHHEE AACCTTUUAALL IINNTTEERRLLEEAAVVEEDD VVEERRTTEEXX DDAATTAA

ffoorr ((iinntt lloooopp == 00;; lloooopp << vviissuuaall-->>ffaacceeCCnntt ** vviissuuaall-->>vvPPeerrFFaaccee;; lloooopp++++))

{{

tteemmpp == ((ttVVeeccttoorr **))&&nnvvDDaattaa-->>xx;; //// PPOOIINNTTEERR TTOO TTHHEE VVEERRTTEEXX XXYYZZ VVAALLUUEESS

MMuullttVVeeccttoorrBByyMMaattrriixx((&&ccuurrBBoonnee-->>mmaattrriixx,, tteemmpp,,&&tteemmppRReess));; //// MMUULLTT BBYY TTHHEE BBOONNEE MMAATTRRIIXX

//// FFIIRRSSTT VVEERRTTEEXX,, SSEETT IITT AASS TTHHEE MMAAXX AANNDD MMIINN

iiff ((lloooopp ==== 00))

{{

mmeemmccppyy((mmiinn,,&&tteemmppRReess,,ssiizzeeooff((ttVVeeccttoorr))));;

mmeemmccppyy((mmaaxx,,&&tteemmppRReess,,ssiizzeeooff((ttVVeeccttoorr))));;

}}

eellssee

{{

iiff ((tteemmppRReess..xx >> mmaaxx-->>xx)) mmaaxx-->>xx == tteemmppRReess..xx;;

iiff ((tteemmppRReess..yy >> mmaaxx-->>yy)) mmaaxx-->>yy == tteemmppRReess..yy;;

iiff ((tteemmppRReess..zz >> mmaaxx-->>zz)) mmaaxx-->>zz == tteemmppRReess..zz;;

iiff ((tteemmppRReess..xx << mmiinn-->>xx)) mmiinn-->>xx == tteemmppRReess..xx;;

iiff ((tteemmppRReess..yy << mmiinn-->>yy)) mmiinn-->>yy == tteemmppRReess..yy;;

iiff ((tteemmppRReess..zz << mmiinn-->>zz)) mmiinn-->>zz == tteemmppRReess..zz;;

}}

nnvvDDaattaa++++;;

}}

}}

L I S T I N G 1 . Calculate an axis-aligned bounding box for an object.

F I G U R E 4 . Fast and slow methods for calculating AABBs.

method doesn’t result in nearly as
snug a fit as our original AABB calcula-
tion. However, it’s certainly faster,
and on a system with hardware vertex
transformation, you may prefer it.
Which method is right for your game?
How should I know? Try them both
and see. If you’re using bounding
boxes as a quick early check and have
more sophisticated methods in follow-
up tests, this quicker method may be
good enough.

When creating the initial bounding
box for the faster AABB method, it’s
easiest to calculate the AABB of the
object in its initial rest position.
However, the initial bounding box
doesn’t have to be axis-aligned. You
can achieve a better fit by defining an
OBB in the modeling program when
the object is built. The method will
then use the OBB to calculate the cur-
rent AABB. Depending on the model,
an initial OBB may really help.
Certainly, a box built on a diagonal is a
perfect candidate for an initial OBB.

When Two Boxes Collide

M y nice new bounding boxes
overlap in two of my objects.

Chances are, I have a collision occur-
ring between them. But I have to make
sure. Also, in order to do some inter-
esting things, I need to determine
exactly where they are touching. Take
a look at Figure 5.

The bounding box of the two objects
clearly are colliding. It’s also just as
clear that the objects themselves are
not. This is why being a human is great
and being a game programmer is diffi-
cult. A child can easily determine that
the two objects in the picture are not
actually hitting each other. If a game
relies solely on bounding boxes for col-
lision detection, players may feel
cheated when two objects “hit” when
it appears as if they didn’t. So, how can
the computer determine that this is
really not a hit? Notice that both of
these objects are convex. This distinc-
tion is very important. I’ll talk about
what to do if your object is concave
later, but for now, let me only consider
the case where the two objects being
tested are convex.

Last month, I talked about the idea of
separating lines. When dealing with
3D, if I can find a plane that separates

the two objects, then I know for certain
that the objects are not colliding. I’ll
begin by considering each face of each
object as the separating plane. It should
be clear that the face highlighted in yel-
low in Figure 6 defines a plane that

completely separates the two objects.
In order to test this separation plane,

I need to make sure that all the vertices
of the right object are on the other side
of this plane from the test object on
the left. It’s helpful to have a normal
defined for each face in the model. If
you don’t have face normals defined in

G R A P H I C C O N T E N T

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

22

//

//// PPrroocceedduurree:: RReeccaallccBBBBooxx

//// PPuurrppoossee:: RReeccaallccuullaatteess tthhee BBBBooxx aassssoocciiaatteedd wwiitthh aa bboonnee bbaasseedd oonn tthhee

//// oorriiggiinnaall bboouunnddiinngg bbooxx.. TThhiiss iiss ffaasstteerr tthheenn tthhee ttrruuee BBBBooxx iinn

//// mmoosstt ccaasseess.. HHoowweevveerr,, tthhiiss BBBBooxx iiss nnoott aass ttiigghhtt aa ffiitt..

//

GGLLvvooiidd CCOOGGLLVViieeww::::RReeccaallccBBBBooxx((tt__BBoonnee **ccuurrBBoonnee,, ttVVeeccttoorr **mmiinn,,ttVVeeccttoorr **mmaaxx))

{{

////// LLooccaall VVaarriiaabblleess //

ttVVeeccttoorr tteemmppRReess;;

iinntt lloooopp;;

//

ffoorr ((lloooopp == 00;; lloooopp << 88;; lloooopp++++)) //// LLOOOOPP TTHHRROOUUGGHH AALLLL 88 BBBBOOXX CCOOOORRDDSS

{{

MMuullttVVeeccttoorrBByyMMaattrriixx((&&ccuurrBBoonnee-->>mmaattrriixx,, &&ccuurrBBoonnee-->>vviissuuaallss-->>bbbbooxx[[lloooopp]],,&&tteemmppRReess));;

mmeemmccppyy((&&ccuurrBBoonnee-->>vviissuuaallss-->>ttrraannssBBBBooxx[[lloooopp]],,&&tteemmppRReess,,ssiizzeeooff((ttVVeeccttoorr))));;

iiff ((lloooopp ==== 00))

{{

mmeemmccppyy((mmiinn,,&&tteemmppRReess,,ssiizzeeooff((ttVVeeccttoorr))));;

mmeemmccppyy((mmaaxx,,&&tteemmppRReess,,ssiizzeeooff((ttVVeeccttoorr))));;

}}

eellssee

{{

iiff ((tteemmppRReess..xx >> mmaaxx-->>xx)) mmaaxx-->>xx == tteemmppRReess..xx;;

iiff ((tteemmppRReess..yy >> mmaaxx-->>yy)) mmaaxx-->>yy == tteemmppRReess..yy;;

iiff ((tteemmppRReess..zz >> mmaaxx-->>zz)) mmaaxx-->>zz == tteemmppRReess..zz;;

iiff ((tteemmppRReess..xx << mmiinn-->>xx)) mmiinn-->>xx == tteemmppRReess..xx;;

iiff ((tteemmppRReess..yy << mmiinn-->>yy)) mmiinn-->>yy == tteemmppRReess..yy;;

iiff ((tteemmppRReess..zz << mmiinn-->>zz)) mmiinn-->>zz == tteemmppRReess..zz;;

}}

}}

}}

L I S T I N G 2 . Faster AABB calculation using starting OBB.

F I G U R E 5 . Two objects near a colli-

sion.

F I G U R E 6 . Finding a separating

plane.

the model file, you can create them by
averaging the vertex normals or by tak-
ing the cross product of two of the vec-
tors that make up the face. I can begin
once I have a face normal to test with
— such as N in Figure 6. I create a vec-
tor between a vertex on the test face
and each vertex on the colliding
object. For example, I create a vector
between points A and B in Figure 6 and
call it Vector AB. Then I take the dot
product of that vector and the face nor-
mal, N • Vector AB. If this value is posi-
tive, vertex A is not colliding with the
object. If all the vertices in the collid-
ing object are on the far side of the sep-
arating plane, then I definitely don’t
have a collision, and I’m done.

What happens if I’ve gone through
all of the faces and cannot find a sepa-
rating plane? Do I definitely have a col-
lision? Unfortunately, no. There may
be a separating plane that’s not a face
on either object. An infinite number of
planes exist, so how can I find one that
separates the two objects?

Balancing on a Polygon Edge

L uckily for me, I don’t have to try
arbitrary planes to see if they sep-

arate the objects. It turns out that if
the separating plane is made up of a
face on the object, then it must con-
tain an edge in the object. Figure 7
displays two objects that cannot be
separated by any face in either object.

In this case, I create a plane com-
posed of edge A and vertex B. If all of
the vertices of Object 1, with the
exception of those that make up edge
A, are on one side of the plane, and all
of the vertices of Object 2, with the
exception of vertex B, are on the other
side, then I may have found a separat-
ing plane. One last check has to be
made in order to make sure that vertex
B isn’t actually on edge A. If they were
collinear, that would obviously be a
collision. Once that possibility is ruled
out, I can mark this as the separating
plane.

Once I’ve tried every edge/vertex
pair as well as all the faces, then the
objects must be colliding. However,
once I’ve found this separating plane, I
can be sure that the objects are not col-
liding and I can move on. After the
separating plane is found, it should be
stored. Going through all of the faces

and edges to find a plane is obviously
pretty expensive to calculate. By saving
the separating plane from the previous
frame, I can take advantage of the fact
that the separating plane tends to
remain the same over several frames.

As I mentioned earlier, all of these
tests only handle convex objects. It is
much easier to determine collision on
convex objects. If your objects are
concave, you will need a method for
creating a convex hull around the
object. You can do this through a vari-
ety of methods. The concave object
can be broken into several convex
objects. There are also automatic
methods of generating a convex hull
around a concave object. One of the
most popular methods is called QHull.
You can find a link to it in the refer-
ences. However, it may be much more
efficient to have the artists create a
convex collision object for every
object in the game. That way, the
artist can make the decisions about
exactly what features are important to
define as part of the collision bound-
ary. This approach abides well by the
game developer’s philosophy: “Do as
much work up front as possible, espe-
cially if it saves run time.”

Boom, Boom, Out Go the Lights

T hat’s all the time for this month.
The sample application will allow

you to load an object and play around
with bounding boxes. When two
objects have overlapping bounding
boxes, a separating plane will be found,
if possible. If not, a collision will be
reported. Next month, I’ll take up the
issue of collision response so we can
find out what to do once a collision
has happened. ■

G R A P H I C C O N T E N T

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

24

Collision detection is a very active area

of research. This method represents

only one.

• Gottschalk, Lin, and Manocha.

“OBBTree: A Hierarchical

Representation for Rapid Interference

Detection.” University of North

Carolina, Chapel Hill.

http://www.cs.unc.edu/~geom/OBB/

OBBT.html

I mentioned the use of oriented bound-

ing boxes. This paper extends this

method to include a hierarchy of OBBs.

Also, several sources discuss the use of

tracking the closest features of two

objects in order to determine when a

collision occurs.

• Gilbert, Johnson, and Keerthi. “A fast

procedure for computing the distance

between complex objects in three-

dimensional space.” IEEE Transactions

on Robotics and Automation, April

1988, pp. 193-203.

• Lin, M. C. “Efficient Collision Detection

for Animation and Robotics.” Ph.D.

Thesis, University of California,

Berkeley, December 1993.

• Baraff, David, and Andrew Witkin,

“Physically Based Modeling,” SIG-

GRAPH Course Notes, July, 1998, pp.

D32-D40. This paper also describes a

method for using bounding box frame

coherence to achieve more efficiency.

• Barber, Dobkin, and Huhdanpaa, “The

Quickhull algorithm for convex hulls,”

ACM Transactions on Mathematical

Software, Dec. 1996. This is the QHull

library for calculating convex hulls. You

can find more info at

http://www.geom.umn.edu/

software/qhull/

• There are also several libraries of col-

lision routines available for use in non-

commercial applications. Commercial

applications may require a fee, so be

sure to contact the source before using

any library in a game application. These

include I-Collide, V-Collide, Enhanced

GJK, and others. A good link for all of

these is at the University of North

Carolina, Chapel Hill web site,

http://www.cs.unc.edu/~geom.

RR EE FF EE RR EE NN CC EE SS ::

F I G U R E 7. Separating two objects by

an edge-plane.

b y M e l G u y m o n A R T I S T ’ S V I E W

parts so that the result is a convincing,
immersive world. We’ll look at ways to
populate the environment with vast
detail (with minimal effort), as well as
go over some general tips and tricks on
creating the world itself.

The Art Bible

I n January, we discussed the impor-
tance of the art bible as it per-

tained to game-play–critical objects.
We saw how the art bible served as a
guide to both designers and artists
when trying to apply form to func-
tion and minimize the development

overhead while maintaining a coher-
ent look-and-feel for game-play–criti-
cal objects. If the environmental art
serves to define the aesthetic for the
game, and the art bible outlines that
aesthetic, it therefore follows that
when it comes to creating convincing
environments, the art bible remains
the single-most critical document to
which the artists will refer. Please see
my column in last month’s issue of
Game Developer for more discussion
about putting together a solid, evolv-
ing art bible. In short, a solid art bible
should have enough information,
organized intelligently, to completely
familiarize new art team member with
the game in only a few days.

What Constitutes an Environment?

I n the most general sense, environ-
mental art includes all those

resources necessary to create a graphi-
cally convincing world. It is critical to
plan for and identify those items that
are the minimum required for creating
an immersive RT3D experience because
time and personnel are both limited.
These critical environmental items fall
into three basic categories:
TOPOGRAPHY. Potentially the most time-
intensive part of the project, this is the
underlying structure within which all
game play takes place. Depending on
the genre of your game, the topogra-
phy can be anything from a corridor-
based underground maze to a string of

floating islands suspended in the
clouds. The important thing to remem-
ber is that you will be building your
world literally from the ground up, so
isolating a consistent technique early
on is critical. Because the rest of your
objects need to fit within this land-
scape, it is a good idea to spend extra
time tweaking the style and composi-
tion, otherwise you may find yourself
redesigning work that was based on a
different aesthetic. The techniques for
creating terrain are often specialized
and unique to the rendering package
being used, although with standardized
hardware acceleration, the playing field
is becoming increasingly level. This
topic alone could fill an entire article,
so we’re going to assume uniform com-
petency and move on to the next part
of the process.
ARCHITECTURE. All artificial structures
that game play takes place in or
around constitute architecture.
Usually, these spaces are separate from
the world topography and can be
developed concurrently. If the topog-
raphy determines the overall atmos-
phere for the world, then the architec-
ture determines its character. And
because most game-play objectives
depend on some sort of artificial struc-
tures to give them functionality, the
architectural style for the world must
be outlined before the game-play–criti-
cal items can be created.
AMBIENT OBJECTS. These are the little
things that are used to fill out the
environment. Though not critical to

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 1 9 9 9 G A M E D E V E L O P E R

27

Playing God: Creating

Convincing Environments in RT3D

I n last-month’s column, part one of the “Playing God” series, I outlined a process

for streamlining the production of game-play–critical objects. This time around,

we’ll look at the problem on a larger scale. Instead of focusing on the creation of

each individual model, we’ll examine how to assemble the separate component

Mel has worked in the games industry for several years, with past experience at Eidos and Zombie. Currently, he is working as the
art lead on DRAKAN (http://www.surreal.com). Mel can be reached via e-mail at mel@surreal.com.

Environmental Object
Creation

Art Bible

Architectural Concepts

Model Construction

Object Placement

Ambient Object Assembly

Final Lighting and Effects Pass

F I G U R E 1 . Environmental object cre-

ation flowchart.

game play, these items are essential in
that they make the world believable. If
the architecture objects in a level are
analogous to a basic set of Legos, then
the ambient objects in the level are
analogous to the Lego expansion sets.
Sure, you could do some pretty cool
stuff with the basic set, but to get your

creations looking really cool and
diverse, you need to bring out the
expansion sets. Organizing the ambi-
ent objects in a way that is intuitive to
use for artists and level designers can
be a problem in itself, not to mention
the mammoth task of creating all the
objects themselves. To address this

problem we’re going to be working
with object databases.

Working with Object Databases

C reating a sufficient level of com-
plexity in the environment is a

task that can be tedious and time-con-
suming. One of the most efficient
methods for creating detail in the envi-
ronment is by means of object databas-
es. An object database consists of a
group of objects that can be used to cre-
ate isolated pockets of detail, or to bring
coherence to existing game-play areas.
Let’s say, for example, that you want to
create several villages, each using the
same style of architecture. The object
database for the villages would contain
three or four different buildings, plus
an assortment of crates, barrels, wood-
piles, curing sheds, outhouses, and so
on. By using these objects in different
combinations, a large degree of varia-
tion can be achieved with minimal
overhead. The goal of the object data-
base is to provide artists and level
designers with a goody-bag full of
generic building blocks with which to
populate the world.

Figure 1 shows an example flowchart
for the Environmental Creation
Process. While these steps apply specifi-
cally to creating ambient game-play
areas, the basic precepts can be applied
to almost any part of the RT3D devel-
opment process. The important thing
is that you develop a process and stick
to it. To examine the process more
closely, let’s look at an example, a
farmhouse in the mountainous region
of Surreal’s world of DRAKAN.

Architectural Concepts

O nce the basic architectural style is
delineated in the art bible, each

individual structure needs to be created
on paper and then tested against the
original concept. As the designs are
being fleshed out, the art team can gen-
erate feedback for each individual
piece. And since you are still working
on paper, this is the point in the
process where changes to the design
can be made with rapid turnaround and
little or no work loss. Figure 2 shows an
example of a set of design sketches for
human-based architecture.

A R T I S T ’ S V I E W

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

28

F I G U R E 3 . Modeled house.

F I G U R E 2 . Architectural concept sketches from DRAKAN.

Model Construction

A fter the concept has been mas-
saged and checked against the

overall aesthetic, the structures can
actually be built in 3D. Figure 3 shows
the model of a farmer’s house based on
the previous architectural concept
sketches. Note that there is little devia-
tion from the concept sketch to the
completed model. This is a good

benchmark against which to measure
the effectiveness of your process. While
each step brings an evolution of the
aesthetic, if there are large style gaps
between each step, you are probably
not spending enough time in the early
phases of the game. When a deadline
looms, the processes tend to fall to the
wayside due to time pressures. This can
cause problems later on because as the
aesthetic for each phase diverges from

the original concept, the results
become less predictable, reducing your
ability maintain a coherent artistic
vision throughout the game.

Object Placement

I n Figure 4, we can see the first pass
at creating the farm. Note that the

only things present at this point are
the topography with its associated
textures and the farmhouse. While the
house is well designed and readily
identifiable, the overall effect is not
very convincing. The house lacks con-
text. At this point it’s time to go to
the object database and begin assem-
bling the individual pieces to add to
the scene.

Ambient Object Assembly

I n Figure 5, we can start to see the
beginnings of a realistic outdoor

scene. From our mountain world
object database, some trees have been
added to help achieve the effect of a
mountainous forest. In this case,
instancing and object redundancy
have been exploited — there are, in
reality, only two unique tree models
in this scene, but they have been
scaled and rotated to create variation
and hide the similarities. Here again,
we are getting the maximum amount
of use out of our objects because we
are using instancing. Note, also, that
the farmhouse now has a better size
reference, where before there was
none. Still, the effect is not complete;
the house appears in the scene as the
only man-made object, and looks out
of place.

Now it’s time to dip into the farm-
house object database goody-bag and
customize our farm. To do so, we will
add four objects: a barrel, a crate, a
cart, and a section of fence. With the
addition of these ambient objects, the
farmhouse is unmistakable (Figure 6).
Not only do the ambient objects serve
to give variation and diversity to each
individual structure, the additional
objects serve to cement firmly the
structure’s place in the landscape,
while filling out the scene with inter-
esting eye candy. This aids in game
play as well because now that there is a
fence, the player is funneled directly

A R T I S T ’ S V I E W

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

30

F I G U R E 4 . Structure placed in landscape.

F I G U R E 5 . Farmhouse with trees.

towards front side of the house.
Finally, with the addition of a cow or
two, the scale of the building becomes
even more recognizable, so that the
overall effect is very convincing.

Final Lighting and Effects Pass

O nce you’ve got all the models
assembled in your world, it’s time

to add the finishing touches to the area
to give it some atmosphere (Figure 7).
We’ve adjusted the lighting in the
world to mimic the ruddy glow of a set-
ting sun, with a small amount of blue
in the shadows. We’ve also added a
small campfire in front of the house to
give it some additional character. Most
engines that support hardware acceler-
ators also support colored lighting, so
it’s a good bet you’ll be able to get your
scene looking something like this.
Now, go back and compare this result
with the image in Figure 4, and you
can see that with just a little prepara-
tion and attention to detail, a few
objects can make a huge difference.

Tips and Tricks

TEXTURES AND LIGHTING. When creating
textures that are going to be lit with in-
game lighting, you’ll need to be careful
to avoid textures that are too dark.

Most lighting routines slightly modify
the existing RGB values of the texture,
which boosts the already existing hues.
This means that dark textures tend to
stay dark, which basically defeats the
lighting process.
LIGHTING. As we demonstrated in the
above examples, taking the time to
light your levels with dynamic color
combinations can yield a tremendous
return on the time invested. However,

this does take time to get right, so do
some experimentation and schedule
yourself enough time to tweak it.
OBJECT DATABASE USAGE. One of best ways
to take advantage of the object data-
base is to have a junior level designer
or artist simply go over the levels and
drop in objects where they see fit. This
is a good experience for the artist or
designer and it doesn’t tie up your key
people on a job that is somewhat
tedious and mundane.
USE MOCKUPS WHERE POSSIBLE. If your team
is coding their own engine, there will
probably be some dead time until the
art path is solidified and you can actu-
ally get your resources into the game.
In the mean time, try setting up your
environments in whatever modeling
package you’re using in-house
(Softimage, 3D Studio Max, and so
on). This works especially well when
trying to come up with special effects
routines in whatever engine you’re
using. By sitting down with an engi-
neer and playing around with the par-
ticle system in your modeling package,
for example, you can work together to
visualize the effect you’re trying to
achieve before any time is wasted
moving in the wrong direction. ■

A R T I S T ’ S V I E W

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

32

F I G U R E 6 . Additional object placement.

F I G U R E 7. Final lighting and polish.

Alan Patmore, Hans Piwenitzky, and

Louise Smith.

SS PP EE CC II AA LL TT HH AA NN KK SS ::

H A R D T A R G E T S

in as short a period of time, as 3Dfx. In
1999, 3Dfx will have to transition from a
3D-only game players’ brand to a fully
fledged graphics company that competes
in both OEM and retail markets. How
3Dfx competes, and how the competi-
tion behaves, will define the landscape
of 3D graphics for PC game developers.

Voodoo3: A Miss or a Direct Hit?

A t Fall Comdex 1998, 3Dfx
announced Voodoo3. In many

ways, Voodoo3 is what Banshee could
have been, and in some ways it’s a
descendant of Voodoo. However,
Voodoo3 certainly isn’t a clear-cut win-
ner for the company because it puts
3Dfx in the same 2D/3D graphics chip
category as everyone else in the business.

First, Voodoo3 is not one chip or
chipset. It comes in two packages: the
2000 and 3000 versions. The Voodoo3
2000 is targeted at the OEM market,
while the Voodoo3 3000 is a more high-

end version targeted at the retail market
where Voodoo and Voodoo2 have done
so well. The differences between the two
Voodoo3 chips and Banshee are quite
straightforward. The Voodoo3 has the
dual texture engines of a Voodoo2; it
supports AGP 2X, with planned support
for AGP 4X in the works. 3Dfx claims
Voodoo3 delivers performance in excess
of Voodoo2 SLI configurations, but in a
2D/3D integrated package. The
Voodoo3 3000 is the much more inter-
esting part of the two; it’s capable of
supporting resolutions of up to
2048×1536 at 75Hz refresh rates.
However, Voodoo3 is an 8.2 million
transistor titan of a chip. That makes it
as complex as any high-end CPU on the
market today, and 3Dfx will have its
work cut out to deliver the highest per-
formance versions of the chips by its
mid-1999 deadlines. The most likely
scenario is that the Voodoo3 2000 will
be the first chipset to ship in full pro-
duction, followed by the Voodoo3
3000. It’s also likely that in the retail

channels, you will find both versions of
the chipset, although PC OEMs probably
won’t want to integrate the Voodoo3
3000 because of its higher cost.

While Voodoo and Voodoo2 gave
3Dfx a unique position in the retail
market, the emergence of Voodoo3 puts
them squarely in the same market as
any number of other chip vendors. At
one point, they could have remained
aloof from the fray, but now 3Dfx must
duke it out in the same mud pit with
everyone else. It’s a no-holds-barred
contest that 3Dfx may not be equipped
to win, even with the best technology.

The Competition

I n direct competition with 3Dfx are
Nvidia and 3Dlabs. These two com-

panies compete via technologies that
are supposed to drive their products
into the mainstream from the upper
end of the multimedia PC spectrum.
What these companies covet most is the

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

34

3Dfx Against the Rest

No graphics chip or board company has reigned supreme over its competi-

tors for very long. Usually, once a company achieves the exalted position

of Number One, it can look forward to a short stay at the top. And no

graphics chip or board company has built as strong a consumer brand,

Omid Rahmat works for Doodah Marketing as a copywriter, consultant, tea boy, and sole employee. He also writes regularly on the
computer graphics and entertainment markets for online and print publications. Contact him at omid@compuserve.com.

	 Q4 1996	 Q1 1997	 Q2 1997	 Q3 1997	 Q4 1997	 Q1 1998	 Q2 1998 	 Q3 1998

Revenue	 $4,503	 $5,247	 $6,507	 $10,018	 $22,296	 $50,008	 $58,643	 $33,206
	
Cost of 	 3,404	 2,582	 3,278	 5,352	 11,399	 25,730	 30,443	 24,971
product

Gross profit	 1,099	 2,665	 3,229	 4,666	 10,897	 24,278	 28,200	 8,235

Research and	 2,288	 1,953	 2,397	 3,201	 4,860	 5,826	 8,308	 10,038
development

Selling, general and	 2,422	 1,846	 2,521	 2,684	 4,338	 9,638	 8,041	 6,971
administrative

Net income (loss)	 ($3,598)	 ($1,161)	 ($1,753)	 ($872)	 $2,704	 $7,462	 $9,032	 $3,118*

3Dfx’s quarter by quarter growth. In 1996 the company made in excess of $6 million. *The company noted $13 million as

income, primarily due to its successful court case against Sega and NEC/Videologic. (Source: company financial statements;

figures are in thousands).

slot occupied by companies such as ATI
and Matrox, but the technological area
that they have gone after is the 3D per-
formance of Voodoo. By contrast,
Matrox, despite some poor showings in
the 3D performance stakes, continues to
dominate PC OEMs product segments
where 2D performance is still the prima-
ry driving force. As a result, Matrox has
a strong position in the entry-level
Windows NT workstation lines of
Compaq and Hewlett-Packard, product
lines that are squarely aimed at financial
markets and standard corporate users.
Both ATI and Matrox, however, have
enough branding to make it onto most
of the major retail shelves and, as a
result, they have a strong consumer fol-
lowing. S3, Trident, and even Intel (with
its agenda to sew up the low-cost PC
market) don’t possess the same perfor-
mance advantages of 3Dfx or Nvidia.
These companies all need the volumes
that PC OEMs bring in order to fuel
future developments — and their ambi-
tions. In the midst of all this, PC OEMs
just want to make sure that sockets are
filled in the confusing array of product
segments and lines they produce.

3Dfx and Nvidia found some solace
in the fourth quarter of 1998 when
Matrox, ATI, S3, and 3Dlabs failed to
deliver products competing products. By
the time Voodoo3 is supposed to come
out, the competition may be stronger.
S3 has plans for a follow up to
Savage3D, ATI is expected to be in full
swing with the Rage 128, and 3Dlabs
could still make it with Permedia 3. On
paper, all these chipsets have an equal
chance of succeeding against the others,
and in truth, if they all work as they
should, they will all find a home some-
where. No PC maker wants to sell the
same components as a competitor, so
there’s plenty of business to go around.

3Dfx stands to gain the high ground if
— much as Nvidia has to date — it can
get its foot into both corporate and con-
sumer multimedia systems on the basis
of performance, reliability, and support.

Creative and Diamond at the Door

A nother threat looms for 3Dfx. An
outside chance exists that 3Dfx

will merge or be acquired by a third
party. So goes the general thinking in
the industry, at least. The reason for
this speculation can be traced to
attempts by Diamond and 3Dfx to form
a joint venture in late 1998. The story
goes something like this: Diamond and
3Dfx started discussing ways of binding
themselves to each other. The rumor
mill spoke of mergers and joint ven-
tures, but we may never know for sure.
What is known is that Diamond initial-
ly benefited significantly from its rela-
tionship with 3Dfx, but then saw its
profits from sales of Voodoo and
Voodoo2 get eaten up by the force of
numbers of other 3Dfx add-in board
customers, particularly Creative Labs.
Creative, in turn, got wind of Diamond
and 3Dfx’s machinations and did what
any company with deep pockets would
do: it voraciously consumed 3Dfx
shares, making sure that any chance of
a Diamond and 3Dfx partnership
would raise the specter of its own bid
for the company. That’s the story, but it
doesn’t end there. Diamond knows that
it needs technology and intellectual
property to succeed. Creative Labs
doesn’t want Diamond to get its way.
As a result, all chip companies are up
for grabs at the right price, and consoli-
dation in the 3D consumer graphics
arena is only a matter of time. 3Dfx just
happens to be the juiciest target.

Entertainment: Make it Less Fun?

3D fx has transcended the image
of other graphics chips, and

firmly embedded itself in the minds of
consumers. With so much brand equity
built among end users, 3Dfx could quite
easily do away with the middleman and
sell boards into the market directly.
However, there are some issues that,
from the company’s perspective, dimin-
ish the possibility of such an event.

First, graphics chips still deliver better

profit margins than boards. True, you
can make more money with boards, but
there is also the question of support, and
sales and marketing through indirect
channels (retailers and distributors).
Presently, 3Dfx is focused on its technol-
ogy and is leveraging its brand among
game enthusiasts to drive its retail pres-
ence and with strong brand recognition.
PC OEMs continue as customers. In the
final part of 1998, only Nvidia and 3Dfx
were setting the world on fire with new
graphics chips. It’s a sellers’ market for
now, and game players’ appetites for
3Dfx products — diminished though
they may be — are still sufficient to keep
the momentum going.

News Flash

A s this article was going to press,
3Dfx announced its intention to

acquire STB Systems, and to become a
fully-fledged provider of graphics chips
and boards. This deal is expected to go
through by March 1999. Among the
benefits of this deal (as told by 3Dfx) are
providing PC OEM and retail customers
a single source for 3Dfx branded add-in-
boards for greater price stability and
smoother product transitions; the provi-
sion of reliable manufacturing capabili-
ties as prequalified supplier to the top
ten PC-OEM manufacturers; a more
tightly integrated chip, software, and
board-level layout and design for faster
time-to-market and the most cost-effec-
tive graphics solutions; and a more con-
trolled and focused brand investment
for an even stronger retail presence. This
stirs things up big time in the graphics
industry, and confirms what the indus-
try believed would happen to 3Dfx. The
outlook for Creative and Diamond is
not clear, and probably by the time you
read this Nvidia and other chip vendors
will have made their own strategic
moves as a counterpoint. So, now we
have ATI, Matrox, 3Dfx/STB,
3Dlabs/Dynamic Pictures, and Evans
and Sutherland/AccelGraphics as chip
and board vendors against Creative and
Diamond as brand name board makers
with chip agnosticism. Not too long
ago, there was really only ATI and
Matrox. So now, as far as game develop-
ers are concerned, the board is the plat-
form, and whoever has the market clout
reaps the accelerated titles. Should be
fun to watch. ■

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 1 9 9 9 G A M E D E V E L O P E R

35

Diamond
35%

Creative
20%

Elitetron
15%

The Rest
30%

Board makers’ shares of 3Dfx revenues

for the first three quarters of 1998.

b y O m i d R a h m a t

Remodeling

37Despite working in a truly remarkable

medium, one that provides powerful tools

for the simulation of fantastic worlds and

myriad ways to immerse players in them, many RPG design-

ers these days seem content to recreate the glories of earlier

computer games. Worse, many designers seem content to

recreate experiences that they (and we, as players) first

enjoyed in other media.

As I stated in my recent Soapbox column (“It’s ROLE-play-

ing, Stupid!”, September 1998), we RPG designers are setting

our sights too low. Look at the best RPGs of the last several

years. As great as DIABLO, FALLOUT, DAGGERFALL, and MIGHT &

MAGIC VI are, they really aren’t anything that we couldn’t

have designed ten years ago. Do they represent significant

advances over WASTELAND or ULTIMA IV or the UNDERWORLD

games? And were these older games striving for much more

than a recreation of the tabletop role-playing experiences of

their creators? It’s as if we can’t see beyond our early

Dungeons & Dragons game experiences. It’s time

to move beyond simply borrowing game concepts and

establish computer RPGs as an independent medium.

Warren Spector runs Ion Storm’s Austin, Texas, office. He is currently working
on a new role-playing game, DEUS EX. In the past, he has produced such RPGs
as ULTIMA VI, ULTIMA VII, PART 2: SERPENT ISLE, UNDERWORLD 1, UNDERWORLD

2, and SYSTEM SHOCK for Origin and Looking Glass Technologies. You can reach
him at wspector@ionstorm.com

b y Wa r r e n S p e c t o r

RPGs for the New
Millennium

Ill
us

tr
at

io
n

by
 R

ob
er

t Z
am

m
ar

ch
i

My intent with this article is to lay
out the abundant variety of choices
available to would-be and practicing
RPG designers. Only by analyzing the
tools that we all use in the creation of
our games, discussing the ways in
which these tools have been and can
be used, and identifying the ramifica-
tions of those uses, can we take this
genre forward.

It’s probably not an overstatement to
say that every new medium begins, cre-
atively and aesthetically, by defining

itself in terms of previous media. So it’s
not surprising that we RPG developers
borrow from our forebears. In fact,
every RPG developer today really owes
his or her job to Dave Arneson and
Gary Gygax, the creators of Dungeons &
Dragons. Our debt to these two men is
worth noting here if only to force a
recognition of how little we’ve moved
beyond the realm of 20-sided dice, the
concept of character class, and those
familiar core attributes of strength, wis-
dom, dexterity, and so on.

How do we identify a computer
RPG? For the purposes of this article, a
computer RPG is a game in which
character development and character
interaction take precedence over other
factors and where each player’s experi-
ence of the story is determined by
individual choice rather than designer
fiat. Though broad, this definition
clearly eliminates real-time and turn-
based puzzle and strategy games (lack
of character development and interac-
tion), as well as shooters and platform
action games (lack of individual
choice). Of greatest importance, this
definition eliminates adventure
games, which share with the RPG an
emphasis on story and character.
What adventure games lack — and
this is a critical point — is the capabil-
ity for players to grow and develop
their characters, and to affect, if not
the outcome of the story, than the
way in which the story unfolds.
Without both character development
and genuine choice placed within a
player’s control, a game cannot be
called a role-playing game, as I choose
to define the genre.

Someday, we will concentrate on
those aspects of computer RPGs that
set them apart and we will leave our
paper gaming roots behind. To do so,
we have to be more daring in our
designs — or, in the terminology of
this article, in our selection of design
tools. And to select the right tools, we
need a better understanding of these
tools and how they define the genre.

The term “tool” seems, at first, odd
to use in the context of game design.
When I use this term, I’m talking
about the conventional elements that
are sure to appear in any work that
defines itself, or is defined, as a com-
puter RPG. Any designer contemplat-
ing an RPG must take a stance with
regard to all of these tools, even if that
stance is to deemphasize one or more
of them. What follows are the defin-
ing characteristics that must be pre-
sent in any RPG.

Story

R PGs are story driven. There’s a
reason for talking to or killing

people and monsters, a reason to build
or destroy things. Unfortunately,
though it goes without saying that

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

38

R O L E - P L A Y I N G G A M E S

1.Each player’s path through the

story must be unique. This doesn’t

mean a branching-tree structure with

winning and losing paths but, rather, that

players will have the freedom to decide

how they’ll overcome game obstacles. A

world simulation must be deep enough so

that each game problem is open to a vari-

ety of solution strategies, from the most

thoughtful and low-key to the most obvi-

ous and violent. And the solution you

choose to any given problem must have

clear consequences, both immediate

(killing a guard sets off an alarm, attract-

ing more guards) and long-term (killing a

guard may result in “wanted” posters

being posted, causing civilians to fear

you and be less cooperative).

2.Players must always have clear

goals. Though free to stray from

the storyline at will, players must know

what they’re supposed to be doing,

minute to minute and, if appropriate, mis-

sion to mission. The fun of the game is in

overcoming obstacles and solving prob-

lems; the fun is in how you solve a prob-

lem, not in guessing what problem you’re

supposed to solve.

3. The level of interactivity must be

high, with NPCs about whom you

really care and with a densely populat-

ed, object-rich world that looks and

behaves like the real world (or, at least,

a believable, internally consistent world

of your own creation). A big, empty

world is boring. Players must be free to

explore a cool and instantly understand-

able world.

4.The central character must grow

and change in ways that matter to

players in an obvious and personal way.

During the course of play, you’ll become

more powerful, acquire more items, and

develop new skills, of course. However,

you’ll also make unique friends and ene-

mies, accomplish tasks and missions dif-

ferently, overhear different conversa-

tions, and see different events unfold. By

game’s end, each player must control an

alter ego that is distinct from that of all

other players.

5. The game must be about some-

thing more than killing things,

solving puzzles, and maxing out a char-

acter’s statistics. Remember all those

hours you spent in school analyzing the

underlying meaning of novels, poems,

and movies? Guess what: RPGs lend

themselves to the same kind of analysis.

Games can and must have an impact on

players. That impact may be the simple

adrenaline rush of DIABLO, fleeting and

soon forgotten (nothing wrong with

that), or it may be the never-to-be-for-

gotten (and, in some cases, life-chang-

ing) experience of becoming the Avatar

in ULTIMA IV. If all you’re doing is throw-

ing wave after wave of monsters at play-

ers so that they can kill lots of stuff so

that they can increase some arbitrary

statistics so that they can feel powerful,

you’re doing yourself, your players and

your medium a disservice.

RPG Commandments

RPGs must tell a tale, it’s unclear
whether the quality of that tale has
much, if anything, to do with a game’s
success. One would be hard-pressed to
describe the Avatar vs. Guardian (a.k.a.
“kill the evil foozle”) stories of recent
ULTIMA games as on a par with what we
demand from books and movies.
DIABLO’s plot hardly qualifies as com-
pelling. UNDERWORLD’s story of a hero
locked in a dungeon until he can res-
cue a kidnapped princess hardly quali-
fies as narrative genius.

Currently, the kinds of stories we can
tell seem to be limited by the expres-
sive capabilities of our medium — it’s
tough to tell a great story when you
can’t recreate a young lover’s shy smile
or allow players to tell a joke rather
than bludgeon somebody. Right now,
what we do most easily and best is
direct, one-on-one conflict (typically
combat interactions), a fact that limits
our narrative range just a tad. This is
not to say we shouldn’t strive for great-
ness in our stories, but we must find
greatness in the strength of universal
themes and in the ways in which we
tell our necessarily simple stories.

Players of RPGs must have some
degree of freedom in how they follow
the threads of the plot and, in some
cases, how the plot resolves itself. They
can often pick the order in which they
accept quests or even which quests
they take and which ones they ignore.
Further, how they conduct themselves
during a quest, and how they interact
with other characters, can alter the
course of the story and its outcome.

The first and, arguably, most critical
decision RPG developers must make
with regard to story is whether to use
a branching structure or to tell a story
in a more conventional, linear fash-
ion. The temptation is strong simply
to say, “We’re making a computer
game. Computers allow branching in
a way and at a level no other medium
allows. Of course, we should use a
branching structure.” This argument,
one I’ve made myself, goes back to the
moral imperative to maximize the
unique capabilities of the medium
and to turn away from the techniques
more appropriate to other media. It’s
perfectly understandable that comput-
er RPG developers would want a
branching structure if for no other
reason than to differentiate games
from books and movies. But let’s

think through the implications
of that decision.

Often, making one choice —
picking one branch over another
— means that a player can’t go
back to the branch not chosen. If
I may be prescriptive for a
moment, if picking a branch does
not limit players’ later options in
some way, the branch is unneces-
sary and a waste of valuable
development time. The illusion of
player freedom isn’t worth the devel-
opment price.

However, assuming branching offers
real choices (meaning, choices that
limit player options even as the player
moves forward through the plot), the
approach can be worth the cost. Done
well, branching can provide a powerful
illusion of freedom for players. But,
that’s all it can provide — an illusion.
The reality is that, if we don’t put
something in the game, on the screen,
in the mouths of nonplayer characters
(NPCs), it doesn’t happen — and no
amount of branching can allow players
to do things we don’t allow them to
do. What this means is that the choices
available to players solely as a result of
branching are false, because eventually
players are forced back onto one of the
paths that we’ve created for them.

The first factor to consider when
assessing whether branching is appro-
priate and/or necessary for your pro-
ject is whether it’s worth sinking valu-
able development resources into the
creation of content that many, if not
most, players will never see. And bear
in mind that you’re going to be
spending time and money to ensure
that the game makes sense regardless
of the order in which each player sees
each portion of the story. That’s a lot
of extra flags to set and check and a
lot of extra art to create on the off-
chance that players will stray from the
logical path.

But what about replayability?
Doesn’t branching encourage players
to keep playing a game? My first
response would be, “Nah. By the time
they finish your 100-hour epic, they’re
probably looking for The Next New
Thing.” Only the most zealous players
replay games at all, and they’re sure to
see that a big percentage of their
adventure differs not at all on subse-
quent playthroughs no matter which
plot branches they follow.

None of
this is to say

that branching
isn’t worth all that

extra effort. Though not vital to success
(aesthetic or commercial) it’s impor-
tant that players talk about their expe-
riences playing your RPG and, when
they do, it’s powerful when their
descriptions differ, seemingly based on
individual choices. As in all develop-
ment-oriented decisions, it’s important
to weigh that power against the cost of
achieving it.

It’s also important to realize that
once you do spend your development
dollars on giving the player power over
the way in which your story unfolds,
that should become the emphasis of
your game. You should try to give your
players a big, contiguous world to
explore and you should let them
explore it freely and in any way they
want — even at the expense of charac-
ter development.

The alternative to branching is to tell
a more traditional linear story. But
telling a story in the way that stories
have always been told isn’t the answer.
So what are the advantages of telling a
linear story and how is this best
achieved? Let’s start with the biggest
and most obvious advantage of the lin-
ear narrative, the story itself.

Clearly, you can tell a better story if
you don’t have to worry about and/or
deal with all the ways in which players
can screw up your carefully crafted
epic narrative. It’s generally accepted
that a linear story in a game almost
inevitably means a more powerful
story. Given the cost of achieving the
illusory freedom offered by branching
storylines, the linear story seems to be
a pretty good deal. In addition,
depending on how you implement
your linear story, you may find it pos-
sible to give players some genuine free-
dom to personalize their experience

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 1 9 9 9 G A M E D E V E L O P E R

39

rather than the illusion of freedom
offered by branching narratives and
huge worlds to explore.

What I’m getting at is that a linear
story must have two characteristics. As
the creator of a linear RPG, you must
offer the player flexibility within
episodes or narrative segments or on a
single map or within a single mission.
Combine this flexibility with a focus
on something other than narrative
(such as character development) as
the driving principle behind your
game, and players won’t notice
that they’re on rails, narrative-
ly speaking.

FINAL FANTASY VII does a
wonderful job of allowing you
to explore each of its locations
with some degree of freedom.
Players rarely feel constrained or stuck
to a path, even though they are. The
reason lies in the game’s emphasis on
character development. The designers
recognized that freedom of movement
would eventually interfere with the
advancing plot, so they emphasized
systems that allow players to create
unique alter egos who respond to
scripted events in ways that are often
within the player’s control. This fea-
ture allowed them to tell a better story
with more interesting characters than
would be present in a nonlinear game.
I’m not saying that FINAL FANTASY VII

is necessarily a better
game than
DAGGERFALL (a non-
linear game if there
ever was one) — just
that the designers
clearly thought
through the implica-
tions of the critical
design decision to tell
a linear story.

Here, as in most
design decisions,
there’s no right or
wrong answer. Linear
narratives, expertly
implemented, are no
better or worse than
branching narratives
implemented equally
well. However, it’s
worth pointing out
that perceived freedom
is more important
than actual freedom.
If the players thinks

they’re in control, it’s as good as if
they are.

Character Differentiation &
Development

R PGs are character-driven. Unlike
any other game genre, they rely

on differentiated player characters. As
such, unique, personal char-

acter growth is vital. Players
must feel that they control
the destiny of their alter

egos and that their
choices throughout the

game result in increasing
stature and a growing abili-

ty to impact the game world
and its denizens.

Every design decision you
make when crafting an RPG should
first be filtered through the following
simple screens:

• Does each game system, design phi-
losophy, or mission help the charac-
ter play his or her role more effective-
ly?

• Does each serve to differentiate one
character from another?
If we as game designers allow each

player’s character to be unique, and
thus differentiate each player’s experi-
ence of the game, we have been suc-
cessful. To illustrate how important the

need to play a role is in role-playing
games, and how controversial the sub-
ject can be, let me describe some per-
sonal experiences. In recent months, I
found myself embroiled in a controver-
sy that I never could have imagined.
The issue involved the nature of role-
playing and character identification.

It occurred at Ion Storm, where I’m
currently working on the game DEUS

EX. My development team, which is
fairly united on role-playing design
issues, suddenly found itself on the
brink of civil war over whether players
should be allowed to name their char-
acters. My original plan had been to
give the character a name and a back-
story to go along with it. That would
allow us to give the character signifi-
cant relationships and, perhaps most
important, a voice.

Half of the team felt that the prede-
termined name and identity offered
too many dramatic advantages to pass
up, particularly nowadays when full
speech is expected and voice synthesis
technology is still in its infancy. The
other half of the team was appalled. “If
you can’t name your character,” said
one developer, “you’re not making an
RPG at all. You’re making an adventure
game.” Several people commented that
they find it annoying when they are
forced to do or say things because the
designer thinks their character would
do or say that thing. To cut short this
debate, I came up with a solution that,
I believe, satisfied both camps. (You
can tell me how successful my solution
was when the game ships!) In any
event, this argument about character
names shows just how critical player
identification with his or her character
can be to the success of an RPG.

Statistics, Skills and/or Trackable
Abilities

A s tools, names are useful but not
critical. In contrast, there are two

core character identification and devel-
opment tools: statistically driven and
experientially driven story and world
building. Regardless of whether you
allow players to develop their charac-
ters through statistics or direct experi-
ence (or some combination of the two),
you have to take a stance on the sub-
ject before you put the last period on
your design document.

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

40

R O L E - P L A Y I N G G A M E S

F I G U R E 1 . DIABLO’s character statistics screen.

In games such as FALLOUT, DIABLO

(Figure 1), DAGGERFALL, FINAL FANTASY

VII, and MIGHT & MAGIC VI, numbers
typically define your character’s funda-
mental attributes (such as strength,
dexterity, intelligence, and luck)
and/or your character’s level of accom-
plishment in a set of skills (such as lock
picking, marksmanship, and first aid).
When players run into a game problem
or obstacle, they use one or more of
these attributes or skills, resulting in
behind-the-scenes die rolls that deter-
mine success or failure in overcoming
the problem.

Development (increases in individ-
ual statistics) often comes through the
expenditure of abstract skill points
given by the designer for solving indi-
vidual problems or for solving enough
such problems to go up an arbitrary
level (the rewards model). In other
games, development comes through
the actual use of specific capabilities in
game situations (the practice model).
However implemented, statistics are
terrific tools for setting one character
apart from another — there’s a reason
they’ve been a staple of role-playing
since the birth of D&D.

Why are numeric systems terrific
tools? For one thing, they’re instantly
parsable by normal human beings. Any
player can tell immediately that first
level isn’t as good as second level, and
that a strength score of 65 is better
than a score of 37. In addition, die-rolls
introduce tension, suspense, and vari-
ety into computer RPGs.

Statistical systems do have associated
costs, though. The one that I find most
damning, if only because a thoughtful
designer can so easily avoid
the problem, is that typi-
cally, by game’s end, char-
acters tend to end up look-
ing more alike
than different.
But the trick to
avoiding this is
simply to
impose limits
on the number
of skills players
can select
and/or to limit
the number of
reward points we
hand out.

But using statistics
poses other problems,

too. As easy as it is to say two charac-
ters are different — and as easy as it is
to indicate these differences on a char-
acter description screen — it is
extremely difficult to communicate to
players the reasons why they succeeded
or failed at a given task. Can players
ever really know why they succeeded
or failed when behind the scenes die
rolls determine success of failure? Can
we make players feel their contribu-
tions to character accomplishment are
significant? If you choose a statistical
approach, you need to provide obvious
and immediate feedback when a statis-
tic affects problem resolution.

Games such as WASTELAND and
DIABLO, though separated by

many years, are extremely
good examples of games
that use statistics and
skills effectively. In these
games, statistics, in addi-
tion to being rewards,
allow players to refine their
characters with a great deal
of control and precision
and to individualize their
play experience in ways
the games’ limited story-
lines don’t offer. FALLOUT

is a more recent example
of effective use of statistics to

differentiate characters from
one another (Figure 2). But

FALLOUT takes the idea of tailoring
experience through statistics even fur-
ther than WASTELAND and DIABLO — a
player who puts his or her points into
stealth and communication skills, for
example, is likely to solve game prob-
lems very differently than one who
puts those points into weapons skills.

Looking at most games that use the
statistical character definition
approach, you quickly get the impres-
sion that designers like to track numer-
ous character statistics, and like to
track them to a fine degree. Logically,
this seems to be the best way to differ-
entiate one character from another.
However, if you’re going to track statis-
tics based on skill values, adjustments
to these values have to be meaningful
enough so that changing them makes
obvious changes in the game play.
Hand out too many statistical improve-
ment rewards and characters start to
look more alike than different. Create
enough statistics and skills and players
quickly figure out which ones matter
and which don’t, causing characters to
look more similar. My advice is to be
appropriately and thoughtfully stingy
with rewards and with the number and
types of statistics you provide.

But are all of these statistics really
necessary? Of course not. There’s
another way. In recent years, a small,
very vocal and extremely persuasive

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 1 9 9 9 G A M E D E V E L O P E R

41

F I G U R E 2 . FALLOUT’s character statistics screen.

minority of the design community has
begun to argue in favor of statistics-free
RPGs or, as some call it, the immersive
experience. They feel that hidden die
rolls and finely tracked statistics are
unnecessary hold-overs from paper
gaming. These designers pose a number
of interesting questions. Why use a
crutch from another medium, one with
limited simulation capabilities, in com-
puter gaming, which has far more pow-
erful simulation tools available? Why
not let player choices determine char-
acter differences? Does anyone think
the difference between a 17 and an 18
in strength or between an 89 and a 90
in lock picking should have an impact
on game play?

So what do these statistics-foes offer
as an alternative in terms of character
differentiation and the player’s ability
to impact a story? The two most impor-
tant alternative tools available are
Inventory and Skills/Special Abilities.

Most, if not all, RPGs support the
accumulation and use of items by play-
ers. In most, you can pick up anything
that isn’t specifically nailed down and
use it later, possibly even in ways the
designers never imagined. In extreme
cases, you end up with characters haul-
ing around useless candy wrappers and
soda cans. In the end, problem resolu-
tion is what RPGs are all about. The
more tools you give the player (useless

items notwithstand-
ing), the more solu-
tions are likely to sug-
gest themselves, as
long as your simula-
tion is robust enough
— or your designers
clever enough — to
support them.

In addition to their
use in problem solv-
ing, objects and
weapons can be pow-
erful tools for charac-
ter differentiation. If
you load up your
inventory with
weapons and I load
mine up with keys,
lockpicks, and inviso-
suits, our characters
look, feel, and, of
necessity, behave dif-
ferently from one
another.

The key to making
inventory a character differentiation
tool is to limit, in some way, the num-
ber of items that a character can carry.
In a statistics-based system, this can be
accomplished by giving items weight
and then tying inventory capacity to
strength — how much weight a charac-
ter can carry therefore becomes the
limiting factor. In a statistics-free sys-
tem, the same goal can be accom-
plished by giving each item a size and
then limiting the number of things a
character can lug around. Clearly, com-
binations of these
ideas work, too — wit-
ness DIABLO (Figure 3)
— and there are
undoubtedly several
other viable schemes.

For inventory to
work as a character and
experience differentiation
tool, we must find ways to
force players to make choic-
es. Which implies limiting
characters’ capabilities. We
as designers must be disci-
plined enough to parcel out
items of increasing power —
things that make characters more
effective — in a careful, well
thought-out manner. If you dumped
an infinite variety of weapons in
front of a character, most players
would grab the most powerful one,

making the inventory limitation moot.
Item and weapon differentiation must
be thought of in terms of economy.

In a real-world economy, more isn’t
always better. The same is true in gam-
ing. Just because you can offer players
4,000 weapons doesn’t mean that you
should. The choice should have mean-
ing. Ask yourself whether you can real-
ly differentiate two weapons; if the two
items offer no legitimate, significant,
and obvious game play difference in
your game world, why bother? When
pondering inventory issues, think of
yourself as the game design equivalent
of Alan Greenspan of the Federal
Reserve Board — you have to open and
close the object floodgates to match
players’ capabilities to the tasks at
hand. Release too much “item power”
and tasks become too easy. Interest in
the game wanes. Release too little
“item power” and tasks become too
hard. Frustration sets in. Either way,
players stop playing.

Not all systems of skills and abilities
depend on statistical resolution; there
are plenty of other ways to structure a
system. In DEUS EX, we use a binary
action resolution scheme in which
your skill level, tracked in a gross fash-
ion (rather than a granular one) is
compared to the difficulty of the task
at hand. If your skill level is higher
than the difficulty factor — which, in
most cases, you’ll know before you
attempt a task — then you succeed. If
your skill level is lower than the task’s
difficulty factor, you have to find
another solution.

In a deeply simulated world (or even
a modestly simulated one, such as DEUS

EX) each game problem should be solv-
able in a variety of ways. In such a

simulation, a skill system like our
binary action resolution model

makes perfect sense. If you’re
not a good enough

lock picker to
open a vault,
maybe you’re a
master with

explosives, or
maybe you can

charm a bank clerk
into opening it for you.

If you’re still thinking in
terms of puzzles rather than

obstacles, and if your world is
two-dimensional rather than

deeply simulated, stick with statistics.

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

42

R O L E - P L A Y I N G G A M E S

F I G U R E 3 . DIABLO’s character inventory screen.

So where does tension come into the
picture? To offer levels of suspense like
statistics-based systems, a statistics-free
game must emphasize consequence
and reward. Here’s one way it can
work. First, players may know in
advance the outcome of a specific
action (whether they do or not is large-
ly a result of how much attention
they’ve been paying — the designers
aren’t trying to hide anything).
Second, players should have a fair
degree of certainty about the reward
for acting in a particular manner (for
example, a player should know that if
he or she gets through the vault door,
he or she will get a million dollars).
Most critically, players must not be
able to do more than make an educated
guess at the consequences of acting in
a specific manner (for example, picking
the lock on the vault door might or
might not set off an alarm, blowing the
door off it’s hinges might attract the
attention of the night watchmen or
destroy the money in the vault, and
charming a bank teller might allow the
teller to identify you when the police
show up). All actions — all choices —
must reward players and, equally
important, all must have conse-
quences. There can be no right and
wrong, no better and worse.

Whether statistics or experience is
used to differentiate characters, some
tangible measurement of character
prowess and progress is necessary if a
game is to be considered an RPG. In
RPGs, arbitrary limitations are often
placed on what your character can and
cannot do. The idea of defining your
character’s abilities statistically is just
one such arbitrary limitation.

Another is the notion of the charac-
ter class. In the past, distinguishing
characters using character classes has
prevented mages from wearing armor,
impaired warriors’ use of magic,
restricted clerics’ use of offensive
magic, and let thieves move quietly
and do double damage from behind.
This is the brute-force solution to the
problem of differentiating characters,
applicable in either statistics- or experi-
ence-based games (though fitting more
easily into the former). Character class-
es tell players, “Here’s a problem. Your
character can’t solve this problem in
ways X, Y, and Z because those meth-
ods aren’t appropriate to your class.
Find another solution that takes advan-

tage of your character class’s unique
and clearly defined capabilities.”

Character classes are not a bad way
to ensure experiential differences, but
they’re a little inelegant. I view them as
a form of “remedial role-playing”; char-
acter classes have been a crutch for
novice role-players since the 1970s. If
reaching the mass market is your goal,
character classes could be appropriate.
If you’re going for the Dungeons &
Dragons audience, character classes are
a necessity. I’ve noticed that the use of
character classes is waning, but if the
upcoming title BALDUR’S GATE proves as
successful as most industry watchers
expect, it could revitalize the notion of
class distinctions in role-playing.

Varied Interaction

O ne of the
defining

characteristics of
role-playing is the
player’s ability to
impact the outcome of
the story through his or
her actions during the
game. One of the most
powerful and effective
ways to give players this
power is to offer and reward a variety
of interaction styles.

When you play an ULTIMA, or even a
hack-and-slash game such as DIABLO,
you meet computer-controlled people
and creatures — NPCs — who don’t
necessarily want to kill you. In a con-
sole game such as SUIKODEN, you build
a base of operations and forge alliances
with the NPCs you choose. Together,
these activities have a dramatic impact.
In almost any RPG you can name, play-
ers can kill, talk to, buy
or sell from, maybe
even learn from NPCs.
The interaction can
come in the form of
one-sided info-dumps
or in complex, branch-
ing tree conversations.
Whatever form it takes,
some nonviolent inter-
action is a necessary,
defining characteristic
of RPGs.

Furthermore, you
can interact with the
game environment in

ways other than shooting weapons and
opening doors. This may be as limited
as picking up objects and manipulating
switches and levers or it may be as lim-
itless as, well, interactions in the real
world. (I can dream, can’t I?)

Finally, in the best RPGs, obstacles
aren’t limited to monsters or arbitrary
puzzles. The solution to a particular
game situation isn’t as predictable as in
more focused game categories and,
often, more than one solution exists
for each problem that you confront.

Combat

T he effectiveness of your combat
system depends on your under-

standing of the concept of “economy.”
Giving the player a big gun with
unlimited ammo and then throwing a
million hideous monsters at him or her
isn’t going to buy you much sweat and
adrenaline. However, try giving the
player an ordinary gun with three

shots and then send two villains
at him or her and see what

happens.

Make sure each weapon and each
enemy is radically different than all
others. There’s no point offering a
1911 Colt, a Glock, and a Browning Hi-
Power unless there’s some major game
play difference between them. Hey,
they’re all automatic pistols and serve
about the same purpose in the real
world. In your game, players won’t
know that the stocks feel different, the

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 1 9 9 9 G A M E D E V E L O P E R

43

F I G U R E 4 . ULTIMA VI’S BRANCHING tree dialogue.

weight is different, and so on. And tiny
variations in accuracy and kickback
and the like probably won’t be notice-
able even if you bother trying to simu-
late them. Don’t bother. Just put one
of them in your game and be done
with it. If your game fiction can sup-
port it, make certain weapons particu-
larly useful against certain enemies.
Weapon differences must be obvious
and instantly apparent.

Wherever possible, differentiate your
enemies as much as (or more than) you
do your player characters. If, again,
your game fiction supports it, give each
enemy an attack that has a specific
effect (or effects) on the player’s ability
to move, see, hear, or otherwise inter-
act with the game.

Do these, and you have
a winning combat
recipe. Because com-
bat is easy to simu-
late on computers,
and very little else is,
I suspect (for better or
worse) combat will
remain a large part of
RPGs, and
much of our
design
effort will
continue to
go into
crafting new
combat systems.

Conversing with NPCs

N o one has yet devised and/or
implemented an artful, com-

pelling, interesting, or believable con-
versation system in a computer RPG.
That includes everything I’ve done
and everything you’ve done. No one
has come up with a system that
doesn’t draw you out of the game
world and remind you that you’re just
manipulating pixels on a screen. In the
absence of anything better, let’s look
at some of the approaches that we’ve
tried in the past.

First, there are branching-tree/key-
word systems. If you’ve
played just about any
computer RPG of the
last 15 years, you’re
familiar with these.

Any ULTIMA game
(Figure 4) and, more
recently, FALLOUT

will introduce you to
the concept, if you’re

unfamiliar with it
(Figure 5). In this sys-

tem, players read
or listen to a bit

of dialogue
“spoken” by
an NPC and
are then
offered a

number of

response options (or are given the
opportunity to type in whatever they
want). Picking one of these options or
typing in a likely keyword sends the
NPC into another speech. Making a
selection typically prevents the player
from getting the information he or she
would have gotten by picking another
of the available response options.
Eventually, the NPC runs out of things
to say along a particular branch and
the conversation ends, leaving the
player either to start the whole conver-
sation over and make different
response option choices in an attempt
to elicit additional information from
the NPC, or to go talk to someone else.

The problem is that clicking
through a bunch of conversation
options doesn’t feel much like a con-
versation — an interrogation, perhaps,
but not a conversation. Additionally,
keywords and branching trees turn
the conversations themselves into
puzzles. Can you guess which branch
the designer wanted you to go down?
The opportunity and, more often, the
necessity of talking to each NPC mul-
tiple times to be sure you ferreted out
the critical nugget of information or
set the one necessary conversation
flag is a pain and drains conversations
of their emotional impact.

Another way to handle NPC interac-
tion is through linear conversations.
This is sometimes called the “NPC as
signpost” approach to conversation. It’s
most commonly used in console RPGs,
where input options are limited and
storage space for branching conversa-
tions is at a premium. Basically, this

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

44

R O L E - P L A Y I N G G A M E S

F I G U R E 6 . Binary decision point conversation in

SUIKODEN.

F I G U R E 5 . Branching dialogue in FALLOUT.

method boils down to walking up to an
NPC and having them tell you some-
thing and that’s it. No interaction. Talk
to them again and, unless the game
state has been advanced somehow
and/or the designer is particularly
sharp, the NPC will simply repeat what
he or she said the last time.

Linear conversations typically point
you to your next goal, but they can do
much more. In the best examples,
NPCs can tell you about themselves
and their lives. They can describe in
convincing terms how you know them
and how they feel about you. It’s possi-
ble to evoke real emotions in a linear
conversation, and about all the writer
has to worry about is the role the
speaker plays in the story.

A third communication solution is
the use of binary decision points. This
is a compromise between branching
and linear conversation approaches.
Most often seen in console games such
as SUIKODEN (Figure 6) and just about
anything developed by Square, binary
decision point conversations are linear
except where a yes/no decision (and
associated branch) will reveal some-
thing about the character, the player,
or the NPC speaking. I think this is a
most promising approach.

A fourth communication method is
reaction-based conversations A few
designers over the years have tried a
system in which NPCs speak and the
player gets to pick the tone of his or
her response but not the specific con-
tent (wording) of the response. This
doesn’t seem to offer much advantage
over other, more popular systems, but
it is an option.

The last communication option is
simply denial. Back when Doug
Church and I first started talking about
SYSTEM SHOCK, we were dissatisfied with
the conversation approach taken in
UNDERWORLD, traditional and conven-
tional though it may have been. And
though it pained us to admit it, even to
ourselves, we had no idea how to do
any better. So the team designed
around the unsolvable problem — we
killed everyone off. The inhabitants of
Citadel station would exist, for the
player, only through e-mail and video
logs. It was an elegant solution to an
intractable problem: if we can’t make
you believe you’re talking to a real
human being, we just won’t have any
in our game world. (In retrospect, I

think we may have
gone a little overboard
— it was the right deci-
sion for that game at
that time, but we failed
to take into account
the power of consisten-
cy and convention.)

Perhaps the best
thing that can be said
about conversation in
computer gaming is
that players have
grown accustomed to
inelegant, unrealistic,
basically unbelievable
systems and cardboard
cut-out NPCs. Until
someone comes up with something
better, you can always fall back on con-
vention, a fact that Doug and the
SYSTEM SHOCK team didn’t consider
very seriously. Players “get” branching-
tree/keyword systems — they’re so
familiar with them that they don’t
even think about them much anymore.
And that’s about the best that you can
hope for — that conversation won’t
drag players out of your carefully craft-
ed alternate world too badly. I await
the day when voice recognition, natur-
al language processors, basic knowl-
edge databases, and speech synthesis
become realistic options.

Exploration vs. Action

H aving dealt with combat and con-
versation, there’s only one defin-

ing characteristic of role-playing left to
discuss: exploration. In the typical RPG,
you can fully explore a
huge, contiguous world
in real time. Every
ULTIMA, both
UNDERWORLDS,
DAGGERFALL, and count-
less other games have
taken this approach.
Uncovering all of a
world’s secrets is fun.

Clearly, the explo-
ration model works in
RPGs, but it’s both a
blessing and a curse.
It’s great to be able to
say it takes a player
hours to traverse your
game’s world (and
that’s if you don’t stop

to interact with anything), but that
begs the question of whether it’s any
fun to walk around for ten hours.
Additionally, game players are increas-
ingly pressed for time or anxious to fin-
ish one game so they can move on to
the next. As a result, many seem to
want smaller worlds, shorter play times,
and more frequent pats on the back. I
know there are still hardcore game
players out there who always want
more, but you must decide whether
there are enough of these consumers to
support your development budget.

Recent trends favor smaller, deeply
simulated worlds over large, contigu-
ous spaces an inch deep and miles
wide, at least in terms of depth of sim-
ulation. Further, many RPGs these days
— my own DEUS EX, THIEF: THE DARK

PROJECT, DIABLO, and others — are
adopting a mission orientation. They
break the world up into more manage-
able sections to minimize walking

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 1 9 9 9 G A M E D E V E L O P E R

45

F I G U R E 7. ULTIMA VII uses a top-down, third-person

perspective.

F I G U R E 8 . Standard game play window in MIGHT &

MAGIC VI, showing the first-person gaming experience.

around and maximize fun. Mission
structure also goes hand-in-hand with
linearity and, together, they allow us to
tell the best stories possible.

Variables

N ow that we’ve dis-
cussed the defin-

ing characteristics —
the rules of role-
playing, if you
will — what of
the variables?
There are certainly
characteristics of
role-playing that are
not universal, that you
can adopt or ignore, as you wish. Here
are some of them.
CAMERA POSITION. I’m the last person
qualified to address technology, but
camera positioning is an important
enough issue to cover briefly. There are
several ways to approach camera posi-
tioning and player point of view in
role-playing. The most common per-
spectives are: first-person, three-quar-
ters-overhead third-person (as in, an
isometric viewpoint), and top-down
third-person (Figure 7). For the purpos-
es of this discussion, and for the sake of
brevity, I’ll treat the third-person per-
spectives as the same.

In a genre that, at some level, boils
down to providing the player with the
ultimate “I did this” experience, what
could be more compelling than enter-
ing a new world and seeing it through
your own eyes? The UNDERWORLD and
MIGHT & MAGIC series (Figure 8), not to
mention many others, offer fine first-
person role-playing experiences. If
what you’re after is simulating a world,
a first-person view goes a long way
toward making the player feel as
though he or she is “there.” You’re
reducing the distance between player
and character to almost nothing.

One drawback to the first-person
perspective is that it puts players at a
tactical disadvantage by limiting their
awareness of what’s going on behind
and to the sides of their characters.
And if you’re committed to turn-
based, tactically challenging combat,
convoluted conversations that take
place on a separate conversation
screen, and the video equivalent of

paper game character sheets crawling
with attributes, skills, and numbers,
first-person could be the worst choice
for your game.

If you’re trying to recreate the paper
gaming experience or the experience
you get when you read a great novel or
watch a film — the fiction experience
— a third-person view may be just

what you need. To capture that
“fiction feel,” it’s good to let play-
ers guide their characters rather
than be their characters. You
want a bit of distance between
player and character.

A third-person perspective is
also ideal for tactical decision-

making, particularly when com-
bined with a turn-based combat sys-

tem, a character sheet, and a separate
conversation screen. Each of these ele-
ments contributes to the player’s abili-
ty to make informed decisions about
how to develop his or her character.
The trade-off is that it’s tough to care
much about NPCs that are obviously
nothing more than bunches of pixels
an inch high when you’re looking at
them from a bird’s perspective.
LONE ADVENTURER OR PARTY? If you’re
working on an RPG, there’s one ques-
tion I guarantee you’ve been asked: “Is
there gonna be multiplayer support?”
Everybody seems to want to go explor-
ing with a party. In a paper game,
where players gather around a table,
engage in collective acts of imagina-
tion, and push lead miniatures repre-
senting their characters around on
tabletops, the party idea works just
fine. Certainly, a case could be made
that allowing a party of adventurers to
go through your story together, linked
via modem, LAN, or the Internet, is a
worthy pursuit despite the problems of
communication and coordination
among party members.

But what of the single-player RPG?
Does the party make sense in that con-
text? Many classic RPGs indicate that it
does. The early ULTIMAs (among many
others) allow a single player to take
control of a party of adventurers.
However, I think controlling parties in
single-player, story-based RPG is a bad
idea, particularly when it’s a real-time
game. There are several reasons I feel
this way.

First, if one of the primary goals of
role-playing is to allow players to cre-

ate an alter ego, you should do every-
thing possible to increase a player’s
identification with his or her character.
When controlling a party, player iden-
tification with a single character is his-
tory — as is role-playing, in my opin-
ion. At that point, you’re playing a
boardgame. Second, AI limitations
mean you’re inevitably going to be
slowed down by teammates who can’t
think quickly on their feet and, even
slowly, can’t respond the way real peo-
ple would.

If you subscribe to the ideal that
players should describe their adven-
tures by saying “I did” something
rather than “Lara Croft did” some-
thing or the “The Avatar did” some-
thing, controlling a party is a prob-
lem. In recent years, more and more
designers seem to be coming around
to this mode of thinking. (Recent
ULTIMAs, UNDERWORLD, DIABLO, and
DAGGERFALL have all adopted the solo
model, often to the chagrin of fans.)
Solo play is simpler to implement,
speeds up game play, and fosters a
direct connection between player and
character that seems critical to RPG
success.

If you choose to include full-party
control in your single-player game, rec-
ognize that you’ll reduce player
involvement and turn off people who
value tactical thinking in games, and
use it in conjunction with turn-based
combat and a third-person perspective.
A real-time, first-person party-based
game is just asking for trouble.

It’s Time to
Advance the Genre

C omputer role-playing games are
no longer just an infant medium

learning to crawl. They’ve been
around for a while, and now we, their
designers, must start figuring out what
we are, and what we can do to make
the most of them. I’ve got no beef
with folks who want to continue
recreating the past. Just don’t count
me among the people who think
that’s good enough. Our goal should
be to create games that are simple to
learn and play, accessible to the
broadest possible audience, and yet
offer enough depth that hardcore
game players will flock to them. ■

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

46

R O L E - P L A Y I N G G A M E S

rently in use. Instead, I’m referring to
coordinated group movement, where
units cooperate with each other to
move around the map with intelli-
gence and cohesion. Any RTS game
developer that wants to be competitive
needs to look beyond simple unit
movement; only the games that weigh
in with solid coordinated movement
systems will go the distance.

In this article, the second and final
part of my coordinated unit move-
ment series, we’ll take a look at how
to use the systems that we considered
in the first article to satisfy our coordi-
nated group movement goal. We’ll
also examine how we can use our
coordinated movement fundamentals

to solve some classic, complex move-
ment problems. While we will spend
most of our time talking about these
features through the RTS microscope,
they can easily be applied to other
types of games.

Catching Up

L ast month, we discussed a lot of
the low-level issues of coordinated

unit movement. While pathfinding
(the act of finding a route from point A
to point B) gets all of the press, the
movement code (the execution of a
unit along a path) is just as important
in creating a positive game experience.

A game can have terrific pathfinding
that never fails to find the optimum
path. But, if the movement system isn’t
up to par, the overall appearance to the
players is going to be that the units are
stupid and can’t figure out where to go.

One of the key components to any
good movement system is the collision
determination system. The collision
system really just needs to provide
accurate information about when and
where units will collide. A more
advanced collision system will be con-
tinuous rather than discrete. Most
games scale the length of the unit
movement based on the length of the
game update loop. As the length of
that update loop increases, the gap
between point A and point B can get
pretty large. Discrete collision systems
ignore that gap, whereas continuous
systems check the gap to make sure
there isn’t anything in between the
two points that would have created a
collision with the unit being moved.

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

48

M O V E M E N TC O O R D I N A T E D

Implementing
Coordinated Movement

b y D a v e C . P o t t i n g e r

art of the fun of working in the game industry is

the constant demand for technical innovations

that will allow designers to create better games.

In the real-time strategy (RTS) genre, most

developers are focusing on improving group

movement for their next round of games. I’m not

talking about the relatively low-tech methods cur-PP
After several close calls, Dave managed to avoid getting a “real job” and joined
Ensemble Studios straight out of college a few years ago (just in time to the do the
computer player AI for a little game called AGE OF EMPIRES). These days, Dave spends
his time either leading the development of Ensemble Studios’ engines or with his love-
ly wife Kristen. Dave can be reached at dpottinger@ensemblestudios.com.

Continuous collision determination
systems are more accurate and more
realistic. They’re more difficult to
write, though.

Another important element for coor-
dinated unit movement is position
prediction. We need to know where
our units are trying to go so that we
can make intelligent decisions about
how to avoid collisions. Although
building a fast position-prediction sys-
tem presents us with a number of
issues, for this article, we can assume
that our collision determination sys-
tem has been augmented to tell us
about future collisions in addition to
current collisions. Thus, each unit in
the game will know with which units
it’s currently in collision with and
which units it will collide with in the
near future. We presented several rules
for getting two units out of collision in
last month’s article.

All of these elements work together
to create the basis for a solid, first-order
(single unit to single unit) coordinated
movement system. The core thing to
keep in mind for this article is that we
have an accurate, continuous collision
determination system that tells us
when and where units will collide.
We’ll use that collision system in con-
junction with the collision resolution
rules to create second order (three or
more units/groups in collision) coordi-
nation.

Group Movement

L ooking at the definition of a group
(see the sidebar, “Units, Groups,

and Formations”), we can immediately
see that we need to store several pieces
of data. We need a list of the units that
make up our group, and we need the
maximum speed at which the group
can move while still keeping together.
Additionally, we probably want to
store the centroid of the group, which
will give us a handy reference point for
the group. We also want to store a
commander for the group. For most
games, it doesn’t matter how the com-
mander is selected; it’s just important
to have one.

One basic question needs to be
answered before we proceed, though.
Do we need to keep the units together
as they move across the board? If not,
then the group is just a user interface

convenience. Each unit will path and
move as if the player had issued indi-
vidual commands to each group mem-
ber. As we look at how to improve on
the organization of our groups, we can

see that there are varying degrees of
group movement cohesion.
UNITS IN A GROUP JUST MOVE AT THE SAME

SPEED. Usually, this sort of organization
moves the group at the maximum

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 1 9 9 9 G A M E D E V E L O P E R

49

Unit. A game entity that has the ability to move around the map. Players expect their

units to act intelligently.

Group. A general collection of units that have been grouped together by the user for

convenience (usually to issue the same order to all of the units in the group). Other

than a desire to keep its units together, groups don’t place any other restrictions on

unit movement.

Formation. A more complex group. A formation has an orientation (a front, a back, a

right flank, and a left flank). Each unit in the formation tries to maintain a unique rela-

tive position within the formation. More complex models provide an individualized unit

facing within the overall formation and support for wheeling during movement.

Units, Groups, and Formations

Base speed

Time speed addition

Same speed

Direction of
movement Once all units are close enough,

all units move at the same speed.
Allow these units to move
faster to catch up to fast units

Fast unitsSlow
units

S

S

S

F

F

S

S

S

F

F

02.move1.gdF I G U R E 1 . All grouped units should be kept together.

02.move2.gd

Obstruction

Obstruction

Goal

Goal

F I G U R E 2 . Units in a group should follow the same path.

speed of its slowest unit, but some-
times it’s better to let a slow unit move
a little faster when it’s in a group
(Figure 1). Designers generally give
units a slow movement speed for a rea-
son, though; altering that speed can
often create unbalanced game play by
allowing a powerful unit to move
around the map too quickly.
UNITS IN A GROUP MOVE AT THE SAME SPEED

AND TAKE THE SAME PATH. This sort of orga-
nization prevents half of the group’s
units from walking one way around the
forest while the other half takes a com-
pletely different route (Figure 2). Later,
we’ll look at an easy way to implement
this sort of organization.
UNITS IN A GROUP MOVE AT THE SAME SPEED,
TAKE THE SAME PATH, AND ARRIVE AT THE SAME

TIME. This organization exhibits the

most complex behavior that we’ll
apply to our group definition. In addi-
tion to combining the previous two
options, it also requires that units far-
ther ahead wait for other units to catch
up and possibly allows slower units to
get a temporary speed boost in order to
catch up.

So, how can we achieve the last
option? By implementing a hierarchi-
cal movement system, we can manage
individual unit movement in a way
that allows us to consider a group of
units together. If we group units
together to create a group object, we
can store all of the necessary data, cal-
culate the maximum speed for the
group as a whole, and provide the basic
decision making regarding when units
will wait for other units (Listing 1).

The BBGGrroouupp class manages the unit
interactions within itself. At any point
in time, it should be able to develop a
schedule for resolving collisions
between its units. It needs to be able to
control or modify the unit movement
through the use of parameter settings
and priority manipulation. If your unit
system only has support for one move-
ment priority, you’ll want to track a
secondary movement priority within
the group for each unit in the group.
Thus, to the outside world, the group
can behave as a single entity with a sin-
gle movement priority, but still have
an internal prioritization. Essentially,
the BBGGrroouupp class is another complete,
closed movement system.

The commander of the group is the
unit that will be doing the pathfinding
for the group. The commander will
decide which route the group as a
whole will take. For basic group move-
ment, this may not mean much more
than the commander being the object
that generates the pathfinding call. As
we’ll see in the next section, though,
there’s a lot more that the commander
can do.

Basic Formation Movement

F ormations build on the group sys-
tem. Formations are a more restric-

tive version of groups because we have
to define a very specific position for
each unit within the group. All of the
units must stay together during group
movement in terms of speed, path, and
relative distance; it doesn’t do any

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

50

C O O R D I N A T E D M O V E M E N T

////**

//// BBUUnniittGGrroouupp

////**

ccllaassss BBUUnniittGGrroouupp

{{

ppuubblliicc::

BBUUnniittGGrroouupp((vvooiidd));;

~~BBUUnniittGGrroouupp((vvooiidd));;

////RReettuurrnnss tthhee IIDD ffoorr tthhiiss ggrroouupp iinnssttaannccee..

iinntt ggeettIIDD((vvooiidd)) ccoonnsstt {{ rreettuurrnn((mmIIDD));; }}

////VVaarriioouuss ggeett aanndd sseett ffuunnccttiioonnss.. TTyyppee ddeessiiggnnaatteess tthhee ttyyppee ooff tthhee ggrroouupp

////((aanndd iiss tthhuuss ggaammee ssppeecciiffiicc)).. CCeennttrrooiidd,, mmaaxxSSppeeeedd,, aanndd ccoommmmaannddeerr aarree

////oobbvviioouuss.. FFoorrmmaattiioonnIIDD iiss tthhee iidd llooookkuupp ffoorr aannyy ffoorrmmaattiioonn aattttaacchheedd ttoo

////tthhee ggrroouupp ((wwiillll bbee ssoommee sseennttiinneell vvaalluuee iiff nnoott sseett))..

iinntt ggeettTTyyppee((vvooiidd)) ccoonnsstt {{ rreettuurrnn((mmTTyyppee));; }}

vvooiidd sseettTTyyppee((iinntt vv)) {{ mmTTyyppee==vv;; }}

BBVVeeccttoorr&& ggeettCCeennttrrooiidd((vvooiidd)) ccoonnsstt {{ rreettuurrnn((mmCCeennttrrooiidd));; }}

ffllooaatt ggeettMMaaxxSSppeeeedd((vvooiidd)) ccoonnsstt {{ rreettuurrnn((mmMMaaxxSSppeeeedd));; }}

iinntt ggeettCCoommmmaannddeerrIIDD((vvooiidd)) ccoonnsstt {{ rreettuurrnn((mmCCoommmmaannddeerrIIDD));; }}

BBOOOOLL ggeettFFoorrmmaattiioonnIIDD((vvooiidd)) ccoonnsstt {{ rreettuurrnn((mmFFoorrmmaattiioonnIIDD));; }}

BBOOOOLL sseettFFoorrmmaattiioonnIIDD((iinntt ffIIDD));;

////SSttaannddaarrdd uuppddaattee aanndd rreennddeerr ffuunnccttiioonnss.. UUppddaattee ggeenneerraatteess aallll ooff tthhee

////ddeecciissiioonn mmaakkiinngg wwiitthhiinn tthhee ggrroouupp.. RReennddeerr iiss hheerree ffoorr ggrraapphhiiccaall

////ddeebbuuggggiinngg..

BBOOOOLL uuppddaattee((vvooiidd));;

BBOOOOLL rreennddeerr((BBMMaattrriixx&& vviieewwMMaattrriixx));;

////BBaassiicc uunniitt aaddddiittiioonn aanndd rreemmoovvaall ffuunnccttiioonnss..

BBOOOOLL aaddddUUnniitt((iinntt uunniittIIDD));;

BBOOOOLL rreemmoovveeUUnniitt((iinntt uunniittIIDD));;

iinntt ggeettNNuummbbeerrUUnniittss((vvooiidd)) ccoonnsstt {{ rreettuurrnn((mmNNuummbbeerrUUnniittss));; }}

iinntt ggeettUUnniitt((iinntt iinnddeexx));;

pprrootteecctteedd::

iinntt mmIIDD;;

iinntt mmTTyyppee;;

BBVVeeccttoorr mmCCeennttrrooiidd;;

ffllooaatt mmMMaaxxSSppeeeedd;;

iinntt mmCCoommmmaannddeerrIIDD;;

iinntt mmFFoorrmmaattiioonnIIDD;;

iinntt mmNNuummbbeerrUUnniittss;;

BBVVeeccttoorr** mmUUnniittPPoossiittiioonnss;;

BBVVeeccttoorr** mmDDeessiirreeddPPoossiittiioonnss;;

}};;

L I S T I N G 1 . The BBUUnniittGGrroouupp class.

good to have a column of units if there
are huge gaps in that column while it’s
moving around the map.

The BBFFoorrmmaattiioonn class (Listing 2) man-
ages the definition of the desired posi-
tions (the positions and orientations
that we want for each unit in the for-
mation), the orientation, and the state
of the formation. Most formations that
a game uses are predefined; it’s useful
to make these easy to edit during
development (via a text file or some-
thing else that a nonprogrammer can
manipulate). We do want the ability to
create a formation definition on the
fly, though, so we’ll take the memory
hit and have each formation instance
in the game maintain a copy of its
own definition.

Under this model, we must also track
the state of a formation. The state
ccSSttaatteeBBrrookkeenn means that the formation
isn’t formed and isn’t trying to form.
ccSSttaatteeFFoorrmmiinngg signifies that our forma-
tion is trying to form up, but hasn’t yet
reached ccSSttaatteeFFoorrmmeedd. Once all of our
units are in their desired positions, we
change the formation state to
ccSSttaatteeFFoorrmmeedd. To make the movement
considerably easier, we can say that a
formation can’t move until it’s formed.

When we’re ready to use a forma-
tion, our first task is to form the forma-
tion. When given a formation, BBGGrroouupp
enforces the formation’s desired posi-
tions. These positions are calculated
relative to the current orientation of
the formation. When the formation’s
orientation is rotated, then the forma-
tion’s desired positions will automati-
cally wheel in the proper direction.

To form the units into a formation,
we use scheduled positioning. Each
position in the formation has a sched-
uling value (either by simple definition
or algorithmic calculation) that will
prioritize the order in which units need
to form. For starters, it works well to
form from the inside and work out-
ward in order to minimize collisions
and formation time (Figure 3). The
group code manages the forming with
the algorithm shown in Listing 3.

So, now that we have all of our
swordsmen in place, what do we do
with them? We can start moving
them around the board. We can
assume that our pathfinding has
found a viable path (a path that can
be followed) for our formation’s cur-
rent size and shape (Figure 4). If we

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 1 9 9 9 G A M E D E V E L O P E R

51

////**

//// BBFFoorrmmaattiioonn CCllaassss

////**

ccllaassss BBFFoorrmmaattiioonn

{{

ppuubblliicc::

////TThhee tthhrreeee ffoorrmmaattiioonn ssttaatteess..

eennuumm

{{

ccSSttaatteeBBrrookkeenn==00,,

ccSSttaatteeFFoorrmmiinngg,,

ccSSttaatteeFFoorrmmeedd

}};;

BBFFoorrmmaattiioonn((vvooiidd));;

~~BBFFoorrmmaattiioonn((vvooiidd));;

////AAcccceessssoorrss ffoorr tthhee ffoorrmmaattiioonn’’ss oorriieennttaattiioonn aanndd ssttaattee.. TThhee eexxppeeccttaattiioonn

////iiss tthhaatt BBFFoorrmmaattiioonn iiss rreeaallllyy aa ddaattaa ssttoorraaggee ccllaassss;; BBGGrroouupp ddrriivveess tthhee

////ssttaattee bbyy ccaalllliinngg tthhee sseett mmeetthhoodd aass nneeeeddeedd..

BBVVeeccttoorr&& ggeettOOrriieennttaattiioonn((vvooiidd)) {{ rreettuurrnn((mmOOrriieennttaattiioonn));; }}

vvooiidd sseettOOrriieennttaattiioonn((BBVVeeccttoorr&& vv)) {{ mmOOrriieennttaattiioonn==vv;; }}

iinntt ggeettSSttaattee((vvooiidd)) ccoonnsstt {{ rreettuurrnn((mmSSttaattee));; }}

vvooiidd sseettSSttaattee((iinntt vv)) {{ mmSSttaattee==vv;; }}

////TThhee uunniitt mmaannaaggeemmeenntt ffuunnccttiioonnss.. TThheessee aallll rreettuurrnn iinnffoorrmmaattiioonn ffoorr tthhee

////ccaannoonniiccaall ddeeffiinniittiioonn ooff tthhee ffoorrmmaattiioonn.. IItt wwoouulldd pprroobbaabbllyy bbee aa ggoooodd

////iiddeeaa ttoo ppaacckkaaggee tthhee uunniitt iinnffoorrmmaattiioonn iinnttoo aa ccllaassss iittsseellff..

BBOOOOLL sseettUUnniittss((iinntt nnuumm,, BBVVeeccttoorr** ppooss,, BBVVeeccttoorr** oorrii,, iinntt** ttyyppeess));;

iinntt ggeettNNuummbbeerrUUnniittss((vvooiidd)) ccoonnsstt {{ rreettuurrnn((mmNNuummbbeerrUUnniittss));; }}

BBVVeeccttoorr&& ggeettUUnniittPPoossiittiioonn((iinntt iinnddeexx));;

BBVVeeccttoorr&& ggeettUUnniittOOrriieennttaattiioonn((iinntt iinnddeexx));;

iinntt ggeettUUnniittTTyyppee((iinntt iinnddeexx));;

pprrootteecctteedd::

BBVVeeccttoorr mmOOrriieennttaattiioonn;;

iinntt mmSSttaattee;;

iinntt mmNNuummbbeerrUUnniittss;;

BBVVeeccttoorr** mmPPoossiittiioonnss;;

BBVVeeccttoorr** mmOOrriieennttaattiioonnss;;

iinntt** mmTTyyppeess;;

}};;

L I S T I N G 2 . The BBFFoorrmmaattiioonn class.

1
2

3

4
56

7

8

Initial unit positions

9

1 2 3

4 5

6 7 8

Desired unit positions

9

1 2 3

4 5

6 7 8

If is the last unit to
get into formation, then
some other unit has to
move out of its formed
position to let through.

9

9

9

1
2

3

4

5

6 7
8

If we start with , then all
other units can move into
position without any press.

9

9

02.move3.gd

F I G U R E 3 . Start forming the formation from the inside out.

don’t have a viable path, we’ll have to
manipulate our formation (we’ll talk
about how to do this shortly). As we
move around the map, we designate
one unit as the commander of our

formation. As the commander
changes direction to follow the path,
the rest of our units will also change
direction to match the commander’s;
this is commonly called flocking.

We have a couple of ways to deal
with direction changes for a formation:
we can ignore the direction change or
we can wheel the formation to face in
the new direction. Ignoring the direc-
tion change is simple and is actually
appropriate for something such as a
box formation (Figure 5). Wheeling
isn’t much more complicated and is
very appropriate for something such as
a line. When we want to wheel, our
first step is to stop the formation from
moving. After rotating the orientation
of the formation, we recalculate the
desired positions (Figure 6). When
that’s done, we just go back to the
ccSSttaatteeFFoorrmmiinngg state, which causes the
group code to move our units to their
new positions and sets us back to
ccSSttaatteeFFoorrmmeedd when it’s done (at which
point, we can continue to move).

Advanced Formation Movement

S o, now we’ve got formations mov-
ing around the map. Because our

game map is dynamic and complex, it’s
possible that our planned path will be
invalidated. If that happens, we’ll need
to manipulate the formation in one of
three ways.
SCALING UNIT POSITIONS. Because the
desired positions are really just vector
offsets within a formation, we can
apply a scaling factor to the entire for-
mation to make it smaller. And a small-
er formation can fit through small gaps
in walls or treelines (Figure 7). This
method works well for formations in
which the units are spread out, but it’s
pretty useless for formations where the

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

52

C O O R D I N A T E D M O V E M E N T

SSeett aallll uunniittss’’ iinntteerrnnaall ggrroouupp mmoovveemmeenntt pprriioorriittiieess ttoo tthhee ssaammee llooww pprriioorriittyy vvaalluuee..

SSeett ssttaattee ttoo ccSSttaatteeFFoorrmmiinngg..

WWhhiillee ssttaattee iiss ccSSttaatteeFFoorrmmiinngg::

{{

FFiinndd tthhee uunnffiilllleedd ppoossiittiioonn tthhaatt’’ss cclloosseesstt ttoo tthhee cceenntteerr ooff tthhee ffoorrmmaattiioonn..

IIff nnoo uunniitt wwaass aavvaaiillaabbllee

SSeett tthhee ssttaattee ttoo ccSSttaatteeFFoorrmmeedd aanndd bbrreeaakk oouutt ooff ffoorrmmiinngg lloooopp..

SSeelleecctt aa uunniitt ttoo ffiillll tthhaatt sslloott uussiinngg aa ggaammee ssppeecciiffiicc hheeuurriissttiicc tthhaatt::

MMiinniimmiizzeess tthhee ddiissttaannccee tthhee uunniitt hhaass ttoo ttrraavveell..

WWiillll ccoolllliiddee wwiitthh tthhee ffeewweesstt nnuummbbeerr ooff ootthheerr ffoorrmmaattiioonn mmeemmbbeerrss..

HHaass tthhee lloowweesstt oovveerraallll ttrraavveell ttiimmee..

SSeett uunniitt’’ss mmoovveemmeenntt pprriioorriittyy ttoo aa mmeeddiiuumm pprriioorriittyy vvaalluuee..

WWaaiitt ((aaccrroossss mmuullttiippllee ggaammee uuppddaatteess)) uunnttiill uunniitt iiss iinn ppoossiittiioonn..

SSeett uunniitt’’ss mmoovveemmeenntt pprriioorriittyy ttoo hhiigghheesstt ppoossssiibbllee vvaalluuee.. TThhiiss eennssuurreess tthhaatt

ssuubbsseeqquueennttllyy ffoorrmmeedd uunniittss wwiillll nnoott ddiissllooddggee tthhiiss uunniitt..

}}

L I S T I N G 3 . The formation algorithm.

02.move5.gd

A box is essentially the
same no matter which
way it's rotated.

F I G U R E 5 . Wheeling doesn’t apply to every formation.

02.move4.gd

Path that's valid
for one unit,
but not for a
line of units.

Path that
should
be taken.

Goal

o
b
s
t
r
u
c
t
i
o
n

F I G U R E 4 . The pathfinding needs to

find a path that’s usable given the

formation’s size and shape.

Desired positions

Recalculate
desired
positions
 here

02.move6.gd

F I G U R E 6 . Recalculate the desired

positions after the formation’s orien-

tation has changed.

Same vector
with a smaller
magnitude

Vector offset
from center

02.move7.gd
F I G U R E 7. Scaling desired positions

to fit through small gaps.

units are already shoulder to shoulder
(as in a line). Scaling the offsets down
in that case would just make our
swordsmen stand on top of each other,
which isn’t at all what we want.
SIMPLE ORDERED OBSTACLE AVOIDANCE. If we’re
moving a formation and we encounter a
collision with another game entity
(either a current collision or a future col-
lision), we can assume that our path is
still viable, with the exception of this
entity being in the way. The simple
solution is to find the first place along
our formation’s path where it will not
be in collision with the entity and
reform our formation at that spot
(Figure 8). Thus, the line of infantry will
break, walk around the obstacle, and
reform on the other side. This solution
can fall apart fairly easily, though, so it’s
important to realize when the reforma-
tion position is too far along the path to
be of use. If the distance around the
obstacle is far enough that it interferes

with the reforma-
tion of your group,
then you should
just repath your
formation.
HALVING AND REJOIN-
ING. While simple avoidance is a good
solution, it does dilute the visual
impact of seeing a formation move effi-
ciently around the map. Halving can
preserve the visual impact of well-
formed troops. When we encounter an
obstacle that’s within the front projec-
tion of the formation (Figure 9), we can
pick a split point and create two forma-
tions out of our single formation.
These formations then move to the
rejoin position and then merge back
into one formation. Halving is a simple
calculation that dramatically increases
the visual appeal of formations.

Path Stacks

A path stack is a simple stack-based
(last in, first out) method for stor-

ing the movement route information
for a unit (Figure 10). The path stack
tracks information such as the path the

unit is following, the current waypoint
the unit is moving toward, and
whether or not the unit is on a patrol.
A path stack suits our needs in two sig-
nificant ways.

First, it facilitates a hierarchical
pathfinding setup (Figure 11). Game
developers are beginning to realize that
there are two distinctly different types
of pathfinding: high-level and low-
level. A high-level path routes a unit
around major terrain obstacles and
chokepoints on a map, similarly to
how a human player might manually
set waypoints for a unit. A low-level
path deals with avoidance of smaller
obstacles and is much more accurate
on details. A path stack is the ideal
method for storing this high- and low-
level information. We can find a high-
level path and stuff that into the stack.
When we need to find a low-level path
(to avoid a future collision with that
single tree in the big field), we can stuff

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

54

C O O R D I N A T E D M O V E M E N T

Split
point

Split
point

Tree

Tree

Tree

F I G U R E 8 . Reform the formation after the obstacles.

Split
point

Tree

Tree

Tree

F I G U R E 9 . Split the formation in two to get around an

obstacle.

Path 3

When Path 3 is done being
followed, pop it off the stack
 and start following Path 2

Path 2

Path 1

Path 0

Path 3

Path 2

Path 1

Path 0

2.move10.gd

Adding a path to the stack

F I G U R E 1 0 . Path stack.

High-level Path

Game Map

Goal

Start

Low-level
Path

Path Scale

High-level
Path

Low-
level
Path

F I G U R E 1 1 . Hierarchical paths.

more paths onto the stack and execute
those. When we’re done executing a
path on the stack, we pop it off the
stack and continue moving along the
path that’s now at the top of the stack.

Second, a path stack enables high-
level path reuse. If you recall, one of
the key components to good group and
formation movement is that all of the
units take the same route around the
map. If we write our path stack system
so that multiple units can reference the
same path, then we can easily allow
units to reuse the same high-level path.
A formation commander would find a
high-level path and pass that path on
to the rest of the units in his formation
without any of them having to do any
extra work.

Structuring the path storage in this
manner offers us several other benefits.
By breaking up a high-level path into
several low-level paths, we can refine
future low-level segments before we
execute them. We can also delay find-
ing a future low-level path segment if
we can reasonably trust that the high-
level path is viable. If we’re doing high-
ly coordinated unit movement, a path
stack allows us to push temporary
avoidance paths onto the stack and

have them easily and immediately
integrated into the unit’s movement
(Figure 12).

Solving a Compound Collision

F or our purposes, compound colli-
sions are defined as simultaneous

collisions between more than two
units. Most games will have a practical
upper limit to how many units can be
involved in a compound collision. Still,
as soon as a collision involves more
than two units, programmers generally
end up writing a lot of spaghetti logic
that breaks way too easily. But we’ll
avoid that situation by reusing the
movement priorities and doing some
simple scheduling.

If we have a compound collision
between three units (Figure 13), our
first task is to find the highest-priority
unit involved in the collision. Once
we’ve identified that unit, we need to
look at the other units in the collision
and find the most important collision
for the highest priority unit to resolve
(this may or may not be a collision
with the next highest-priority unit in
the collision). Once we have two units,

we pass those two units into the colli-
sion resolution system.

As soon as the collision between the
first two units is resolved (Figure 14),
we need to reevaluate the collision and
update the unit involvement. A more
complex system could handle the addi-
tion of new units to the collision at this
point, but you can get good results by
simply removing units as they resolve
their collisions with the original units.
Once we’ve updated the units in the
collision, we go back to find two more
units to resolve; we repeat this process
until no more units are involved in the
collision (Figure 15).

You can implement this system in
two different areas: the collision resolu-
tion rules or the collision determina-
tion system. The collision resolution
rules would need to be changed in the
way in which they units higher and
lower priority; these rules aren’t partic-
ularly difficult to change, but this mod-
ification does increase the complexity
of that code. Alternatively, you can
change the collision determination sys-
tem so that it only generates collisions
that involve two units at a time; you
still have to find all of the units in a
collision, though, before you can make
this decision.

Solving the Stacked Canyon Problem

O ne of the ultimate goals of any
movement system is to create

intelligent movement. Nothing looks
more intelligent than a system that
solves the stacked canyon problem
(Figure 16). The stacked canyon isn’t a
simple problem to solve upon first
inspection, but we can reuse some
simple scheduling to solve it once we
have our coordinated unit movement
in place.

The first step is to identify that you
have a stacked canyon problem. This
step is important because it’s needed to
propagate the movement priority of
the driving unit (the unit trying to
move through the stacked canyon)
through to the rest of the units. We
could just let each unit ask other units
to move out of the way based on its
own priority, but a better solution to
use the priority of the driving unit —
after all, that’s the unit that we really
want to get through the canyon.
Identifying a stacked canyon problem

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

56

C O O R D I N A T E D M O V E M E N T

Avoidance Path

Low-level Path

Low-level
Path

Units as
Path Stack

High-level
Path

Low-level
Path

Avoidance
Path

After Avoidance
Path Push

High-level
Path

A B

F I G U R E 1 2 . Push a temporary avoidance path onto the path stack

A. Initial State

A B

C

B. After A/B collision is resolved

Resolve collisison
between A & C.

Resolve collisison
between A & B.

A B

C

C. Done

A B

C

3 g

F I G U R E 1 3 . Solving a compound collision. The order of priority is A>B>C.

can be done in a couple of ways: notic-
ing that the driving unit will push the
first unit into a second unit or looking
at the driving unit’s future collision list
to find multiple collisions. Whichever
method is used, the pushed unit
should move with the same priority as
the driving unit.

Once we’ve identified the problem,
we have a fairly simple recursive execu-
tion using the coordinated movement
(Figure 17). We treat the first pushed
unit as the driving unit for the second
pushed unit, and so on. Each unit is
pushed away from its driving unit until
it can move to the side. When the last
unit moves to the side (Figure 18), the
original driving unit has a clear path by
which to move through the canyon.

A nice touch is to restore the canyon
units to their original states. To do
this, we simply need to track the push-
ing and execute the moves in the
reverse order from which the units
moved to the side (Figure 19). It’s also
useful to have the movement code rec-
ognize when the driving unit is part of
a group so that the rest of the group’s
units can move through the canyon
before the canyon units resume their
original positions.

Tips

O PTIMIZE THIS GENERAL SYSTEM TO YOUR

GAME. A lot of extra computation
can be eliminated or simplified if
you’re only doing a 2D game.
Regardless of whether you’re doing a
2D or 3D game, your collision detec-
tion system will need a good, highly
optimized object culling system;
they’re not just for graphics anymore.
USE DIFFERENT METHODS FOR HIGH- AND LOW-
LEVEL PATHING. To date, most games have
used the same system for both solu-
tions. Using a low-level solution for
high-level pathfinding generally results
in high-level pathfinding that’s slow
and not able to find long paths.
Conversely, a high-level pathfinder
used for low-level pathfinding creates
paths that don’t take all of the obsta-
cles into account or are forced to allow
units to move completely through each
other. Bite the bullet and do two sepa-
rate systems.
NO MATTER WHAT YOU DO, UNITS WILL OVERLAP.
Unit overlap is unavoidable or, at best,
incredibly difficult to prevent in all

cases. You’re better off simply writing
code that can deal with the problem
early. Your game will be a lot more
playable throughout its development.
GAME MAPS ARE GETTING MORE AND MORE COM-
PLEX. Random maps are going to be one
of the key discriminating features in
RTS games for some time to come. The
better movement systems will handle
random maps and also take changing
map circumstances into account.
UNDERSTAND HOW THE UPDATE AFFECTS UNIT

MOVEMENT. Variable update lengths are a
necessary evil that your movement code
will have to be able to handle. Use a
simple update smoothing algorithm to
make the most of the problems go away.
SINGLE UPDATE FRAMES OF REFERENCE ARE A

THING OF THE PAST. It’s impossible to do
coordinated unit movement without
planning. It’s impossible to do plan-
ning if you don’t track past decisions
and look at what’s likely to happen in
the future. Any generalized coordinat-
ed unit movement system needs to be
able to recall past collision informa-
tion and have future collision informa-
tion available at all times. Remember
that minor variations during the exe-
cution of a collision resolution plan
can be ignored.

No Stupid Swordsmen

S imple unit movement is, well,
simple. Good, coordinated unit

movement is something that we
should be working on in order to raise
our games to the next level and make
our players a lot happier in the
process. With these articles, we’ve laid
the foundation for a coordinated unit
movement system by talking about
topics such as planning across multi-
ple updates and using a set of collision
resolution rules that can handle any
two-unit collision. Don’t settle for stu-
pid swordsman movement again! ■

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

58

C O O R D I N A T E D M O V E M E N T

A. Classic Stacked Canyon Problem

Unit A is trying to walk
through a Stacked Canyon.

B

A

E

D

C

B. Each unit pushes the unit next in line.

Unit A is trying to walk
through a Stacked Canyon.

E

D

C

B

A

Pushes D

Pushes C

Pushes B

Replace this unit first.

B

C. When each unit can move to the side,
it does so.

E D

C B

A

D. Reverse order to rebuild situation.

C

D

E

F I G U R E 1 4 . Solving the Stacked

Canyon Problem.

• Archer Jones. The Art of War in the

Western World. Oxford University Press,

1987. ISBN 0-252-01380-8. This is a

great book if you’re looking for informa-

tion on historical formation usage.

• Bjorn Reese’s page of pathfinding/

navigation links is at

http://www.imada.ou.dk/~breese/

navigation.html

FF OO RR FF UU RR TT HH EE RR II NN FF OO

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

60 hiny Entertainment is well known for its suc-

cessful console platform games. And yet, huge

hits such as EARTHWORM JIM and its sequel have

resulted in huge expectations for future pro-

jects within this genre. Game players who

might forgive minor imperfections in an innovative

PC title, such as Shiny’s MDK, are less understanding of faults in a plat-

form game. The Golden Age of platform games, ushered in by the NES,

the Super NES, and the Megadrives con-

soles, established some very high standards

for this genre. In this environment, our

team at Shiny launched the development of

WILD 9.

b y D i d i e r M a l e n f a n t

SS
Shiny
EntertainmentÕs
WILD 9

P O S T M O R T E M

Didier Malenfant is a programmer at Shiny Entertainment. Even being French he is only mildly rude and
enjoys snowboarding, driving his yellow car, researching in all aspects of 3D programming and running
linux boxes. He can be reached at dids@shiny.com.

61

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 1 9 9 9 G A M E D E V E L O P E R

Like None Before

W e were fortunate in that Tom Tanaka, WILD 9’s lead
designer, had been one of EARTHWORM JIM’s designers.

His experience and love for the platform genre guided the
project’s efforts from the beginning. During some of the early
design meetings, we decided that one way to differentiate our
platform game would be to come up with creative ways of get-
ting rid of the enemies — most platform games involve some
form of the player jumping onto the enemies’ heads. So from
the very start, we designed WILD 9 to be different in this
respect. From this beginning point, we realized that the main
character would have to possess some kind of weapon that
could eliminate the baddies in a lot of different ways.

David Perry, Shiny’s president, took an interest in our ini-
tial design and challenged us to create a weapon like none
that had been attempted before in a videogame. Our first
ideas centered on a female character wielding a glove that
could remotely vaporize enemies or objects. This glove
would deliver the same kind of actions you could perform
with your own hands, only with a thousand times more
strength. And then, somewhere in the early design stages,
we realized that this wasn’t a weapon at all. The glove
evolved into a beam that came out of the back of the main
character’s suit. This system was to take center stage in the
game’s design and eventually was dubbed “The Rig.” WILD 9
was to become one of the most violent games around, but
ironically the main character was to have no weapon.

Kevin Munroe, character and story designer and lead ani-
mator on the project, expanded Tom’s first attempts and cre-
ated a whole universe and storyline for the game. The main
character became Wex Major, a male teenager lost in anoth-
er galaxy. Wex’s encounter with The Rig gives him the
opportunity to fight the evil creature controlling the planet
upon which he’s just landed. As Kevin described his own
design, “Imagine if George Lucas co-wrote Star Wars with
Lewis Carroll. And imagine if George Lucas then codirected
it with Tex Avery.” Wex soon finds allies (eight of them),
and together the Wild 9 embark upon a “David vs. Goliath”
battle against Karn, a 376-year-old being with the power of a
god and the temperament of a toddler. Karn has set his
sights on harnessing the ultimate power of The Glove and
Rig, as well as the only being capable of using them: Wex
Major. From his humble anti-hero beginnings as a pizza boy
in earlier designs, Wex was now the planet’s only hope, and
the task ahead of him was nothing short of incredible.

Because Shiny had had luck with licensing its properties
in the past, we created a game bible that contained the char-
acter profiles, as well as multiple sketches of all the charac-
ters in the game. This document was then used to show pro-
duction studios and other interested parties the game
universe from which TV shows or toy lines could eventually
draw. As David had the chance to say in multiple speeches
he made on the subject, a game bible is invaluable in the
quest to license your game worlds and characters. In our
case, it was also a useful reference to the huge database from
which we were going to create a game. Kevin and Tom
designed a lot of game content — to the point where we
nearly had to lock them in Shiny’s basement to stop them
from adding anything else. In addition to the main charac-
ter Wex, the designers came up with a sidekick named

B’Angus; Nitro, who is allergic to everything and has a bad
tendency to explode when he sneezes; Henry, who helps
navigate the water levels (Wex doesn’t know how to swim);
Crystal and Boomer, the game’s female characters; the mul-
tiple bad guys grunts Wex encounters along the way; Karn,
the evil giant who faces Wex at the end of the game; the
famous Little Evil Green Men (or LEGM as we later called the
tiny, single-eyed green pests); Filbert the sniper; and many
other characters, as well as the world they inhabit.

The initial game bible only served as WILD 9’s starting
point, because we added a number of elements to the design
as we went along (we even managed to finish some of
them). Still, this document proved to be such a valuable
resource that all of Shiny’s future titles will start with the
development of a game bible. Many times, titles are late
because certain gaps in the original design were overlooked
and the full design was never really laid down on paper
before development started. Writing down design details
forces the designers to make all the micro-decisions that the
design encompasses and leaves less room for interpretation
or hesitations from the rest of the team.

The WILD 9 team — Standing up from left to right: Erik

Drageset, Jean-Michel Ringuet, Scott Herrington, Malachy

Duffin, Tom Tanaka, Gavin James. Sitting down from left to

right: Lori Perkins, Rich Neves, Kevin Munroe. Not pictured:

Klaus Lyngeled, Stuart Roch, Lloyd Murphy, Didier

Malenfant. And the Big Grub guys: John Alvarado, Brandon

Humphreys, Mike Winfield, Ron Nakada, Neil Hong.

Shiny Entertainment
Laguna Beach, Calif.
(949) 494-0772
http://www.shiny.com or http://www.wild9.com

Team Size: Thirteen full-time developers at Shiny. Five contrac-
tors from Big Grub.

Release date: October 1998.
Intended platform: Sony PlayStation
Hardware used: Loads of very powerful PCs and PSY-Q devkits.
Software used: 3D Studio Max, Photoshop, Painter, PSY-Q

development system, Slick Edit, Codewright, Visual C++,
Sourcesafe, and custom tools.

WILD 9

WILD 9’s development began around
the time that the first all-around 3D
platform games had started to appear.
Faced with this emerging trend, we had
to make a choice whether to follow it
or to stick to more traditional 2D-based
game play, even if it meant evolving in
a 3D environment. The second solu-
tion was chosen mainly because of The
Rig. We wanted full freedom for the
beam to move, and that meant using
the full range of joypad inputs just to
achieve that goal, never mind running
around in 3D. So we decided that the
main character would travel on a pre-
defined path that would roam through
a 3D universe, involving changes of
direction and multiple camera angles.
This decision also allowed the level
designers to carefully place camera
angles along the character’s path, thus
enabling dramatic scenes and varied
views of the scenery. Later, we used the
camera to give players more awareness
of their surroundings and warn them

of the dangers ahead by panning the
camera one way or another.

While WILD 9’s design was challeng-
ing from the start, we also wanted the
game to push new limits on the techni-
cal front. We wanted to deliver not
only great and innovative game play,
but also amazing visuals. The results
were a mixed bag, and our technologi-
cal effort was probably the most tumul-
tuous part of the game’s development.

The Tools and the Talent

W ILD 9 was originally targeted at
two platforms; the Sony

PlayStation and the Sega Saturn. We
eventually dropped the Saturn version,
much to the disappointment of many
Sega fans worldwide. Still, our original
plan influenced the technical side of
the project throughout the course of
the game’s development.

Characters and levels in the game
were modeled in 3D Studio Max and
then exported using a proprietary plug-
in that Malachy Duffin wrote. In order
to account for both platforms, Malachy
first wrote the export plug-in to handle
both output formats, and the scripts
that drove the export process con-
tained lines referring to both the
PlayStation and the Saturn. When we
dropped the Saturn version, half of the
data in these scripts became obsolete;
from that point on, only the
PlayStation side continued to evolve.

The export plug-in handles the char-
acter’s geometry, which is stored as a
certain number of limbs, and anima-
tion, which is stored as translation and
rotations of those limbs. This system
has a small memory footprint while
remaining flexible enough for our pur-
poses. (We didn’t use single skin mesh-
es in the game because the on-screen
size of our characters would have ren-
dered this refinement invisible.) One of
the game engine’s features was the abil-
ity to hide and unhide specific limbs,
which was pretty handy in optimizing
the game’s rendering time. One of the
tricks we used was to produce multiple
level of detail (LOD) models of certain
objects, and store those LODs as sepa-
rate limbs within the same character
file. We could then hide and unhide
LOD limbs depending on an object’s
distance from the viewpoint; once
again, the small size of our objects on

the screen made the popping from one
LOD to another minimal.

The levels and characters also con-
tain various invisible bits of informa-
tion, such as trigger points, reference
points, and collision boxes. A level’s
trigger points generate monsters and
powers ups. A model’s reference points
provide anchors for multiple effects. If
a character, such as the alien beast in
the Beast Engine level, has smoke com-
ing out of its nostrils, then these will
be generated from a reference point
placed on the character model. The ref-
erence point can be hidden and shown
according to a visibility track placed in
the model’s animation in 3D Studio
Max, which makes editing them sim-
ple. Of course, things are never too
simple. We encountered some prob-
lems toward the end of the project
when time came to get the PAL version
of WILD 9 going. The game’s final level,
which features an encounter between
Wex and Karn, involves Karn trying to
catch up to a running Wex. Because
Karn is such an imposing fellow, his

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

62

P O S T M O R T E M

B’Angus

Filbert

footsteps generate a puff of smoke and
a loud bang; we generated these foot-
steps with reference points placed on
Karn’s feet. A problem arose with the
PAL version because the animations
played at a different speed to compen-
sate for the 50Hz frame rate. Some of
the reference points were skipped alto-
gether, and Karn would appear to limp
as only one leg would make a sound.
We solved this problem by making the
reference points active for multiple
frames and preventing the game
engine from processing those two
frames in a row. If one reference point
was skipped, we were sure to catch at
least one another from the same group.
It wasn’t a very elegant solution, but it
served its purpose late in the project.

All in all, 3D Studio Max was a decent
editing environment for Stuart Roch,
Lori Perkins, and Rich Neves to work
with, although a dedicated editor would
probably have been better in some
cases. 3D Studio Max offered near-total
layout freedom, but was lacking in the
ease-of-use department, considering
that we weren’t even using a tenth of its
features for our level-building and real-
time character purposes. One feature
that was very useful to us, however, was
the user-defined properties it allows you
to input for each object. By including a
lot of keywords and properties within
each game object, we could easily pass
on the information that the export
plug-in needed to and process its output
accurately and efficiently.

My assignment for the project was to
program the game’s intermediate lev-
els, which consisted of jetbike races
chasing bad guys in various landscapes,
falling down a huge tube trying to
avoid projectiles, and the game’s final
encounter between Wex and Karn.

The tools and the game engine also
allowed for animated textures and par-
ticles, which the team’s artists used
extensively. Jean-Michel Ringuet used
animated textures in the Crystal Maze
level, for example, to give crystals a
extremely realistic glow. Erik Drageset
provided levels such as Drench, which
featured a series of multiple water falls
and water effects — it had us all in awe
the first time we saw it. In the mean-
time, Lloyd Murphy was working on
Wreckage with the secret intention of
making it the most graphically inten-
sive level in the whole game. He kept
that record to the end of the project

with only a few kilobytes of memory
and a few bytes of video memory left
when this level was running. However,
toward the end of the project, when
we’d add a game element that would
appear on all the levels (such as the in-
game information panel), Wreckage
would be the first level to break and
run out of memory. We used the parti-
cle system extensively throughout the
game for explosions and various
pyrotechnics. Here too, unexpected
usage of the particle system proved
very effective in the Drench level,
where raindrops fall and create very

realistic ripples into the water — all
done using different types of particles.

Two factors led to the literal flourish-
ing of particles everywhere in the
game. Gregg Tavares, who started as a
programmer but left the project mid-
way through development, added the
ability to create and use particles from
inside the game’s scripting language.
Furthermore, John Alvarado built his
now famous Particle Studio module.
This module allowed us to preview the
effects of the particle system’s many
parameters while modifying them in
real-time using the joypad.

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 1 9 9 9 G A M E D E V E L O P E R

These kinds of tools, together with
our scripting language, offered our
artists a creative freedom that paid off
for us in a big way; it’s likely to serve as
a model for our future development
efforts. Great and unexpected things
resulted when the artists were able to
try out new ideas out without involv-
ing the programmers. A typical scene
involved a bunch of programmers
looking at the artist’s screen and saying
something along the lines of, “I didn’t
know it could even do that.”

On the other side, every time a task
required the programmers’ help, syn-
chronization became a major problem,
with the programmers trying to fit these
extra tasks into an already busy schedule
and artists waiting around for a very
long time before they could wrap up
their levels. One perfect example of this
was the game’s enemy AI. Even though
the artists could place enemy actors any-
where in their levels, they always needed
a programmer to code at least a place
holder AI routine so that the artists
could preview their work. As a solution,
we built a test level that we could use as
an object viewer. Artists could drop their
models into this test level to get a pre-
view of what they would look like in
their final, real-time, PlayStation form.
While the test level helped, it didn’t
solve completely solve our work syn-
chronization problem. Enemy behavior
still needed to be coded in for the level
to be fully tested and polished.

Still, a really effective solution to
many of the problems that we experi-
enced involved not only extra organiza-
tion and proper scheduling, but also
better communication. If a programmer
is unaware that another team member
is waiting on a certain feature, then the
process would end up in a gridlock situ-
ation. So, while the organization we
chose worked, it was never perfect. We
used Microsoft Sourcesafe to share code
between the programmers, but the only

trusted version of the game was always
living on Gavin James’s computer.
Gavin personally made sure that he’d
incorporated every change we made to
the game by keeping track of every-
body’s progress and updates. For future
projects, we hope to implement some
kind of registry or database where all
the game elements can be recorded.
Our hope is that such a system would
allow us to better see how changing
some part affects all of the other parts.

Our programmers developed a script-
ing language to enable easy implemen-
tation of the characters’ AI. The lan-
guage is based on a byte code, which is
interpreted in real-time during the game
and specifies three main threads for
each character. The intelligence, anima-
tion, and movement threads control the
actor’s behavior and also have the abili-
ty to spawn additional threads, if neces-
sary. The scripting language also han-
dles collision events using a table that

contains all the different classes of char-
acters in the game and the correspond-
ing collision types allowed to occur
between them. The system can thus
trivially reject collision tests between
objects that should never collide with
each other, such as two static objects.

As Gavin continued to improve the
game engine, we kept extending the
scripting, adding new features and
allowing access to just about any low-
level function through C function
calls. Though imperfect, the scripting
language was fairly easy to use once all
its loopholes were known, and it
enabled faster prototyping than
straight C. A testament to the versatili-
ty of the scripting language is the fact
that even the menu system that
Malachy wrote is, in fact, treated as a
normal game level by the engine. Every
menu item that the players see on the
screen is a game actor and the back-
ground is a huge game level.

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

64

P O S T M O R T E M

The Little Evil Green Men

Progress

W ILD 9’s development was divid-
ed into two relatively distinct

periods (more on the reasons for this
later). The first team that worked on
WILD 9 had most of the game engine
written, a few levels started, and some
game play mechanics implemented,
but the game itself was not what we
could call playable. When the second
team took over, Gavin spend most of
his time cleaning up the engine, while
the artists and level designers focused
on finishing one level. This was the
long birthing of Gulag, which took a
full two months to finish; more than
any other level in the game.

To the team’s credit, a second level,
called Bombopolis, was started during
the last few weeks of Gulag. Then things
started to really snowball. People were
getting used to the tools and the limita-
tions of the engine, and we spent the
remainder of the project making
progress at an extremely scary pace. At
this point, the engine was getting pretty
stable, and we were able to start adding
new features. Levels started popping out
of nowhere, and before we knew it, we
were playing a full-blown game.

What Went Right

1.THE SECOND TEAM. Shiny had origi-
nally wanted to release WILD 9

last year. Back then, another team was
working on the project. But following a
major staff upheaval, the only people
left from the original staff were Tom
and Kevin; the rest of the first WILD 9
team, in one way or another, left
Shiny. I’ll elaborate on this in the
“What Went Wrong” section, but
needless to say, inheriting a project,
engine, graphical work, and early levels
from another team is indeed not an
easy task. A constant tension exists
between trying to work with old stuff
and wanting to redo it all over again.

Most credits must go to Gavin, who
had to abide by technical decisions
made by other programmers before
him; he spent a lot of time trying to
make sense of the game engine’s fea-
tures and inner workings. Word is that
even though the game is now finished,
he’s still somewhere back there trying
to make sense of part of it.

In truth, he spent a lot of time trying

to anticipate what people would need in
order to be productive and gave, where
possible, top priority to other people’s
needs to avoid gridlock and keep things
moving. He also helped a lot by sorting
out small and easily definable tasks and
handing them to people who were
learning parts of the system, thus mak-
ing their learning curve easier.

If the first team’s working atmos-
phere was not perfect, that of the sec-
ond team was a completely different
story. People were gradually added to
the team as development progressed,
and the last few months were spent

under incredible pressure and extreme-
ly tight deadlines. And yet through all
this, we get along well with one anoth-
er, and no homicides took place.
Joking aside, the chemistry among the
second team was incredible, and I
think I can safely say that everyone
had a great time working on this title.
A great atmosphere meant suggestions
on each other’s work were well-taken,
spirits were up, and productivity was
positively influenced.

2.THE SCRIPTING LANGUAGE. As I men-
tioned earlier, we used the script-

ing language for just about everything

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 1 9 9 9 G A M E D E V E L O P E R

in the game. In fact, the language
turned out to be rather easy to learn,
and it was very powerful once some
key features were added to it. It was a
great way to prototype certain actors
very quickly and work with the anima-
tor and the level designer to polish up
behaviors and attack patterns. The
interpretation of the byte code wasn’t
the fastest thing around, but it turned
out to be a positive trade-off for flexi-
bility and ease of use. Also, most of the
low-level functions were performed by
straight C code that was triggered by
scripting commands from within the
actors’ AI code.

3.STUART ROCH STEPPING UP AS A PRO-
DUCER. During a rough patch in

the second team’s initiation, when we
thought things couldn’t get much
worse, WILD 9 lost Scott Herrington
(it’s producer), who had to replace the
departing Simon Cox as Shiny’s PR
manager. Stuart Roch had been hired
initially as an assistant designer, but he
quickly stepped up to full-blown pro-
ducer, even though he only officially
earned the title later on in the project.
Stuart’s attention truly helped keep the
project on track, as he did an awesome
job at keeping everything together,
organizing schedules, and making sure
that we as the team had everything we
needed. It’s no surprise that now, after
WILD 9, Stuart will go on to produce
other Shiny titles.

4.THE ADDITION OF BIG GRUB. Toward
the end of the project, it became

clear that we weren’t going to finish all
the ideas that we had had for this game
if we didn’t get serious help in the form
of extra manpower. We needed art for
the menu system, a closing movie for
the end of the game, and a dozen pro-
grammers to implement the behavior
of all the actors that the level designers
had in mind for their levels. We didn’t
get a dozen programmers, but we did
decide to flout Brook’s Law and add
more people to the project. Learning
from past mistakes, we looked for peo-
ple who were not only talented, but
work well with the rest of the team.
Nobody fit this bill better than the Big
Grub guys.

Big Grub is a small company from
Irvine, Calif., whose talents we con-
tracted to help us out with all the con-
tent ideas we had for the game. John
Alvarado, Ron Nakada, and Mike
Winfield helped program the AI for

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

P O S T M O R T E M

many of the game’s characters,
Brandon Humphreys worked on the
interface art and the end movie, while
Neil Hong designed the second falling
level and helped with the end movie.
We couldn’t have finished the game in
time without them, but we also took a
big risk bringing on new people toward
the end of the project.

5.KEEPING EVERYBODY IN CLOSE QUARTERS.
Shiny is housed in a three-floor

building. The first floor is mainly
administrative, the third floor houses
the MESSIAH and SACRIFICE teams, which
leaves the second floor for WILD 9 and
STUNT RC COPTER. Shiny has no private
offices, so to speak; both development
floors are organized in an open space
layout, with separating half-walls in
some cases. STUNT RC COPTER is only a
three-person team, so the rest of the
space was occupied by the WILD 9 team.
While we weren’t cramped, it’s safe to
say that some people got to know their
neighboring coworkers rather well.

This proximity became invaluable
because it enhanced communications

among us ten-fold. One early prob-
lem with the project involved assign-
ing tasks to the individual team

members and keeping abreast of who
was up to what. Weekly meetings
going over everybody’s schedules and a
lot of direct and constant communica-
tion among us (most of the time with-
out even leaving our desks) directly
addressed this problem.

What Went Wrong

1.THE FIRST TEAM. I once heard David
Perry say that the first WILD 9

team was a great collection of talented
individuals, while the second was a tal-
ented team. This statement alone sums
up the main problem encountered by
the first team. As we found out later in
the project, communication and good
atmosphere were two factors that made
this project move forward; it’s now
obvious that the best thing to do was
to start over rather than try to salvage a
situation that was going nowhere.

2.A LACK OF EXISTING DOCUMENTATION.
I’ve already sung the praises of

our scripting language, but not every-
thing was totally perfect in this picture.

Although it ended up being very use-
ful, it became clear early on that the
language and its op-codes had mas-
sive loopholes and “gotchas” waiting
to jump on us. To help other pro-
grammers with their first steps, Gregg
started maintaining a document as he
was learning the AI system. This doc-
ument described all the major prob-
lems that he’d encountered and ways
around them that he’d discovered.

When Gregg left the project , Gavin
and the rest of the programmers took
over the responsibility of updating this
document as new problems appeared
or new solutions were found.

This process continued until the very
end of the project. The document was
invaluable in getting somebody up to
speed on the system, such as when the
new programmers from Big Grub came
to the rescue. Overall, the language’s
design was, in some places, question-
able; for instance, the actor registers
were called ppaarraammss and the virtual
processor’s variables were called rreeggss,
which was greatly confusing.

3.THE PHYSICS ENGINE. The physics
engine turned out to be one of

Gavin’s biggest nightmares during the
WILD 9’s development. He inherited

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

68

P O S T M O R T E M

this code from the previous program-
mers, and he spent more time trying to
unravel, optimize, and just get that part
of the code functioning than on any
other identifiable part of the game. His
advice to engine inheritors: unless the
physics are perfect and written exactly
as you want them, grow your own.

4.DEAL ME IN. Our tools programmer
and resident Irish person Malachy

once decided to bring us a little multi-
player game he was working on in his
spare time. The game was called DEAL

ME IN, and he wanted us to help him
beta test it. DEAL ME IN is best described
as a very addictive cross between
Scrabble and Poker. Actually, “addic-
tive” doesn’t even begin to describe the
darn thing.

Everyone at Shiny plays games. So
when it comes to testing a very addic-
tive game, we are very thorough. The
game became an obsession, to the point
where it was affecting our productivity.
It turns out, after extensive research,
that there is no such thing as a “quick
game of Deal Me In.”

5.THINGS THAT DID NOT MAKE IT. Tom
and Kevin are two very creative

fellows. The material they came up
with is enough to fill up three or four
games like this one. In addition, the
whole team took this game to heart
and ended up coming up with sugges-
tions of their own. We were thus faced
with a situation toward the end of the
project: we could not fit everything
into the game.

Wex’s weapon, The Rig, is normally
blue. But it possesses a red mode, which
is greatly under-used in the game. The
red mode was initially meant to be a
more powerful blue beam, but this cre-
ated game play issues, as a player will
sometimes want to transport enemies
in the beam from one point of the level
to another. The red beam would vapor-
ize just about everything on contact,
which was obviously a problem. This is
one of the only design issues that was
never truly fixed and the red beam,
even though it made it into the game,
isn’t used to its full potential.

Many other great actor ideas never
made it into WILD 9: for instance, the
3D cow that was intended as a refer-
ence to EARTHWORM JIM, or the tank
that Lloyd Murphy modeled that was

supposed to populate the Wreckage
level. In fact, Lloyd’s tank became sort
of a myth, which we would bring up at
various meetings: “So we don’t have
time to fit even a tiny little tank then?
Are you sure? What if I pretend it’s a
background?” The need to stop devel-
opment at some point made it impossi-
ble to use it all the ideas and content
that we had, although I hear from reli-
able sources that the cow did eventual-
ly make it in there somewhere.

We Did Our Best

I t’s an amazing feeling after working
so hard on a game to sit back and

start playing it. In our case, the general
feeling was that WILD 9 turned out
amazingly well, especially in light of its
rocky development history. One of the
best feelings was to see the press reac-
tion at E3 this year, and to hear the
comments that WILD 9 had come a long
way. If you ever saw anything from
WILD 9 a year ago, go and check out the
final version. We did our best to make
sure you will have a pleasant surprise. ■

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 1 9 9 9 G A M E D E V E L O P E R

69

“Businessman” for “Suit.” These terms
are about opposing mindsets.

Those of the Garage Developer mind-
set, given any limits, would rather work
their asses off and achieve something
than do nothing and achieve nothing.
Garage Developer, as I use the term,
describes the innovative, self-starting,
and hard-working mindset of the indi-
vidual who has a strong inner vision and
follows it. A Geek lacks these qualities.

The Suit mindset, as I use the term,
would rather rip-off an idea than inno-
vate. He is not like the honorable
Businessman, as his goal is to crank out
crap (such as all the MYSt rip-offs),
dump it in a box, and sell it. This mind-
set believes that pulling ads is saving
money, and that lying on the box will
promote sales. This mindset has a
short-term view of things.

What we have in the industry now is
a great number of Geeks and Suits cre-
ating rip-off garbage, screwing each
other over, and filling the bargain bins
to critical capacity. What we need are
Garage Developers and Businessmen
working together to create innovative
and profitable games.

So, I am sick to death of the state-
ment “Garage Developers are dead.” I
think the statement was originally
intended to mean that the days of one
guy developing an entire game by him-
self are over (and I don’t even agree
with that). You’d be surprised at the
number of two- and three-person shops
out there that are responsible for huge
chunks of the development process on
some major titles. And it’s not just pro-
grammers. An informal survey of mine

revealed that many (who wish to
remain anonymous for fear of appear-
ing “unprofessional”) are active in the
production of 3D models, animation,
music, and even design. The small guys
are always rising to the top. It’s a cycle;
the small guy succeeds, becomes a big
guy, and another small guy pops up to
do things even better.

People will latch on to a statement
such as “Garage Developers are dead”
and misconstrue it for their own pur-
poses — usually to justify their own
failings. People have been echoing
this sentiment about garage develop-
ers and other innovators for hundreds
of years. The American patent office
declared that everything that could be
invented, had been, in the late
1800s.Obviously, a few new inven-
tions have appearedon the horizon
since that time.

This statement reflects more than just
a pessimistic view of our industry, but a
core problem of humanity. It says to me
that some people believe that all inno-
vation, individual achievement, and
accomplishment is over. That people
believe that there will be no more dar-
ing startup businesses based solely on a
grand vision and some elbow grease.
That people believe that there will be
no more technological breakthroughs
based on imagination and perspiration.
In short, that there will be no more
great works by great people. Everything
has been done, discovered, and dared
— so why try? “So why try?” is the pure
essence of the loser mindset.

So what’s my advice for making it as
a Garage Developer? It‘s easy to detail.

1. Write your game idea on paper. 2.
Build a prototype. 3. Submit it to a pub-
lisher. 4. Develop the game. 5. Detail
everything you did right and wrong in
steps one through four and write a
Postmortem for Game Developer. 6. Start
at step one and repeat this process until
you succeed.

Dare to take these steps and repeat
them until you succeed. Each time
around you will make progress towards
producing a successful game. This goes
for the professional game developers as
well. Is your company or development
team reinventing itself, stretching
itself, and daring new heights each
time you start a new project? If not,
then you are moving backwards.
Whether you’re a true Garage
Developer or not, have a mindset of
quality and innovation. It’s a mindset
vital to the game development com-
munity. If you decide to take this dar-
ing journey, you will not be alone.
You’ll find plenty of help and informa-
tion online, in news groups and web
sites. The Internet has hooked all of
our garages together. We now have
tools and information at our disposal
undreamed of only a few years ago.
Garage Developers have never been
more powerful. ■

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

72

b y L u k e A h e a r nS O A P B O X

Garage Developers are Not Dead

L et me start by clarifying some terms, particu-

larly “Garage Developer” and “Suit.” Do not

confuse a “Garage Developer” with a

“Geek.” Likewise, do not mistake a good

Luke Ahearn is lead designer and producer at Goldtree. He is currently developing
Goldtree’s next two titles. He can be reached at luke@goldtree.com.

3
D

 s
ce

n
e

 b
y

 N
ich

o
la

s
 M

a
rk

s
 o

f G
o

ld
tre

e

	back:

