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W
hile some debate continues
as to the significance of
MMX technology for
today’s game developers,
there is at least one compa-
ny which capitalized on the
MMX launch hype, that
being Paris-headquartered

Ubi Soft. Ubi Soft’s latest game, POD,
puts you behind the wheel of a customiz-
able race car on a closed track. While
that’s not exactly an earth-shattering
concept, the game offers good playability
and great graphics and Dolby surround
sound thanks to MMX, and Intel held it
up at their launch event in San Francisco
as a model of MMX capabilities. Behind
every game, there’s a story waiting to be
told by the developers, and Bertrand
Helias, the lead programmer on the POD

project, explained what it was like work-
ing with the new MMX instruction set.

Helias told me that POD was devel-
oped by a team of 14 programmers, 5 of
whom worked directly on the MMX
portions of the project. The team used
Watcom C/C++ for most of the project,
and, when developing the assembly mod-
ule, they dropped into Microsoft Macro
Assembler (MASM). Helias said that
approximately 10-15% of the total POD

code was rewritten for the MMX chip —
about what Intel has said developers
should expect for an MMX optimization.

I asked Helias what surprised him
about working with MMX. “My first
thought,” Helias explained, “was that it
would be very interesting: 57 new
instructions using 64-bit registers. Ouah!
But after we began to use it, we expected
other instructions. For example, there is
no instruction to transfer a 64-bit MMX
register in two 32-bit Pentium registers.
And there are some limitations when you
pass from an MMX module to a float
one. But for sound, the MMX is espe-
cially interesting. Our sound program-
mers quickly found new opportunities
with the new instructions and the results

were very surprising. That was one of the
good surprises of MMX.”

Helias said that while the Ubi Soft
sound team immediately profited from
the new instructions, the team members
who created POD’s 3D engine found that
getting it to work with MMX was a
longer process, since the project (and
much of the 3D engine design) started six
months before Ubi Soft had any specifics
on implementing MMX technology. 

What advice does Helias give to
developers beginning a project using
MMX? “You have to change the way you
program,” he said. “Include MMX tech-
nology in your structures and algorithms
from the start.” 

Information on POD and a shareware
version of the game (two are available, one
that’s optimized for MMX and one that’s
not) are on the Ubi Soft web site: http://
www.ubisoft.com/usgames/pod2.html.

Interplay Saves
World, Buys Dodgers
I recently received a couple of press releas-
es from Interplay that definitely didn’t fol-
low conventional PR guidelines. In the
first release, Interplay’s CEO Brian Fargo
announced that he would be offering mili-
tary strategists in the Pentagon free copies
of its just released game M.A.X: MECHA-
NIZED ASSAULT & EXPLORATION to off-
set government budget cutbacks. Fargo
was quoted saying “If we are to be ready to
deal with all threats, both terrestrial and
extraterrestrial, the Pentagon’s long-range
planning must have access to every
resource without the restrictions of bud-
get.” Yeah. In a second release, Fargo
implored 10,000,000 Dodger fans to each
purchase a copy of Interplay’s VR BASE-
BALL ‘97 so that the company could make
a bid on the Los Angeles Dodgers. Now, I
can buy the need to beef up our extrater-
restrial defenses. But c’mon. There’s not
10,000,000 Dodger fans in the universe.  ■

Alex Dunne
Editor

MMX
Germinates Pod
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BETTER OFF WITH TALISMAN?BETTER OFF WITH TALISMAN?
Dear Editor: 

In the beginning was the sprite. And the
game developer saw that it was good, for it
was a computationally efficient way of rep-

resenting moving objects on the screen. 
Alas, the sprite also had deficiencies, for to
display a three-dimensional scene with sprites
required that the sprites be sorted and dis-
played in depth order. Also, since sprites are
inherently two-dimensional images, scenes
that require interaction between concave or
interpenetrating objects might not be able to
be drawn using sprites. However, if the game
developer was able to design the game to
bypass the limitations of the sprite, highly
interactive games could be written — even on
relatively slow computers. 
Thus the sprite begat the depth buffer, which
overcame the limitations of the sprite by
recording depth at each pixel on the screen.
The depth buffer is truly a robust device for
displaying all kinds of three-dimensional
scenes. But the game developer despaired at
the added computational cost that the depth
buffer entailed, since it required a depth com-
parison at each pixel. Fortunately, the hard-
ware vendors of the world came to the rescue
of the game developer by accelerating the
functions of the depth buffer in hardware and
relieving the game developer of the need to
write fast, slick rendering code. Thus, the
game developer could concentrate on produc-
ing superior game play instead. And the game
developer saw that the depth buffer was good,
even better than the sprite. 
Then, from on high in Redmond, sprang forth
Talisman to save the game developer. Talis-
man combines depth buffers with sprites and
throws in affine transformations for good mea-
sure. The game developer must still manage
sprites and all of the limitations that they
imply. However, the game developer can now
accelerate the creation of sprites with the

depth buffer. And to simulate some, but not
all, three-dimensional motion effects, Talis-
man lets the game developer distort the dis-
play of the sprite using affine transformations.
But fundamentally, the three-dimensional
world must still be represented by two-dimen-
sional sprites and is again held captive by the
many limitations that they impose.  
Is the game developer better off with Talis-
man? Does Talisman truly save the game
developer? Maybe. Maybe not. You decide. But
be forewarned — there is no free lunch. 

Anonymous
Via e-mail

SEEKING STOUT’S SOURCESEEKING STOUT’S SOURCE
Dear Editor:

Ienjoyed Bryan Stout's article "Smart Move:
Path-Finding" (October/November 1996). I
especially liked the PathDemo program. I

would like to know if you can send me the
source code, as I would like to slightly modify
it for a project I am working on.

Stephen Hadley
Via e-mail

Bryan Stout replies:
I'm not sure this program is the best way for
you to see artificial intelligence implemented.
This — and all the other algorithms I used—
are sliced into bits distributed here and there to
allow the search to be paused and resumed and
parameters to be changed midstream. A good
place to research AI is Steve Woodcock's game
AI web site: http://www.cris.com/~swoodcoc/
ai.html. There, he has pointers to code imple-
mentations of AI. 

DOIN’ IT WITH DELPHIDOIN’ IT WITH DELPHI
Dear Editor:

Thanks for "Delphi Does DirectX" (October/
November 1996). I'm glad to see I'm not
the only one developing games under

Delphi. I've used DirectX under both Delphi

and C++, and there is no question which one
is easier to implement. 
If you're a Windows 95 Developer, I can't see
any reason why you wouldn't want to give Del-
phi a try. I've been using the RingZero GDK 1.1
from SAGE Inc. for about six months now, and
I'm very pleased with the performance. You
can find MegaRoids 3D, one of my Delphi/
DirectX demos, on their web site.
I'm also glad to see some other DirectX compo-
nents on the market. Looks like Delphi may
have a future in game development.

Dave Scarbrough
Via e-mail

PROBLEMS WITH PROBLEMS WITH 
GD CODE ARCHIVESGD CODE ARCHIVES
Dear Editor:

Ihave every issue of Game Developer, and
I've been very content with the quality of
the articles. I have been disappointed with

the lack of quality control within the source
code listings, however. There have been miss-
ing files in code archives, often there aren't
instructions on how to compile them. Problems
like these make readers doubt your ability to
deliver quality information, and these days
using the Internet, just one discontented read-
er can electronically inform thousands of pos-
sible subscribers to not purchase a magazine. 

Ravi Singh
Via e-mail

Alex Dunne replies:
You are correct to feel this way. We make every
effort to ensure that source code archives are
complete, but sometimes code samples are
delivered to us late, or we accidentally omit a
file from the archives. However, any questions
or concerns about code printed in the maga-
zine or included in our archives can be
addressed to the edit staff here at Game
Developer (gdmag@mfi.com), and we'll follow
up with the authors to resolve the situation. 

http://www.gdmag.com
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In This Issue…
In early January, at a reverently subdued
unveiling in a small converted ware-
house in downtown San Francisco, Intel
introduced the Pentium processor with
MMX technology. How exactly MMX
will benefit game development remains
hotly debated. Writer John Brothers
chimes in with a level-headed evaluation
on page 20 of this issue (“The Impact of
MMX and AGP on Graphics and
Video”).

Brief ly ,  the MMX-enabled
processor will be offered at 166 and
200 MHz for desktop systems and
150 and 166MHz for mobiles. Most
of the obvious PC manufacturers —
including IBM, Acer, Gateway 2000,
HP, Compaq, Dell and others — have
already shipped MMX-enabled sys-
tems. Look for the rainbow-colored
MMX “hat” on the “Intel  Inside”
logo.

MMX requires that software be
optimized for the new instruction set.
And already many ISVs have released
MMX versions of their  software.
These include not only consumer
applications — cool games — but also
tools from manufacturers such as
Macromedia,  Adobe, Microsoft,
QSound and others. Again, look for
the rainbow-colored hat.
■ Intel Corp.

http://mmx.com

Softimage Special
Also in this issue, Dave Sieks reviews
Softimage 3.5.1 (“Getting Soft,” p.
42).  For those interested in the
extended package, Softimage Extreme,
there is a special promotion in effect
through March 31, 1997. To com-

memorate it’s new strategic relation-
ship with Mental Images GmbH, the
maker of the Mental Ray rendering
environment, Softimage is offering a
free additional Mental Ray license to
licensees of Softimage Extreme and a
50% reduction on the unit price per
CPU of Mental Ray. 
■ Softimage

(800) 576-3846
(818) 365-1359
http://www.softimage.com

Tools and Talent
Also on the tool front, Alias|Wavefront
is shipping PowerAnimator 8.0, the
latest upgrade of its 3D modeling, ren-
dering, and animation package. The
new version includes some features
specifically created for game developers.
A new translator can export data to
Direct3D format. The polygonal tool-
box has been enhanced and expanded.
And Metacycle, PowerAnimator’s
character animation system, has been
augmented with Cycle Smoother, a
tool for creating seamless animation
cycles by smoothing the start and end
frames of a motion sequence, and
Dynamics Engine, which can add
dynamic properties to specific parts of a
character.

PowerAnimator 8.0 starts at
$9,995. Upgrades are free to existing
customers on maintenance.
■ Alias|Wavefront

(800) 447-2542
(416) 362-9181
http://www.aw.sgi.com/

Sounds Good
On the audio side, EuPhonics Inc.

has a new audio hardware toolkit.
SoundSuite includes full 3D audio posi-

tioning, spatial enhancement, DVD
audio decoding, wavetable synthesis, and
Sound Blaster-compatible music synthe-
sis. It supports both DirectSound and
Dolby AC-3 standards. 
■ EuPhonics Inc.

(303) 938-8448
http://www.EuPhonics.com

For a Short Time Only
For Macromedia Director and

Director Multimedia Studio owners,
mFactory Inc. is offering its mTrop-
olis 1.1 multimedia authoring tool as
a complementary upgrade. Regis-
te red  Direc tor  owners  can  ge t
mTropol is  1 .1.  for  $495 through
March 31, 1997.

mTropolis is an object-oriented
authoring tool with drag-and-drop
functionality. It supports playback of
QuickTime and PICS animation files
created in Director, as well as AIFF,
QuickTime, and WAV sound formats
created in SoundEdit and Deck II.
■ mFactory Inc.

(888) 622-8669
http://www.mfactory.com

Get Some Heat
Online enthusiasts can check out a new
browser tool — for free. Newfire Inc.
has unveiled Heat, which it calls a
“game-speed 3D player” for the Inter-
net. Heat, based on Java and VRML
2.0 standards, will be available as a
Netscape Navigator plug-in, and is
appropriate for demoing and playing
games through a web browser. Newfire
will make it available in March at its
web site.
■ Newfire Inc.

(408) 996-3100
http://www.newfire.com
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A View from 
the Retail Trenches
The sales numbers from the holidays are
being watched closely. According to Joe
Catuadella, owner of the New York-
based retailer Tronix Multimedia, “Sony
did very well right up to the week prior to
Christmas, Nintendo was unbelievable,
and Sega did much better than expecta-
tions. PC was a disappointment.” Catu-
adella says the biggest problem centered
around the number of titles — there
weren’t enough great titles for the PC
and the Ultra 64. “Aside from West-
wood’s COMMAND & CONQUER: RED

ALERT [for the PC] and the four avail-
able Nintendo titles, there wasn’t much
to sell.” Interestingly, Catuadella says
Sony had too many titles. “The [number]
of titles that debuted for Sony was over-
whelming for many customers, as well as
myself — many quality Sony titles are
getting lost in the deluge.” These obser-
vations seemed to gel with a Nintendo
announcement claiming 1.6 million Ultra
64 units sold, and a Sony announcement
claiming a worldwide base of nearly nine
million units. Despite those upbeat num-
bers, though, I see two problems:

Sony has to get better control over
PlayStation title development. The flood
of titles can be seen as a powerful
endorsement of the system, but a crowded
market can mean some titles that deserve
good exposure and sales might not be get-
ting it. There's only so much money and
time that each consumer has at one
instance. Other systems have had big
trouble when their market was flooded
with titles.

Nintendo simply needs to get some
more titles out, in particular another
groundbreaker like MARIO 64. ZELDA

64 could be that title. 

Sega Must Focus
Sega’s excellent “three-pack” promotion
(in which the company gave away copies
of Virtua Fighter 2, Daytona USA, and
Virtua Cop with every Saturn purchase)
boosted sales — so much so that Sega is
extending the offer through the end of
March. Unfortunately, this doesn’t help
remedy the underlying challenge Sega
faces, namely to focus on their core
game business. Ventures like Net Link
(a 28.8 Kbps modem that turns the Sat-
urn into a TV-based web browser) and
its new videophone product are stretch-
ing the company’s product line and posi-
tioning at a critical time. Sega took a
huge fourth-quarter write-off on unsold
16-bit games in its inventory.

Sega, perhaps sensing a needed
boost, announced a merger with Bandai.
This adds not only a large set of content
and production capability to Sega's
ranks but also brings Bandai's Pippin.
There is speculation that Sega may roll
Pippin technology into Sega's console,
in an effort to create a killer set-top-
box/Web-TV/video game machine.

Sega's videogame strategy is cer-
tainly relying much more on the Web
than its competitors Sony or Nintendo
are. However, this merger also has the
potential to distract Sega even more
from its core console business. If Sega's
diversification strategy doesn't bear fruit
quickly, this foray into themeparks, the
Web and children's toys could implode.
On the upside, there is the potential for
the Sega to morph into a powerful
entertainment conglomerate, a Japanese
Disney of the information age.

A Slow PC Game Market
According to initial reports, PC sales
were sluggish. One reason for the disap-

pointing numbers may be that con-
sumers are holding out for Intel’s
recently launched MMX line of proces-
sors. PC Data numbers for December
showed that the venerable Myst had the
top spot, followed by MICROSOFT

FLIGHT SIMULATOR, COMMAND &
CONQUER: RED ALERT, MADDEN

FOOTBALL ‘97, BARBIE FASHION

DESIGNER, and QUAKE. Many promis-
ing titles for the PC missed the hot holi-
day season and are arriving now, such as
Blizzard’s DIABLO and the upcoming
Star Wars games from LucasArts
(REBELLION, JEDI KNIGHT, and 
X-WING VS. TIE FIGHTER). 

Deals, Acquisitions, and
Investments
Sega invested $4 million into long-time
partner Appaloosa Interactive (formerly
Novatrade). Among other games,
Appaloosa developed ECCO THE DOL-
PHIN for Sega. Appaloosa is about to
begin a big push into web entertainment.
The first effort will be Bonus.com,  a col-
lection of sites geared toward children.

Ziff-Davis Publishing and Spot
Communications are combining their
web site efforts. The two will combine
efforts to publish one huge game site in
an attempt to dominate the online mar-
ket for game information and resources.
The sites will operate under Spot Media's
existing operations, Gamespot.com and
Videogamespot.com. Beginning in the
spring of 1997, however, the sites will
begin incorporating content from Ziff-
Davis’s large stable of game magazines.

Ben Sawyer writes gaming industry
analysis on a regular basis for Interactive
Update — an industry newsletter. News
releases and information can be sent directly
to BenSawyer@worldnet.att.net.

http://www.gdmag.com
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A
sk anyone who’s experienced
it before, and they’ll tell you
not to get in a car with me
when I’m driving. For some
reason, cars and I just don’t
get along very well. Or maybe
I should say the front end of
my car gets along very well

indeed with the rear ends — and various
additional parts — of other cars.

My driving skills notwithstanding,
the topic for today is not how to avoid
collisions (a topic about which I’m
clearly not qualified to write), but rather
“collision response” — what to do once
we already know there is a collision.

You can probably guess that in the
context of our series on game physics,
the term “collision response” doesn’t
refer to calling an ambulance (in con-
trast with the context of my daily com-
mute). The term refers to the second
half of the collision process in a physical
simulator, the first half of which is
“collision detection.” While in the real
world, the sound of smashing glass is all
the collision detection we need, the
same is not true of our simulator, where
we need code to explicitly check our
geometry for collisions. Collision detec-
tion itself is worth a series of columns.
Still, it’s much more a geometric prob-
lem than a physical one, so for this col-
umn, we’re going to assume you already
have a way to detect collisions (we
might return to the collision detection
problem in a later column). The physics
simulator requires certain information
from the collision detector; we’ll
identify this information as we develop
the collision response formulas and
summarize the requirements at the end
of the column. 

Once we’ve detected a collision, the
fun physics math starts, as we try to
decide which directions the objects
move in response to the impact. While
we’re going to restrict our scope to colli-
sions between rigid bodies (so we won’t
be able to model all the crumpling and
buckling that goes on when I run into
an unsuspecting motorist), we’ll still do
better than you’ve probably seen before.
Most current games do simple vector
reflections, or maybe even take the
objects’ masses into account. However,
in keeping with our goal for this series,
we’re going to do more accurate (and
interesting) collision response. Our
objects will spin and tumble as they col-
lide, with heavy objects tossing lighter
objects aside, imparting rotation to each
other when they hit off-center. So,
insurance premiums be damned: Full
speed ahead!

Impulsive Behavior
To begin understanding the collision
process, let’s imagine we have two
objects, labelled A and B, that are about
to collide at a point P. Coincidentally,
Figure 1 shows these very objects.
There’s actually a point P on both objects,
so I’ve labeled the vector from the center
of mass of object A to its point P as rAP,
and likewise with rBP for B. Let’s also
denote the velocities of the Ps as vAP

and vBP. A moment’s thought convinces
us that even though the Ps will be in the
same exact position at the instant of col-
lision (or there wouldn’t be a collision at
P), their velocities at that instant can be
quite different — if one object is
stationary, for example. Given the veloc-
ities of the Ps, we can define their rela-
tive velocity as vAB.

Once a collision has

occured between

objects, careful

modeling of the

physics involved can

impart realistic

velocities and rotations

to the objects.
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Physics, Part 3:
Collision Response

Chris Hecker
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(Eq. 1)
More importantly, if our collision

detector supplies us with a “normal vec-
tor” for the collision (denoted by n, and
pointing toward body A by convention),
we can define the “relative normal
velocity” as the component of the rela-
tive velocity in the direction of the colli-
sion normal.

(Eq. 2)

Choosing a normal vector can be
tricky, as we’ll discuss below. But in the
case of a vertex/edge collision — as in
Figure 1 — it’s pretty obvious that the
normal should be perpendicular to the
edge. Eq. 2 allows us to define the crite-
rion for a collision:

A collision occurs when a point
on one body touches a point on
another body with a negative
relative normal velocity.
This statement says Eq. 2 must be

negative at the contact point or there’s no
collision. Consider the following three
cases: If Eq. 2 is greater than 0, then the
points are leaving each other, and we can
ignore them. If it’s equal to 0, the points
are neither colliding nor separating — a
situation called contact — and we’ll have
to deal with that problem in a future col-
umn. Finally, if Eq. 2 is less than 0, then
the points are smashing into each other,
and we need to do something to stop
them from penetrating. That something
is the collision response.

The obvious thing to do for colli-
sion response is to apply a force to both
objects, but that doesn’t actually do the
job for rigid bodies. A force won’t stop
the bodies from interpenetrating because
a force can’t instantaneously change a
velocity. That is, a force takes time to
change a velocity — it can only do so via
integration over time, as we learned in
previous columns. Yet our objects are
already touching, so we don’t have any
extra time to allow the force to do its
work and counteract the negative relative
normal velocity. We must change their
velocities immediately or our objects will
move inside each other. How can we
affect this discontinous velocity change?

Think about the physics we’ve
learned so far. Nowhere did velocities,
either linear or angular, change instantly.
Both are changed only by forces and
torques through integration, which by
definition means the velocity changes are
continuous. In the case of a rigid body
collision, however, we must change the
velocities instantaneously. That calls for
a new quantity: the “impulse.”

We shouldn’t feel bad about intro-
ducing yet another quantity at this point.
After all, it was our idealization of inpen-
etrable rigid bodies that got us into this
discontinuous velocity mess in the first
place; it should come as no surprise that
we have to idealize a little more to get
ourselves out of it.

In a real-world collision, a lot of
complicated atomic things happen that
we can’t hope to simulate directly. Thus,
in the same way that we’re approximat-
ing real-world objects with rigid bodies,
we need to approximate the real-world
collision process with an idealized model.
Impulses are part of this model.

An impulse can change velocities
directly, without waiting — the way a
force must — for integration to do it.
You can think of an impulse as a really
huge force integrated over a really short
period of time. The force is so large and
the amount of time so small that we’re
no longer dealing with an almost infi-
nite force over an infinitesimal period of
time, but with a perfectly finite impulse.
And, as force changes the momentum
over time (remember F= ), our impulse
changes the momentum
instantaneously, which in
turn changes our velocity
(by the definition of
momentum as mass
times velocity). We can
calculate and apply im-
pulses at the point and
instant of collision, and
these impulses will
change the bodies’ veloci-
ties and prevent them
from interpenetrating.

But how do we cal-
culate the impulses to
apply? This is the central
problem of collision

response. There are many ways to calcu-
late the impulse’s magnitude and direc-
tion, depending on how realistic you
want to be. In the interest of space,
we’re going to go with a relatively sim-
ple model, but one that will still give us
the interesting angular collision behav-
ior we want. Later in the series, when
we’re more comfortable with the mathe-
matics, we might try a more complex
approximation. 

The collision model we’ll use is
called “Newton’s Law of Restitution for
Instantaneous Collisions with No Fric-
tion.” The easiest part of this model to
understand is the “instantaneous” part.
The model assumes the collision process
takes no time. Since “no time” is a very
small amount of time, all of our regular
noncollision forces go away during the
collision, and only the collision impulses
are calculated. Thus, noncollision forces
such as gravity are not taken into
account during the collision, although
they’re in effect as usual before and after
the collision.

Newton’s Law of Restitution intro-
duces yet another new quantity, the
“coefficient of restitution” (usually
denoted by an e or an ε, lowercase
epsilon). The coefficient of restitution
models the complicated compression and
restitution of impacting bodies with a
single scalar, which relates the contact
point’s incoming and outgoing relative
normal velocities.

(Eq. 3)v n v n2 1
AB AB   ⋅ = − ⋅e

  ṗ

v n v v nAB AP BP   ⋅ = −( ) ⋅

v v vAB AP BP= −

Figure 1.  Objects A and B colliding.

rBP

rAP

B

A

P

n



Eq. 3 uses a subscripted 1 and 2 to indicate the incoming
and outgoing velocities, respectively. The coefficient of restitu-
tion e is a scalar that tells us how much of the incoming energy
is dissipated during the collision. It can range from a totally
elastic collision at e=1 (a superball), to a totally plastic collision
at e=0 (a lump of clay landing on the floor).

Our collision model makes the final simplifying assump-
tion that there is no friction at the point of collision. Thus, the
impulse generated by the collision is entirely in the normal
direction n (there’s no tangential impulse at all). We can express
the impulse with a single scalar j times the normal, giving us jn.
Newton’s Third Law of equal and opposite forces says that the
impulse felt by A is jn, while the impulse felt by B is simply –jn,
the equal and opposite impulse. Now we’re ready to derive the
collision response equations.

Hit Me
For starters, we’ll derive the collision response equations for
objects that cannot rotate, then we’ll go all the way and calcu-
late the angular impact equations, as well. This is going to get a
bit hairy, so you should probably get a piece of paper. The first
equations we write relate the incoming and outgoing Center of
Mass (CM) velocities under the influence of the (currently
unknown) impulse.

(Eq. 4a)

(Eq. 4b)

I was able to write Eqs. 4a and 4b by keeping in mind that
the impulse is a change in momentum, and I divided through by
each object’s mass to convert from a momentum equation to one
in terms of velocity. Since the objects can’t rotate yet, the veloci-
ties of the CMs (vA and vB) are the velocities of all the points on
the respective bodies; we can replace vAP with vA in Eq. 1 and
make a similar exchange for B. Next, we use Eq. 3 to relate the
incoming and outgoing relative velocities with the coefficient of
restitution, and substitute in Eq. 1 for the definition of relative
velocity. Substituting in Eqs. 4a and 4b and distributing the dot
product, we get

(Eq. 5)
We can simplify Eq. 5 by noting that the v terms on the

left-hand side make up the relative normal velocity from Eq. 2
(modified by our assumption that the object can’t rotate). We
then solve for the scalar j and find (notice all the terms on the
right-hand side are known at the time of collision)

(Eq. 6)

Now that we know the impulse magnitude, we can plug it
back into Eqs. 4a and 4b to find the new linear velocities of our
objects. The collision is resolved!

Let’s note a few things about Eqs. 4 and 6. First, you should
notice that n doesn’t have to be a unit-length vector for the colli-
sion response equations to work; the various dot products will
cancel out any nonunit magnitude for n without forcing you to
explicitly normalize it (thus avoiding normalization’s accompany-
ing square root). Of course, if you know n is unit length, you can
avoid some multiplies in the denominator of Eq. 6.

The second thing to notice is that these same equations can
handle a moving rigid body colliding with another rigid body that
is supposed to stay fixed, such as a building or the ground. To see
this, look at what happens when the mass of one of the objects
increases: the effect of the impulse on that object decreases. Take
this to the limit of infinite mass, and all the mass reciprocals for
that object go to 0. Eq. 6 no longer contains the object’s mass, and
it degenerates into the equation for collision with a fixed object.
Actually, the infinitely massive object doesn’t have to be fixed, as
its velocity is still present in Eq. 6. If it is moving, however, it will
brush aside any dynamically simulated object and not feel so much
as a nudge (such an object is called kinematically driven, since it’s
ignoring the dynamic quantities of mass, force, and impulse).

Finally, if you set A’s mass to 1, set B’s mass to infinity and
its velocity to 0, make the coefficient of restitution 1, and make
n unit length, you might recognize the equation to reflect a vec-
tor (vA) about a normal.

Spin Out
Now that we’re warmed up, we can derive the complete 2D col-
lision response equations, including the terms for angular veloci-
ty. To do this, we’ll need to use the equation we learned in the
last column for calculating the velocity of an arbitrary point on a
rotating and translating rigid body.

(Eq. 7)
I’ve written Eq. 7 for the postcollision velocities using the

subscript 2, but it holds for the precollision velocities as well if
you replace the 2s with 1s. 

Next, in the same way we wrote Eqs. 4a and 4b for the
change in linear velocity under the influence of an impulse, we
can write equations for the changes in both linear and angular
velocities when the impulse is applied. Here, I’ve written the
equations for body A:

(Eq. 8a)
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Eq. 8a should be familiar from our linear collision example;
it matches Eq. 4a. Eq. 8b, on the other hand, is the result of
applying the impulse jn at point P on body A. The last term on
the right translates the linear impulse into an angular impulse in
exactly the same way that we translated linear force into torque
in the last column: using a perp-dot product to the point of
application. Since impulse will change the angular momentum,
I’ve divided through by the moment of inertia at the CM to
convert Eq. 8b into an equation in the angular velocities.

Eqs. 8a and 8b together show how the collision impulse
will affect body A’s precollision velocities. The equations for
body B are exactly the same when j is replaced by –j, since the
impulse is equal and opposite. Our remaining task is to solve for
j, and then plug it into Eqs. 8a and 8b (and the counterparts for
B) to resolve the collision.

Solving for j involves the same sort of algebra as in the pre-
vious example. First, start with Eq. 3, replace vAB with the defi-
nition in Eq. 1, and substitute Eq. 7 for vAP and its twin for vBP.
Then, for the unknown postcollision linear and angular veloci-
ties, substitute in Eqs. 8a and 8b and their B versions. Gather
the terms, being sure to recognize the expression for the precol-
lision relative normal velocity (in the same way we brought it
into the numerator in Eq. 6), and solve for j. We end up with

(Eq. 9)
Once we’ve calculated j, we plug it into Eqs. 8a and 8b

(don’t forget to negate j and plug it into the equivalent equa-
tions for B), and we’re done with the collision response. The
colliding bodies go flying apart, complete with the correct spin
based on their incoming velocities and masses.

A Little Touch Up
Now that you know the collision response equations, let’s see
how they fit into our overall simulation loop. Listing 1 shows
the pseudocode for the simulation loop that supports collision
detection and response from the sample application. I
changed last issue’s step-by-step algorithm to pseudocode
because the loop got a bit more complex when it was extended
to handle collisions.

The root of this new complexity is calculating the “exact”
time of collision. Notice we integrate forward by a full time
step at first, and if there’s interpenetration at the new configu-
ration, we subdivide the time interval and try again. The algo-
rithm amounts to doing a binary search of the time step look-
ing for the time of collision. This is not necessarily the most
efficient way to find the collision time, since we throw away all
of our previous integration work, but it’s very simple and
robust. Other solutions to this problem include using the pre-
vious integration parameters to help estimate when the colli-

sion occured, trying to predict ahead of time where the colli-
sion will occur, or even trying to use the interpenetrating coor-
dinates and hoping it doesn’t look too bad. Also, this discrete
collision routine doesn’t catch “tunneling,” where fast moving
objects can move completely through other objects in a single
integration step.

Once a noninterpenetrating configuration is found, we
resolve the collision — if present — and update the configura-
tion. Then we loop back up to complete the time step and final-
ly draw the objects.

I’ve glossed over a few things in this presentation, so let’s
take the remaining space to get out the Bond-O and fill in some
of the holes….

It should be clear from the collision response equations
that we need to know four pieces of data about a collision: the
time of the collision, the objects participating in the collision,
the colliding points on those objects, and the collision normal.
Each of these parameters has some subtleties, and we’ll go into
each in turn.

You’ll notice I quoted the word “exact” a few paragraphs
back when refering to the first required piece of data: the colli-
sion time. The reason is that there’s really no such thing as the
exact collision time when you’re working numerically on a
computer. We’re forced to use a tolerance value for collision
detection, within which we agree to say we’re colliding (rather
than interpenetrating or not touching). The sample code
shows this technique.

The next bit of data — the collection of colliding objects —
seems obvious, but note that our current algorithm can only han-
dle a single collision between two bodies. A similar limitation
holds for the third parameter, the collision points. It’s easy to see
that in a 2D collision between convex polygons, you can get an
edge/edge collision, which means the collision “manifold” — the
space that represents the parts of the objects that are touching —
is no longer a point, but a line segment. You can get away with
just using the vertices of the line segment for this kind of colli-
sion, but even that is beyond the powers of our current collision
response routine. It can only handle a single collision point, not
multiple simultaneous collision points. Simultaneous collisions
are much harder and will have to wait for another time. Things
get even worse in 3D, where you can get point, edge, and face
collisions with convex polyhedrons, and collision detection and
response become a nightmare when you get into curved surfaces.
Anyway, the sample application’s collision detector currently
returns only a single collision point, and although we don’t get
flat-edged bounces (it always looks like one point hits first), it
still looks pretty good.

The collision normal is the final place where ambiguities
arise. In 2D, on an edge/edge or a vertex/edge collision, the
normal vector is easily obtainable as a vector perpendicular to
the edge. However, on a vertex/vertex collision, you need to
pick a sensible vector to use for the collision normal. The
sample application avoids this problem by treating vertex/ver-
tex collisions as vertex/edge collisions, but that can lead to
unrealistic behavior.
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The references for this material
would just about fill the space of an
entire column, so once again,  I ’m
going to put them on my website at
http://ourworld.compuserve.com/homepages/
checker. The derivations I’ve used here are
similar to David Baraff’s equations in his
SIGGRAPH tutorial on physically based
modeling (it’s in my references). Like
most results in math and physics, there
are a bunch of ways of getting to the
same equations, including derivations
based on the laws of conservation of
energy and momentum, and derivations
based on things called “generalized coor-
dinates.” If you study this stuff seriously,
you’ll want to work out the equations in a
lot of different ways to make sure you
understand them. The more practice you
get, the better mathematician and physi-
cist you’ll become. Now, if only the same
principle held for my driving…  ■

Chris Hecker’s collision response is
usually to write a large check to some auto-
body shop. Donations are accepted at
checker@bix.com.
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setup initial conditions

while(simulating) {
DeltaTime = CurrentTime - LastTime

while(LastTime < CurrentTime) {
calculate all forces and torques
compute linear and angular accelerations
integrate accelerations and velocities over DeltaTime

if(objects are interpenetrating) {
subdivide DeltaTime

} else {
if(objects are colliding) {

resolve collisions using Eqs. 8 and 9
}

LastTime = LastTime + DeltaTime
DeltaTime = CurrentTime - LastTime
update positions and velocities

}
}

draw objects in current positions
}

Listing 1.  The Simulation Loop Pseudocode.



T
he press has devoted a great
deal of attention to 3D graph-
ics accelerators and higher
speed CPUs lately, especially
to how games benefit from
them. This much is true: The
basic consumer’s computer is
becoming a much more capa-

ble game machine. If you have an Intel-
based game slated for release a year from
now, however, you should consider tak-
ing advantage two new hardware initia-
tives: MMX and the Accelerated
Graphics Port (AGP).

MMX (not an acronym) is a modi-
fication of the Intel Pentium and Pen-
tium Pro processors that accelerates
multimedia applications that use video
playback and 3D rendering. MMX-
enhanced Pentium processors are already
in stores. Toward the middle of the year,
systems that use the AGP architecture
will begin shipping. AGP is a new high-
speed peripheral bus that improves 3D
texture-mapping quality. Developing
games that support these two technolo-
gies will let you significantly improve
certain visual aspects of your title. Let’s
examine how. 

MMX Impact on 
Video Performance
Intel’s MMX technology revolves
around 57 new single-instruction, multi-
ple-data (SIMD) assembly instructions
that operate on eight new 64-bit regis-
ters. Each register can be divided into
two 32-bit values, four 16-bit values, or
eight 8-bit values, which can be operated
on with special shift, logical, and arith-
metic instructions like AND, NOT,
OR, XOR, add, subtract, multiply, mul-

tiply/accumulate, and compare. MMX
instructions can be paired with each
other and with integer instructions,
making it possible to execute two MMX
instructions in one cycle. Support for
these instructions already exists in
Microsoft Visual C++ 4.1 and the
Microsoft Macro Assembler 6.11, and
support has been announced for Wat-
com C/C++ 11.0 and the NuMega Soft-
Ice debugger.

Several applications will benefit
from MMX instructions, most notably
those that use DCT-based image- and
video-compression/decompression algo-
rithms like JPEG, MPEG-1, MPEG-2,
and H.263. All these algorithms rely on
discrete cosine transforms (DCT) to
compute a matrix of frequency values
from a matrix of color values. The DCT
results are quantized, higher frequencies
more than lower frequencies, selectively
removing some of the relatively unim-
portant high-frequency information.
This quantization step usually results in
long sequences of zero values, and the
last step is to use Huffman coding to do
the actual compression. The basic idea is
to code the most commonly occurring
bit sequences with the shortest bit codes.
To decompress, the same steps are per-
formed in reverse order. This process is
called intraframe compression because it
compresses a fram by itself.

The JPEG, MPEG-1, MPEG-2,
and H.263 video-compression algo-
rithms also take advantage of similarities
between frames to further compress
video in what’s known as interframe
compression. Normally, over 90% of
video frames are compressed with inter-
frame compression. The encoder divides

up a frame into 16×16-pixel regions,
then looks at the same region in one or
two reference frames (a previous or
future frame, or both) for the closest
match. This search results in a motion
vector that gives the relative position in
the reference frame of the most similar
block. When searching in one-pixel
increments, the absolute differences are
computed. This can be done efficiently
with the PSUBUSB instruction, which sub-
tracts eight 8-bit unsigned numbers and
clamps the results to [0:255]. Searching
is also done in half-pixel increments.
This requires averaging adjacent pixels
in the reference block, which can be
handled with the packed shift and
packed add instructions before comput-
ing absolute differences. Although real-
time encoding currently isn’t very
important in games, it could be in the
future. Imagine being able to see a video
feed of your opponent’s grimacing face
as you shoot him, for instance.

In the near term, however, MMX is
more useful for its ability to accelerate
decoding. The last stage of decoding
interframe-compressed video is motion
compensation — the counterpart of
motion estimation in the encoder. This is
where delta values, decoded in the iDCT
and inverse quantization stages, are
added back to data from the reference
frame(s). When the motion vector has a
half-pixel component in either or both
directions (horizontal and vertical), adja-
cent pixels must be averaged before the
deltas are added. This can be accom-
plished, with some loss of precision, by
right-shifting the 8-bit components and
then adding the 8-bit results using the
packed shift and packed add instructions. 

The Impact of
MMX and AGP on
Graphics and Video
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But MMX also helps with another
aspect of motion compensation. The
16-pixel–wide block read from the ref-
erence frame(s) isn’t normally aligned to
16-byte boundaries, so the shift and
packed logical instructions can be used
to read the data and position it in the
MMX registers. The parallel add
instruction can then be used to average
components from the reference block
and add in the delta values. 

How MMX
Accelerates Rendering
While MMX instructions clearly speed
up video playback, the technology’s ben-
efits to 3D graphics are limited to the
rendering stage — which is increasingly
being handled in dedicated hardware
anyway. Therefore, for systems
equipped with 3D graphics accelerators,
the MMX instructions are redundant.
The good news is that game developers
can rely on MMX for much better per-
formance on low-end machines (those
systems shipping without hardware-
accelerated 3D). Let’s examine how
MMX improves rendering performance.

At the top of the 3D pipeline,
geometry is transformed, lit, and clipped
to a view volume. The result is a list of
3D triangles, ideally connected into
strips, fans, or meshes so vertices can be
shared. After the transform stage, each
triangle is described with screen coordi-
nate vertices. Because of the large,
dynamic range of values involved, trans-
forms, lighting, and clipping need to be
done with at least single-precision float-
ing-point computations (preferably dou-
ble). In the rendering stage, however,
integer calculations are sufficient. Here,

MMX-enabled parallelism can help
when hardware-accelerated rendering is
not available.

Since the MMX registers and
instructions are aliased on the floating-
point instructions and registers, it is
prohibitively slow to mix floating-point
and MMX instructions — on the order
of 200 cycles are required to switch
between MMX and FPU modes. How-
ever, some rendering computations must
be done with FPU instructions. To
minimize the hit you incur when
switching between MMX and FPU
modes, you should process geometry in
batches. As this has some implications
for caching data, the size of the batches
also needs to be limited.

To understand how the rendering
process is sped up by MMX, let’s exam-
ine how triangles are typically rendered.
The input to the triangle-rendering stage
is three vertices per triangle. In
Direct3D, each vertex consists of X, Y,
Z, U, V, and W coordinates specified as
single-precision floating-point numbers,
and red, green, blue, and alpha and fog
values specified as 8-bit integers. With
conventional rendering algorithms, the
slopes of all the components are comput-
ed along one triangle edge and in the X-
direction across the triangle. Along the
other two triangle edges, ∆X∆Y is com-
puted. So some amount of floating-point
arithmetic (subtracts, multiplies, and
four divides) is required before any pixel
values can be computed using integer or
MMX instructions. Texture coordinates
are then computed incrementally —
adding the deltas in the direction moved
(∆C∆Y along the triangle edge and
∆C∆X along a scan). 

The arrival of MMX and

pending release of AGP

means a number of

changes for game

developers. Mastering

these technologies will

offer benefits in image

quality and performance.

By John Brothers
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Accurately computing the U and V
texture coordinates with perspective cor-
rection also requires two divides per pixel,
which is very expensive on the CPU (a
32-bit integer divide requires 41 cycles on
a Pentium). For this reason, software ren-
derers generally use methods that avoid
divides to compute approximations of the
perspective-corrected U and V coordi-
nates per pixel. Quadratic interpolation is
one of these methods. For large triangles
with little perspective (where the Z coor-
dinates do not vary much), this method
works reasonably well. However, where
any significant perspective correction is
required, this method produces inaccurate
results (with the effect that straight lines
seem to wave during animation). Subdi-
viding triangles minimizes the problem,
but can also double or quadruple the per-
triangle computation costs. So, if you rely
on software (or hardware) that uses qua-
dratic interpolation, you should be pre-
pared to live with some artifacts. Because
frame rate is paramount, however, this is
still the way to go when doing software
rendering.

Quadratic interpolation uses two
deltas per texture coordinate: ∆U∆X,
∆∆U∆X, ∆V∆X, ∆∆V∆X. For each pixel,
you add ∆U∆X to U and ∆∆U∆X to
∆U∆X, and the same for V. This makes
the two divides per pixel unnecessary and
the per-pixel computation much faster.
As triangles decrease in size, however,
the benefits decrease. The computations
per edge and for the whole triangle
become more complex than the conven-
tional (two divides per pixel) method. 

The problem is even more severe
with narrow triangles, since the efficiency
of the MMX instructions (which operate
on multiple pixels at a time) decreases
because of edge effects. According to
Intel, an infinitely long scan requires 73
cycles to compute one bilinearly filtered
pixel. (An approximation of bilinear fil-
tering is also accelerated by the MMX
instruction set.) On a 200MHz proces-
sor, 73 cycles/pixel works out to a little
more than 2.7 million pixels per second
(this assumes no cache misses, no shad-
ing or fogging, and infinitely wide trian-
gles, and doesn’t take into account trian-
gle setup or edge setup). When Z-buffer-

ing is used, performance significantly
decreases. On the other hand, simple
point-sample texturing will be very much
faster than bilinear filtering — even
under realistic conditions.

The bottom line is that MMX
instructions raise the baseline 3D perfor-
mance for low-quality (defined as seri-
ously comprimised image quality in
exchange for higher frame rate) 3D-
graphics rendering. If hardware is
already accelerating your 3D, MMX
instructions are redundant. MMX
doesn’t accelerate transforms, lighting, or
clipping calculations, which current 3D
accelerators normally leave to the CPU
because of the high-FPU performance
there. For video playback, however,
MMX instructions make a tremendous
difference. MPEG-2 playback with
some degradation should be possible
without hardware acceleration on
200MHz MMX-enabled processors.

The Accelerated
Graphics Port
The other significant hardware initiative
launched by Intel is AGP (Accelerated
Graphics Port), a peripheral bus standard
that will be introduced in PCs sometime
this summer. This bus will provide a
high-speed dedicated interface between
system memory and a graphics accelera-
tor, primarily benefiting 3D texture-
mapping applications. One of the biggest
problems with dedicated hardware accel-
erators so far has been the limited texture
storage available — virtually all accelera-
tors read texture data from graphics
memory on the card. Nowadays, a typical
$200 graphics adapter has a 4MB frame
buffer. However, most of that storage
space is taken up by the front and back
buffers, the Z-buffer, and, potentially,
space for triple buffering. This leaves
between 1.6MB and 2.8MBs for texture
storage (and even less at higher resolu-
tions and color depths). Clearly, we’ll
need more memory to do high-quality
graphics in the future. 

This storage limitation has forced
game developers to minimize the num-
ber of textures per scene and to down-
sample textures to fairly low resolutions
and stretch them over the geometry.

Depending on the texture-filtering mode
used, you may experience a couple of
undesirable effects:
● Point-sampling textures (reading one

texel per pixel generated) results in
blocky triangles;

● Bilinear or trilinear filtering smooths
the textures, but results in blurry,
washed-out images. 

No matter what filter you use,
there’s no way to recover the information
lost in down-sampling. For high-quality
graphics, you should use textures at high
resolution and avoid stretching them.
There are a few ways to achieve this. 

One solution would be to add more
frame-buffer memory. Unfortunately,
this increases the price of the system
(since SGRAM and RAMBUS memory
is more expensive than system memory),
and frame-buffer memory can only be
used for 3D graphics. So this is not a
great solution for most systems. 

Another solution is to use the
frame-buffer memory more efficiently by
compressing textures. Many 3D acceler-
ator manufacturers are adding propri-
etary schemes for compressing textures.
The Microsoft group working on the
Talisman initiative has proposed Texture
and Rendering Engine Compression
(TREC), a variant of JPEG, as a com-
pression standard for texture compres-
sion. Unfortunately, TREC has all the
disadvantages of JPEG: ringing, color
shifting, and blurring. TREC’s biggest
problems, however, are its high imple-
mentation costs and the complexity of its
decoder. While texture compression can
help, it only partially satisfies a system’s
appetite for texture memory. 

The ultimate solution is to store
textures directly in system memory. The
current generation of PCI buses don’t
have the necessary bandwidth to support
this scheme. The PCI bus runs at
33MHz and can transfer 32 bits of data
every clock. That puts its theoretical
peak bandwidth at 132MB per second.
When you factor in the overhead
incurred by bus arbitration, multiplexing
address and data, system memory arbi-
tration, and page breaks due to multiple
memory requesters, the bandwidth is
actually much worse — particularly for
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small data transfers. For example, if an
entire texture is copied from system
memory to the frame buffer in a long
sequential burst, the transfer rate will be
relatively high, since the transaction
costs are amortized over many bytes. On
the other hand, if the accelerator reads a
texel here and a texel there, the band-
width from the bus and system memory
can be abysmal — way too low to gener-
ate pixels at an acceptable speed. Also,
latency (the time between the read
request and when data actually arrives at
the graphics card) can be very large.
Unless there’s substantial buffering in
the graphics chip to compensate for this,
the graphics engine will stall. 

Intel’s solution is to improve bus
bandwidth with the introduction of the
133MHz AGP bus. This transfers 32
bits of data per cycle, but at quadruple
the clock rate of PCI, the bus can
potentially move up to 532MB per sec-
ond. Whether this performance will
actually be observed in practice in the
first generation of AGP chipsets
remains to be seen. The system memory
interface will need to see an equally
large bandwidth gain for all the poten-
tial bandwidth to be available. While we
should expect to see a much faster path
between the accelerator and system
memory, its unlikely to be quadrupled
initially. Most likely, it will be just dou-
bled at first, but it’s definitely a step in
the right direction.

Besides the higher clock rate, AGP
includes a couple of other improvements
over PCI. Address and data lines aren’t
multiplexed, thanks to the introduction of
“side bands.” This means a new address
can be sent out at the same time data is
coming in (or going out). AGP chipsets
will also incorporate the Graphics
Address Relocation Table (GART), so
that the graphics controller can treat the
part of system memory set aside for tex-
tures as a linear buffer (even though that
memory is scattered into different physi-
cal pages). The operating system (Direct-
Draw in Windows 95) will load and
maintain this address translation table in
the chipset. Microsoft plans to support
GART in version 5 of its DirectX APIs
(slated for release this summer). 

AGP chipsets will still include PCI
functionality, since this is required for all
other cards in the system. Only the
graphics card can initiate AGP bus
transactions — not the CPU or any
other adapter in the system. So, unless
the system has both a chipset and a
graphics adapter that support AGP,
there’s really no way to use it. Still, hav-
ing a graphics adapter that uses AGP
also frees up PCI bandwidth for other
peripherals, such as the sound card,
modem, or network adapter.

AGP has two proposed usage
modes: DMA mode and execute mode.
In DMA mode, textures are downloaded
in big sequential bursts to the frame
buffer, as needed, from system memory;
the graphics accelerator still reads texels
from the frame buffer. In execute mode,
texels are read directly from the system
memory into the accelerator chip with-
out ever passing through the frame-
buffer memory. This implies that data is
transferred in much smaller quantities
over the bus. Both usage modes let you
cache some amount of the texture on the
graphics chip, although DMA mode
essentially treats the frame buffer as a
secondary cache for texture data. 

Which mode is better, DMA or
execute? As mentioned before, the
amount of data transferred makes a
tremendous difference in the actual bus
and system memory bandwidth
observed. For that reason alone, DMA
mode makes more sense in the short
term. Once the overall path between
system memory and the graphics con-
troller is fully optimized by AGP
chipset manufacturers, execute mode
will make sense. Execute mode makes it
practical to use a large amount of tex-
tures per frame. Above a certain thresh-
old of textures, the performance of
DMA mode will seriously degrade,
because the texture cache (in the frame
buffer) will be trashed every frame. At
this point, the cost of managing the
cache outweighs the benefits of having
it, and execute mode becomes the way
to go. But for execute mode to work
well, the whole system has to be up to
the job, and that probably won’t happen
until mid-1998.

For DirectX-based games, the
introduction of AGP should be trans-
parent. Still, to take full advantage of
the new technology, there are some
things game developers should do now.
First, as AGP-equipped systems become
more prevalent over the next year, your
games should use high-resolution tex-
tures (and lots of them). If you’re
deploying to systems not equipped with
AGP, you can still resort to down-sam-
pling textures. Second, the additional
frame-buffer memory freed up by stor-
ing textures in system memory makes
triple buffering practical. Triple buffer-
ing solves a problem that occurs at high
frame rates (rates approaching the
refresh rate), namely the cost of having
the graphics engine synchronize with
the screen refresh.

While AGP is intended primarily to
boost the number of textures that games
can use while maintaining high perfor-
mance, it helps other applications as well.
Software MPEG-2 playback from DVD
or video capture will also benefit from the
higher bandwidth that AGP provides
between system and video memory.

With the advent of MMX and
AGP, we’re seeing major advancements
in the basic computing platform. As
game developers, we should be ready to
exploit these advances. In this highly
competitive industry, the game develop-
ers that provide the next level of graphics
and video in their games will reap the
rewards.  ■

John Brothers is the director of archi-
tecture at S3 Inc., where he worked on the
Virge accelerator chip. He can be reached at
gdmag@mfi.com.
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Intel’s MMX
http://developer.intel.com/drg/mmx
AGP
http://www.agpforum.org 
The Microsoft support plan
http://www.microsoft.com/hwdev

/devdes/msagp.htm 
TREC
http://microsoft.com/hwdev

/devdes/trec.htm
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I
n the last issue of Game Developer,
I discussed some of the basics of
3D hardware acceleration and
promised a performance bench-
mark that would scrutinize some
of today’s popular accelerators. To
do this, I defined some standard-
ized tests to measure performance

and enlisted the help of Andy Bigos to
write a rasterization performance bench-
mark called D3DBench. 

I must stress that the performance
comparisons within this article take nei-
ther price nor availability into account
— I’m targeting game developers who
want to know what kind of performance
a given accelerator can offer.

D3DBench
D3DBench uses Microsoft’s Direct3D
Immediate Mode rendering API for
abstracting hardware access and
Microsoft’s Foundation Classes (MFC)
for Windows-specific issues. Direct3D
was selected because it is heavily sup-
ported by hardware vendors and is
specifically targeted towards game devel-
opers. However, Direct3D isn’t an ideal
interface for all hardware, so using a
vendor’s proprietary API may be a better
way of achieving maximum perfor-
mance. 

I don’t have the space to describe
D3DBench’s inner workings, but the
help files distributed with D3DBench
contain additional information on its
features and implementation. Although
D3DBench is capable of controlling
many types of display options, only a
specific set of feature combinations was
tested for this article. 

D3DBench cares only about raw
rasterization speed. While this isn’t a
perfect benchmark, it does provide a
basis for comparing hardware rendering
performance. It’s important to realize
that D3DBench doesn’t attempt to take
into account issues that will affect overall
game speed, including overlap between
CPU and hardware, CPU loads, texture
download performance, and texture
memory size constraints.

This is very important — you can-
not take the numbers derived from
D3DBench and correlate them propor-
tionally to frame rate. Besides rasteriza-
tion, a game’s frame rate is controlled by
a number of factors, including geometric
complexity, sound, artificial intelligence,
collision detection and response, physics,
and input management. Our results
don’t necessarily indicate how much
faster a game will run on Hardware A
than on Hardware B. With that said, I
encourage you to include a demo loop
within your game that can be used as
your own benchmark, since the only
valid measurement of true game perfor-
mance uses the game itself. 

Flaky Drivers and
Nonexistent Specs
During the course of developing this
benchmark, the issue of flaky drivers
reared its head more than once — some
drivers reported erroneous capability
information or gave weird or incorrect
output. Unfortunately, I don’t have the
space to list each driver’s bugs, especially
since I’m assuming that most of these
bugs will be ironed out by the time this
article is published.

The primary problem we encoun-
tered while developing D3DBench is
Direct3D’s lack of a reference imple-
mentation or specification. Direct3D
endorses the concept of capability bits,
or the ability for a particular driver to
tell an application exactly what 3D
acceleration capabilities it supports. It is
the application's responsibility to com-
pensate for missing capabilities, a bur-
densome and error-prone requirement
to say the least. The very nature of capa-
bility bits means that an application can
be bug free when written for a specific
piece of hardware, yet breaks down the
moment a different piece of hardware is
inserted. This is where APIs such as
Silicon Graphics’ OpenGL really show
an advantage — OpenGL requires that
all functions be available under any
implementation, so one OpenGL pro-
gram should work fine with any
OpenGL implementation or driver.
Direct3D’s paradigm of capability
determination is completely counter to
this and, as we learned, very buggy and
error prone. Further complicating the
implementation of Direct3D is the fact
that different hardware drivers interpret
the capability bit fields differently! The
point is that Direct3D programming
isn’t as easy as it should be. I’m taking
this time to warn those of you delving
into Direct3D programming to be
patient, careful, and cynical.

The Players
Every 3D graphics accelerator manu-
facturer with an announced product
that I was aware of was contacted, pro-
vided they had working silicon, up-to-

3D Hardware
Acceleration Demystified,
Part 2: The Benchmarks
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date Direct3D drivers, and products
aimed at the consumer market (no
$5,000 CAD boards need apply).
Those that responded with loaner
boards and working drivers were
3Dlabs, ATI Technologies, Cirrus
Logic, Diamond Multimedia, Inter-
graph, Matrox, and Number Nine. All
manufacturers were allowed to review
the test results and comment privately
before the article was submitted for
final publication. For those of you who
wish to find out more about specific
products and developer programs,
manufacturer’s URLs are located at the
end of this article.

Microsoft’s software-only Direct3D
RGB emulation driver was used as a ref-
erence benchmark. While  the
Microsoft Direct3D Ramp emulation
driver and/or an 8-bit display mode
would have exhibited better perfor-
mance, they weren’t included in the tests
because of their poorer image quality
(hence, they would not exactly have rep-
resented an even or fair comparison).
Table 1 lists the complete set of boards
tested for this article.

I really wanted to test Intel’s new
MMX processor with Microsoft’s
MMX Direct3D driver; unfortunately, I
didn’t manage to gain access to such a
machine in time for this article.

The Field
All tests had the following in common:
640×480 full-screen resolution, 15/16-
bpp screen depth, 16-bit Z-buffering,
dithering, and double buffering. The
consensus is that this is the “standard
Direct3D game mode” configuration. In
all likelihood, support for lower resolu-
tions, such as 400×300 and 512×384,
will still be common because of the
lower fill rate requirements. Still,
640×480 seems to be the ideal target
resolution for games. All texture-map-
ping tests were perspective corrected,
had a texel-to-pixel ratio of 1:4 (each
texel maps to 4 pixels), and all texture
maps were RGB and 64×64 (note that
some accelerators will likely perform
better with paletted textures, but this
was beyond the scope of the bench-
mark). MIP mapping wasn’t used,
although it is a feature that should be

See what happens

when leading 

3D accelerator chips

tackle a Direct3D-based

benchmark

that measures 

hardware-rendering

performance.

By Brian Hook
with Andy Bigos
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Board Chipset
3Dlabs PERMEDIA/Delta (reference board) 3Dlabs PERMEDIA/Delta
ATI Technologies XPression+ ATI RAGE II
Cirrus Logic Laguna (reference board) Cirrus Logic Laguna
Diamond Monster3D 3Dfx Interactive Voodoo Graphics
Diamond Stealth3D S3 Virge
Intergraph Reactor Rendition Verite
Matrox Mystique Matrox MGA-1064SG
Microsoft D3D RGB Software Driver (software-only)
Number Nine 332 S3 Virge/VX

Table 1.  3D Accelerator Boards and Their Chipsets



measured in future benchmarks. Trian-
gles are rotated arbitrarily so that tex-
tures are stepped through at different
orientations.

All tests were run on a PC with an
Intel motherboard, a Pentium 166MHz
CPU, the Triton Chipset, 64MB RAM,
and Windows 95 with ServicePak 1
installed. The initial release of DirectX
3.0 was used, using the nondebugging
libraries. The test itself was compiled
using Microsoft Visual C++ 4.2 with
Release Build. All tests were executed
with no buffer swapping so as to remove
the effects of vertical retrace synchroniza-
tion (a final buffer swap is executed after
the timer is stopped and the hardware is
idle so that output can be verified visual-
ly). When possible, the display was set to
60Hz refresh for all adapters. Triangle
sizes tested were 3, 10, 25, 50, 100, 250,
500, 1000, 2500, 5000, and 10000 pixels.

The tests we used represent com-
mon and important feature sets for 3D
games, three of which are shown in
Table 2. I had to choose a few reason-
able tests from the 50 or 60 I could
devise (the original test suite had several
hundred tests). I’m fairly certain that the
nine tests I ran gauge features that game
developers are currently exploiting. In
these tests, I stressed the importance of
Z-buffering, because this feature is now
supported by almost every hardware
accelerator and is an elegant way to solve
hidden surface removal problems. How-
ever, since D3DBench supports many
more options, those of you interested in
doing your own benchmarking should
definitely download and play with it. 

The Tests
Each specific test addresses a particular
form of rendering algorithm. The fol-
lowing is a short description of the tests,
the results of which are on the following
pages:

● General Rendering Ability: This test is
indicative of the most general rendering
case: Z-buffered, texture-mapped, and
smooth RGB-lit triangles, without bilin-
ear blending enabled.
● Rendering BSP trees: This test repre-
sents the rendering mode used when
drawing walls, ceilings, and floors using
a BSP (Binary Space Partition) tree.
When rendering BSP trees, sorting
order is implicit; you don’t need to use
Z-buffering to handle occlusion of static
objects represented by the BSP tree.
Instead, you need Z-buffering to cor-
rectly render dynamic objects (such as
objects that are not part of the BSP).

When rendering back to front, you
can set the Z comparison function to
ALWAYS, since you know that anything
rendered will be closer to the viewer than
anything previously drawn. Through this
setting, the accelerator no longer needs
to read a value from the Z-buffer, easing
memory bandwidth strain.

It is assumed that something such
as id Software’s surface caching scheme
(see Michael Abrash’s “QUAKE's Light-
ing Model: Surface Caching," Dr. Dobb’s
Sourcebook, Nov./Dec. 1996, pp. 43-47)
is used when rendering BSP walls; thus,
the texture is unlit and bilinear filtered.
Lack of a texture-copy mode precludes
participation in this test. However, since
a texture-copy mode can easily be emu-
lated with flat-modulated texturing
using a white light source, lack of a tex-
ture-copy mode doesn’t necessarily imply
a true lack of functionality.
● The Stress Test: Stress tests the worst-
case scenario for an accelerator: huge
amounts of memory reads and writes are
performed, and a large amount of data is
transferred to the accelerator. This ren-
dering mode isn’t that far-fetched, either
— transparent, texture-mapped objects
aren’t necessarily rare, and alpha blending
has many uses other than transparency,

including multipass lighting effects. If an
accelerator is reasonably fast with the
stress test, it is highly doubtful that it is
slower with any of the other modes.
● Other Tests: There isn’t enough space
in this article to present the data for all of
the benchmark tests that we ran. As a
result, the complete benchmark data is
available on the Game Developer web site
(http://www.gdmag.com). Data from the
following tests appears on the web site: a
smooth-shading test, a BSP front-to-
back test, a “flight-sim” (non-RGB col-
ored lighting and no Z-buffering) test,
and a test that measures rendering per-
formance of meshed groups of triangles.

The Score
The accompanying graphs illustrate the
relative performance of the accelerators
with the different modes mentioned ear-
lier. Drivers or accelerators that didn’t
support a particular benchmark configu-
ration are not listed in the relevant
graph. Whenever possible, the most
recent drivers were used — whatever the
company provided, unless more up-to-
date drivers were available on their web
or ftp site.

There are two sets of graphs: the
triangle-throughput graphs and the fill-
rate graphs. Triangle throughput mea-
sures the number of triangles per sec-
ond that a hardware accelerator can
process. Fill rate measures the number
of pixels per second that a hardware
accelerator can render.
● 3Dlabs Reference Board (3Dlabs PER-
MEDIA/Delta): This board turned in
some excellent triangle throughput num-
bers, typically second behind the Dia-
mond Monster3D for smaller triangles
(less than 250 pixels), and supported all
the modes we requested. The drivers
were robust and fast and definitely
showed that meshing is a big win in per-
formance on 3Dlabs’ hardware. Howev-
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Test Name Shading Texture Mode Z-test Z-clear Blend Filter Mesh
General Rendering RGB modulate LEQUAL far no PS no
BSP Tree none copy ALWAYS far no B no
Stress RGB modulate LEQUAL far yes B no

Table 2.  Feature Sets for 3D Games Tested by D3DBench.



er, bilinear-filtering performance was
extremely lackluster, probably due to the
extra memory fetches required for proper
bilinear filtering. Depending on the par-
ticular test, there seemed to be a
crossover around the 100- to 250-pixel
triangle mark where fill rate began to
limit triangle throughput. The 3Dlabs
PERMEDIA/Delta board has the
notable distinction of being one of only
two boards (along with the Intergraph
Reactor) to execute all tests successfully.
● ATI 3DXpression+: The ATI Tech-
nologies 3DXpression+ was a competent
performer, with average or above average
fill rates across the board. Lack of a tex-
ture-copy mode precluded generating
BSP test scores. Note that lack of a copy
mode isn’t a killer, since you can use
“modulate” with a white light to achieve
the same effect. The ATI also lacked a
mono-lighting mode, precluding its
inclusion in the “flight-sim” rendering
tests. Triangle throughput was fairly low,
but this is a common attribute of lower-
cost 3D accelerators, where it is easy to
offload a lot of setup computation onto
the host and leave the rendering to the
hardware. Still, the 3DXpression+ will
probably be a popular board because of
its wide range of features and the fact
that ATI is traditionally a high-volume
chip vendor. 
● Cirrus Logic Reference Board (Cirrus
Logic Laguna): The early beta drivers for
this board weren’t very stable. I had to
hack D3DBench a bit to get it to work,
but once that was done the tests looked
correct. The Laguna lacks true alpha
blending, a texture-copy mode, and

mono lighting, preventing its participa-
tion in the stress, BSP, and “flight-sim”
rendering tests. Overall, the board post-
ed average scores, sometimes a little
faster and sometimes a little slower than
the rest of the pack, with a tendency
towards lower triangle throughput.
● Diamond Monster3D (3Dfx Interac-
tive Voodoo): The Monster3D is king of
the hill in pure rendering performance,
and it possesses a rich feature set to boot.
Unfortunately, it lacks VGA and Win-
dows acceleration, meaning that its pen-
etration into the consumer market will
be limited; I expect this board will only
find its way into the hands of hardcore
game players. The only feature missing
from the Monster3D is mono lighting,
so it did not participate in the “flight-
sim” rendering test.

Fill rate was pretty much even on
every test — turning on features such as
Z-buffering, bilinear filtering, or alpha
blending doesn’t seem to exact a fill-rate
penalty. Also, throughput peaks at 100-
pixel triangles — for some reason, the
Monster3D can process 100-pixel trian-
gles faster than it can process 10-pixel
triangles. This may be because of some
hardware anomaly (10-pixel triangles
come too quickly and stall the PCI bus)
or something as mundane as the fact that
larger triangles require smaller execute
buffers in D3DBench, and thus show
better caching effects.
● Diamond Stealth3D, Number Nine
772 (S3 Virge and S3 Virge/VX): No mat-
ter how hard I tried, I could not get the
S3 drivers to work in my system. More
time was spent trying to solve problems

with the S3-based boards than all the
others combined. The problem seemed
to vacillate between issues with my com-
puter system and problems working with
D3DBench, depending on the whims of
the Compatibility Gods. I’d like to men-
tion that both Nicholas Wilt of
Microsoft and Phil Parker of Number
Nine made valiant attempts at trying to
get these boards working in my system.
●  Intergraph Reactor  (Rendition
Verite) :  The Intergraph Reactor
showed average or slightly below aver-
age raw performance, at least in terms
of fill rate. Triangle throughput was
very good, placing third behind the
3Dlabs Delta.

In all fairness, I’d like to note that
games actually written for the Rendition
Verite (the chipset used in the Reactor)
have demonstrated very good perfor-
mance, probably the result of overlap
more than anything else. For this reason,
D3DBench is not a good measure of
performance for architectures that
depend on overlap to realize their opti-
mal performance figures.
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Figure 2.  BSP Back-to-Front Throughput Results
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Figure 1.  BSP Back-to-Front Fill Rate Results



● Matrox Mystique (MGA 1064-SG):
The Matrox board’s lack of bilinear fil-
tering really hurt its usefulness with
D3DBench — the test suite runs on the
assumption that users will be demanding
bilinear filtering from future games, and
with this in mind, the Matrox could not
execute the general rendering, “flight-
sim” rendering, BSP, or stress tests. On
the tests that the Matrox could com-
plete, however, its performance was
respectable. As with the ATI board, tri-
angle throughput was fairly low, typical
of less-expensive 3D accelerators that
have expensive setup overhead.
● Microsoft Direct3D RGB Emulation
Driver: If you’re writing a game with
Direct3D, don’t even think about sup-
porting software-only rendering, at least
not with the RGB Emulation driver pro-
vided by Microsoft. This driver pretty
much flatlined near the bottom of the
charts in all modes (at least the ones it
supported), and established the low end
of the performance spectrum, as is to be

expected for a software-only renderer.
Unfortunately, if a game is written with
hardware acceleration in mind, it may not
be usable at all with Microsoft’s RGB
Emulation driver. In Microsoft’s defense,
they have been concentrating on optimiz-
ing the Ramp Emulation driver and their
MMX driver. The Microsoft RGB soft-
ware driver doesn’t support Z-functions
other than “less or equal,” so the BSP
back-to-front test couldn’t be performed.
Lack of alpha blending precluded gather-
ing numbers for the stress test.

The Effect of the Processor
An important measure of a hardware
accelerator’s performance is how much
of a load it exacts on the host CPU. An
accelerator that requires a lot of CPU
time may actually be slower in a game
than one with low load characteristics,
even if it has a faster fill rate. The
amount of CPU load an accelerator con-
sumes consists of all the CPU activities
required to get data to the accelerator.

This load generally falls into two cate-
gories: triangle setup and flow control.

Triangle setup consists of all the
work done to compute the triangle
parameters that are relevant to the
accelerator. This may be as simple as
gradient computations, or as complex as
splitting up big triangles into smaller
triangles that the hardware can handle.
Triangle setup requires CPU time to
calculate parameters, and thus influ-
ences load significantly.

Flow control is the amount of
handshaking that the CPU has to do
with the accelerator to send the accelera-
tor the triangle parameter data (and
other information) computed during tri-
angle setup. Bad flow control may
require the CPU to poll the accelerator
before every hardware register write for
busy status, or poll the hardware before
writing out a new triangle. If your code
is subjected to this kind of waiting, you
better hope the hardware can render tri-
angles significantly faster than your soft-
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Figure 3.  General Rendering Fill Rate Results
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Figure 4.  General Rendering Throughput Results
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Figure 5.  Stress Test Fill Rate Results
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Figure 4.  Stress Test Throughput Results
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ware can, or it may be just as fast (or
faster) to render triangles yourself.

Hardware with good flow-control
characteristics does not subject the CPU
to busy waiting, either by having very
deep FIFO write buffers or by using PCI
bus mastering to asynchronously fetch
triangle data from the host.

When a hardware accelerator lets
the CPU do nonrendering tasks in paral-
lel with the rendering, it is called “execu-
tion overlap.” The less CPU load you
have, the more overlap is achievable. In
terms of overlap, the ideal accelerator
performs triangle setup and has good
flow control characteristics. In this situa-
tion, the game only has to send vertex
data to the accelerator.

Overlap can become a huge factor
in game performance, especially if your
game is consuming a lot of time per-
forming nonrasterization activities. This
is another situation in which rasteriza-
tion performance doesn’t necessarily
equate to overall game performance —
you must measure the performance of a

specific game on a specific accelerator to
get a valid idea of performance differ-
ences between accelerators.

D3DBench does not attempt to
measure overlap — as a matter of fact,
the benchmark discourages it by waiting
for hardware rendering to complete
before stopping the timer.  ■

Brian Hook is a freelance 3D graphics
software and hardware consultant based out
of Sunnyvale, Calif. He can be reached at
bwh@wksoftware.com, or http://www.
wksoftware.com.

Andy Bigos is a software engineer with
3Dlabs, based out of the United Kingdom.
He can be reached at andyb@3dlabs.com.
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I
t came to you like a bolt out of
the blue: the perfect multiplayer
game, a game that will transform
the very way the world looks at
entertainment. You assembled a
world-class group of artists,
musicians, and programmers, and
you played the venture capitalists

off against each other until they gave
you all the money you could conceiv-
ably use plus an obscene signing bonus
in exchange for a ludicrously small
block of nonvoting stock. You’ve flown
the whole staff to Snowbird, Utah, for
five days of team-building and relax-
ation before development begins. One
morning, before the lifts open, you
gather the group together to explain
your vision. As the avalanche
cannons echo across the val-
ley, saluting the night’s fall of
another six inches of cham-
pagne powder, one of your
junior programmers raises his
hand. “I understand what we
want the game to do, but I’ve
never done any network
programming. What is it,
exactly, that we’re going to
have to build ourselves, and
what network stuff is done for
us? Where can we expect
problems?”

An uncomfortable silence
is finally broken by the distant
sound of the lift engines start-
ing up. The rest of the staff
involuntarily grimaces, know-
ing their chance to be the first
on the slopes has been shot.
But you, ever prepared, smile
and say, “Read this article.”

The team bursts into applause. You’ve
done it again, you wacky bastard!

Components of a
Multiplayer Gaming API
Programmers don’t like to admit igno-
rance, but let’s face it, the majority of
game developers have not had any rea-
son to work with networks. Even those
programmers who know every 80x86
opcode backwards and the quirks of
every videoboard ever made probably
have never used the network for more
than file transfer and e-mail. The net-
work really only became a ubiquitous
presence in the personal computer world
in the past five or six years, and as was
typical of the world before Windows

became such a dominant force, network
programming typically involved calling a
vendor’s proprietary function library. As
recently as 1994, Ralf Browne and Jim
Kyle’s important reference work, Net-
work Interrupts (Addison-Wesley, 1994),
talked of “three dozen major application
programming interfaces” and detailed
over 1,400 interrupts, many of which
were previously undocumented.

Networking services are typically
described with the ISO Open System
Interconnection Reference Model
(Figure 1). At every level, corresponding
services have an API for talking to each
other, even though that API will be built
on lower-level services. The physical
layer represents the hardware level,

The Game 
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Figure 1.  The ISO Open System Interconnection Reference Model
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where the raw bits move from device to
device. The data-link layer packages
those bits inside frames and may be
responsible for retransmitting frames
that have become corrupted. The net-
work layer’s primary responsibility is to
provide a uniform addressing system, so
that large networks of perhaps different
data-link types can be built. The trans-
port layer is the first one that “knows”
about a remote peer and has a great deal
of important responsibilities — it has to
be able to maintain multiple open con-
nections and route data to the correct
session layer, which is the layer respon-
sible for maintaining the logical connec-
tion between applications. The presen-
tation layer deals with logical data types,
and the application layer represents the
highest-level, the application (in our
case, the game itself).

So, when people talk about “gam-
ing network APIs,” they’re talking
about an incredibly large amount of ter-
ritory. When you start following the
multiplayer gaming industry, you can
fall into the trap of thinking that it’s a
very immature market with no clear
leaders and a million pretenders to the
throne. Over time, however, you’ll see
that each of these layers only has one or
two or three major players, and that in
spite of a lot of churning and confusion,
the potential for a rapid crystallization
of services definitely exists. 

Session Layer:
DirectPlay vs. Winsock
Most programmers new to networking
think in terms of sending and receiving
messages between one client and anoth-
er. They don’t really think about the

future beyond a “send” function and a
receiving strategy based on either
polling a receive queue or callbacks.
This thinking lands them smack dab in
the middle of the session layer. Indeed,
you’ll find just such functions in the two
most likely candidates for your session
layer’s API — sockets and DirectPlay.

Sockets started out as the interface
to TCP/IP of Berkeley UNIX. Since
BSD UNIX was the basis for so many
commercial UNIX flavors, and since
the Internet was, until recently, pretty
much a UNIX-only ballgame, sockets is
a fairly straightforward — and by far
the most well-known — network pro-
gramming API. There are dozens of
books about sockets (and the Windows-
specific implementation found in
WINSOCK.DLL) and a ton of free
sockets source code. Implementing
sockets is an easy way to start learning
about network programming. Perhaps
the only way it could be any easier is to
use Java’s java.net.* classes, which
encapsulate sockets in a straightforward
set of objects. 

It’s important to remember that
since sockets is tightly tied with
TCP/IP (and UDP/IP, which is a con-
nectionless, datagram-based transport
layer that might be beneficial in certain
gaming scenarios), your hands are tied
as far as optimizing the lower layers of
the reference model is concerned — if
the performance isn’t there, you’re not
going to be able to do a lot about it.

On the other hand, there ’s
DirectPlay. DirectPlay is a session
layer developed as part of Microsoft’s
DirectX strategy. Like sockets, Direct-
Play is a pretty straightforward API,

Confused about the

differences between

game networks?

Wondering where the

DirectPlay and

sockets layers fit into

the mix? Read on.

By Larry O’Brien
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with just 32 functions that are mostly
groups of “get capabilitities” and “get-
set data” functions.  Additionally,
DirectPlay 2.0 provides nine Direct-
PlayLobby functions for connecting a
matchmaking service to DirectPlay
games. The big advantage that Direct-
Play has over sockets is that it is pur-
posefully not tied to a transport layer.
In the latest release of DirectPlay,
Microsoft provides four service capabil-
ities: direct modem-to-modem, serial
connection, TCP/IP, and IPX. 

DirectPlay’s multiservice capabili-
ties give you some flexibility down the
road. If you discover that your game’s
performance doesn’t cut it using a
TCP/IP connection, you should still be
able to offer LAN play or direct-dial
play without rewriting your source code.
Conversely, if you think the Internet
can’t possibly provide the necessary per-
formance for your DirectPlay game, but
then along comes advanced lower-layer
services (which we’ll talk about in a
moment), you won’t have to change your
source code to gain access to the World
Wide Market.

The great disadvantage of Direct-
Play is that there are still very few
resources for sample code and discussion
(but then again, that’s why we have
Game Developer, isn’t it?). The best dis-
cussion of DirectPlay in a book that I’ve
seen is in David Allen’s Visual Basic 4
Network Gaming Adventure Set (Coriolis
Group, 1995), which contains virtually a
book-within-a-book on DirectPlay by
Adam Weissman. Also, the more recent
Spells of Fury, by Michael Norton (Waite
Group Press, 1996) has about forty
pages on DirectPlay, including some
very useful source code annotation. 

Another disadvantage of DirectX,
in general, is the fear that it represents
some kind of power play on Microsoft’s
part. And it is, to some extent, because
Microsoft certainly knows that selling
developers is the key to selling operating
systems or, in the new Internet world, to
keeping developers reliant on Microsoft
operating-system services. All of
DirectX is based on COM interfaces,
and COM is the keystone of Microsoft’s
operating system structure. I think some
of the fear, too, arises from the cottage-

industry segment of the
game development industry,
which is already threatened
by rising production costs
and Hollywood’s increasing
attention to games.

Still ,  the more that
game development stan-
dardizes, the less that long
and hard experience with
graphics programming and
multimedia is necessary for
development — or so goes
the common perception.
Michael Abrash of id thinks
that the opposite is true,
that the cutting edge in
graphics programming is
pulling away from the main-
stream. This may prove true
of network programming as
well, since DirectPlay sim-
ply doesn’t provide a higher
level of functions to radically
ease the burden of network
game programming.

Presentation Layer:
RTime’s RTime
If you’re looking for a presentation-
layer lift, you’ll need to consider a
tool  such as RTime Inc. ’s  RTime
se rve r  and  SDK.  RTime ’ s  CEO,
Rolland Waters, designed the origi-
na l  w ide-a rea  ne twork  fo r  SIM-
NET, the U.S. Army’s cyber-train-
ing network, and so brings a heavy
dose of credibility to their solution.
Basically, RTime works like as a fast
client/server filtering and message
dispatcher.

An RTime server maintains global
positioning state for the game. When a
player connects to the game, they specify
a series of filters in the form of bounding
boxes (“Let me know about whispers
within five feet, let me know about
explosions within ten miles, let me know
about a jet’s position within ten miles, let
me know about any vehicles markings
within 1 mile, and so on.”). Then,
typically at the end of the screen drawing
loop, the client calls a single function,
rt_tick(), which shoots the client’s posi-
tion up to the server and receives a list of
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Figure 2.  The RTime “environment.”
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“real objects” that have made it through
the filters. RTime real objects have the
following traits:
• location
• velocity
• acceleration
• orientation 
• an orientation derivative
• an appearance (just an unsigned inte-

ger — presumably a selector for your
game to interpret)

• perhaps a parent and a list of children,
which are themselves real objects. 

Additionally, “event objects” rep-
resent transient things, such as explo-
sions and collisions. There are also text
and data objects for transferring addi-
tional data.

RTime filters also include a data
rate, which specifies how often you want
to receive updates on an object’s posi-
tion. So if a jet is still a hundred miles
away, you might need to know about it
for your radar display, but you don’t
necessarily have to receive updates of its
position every frame. If you design your
filters carefully enough and have some
kind of programmatic guard against
overwhelming “crowds” in a small phys-
ical area, you can use RTime to simulate
a contiguous environment without
imposing any kind of “room” or “loca-
tion” structure on your game. In Figure
2, for example, both Driver 1 and Driver
2 would receive data about Pilot 1’s
plane, but they wouldn’t receive data

about each other, since they’re “over the
horizon” from one another. Pilot 1
would receive data on both drivers. It’s
quite possible to imagine a game that
restricted access to vehicles based on
connection speed — perhaps those with
14.4KBps modems would be restricted
to a tank with a narrow gunslit and an
undetailed radar screen, while those
with ISDN lines could fly jets, and
those with T1s could handle the com-
mand-and-control functions and receive
“video feeds” from large groups of play-
ers. By setting different data rates and
filters, you can effectively adjust your
game’s granularities in space and time,
which is directly related to your band-
width requirements (see “Multiplayer
Math” in Game Developer ’s Special
Report on Online Game Development
[http://www.gdmag.com] for a further
discussion of bandwidth requirements). 

RTime is a client/server solution.
Instead of dealing with messages
(session-layer data), you deal with
objects (presentation-layer data). You
locally update your objects’ positions,
call rt_tick(), and voila, your list of
external objects has been magically
updated as well. The RTime server
exists on a dedicated piece of (presum-
ably quite speedy) hardware running
Solaris, SGI, or NT. The RTime server
is not an application server — if you
want to have server-side AI, persis-
tence, or other application logic, you’ll
have to hook that in on your own. Since
the hard stuff (the message filtering and
dispatch) happens at the server, RTime
can have an innovative pricing struc-
ture. It’s free to download the SDK and
develop a game; RTime charges based
on the number of simultaneous connec-
tions to RTime servers. The SDK also
includes a development server that sup-
ports up to 100 client connections and
runs on Solaris, SGI, or Win32, so you
don’t have to start paying RTime until
you’re in a broad beta test. 

RTime’s filtering capabilities mean
that you can have a game with thou-
sands of connected players, so long as
the data moving through any client’s fil-
ters can be handled by the lower-layer
infrastructure. 
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Table 1.  Representative DirectPlay Functions & Structures

HRESULT WINAPI DirectPlayConnect(
LPDIRECTPLAYLOBBY *lplpDPL,
LPDIRECTPLAY2 FAR *lplpDP,

HRESULT Send(DPID idFrom, DPID idTo, DWORD
dwFlags, LPVOID lpData, DWORD dwDataSize);

HRESULT Receive(LPDPID lpidFrom, LPDPID
lpidTo, DWORD dwFlags, LPVOID lpData,
LPDWORD lpdwDataSize);

HRESULT SetPlayerData(
DPID idPlayer,
LPVOID lpData, DWORD dwDataSize,
DWORD dwFlags);

Used to connect player to game
Returns a DirectPlayLobby interface
Returns a DirectPlay2 interface

idTo can be individual player or group ID
dwFlags can signal priority or guarantee
delivery

dwFlags can be used to filter for a specific
lpidFrom, or to peek into the stream (to get
lpidFrom, for instance) without removing
message from queue

New function probably intended for rapid
broadcasting of application-specific state
data (there’s a complimentary SetGroupData
function)

typedef struct {
DWORD    dwSize;
DWORD    dwFlags;

DWORD    dwMaxBufferSize;
DWORD    dwMaxQueueSize;
DWORD    dwMaxPlayers;
DWORD    dwHundredBaud;
DWORD    dwLatency;

DWORD    dwMaxLocalPlayers;
DWORD    dwHeaderLength;

DWORD    dwTimeout;
} DPCAPS, FAR *LPDPCAPS;

Size of this structure
Returns information on session host and
service provider

No longer used!

Server-provided latency estimate; May be
0, indicating “no guess”

Size of message header in bytes; Varies
according to service provider

As a session-level protocol, DirectPlay provides straightforward connection and mes-
saging services.



Low-Level Improvements
Improving the lot of game-playing at the
network layer and below requires trade-
offs. Obviously, you can get much higher
performance by requiring certain higher-
bandwidth capabilities of the physical
layer (create games that can be played
only over ISDN or direct network con-
nections); obviously, doing so requires
you abandon potential marketshare. Fig-
ure 1 also shows that at the network and
lower layers, there are “middlemen,” net-
work switches and so forth. By removing
middlemen, other major gains in net-
work gaming can be had.

The most dramatic way to remove
middlemen is by creating a dedicated
network to connect game players. This is
the strategy behind Interactive Visual
System’s DWANGO (Dial-up Wide
Area Network Game Operation), which
performs matchmaking on the Internet,
but then connects the players via direct
dial-in to servers located in metropolitan
areas. Obviously, this allows for dramatic
improvements in performance, and
DWANGO quickly gained a name for
itself as the premier host for DOOM

Deathmatches. The downside is that if a
player’s call to one of the dozen or so
DWANGO servers is long-distance,
even dime-a-minute rates can become
fairly substantial, especially if you’re
hoping to charge a subscription or pay-
for-play fee on top of the phone charges.
Still, DWANGO is the leader in low-
latency, dial-in gaming. DWANGO’s
chief competitor, Catapult, whose
Xband dial-up technology was a hit with
cartridge players, is in the process of
being acquired by Mpath, which wants
to have a dial-in, low-latency solution to
complement its other offering.

Game Networks — It’s the
Economy, Stupid!
Mpath’s other offering is the strategic
complement to their direct-dial services:
a speedy, Internet-based gaming net-
work. Mpath and their arch-rivals, the
Total Entertainment Network (TEN),
are the high-profile trailblazers in this
arena. Both of these companies dedicate
physical-layer components to be the
“middlemen” of Internet-based games,
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Table 2.  Representative RTime API Functions & Structures

rt_error_state rt_init(

rt_machine_type local_machine_type,
int num_local_objects,

int num_remote_objects,
int num_string_bufs)

rt_error_state rt_new_object(

rt_object_class object_class,
rt_object_type object_type,
rt_oid *object_id)

rt_error_state rt_update_real_object(

rt_oid object_id
rt_xyz location
rt_acceleration acceleration
rt_orientation_type orient_type
rt_orientation orientation
rt_orientation orientation_derivative
rt_appearance appearance)

rt_error_statert_register_event_callback(void
(*fname)(rt_oid oid, rt_event_data
*event_datap))

rt_error rt_tick(void)

Typedef struct{

rt_object_class oclass;
rt_object_type otype;
float range;

rt_suppress_level level

}rt_filter_template

Main initialization function; RTime proper-
ly handles all local machine dependencies
INTEL, MAC, SGI
Maximum number of RTime objects that
will be created by this client

String buffers used for communication

Typical object creation function; RTime
takes care of storage of new instance of
provided class and type, returns pointer
in object_id

Rather than deal with send-receive mes-
saging, this is a typical update function;
changes specified here will be propagat-
ed to other players during subsequent
call to rt_tick(); notice the richness of
movement data passed

Register event-callback function; Future
releases may extend to allow callback
functions based on event class and type

Main synchronization call

Groups of these filters are sent to the
server via rt_real_object_filtering_tem-
plate(num_templates, template_array) func-
tion (not shown) 

In the future, this will be extended to sup-
port the topology of playing field (floors,
doors, and so on)
“Send All,” “Send Fast,” “Send Slow,”
“Send None,” and so on

As a presentation-level API, RTime is a little more difficult to learn, but is vastly more
powerful.



and they cooperate with large Internet
backbone companies (PSINet in the case
of Mpath, Concentric Network for
TEN). As a result, Mpath and TEN
promise session-layer latencies in the
region of 150-250 milliseconds (plus the
signal-cleaning 25-50 millisecond stall
on data going out through analog
modems), significantly slower than
direct dial-up, but better (and far more
reliable) than you would get with an
“unmanaged” Internet connection. 

Although these companies both
offer SDKs, as developers become more
sophisticated and experienced with
session- and presentation-layer offerings,
there’s really no strategic reason for these
SDKs to evolve. What Mpath and TEN
really bring to the table is exposure,
marketing, and fulfillment.

The big benefits of network gaming
are the marketing and delivery channels
and subscription revenue. One of the
greatest challenges of a multimedia
developer is reaching an audience, espe-
cially if their product is not a clone of
last year’s best-selling game. Full-page
ads in Computer Gaming World and Next
Generation are pretty expensive, and if
your game’s release date starts to slip,

your product can see red ink before it
ever ships. And don’t forget the Catch-22
of the retail channel: Retailers only stock
hits, but to be a hit, a product has to
have high retail sales. 

When you develop a network game,
by definition your market has download-
ing capability, which makes downloadable
teasers, demos, and shareware versions all
viable. What better place to advertise than
on the gaming network that will host
your product? And since TEN and
Mpath both provide commerce solutions,
you can sell your product through them as
well as collect subscription royalties
through the game networks. These fulfill-
ment services alone may be reason
enough to go with a gaming network, but
the lower-latency rates and, most impor-
tantly, reliability are the real keys.

Taking the Plunge
You get off the gondola at midmorning
and who do you see at the top of the
mountain but your junior programmer,
looking nervously down through his ski
tips at the double black-diamond run.
“Did the article sum things up for you?”
you ask, sliding up beside him and
adjusting your goggles.

“Sure,” he replies. “If we want to do
it all ourselves, we work with sockets or
DirectPlay. If we need latency under,
say, 250 milliseconds, but still want to
offer play over a public network, we
should use a gaming network. Much
under 150 milliseconds and we’re proba-
bly going to have to go with a dial-up
solution, like DWANGO or Cata-
pult/Mpath’s Xband. Between 150 and
250, we talk to TEN and Mpath. If we
don’t need low latency, but do need
something to help us with the revenue
and commerce side of things, we may
still want to talk to those guys; but we
might also talk directly with major
online service providers, such as America
Online. If the fairly thin APIs of sockets
and DirectPlay don’t give us the support
we need, we’ll want to consider using a
presentation-layer API, such as that
provided by RTime. It’s really quite
straightforward. By the way, I don’t ski.
Is that a problem?”

“No problem at all,” you say, pushing
off. “Just follow me. You’ll be fine.”  ■

Larry O’Brien left an extremely lucra-
tive career at Miller Freeman for a dubious
venture in online gaming. He can be
reached at lobrien@msn.com.
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C O M P A N I E S

TEN 

1988

Daniel Goldman, 
Jack Heistand

Aggregator and Service
Provider

Royalties: 20-40%

Strong out of the blocks
with many games.

Good scaling and API
set. High royalties: 

20-40%

Is the market ready?

Founded

Major 
Players

Type of
service
Revenue
Model

Strengths

Weaknesses

Mpath’s
Mplayer

1995

Brian Apgar, 
Brian Moriarty, 
Jeff Rothschild

Aggregator and Service
Provider

Split gross profits on
retail sales

Strong strategically —
business and partnering

strategies. Good
security.

Microsoft’s
DirectPlay

1978

Bill Gates, 
Alex St. John, 

John Hall
Session-layer COM

interfaces

Loss-leader —
Windows-based games

means Microsoft
Operating System sales

Free multinetwork API.
No monetary pressure on

company.

Ties game to Windows.

RTime

1993

Chip Overstreet,
Rolland Waters, 

John Allred
Presentation-layer real-

time API

Free SDK, servers
licensed on per-connect

basis

Powerful API that fits
naturally into games.
DoD spin-off means

you’ve already paid their
learning curve.

Newcomers to game
development community.



T
ell me if this scene sounds
familiar: In the early stages of
development, you run your
game, and you see that your
3D test cube is spinning
around the world’s axes
instead of its own local axes.
So you try changing the order

of a few lines of code and run it again.
Now it’s spinning about its local axes,
but it’s spinning in the wrong direc-
tion… or at least, you think it’s the
wrong direction. Are you using the
wrong sign on the angle of rotation?
Then you look closer and realize that
not only is the cube spinning the wrong
way, but you’re looking at all the back-
faces! So maybe there’s actually a sign
error in the rotation matrix. But wait —
maybe the backface-culling code just
has a greater-than sign where it should
have a less-than sign…. Did you check
that code?

Though none of us wants to admit
it, many of us have experienced this type
of confusion before. While projecting,

clipping, and rasterizing are all difficult,
there’s nothing quite as elusive as gain-
ing a firm understanding of 3D rota-
tions. We’ll try to dispel the confusion
by picking apart 3D-rotation matrices
and examining what’s really happening.
We’ll look at many different ways in
which rotation matrices can be concep-
tualized and see how each can be applied
to the practical problems involved in
every 3D pipeline.

Before we begin, let’s run through
the typical set of rotation operations a
3D pipeline might involve. We start
with a number of objects, each of which
can be independently rotated. As part of
the game’s state, we store (in one form
or another) the current rotation of each
of these objects. When it comes time to
render a scene, we must loop through
each object in turn and generate a rota-
tion matrix that puts the object at its
correct orientation relative to the camera
we’re using to view the scene. Typically,
this involves at least two different rota-
tion matrices: one that rotates the object

from its nonrotat-
ed state to its cur-
rent orientation
in the world, and
one that rotates it
from its current
orientation in the
world to its orien-
tation relative to
the camera.

Thus, as the
3D pipeline runs
its course, we con-
ceptually move
through three
different spaces:

object-space, where the points of an
object are aligned along the x, y, and z
axes with no rotation; world-space, where
the points of all objects and the orienta-
tions of all cameras are expressed relative
to some global reference frame; and cam-
era-space, where the points of all objects
are expressed relative to the camera view-
ing the scene. It is important to remem-
ber these spaces as we look more closely
at rotation matrices, because as you’ll see,
much of the confusion about 3D rota-
tions can be avoided if we pay attention
to the spaces we’re rotating to and from.
With that in mind, let’s get started.

The Columns
All of our objects, by definition, start in
object-space. They’ve had no rotation
applied; we’ve just loaded in their geom-
etry and taken it as-is. If we were to ren-
der them in this space, they’d all be
pointing in their original directions, all
the time. So, the first rotation matrix
we’re likely to need is that of the type
shown in Figure 1 — a matrix that
rotates an object to some other orienta-
tion in the world. This way, we can place
our objects at different orientations rela-
tive to the world axes — we can rotate
from object-space to world-space (which
I’ll call an object-to-world rotation).

When we apply such a rotation,
think of it as rotating the object’s axes
away from the world axes to some new
orientation. As you can see from Figure
1, it’s simple to conceptualize a rotation
as a set of rotated axes for an object. If
you see how the object is aligned along its
axes when it’s not rotated, you can easily
picture what the object would look like if
you knew the direction of its rotated axes

Inspecting the 3D
Pipeline, Part 2:
Manipulating 3D Matrices
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Figure 1.  Object-Space to World-Space Rotation.
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in world-space. Now, if we could figure
out how those axes relate to a rotation
matrix, we’d be all set; not only could we
decipher any rotation matrix by looking
at the direction of the axes, we could also
build arbitrarily complicated rotations, as
long as we knew what vectors we wanted
our objects to point along.

Fortunately, the gods of mathemat-
ics made this relation easy to find. It just
so happens that, for any given rotation
matrix, the vectors formed by its three
columns actually are the rotated axes for
the objects it transforms. If you think of
the 3×3 matrix as partitioned like this,

then the column vectors x, y, and z are
the new axes your object will point
along. It’s that simple!

Why does it work out this way?
Well, let’s take the most straightforward
approach. Consider the three vectors
that describe the axes of your object in
object-space. If we rotate each of these
vectors by the rotation matrix, we get
where they’d end up after the rotation,
right? Let’s see what happens when we
try this for the x axis of our object, 
|1 0 0|T (if you are unfamiliar with the
superscript T, take a quick look at the
sidebar, “Vectors and the Transpose
Operator,” before continuing).

As you can see, we end up with only the
first column of the matrix — it is the
new x axis, since no other column of the

matrix contributes. If you try y and z,
you’ll see they work out the same way.

Still not convinced? Try this: Begin
with the definition of one of the object's
points p in object-space. Its coordinates
are given as distances along the three
principle axes of the object. We might
say that, to find p, we start at the origin
of the object, move px units along its x
axis, py units along its y axis, and pz units
along its z axis.

Now apply the rotation.

Look at the right side of this equation
— it says, to find the rotated point p¢,
start at the origin, move px units along x,
py units along y, and pz units along z.
Sound familiar? It’s doing the same
thing we did when we originally defined
p, only instead of using the object’s local
axes, it’s using the axes defined by the
columns of the matrix. The equation
puts the point where it would be if the
object’s axes were not coincident with
the world axes, but were coincident with
the vectors x, y, and z — exactly what
we thought should happen.

The Rows
Looking at a matrix as a collection of
columns provided us with a good way to
understand object-to-world rotations.
However, a world-space–to–camera-
space (which I’ll call world-to-camera)
rotation is decidedly different.

Figure 2 shows this rotation matrix
in terms of axes. The camera’s axes are
described in world-space, and our
world-to-camera rotation matrix rotates
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Manipulating objects

in 3D space often

requires manipulating

3D rotation matrices.

Once you can

conceptualize these

matrices, working

with them becomes

much more intuitive.

By Casey Muratori
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the world so that the camera’s axes
become the new world axes. In essence,
we are making everything’s orientation
relative to the camera.

As with the previous section, we
want to find some way of relating the
axes of the camera to the elements of the
rotation matrix that we’d use to view
from that camera. As you might have
guessed from the subheading, the rela-
tion is just as simple as it was for the col-
umn picture — for a world-to-camera
rotation, the axes of the camera appear
as the rows of the matrix. Think of the
3×3 rotation matrix like this:

x, y, and z are the camera’s axes.
To illustrate the relation, we can

use similar techniques to those we used
for the column picture. If our rotation is
indeed the world-to-camera rotation, it
will rotate the camera’s axes to coincide
with the world axes. So, if we rotate the
camera’s axes by our rotation matrix, and
the world axes come out, our assumption
about the rows must be correct. Let’s try
that for the camera’s x axis x.

In the last issue, we looked at the
orthogonality of the principle axes and
made some observations about dot-prod-
ucts between them. Those observations
come into play here; we know y and z

are both orthogonal to x (by definition),
so their dot-product is 0, and any unit-
vector dotted with itself is 1. So, yTx and
zTx both become 0, and xTx becomes 1,
leaving us with |1 0 0|T, the world x axis
(if you’re unfamiliar with the vTv form of
the dot product, see the sidebar “Vectors
and the Transpose Operator”). If you try
the y and z axes, you’ll see that they work
in the same fashion.

As with the column picture, we can
verify our assertions in more than one
way. Take a point p, this time in world-
space. Apply the camera-space rotation.

The result is a single vector comprised of
dot-products. We know the dot product
maps one vector onto another; for a unit
vector u, and any other vector v, it
answers the question, “If u were an axis,
what would v’s coordinate be along that
axis?” In a similar light, the above multi-
plication answers the question, “If x, y,
and z were axes, what would p’s coordi-
nates be on those axes?” In this way, our
rotation results in a projection of p onto
the axes x, y, and z. We are left with
what the coordinates of p would be if the
rows of our transform matrix were the
new world axes — exactly what we
thought should happen.

The Transposed Matrix
We’ve come to an interesting place in
our understanding of rotation matrices:
we know how to look at them as

columns, we know
how to look at them
as rows, but we
haven’t really looked
at the two pictures
together. Surely,
since they are both
rotations, there must
be some link be-
tween them. Let’s
see if we can find it.

Take an object-
to-world rotation
matrix. This matrix
gives us the orienta-
tion of a particular

object in world-space. Now, suppose we
wanted to view the world from this
object, effectively making it into a cam-
era. What would we do?

Using the column picture, we know
that the columns of our object’s object-
to-world matrix are the axes of the
object. Using the row picture, we know
we can build a world-to-camera matrix if
we have the axes of the “camera,” which,
in this case, is our object. We can take
the columns out of the object’s current
matrix, plug them in as rows of a rota-
tion matrix, and poof! We’re left with the
world-to-camera rotation that views the
world from our object. In short, to turn
an object-to-world rotation into a world-
to-camera transform for the same object,
all we have to do is exchange the matrix’s
columns for its rows.

Similarly, if we had a camera’s
world-to-camera rotation, and we want-
ed to make that camera into an actual
object in the world, we could build the
camera’s object-to-world rotation in
exactly the same way. Follow the process
we just used: extract the camera’s axes
from its world-to-camera rotation
matrix, then plug them into the object-
to-camera matrix. All you end up doing
is exchanging the rows and the columns.

Exchanging a matrix’s rows with its
columns is called transposing the matrix.
But we can see an even more interesting
relationship between the rows and
columns once we consider one additional
fact about object-to-world rotations and
world-to-camera rotations: they are per-
fectly opposite operations.

The object-to-world rotation
rotates the objects axes away from the
origin to the current orientation of the
object. The world-to-camera rotation
rotates the object’s axes away from its
current orientation to the world axes.
They are opposite, or inverse, operations.
Chances are, you’ve heard that “the
inverse of a rotation matrix is its trans-
pose.” The reason is the coupling
between the rows and columns.

Matrix Concatenations
In the previous sections, we attacked
rotation matrices as static entities — we
took a given type of rotation and exam-
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Figure 2.  World-Space to Camera-Space Rotation.
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ined what the components of the rota-
tion matrix meant in a more tangible
way. Now we’re going to change gears
slightly and look at matrices in a more
dynamic way. Specifically, we’re going to
see what happens when different rota-
tion matrices are combined, or concate-
nated, to form new rotations.

We wouldn’t have much to talk
about if there was only one way to com-
bine any two rotations. But matrix multi-
plication is noncommutative — the order
in which the matrices are multiplied
affects the resulting matrix. So, to fully
understand the concatenation of rota-
tions, we need to get the order straight.

Take the following example:

Here we have four rotation matrices (K,
L, M, and N) multiplied together, trans-
forming a single point. In what order are
these rotations being applied? Is K hap-
pening first, or is N happening first?
Because matrix multiplication is associa-
tive, we can make the situation clearer by
associating the terms differently.

Now we can see what’s happening. N
occurs first, rotating the point p to a
new point. Then M rotates this new
point, then L, and finally K. So, return-
ing to the original question, when we
see a set of rotation matrices concate-
nated together, they will be applied
from right to left.

As a side-note, there are some
interesting tricks we can perform once
we understand the order of rotation con-
catenations. For example, suppose we
have a spaceship object that points along
its z axis in object-space, and we’re keep-
ing its current orientation as a rotation
matrix S. Now, if we want our spaceship
to do a roll, we have two options. We
can figure out what the spaceship’s z axis
is in world-space, build an arbitrary-axis
rotation matrix RA that rotates about
that axis, then preconcatenate it onto the
spaceship’s current matrix, yielding

However, we would waste a lot of
time and energy if we went that route.
Instead, we can build a primary z axis

rotation matrix RZ and postconcatenate it.

Since RZ is applied first, it will happen
before the spaceship is rotated to its cur-
rent orientation — so the rotation about
the primary z axis will occur when the
object’s z axis is still aligned with it.  In
essence, we are using the order of multi-
plication to go back in time to the
object’s original state (object-space),
apply a rotation, then apply all the other
rotations afterward.

Errata
My article in the previous issue of Game
Developer (“Inspecting the 3D Pipeline,
Part 1,” Dec 1996/Jan 1997) had a bug
in it. In the section on aspect ratio, I
erroneously claimed that the value cal-
culated for a should be used to scale the
y values, and thus correct for the aspect
ratio of the display. If you look back at

the equations in that article, you’ll see
that I led you astray. The value a is
actually the measure of the amount of
distortion that will occur because of the
aspect ratio. Therefore, to correct for
aspect ratio, you’d actually want to mul-
tiply the y values by the inverse of a. For
the record, here are the corrected pro-
jection equations:

My sincere apologizes to anyone
who was bitten by this.  ■

Casey Muratori is still too distraught
over the bug in his previous article to finish
writing his bio. Those who wish to offer
their sympathies should do so at
cmu@netcom.com.
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In 3D graphics, the word “vector” is often used without qualification. When dealing with
matrices or complicated equations, however, it is often necessary to understand that
there are two different ways a vector can be written: as a column or as a row. When a

vector is written as a single letter, it is assumed to be a column matrix, such as this:

Now, if we wish to refer to v as a row, we need to make that clear in the notation. We
need an operation that makes a column into a row. That operation is called, and it is rep-
resented by the transpose operator, a superscript T.

The transpose operator is not restricted to vectors — it is simply the general operation of
exchanging columns for rows, or vice versa. For example, a two-dimensional matrix also
has a transpose, given by the exchanging of its rows for its columns.

Another important aspect of the transpose operator is that it shows the equivalence of the
dot product and a matrix multiplication. With a matrix multiplication, you multiply the
rows of the first matrix by the columns of the second. The dot product can be expressed
as a matrix multiply by using the transpose operator.

If you’d like to read more about vector and matrix