
FEBRUARY 1998

G A M E D E V E L O P E R M A G A Z I N E

“People ask me whom I fear… which of
our competition — LucasArts, Microsoft,
any of the big companies. They don’t
frighten me. What I’m afraid of is two
guys in a garage, working in total
obscurity. That’s where the heart and soul
of this business is at.” – Jay Wilbur, dur-
ing his days at id Software

T his quote, which appeared in
Wired magazine a couple of
years ago, was a shot in the
arm for many small game

developers hoping to make it big. And
if it wasn’t apparent from the millions
of newbie questions that pepper
rec.games.programmer, there are many
such people.

A common question posed by newbies
to insiders is, How do I break into the
game development industry? If you’ve
ever tried to answer this one, you’ve
probably come to the same conclusion
as me and realized that there’s no one
particular path into the industry. It
seems everyone entered through one
back door or another. Only recently
have a handful of schools, such as
Vancouver-based DigiPen
(www.digipen.com), begun to offer
degrees in game programming. But for
most people, landing a good game devel-
opment job is quite a game in itself.

So naturally, I was happy to get a call
from a group of Berkeley undergrads
who are taking a bootstrap approach to
their career development. These stu-
dents formed a game development co-
op in 1995 called the Freelance Gaming
Studio (FGS) with the intent of develop-
ing and distributing a multiplayer
Internet-based game. This team wants
to take their game — simply titled THE

FISH GAME (www.fishgame.net) — out
of the lab and into the real world. The
game, which FGS demo’d at the CGDC
last year, is a bit like Virgin’s SUBSPACE,
but set in a tidepool. Your fish (either a
ray or a puffer fish) is viewed from an
overhead perspective, and you use the
keyboard to steer it around in the
water, avoiding or attacking other
aquatic life as you desire. The game will
include scenario editing tools and pos-
sibly server capabilities so that anyone
can host games over the Net.

There are approximately 40 FGS
developers, and a core group of 15
active members meets on a regular
basis during the school year to assign
development duties, check on the
progress of various features under con-
struction, and of course to engage in a
little “playtesting.” FGS doesn’t plan
on charging for the game when they
complete it — they intend to distribute
the game freely. The goal is to build
interest in the game via the Net, build
player interest and loyalty, and parlay
the popularity into a possible business
venture with a publisher. After meeting
with FGS president Jason Chein
though, I get the impression that he’ll
be happy regardless of the future com-
mercial prospects of THE FISH GAME,
because of the experience that he and
the team gained in developing it.
They’re not blind to the fact that devel-
oping the game substantially improves
their prospects when they start hunt-
ing for jobs, and may even let them
continue to work together after gradua-
tion as an independent, professional
development studio.

I can’t help but admire what the FGS
is attempting. Whether or not their
game is successful is really beside the
point. As students, they have the luxu-
ry of ignoring quarterly earnings
reports, shareholders, and even payroll.
They’re in it for the fun and the experi-
ence, and any kind of commercial
reward is really just a bonus. Chein
wants to take his model of the student-
run game development studio to other
campuses so that students elsewhere
can get the same game development
team experience.

On a final, somewhat eerie note, THE

FISH GAME proved to be an educational
opportunity for some business admin-
istration students at Berkeley as well. A
team from the BA161 class used THE

FISH GAME as a means of studying prod-
uct marketing and distribution.
Another example which illustrates that
no game can escape the grasp of the
marketing department, eh? ■

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 7

P L A NG A M E

Heart and Soul
EDITOR IN CHIEF

MANAGING EDITOR

EDITORIAL ASSISTANT

EDITOR-AT-LARGE

CONTRIBUTING EDITORS

ADVISORY BOARD

COVER IMAGE

PUBLISHER

ASSOCIATE PUBLISHER

MARKETING MANAGER

AD. PRODUCTION COORDINATOR

DIRECTOR OF PRODUCTION

VICE PRESIDENT/CIRCULATION

GROUP CIRCULATION DIRECTOR

CIRCULATION MANAGER

CIRCULATION ASSISTANT

DIRECT MAIL MANAGER

NEWSSTAND MANAGER

REPRINTS

CEO - MILLER FREEMAN GLOBAL

CHAIRMAN - MILLER FREEMAN INC.

PRESIDENT/COO

SENIOR VICE PRESIDENT/CFO

SENIOR VICE PRESIDENTS

VICE PRESIDENT/PRODUCTION

VICE PRESIDENT/CIRCULATION

SENIOR VICE PRESIDENT/

SYSTEMS AND SOFTWARE

DIVISION

Alex Dunne
adunne@compuserve.com

Tor Berg
tdberg@sirius.com

Wesley Hall
whall@mfi.com

Chris Hecker
checker@bix.com

Brian Hook
bwh@wksoftware.com

Josh White
josh@vectorg.com

Hal Barwood

Noah Falstein

Susan Lee-Merrow

Mark Miller

Bioware

KoAnn Vikören

Cynthia A. Blair
(415) 905-2210
cblair@mfi.com

Susan McDonald

Dave Perrotti

Andrew A. Mickus

Jerry M. Okabe

Mike Poplardo

Stephanie Blake

Kausha Jackson-Crain

Claudia Curcio

Eric Alekman

Stella Valdez
(916) 983-6971

Tony Tillin

Marshall W. Freeman

Donald A. Pazour

Warren “Andy” Ambrose

H. Ted Bahr,

Darrell Denny,

David Nussbaum,

Galen A. Poss,

Wini D. Ragus,

Regina Starr Ridley

Andrew A. Mickus

Jerry M. Okabe

Regina Starr Ridley

Miller Freeman
A United News & Media publication

www.gdmag.com

DeBabelizer Pro 4.5
EQUILIBRIUM has unveiled the latest
upgrade of their automated graphics
processing software, DeBabelizer Pro
4.5 for Windows 95/NT.

The premise behind DeBabelizer’s
automated graphics processing tech-
nology is that designers need to effi-
ciently and automatically process con-
tent so that they can deliver graphics
across a range of platforms while main-
taining the highest level of image qual-
ity. DeBabelizer Pro automatically pre-

pares images, animations, and digital
video through intuitive drag-and-drop
scripting, batch processing, color
palette reduction, image processing,
and file-format conversion. New fea-
tures include the ability to run multi-
ple batch processes consecutively; to
outline or shave a one-pixel perimeter
around an object on a solid back-
ground; to composite a batch of images
or frames against another batch; to
compare batches to identify pixel dif-
ferences; to apply any image process to
multiple frames; to sort and render

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

6

BIT BBBB LLLL
N E W S F R O M T H E W O R L D

T H I N G S T H A T M A K E Y O U G O

H M M M . To those who doubt-
ed that Microsoft would

ever take steps to further
support OpenGL develop-
ment under Windows, the

joint announcement
between Microsoft and SGI

about their new OpenGL device driver kit
seems to have been a welcome shock.
The DDK, to be distributed this spring by
Microsoft, will include a new OpenGL
ICD developed jointly by the two compa-
nies. There will also be a certification
and logo branding program for both
OpenGL and Direct3D drivers created
with the DDK. The press release took the
Microsoft party line in its repeated refer-
ences to the “professional 3D” uses of
OpenGL and to the “consumer applica-
tion” uses of Direct3D. Despite the
specifics of the wording, however, it
seems to be a win for OpenGL developers,
many of whom will continue to keep a
vigilant eye on Microsoft to see whether
it drags its feet in development and certi-
fication of OpenGL drivers.
C A R M A C K C O N S I D E R I N G J A V A .

Those who follow Carmack’s .plan may
have caught his recent comments about
Java “playing a significant role in future
projects” for id. The fact that id ports its
titles to so many different platforms must
make the language an attractive alterna-
tive with which to create game utilities.
Carmack stated that the number crunch-
ing utilities were likely to remain in C,
however.
H E A V E N H E L P U S . Mike Wilson's
departure from the helm of Ion Storm to
form a company called G.O.D. (Gathering
of Developers) got many chuckles around
our office, and presents Wilson with the

Alias Renderer for Windows NT
ALIAS|WAVEFRONT is now shipping the Alias Renderer for Windows NT. This is
the same film-quality renderer originally developed on IRIX — now ported to the
Windows NT operating system.

The Alias Renderer for Windows NT
will read SDL files created by
PowerAnimator, Studio, and Designer.
If you’re familiar with the command
line renderer on IRIX, you already
know the interface. The renderer is
multi-threaded and will be available
in different versions that support one,
two, four, or eight processors in a
given NT workstation. Both node-
locked and “floating” versions of the
renderer are available. Output (ren-
dered image) files are SGI compatible,
plus the product includes the fcheck
image viewing utility for use on
Windows NT. Alias|Wavefront’s tests
indicate that a 200 Mhz Pentium Pro based system will be slightly faster for
rendering than an O2 R5000 running at 180 Mhz. Dual Pentium IIs running at
266 Mhz (Powercaster) will generally outperform an R10000 Octane running at
195 Mhz.

To run the Alias Renderer for Windows NT, you’ll need a Pentium-based work-
station (133 Mhz or higher), Windows NT 4.0, 128MB of RAM, 100MB of free disk
space for installations and space for renderings, and a CD-ROM drive. Pricing
starts at $1,995. For more information, call your local sales representative as listed
on the Alias|Wavefront web site.
■ Alias|Wavefront

Toronto, Canada

(416) 362-9181

www.aw.sgi.com/pages/home/index.html

I N D U S T R Y
W A T C H
I N D U S T R Y
W A T C H

b y A l e x D u n n e

Jellyfish image created with Alias

Renderer for Windows NT.

b

batches; to track all processes while
running unattended batches with the
new global log; and to increase process-
ing throughput by 40 percent when
display mode is off. In addition to over
100 currently supported file formats,
DeBabelizer Pro 4.5 now supports
.PNG, .EPSF, and reads and writes
Kodak’s FlashPix format.

DeBabelizer Pro 4.5 supports
Windows 95/NT and has a suggested
retail price of $595.
■ Equilibrium

Sausalito, California

(415) 332-4343

www.equilibrium.com

GameMix
MEDIA SUPERCOLLIDER, creator of
Java-based multiplayer games, has
announced GameMix, its first release
of multiplayer game server software.

GameMix provides Java program-
mers with an easy-to-use toolkit for
creation of high-speed, multiplayer
games. GameMix allows developers to
focus on the game itself, and won’t
double the development period on
network implementation. The server
can accommodate more than 64
simultaneous users and is very light
on system overhead. Media-
SuperCollider has written two games

that utilize GameMix server technolo-
gy: BATTLETANK (3D) and
FIGHTINGVERGE (2D). Written in Java,
the games may be played on virtually
any platform.

GameMix may be downloaded from
www.gamemix.com for a free 30-day
trial. In addition, developers are invit-
ed to utilize Media SuperCollider’s
servers as a development/game hosting
site for GameMix games. With this ser-
vice, smaller game companies will have
access to powerful Sun servers and a
high-speed connection to the Internet.
It sells for $299.
■ Media SuperCollider

Marina del Rey, California

(310) 448-4171

www.mediasc.com

Power Render 2.5
EGERTER SOFTWARE has just
released Power Render 2.5, the next
major version of their game develop-
ment libraries.

This release adds Direct3D support
for 3D cards, in addition to the
already existing support for VGA,
SVGA, 3Dfx’s Glide, and DirectDraw.
A graphical user interface library
allows full-screen software-rendered or
3D-accelerated utilities to manipulate
3D objects and view scenes as they
would appear in the final application.
Power Render allows for rapid import-
ing of objects, animations, camera
paths, and scenes from 3D Studio and
Lightwave. The utilities let the design-
er apply textures, material properties,
and rendering methods without
recompiling any code. You can actual-
ly build and view a fully textured and
animated scene in real time without
touching a compiler. Source code for
the utilities is provided so developers
can modify them or use them as a
basis for new utilities.

Power Render 2.5 has a suggested
retail price of $299. The libraries and
utilities are available for free trial use
from the Power Render web page.
■ Egerter Software

London, Ontario, Canada

(519) 641-7542

www.egerter.com/pr

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 1 9 9 8 G A M E D E V E L O P E R

7

AAAA SSSS TTTT SSSS
O F G A M E D E V E L O P M E N T

opportunity to assume the title of "Right
Hand." Be wary how much you jest about
this company, though, lest you incur its
wrath.
M O R E U O N E W S . At the Online Games
Conference in Los Angeles last November,
one of the best talks of the event came
from Richard Garriott. Garriott addressed
some of the criticisms about the game and
admitted that it was still somewhat of a
work in progress. Demand for the game,
which has been EA’s most rapidly selling
PC game in the company’s 15-year history,
far outstripped what Garriott and other UO
developers anticipated. Sun servers have
been added at a furious pace to keep up
with the load (a problem many companies
would kill to have). Separately, EA also
announced Game Time, a 12-page
brochure for $29.85 that contains a regis-
tration code and player tips. With it, play-
ers can buy 90 days of prepaid online
access to the game with cash or check at
Babbages, Electronics Boutique, and
Egghead. This smart move will make the
game more accessible for younger players
who don’t yet enjoy the privilege of getting
a monthly Visa statement.
P O R T I T (W E L L) A N D T H E Y W I L L

C O M E . Eidos acquired from Square the
exclusive North American and European
rights to publish FINAL FANTASY VII for the
PC. FINAL FANTASY VII for the PlayStation,
with more than 3.2 million units sold in
Japan, is the best-selling PlayStation title.
Assuming that the port does justice to the
game (gripes about the RESIDENT EVIL port
come to mind), landing this already heavily
marketed title is a big win for Eidos.
C H A P T E R 1 1 C I T Y .

GameTek, the
Sausalito, California-
based developer and
publisher of DARK

COLONY for the PC and
WHEEL OF FORTUNE and
JEOPARDY for the N64, filed a petition for
reorganization under Chapter 11 bank-
ruptcy. The company blamed heavy loss-
es, development delays and disappointing
sales.

g

G R A P H I C C O N T E N T

Development Software

W hile I’m going to discuss the
software development tools

used at id, this is not necessarily an
endorsement, or even very useful infor-
mation. Still, it may satisfy the curiosi-
ty of many up-and-coming developers.
id software has used a vast array of pro-
gramming and development tools
throughout its history. WOLFENSTEIN

3D was written using Borland C++ 3.1
(16-bit real mode DOS), DOOM was
written using Watcom C/C++ 9.x and
DOS4GW (32-bit protected mode
DOS), and QUAKE was written using gcc
and the CWSDPMI extender (32-bit
protected mode DOS). id’s first official

Win32 products, WINQUAKE and
GLQUAKE, were written using Microsoft
Visual C++ 4.x.

QUAKE 2 was developed using
Microsoft Visual C++ 4.2 and 5.0 for
Win32. On Linux and Apple Rhapsody,
we used gcc, while on Silicon Graphics
IRIX, we used the standard MIPS cc
compiler. For Win32, we chose
Microsoft Visual C++ because it gener-
ates pretty efficient code, is well sup-
ported, is written by the same compa-
ny that creates the operating system
we’re using and targeting, has a nice
IDE and help system, and isn’t going
away anytime soon. Oddly enough, the
entire programming staff uses the
Microsoft Visual C++ IDE for editing

chores instead of a
third-party editor
and make utility.

For debugging,
we’ve relied pri-
marily on
Microsoft Visual
C++’s internal
debugger, but
we’ve had our
asses saved in sev-
eral situations by
using NuMega
BoundsChecker. I
cannot recom-
mend this prod-
uct highly
enough — it has

saved us dozens of hours and probably
knocked at least a week off of our
development time. The value derived
by avoiding the demoralizing effect
that a show-stopper bug can have is
immeasurable. It’s a simple fact:
BoundsChecker is easily a no-brainer
development tool if you are develop-
ing for Win32.

For profiling we’ve mostly relied on
our own internal profiling code, but
towards the end of the project we start-
ed using Tracepoint’s HiProf for C++
product, which has turned out to be
really good. We’ve also occasionally
used VTune from Intel. We never man-
aged to get Microsoft Visual C++’s pro-
filer to work for us. For now, we’re
quite happy with HiProf for C++.

Our primary development platform is
Windows NT 4.0 (Service Pack 3), and
we’re quite happy with it. It’s both
robust and reasonably compatible with
Windows 95. The vast majority of the
crashes that we’ve suffered under
Windows NT have been due to driver
bugs in manufacturer’s GDI and
OpenGL drivers (which run in kernel
mode and can thus trash the system).
There is a certain sense of calm that you
get when writing code on an operating
system that you know isn’t going to barf
simply because you moved the mouse
while the OS is going through the soft-
ware equivalent of a mid-life crisis.

However, both the programmers and
level designers have at least one
Windows 95 machine, typically a rea-
sonably slow one, that is used for test-
ing, debugging, and performance mea-
surement.

As for external system libraries, we
use OpenGL and DirectX —but neither

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

10

So Long and

Thanks for the Rail Gun

A s this will be my last Graphic Content, I wanted to wrap up my discus-

sion of my experiences working on Quake 2 with an examination of the

tools, both software and hardware, that we employ at id. I’ll finish with

a diatribe on glad-handing and wasting time.

Well, this is the last of my regular columns. I’ve had a good time writing these, but
since taking on the task of being a columnist for Game Developer, a “real” job has
reared its head. I plan on writing more articles in the future, as time permits. I also
encourage other game developers to write down their experiences and share the wealth
of knowledge they’ve accrued over the years.

of these components is required. We
use LLooaaddLLiibbrraarryy(()) to check for the avail-
ability of DirectDraw, DirectSound,
and OpenGL. If DirectDraw isn’t avail-
able, we use GDI DIB sections for soft-
ware rendering. And if DirectSound is
unavailable, it is substituted with WAV
out. If no OpenGL driver is installed on
the target system, then we resort to
software rendering.

Development Hardware

A ll of our front-line developers
(level designers, artists, and pro-

grammers) are equipped with
Intergraph TDZ-410 Windows NT
workstations with Intergraph Realizm
graphics adapters. These are dual
processor Pentium Pro 200 machines,
each with 4GB hard drive, 128MB of
RAM, and Nokia 445Xi 21-inch moni-
tors. We really like the Intergraph sys-
tems, even though they are consider-
ably more expensive than comparable
clones, because they are sturdy, com-
patible with existing software, and very
fast. The Intergraph Realizm drivers are
easily the most robust and well imple-
mented OpenGL drivers that we’ve
used, and the built-in peripherals
(sound, mouse, keyboard, SCSI, and
Ethernet) just work. Not enough can be
said for a machine that actually works
all of the time.

John Carmack has a slight variant on
the workstation just described. He has
the same basic Intergraph workstation,
however, he was two Intergraph
Realizm graphics adapters driving dual
21-inch flat panel LCD monitors
instead of a single Realizm driving a
single CRT. This setup definitely has its
advantages, including the ability to run
your application on one monitor and
your debugger on the other. Sometime
after Christmas, we’ll probably upgrade
our primary development systems to
dual processor 300Mhz Pentium 2 class
machines, 24 inch monitors, 256MB of
RAM, 27GB hard drives, and graphics
subsystems with (hopefully) at least
50% more fill rate than the existing
Realizms.

Kevin Cloud and Paul Steed, our res-
ident artists responsible for modeling
and animation, use SGI workstations
so that they can run Alias|Wavefront.
One of the workstations is an SGI O2
(MIPS R5000-based), and the other is a

somewhat long-
in-the-tooth SGI
Indigo2 Extreme.
We had originally
intended on tran-
sitioning to a
Windows NT-
based modeling
package such as
Softimage or 3D
Studio MAX, but
the artists love
Alias so much
that we’re going
to be stuck using
SGI machines for
a while.

Our monster CPU
server is an SGI Origin2000 machine
with sixteen MIPS R10000 processors.
This machine runs IRIX and is respon-
sible for executing all of John
Carmack’s custom tools, including our
BSP generator, visibility calculator, and
radiosity lighting tool. All of the
QUAKE 2 tools are built with parallel
processing in mind, and have been
since id used a four-processor DEC
Alpha machine for QUAKE develop-
ment. The SGI Origin2000 has
replaced the quad-Alpha machine used
for QUAKE’s development, and is
roughly six times faster overall. Our
Win32-based level editor has a menu
option allowing the level designers to
rsh commands to the Origin2000 from
their Intergraph workstations — they
can then immediately continue work-
ing on their levels while waiting for
their jobs to finish on the compute
server. We expect the Origin2000 to
have a useful life through Trinity, but
after that we’ll probably switch to
something else, hopefully something
that’s based on DEC Alpha processors
and Windows NT. While running
many different operating systems is
neat from a “gadget” perspective, it
really plays hell with productivity.
Having at most one or two different
operating systems in your critical path
makes for fewer headaches when try-
ing to get real work done.

A single shared file server, consisting
of a large (~70GB) DEC disk array
accessed through a regular Intel-based
Windows NT Server machine, is used
for globally accessed data and executa-
bles. Through most of QUAKE 2’S devel-
opment we were networked on 10Mbit,
but at the very end we switched over to

100Mbit Ethernet, which has notice-
ably improved productivity, since we
manipulate extremely large data sets.
During the development of Trinity,
we’ll be switching to 100BaseT as our
office standard, which opens up a lot
of possibilities (including storing our
home directories remotely over the
network).

Quality Assurance and Testing

i d software doesn’t have a compre-
hensive suite of test machines.

We’re actually borderline irresponsible
when it comes to testing — we develop
on our nonconsumer Windows NT
workstations, and hope that if we
“code well,” that things will just magi-
cally work when we run on the many
incarnations of Windows 95, even with
screwed-up drivers. The scary thing is
that this works most of the time.

So far, we’ve found only a couple of
irritating differences among Windows
NT, Windows 95, and Windows 95
OSR2.x, and those types of incompati-
bilities are quashed within a day or two.
In the future, we’re going to try to make
things more robust by having some
strategy in place when configuring sec-

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 1 9 9 8 G A M E D E V E L O P E R

11

b y B r i a n H o o k

ondary performance/compatibility sys-
tems for programmers and level design-
ers. Right now we rely heavily on our
publisher to find the more obvious
kinks in our code, but in the future, we
hope to manage the QA and testing
procedure a little more responsibly.

Developing Relationships with
Hardware Vendors

T his may seem like an odd topic to
talk about, but I’d like to explain

how we manage our relationships with
hardware vendors, specifically graphics
card and chipset manufacturers. There
is a wide misconception that id soft-
ware receives special treatment from
hardware vendors. Yes, in some cases
they approach us and want us to help
them (note that this is not the same as
them wanting to help us), but often as
not we have to beg and plead for devel-
opment boards, driver updates, bug
fixes, and workarounds. id has a lot of
visibility within the industry, but in
terms of pure dollar sales, we are hard-
pressed to compete with larger (pub-
licly owned) companies.

I regularly spend a few hours a day
sending e-mail, answering e-mail, test-
ing graphics adapters, and making
phone calls to hardware vendors, all in
the name of bug fixes and coming up
with workarounds. I’ve devised some
important strategies and tactics from
working with many different hardware
manufacturers. For starters, never tell
them that a bundle deal is out of the
question. Even if it is out of the ques-
tion, you’re not doing yourself any
favors by turning off product man-
agers and OEM sales managers at the
outset. These types are constantly
hunting for good quality titles at a
good price to bundle with their hard-
ware, and if you can keep them inter-
ested long enough to make sure that
whatever bugs you need fixed are

taken care of, then you’re doing pretty
well. My favorite tactic is to say, “We
won’t be able to discuss a bundle deal
until we see how well your hardware
performs with our title, and in order to
do that we need just these few bugs
fixed….” Works like a charm (mostly
because it’s true).

Speaking of sales and marketing
types, believe it or not these guys can
often be your allies. As a general rule,
until you start getting positive
responses from the engineers at a
company, keep everyone you know at
that company in the loop — sales,
marketing, developer relations, engi-
neers, interns, just about anyone with
an e-mail address you can dig up. If
you send e-mail to five people but
only one is interested in helping you,
then that one individual can often
make the difference when it comes to
getting a response or not — especially
if that individual is important.
Marketing, sales, public relations, and

similar droids-in-suits are often very
willing to smack reticent support per-
sonnel on your behalf. The key is that
you need to make sure that you’re
talking to the right people from the
get-go. Nothing is more frustrating
than only having a single point of
contact who couldn’t care less about
you and your product that “doesn’t
ring a bell.”

Fear is also your friend — fear of
making someone look bad. The carrot
and the stick approach works, especial-
ly if you wield even a modicum of
power. If asking nicely and being per-
sistent doesn’t generate results, then
don’t be afraid of letting it be known
that someone’s hardware is “unsuit-
able” for your title via a Usenet post-
ing, a .plan file update, a web page
comment, or even an interview with a
magazine. This will often get results
very quickly. I’ve only done this on a
couple of occasions, and it’s worked

really well the few times I’ve resorted
to it. The downside to this tactic is that
you run the risk of angering the people
from whom you’re trying to get assis-
tance, so only use this as a last resort.
Always try to be diplomatic if at all
possible. For example, “We’ve found
some problems with XYZ’s drivers, and
we’re not sure if we’ll be able to find
workarounds in time for our product’s
release,” is much better than what you
might really want to say — “XYZ’s dri-
ver is completely broken, and the cubi-
cle monkeys there are too stupid, lazy,
and arrogant to even return our e-
mails, so screw ‘em.”

“Coolness” is one of those intangible
assets that many game developers
have, mostly in the form of a popular
title, and this can be leveraged into
good relationships with driver engi-
neers. I’ve actually been on the other
side of this coin. I practically begged
Parallax to let me port DESCENT 2 to the
Voodoo Graphics accelerator when I
worked at 3Dfx. These kind of people
exist at just about every hardware com-
pany, and if you can find them you’ve
struck gold.

If you expect hardware developers to
take you seriously though, you must
help them out as much as possible. I’ve
heard all too often of cases where ABC
Software claims there’s a bug with
XYZ’s driver, and they’ll rant about
how crappy the driver engineers at XYZ
are, but when pressed to send in a code
snippet or test program, they’ll balk
with some excuse such as, “We don’t
have time” or “We can’t send you our
.EXE, we don’t want it leaked.” If
you’re not willing to expend some
effort, then don’t be surprised if the
hardware company isn’t either. Many
times, software developers expect hard-
ware vendors to find driver bugs based
on nothing but a general description of
what happens: “I get weird red streaks
whenever I switch to this video mode.”

G R A P H I C C O N T E N T

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

12

Uh, yeah, great, thanks for narrowing
it down. You’d be surprised at how
responsive the much-maligned driver
engineer can be if provided with a
short chunk of code that reproduces a
bug in their code.

I would say that the single most
important trait to have when working
with hardware developers is persis-
tence. You must keep sending bug
reports, asking for status updates, mak-
ing phone calls, and doing whatever
else you can to make sure your prob-
lem is being handled. If you suddenly
shut up, many people will assume that
you’ve either lost interest or found
some workaround.

Productivity

O ne of the most important things
that I’ve learned in the past few

years is that the number of hours you
work does not necessarily correlate to
your productivity. Productivity is based
on the work that you accomplish, not
the hours that you work. While the
two can be related, in surprisingly
many cases, they are not. Analogy:
someone who writes code for only one
hour a week is still more productive
than someone who surfs the Web,
plays DIABLO, makes personal phone
calls, reads e-mail, and takes three-hour
lunch and dinner breaks for sixty hours
a week.

One source of time suckage that id
doesn’t force on employees is long-
winded company meetings. As a mat-
ter of fact, in the four or so months
that I’ve been here, we have yet to
have a single company-wide meeting.
Most meetings that take place consist

of informal con-
versations
between two or
three guys in a
hallway or the
break room.
These types of
meetings can be
work related or
just chewing the
fat, but inevitably
useful informa-
tion is dissemi-
nated. A “real”
meeting usually
only has to occur
when some

amount of interactivity is necessary,
and in our case only rarely does the
entire company need to get together to
address some issue.

John Cash, John Carmack, and I
probably talk for a couple of hours
each day, and we often go to dinner
together, where we have the chance to
both relax and talk shop without tak-
ing time away from coding. This keeps
us in sync technically, and if any of us
have gleaned some important informa-
tion from the artists or level designers
during our daily routine, we propagate
it amongst ourselves — very simple,
very efficient, and we never have to set
an alarm clock.

On occasion, Carmack and I have to
meet with external parties such as
hardware companies and occasionally
press types. However, we try to mini-
mize the frequency of these types of
meetings. When a meeting is unavoid-
able, we adhere to a very simple “one-
hour rule” — the meeting cannot run
longer than one hour. This prevents
meetings from
degenerating into
a “let’s get to
know each other
and have warm
fuzzy feelings”
productivity vor-
tex, and it works
extremely well at
keeping the visi-
tors focused on
their agenda.

A meeting can
often be just as
easily handled
with a conference
call, and a confer-
ence call can usu-

ally just as easily be handled by a short
e-mail exchange. In some cases, such as
when a high bandwidth conversation
needs to take place, a phone call or
meeting works much better than e-
mail. But in most cases, e-mail provides
all of the bandwidth necessary to com-
municate ideas effectively.

One thing that Cash, Carmack, and I
do is post publicly available work logs
(via the infamous .plan file). This lets
us sit back at the end of the day and
say “I got a lot of work done,” or “I
screwed off for an entire day.”
Knowing that you are accountable to
all your coworkers, consumers, and
fans makes you far less likely to chit-
chat on the phone for hours on end.

Conclusion

H opefully, this article has illustrat-
ed the fact that nothing magical

happens at id software that gives id an
unfair edge over the rest of the indus-
try. The formula for success applies the
same to id as it does to everyone else —
talent, hard work, and keeping focused
are all that matter. Shrewd business
skills also help, although even that
isn’t always necessary. If you have the
skill, the ambition, the drive, the focus,
the energy, and the time to do a good
game, you should easily outclass your
competition. id got where it is today
without making a pact with the devil
(at least, no one’s told me so far if
that’s the case), and if id releases a
product that stinks, I’m quite certain
the market will let us know. ■

G R A P H I C C O N T E N T

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

14

b y J o s h W h i t e A R T I S T ’ S V I E W

Core technology developers don’t
seem to know that artists are capable of
understanding — and care about —
their offerings. They address program-
mers almost exclusively, and I suppose
that they expect the content develop-
ment methods to trickle down. Or
maybe they think it’s too hard to
explain without using code. I wish that
the companies developing new core
technologies would create information
sources, such as Application
Programming Interface (API) docu-
ments, for artists and designers as well
as for programmers.

When I say “core technology,” I’m
talking about fundamental improve-
ments in game development, such as
advances in 3D graphics hardware or
new APIs for force feedback joysticks.
Technologies that I’d particularly like
to see improved are DirectX, OpenGL,
and most game-centric 3D graphics
chips.

Besides teaching artists who are
already using their technology, an API-
type document has another important
function: it’s in technology developers’
best interests to give artists and design-
ers the chance to explore these new
ideas firsthand. Noncoders are often
the ones who see creative new uses for
new ideas — they’re the usually the
ones who hold the creative vision that
needs to be expressed, and if they real-
ly understand emerging technologies,
they’ll be in a position to make killer
applications that rely on the core tech-
nology.

These documents should be written
for noncoders, ideally by other experi-
enced, articulate noncoders (or at least
really good tech writers who actually

use the product). Of course, the
authors need convenient access to the
key technology developers, as well as
plenty of support (such as illustrators,
reasonable time budgets, and so on).

What would be in these documents?
No marketing hype — instead, the doc-
uments would contain exact proce-
dures for building content using the
technology, in casual, clear language.
I’m hoping for a simple, understand-
able document structure with
before/after image examples, and imag-
inative demonstrations of what the
technology will allow. Excellent distri-
bution would also be great. I started a
template outline of what I’d like.

If you’re interested in this idea (or if
you’ve seen such documents that
already exist), e-mail me at
column@vectorg.com.

Low-polygon Character Animation

W riting for magazines is so weird.
Not only am I writing this arti-

cle three months in advance, but we’ve
been building this character for
months now. In this industry, that’s
long enough for the whole paradigm to
change. It’s like painting the Golden
Gate bridge: by the time we get to the
end, we should redo the beginning. Of

course, the basics don’t change very
fast, so I won’t get depressed about the
fleeting value of written knowledge if
you don’t.

First we’ll look at interactive anima-

tion, examine some specific terms and
issues that are unique, and deal with
building animations that loop and
branch well. Then we’ll discuss Jim,
our animation example and wrap up.

As 3D animators, you should already
know about the basics of 3D animation
(if not, I recommend doing your mod-
eling software’s animation tutorials), so
I’m going to focus on the harder,
murkier stuff that happens when we
build animations for interactive games.
WHY DOES THIS TOPIC NEED ITS OWN ARTICLE?
Real-time 3D (RT3D) animation is
hauntingly similar to normal preren-
dered animation — and yet, it has a
different purpose, we face different
issues, and we struggle with different
use of our tools.

Interactive Animation

“Interactive animation” is the
kind of difficult issue that the

game designer/lead programmer has
usually worked out prior to production
— however, the astute professional
artist (that’s you) definitely should be

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 1 9 9 8 G A M E D E V E L O P E R

17

Wanted: APIs,

Hold the Code.

A fter several sessions of frustrating Web surfing, I came to a realization:

game developers learn how to use new core technology in lots of ways,

but for non-coders (artists, designers, producers, and so on) one learn-

ing path is noticeably absent — the horse’s mouth.

There are no standard paradigms, let alone
commercial tools, that generate truly interac-
tive animation. Our tools represent animation
as sequences of preset poses, like a movie.

familiar with the problem.
Why is “interactive animation” such

a nasty issue? Because animation isn’t
really interactive. OK, that’s not quite
true: theoretically, animation can be
truly interactive, but it’s a job for a
really, really good programmer. Few
artists are technical enough to design
animation in “pure” interactive format
because it is written in C++ — there are
no standard paradigms, let alone com-
mercial tools, that generate truly inter-
active animation.

Our tools represent animation as
sequences of preset poses, like a movie.
Animation is much weirder in real-time

3D. We’re constantly struggling to find
the balance between giving the users
unscripted freedom (letting them con-
trol events) and artistic vision (playing
our gorgeous sequence of scripted ani-
mations). Here are a few of the various
ways to integrate these two ideas:
NO INPUT (SCRIPTED). The simplest form of
real-time 3D animation is quite com-
mon in games. The user has no control
over scripted animations — they just
play on regardless. These are almost
always designed to repeat endlessly
(“loop”), and thus are often rhythmic.
Oil pumps churning away, animated
Vegas neon signs, ventilation fans, and

stoplights are simple examples.
Scripting can be used to simulate com-
plex actions, but it’s not truly interac-
tive. For example, take the “race your-
self” feature in driving games. The
player’s animation during the previous
lap is recorded, then connected to a
competitor’s car and played back. In
this context, motion capture is form of
scripted animation (more later on this).
TRIGGERED. When the user can launch a
scripted animation, we call it “trig-
gered.” Simple examples include a
“walk/don’t walk” sign with a button,
or an elevator door and button.
Triggered animations also can be used
in simple interactive designs, such as a
trap-door triggered by a character’s
position.
SCRUBBED. I’ve never seen this used, but
one could create an animation that is
not meant to be played frame by
sequential frame. Instead, frames are
accessed at various speeds, even back-
wards and still-framed (“scrubbed” is
the video-tape term for jumping
through a tape). The direction, speed,
and start/stop points are controlled
directly at run time. Again, I’m not
sure what you’d use it for, but it could
be done.
USER INPUTS. Obviously, the user’s input
affects the scene, and usually it ani-
mates something. Most games are more
complicated than simple “joystick-for-
ward means move forward” — the
user’s input is filtered through physics
simulation, calibrations, control map-
ping, and so on. No matter: in some
form or another, the user drives the
animation. Multiplayer games are great
examples of the extremes of user-input.
ARTIFICIAL INTELLIGENCE (AI) INPUTS. This is
a catch-all phrase for any type of ani-
mation that is calculated from a formu-
la on the fly. Examples include an
enemy AI jet fighter — instead of flying
a preset path, the plane reacts accord-
ing to a fight-or-flight formula. The for-
mulas usually attempt to simulate an
intelligent being and depend on inputs
such as player proximity. Needless to
say, good AI is rare, but when it’s good,
it’s the best option because it’s the
most flexible and reactive to the game’s
actual situation. A lot of work is being
done in this area for character anima-
tion, including SIGGRAPH research
papers about things such as
“Intelligent Actors: Automated Digital
Character Animation.” But it’s not

A R T I S T ’ S V I E W

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

18

A s I’ve cheerfully prattled

about “transforms per

frame,” I’ve been wonder-

ing: does my beloved audi-

ence have any clue what I mean by

“transform”? Are they thinking of a differ-

ent meaning for “frame” than the one I’m

referring to? Have I strayed too far into

the fog of technical vocabulary?

But whew! This section is letting me

rest easy.Here, I’ll explain exactly what

these terms mean to me. Since there’s no

way to define these terms abstractly, I’ll

spin some fascinating examples of their

misuse. And, as a special bonus to all you

diligent sidebar readers, I’ll work a little

sex and violence into the examples.

TRANSFORM. A transform is a set of num-

bers that can define a position (x,y,z),

rotation (roll, pitch, yaw), and scale for a

single object. You probably knew position

no problem, but scale is a weird one. It

includes squash/stretch as well as uni-

form size change.

As a verb, it’s often said in a rather

uptight phrasing: “Obj01 applies a trans-

form to Obj02” I prefer this to the easy-

but-ambiguous “Obj01 transforms

Obj02,” because transform has too many

other meanings in English; with the first

phrasing, there is no doubt that we’re

talking about a numeric transform.

It takes nine real numbers to store a

transform. Considering the number of

transforms needed to animate, that can

really add up. Being performance-orient-

ed, we immediately notice that we can

drop some of these unnecessary numbers.

This reduction is called a “constraint”

because if we get rid of a number, that

means we can’t animate what it stored. For

example, if we get rid of the three scale

numbers, our object can’t grow or shrink

during the animation: we are constrained

to using a single size for our object.

CONSTRAINT. You’ve probably used con-

straints in prerendered 3D modeling soft-

ware. They work similarly, but have a dif-

ferent purpose. During normal

prerendered animations, constraints are

useful as a convenience for limiting

motion to a reasonable range. For exam-

ple, we’d like to prevent a knee joint from

bending backward or moving away from

the body, so we constrain the joint to

rotate only part-way around one axis, and

eliminate the other rotation axes as well

as all position and scale.

Most of our animated objects are con-

strained in some way. In fact, most char-

acter animation uses only joint rotations

for their transforms. Motion capture data

in particular is usually stored as joint

rotation only. For example, a knee only

requires a single rotation value in its

transform.

This is a good point for a quick

reminder that each joint is relative to its

parent: if we constrain a knee to a single

bend, but then we zoom the whole body

through space like Superman, the knee

will stay connected, zooming through

space as it should.

Obviously, constraints are good for

storage, but it means that we can only

show the knee in natural motion — if the

player wanted to rip his lower leg off and

hurl it at an opponent, the programmers

would probably have to unconstrain it so

it could have full rotation and movement,

which might mean storing more data in

the transform.

Terms You Ought to Know, Part 1

easy. Fully simulated character motion
is currently rare-to-nonexistent in com-
mercial games.

Usually, though, one of these meth-
ods alone doesn’t cut it. For more sub-
tle, complex simulations, we combine
them. For example, a user-controlled
space ship will simultaneously bob
(scripted), be struck by an enemy shot
(AI), and move based upon user’s
input.

If we combine user input with script-
ed animation, we get something that I
call branching-loop animation. This is
the basis for most game characters’ ani-
mations. The principal is simple: the
artist builds a library of prescripted
motions, each of which start and end
at a known “neutral” position (more
on this later). During game play, the
appropriate action is chosen, usually
based on user’s input, and played. At
the end of the loop, the player gives
another input and another animation
is chosen.

Branching loop animation is impor-
tant to understand because it’s so wide-
ly used in games. After we cover some
more basics, we’ll take a closer look at
its strengths and weaknesses.

Performance

T he good news is that RT3D anima-
tion performance may not be an

issue for you — it depends on what
you’re animating. But you aren’t going
to be satisfied with a flip little answer
like that, now are you? OK, here’s the
full scoop.

In modeling, we use face count as a
basic unit to estimate real-time perfor-
mance. We also have to worry that
other things (such as texture size) may
hurt our performance. Animation is
another secondary factor.

It’s reasonable to measure animation
performance in transforms per frame
(See the “Terms” sidebar). A low num-
ber of transforms per frame means it’s
not a big performance hit (and/or disk
space use) to animate, and we can store
more frames, which gives us incredibly
long sequences of “canned” animation
and/or smoother motion. Also,
depending on the system, we can often
use more faces for objects with a low
transform per frame.

“Gee,” you think excitedly. “It’s all
so easy. All I have to do is use a low

number of transforms per frame. So,
uh, how do I do that?” The number of
transforms depends on the type of ani-
mation that you need. Let’s take a look
at the basic types:
SOLID. The animating object doesn’t
move within itself. Bricks, spaceships,
missiles, and cars are examples. Their
animation data can be stored as a sin-
gle transform per frame. Note that this
doesn’t rule out complicated motion
(for example, a dogfight can be a realis-
tic, complex animation), but it does
require that the animated object ani-
mate as a single object (a bird couldn’t
flap its wings).
JOINTED. With jointed models, we’ve
divided the object into pieces, and we
almost always connect them in a hier-
archy as well. We’re all familiar with

human hierarchy, but it also applies to
nonhuman objects. For example, a
good car model would have indepen-
dent motion for each wheel. For this
type of animation, one transform for
each object in the hierarchy, plus the
data for the hierarchy itself. That’s
usually not very much at all since
most hierarchies have less than 20
pieces, and the results often are really
impressive.
MORPHING. With morphing, we’re way
up the price/performance curve. Each
vertex in the object can be separately
transformed, which means there’s a lot
more effort for the computer.
OTHER. The “other” category for anima-
tion includes the odd stuff. Examples
include animated textures, material
animation, and 2D animation effects.

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 1 9 9 8 G A M E D E V E L O P E R

19

FRAME. This term is used in two subtly dif-

ferent ways in RT3D. I’m sure you already

know that in prerendered animation, a

“frame” is a short, fixed length of time

(often 1/30 sec) in a sequence, just as

frame in a movie. Let’s call this meaning

“film-frame.” The other usage is the basic

performance yardstick , as in “frame rate”

— it’s how many times per second the

computer draws the screen. The frame-

rate’s unit is frames per second (fps), and

the name-droppers among us also use

Hertz (Hz), a physics term that means

cycles per second. These two meanings

are different.

One of the places where these two terms

collide is when we deal with the concept of

real time. This is another term with two

meanings: we game developers usually

use it to mean interactive, as in “render-

ing-while-you-wait.” This irritates simula-

tion folks, because real time originally

meant “synchronized to real-world clock

time,” such as when your computer

reminds you of an appointment at 10:30.

Let’s call this second meaning real-world

time.

Most game programmers, especially

the performance-hacker sort, aren’t con-

cerned with keeping their game aligned

with real-world time. The application’s

sense of time varies depending on what’s

on the screen. This becomes a wee prob-

lem when the artists create animation

using the film-frame concept. The pro-

grammer has to write code to play the

artist’s animation, and that code doesn’t

know what 1/30 of a second is since it

only knows frame rate. The result: anima-

tions that speed up or slow down with the

frame rate.

For example, our horribly flawed game,

SEX AMONG TURTLES, has a crazy frame rate

that varies between 10 and 60 fps. We

artists deliver a 30-frame animation of

the turtle sexily crawling through the

sand, and we cheerfully explain that we

planned for it to play at 30fps, so it’s a 1-

second animation. The programmer sort

of looks down when we mention that, but

since it’s a horribly flawed project any-

way, he gets our animation integrated

and goes out for a stress-reducing bike

ride. Imagine our surprise when we see

the result: the turtles go scuttling across

the sand like angry ants, bumbling along

twice as quickly as we had planned. In

the slow frame-rate areas, they look real-

ly cold-blooded as they lazily crawl at 1/3

their intended speed.

To solve it, the programmer would fig-

ure out the actual system time, then figure

out what film-frame to show at run time.

This will often result in suboptimal anima-

tion (skipped film-frames at low frame

rates), but the timing will be corrected.

Of course, we can’t really pin this

whole problem on confusing terminology,

but understanding terminology can

sometimes be the difference between

comprehension and confusion.

Whew, I feel better. Back to animation.

Terms You Ought to Know, Part 2

Branching Loop Animation

L et’s take a closer look at how
branching-loop animations work

with interactions (Figure 1). First, let’s
state the obvious: if we’re scripting the
character’s motion, then the user does-
n’t have full, continuous control over
the character’s action.

This isn’t good for game play or ani-
mation quality. What if the user
changes the action during the playback
of the sequence? For example, they
push the jump button, and then the
punch button a split-second later?
There are many ways to resolve this
(this is where playing other games can
teach us a lot). Here are a few typical
solutions:

All too often, the jump animation
must finish before the punch begins.
This is the easiest solution to code, and
looks best during production, but it’s
not all good. For the artist, this solu-
tion means we have to build very short
animation cycles (a major constraint)
because the user is “locked in” to the
action they choose.

A slight improvement is adding more

direct control over the entire character
movement. For example, the user can
change the direction of the character’s
walk during the walk cycle. This is done
by applying a single transform to the
character while the animation plays.
But the problem remains: to punch,
they have to wait for the jump to finish.

Sometimes the user can abort mid-
action — for example, half-way
through a jump, just start punching.
This is excellent for instant response to
the user’s input, but obviously it looks
really weird when half-way through
the air, the player instantly snaps back
to the neutral position and throws a
punch. In fact, this looks so bad that
it’s rarely used.

Another solution is to allow separate
animations for different parts of the
character. Torso animations play sepa-
rately from leg animations, allowing a
punch and a jump at the same time.
This doesn’t fully solve the problem,
but it does allow for many animations
to be combined. This option sounds
good, but it’s difficult to animate a
torso if you don’t know what the legs
are going to be doing — the artist has

to compromise the animation quality
severely by making indistinct actions
at the waist. It’s also a major pain,
organizationally, during development.
This does work nicely for some areas,
though: hand and face animations can
easily be separated out from the rest of
the body.

A more appealing option is blending
animations. This works something like
weighted morph targets, in which vari-
ous animations are blended together
depending on the user input. If our
user selects a jump during the punch,
the game attempts to combine the two
actions. This approach is risky — often
it works very smoothly, but because it’s
being calculated at run time, it’s unpre-
dictable and can look awful (body parts
running through each other) if every-
thing happens to be lined up wrong.
NEUTRAL POSITION. The neutral position
chosen is important because it’s seen so
often. The player will see it at the start
and end of every animation, so it
should reflect the character’s individu-
ality as much as possible. We also need
to consider all the actions that the
character will take, and choose a rea-
sonable compromise pose among
them.

We also want to choose a pose that is
close to the fastest loops. If our neutral
pose has the arms outstretched cruci-
fixion-style, a punch animation is

A R T I S T ’ S V I E W

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

20

F I G U R E 2 . Character Design Sketch

F I G U R E 1 . Branching loop animation.

Name Length Start-pose End-pose
Walk 15 frames Neutral Neutral

Nod 5 frames Neutral Neutral

Sit 35 frames Neutral Sit

Stand 35 frames Sit Neutral

Excited 40 frames Neutral Neutral

TA B L E 1 . Jim’s animation list.

going to take a long time because we
have to get the arms down. If we set
the character in a boxer’s stance, a
quick jabbing punch can be animated
realistically in 1/10 of a second or less.

Finishing Jim

A nyway, if you’ve joined us from
last month, where we constructed

the head of a real-time 3D character,
you’ll recall that we were planning to

build the body this month. After look-
ing at it, I decided there wasn’t much
to say about the modeling for the rest
of the body — it’s pretty straightfor-
ward in my opinion. If you feel strand-
ed, write and let me know (better yet,
write with a specific set of questions),
and I’ll cover it in a future column. So
let’s jump straight to the animation.

Now we’ll summarize the comple-
tion of Jim’s model (Figure 2). Painting
the textures is an iterative 2D painting
exercise — the images (painted by
Lynell Jinks — see “Contributors”) tell
the story better than words can(Figure
3). Note that the arm included in the
shirt texture is compressed slightly .
This design keeps the textures rectan-
gular, but by using careful mapping, we
stretch out the arm to the correct
length. We do lose a little resolution,
but it’s not very noticeable. Compared
to using separate files for the arms and
shirt, it allows the textures to be paint-
ed and edited quickly and easily, with
fewer mistakes and better blending at
the seams.

Next, we paint the lower area (Figure
4). The shoes are flattened out in the
texture and then applied to the geome-
try using special mapping.

And now we have the hat (Figure 5).
The hat is cylindrically mapped, which
means that the texture isn’t very intu-
itive to look at — it’s the soup-can
label concept.

With the textures complete, Lisa
Washburn (see “Contributors”) jumped
into the 3D modeling. She built the
rest of Jim’s geometry, applying maps
and linking (Figures 6 and 7)

Our finished model has 496 faces in
30 separate objects. Listing
1 shows data from 3D
Studio MAX’s Summary
Info.

A close look will reveal
some oddities in that list.
First, each body part is
named after its controlling

joint. For example, “knee” is the lower
leg section. This reminds us that we’re
animating joint rotations, not move-
ment. Second, we’ve got two objects for
every body part: ll__kknneeee and ll__kknneeee0011.
That’s because our real-time animation
system only allows one material per
object, but most body parts need multi-
ple textures: one for front, one for back.
The solution (besides asking program-
mers for multiple materials per object,
which doesn’t work) is to create sepa-
rate objects that are linked together.

A R T I S T ’ S V I E W

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

22

F I G U R E 5 . (left to right) Basic colors; Shadows;

Highlights.

F I G U R E 4 . (left to right) Basic

colors with shadows; Highlights

added; Basic shoe design, folds

in pants; Noise to pants, button

and shoe details.

OObbjjeeccttss:: 3300

NNaammee ((TTyyppee)) VVeerrttss FFaacceess

—————————————————— —————— ——————

hhiippss ((MMeesshh)) 3322 2200

rr__hhiipp ((MMeesshh)) 1111 1133

rr__kknneeee ((MMeesshh)) 77 77

rr__aannkkllee ((MMeesshh)) 1155 2222

rr__aannkkllee0011 ((MMeesshh)) 66 44

rr__kknneeee0011 ((MMeesshh)) 1100 77

rr__hhiipp0011 ((MMeesshh)) 1100 1111

hhiippss0011 ((MMeesshh)) 2288 2244

ll__hhiipp ((MMeesshh)) 1111 1133

ll__hhiipp0011 ((MMeesshh)) 1100 1111

ll__kknneeee ((MMeesshh)) 77 77

ll__aannkkllee ((MMeesshh)) 1155 2222

ll__aannkkllee0011 ((MMeesshh)) 66 44

ll__kknneeee0011 ((MMeesshh)) 1100 77

ttoorrssoo ((MMeesshh)) 1144 1166

hheeaadd ((MMeesshh)) 7744 111122

HHaatt ((MMeesshh)) 2299 4400

ttoorrssoo__0011 ((MMeesshh)) 1166 2200

rr__sshhoouullddeerr ((MMeesshh)) 1111 1144

rr__eellbbooww ((MMeesshh)) 1133 1133

rr__wwrriisstt ((MMeesshh)) 2200 2222

rr__wwrriisstt0011 ((MMeesshh)) 88 66

rr__eellbbooww0011 ((MMeesshh)) 1100 77

rr__sshhoouullddeerr0011 ((MMeesshh)) 77 66

ll__sshhoouullddeerr ((MMeesshh)) 1111 1144

ll__eellbbooww ((MMeesshh)) 1133 1133

ll__eellbbooww0011 ((MMeesshh)) 1100 77

ll__wwrriisstt ((MMeesshh)) 2200 2222

ll__wwrriisstt0011 ((MMeesshh)) 88 66

ll__sshhoouullddeerr0011 ((MMeesshh)) 77 66

L I S T I N G 1 . Jim’s Summary Info.

F I G U R E 3 . (left to right) Basic colors with highlights; Suspenders and buttons, sleeve shadows; Final touches: arm hair, ring,

more wrinkles; Back side of shirt.

Animation Design

W ay back in the character design
column, we learned that Jim

isn’t the lead character, so here’s the
decisions that were made for Jim:
RANGE OF MOTION. A talk with the game
designer told us that Jim doesn’t need
any complex animation — he’s going
to limp around and wave his arms a
bit, but nothing too detailed.
SPEECH. The difficult decision about
facial animation was made early on —
they’re using text in cartoon bubbles
for dialog, so we won’t animate speech.
This will save lots of hard work doing
lip-sync (obviously at the expense of
realistic mouth motion, as the game
designer is quick to point out).
JOINTS. Even though we could do
“skinned” vertex animation, we’ll be
using intersecting joints. “This charac-
ter plays a minor role, and its move-
ment is relatively small, so intersecting

joints probably won’t look too bad,”
our art director said.

From this, we make decisions about
the design of our character. Most of
this brain action is about figuring out
the best joints.
JOINTS. Since our joints overlap, we’ll
build them with vague textures in the
intersecting areas, and model them so
that the joint silhouettes look good
during animation. We conclude that
we’ll build joints that look bad when
flexed horribly far, in exchange for
good-looking joints in small motions.

Next we’d have a meeting with the
art director and game designer. We
need a specific list of animated
sequences, and we want to agree on a
reasonable neutral position and target-
ed frame rate. In our example, our
designer needs a shuffling walk cycle, a
Yoda-like wise nod of approval, a sit-
ting-down sequence, a standing-up
sequence, and an excited gesticulation
loop. We’ll have the neutral position
be the first frame in the nod anima-
tion, and we’ll shoot for an animation
speed of 15 frames per second. We’d
also think about syncing these anima-
tions with any dialog. Once we’d
agreed on these, we’d talk them
through with the art director, acting
them out and sketching poses for any
confusing or difficult parts.

When we’ve finished, our animation
list looks like Table 1.

Alas, animation decisions are often
pushed to the end of the project, so
artists don’t know what animations
their character is going to perform. In
this case, it’s wise to build an “exer-
cise” animation,
in which the
character goes
through the
range of motions
that are antici-
pated. This way,
we can build
joints that look
good in the exer-
cise animation
and we’ll have
some kind of
assurance that
the final anima-
tions will also
look good, as
long as they
don’t exceed the
bounds of the

exercise animation. That means that
the range of motion in the exercise ani-
mation is really important — it needs
to be kept as small as possible because
the larger the range of motion, the
worse the joints are going to look.
LINK-N-PIVOTS. Linking and placing piv-
ots is no different from normal pre-
rendered animation. There are only a
few differences or points to be aware
of. For example, if you use your 3D
modeling software to constrain the
pivots, those settings often don’t
export properly.

For these kinds of issues, it’s time to
consult your programmer. Other good
topics:
• Frame 0 transform (position, rota-

tion, scale) of character.
• Neutral pose — does it matter to the

programmer?
• Review of supported animatable

transforms. For example, position?
Rotation? Scale? Non-uniform scale?
Other stuff (vertex color, morphing,
and so on)?

• Standard names for body parts.
It’s also a good time to review the

way that you’ll get your animation out
of your modeling software and into the
graphics engine. It’s really helpful to sit
with the programmer in front of your
modeling software and point to an
actual model.

For example, when our programmer
sees our model, he says, “No problem,
artist dude. All you do is save it out as
a VRML 2.0 file and it’ll load right in.”
I hope that it’s obvious that the next
step would be to generate a really
quick animation test, and see if it

A R T I S T ’ S V I E W

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

24

F I G U R E 7. Wireframe in 3D Studio MAX.

F I G U R E 6 . Body Modeling,

Mapping, and Linking

actually loaded right in. If it does,
then you can generate your animation
with confidence.
KEYFRAME ANIMATION. Once you have an
animation list, building a keyframe
animation is pretty straightforward —
it’s basically the same as “normal” 3D
animation . You’ll want to be careful to
use only transforms that are supported
in the real-time engine, which you can
test by exporting your animation from
time to time and loading it.
CHARACTER STUDIO. Kinetix developed a
motion simulator plug-in for 3D Studio
MAX that generates animations for
characters. It’s not perfect, but for
some kinds of motion (especially fluid
motions such as dancing), it’s a really
quick way to get good-looking anima-
tion data. It also has a decent library of
existing motions, which really helps

speed up the development time.
(Version 2, demonstrated at SIG-
GRAPH, will incorporate motion
capture data, which I think will
be a major improvement.)
MOTION CAPTURE DATA. If you’re
using motion capture data,
you’ll usually need to do some
editing to make it loop, and
you’ll need to constrain the raw
data so that it’s expressed in the
transforms that your graphics
engine can handle. For exam-
ple, raw motion capture data is
often a series of XYZ points in
space. You’ll need some kind of
tool to convert it into joint
rotations within a hierarchy,
and reduce the number of body
parts to match your character
(usually motion capture tracks
more parts than real-time char-
acters have).

There are a number of prod-
ucts that are designed to do this.
I’ve used Motion Manager from
BioVision, which does all those
things within 3D Studio MAX. It
works pretty well, though it does
have its unique annoyances.
There is one major problem: it
uses custom-written 3D Studio
MAX controllers, which means

that the data is stored in its own
unique transform (BioRotate, BioScale)
instead of the standard 3D Studio MAX
method. The result is that if you don’t
have Motion Manager, the character’s
transforms are effectively reset, leaving
the body parts in a heap on the floor —
not good at all. This isn’t mentioned
anywhere that I saw, and it’s the sort of
problem that can really hurt a produc-
tion schedule. I asked BioVision about
this problem, but haven’t gotten an
answer yet.

Wrap-up

T his is the end, finally, of the char-
acter-creation series. Reading back

over these articles, I see that you, dear
reader, can learn a lot from them. Still,

compared to actually building charac-
ters for a real, live product, there’s a lot
more to learn. Interactive character
modeling is the opposite of modular
artwork: there’s usually an endless
array of annoyingly unpredictable
problems that crop up. More than any
other kind of modeling, there’s no sub-
stitute for experience — I highly rec-
ommend that you give it a try (even if
it’s on your own time).

But there’s another idea that didn’t
come through too well in these
columns: character modeling is pro-
found. Like this: Earlier this year, deep
into late-night deadline stress, I was
editing animation loops for this char-
acter. Fully immersed in the choppy
sea of pivot-constraint-hierarchy-UV-
weld technicalities, I looked up and
saw this little guy strutting across my
screen, like a shoemaker’s elf. It was
the animation I was building, but I was
so far into the tech stuff that it actually
surprised me.

I sat there thinking, I created some-
thing totally new and it’s almost alive.
I zinged off on one of those philo-
sophical artistic tangents: What is it?
It’s so far from reality that we have to
carefully simulate the dirty, gritty,
messy stuff, and that’s really different
from natural media. It’s not real in
any sense, yet it feels more alive and
realistic than a real, live ant. It’s pretty
darn close to pure human creativity,
to raw life infused into abstract math
(Figure 8).

That’s it. As always, I need more
feedback. Do me a favor and respond,
good or bad, and I’ll be very grateful. E-
mail column@vectorg.com (or contact
the magazine if you don’t have e-mail)
and let me know what you thought. ■

A R T I S T ’ S V I E W

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

26

F I G U R E 8 . Completed animated character.

Lisa Washburn is the lead RT3D

artist at Vector Graphics. With her

background in fine art, she uses

sculpturing skills as well as her 3D

modeling abilities to build magically

delicious low-polygon models.

Lynell Jinks is a professional artist

for Vector Graphics. He created the

pencil sketches and textures shown

here. His talent in 2D character art-

work spans natural media as well as

Photoshop texture and image cre-

ation.

Contributors

But there’s another idea that didn’t come
through too well in these columns: character
modeling is profound.

n these enlightened days, most game developers and publishers have

heard that a development team needs a “game designer.” Some even

know what a designer does. A game designer isn’t necessarily the one

dreaming up cool new game ideas. Game ideas/topics are often direct-

ed, and always approved, at the highest levels of management.

So what does a designer do? In short, a designer does a lot of writing:

design documents, the user interface, goals of the game logic, dialogue

and screen text, frequently the first draft of the manual, and some-

times the entire manual. A designer also researches data, provides algo-

rithms or tables for certain parts of the game play, works with the team

continually to refine and revise the game, and is a major participant in

the play testing process.

Arnold Hendrick spent ten years designing paper wargames, RPGs, and miniatures rules before his 1982 arrival in computer games.
Since then, he spent three years in the “cart game” trenches at Coleco, enjoyed MicroProse’s ups and downs for ten years while work-
ing on various well-known products, and for the last two years has been involved in building and guiding the design staff of
Interactive Magic.

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

28

HIRING
GAME DESIGNERS

B Y A R N O L D H E N D R I C K

II
D E S I G N E R SH I R I N G

Ill
us

tr
at

io
n

by
 fi

lli
p

yi
p

29

The greatest problem faced by compa-
nies employing designers is how to find
and hire good ones. Almost anyone
with the remotest connection to game
development will tell you either (a)
their real goal has always been to be a
designer, or (b) they already are a
designer because they did “some”
design work on project X. Meanwhile,
corporate executives trade horror stories
about egotistical designers who rant and
rave, kick Coke machines into junk, and
start childish Usenet flame wars weekly.

On the opposite side of the fence, a
small horde of potentially good design-
ers is dying for a chance to break into
the big leagues. They all wonder how
to position themselves to be attractive
to potential employers. The employers,
meanwhile, wonder how to find the
next genius among the hordes trying
to storm the citadel.

Designers Come in Two Sizes

G ame design work has two distinct
levels: lead and assistant. The

vision and game play decisions of the
lead designer guide the game toward
commercial success. Even if top man-
agement dictates the genre and topic,
its directives rarely exceed a paragraph
or two. Turning those brief paragraphs
into a fun, money-making game is
where the lead designers exercise their
craft and creativity.

Some games require more design
work than the lead designer can han-
dle, especially if the schedule is tight or
the project is large. Assistant designers
are the ditch diggers who diligently
work on those tiresome details that the
lead designer lacks the time to accom-
plish. These details might include nit-
picking research, setting up level maps,
grinding out data tables, or scripting
text blocks and voice-overs. In time,
the assistant designers (and their
employer) hope they’ll learn more
about making games; enough to permit
their ascent from the trenches to the
exalted status of lead designer.

This discussion deals with the quan-
tifiable skills and background that an
employer can evaluate when consider-
ing different candidates. It is assumed
that anyone doing a competent job of
hiring can evaluate prior experience
and determine if a person is likely to fit
into or clash with the corporate culture.

The First Cut: Literacy

T he core skill of game design is the
ability to write well. Designers

must be able to write discursive, analyt-
ical prose that clearly communicates
complicated concepts. It’s amazing
how many people lack this ability.
Invariably, these people make poor
designers. Their design documents will
be a mess, in-game text will be confus-
ing at best, and they are no help at all
with the game manual. Besides, good
writers are handy elsewhere. In a crisis,
a literate designer could come up with
a press release, web page text, or even
box and ad copy. It might not be great,
but it shouldn’t be too embarrassing
either.

Unless a candidate has obvi-
ous professional writing or edit-
ing experience, the best way to
evaluate his or her ability is to
examine a writing sample.
Lead designers should be able
to provide their previous game
work. Assistant designers
should have something that they’ve
worked on, even if it was never pub-
lished. Something game-oriented is
naturally preferable. You should write
off any applicant who can’t show you a
writing sample. Writing is a skill that
must be practiced, and that practice
inevitably produces something that
you can read.

Another reason to demand good
writing is that it’s impossible to write
well without a certain amount of intel-
ligence, organization, and clear think-
ing. An inability to write may be the
iceberg tip of far greater weaknesses.

Depth and Breadth of Knowledge

T he designer is the central source of
information about a game’s topic.

A topic-challenged designer may need
months to read and research enough to
become a semi-expert. A designer who
is familiar with the subject can imme-
diately start thinking about how sub-
ject and game play might converge.

For example, my current employer,
Interactive Magic, publishes numerous
contemporary and historical games
with a military theme. We expect our
designers to bring some background to
this field and have fairly decent gam-
ing experience within it. Some months

ago, while interviewing a prospective
designer, I asked him what era of mili-
tary history or contemporary military
affairs he understood best. We started
talking about the classical era (Greeks
and Romans), but it quickly became
apparent that most “ancients” minia-
tures gamers had a better feel for that
period. We tried WW II, where at least
he could mention some famous pieces
of equipment. Unfortunately, he
couldn’t describe what equipment
opposed these famous pieces, or why
these opponents were overmatched. I

don’t expect every designer to
master every period, but

a good designer needs to
have dug into the details of

at least one period or genre.
I also probe for breadth of
knowledge. Designers are
more effective if they under-
stand something about
graphic design, art, music,
and theater. The best design-
ers that I know are renaissance
men and women with numer-

ous interests and abilities.

Knowing Games

G ood game designers keep up with
games published in their field. It’s

impossible to play every game, but
familiarity with a respectable variety,
good and bad, helps one avoid past
errors and profit from past successes. A
game-challenged designer might need
a month to find and play representa-
tive titles of the genre, and would still
lack the extra insights that germinate
during animated pro-and-con discus-
sions about various games. Meanwhile,
the knowledgeable designer can antici-
pate the thorny issues of game play
and help steer a team away from dead-
ends and toward useful answers.

When I interview prospective design-
ers about game play, I always apply my
professional/amateur acid test. This
involves discussing various games that
we both know, preferably games simi-
lar to the ones he or she will work on
— although in a pinch, anything will
do. We talk about what features we felt
were successful and unsuccessful. We
discuss how these features contributed
to the overall success or failure of the
game. A candidate who can talk only
about what he or she enjoys, and has

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

30

H I R I N G D E S I G N E R S

no interest in the opinions or attitudes
of others, fails the test. If they genuine-
ly are interested in trying to figure out
what gamers want, identifying what
features seem to attract customers, and
banishing elements that drive cus-
tomers off, then they pass the test with
flying colors.

A designer must go beyond personal
preferences and try to understand what
customers want. It’s dumb luck if your
personal preference happens to match
that of the general public. This lucky
match can happen once or twice.
Unfortunately, it rarely lasts. I know a
couple of egocentric designers who were
very successful in the 1970s. Although
their products from then are still known
today, their subsequent work has passed
unmarked by any success. Another
example occurred a few years back when
a well-known game designer “retired”
because the public wasn’t ready for and
didn’t appreciate his work.

Lead designers really must have a
strong grasp of the genre in which they
work. This often leads to specialization
among designers. For example, one of
the Interactive Magic design staff is
famous for his attitude toward any-
thing science fiction or fantasy: “Never
touch the stuff!” Nevertheless, he hap-
pens to be one of the world’s most
experienced designers and inveterate
players of nineteenth-century
wargames, and he knows and plays the
twentieth century just as well, not to
mention ancients. For a company
heavily involved in military strategy
games, this designer is a priceless asset.

On the other hand, breadth of ability
is important. Very often, staff designers
get matched to projects simply because
the designer happens to be free. The
flexibility to do a good job in a field
outside your specialty increases your
job security and improves your chances
of getting hired. My own resume
includes published credits in simula-
tion, strategy, RPG, and even console
action games. This really helps when
(not if) the company folds or you're
caught in a downsizing.

The Importance of Cool Ideas

Innumerable people believe that
they’d make a great game designer

because they have a cool idea for a
game. Unfortunately, because so many

people have so many cool ideas, differ-
ent people frequently come up with the
same cool idea. Furthermore, most
game companies spend at least 90 per-
cent of their resources milking a past
cool idea that “made it big,” and
less than 10 percent gam-
bling on the next cool
idea. When they do gam-
ble, it’s because people
like the chairman of
the board, the presi-
dent, or some vice presi-
dent insist that the com-
pany bet on their cool idea.

What a game designer
contributes is the zillions of cool small
ideas that make a game better, even if
the president’s cool idea actually is
tired and lame. A good game designer
will flesh it out, add some nifty fea-
tures, downplay the irrational stuff,
and deliver a product with some
chance of success in the marketplace.

Anyone seriously interested in game
design automatically has lots of cool
ideas. Any designer worth his or her salt
can give you three blockbuster ideas
before breakfast. I know I could do it,
but never has my employer asked, “Hey,
make us a game for Christmas next year
— your choice, just so long as it sells
well.” Still, I’ve been more fortunate
than most. Exactly once during my 15
years in the industry, I was able to talk a
company into doing “my idea.”

Another indicator of a good designer
is that he or she feels no obligation to
be original. The real pros understand
the value of reusing ideas that have
worked in the past. Many people criti-
cized DIABLO for being NET-HACK or
ROGUE with cool graphics and sound.
The truth is, NET-HACK and ROGUE were
great games. The DIABLO team had the
wisdom to take a well-proven idea and
do it really, really well. A designer who
ignores such lessons and insists on
constant novelty is a financial disaster
waiting to happen.

Teamwork

T oday, games are created by teams of
artists, programmers, designers,

and increasingly a sound specialist. A
good designer must work well with
such a team. In both the interview and
the reference check, be sure to probe for
their attitudes towards others. An over-

weening ego almost invariably means
poor teamwork skills. If a designer even
hints at being an overbearing know-it-
all who sneers at the rest of the world
during an interview, don’t expect him
or her to suddenly become thoughtful,

considerate, and collaborative with
the development team.

On the other hand, a good
designer, especially a lead design-
er, needs a certain amount of self-

confidence and willpower to keep
the game on a sensible path. Like

any collaborative effort, games need a
“direction giver.” This person has the
authority to prevent the effort from
fragmenting into a mish-mash of fea-
tures that pleases no one.

Technical Knowledge

G ame designers need not be pro-
grammers. Even those who were

once programmers find that being a
good designer leaves them little time to
code. However, a designer must have
sufficient experience or native intelli-
gence to understand what programmers
and artists say. Lead designers need suffi-
cient experience to know what should
be easy, what will be difficult, and what
is impossible. Every few years, a new tide
of hardware and software washes
through the industry. Designers need an
awareness of this, since apparently mis-
cellaneous bits of flotsam and jetsam can
hold the keys to dramatic advances in
game capabilities. Designers with recent
work experience in large organizations
have the advantage of strolling down
the hall to get insights. The solo free-
lancer spends time and money discover-
ing what is possible and what is not.

For example, I believe that the astute
use of 3D art software (not 3D real-time
display engines) to achieve animated,
photorealistic scenes helped make
COMMAND & CONQUER or DIABLO into
megahits. Guessing right on program-
ming protocols for 3D accelerators
could be equally important for late
1998 and 1999.

Prior Experience

Naturally, experience in game soft-
ware development is valuable.

Prior experience should be a modifier
to the factors mentioned previously. A

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

32

H I R I N G D E S I G N E R S

designer who seems to have the neces-
sary abilities, insights, and attitudes
will be more useful if he or she has
experience. However, a designer with
the appropriate qualifications but no
experience is actually preferable to a
veteran designer who can’t write, has
insufficient background, can’t think
analytically about games, is outra-
geously egocentric, and refuses to work
on anything other than a current
brainchild. Worse, a “poison pill” vet-
eran will not only command a large
salary, but will also need a big, expen-
sive support staff to do all the
real work. Hidden staff costs
aside, I would always trade
one “poison pill” design-
er for a brace of
promising assistant
designers.

Nevertheless, it’s also
risky to give an assistant
designer a lead design-
er’s job. Large compa-
nies, especially, benefit
from at least one senior or lead
designer to help the assistants along,
guide their efforts, and nurture the best
into lead designers. Naturally, being
one of this sort myself, I believe com-
panies should spend lavishly and wise-
ly on this critical bit of senior talent.
Still, in some cases, veteran lead
designers need not be hired; at the
moment, I know of numerous superbly
qualified individuals who work as free-
lancers.

Recruiting

F inding good lead designers is very
difficult. As with any professional

position, a company is best served by a
nationwide search, a willingness to
examine agency candidates, and a gen-
eral “rattling the network” to see who
might be available and interested.
Designers tend to know other design-
ers, which makes networking excep-
tionally important.

Conversely, for assistant designers,
companies are served best when they
start close to home. Many good candi-
dates may exist within the company,
toiling away in play testing, customer
service, or other junior positions. I’ve
had the most luck with the play testing
staff. Their continued presence proves
that they can survive the horrors of fin-

ishing a game. More than once, I’ve
invited play testers into a specific pro-
ject on a probationary basis, just to see
what they could do as an assistant
designer. On occasion, I’ve been pleas-
antly surprised, and the person has
gone on to a happy and successful
career in design. Other times, I’ve seen
my worst fears confirmed and had the
unpleasant task of telling a person that
their skills, abilities, and/or knowledge
were insufficient to do the job.

Looking beyond the company itself,
local universities and gaming groups

can be talent gold mines. Even if
you don’t find any assistant
designers, these people are often

willing to work part-time in
play testing. Ads in local
newspapers can turn up some

surprising candidates. One of
the most successful “finds” at

Interactive Magic was a meteorol-
ogist who just happened to have
all the right skills and attitudes,

despite a lack of professional experi-
ence. Within two years, he’d survived
lead design challenges and moved up
to an assistant producer role.

About “Breaking In”

A nyone seeking a first job in game
design can infer much from this

discussion. First, make sure you have
the appropriate skills and can demon-
strate them clearly to an employer.
Some companies may have wacky ideas
about game designers, but the level of
intelligent hiring grows as the capitalis-
tic equivalent of Darwinian selection
bankrupts firms that consistently make
poor decisions.

The best place to get a foot in the
door is at a large firm that needs assis-
tant designers. These companies are
more likely to consider candidates with
little or no experience. If a design job
isn’t available, consider a related posi-
tion, perhaps in play testing. Even if
you can’t get promoted from within, a
year or two of industry experience and
product development exposure can
help you snag an assistant designer
position elsewhere. Another useful
place to get experience is to volunteer
your assistance to the various profes-
sional web sites that deal with gaming.
Some marketing departments take
these sites almost as seriously as print

magazines; perhaps your interviewer
will feel the same.

For those still making educational
decisions, a four-year college degree at
the most challenging school you can
handle will help. A well-rounded liber-
al arts education can be as useful as
math or computer science. It’s easy to
imagine courses that might help you
write scripts for an introductory narra-
tion (public communications), research
obscure historical data (history), guide
a composer onto the right track (music
appreciation), discuss screen layout
and color with the lead artist (princi-
ples of design), understand the tech-
niques and limitations of the new 3D
engine (advanced algebra), then pitch
in to write a decent manual (writing).
Of course, some programming courses
won’t hurt either. Lack of a college
degree need not be fatal, but those
without a degree need work samples to
prove that their abilities and skills are
equivalent to a college education.

All companies hire in spurts. During
the happy times when a company
expands, they need people right away,
if not yesterday. During the down
times they just don’t hire, period.
Therefore, try to figure out which com-
panies are doing well and check up
with them frequently.

Work on your job hunting skills and
apply them intelligently to the game
industry. It always helps if you walk
into an interview familiar with the com-
pany’s products and future plans. That
means playing their hits and recent
releases, memorizing their announced
list of future releases, and finding a way
to reveal this knowledge in a cover letter
or an interview. In interviews, always be
careful with the classic question, “Give
me an honest appraisal of our game X.”
Most people are testing not only your
insight and honesty, but also your
diplomacy. Congratulate them on what
they did right, and offer suggestions for
improvement in areas where they had
trouble. A cardinal rule of business it to
offer solutions, not problems. Find
something nice to say about even their
worst game and don’t hesitate to point
out weaknesses in competitive products.

Finding a job in game design can
seem difficult to impossible. It requires
patience and persistence to find a com-
pany that successfully filters out the
clamor and concentrates on candidates
who can really “do the job.” ■

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 1 9 9 8 G A M E D E V E L O P E R

33

and other features. Some of those extra cycles can be applied
to tasks such as smoothing rotations and animations, thanks
to quaternions.

Many game programmers have already discovered the
wonderful world of quaternions and have started to use
them extensively. Several third-person games, including
both TOMB RAIDER titles, use quaternion rotations to animate
all of their camera movements. Every third-person game has
a virtual camera placed at some distance behind or to the
side of the player’s character. Because this camera goes
through different motions (that is, through arcs of a differ-
ent lengths) than the character, camera motion can appear
unnatural and too “jerky” for the player to follow the
action. This is one area where quaternions come to rescue.

Another common use for quaternions is in military and
commercial flight simulators. Instead of manipulating a
plane’s orientation using three angles (roll, pitch, and yaw)
representing rotations about the x, y, and z axes, respective-
ly, it is much simpler to use a single quaternion.

Many games coming out this year will also feature real-
world physics, allowing amazing game play and immersion.
If you store orientations as quaternions, it is computational-
ly less expensive to add angular velocities to quaternions
than to matrices.

Interpolating the Orientation of an Object

T here are many ways to represent the orientation of an
object. Most programmers use 3×3 rotation matrices or

three Euler angles to store this information. Each of these
solutions works fine until you try to smoothly interpolate

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

34

T U T O R I A LP R O G R A M M I N G

Rotating
Objects Using
Quaternions

ast year may go down in history as The

Year of the Hardware Acceleration. Much

of the work rasterizing and texture-map-

ping polygons was off-loaded to dedicated

hardware. As a result, we game

developers now have a lot of CPU

cycles to spare for physics simulationLL
b y N i c k B o b i c k

Nick Bobick is a game developer at Caged Entertainment Inc.
and he is currently working on a cool 3D game. He can be con-
tacted at nb@netcom.ca. The author would like to thank Ken
Shoemake for his research and publications. Without him,
this article would not have been possible.

Both TOMB RAIDER titles use quaternion rota-

tions to animate camera movements.

between two orientations of an object. Imagine an
object that is not user controlled, but which simply
rotates freely in space (for example, a revolving door).
If you chose to store the door’s orientations as rotation
matrices or Euler angles, you’d find that smoothly
interpolating between the rotation matrices’ values
would be computationally costly and certainly would-
n’t appear as smooth to a player’s eye as quaternion
interpolation.

Trying to correct this problem using matrices or
Euler angles, an animator might simply increase the
number of predefined (keyed) orientations.
However, one can never be sure how many such ori-
entations are enough, since the games run at differ-
ent frame rates on different computers, thereby
affecting the smoothness of the rotation. This is a
good time to use quaternions, a method that
requires only two or three orientations to represent
a simple rotation of an object, such as our revolving
door. You can also dynamically adjust the number
of interpolated positions to correspond to a particu-
lar frame rate.

Before we begin with quaternion theory and
applications, let’s look at how rotations can be rep-
resented. I’ll touch upon methods such as rotation
matrices, Euler angles, and axis and angle representations
and explain their shortcomings and their relationships to
quaternions. If you are not familiar with some of these
techniques, I recommend picking up a graphics book and
studying them.

Using Rotation Matrices

T o date, I haven’t seen a single 3D graphics book that
doesn’t talk about rotations using 4×4 or 3×3 matri-

ces. Therefore, I will assume that most game programmers
are very familiar with this technique and I’ll just com-
ment on its shortcomings. I also highly recommend that
you re-read Chris Hecker’s article in the June 1997 issue
of the Game Developer (“Physics, Part 4: The Third
Dimension,” pp.15-26), since it tackles the problem of
orienting 3D objects.

Rotations involve only three degrees of freedom (DOF),
around the x, y, and z coordinate axes. However, nine
DOF (assuming 3×3 matrices) are required to constrain the
rotation — clearly more than we need. Additionally,
matrices are prone to “drifting,” a situation that arises
when one of the six constraints is violated and the matrix
introduces rotations around an arbitrary axis. Combatting
this problem requires keeping a matrix orthonormalized
— making sure that it obeys constraints. However, doing
so is not computationally cheap. A common way of solv-
ing matrix drift relies on the Gram-Schmidt algorithm for
conversion of an arbitrary basis into an orthogonal basis.
Using the Gram-Schmidt algorithm or calculating a correc-
tion matrix to solve matrix drifting can take a lot of CPU
cycles, and it has to be done very often, even when using
floating point math.

Another shortcoming of rotation matrices is that they
are extremely hard to use for interpolating rotations

between two orientations. The resulting interpolations are
also visually very jerky, which simply is not acceptable in
games any more.

Using Euler Angles

Y ou can also use angles to represent rotations around
three coordinate axes. You can write this as (θ, χ, φ);

simply stated, “Transform a point by rotating it counter-
clockwise about the z axis by θ degrees, followed by a rota-
tion about the y axis by χ degrees, followed by a rotation
about the x axis by φ degrees.” There are 12 different con-
ventions that you can use to represent rotations using Euler
angles, since you can use any combination of axes to repre-
sent rotations (XYZ, XYX, XYY…). We will assume the first
convention (XYZ) for all of the presented examples. I will
assume that all of the positive rotations are counterclock-
wise (Figure 1).

Euler angle representation is very efficient because it uses
only three variables to represent three DOF. Euler angles also
don’t have to obey any constraints, so they’re not prone to
drifting and don’t have to be readjusted.

However, there is no easy way to represent a single rota-
tion with Euler angles that corresponds to a series of con-
catenated rotations. Furthermore, the smooth interpola-
tion between two orientations involves numerical
integration, which can be computationally expensive.
Euler angles also introduce the problem of “Gimbal lock”
or a loss of one degree of rotational freedom. Gimbal lock
happens when a series of rotations at 90 degrees is per-
formed; suddenly, the rotation doesn’t occur due to the
alignment of the axes.

For example, imagine that a series of rotations to be per-
formed by a flight simulator. You specify the first rotation to
be Θ1 around the x axis, the second rotation to be 90 degrees

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 1 9 9 8 G A M E D E V E L O P E R

35

Y

X

Z

F I G U R E 1 : Euler angle representation.

around the y axis, and Θ3 to be the rotation around the z
axis. If you perform specified rotations in succession, you
will discover that Θ3 rotation around the z axis has the same
effect as the rotation around the initial x axis. The y axis
rotation has caused the x and z axes to get aligned, and you
have just lost a DOF because rotation around one axis is
equivalent to opposite rotation around the other axis. I
highly recommend Advanced Animation and Rendering
Techniques: Theory and Practice by Alan and Mark Watt
(Addison Wesley, 1992) for a detailed discussion of the
Gimbal lock problem.

Using Axis and Angle

U sing an axis and angle representation is another way of
representing rotations. You specify an arbitrary axis

and an angle (positive if in a counterclockwise direction), as
illustrated in Figure 2.

Even though this is an efficient way of representing a rota-
tion, it suffers from the same problems that I described for
Euler angle representation (with the exception of the
Gimbal lock problem).

The Quaternion Solution

In the eighteenth century, W. R.
Hamilton devised quaternions as a

four-dimensional extension to complex
numbers. Soon after this, it was proven
that quaternions could also represent
rotations and orientations in three
dimensions. There are several notations
that we can use to represent quater-
nions. The two most popular notations

are complex number notation (Eq. 1) and 4D vector
notation (Eq. 2).

w + xi + yj + zk (where i2 = j2 = k = -1 and ij = k = -ij
with real w, x, y, z)

(Eq. 1)

[w, v] (where v = (x, y, z) is called a “vector” and w is
called a “scalar”)

(Eq. 2)

I will use the second notation throughout this arti-
cle. Now that you know how quaternions are repre-
sented, let’s start with some basic operations that use
them.

If q and q´ are two orientations represented as quater-
nions, you can define the operations in Table 1 on these
quaternions.

All other operations can be easily derived from
these basic ones, and they are fully documented in
the accompanying library, which you can find on
the Game Developer web site. I will also only deal
with unit quaternions. Each quaternion can be plot-
ted in 4D space (since each quaternion is comprised
of four parts), and this space is called quaternion

space. Unit quaternions have the property that their
magnitude is one and they form a subspace, S3, of the
quaternion space. This subspace can be represented as a
4D sphere. (those that have a one-unit normal), since
this reduces the number of necessary operations that you
have to perform.

It is extremely important to note that only unit quater-
nions represent rotations, and you can assume that when I
talk about quaternions, I’m talking about unit quaternions
unless otherwise specified.

Since you’ve just seen how other methods represent rota-
tions, let’s see how we can specify rotations using quater-
nions. It can be proven (and the proof isn’t that hard) that
the rotation of a vector v by a unit quaternion q can be rep-
resented as

v´ = q v q-1 (where v = [0, v])
(Eq. 3)

The result, a rotated vector v´, will always have a 0 scalar
value for w (recall Eq. 2 earlier), so you can omit it from your
computations.

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

36

P R O G R A M M I N G T U T O R I A L

Addition: q + q´ = [w + w´, v + v´]

Multiplication: qq´ = [ww´ – v · v´, v x v´ + wv´ +w´v] (· is vector dot product and x is
vector cross product); Note: qq´ ≠ q´q

Conjugate: q* = [w, -v]

Norm: N(q) = w2 + x2 + y2 + z2

Inverse: q-1 = q* / N(q)

Unit Quaternion: q is a unit quaternion if N(q)= 1 and then q-1 = q*
Identity: [1, (0, 0, 0)] (when involving multiplication) and [0, (0, 0, 0)] (when

involving addition)

TA B L E 1 . Basic operations using quaternions..

a

R'

R

F I G U R E 2 . Angle and axis representation.

Conversions to and from Quaternions

T oday’s most widely supported APIs, Direct3D immedi-
ate mode (retained mode does have a limited set of

quaternion rotations) and OpenGL, do not support quater-
nions directly. As a result, you have to convert quaternion
orientations in order to pass this information to your
favorite API. Both OpenGL and Direct3D give you ways to
specify rotations as matrices, so a quaternion-to-matrix con-
version routine is useful. Also, if you want to import scene
information from a graphics package that doesn’t store its
rotations as a series of quaternions (such as NewTek’s
LightWave), you need a way to convert to and from quater-
nion space.
ANGLE AND AXIS. Converting from angle and axis notation to
quaternion notation involves two trigonometric operations,
as well as several multiplies and divisions. It can be repre-
sented as

q = [cos(Θ/2), sin(Θ /2)v] (where Θ is an angle and v is an
axis)

(Eq. 4)

EULER ANGLES. Converting Euler angles into quaternions is a
similar process — you just have to be careful that you per-
form the operations in the correct order. For example, let’s
say that a plane in a flight simulator first performs a yaw,

then a pitch, and finally a roll. You can represent this com-
bined quaternion rotation as

q = qyaw qpitch qroll where:
qroll = [cos (ψ/2), (sin(ψ/2), 0, 0)]
qpitch = [cos (θ/2), (0, sin(θ/2), 0)]
qyaw = [cos(φ /2), (0, 0, sin(φ /2)]

(Eq. 5)

The order in which you perform the multiplications is
important. Quaternion multiplication is not commutative
(due to the vector cross product that’s involved). In other
words, changing the order in which you rotate an object
around various axes can produce different resulting orienta-
tions, and therefore, the order is important.
ROTATION MATRIX. Converting from a rotation matrix to a
quaternion representation is a bit more involved, and its
implementation can be seen in Listing 1.

Conversion between a unit quaternion and a rotation
matrix can be specified as

(Eq. 6)

R

y x xy wz xz wy

xy wz x z yz wx

xz wy yz wx x y
m =

− − + −
− − − −
+ − − −

















1 2 2 2 2 2 2

2 2 1 2 2 2 2

2 2 2 2 1 2 2

2 2

2 2

2 2

37

It’s very difficult to specify a rotation directly using
quaternions. It’s best to store your character’s or object’s ori-
entation as a Euler angle and convert it to quaternions
before you start interpolating. It’s much easier to increment
rotation around an angle, after getting the user’s input,
using Euler angles (that is, roll = roll + 1), than to directly
recalculate a quaternion.

Since converting between quaternions and rotation matri-
ces and Euler angles is performed often, it’s important to
optimize the conversion process. Very fast conversion
(involving only nine mmuulls) between a unit quaternion and a
matrix is presented in Listing 2. Please note that the code
assumes that a matrix is in a right-hand coordinate system
and that matrix rotation is represented in a column major
format (for example, OpenGL compatible).

If you aren’t dealing with unit quaternions, additional
multiplications and a division are required. Euler angle to
quaternion conversion can be coded as shown in Listing 3.

Achieving Smooth Interpolation

O ne of the most useful aspects of quaternions that we
game programmers are concerned with is the fact that

it’s easy to interpolate between two quaternion orientations
and achieve smooth animation. To demonstrate why this is
so, let’s look at an example using spherical rotations.
Spherical quaternion interpolations follow the shortest path
(arc) on a four-dimensional, unit quaternion sphere. Since
4D spheres are difficult to imagine, I’ll use a 3D sphere
(Figure 3) to help you visualize quaternion rotations and
interpolations.

Let’s assume that the initial orientation of a vector ema-
nating from the center of the sphere can be represented by
q1 and the final orientation of the vector is q3. The arc
between q1 and q3 is the path that the interpolation would
follow. Figure 3 also shows that if we have an intermediate
position q2, the interpolation from q1 → q2 → q3 will not
necessarily follow the same path as the q1 → q3 interpola-
tion. The initial and final orientations are the same, but the
arcs are not.

Quaternions simplify the calculations required when com-
positing rotations. For example, if you have two or more ori-
entations represented as matrices, it is easy to combine them
by multiplying two intermediate rotations.

R = R2R1 (rotation R1 followed by a rotation R2)
(Eq. 7)

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

38

P R O G R A M M I N G T U T O R I A L

QQuuaattTTooMMaattrriixx((QQUUAATT ** qquuaatt,, ffllooaatt mm[[44]][[44]])){{

ffllooaatt wwxx,, wwyy,, wwzz,, xxxx,, yyyy,, yyzz,, xxyy,, xxzz,, zzzz,, xx22,, yy22,, zz22;;

//// ccaallccuullaattee ccooeeffffiicciieennttss

xx22 == qquuaatt-->>xx ++ qquuaatt-->>xx;; yy22 == qquuaatt-->>yy ++ qquuaatt-->>yy;;

zz22 == qquuaatt-->>zz ++ qquuaatt-->>zz;;

xxxx == qquuaatt-->>xx ** xx22;; xxyy == qquuaatt-->>xx ** yy22;; xxzz == qquuaatt-->>xx ** zz22;;

yyyy == qquuaatt-->>yy ** yy22;; yyzz == qquuaatt-->>yy ** zz22;; zzzz == qquuaatt-->>zz ** zz22;;

wwxx == qquuaatt-->>ww ** xx22;; wwyy == qquuaatt-->>ww ** yy22;; wwzz == qquuaatt-->>ww ** zz22;;

mm[[00]][[00]] == 11..00 -- ((yyyy ++ zzzz));; mm[[00]][[11]] == xxyy -- wwzz;;

mm[[00]][[22]] == xxzz ++ wwyy;; mm[[00]][[33]] == 00..00;;

mm[[11]][[00]] == xxyy ++ wwzz;; mm[[11]][[11]] == 11..00 -- ((xxxx ++ zzzz));;

mm[[11]][[22]] == yyzz -- wwxx;; mm[[11]][[33]] == 00..00;;

mm[[22]][[00]] == xxzz -- wwyy;; mm[[22]][[11]] == yyzz ++ wwxx;;

mm[[22]][[22]] == 11..00 -- ((xxxx ++ yyyy));; mm[[22]][[33]] == 00..00;;

mm[[33]][[00]] == 00;; mm[[33]][[11]] == 00;;

mm[[33]][[22]] == 00;; mm[[33]][[33]] == 11;;

}}

L I S T I N G 2 : Quaternion-to-matrix conversion.

MMaattTTooQQuuaatt((ffllooaatt mm[[44]][[44]],, QQUUAATT ** qquuaatt))

{{

ffllooaatt ttrr,, ss,, qq[[44]];;

iinntt ii,, jj,, kk;;

iinntt nnxxtt[[33]] == {{11,, 22,, 00}};;

ttrr == mm[[00]][[00]] ++ mm[[11]][[11]] ++ mm[[22]][[22]];;

//// cchheecckk tthhee ddiiaaggoonnaall

iiff ((ttrr >> 00..00)) {{

ss == ssqqrrtt ((ttrr ++ 11..00));;

qquuaatt-->>ww == ss // 22..00;;

ss == 00..55 // ss;;

qquuaatt-->>xx == ((mm[[11]][[22]] -- mm[[22]][[11]])) ** ss;;

qquuaatt-->>yy == ((mm[[22]][[00]] -- mm[[00]][[22]])) ** ss;;

qquuaatt-->>zz == ((mm[[00]][[11]] -- mm[[11]][[00]])) ** ss;;

}} eellssee {{

//// ddiiaaggoonnaall iiss nneeggaattiivvee

ii == 00;;

iiff ((mm[[11]][[11]] >> mm[[00]][[00]])) ii == 11;;

iiff ((mm[[22]][[22]] >> mm[[ii]][[ii]])) ii == 22;;

jj == nnxxtt[[ii]];;

kk == nnxxtt[[jj]];;

ss == ssqqrrtt ((((mm[[ii]][[ii]] -- ((mm[[jj]][[jj]] ++ mm[[kk]][[kk]])))) ++ 11..00));;

qq[[ii]] == ss ** 00..55;;

iiff ((ss !!== 00..00)) ss == 00..55 // ss;;

qq[[33]] == ((mm[[jj]][[kk]] -- mm[[kk]][[jj]])) ** ss;;

qq[[jj]] == ((mm[[ii]][[jj]] ++ mm[[jj]][[ii]])) ** ss;;

qq[[kk]] == ((mm[[ii]][[kk]] ++ mm[[kk]][[ii]])) ** ss;;

qquuaatt-->>xx == qq[[00]];;

qquuaatt-->>yy == qq[[11]];;

qquuaatt-->>zz == qq[[22]];;

qquuaatt-->>ww == qq[[33]];;

}}

}}

L I S T I N G 1 : Matrix to quaternion code.

This composition involves 27 multiplications and
18 additions, assuming 3×3 matrices. On the other
hand, a quaternion composition can be represented
as

q = q2q1
(rotation q1 followed by a rotation q2)

(Eq. 8)

As you can see, the quaternion method is analo-
gous to the matrix composition. However, the
quaternion method requires only eight multiplica-
tions and four divides (Listing 4), so compositing
quaternions is computationally cheap compared to
matrix composition. Savings such as this are espe-
cially important when working with hierarchical
object representations and inverse kinematics.

Now that you have an efficient multiplication rou-
tine, see how can you interpolate between two
quaternion rotations along the shortest arc.
Spherical Linear intERPolation (SLERP) achieves this
and can be written as

(Eq. 9)

where pq = cos(θ) and parameter t goes from 0 to 1. The
implementation of this equation is presented in Listing 5. If
two orientations are too close, you can use linear interpola-
tion to avoid any divisions by zero.

The basic SLERP rotation algorithm is shown in Listing 6.
Note that you have to be careful that your quaternion repre-
sents an absolute and not a relative rotation. You can think of

a relative rotation as a rotation from the previous (interme-
diate) orientation and an absolute rotation as the rotation
from the initial orientation. This becomes clearer if you
think of the q2 quaternion orientation in Figure 3 as a rela-
tive rotation, since it moved with respect to the q1 orienta-
tion. To get an absolute rotation of a given quaternion, you
can just multiply the current relative orientation by a previ-
ous absolute one. The initial orientation of an object can be
represented as a multiplication identity [1, (0, 0, 0)]. This
means that the first orientation is always an absolute one,
because

q = qidentity q
(Eq. 10)

SLERP p q t
p t q t

(, ,)
sin(()) sin()

sin()
= − +1 θ θ

θ

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

40

P R O G R A M M I N G T U T O R I A L

EEuulleerrTTooQQuuaatt((ffllooaatt rroollll,, ffllooaatt ppiittcchh,, ffllooaatt yyaaww,, QQUUAATT ** qquuaatt))

{{

ffllooaatt ccrr,, ccpp,, ccyy,, ssrr,, sspp,, ssyy,, ccppccyy,, ssppssyy;;

//// ccaallccuullaattee ttrriigg iiddeennttiittiieess

ccrr == ccooss((rroollll//22));;

ccpp == ccooss((ppiittcchh//22));;

ccyy == ccooss((yyaaww//22));;

ssrr == ssiinn((rroollll//22));;

sspp == ssiinn((ppiittcchh//22));;

ssyy == ssiinn((yyaaww//22));;

ccppccyy == ccpp ** ccyy;;

ssppssyy == sspp ** ssyy;;

qquuaatt-->>ww == ccrr ** ccppccyy ++ ssrr ** ssppssyy;;

qquuaatt-->>xx == ssrr ** ccppccyy -- ccrr ** ssppssyy;;

qquuaatt-->>yy == ccrr ** sspp ** ccyy ++ ssrr ** ccpp ** ssyy;;

qquuaatt-->>zz == ccrr ** ccpp ** ssyy -- ssrr ** sspp ** ccyy;;

}}

L I S T I N G 3 : Euler-to-quaternion conversion.

q2

q3

q1

F I G U R E 3 . Quaternion rotations.

QQuuaattMMuull((QQUUAATT **qq11,, QQUUAATT **qq22,, QQUUAATT **rreess)){{

ffllooaatt AA,, BB,, CC,, DD,, EE,, FF,, GG,, HH;;

AA == ((qq11-->>ww ++ qq11-->>xx))((qq22-->>ww ++ qq22-->>xx));;

BB == ((qq11-->>zz -- qq11-->>yy))((qq22-->>yy -- qq22-->>zz));;

CC == ((qq11-->>xx -- qq11-->>ww))((qq22-->>yy -- qq22-->>zz));;

DD == ((qq11-->>yy ++ qq11-->>zz))((qq22-->>xx -- qq22-->>ww));;

EE == ((qq11-->>xx ++ qq11-->>zz))((qq22-->>xx ++ qq22-->>yy));;

FF == ((qq11-->>xx -- qq11-->>zz))((qq22-->>xx -- qq22-->>yy));;

GG == ((qq11-->>ww ++ qq11-->>yy))((qq22-->>ww -- qq22-->>zz));;

HH == ((qq11-->>ww -- qq11-->>yy))((qq22-->>ww ++ qq22-->>zz));;

rreess-->>ww == BB ++ ((--EE -- FF ++ GG ++ HH)) //22;;

rreess-->>xx == AA -- ((EE ++ FF ++ GG ++ HH))//22;;

rreess-->>yy == --CC ++ ((EE -- FF ++ GG -- HH))//22;;

rreess-->>zz == -- DD ++ ((EE -- FF -- GG ++ HH))//22;;

}}

L I S T I N G 4 : Efficient quaternion multiplication.

Camera Implementation

A s I stated earlier, a practical use for
quaternions involves camera rota-

tions in third-person-perspective games.
Ever since I saw the camera implementa-
tion in TOMB RAIDER, I’ve wanted to
implement something similar. So let’s
implement a third-person camera
(Figure 4).

To start off, let’s create a camera that is
always positioned above the head of our
character and that points at a spot that is
always slightly above the character’s
head. The camera is also positioned d
units behind our main character. We can
also implement it so that we can vary the
roll (angle θ in Figure 4) by rotating
around the x axis.

As soon as a player changes the orienta-
tion of the character, you rotate the char-
acter instantly and use SLERP to reorient
the camera behind the character (Figure
5). This has the dual benefit of providing
smooth camera rotations and making
players feel as though the game responded
instantly to their input.

You can set the camera’s center of rota-
tion (pivot point) as the center of the
object it is tracking. This allows you to
piggyback on the calculations that the
game already makes when the character
moves within the game world.

Note that I do not
recommend using
quaternion interpola-
tion for first-person
action games since
these games typically
require instant
response to player
actions, and SLERP
does take time.
However, we can use
it for some special
scenes. For instance,
assume that you’re
writing a tank simu-
lation. Every tank has
a scope or similar tar-
geting mechanism,
and you’d like to
simulate it as realisti-
cally as possible. The
scoping mechanism
and the tank’s barrel
are controlled by a
series of motors that
players control.
Depending on the
zoom power of the

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 1 9 9 8 G A M E D E V E L O P E R

41

y

z

Θ
d

F I G U R E 4 . Third-person camera.

y

z

Θ

Guy from top

F I G U R E 5 . Camera from top.

scope and the distance to a target object, even a small
movement of a motor could cause a large change in the
viewing angle, resulting in a series of huge, seemingly dis-
connected jumps between individual frames. To eliminate
this unwanted effect, you could interpolate the orientation
according to the zoom and distance of object. This type of
interpolation between two positions over several frames
helps dampen the rapid movement and keeps players from
becoming disoriented.

Another useful application of quaternions is for prere-
corded (but not prerendered) animations. Instead of

recording camera movements by playing the game (as
many games do today), you could prerecord camera
movements and rotations using a commercial package
such as Softimage 3D or 3D Studio MAX. Then, using an
SDK, export all of the keyframed camera/object quater-
nion rotations. This would save both space and render-
ing time. Then you could just play the keyframed cam-
era motions whenever the script calls for cinematic
scenes.

Angular Velocity and Quaternions

A fter reading Chris Hecker’s columns on physics last
year, I wanted to add angular velocity to a game

engine on which I was working. Chris dealt mainly with
matrix math, and because I wanted to eliminate quater-
nion-to-matrix and matrix-to-quaternion conversions
(since our game engine is based on quaternion math), I did
some research and found out that it is easy to add angular
velocity (represented as a vector) to a quaternion orienta-
tion. The solution (Eq. 11) can be represented as a differen-
tial equation.

(Eq. 11)

where quat(angular) is a quaternion with a zero scalar part
(that is, w = 0) and a vector part equal to the angular veloci-
ty vector. Q is our original quaternion orientation.

To integrate the above equation (Q + dQ/dt), I recom-
mend using the Runge-Kutta order four method. If you are
using matrices, the Runge-Kutta order five method
achieves better results within a game. (The Runge-Kutta
method is a way of integrating differential equations. A
complete description of the method can be found in any
elementary numerical algorithm book, such as Numerical
Recipes in C. It has a complete section devoted to numeri-
cal, differential integration.) For a complete derivation of
angular velocity integration, consult Dave Baraff’s SIG-
GRAPH tutorials.

Quaternions can be a very efficient and extremely useful
method of storing and performing rotations, and they offer
many advantages over other methods. Unfortunately, they
are also impossible to visualize and completely unintuitive.
However, if you use quaternions to represent rotations inter-
nally, and use some other method (for example, angle-axis
or Euler angles) as an immediate representation, you won’t
have to visualize them. ■

dQ
dt

quat angular Q+ 0 5. * () *

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

42

P R O G R A M M I N G T U T O R I A L

QQuuaattSSlleerrpp((QQUUAATT ** ffrroomm,, QQUUAATT ** ttoo,, ffllooaatt tt,, QQUUAATT ** rreess))

{{

ffllooaatt ttoo11[[44]];;

ddoouubbllee oommeeggaa,, ccoossoomm,, ssiinnoomm,, ssccaallee00,, ssccaallee11;;

//// ccaallcc ccoossiinnee

ccoossoomm == ffrroomm-->>xx ** ttoo-->>xx ++ ffrroomm-->>yy ** ttoo-->>yy ++ ffrroomm-->>zz ** ttoo-->>zz

++ ffrroomm-->>ww ** ttoo-->>ww;;

//// aaddjjuusstt ssiiggnnss ((iiff nneecceessssaarryy))

iiff ((ccoossoomm << 00..00)){{

ccoossoomm == --ccoossoomm;;

ttoo11[[00]] == -- ttoo-->>xx;;

ttoo11[[11]] == -- ttoo-->>yy;;

ttoo11[[22]] == -- ttoo-->>zz;;

ttoo11[[33]] == -- ttoo-->>ww;;

}} eellssee {{

ttoo11[[00]] == ttoo-->>xx;;

ttoo11[[11]] == ttoo-->>yy;;

ttoo11[[22]] == ttoo-->>zz;;

ttoo11[[33]] == ttoo-->>ww;;

}}

//// ccaallccuullaattee ccooeeffffiicciieennttss

iiff ((((11..00 -- ccoossoomm)) >> DDEELLTTAA)) {{

//// ssttaannddaarrdd ccaassee ((sslleerrpp))

oommeeggaa == aaccooss((ccoossoomm));;

ssiinnoomm == ssiinn((oommeeggaa));;

ssccaallee00 == ssiinn((((11..00 -- tt)) ** oommeeggaa)) // ssiinnoomm;;

ssccaallee11 == ssiinn((tt ** oommeeggaa)) // ssiinnoomm;;

}} eellssee {{

//// ““ffrroomm”” aanndd ““ttoo”” qquuaatteerrnniioonnss aarree vveerryy cclloossee

//// ssoo wwee ccaann ddoo aa lliinneeaarr iinntteerrppoollaattiioonn

ssccaallee00 == 11..00 -- tt;;

ssccaallee11 == tt;;

}}

//// ccaallccuullaattee ffiinnaall vvaalluueess

rreess-->>xx == ssccaallee00 ** ffrroomm-->>xx ++ ssccaallee11 ** ttoo11[[00]];;

rreess-->>yy == ssccaallee00 ** ffrroomm-->>yy ++ ssccaallee11 ** ttoo11[[11]];;

rreess-->>zz == ssccaallee00 ** ffrroomm-->>zz ++ ssccaallee11 ** ttoo11[[22]];;

rreess-->>ww == ssccaallee00 ** ffrroomm-->>ww ++ ssccaallee11 ** ttoo11[[33]];;

}}

L I S T I N G 5 : SLERP implementation.

Numerical Recipes in C
http://cfatab.harvard.edu/nr/nronline.html

Dave Baraff’s SIGGRAPH Tutorials
http://www.cs.cmu.edu/afs/cs.cmu.edu/ project/anim/aw/

15-860/public/860home.html.

FF OO RR FF UU RR TT HH EE RR II NN FF OO

n the beginning, there were games. And the games were good. There

were also stories. And they were good. But games and stories lived

separately from one another, each satisfied to fulfill their lonely roles

in the entertainment universe. So, stories and games each stood apart,

refusing to contemplate fully the magic they could make together….

Until designers came along and said, “Let there be interactive games!”

And they saw that it was good.

Outside of the entertainment indus-
tries, the term “bible” refers to the
Good Book in its various regional
forms. However, to professional story-
tellers, a bible is the blueprint for a plot.
It’s a single publication that documents
a story’s plot, characters, settings, and
possible future developments.

Television and motion picture pro-
ductions invented the concept of a
story bible. That concept has now
become commonplace in those arms
of the entertainment industry.
Working with the head writer of a
television show or movie, a producer
develops a bible for use by everyone

creatively associated with the produc-
tion. For example, every writer who
writes a series episode or a story con-
cept gets a copy of the bible. Costume
designers, set decorators, animators,
visual effects engineers, and many
others all get a copy of the same docu-
ment so everyone is literally on the
same page throughout the production.

In game development, a bible sys-
tematically catalogs the plot-lines,
characters, character histories, set-
tings, and potential future stories for
the game. Once in place, the bible
serves as a blueprint or a template for
every aspect of the produced story. If

it isn’t in the bible, it doesn’t happen
in the finished product.

The bible also can include a game
narrative’s “back story” — the story
that happened before the game that
the player never sees. Why tell a story
that no consumer will ever witness?
Because that story can arise during the
interactive game’s narrative. It can
motivate a fight between characters
because one holds a long-standing
grudge for a rival. It can explain why
the medieval town we visit in the
game is half-burned down by the time
we arrive. Most importantly, a com-
plete back story can inspire the imagi-
nations of designers and writers to add
something special to the game.

Bibles typically play a role in the
game industry’s more story-intensive
titles — those that marry cinematic
aesthetics, rich character develop-
ment, and narrative. While there are
plenty of great products that involve
little or no story (such as fighting

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

44

B I B L E SS T O R Y

The Role of Story Bibles
in Games
b y J o h n S c o t t L e w i n s k i

John Scott Lewinski writes interactive and linear screenplays out of Los Angeles. He
recently worked on the screenplay for COMMAND & CONQUER II: TIBERIAN SUN, the
sequel to Virgin Interactive’s million-selling CD-ROM, COMMAND & CONQUER. He
also co-wrote COMMAND & CONQUER, RED ALERT. In 1997, he contributed to the pro-
ductions of RIVEN and THE JOURNEYMAN PROJECT III: LEGACY OF TIME. He holds a BA
in Journalism from Marquette University and a Master of Fine Arts in Screenwriting
from Loyola Marymount University. Contact him at jburrows@aol.com.

II

games or flight simulators), many
influential games over the last five
years, such as RIVEN, the 11TH HOUR,
DARK FORCES, and THE DIG, used a plot
to draw players deeper into the game
universe.

Why Use a Bible at All?

T he dangers of working without a
story bible can weaken an interac-

tive product. Without a story bible, a
member of the creative team might
develop an idea or story element that
is incompatible with the producer’s or
head writer’s overall vision of the
game. The document adds rich depth
and detail to the game world and
characters, so that appearances and
behaviors are clear to writers, design-
ers, and 3D artists.

Could you imagine the disaster if
the writers, designers, and artists had-
n’t had a clear, all-around vision of
Lara Croft in TOMB RAIDER? If the
game writer envisioned her tough, no-
nonsense personae correctly, but the
3D artist imagined the main character
as a wispy Kate Moss clone, it would
immediately be “back to the digital
drawing board.” In this example, such
a simple change to Lara Croft could
easily be communicated between
developer, writer, artist, and designer.
However, in games with many charac-
ters and locations (such as WING

COMMANDER IV or THE JOURNEYMAN

PROJECT), the role of a story bible
becomes more important.

A story bible can be included in a
game’s overall design document, or it
can stand alone. The document typi-
cally runs from 20 to 50 pages long.
Its composition should begin within
the first weeks of a game’s develop-
ment (if story will be involved in the
game). If a given game’s design team
includes a writer, it naturally falls to

that scribe to compose the bible with
the input and approval of the prod-
uct’s producer and designer. Any sort
of interactive screenplay shouldn’t so
much as begin until the bible is set.

How to Use a Story Bible

T he overall development of game
narrative should not continue

until the story bible is completed,
locked, and distributed. Once every-
one is working from the same starting
point, all creative members will find
the going easier, with questions
regarding character, setting, and such
essentially answered. A caveat: While
the bible should be agreed upon and
completed before a game’s narrative
elements really gather steam, there is
no reason why the bible can’t be
“unlocked” to add new characters,
plot twists, or other brainstorms. If
the game narrative gets bigger or
fancier, the bible must be expanded to
reflect that development.

Since game designers are often more
at ease with the interactive entertain-
ment genre than writers, and writers
can generally handle the ins and outs
of plot creation with greater ease than
an experienced game designer, it
makes sense that these two entities
should work together to create the
game bible.

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 1 9 9 8 G A M E D E V E L O P E R

45

The story bible for a visually rich game such as RIVEN will focus on settings and

venues.

RIVEN’s complex game play almost requires the organizational influence of a story

bible.

Just ten years ago, fleshing out the
plot, characters, and other game
details in writing was not so impor-
tant to games. Many games relied on
flashy graphics and maybe a little
back story in the instruction manual.
Now, many games are interactive nar-
rative adventures. Some (such as
Origin’s WING COMMANDER IV,
Activision’s SPYCRAFT, and Virgin’s THE

11TH HOUR) have merged with film
aesthetics to create truly interactive
motion pictures.

The creative process of interactive
writing for games resembles that of
television more than that of motion
pictures. In movie screenwriting, the
writer often works alone, whether he
or she is writing the original script or
doctoring a previous draft from anoth-
er writer. In television, writers are usu-
ally members of a writing staff, collab-
orating with other staff writers and a
script supervisor. Those writers all
need to have the same information
and identical understanding of plot,
characters, and setting. What would a
hero do? What wouldn’t he do?
Where can a story go? Where can it
never go? The rules that are needed to
answer these questions exist in the
bible. Every writer has the same one,
and every writer knows it cover to
cover.

This can prove especially useful if a
game title might include plans for
future installments, add-on missions,
or complete sequels. The concepts for
those possible follow-ups can be
installed directly into the bible. Then,
the narrative of the original interac-
tive game in question can include ref-

erences to or a complete set-up for
that proposed sequel. In general, the
bible really takes a lot of doubt and
potential narrative problems out of an
interactive story line by answering
many story questions.

Note that the bible is not the design
document. The bible deals exclusively
with story and its elements. While the
design document guides the creation
of the entire gaming experience, the
bible controls the game’s interactive
screenplay.

And that’s exactly how an interac-
tive story is told — in screenplay or
script form. Since most interactive
games with story elements rely on cin-
ematic aesthetics, it’s only natural
that the story be written in a format
most similar to a movie or TV script
(as opposed to prose style). Actors
(even 3D rendered ones) have to be
told what to say, and cameras need to
know where to shoot. The screenplay
puts all that in clear, formatted order.

While interactive screenplay for-
mat can change from product to
product depending on the genre, the
role of the screenplay remains more
or less the same. For example, THE

DIG’s screenplay was most likely dia-
logue intensive. A more visual game
such as RIVEN could spend its words
describing setting and venues. Also,
an interactive screenplay usually runs
significantly longer than a film or TV
script. While a movie script runs no
more than 120 pages, and a TV script
no more than 60 (roughly a page per
minute), an interactive script can run
into the hundreds of pages. A screen-
play for any interactive product

needs to include story branching
(with all the different scenes that
players might encounter based on the
choices they make) and a multitude
of endings that players can enjoy
depending on how well they play the
game.

The interactive script can certainly
interact with or even rest inside the
final design document, since any
effective interactive product needs to
integrate design and screenplay suc-
cessfully and skillfully. The game
should drive the story, and the story
should feed the game.

A Case Study of COMMAND & CONQUER II:
TIBERIAN SUN

M y experience with game bibles
spans five different games

(including work on RIVEN and the
upcoming COMMAND & CONQUER II:
TIBERIAN SUN) over the last three years.
As a writer, I’ve contributed my story-
telling skills to producers and develop-
ers who call on writers like me to help
build a narrative in and around their
game concepts. While a professional
game designer might wrestle with mis-
sions, maps, and tile sets, I invent act
breaks (how the story unfolds and
where it twists or turns) and character
biographies.

In the earliest development stages
of Westwood’s COMMAND & CONQUER

II: TIBERIAN SUN, the initial design
team of producer, designer, and writer
(myself) collaborated on the develop-
ment of such a bible. We discussed the
characters and storyline of the origi-

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

46

S T O R Y B I B L E S

11TH HOUR’s game play depended heavily upon an involved plot that drew in players

In games with many characters and locations, such as WING COMMANDER IV, the role of a story bible is vitally important.

nal game, COMMAND & CONQUER, and
its successful prequel, COMMAND &
CONQUER: RED ALERT. We then decided
how the game universe should
progress in the storyline of C&C II.
What resulted from this collaboration
was the C&C II bible, which included
some overview material about the
COMMAND & CONQUER game universe,
but focused primarily on the world of
C&C II.

Once this bible came together, the
C&C II design team was expanded to
include artists, assistant designers, and
animators. At this point, the bible
really came into play. It could be
handed to any new team member to
bring them up to speed immediately
on the details of C&C II and the over-
arching ground rules of the C&C uni-
verse. Those who read the C&C II
bible all the way through had no ques-
tions about game’s plot, characters,
period, setting, or technology.

Following those initial discussions,
we brainstormed about the new
game’s plot, characters, and setting.
Over a series of meetings, we devel-
oped all the ingredients that would
eventually go into the bible for
COMMAND & CONQUER II: TIBERIAN

SUN: new characters, old characters
with new twists, the state of the game
universe following the original C&C
game, new settings, and so on. It then
became my job to assimilate these
ideas into some semblance of order
and distill them into one document,
the game’s story bible. This bible
would have to serve at a moment’s
notice should anyone new be brought
in on the project and need to get up
to speed on the game story, the char-
acters, the characters’ history, the
games settings, the game’s history,
and so on.

Suffice it to say, C&C II’s producer
and lead designer made the major
contributions to the initial drafts of
the product’s bible. The document
grew slowly over the course of a few

weeks. As a series of meetings clarified
C&C II’s overall history, the game’s
story, possible multiple endings, set-
tings, character histories, back story,
and all the other elements discussed
so far came together into one docu-
ment. That story bible was then
absorbed into the much larger and
more technical design document.
Together, they were distributed to any
creative team member that wanted to
know the game’s overall concept in
total.

Unfortunately, I can’t go into detail
what the COMMAND & CONQUER II:
TIBERIAN SUN bible contained or
include any portion of it within an
article. In fact, I can’t reveal any tid-
bits on C&C II without ruining the
surprise for all future players (and
without getting sued for violating
confidentiality agreements). So
instead, I’ll demonstrate the construc-
tion of a bible for a completely fic-
tional product without stealing any
details from the Virgin vaults.

A Fictional Example Of a Bible

L et’s say we’re working on a game
titled HANGNAIL, the latest game

inspired by QUAKE. HANGNAIL’s bible
would include a “treatment” or synop-
sis of the game’s story.
LOG LINE. That treatment should
include one- or two-sentence reviews
of the story’s beginning, middle, and
end. In some cases, the treatment
could go into greater detail, stretching
from one page to twenty or more, if
the designer or game writer chose to
really flesh out the story in the design
stage. If the game’s narrative is truly
based on cinematic story construc-
tion, the story might include first, sec-
ond, and third act reviews. Leave
those bits to your writer — we waste
hours worrying about that act-struc-
ture nonsense. At the very least, the
synopsis should include a “log line,”
or a brief review of the game’s story
(see the “HANGNAIL” sidebar).
CHARACTERS. The second portion of the

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 1 9 9 8 G A M E D E V E L O P E R

47

In the initial stages of development of Command & Conquer II: Tiberian Sun, an effort was made to clarify and expand upon

the C&C universe.

SYNOPSIS: A big, tough guy with heaps of muscles and a heart of gold walks

through mazes and kills lots of stuff to battle evil, find his boxed lunch, and save

the future of humanity… at least until the sequel comes out.

CHARACTER NAME: Dirk Squarejaw

Age: Late 20s

Appearance: Ruggedly handsome and in the kind of impossibly good shape that

you’d need to spend 25 hours a day in a gym to achieve.

Equipment: Death Ray of Death, Grenade of Severe Owies, Swiss Army Knife of

Animosity, Pulse Cannon of Mild Mood Swings.

Attributes: Wonderfully and relentlessly violent, with an overdeveloped sense of

honor; dedicated to saving all life on Earth, or at least all attractive women on

Earth; enjoys painting in splattered blood, rainy days, long walks on the beach,

thermonuclear devices, and backgammon.

Background: Orphaned at birth and raised by wolves, Dirk was rescued by nuns at

the age of four. The nuns instilled in the young Dirk his sense of honor and his

bizarre obsession with backgammon. When the evil villain General Payne

destroyed the nuns’ village to hijack all their dice, Dirk set out on his life-long

quest to end evil around the world. He will never rest until Payne is defeated,

peace and justice restored, and double sixes rolled everywhere.

HANGNAIL

bible would include character reviews.
The most important component of
any effective narrative, whether it’s in
a game, movie, TV show, or novel, is
good characters. They should have
well-rounded histories and solid moti-
vations. Most importantly, they
should be clearly drawn out so anyone
who reads the bible or works on the
game sees the same person in their
minds. If a writer or designer creates a
game revolving around an
Schwartzenegger-type action hero and
fails to describe his all-American, psy-
chopathic personality, the artist or
renderer could end up drawing Marv
Albert. The “HANGNAIL” sidebar illus-
trates what our character bible would
say about HANGNAIL’s protagonist.

All the information in the character
description above could be distilled
into one long paragraph entry, if the
designer chooses to limit the length or
the scope of the bible. However, every
character in the game (even support-
ing players) should be presented in
this same detail.

Such enriching character sketches
can provide inspiration when plan-
ning game maps or missions (depend-
ing on the game’s genre). For exam-
ple, in HANGNAIL’s case, given Dirk’s
devotion to backgammon, the design-
er could construct a maze or a level in
which the objective is to slaughter all
of General’s Payne’s agents to recover
their ill-gotten dice.

Character description and back-
ground is one area where a story bible
can really enrich an interactive game.
If the bible can
draw out a
game’s central
character with
convincing
depth and
detail, the pro-
duction can
present an
interesting and
exciting person
around which

you can build a game and story.
In some cases, the player becomes

that character. In other games, the
player merely guides an already exist-
ing character. In either case, the story
bible can outline what the main char-
acters wants. That’s the key. The
entire game story should be built
around what the main character or
hero wants and needs (be it the
damsel in distress, a magic amulet, or
the enemy capital). Anything that
makes the game more entertaining —
battles in the cold reaches of space,
races through monster-filled mazes, or
puzzle-solving through a haunted
library — can stand between the hero
and the goal. But, the goal must be
clear, ever-present, and motivated.
The story bible can help a design team
do that.

In another example, if Dirk was
scared of water because his wolf par-
ents couldn’t swim, the designer
might wish to create and underwater
level and cause Dirk’s air supply to
disappear quickly because he hyper-
ventilates too easily.

Using a methodology such as this,
in which you define the background,
attributes, age, appearance, and equip-
ment of a character, can help ensure
truly motivated and enjoyable charac-
ters and give the design team ideas for
game play. A game’s characters need
to be compelling. If the player
becomes a hero in the game, that hero
must be attractive enough that the
player wants to assume that persona.
A game villain should be rotten

enough that the player generates gen-
uine passion and satisfaction from
defeating him or her.

An essential rule of thumb states
that every character, even the most
incredibly butch of heroes, needs to
have weaknesses or shortcomings. If a
character seems too omnipotent and
has every skill imaginable down pat,
no player will believe that he or she
could possibly lose or die. You don’t
have to make your hero or heroine a
simpering wimp, but don’t make them
invulnerable. Even Superman has his
kryptonite.

In the final document, Dirk’s bible
entry might include an artist’s sketch
(if created early in the game develop-
ment process) or a 3D rendering (if
created farther along in the develop-
ment process), which might also be
the actual avatar used in the game —
if the product makes it that far along.

To digress for just a moment, thus
far I have approached the use of game
bibles for story development solely
from the perspective of the hero.
Lately, games such as Bullfrog’s
DUNGEON KEEPER and LucasArts’ DARK

FORCES II have made it possible for
players to assume the role of the vil-
lain. However, that doesn’t turn the
narrative rule on its ear — the same
guidelines still apply. A villain also
has wants and needs. In the best pos-
sible scenario, the bad guy wants
exactly the same thing as the hero. In
drama and writing courses, that’s
called the “Law of Conflicting Need.”
A good story (and therefore, a good

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

48

S T O R Y B I B L E S

Bullfrog’s DUNGEON KEEPER allows players to be the bad guy. Still, a story is a story, and this reversal of

roles shouldn’t significantly affect your approach to narrative.

DARK FORCES, which is based on the Star Wars universe, requires a story bible to keep many diverse plot, setting, and character

details in order.

game, if it has story components) has
a protagonist and an antagonist want-
ing the same thing for perfectly oppo-
site reasons. We usually want the hero
to get to that goal before the villain.
However, in games where we become
the villain, we assume the motivations
of the villain. The bible should outline
the history, personality and motiva-
tion of the bad guy as well as the hero.
That way, if we become the antagonist
in game play, it works just as well if
we had chosen the hero’s role.
SETTING. The next segment of a proper-
ly constructed game bible should
include a review of game settings —
the actual locales that the characters
will inhabit as the game plays out.
Interesting, well-detailed venues can
often inspire game-play elements.

Setting includes everything from
physical location to era to weather,
climate, and so on. The setting
description should also include any
key items or environments that play-
ers will encounter. For example, if the
climax of our imaginary game takes

place in General Payne’s Backgammon
Emporium of Doom, we need to know
that the setting includes giant, sen-
tient radioactive dice that can leap
from the walls and bulldoze our hero
at a moment’s notice.

You don’t want to go into too much
detail to describe aspects of a setting
that will never actually appear or play
a part in the game. But the more thor-
ough your setting descriptions in the
story bible, the more fodder you pro-
vide for your eager game designer’s
information.

Preparing for a Sequel

F inally, a bible can include sugges-
tions for future storylines.

Television-series bibles that are given
to writers who script episodes usually
include one or two paragraph syn-
opses of every show planned for that
season. Likewise, a game bible can
install storylines for games sequels,
supplemental mission or level CD-

ROMs, online additions, or spin-off
products (such as comic books, nov-
els, or TV shows).

While not every game needs a bible
to provide addictive interactive enter-
tainment, games that aspire to a more
fully-developed and professionally pre-
sented storyline should consider the
development of such a document. As
more and more developers reach out
for that cinematic style and aesthetic
in their cut-scene look and game story,
developers can rest assured that the
procedures already exist out there
amongst competent writers to con-
struct the essential elements of a com-
petent game narrative. ■

49

on optimizing texture mapping algo-
rithms in assembly.

Torch is Newfire’s game engine and
Catalyst is Torch’s authoring environ-
ment. Chances are, you’ll decide
whether or not to buy this suite of
tools by evaluating Torch’s price and
performance, possibly comparing it to
the likes of id Software’s Quake engine
— but there’s a lot more to the product
than Torch alone.

Catalyst’s features for assembling
and optimizing 3D worlds demon-
strate Newfire’s commitment to games,
not just rendering technology.
Catalyst doesn’t force you to make too
many difficult decisions. Your art
department can create assets in stan-
dard formats, using the tools with

which they’re most comfortable, and
Catalyst lets you integrate them
smoothly into the world. Your pro-
grammers can define custom behaviors
for objects, or they can take advantage
of a fairly rich palette of standard
behaviors. You can even choose to
deploy your game via the Internet,
rather than CD-ROM.

I happen to know a lot of program-
mers who live for optimizing assembly
language, but Catalyst has something
to offer them, too. TorchView is a
window that monitors Torch’s play-
back performance in real time, includ-
ing statistics on CPU, rasterization,
and texture usage. There’s enough
data available to satisfy the most
diehard performance hacker.

The Newfire Architecture

C atalyst and Torch use VRML 2.0 to
represent 3D worlds. (But note

that Newfire has defined a few exten-
sions to the VRML specification, and
there are a few node types that it does-
n’t support yet.) Torch renders directly
from VRML code, and Catalyst can
generate VRML that’s pre-optimized for
fast playback. You can use the two
pieces separately, but you’ll only get
the benefits of the optimizations when
you use both together.

Torch is the most flexible 3D render-
ing engine I’ve seen. Torch can be
deployed as a plug-in to a web browser,
as a standalone player, or as an embed-
ded component of an application (if
you make special arrangements with
Newfire). It’s designed to be 3D hard-
ware independent, but it exposes the
advanced capabilities of the hardware

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

50

R E V I E WP R O D U C T

Match Set: NewfireÕs
Catalyst & Torch

b y D a n T e v e n

Dan Teven is a consultant with 13 years experience in systems software development,
games, and technical marketing. His all-time high Scrabble score is 554. He can be
reached at dteven@ici.net.

emember the first rule of game development: A

game engine is only as good as the content

that plays through it. The bargain bins are

littered with games that had cutting-edge

technology, but just weren’t fun. Newfire is

betting that developers would rather

spend their time on game play thanRR

that it’s running on. It supports rasteri-
zation in software (using either
DirectDraw or Windows DIBs) and
hardware (using 3Dfx’s Glide or
OpenGL, with Direct3D support in
development). Newfire has a rasterizer
development kit, so even more choices
may be available soon.

Catalyst is not a full-featured VRML
world editor, but it is powerful enough
for prototyping or fine tuning existing
worlds. Newfire expects you to create
your models in another program, such
as 3D Studio MAX, and import them
into Catalyst, along with your texture
maps, animations, and sound files.
Catalyst can handle most standard
asset formats, including .JPG, .PNG,
and .GIF bitmaps, so it will work with
your favorite authoring tools.

You can use features of VRML to
control your game flow, if you wish.
The VRML 2.0 language specification
includes objects that generate and
respond to events. Catalyst lets you
insert these objects into your worlds
and connect them in interesting ways,
without writing a line of code. See the
sidebar “VRML 2.0” for more informa-
tion about creating interactivity
through VRML.

For performance, flexibility, and
familiarity reasons, Newfire recom-
mends that you create your game logic
in Java rather than VRML. You can add
Java classes (created with a third-party
Java programming environment) to
your world with Catalyst. You can also
control Torch directly from Java,
through a published API.

You could also take a hybrid
approach and use Java to write (for
instance) your physics engine and user
interface, but VRML to automate sim-
ple animated objects. This is the prag-
matic way to go, since Java code takes
time to create and debug. You might
start with a prototype that’s 75 percent
VRML, tune it for a while, and end up
with a product that’s 75 percent Java.

Although Java is a wonderful lan-
guage in which to program, Newfire’s
dependence upon it presents some
problems. First, Java code doesn’t exe-
cute as fast as C code. Sure, processors
are still getting faster, and Java tech-
nology is improving, but game devel-
opers have always found reasons to
push the pedal to the metal. If you’re
trying to find spare CPU cycles for a
really advanced computer opponent,

the Java performance
penalty will hurt. On the
other hand, if your appli-
cation’s going to be
bound by rendering
speed, the speed with
which your Java code
executes won’t be an
issue.

Second, Java is sup-
posed to be a platform-
independent language.
Microsoft dearly wants
you to be able to call the
Windows API (and
DirectX) from Java code,
because doing so will tie
your application to the
Windows platform.
Newfire seems to be firm-
ly in the Microsoft camp
— Torch requires Microsoft’s Java
Virtual Machine and doesn’t run on
any non-Windows platform — so you
should be able to pull off this feat with
Microsoft’s JDirect. The flip side is that
your game won’t be Pure Java, and it
won’t run on a Macintosh (or WebTV,
for that matter).

Third, although Java has built-in net-
work support, it’s pretty low-level.
You’ll still need to do a lot of work, or
use a third-party library, to make a
multiplayer game. The standalone
Torch player doesn’t have network sup-
port, so if you’re designing a multiplay-
er game you should plan on delivering
it within a browser window.

Finally, Java is still an uncommon
choice for game development, and you

might not find the breadth of library
and tool support that exists for C or
C++. Newfire plans to support C in the
near future — maybe even before this
article appears in print.

Torch Game Engine

T orch’s rendering capabilities read
like someone’s notes from a

Michael Abrash talk on the QUAKE

engine: six degrees of freedom, scene
management using a hybrid of Z-buffer
and binary space partition (BSP) tech-
niques, automatic MIP-mapping, dis-
tance-based level-of-detail model sub-
stitution, dynamic lighting for
nontextured objects, and lighting

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 1 9 9 8 G A M E D E V E L O P E R

51

Java

PlaybackCreate

Interactive

Experiences

Create

Media

Assets

Web

browser

with Torch

Plug-in

Catalyst

Scene Composition

Asset Management

Asset Libraries

Optimize Content

Profile Gameplay

Geometry

Texture

Sound

Animation
CD-ROM

with Torch

Standalone

F I G U R E 2 . The role of Catalyst in the development process. Used by permission

of Newfire Inc.

F I G U R E 1 . Torch uses lighting and shadow maps to

create impressively real environments.

maps. There are a few minor limita-
tions, such as being able to render into
only one window at a time, and allow-
ing just one color palette per world (for
8-bit software rendering).

According to Newfire, Torch is
designed to render 640×480 at 15
frames per second in software, or 30
frames per second with hardware
acceleration, with effects such as
lighting, shadows, and transparency.
Torch didn’t seem as fast as QUAKE to
me, but ratchet the system require-
ments up a notch and it’s definitely
capable of rendering impressive-
looking scenes at game speeds. I’d
recommend targeting a 200 MHz
Pentium if you’re planning to use
software rendering.

To take advantage of BSP culling,
which is the key to fast playback, you
need to use Catalyst to apply the “BSP
hint” to a VRML world. Catalyst will
use a set of heuristics to determine
which objects should be included in
the BSP tree (typically large, regularly
shaped, unmoving objects) and which
should be Z-buffered. You can view
Catalyst’s decisions and override them
if necessary.

You can create lighting and shadow
maps for a scene in the same way, by
applying a hint within Catalyst. Since
Torch can’t light textured surfaces
dynamically, this is a processor-effi-
cient “cheat” that looks almost as
good.

Torch handles textures quite well.
It sets aside a 4MB texture cache, and
if the textures required by a scene
won’t all fit, Torch resizes them tem-

porarily. The soft-
ware renderer can
handle nonsquare
textures in arbi-
trary sizes; the
hardware render-
ers use the hard-
ware’s texture
memory manage-
ment, and may be
limited. Textures
can be transpar-
ent, and it’s easy
to animate them
for stunning
effects.

Torch can do all
the important
types of collision
detection (object-

to-object, object-to-scene, camera- to-
scene, camera-to-object) and returns
hit data at a level low enough to be
compatible with your own physics
engine. There are no facilities for high-
er-level physics management.

Sound support is basic, but includes
both ambient and spatialized sounds
(part of the VRML 2.0 specification).
Torch currently does its own sound
spatialization, but Newfire expects to
switch to DirectSound3D in the
future. There’s support for single-
channel MIDI, but not Redbook
audio, even for CD-only titles. On the
plus side, Torch supports all
DirectInput devices.

When I started this review, I was
worried that Torch would force game
developers to develop games that all
looked and felt similar. For the most
part, it avoids this trap. The combina-
tion of BSP and Z-buffer rendering
works well on a wide range of virtual
environments, and you’ll have to
develop your own code for network-
ing, physics, and artificial intelli-
gence. Of course, if you’re shopping
for a game engine that handles 3D
rendering with six degrees of free-
dom, you’re probably not making a
Scrabble game.

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

52

P R O D U C T R E V I E W

V RML (Virtual Reality

Modeling Language) 2.0 is a

relatively new specification,

and most game developers

probably aren’t familiar with it. It’s an

interpreted language that describes a

hierarchy of three-dimensional objects

and their properties. For example, here’s

a code fragment that describes a red

cube:

SShhaappee {{

aappppeeaarraannccee

AAppppeeaarraannccee {{

mmaatteerriiaall

MMaatteerriiaall {{

ddiiffffuusseeCCoolloorr 11 00 00

aammbbiieennttIInntteennssiittyy 00..22

sshhiinniinneessss 00..22

}}

}}

ggeeoommeettrryy

BBooxx {{

ssiizzee 11 11 11

}}

}}

This code fragment describes the cube

using a hierarchy of four VRML nodes.

The top-level SShhaappee node has two exposed

fields, aappppeeaarraannccee and ggeeoommeettrryy; think of

these as the fundamental properties of a

SShhaappee object. Fields can refer to additional

nodes, as ggeeoommeettrryy refers to a BBooxx node, or

they can define primitive properties, as

BBooxx defines the ssiizzee of the cube.

In addition to basic geometry, VRML

2.0 lets you define texture maps, back-

drops, elevation grids, fog effects, spa-

tialized sound effects, and more. You can

create sensor nodes that signal events

when they detect the passage of time, the

proximity or visibility of an object, or user

input; these events can be routed to other

nodes, which respond to them. For exam-

ple, keyframe animation can be accom-

plished by routing a TTiimmeeSSeennssoorr node to a

PPoossiittiioonnIInntteerrppoollaattoorr.

Selecting VRML 2.0 for 3D world man-

agement has some disadvantages, but in

general, it’s a pretty good move. It’s an

Internet standard, so every content cre-

ation tool worth its salt will work with it.

Of course, if you already have models

defined in some other format, you’ll have

to convert them. The only real beef that I

have is that VRML is an interpreted lan-

guage, so VRML files have to be parsed

every time they’re read — hardly the

fastest way to load world geometry.

VRML 2.0

F I G U R E 3 . Catalyst is a powerful VRML editor, but it still

has some rough edges.

Catalyst Development
Environment

C atalyst looks some-
thing like Microsoft

Developer Studio, with mul-
tiple windows that can float
freely or can dock to other
windows, local menus, and
multilevel undo. I love
Developer Studio’s user
interface, but Catalyst does-
n’t do as good a job at sizing
and positioning the win-
dows that I want on the
screen at the same time — I
found myself constantly
wishing for a bigger screen.
Also, once I found a layout
that I liked, Catalyst didn’t
automatically save it.

In addition to the project
window where you assemble
the component files of your
world, the most important
windows are the scene graph
window, which shows a tree
view of the VRML geometry,
and a window displaying a camera’s
view into the world. You’ll probably
spend most of your time in these two
windows, cutting and pasting within
the scene graph or directly manipulat-
ing objects in the world. There are other
windows for searching the VRML tree
and for managing the routings between
VRML nodes.

You can have multiple worlds open
at one time, each with their own sets of
windows. However, I found Catalyst’s
behavior with multiple worlds open to
be somewhat counterintuitive. If you
undock your scene graph windows,
their title bars don’t contain the world
name, so you can’t tell to which world
they belong. And if you cut something
from World A’s scene graph and then
close World A, you can no longer paste
it into World B — cut objects disappear
from the clipboard.

One more gripe: to create a routing,
you have to select something in two
separate panes, and the command that
you need is available in the local menu
from just one of the panes.

My experience with Catalyst was
productive, but small flaws such as
these were typical. Catalyst is usable
software that needs to go through
another revision before it becomes real-

ly transparent to use. I did find some
things I really liked about the interface.
Previewing a series of level-of-detail
models is painless: just zoom in or out
from the object and watch closely as
the geometry changes. Also, the dialog
box where you assign commands to
different buttons of different input
devices is one of the cleanest examples
of its genre that I’ve come across. I
wish all games handled input device
selection so well.

TorchView

O fficially part of Catalyst,
TorchView is a wonderful feature.

Getting a game to play back as fast as
possible — and without any sudden
dips in frame rate — has always been
one of the most laborious parts of the
development process. I’ve had to build
execution profiling and real-time perfor-
mance monitoring into more than one
game, and it sure is nice to come across
a game engine with these tools built in.

TorchView makes it absolutely pain-
less to track statistics such as frame
rate, polygon count, texture-memory
use, CPU utilization, and the amount
of time spent in each segment of the

rendering pipeline. Not only can you
see the raw numbers in real time, but
you can chart them to get an idea of
how they change while you navigate
through a scene.

Fit and Finish

Installation was simple, meaning
there is no option for full or partial

installation and things went more or
less according to formula. I was sur-
prised by Setup’s attempt to add the
Torch .DLL directory to my DOS PATH.
(For those readers too young to remem-
ber, this is the way we used to install
software before the Windows registry
was invented.)

I found about the right number of
bugs for a 1.0 release, mostly small
ones. Newfire responds to bug reports
promptly, so the 1.0 bugs should be
ancient history by the time you read
this review.

The documentation is a mixed bag,
and it’s not very well organized or
indexed. The manual is supplemented
by a thick binder called the Ignition
Toolkit, by several code snippets and
demos, and by material on Newfire’s
web site. The binder has good tips on

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 1 9 9 8 G A M E D E V E L O P E R

53

F I G U R E 4 . TorchView’s performance monitoring is an indispensable feature.

designing your game, and the manual
covers the nuts and bolts of using
Catalyst. I’d have liked a lot more
information on delivering a finished
product, on using Catalyst in a group
environment, and on the rendering
pipeline. The on-line help is HTML
based, and updates are available from
the web site.

Is It Worth the Money?

N ewfire’s Catalyst suite is an ambi-
tious, well-designed product that

will get better with age. The $1,995 price
tag for the development kit is reason-
able. And though you’ll have to pay roy-
alties of at least $1 a copy when you ship
your game, the fee structure frees you to
develop a game before you have a pub-
lishing deal. Furthermore, since Newfire
gets rich only if your game’s a huge hit,
you can be confident they’ll do whatever
they can to help. If I were facing a build-
or-buy decision today, I’d go the buy
route — and I’d give Torch and Catalyst
very serious consideration. ■

54

P R O D U C T R E V I E W

Newfire Inc.
Saratoga, CA
408 996-3100
www.newfire.com

Price: $1,995 per seat. Also royalties, payable when your game ships.
Software Requirements: Windows 95 or Windows NT 4.0; Netscape 3.0 or Internet

Explorer 3.0; DirectX 3a and Microsoft Java Virtual Machine (provided); Java program-
ming environment recommended.

Catalyst Hardware Requirements: Pentium 166, 64MB RAM, 50MB hard disk; Pentium
Pro, 3D card recommended.

Torch Hardware Requirements: Pentium 133, 16MB RAM, 2MB VRAM; Pentium 166,
32MB RAM, 3D card recommended.

Technical Support: Installation support free for 30 days, development support
$495/year.

Return Policy: 30-day
Rating (out of five stars):
Pros:
1. Torch is a fast, feature-rich rendering engine.
2. Newfire has done a nice job of creating a flexible, forward-thinking architecture.
3. Facilities for analyzing and improving game playback speed are built in.
Cons:
1. System requirements are high for both development and playback.
2. Release 1.0 only supports Java.
3. Both the documentation and the Catalyst user interface need more refinement.
Competitors: See the 3D Engines List at http://cg.cs.tu-berlin.de/~ki/

3de_noframes.html for a long list.

Catalyst 1.0/Torch 1.0

pon completion of THE

JOURNEYMAN PROJECT 2: BURIED

IN TIME, the team at Presto

Studios was completely

exhausted. Many of us had

transitioned directly from devel-

oping the original JOURNEYMAN PROJECT

into the production of J2. The last thing

on people’s minds was another

JOURNEYMAN. Or so we thought…

As we discussed our product strategy for

the next few years, it became evident that

although a few veterans were burned out

on JOURNEYMAN games, many of our

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

56

Journeyman Project 3:
Legacy of Time

UU
b y G r e g U h l e r

P O S T M O R T E M

employees were anxious to explore
new avenues within the JOURNEYMAN

universe. While some of the veterans
started a new project, the “new blood”
in Presto invigorated the remainder of
the team, and on January 1, 1996,
began development of what was to
become THE JOURNEYMAN PROJECT 3:
LEGACY OF TIME.

The first step forward in the develop-
ment of J3 was to take a few steps back-
ward. Before any writing or design
could take place, we needed to careful-
ly evaluate the strengths and weakness-
es of our previous products. We read
customer registration cards, magazine
reviews, and fan mail, and we wrote
down our own opinions of our games.
The result was a list that included
many acclaimed features (which we
wanted to continue in J3), but more
importantly identified strong criticisms
that would have to be addressed both
creatively and technically (Table 1).

With this list as our guideline, story
development and game design began.
We envisioned an adventure game in
which the purpose of each element was
to convey a sense of realism. The player
must believe that the world they are
exploring is real. Navigation would
need to be simple, yet extremely pow-
erful. Characters that the player would
meet needed to be genuine. Audio
required just the right mix of environ-
mental ambiance and music to convey
a specific mood. The cinematic cut-
scenes would need to be succinct and
compelling, with production values on
par with traditional films. In the end,
we achieved most of our lofty goals,
but had we been aware of some of the
pitfalls, J3’s development could have
been easier.

What Worked?

1. GAME PLAY FLOW. Early in the develop-
ment of J3, we focused on how players
experienced our games. We realized
that although we were providing
hours upon hours of adventuring,
most players were either not feeling a
sense of progression during their quest
or were confused as to what their
immediate goals were. What we need-
ed to do was spread more story infor-
mation and reward players through-
out the game play experience. Our
solution was to use compelling, cine-
matic cut-scenes, something we had
aspired to do for quite some time. The
challenge of using cinematics was to
sustain the suspension of disbelief
when we cut from a first-person inter-
active adventure to a third-person
movie.

What we came
up with was a
three-act structure
for the game, both
to provide short-
term goals and to
create a progression
of difficulty. In Act
1, players are given
an introduction to
the main characters
and are sent on a
specific mission.
The early environ-
ments that they
explore are smaller,
the puzzles are easi-
er, and players get
a chance to learn
the game mechan-
ics (how to navi-

gate, use inventory, and so on) When
they complete their mission, a cut-
scene reinforces what they’ve discov-
ered and sets up the critical conflict of
the story. Act 2 opens up vast worlds,
full of characters (more on that later)
and difficult puzzles that are integrated
into the environments. As the player
accomplishes each of the three main
goals of Act 2, a short cut-scene con-
gratulates them, but sustains the emo-
tion of the critical conflict. Act 3 is the
climax of the story and closes with sev-
eral cinematic scenes. Although novice
and experienced gamers will progress
through the game at different paces,
players of any level will feel a strong
sense of accomplishment upon com-
pleting the game.
2. VIDEO PRODUCTION. For the production
of the cinematic scenes in LEGACY OF

TIME, we developed two important

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 1 9 9 8 G A M E D E V E L O P E R

57

Greg Uhler is one of the founders of Presto Studios Inc., a lead-
ing software company located in San Diego, CA. Prior to being
the Producer for Legacy of Time, Greg was the lead program-
mer for the Macintosh versions of The Journeyman Project and
Buried in Time. Please visit www.legacyoftime.com for more
information.

Act 1 environments are smaller with easier puzzles.

Most Acclaimed Features:
• Richness of detail overall

• Immersiveness

• Strong Story

- Depth

- Completeness

• Quality of graphics

• Quality of sound/Music

• Graphics/sound in support of story

• Arthur concept

- On-board help

- Humor

- Companionship

• Puzzles — logical and challenging.

• Variety of environments

Strongest Criticisms:
• Speed/responsiveness

• Limited/cumbersome navigation

• Need to systematically look everywhere for objects

• Linear game play

• Intimidating interface

• Small view window

• Quality of acting

• Puzzle difficulty — too hard for beginners/too easy

for die-hards

TA B L E 1 . Past strengths and weaknesses of Presto

products.

techniques; one involved efficiency
while shooting the scenes, while the
other was a post-production tech-
nique. We knew that the cinematic
scenes in the game would require a sig-
nificant amount of blue-screen video
work. Our budget allowed for about
two weeks of studio time (stage rental,
actors, costumes, makeup, and so on).
Our first step was to produce story-
boards based on the 30-page script
that had been written. Then we totaled
the number of shots in these story-

boards, knowing that each shot trans-
lated into a unique camera and light-
ing setup. We soon realized that if we
followed these storyboards, we would
be on stage for almost four weeks.
Significantly editing the story was out
of the question, so instead we analyzed
the storyboards for each of the 13
scenes. We realized that many of the
camera angles and lighting setups were
similar. For instance, if we had three
unique camera angles in a scene (let’s
call them A, B, and C) the storyboard

sequence might be A-
B-C-A-B-A-C. To save
time, we could shoot
the scenes out of
order: A-A-A-B-B-C-C.
This worked well for
us and we completed
our shooting in two
weeks.

Once all of the
video was shot and
the final takes had
been digitized, we
began looking for
ways to optimize the
compositing and edit-
ing of the cinematics.
In our previous
games, we had com-
posited all of the
material that we digi-
tized, then edited it
together. For LEGACY

OF TIME, our Digital
Video Specialist
decided to edit the
blue-screen footage
first and give only the
necessary footage to
the compositing
artists. This was bene-
ficial in a number of
ways. First, the
amount of material

that needed to be stored was signifi-
cantly less. Second, compositing artists
could create their special effects and
know that nothing would end up on
the cutting room floor. Lastly, with the
blue-screen edit as reference, compiling
all of the composited shots together lit-
erally only took a few hours.
3. NAVIGATION. Early in the develop-
ment of LEGACY OF TIME, we estab-
lished two goals for how the naviga-
tion needed to work; the method
needed to be intuitive, as well as

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

58

P O S T M O R T E M

‘Nodes’ were built by rendering the six faces of a cube, then adding the bottom, the front, the left, the right, the back, and the top.

The final image is the full spherical node.

Images from the final scene juxtaposed with the original storyboard.

responsive. We felt that a VR-type of
technology would fulfill these needs
and create a great sense of immersion.
Our first step was to take a room from
BURIED IN TIME and prototype the new
navigation idea using Director and
QuickTimeVR. The prototype worked
well, but also pointed out some flaws.
We learned that VR technologies tend
to come in two flavors: cylindrical
and spherical. To understand the dif-
ference, imagine being inside a can of
soup with both ends removed and a
label wrapped around the inside of
the can. This is what cylindrical tech-
nologies are like; they limit your view
vertically (so you can’t see the holes
at the top and bottom) but allow you
to look 360 degrees horizontally.
Spherical technologies differ in that
they put you within a sphere with no
holes and let you look in any direc-
tion that you choose. As game design-
ers, the spherical method allows us
more freedom. We could put objects
on the ground in front of the player,
create a room with a rope hanging
from the ceiling, or design mecha-
nisms above or below the player that
need to be manipulated.

Once we decided upon
a spherical technology,
we needed to connect
these 360-degree nodes so
that a player could seam-
lessly walk from point to
point. We took screen
shots of the view from
within a node and tried to
match this in Electric
Image. The nodes had dis-
tortion and correction
which was difficult to
match in 3D. However,
after a few days of experi-
mentation, we were able
to match the view from

the node. Then we rendered out a walk
that connected two of the nodes. We
determined that 15 frames-per-second
was the optimum rate at
which to render the
walks; anything less felt
jittery, while anything
more was overkill. By
seamlessly combining the
walks with the nodes, we
created an extremely intu-
itive navigation system.
4. BREAKING THE JOURNEYMAN

RULES (CHARACTER INTERAC-
TION). One of the tried and
true rules in our
JOURNEYMAN universe is
“Ye shall not alter histo-
ry.” This means that
when a player visits a his-
torical location, they may

not alter anything, for fear that they
might alter the flow of history. What
this rule translated to, in terms of
game play, was “Ye shall not interact
with characters.” In J1, we threw the
player into jail if they tried to
approach any characters in the game.
In J2, we gave the player a time-travel
suit with a cloaking device, so they
could become invisible (as long as they
remained stationary.) For LEGACY OF

TIME, we wanted to upgrade the suit’s
technology…

What we came up with was the idea
of the Chameleon Jumpsuit. Rather
than cloaking yourself so as not to be
seen, what if you wore a suit that
could display a virtual disguise? This
single idea opened up a wealth of pos-
sibilities. The player could meet char-

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y 1 9 9 8 G A M E D E V E L O P E R

59

Choose an image as your disguise…

…and talk with the Potter of Atlantis.

ER_Filename.EXT

E = Environment (Atlantis, El Dorado, Shangri-La)

R = Room (Docks, Farm, Greenhouse, and so on)

Filename = a clear, concise description

.EXT = 3 digit extension to define the type of file

TA B L E 2 . Filename conventions

acters from the past, capture their
image and disguise themselves as that
character. We could even create a dia-
log engine so that the player could
converse with all of the characters. The
possibilities were great, but so was our
risk of failure.

Questions arose: Who initiates con-
versation? Can the player look
around while in conversation mode?
Does the player have a unique con-
versation with each disguise that they
use? We had to answer all of these
questions, but the most important
one to answer was, How does the dia-
log engine work? We didn’t want a
text parser, nor an extremely limited
set of awkward responses. This led us
to the idea of dialog topics. For
instance, when the player meets the
Potter in Atlantis, the Potter says,
“Oh, I’m sorry, I’m much too busy for
customers today.” This greeting
brings up the dialog topic, “Why so
busy?” As conversation continues,
more dialog topics are brought about
by the responses of the character.
Also, as the player explores in the

game, they learn important dialog
topics, which they can then use in
conversation. In this way, conversa-
tion topics grow as a player progresses
in the game.
5. NAMING CONVENTIONS AND ORGANIZATION.
One of the most common problems in
our previous productions was organiz-
ing all of the digital data that we pro-
duced. We needed a method to identify
files quickly and easily. So, in the early
stages of production, we established
the following naming convention
shown in Table 2.

Though it may look simple, this
naming convention was extremely
powerful and efficient. A quick glance
at the first two letters instantly identi-

fied to which environment and room
a file belonged. For instance, if a per-
son was looking for a wood texture
that they knew had been used for a
boat in Atlantis, they could search for
files beginning with AD (Atlantis
Docks.) The description would likely
contain “wood,” while the extension
might be .RGB, .LUM, .BUM, or .TRN
for the color channel, luminance map,
bump map, or transparency map,
respectively. As you can see, a lot of
information can be stored in the file-
name itself, saving time both in find-
ing a specific file, as well as not hav-
ing to open a series of files to find the
correct one.

What Didn’t Work

1. EXPANSIVE OUTDOOR ENVIRONMENTS.
Creating vast outdoor worlds such as
Atlantis, El Dorado, and Shangri-La
was very exciting from a story and
game play standpoint. However, from
a 3D graphics production standpoint,
outdoor worlds inherently have many

difficulties. The first concerns continu-
ity. It had been common practice for
our 3D animators to turn objects off,
such as the interiors of rooms and dis-
tant buildings, in order to decrease
render times. However, in these new
outdoor environments, nearly all of
the models and textures in an environ-
ment were visible all of the time.
Nothing could be hidden or removed
because when the player is outdoors,
everything can be seen from our 360-
degree nodes. Despite our animators
being extremely careful about turning
objects on and off, many continuity
errors regarding objects, lighting, or
shadows had to be fixed by rerender-
ing or rotoscoping.

Second, since all of the geometry
must be visible, both the software and
the machines that are used to render
the images must be capable of support-
ing several million polygons. Luckily,
Electric Image Animation System was
capable of handling many polygons,
so software wasn’t an issue. As for
hardware, we originally equipped our
render farm (unmanned machines that
would render images 24 hours a day)
with three PowerTowerPro 225
machines, each with 128MB of RAM
and 2GB hard drives. As each outdoor
environment came together, we real-
ized that the we had severely underes-
timated our hardware requirements. In
each machine, RAM was increased to
256MB, then 384MB, and finally to the
machine’s physical limit of 512MB.
We also added four more
PowerTowerPro 225s and 4GB hard
drives to split up the rendering tasks.
Doubling our hardware also doubled
our hardware costs, but it was the only
answer if we wanted to finish the prod-
uct on time.
2. GROUPING OF PERSONNEL. The layout of
the office for the production of LEGACY

OF TIME was organized by department.
We had individual rooms for model-
ing, texture mapping, and animation.
This allowed each department to share
production techniques within their
own group. Typically, each department
had three people. Since there were
three time zones, each person in a
department had ownership of one of
the time zones. This all seemed very
logical and straightforward as produc-
tion began.

About six months into production,
however, two problems became appar-
ent. First, there seemed to be a lack of
team spirit for each of the time zones.
If a problem arose in, say, Atlantis, it
was difficult to track down the source
of the problem because people tended
to defend their department rather
than come together as a team and
search for a solution. Second, people
began to get burned out on what they

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

60

P O S T M O R T E M

The sea-faring city of Atlantis. El Dorado, the city of Gold. A Tibetan monastery in Shangri-La.

If possible, throw more hardware at it.
–Presto rule of thumb

were doing. For example, our texture
artists had been solely creating and
applying textures for six months,
although they were quite capable of
helping out with the modeling and
animation.

It may have worked better if we had
created three production teams, each
with their own room — one for
Atlantis, one for El Dorado and another
for Shangri-La. This may have created
more of a team spirit for each time
zone and allowed for more sharing of
the modeling, texturing, and anima-
tion duties.
3. A BLUE SUIT? For the production of
the Chameleon Jumpsuit used in our
video shoot, we hired Don
Pennington Inc., an Emmy award-
winning special effects company in
Burbank, Calif. In our first meeting
with Don, we discussed the use of the
suit, its appearance, our eight-week
schedule before the video shoot, and
the fact that we were shooting on
blue-screen. He was very professional
and had an extremely talented team
of artists. Six weeks later, the suit was
finished and Don sent photos for us to
review. To our horror, the suit had
been painted blue. We knew this
would never work on
the blue-screen.
Apparently, we hadn’t
been clear enough to
Don; he had assumed
we were shooting on
green-screen, as many
effects companies do,
and remembered
“blue” from our first
meeting as being the
color we requested for
the suit. Don was very
apologetic, and we
came to the conclu-
sion that we were
equally to blame for
the mix-up. We split
the cost to have the
suit repainted (with

even more care and detail.) The suit
was finished in time for our video
shoot, and we learned that every
detail should be put down on paper to
avoid delays and mistakes.
4. AUDIO R&D. One of the mistakes that
we made in the production of the
game was not researching compres-
sion technology for some of the audio
in the game. Although our ambient
sounds and music are 16-bit stereo, all
of our character dialog, footsteps, and
sound effects are 8-bit mono. If we
had spent more time researching
audio technologies, we might have
been able to use higher quality audio
for those areas of the game. This
would have put the finishing touch
on the game. I know our next produc-
tion will definitely include an audio
R&D phase.
5. MORE PREPRODUCTION PLANNING. We feel
the key to successfully developing a
product (not to be read as “developing
a successful product”) is to make as
few mistakes as possible during pro-
duction. This means that the planning
stage is the most important phase of
production. Our planning stage occurs
during story writing and design. All of
our designers commented that they

felt rushed during LEGACY OF TIME.
The result was that there were several
difficult issues later in production
because of poor planning. Obviously,
not every issue can be foreseen, but
many would have been minimized by
our taking a little more time in pre-
production.

What Saved the Product?

O ur lead programmer for LEGACY

OF TIME was responsible for the
cross-platform design and PC imple-
mentation of the product. We also
hired an experienced programmer for
the Macintosh implementation. With
nine months to go and only a proto-
type put together, our lead program-
mer decided to pursue other interests.
We were left in a difficult situation,
and our publisher was extremely ner-
vous. Turning to our Macintosh pro-
grammer, we asked him if he was
interested in taking over the cross-plat-
form design. After careful considera-
tion, he accepted the challenge. We
hired a skilled PC programmer to fulfill
the PC implementation and were off
and running.

Looking back, this was the best
thing that could have happened. Our
Macintosh programmer was driven,
efficient, detail-oriented, full of bril-
liant ideas, and never said, “It can’t be
done.” Without him, the product’s
schedule would certainly have
slipped. And the game became fast,
polished, and feature-packed due to
his ingenuity. ■

61

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

The Chameleon suit being

built…

That won’t work for blue-

screen! The final paint job.

An edited cinematic scene before

compositing…

…and the final scene as it appears in

the game.

First, there is is an exclamatory head-
line, in ALL CAPS and punctuated by
lots of exclamation marks, announcing
that this product is the Next Big Thing.
The release proceeds with a couple of
paragraphs about how the game is a
breakthrough in its genre and loads of
turbo-charged prose about the technol-
ogy: game engine, pixel count, graphic
virtuosity, and so on, and so on. And
this is supposed to get me really excited
about the game. But more often, it
reminds me of that scene in Big, where
Tom Hanks, playing a kid trapped
inside an adult’s body, looks at the pro-
totype of a really complicated, expen-
sive toy and says, “I don’t get it. What’s
fun about that?”

I mean, sure, everyone likes pretty
graphics. But at the end of the day, if it’s
just another DOOM clone, who cares?
You can pack more pixels onto the
screen, but if there’s nothing original in
the game play, if the game harbors no
independent spirit or innovative design,
there’s nothing to brag about. It seems
as though the authoring tools are get-
ting more and more powerful, and
designers are getting more and more
lazy. Anyone can talk about advances in
modeling, voxels, antialiasing, and all
the rest of it. But do those technical sta-
tistics make a game any more fun? Have
we made any serious breakthroughs in
game play since the arcade salad days of
the 1980s? Have we made any quantum
leaps, fun-wise? Is POSTAL any more
thrilling than ROBOTRON? I think not.
It’s just better looking.

Which is why all of us wax nostalgic
for the “classics,” I suppose. Because fif-

teen years ago, graphics pretty much
sucked. So you damn well better have
had some heart-pounding game play.
Because if it wasn’t inherently, struc-
turally fun, you were nowhere. The
extreme limits of the available technolo-
gy forced programmers to actually
think, to bang their heads against the
wall about game design. And look what
we got: PAC-MAN, TEMPEST, DEFENDER,
ASTEROIDS, GALAGA. Games that arguably
stand up to the orgies of texture-map-
ping and merchandising currently avail-
able. Because it was impossible for
games of that era to coast on eye candy
and a great marketing campaign. The
standards for innovative game play, in a
very real sense, were higher. Those
games were more different from each
other than today’s. Because apparently,
the game business has succumbed to
High Concept Disease, transmitted in
some nasty backroom encounter with
Hollywood (“Yeah, it’s like MYST

meets… RIDGE RACER. TOMB RAIDER…
with an Asian chick. It’s like MORTAL

KOMBAT… with a twist.”) Inevitably,
that’s what happens when the financial
stakes rise to a certain level and the pay-
roll balloons. But it’s sad to see an
industry this young in a rut this deep.

After all, this is no time to be conser-
vative. At the moment, everyone with
a couple of SGI workstations is piling
onto an audience that’s completely sat-
urated. Adolescent boys only have so
much allowance money to spend, and
there are dozens of DOOM imitators
squeezing them for it. You can’t just
turn up the attitude — we’ve hit the
ceiling, attitudinally, and it’s called

DUKE NUKEM. It’s time to turn a corner.
Given that the market is sclerotically
glutted, this industry’s long-term sur-
vival requires that game developers
code their way out of the friggin’ box.

And that doesn’t mean hauling out a
stack of market research that says the
female market is underserved or that
there’s a exploitable niche of retirees
with personal computers. This isn’t
about dragging out the Ouija board to
determine what will sell. It’s about for-
getting the formulas for a second,
maybe even turning off your computer,
staring out the window (if you have a
window), taking a trip, or maybe like,
reading a book.

It’s a vision thing. Everyone’s looking
for inspiration in the same places. Look
elsewhere. Everyone’s taking the same
risks. Take some different risks. You’ll
make mistakes, but they’ll be new mis-
takes. Interesting mistakes. They’ll teach
you stuff. No one can learn anything
new cranking out another “Mech” title.
(I await a barrage of venomous e-mail
from incensed “Mech” animators — hit
me with your best shot.)

There is so much talent out there —
odds are that if you’re reading this,
you’re a highly creative person who,
instead of engineering database soft-
ware or going to law school, chose to
work on videogames. It was an insane
and inspired choice. You have no
excuse to be conventional. If you’re
reading this, you probably fell in love
with videogames because they were
incredibly thrilling and fun and unlike
anything else you’d experienced. So
you have no excuse to stamp out cook-
ie-cutter products. If you’re reading
this, you probably spent a lot of time
learning to use highly specialized,
arcane technical skills. Why use that
hard-won expertise just to showcase
new technology? The technology is not
of prime importance. It’s only impor-
tant because it allows you to express
your vision, which is the real point. It’s
not about tools.

Which is to say: Ask not what the
medium can do for you… ■

G A M E D E V E L O P E R F E B R U A R Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

64

b y J . C . H e r zS O A P B O X

High Concept Disease

L ike most people who write about digital

entertainment, I get a blizzard of press

releases every month from game developers.

The releases usually go something like this:

J. C. Herz is the author of Joystick Nation: How Videogames Ate Our Quarters,
Won Our Hearts, and Rewired Our Minds. She can be reached via e-mail at
joystick@interport.net.

	back:

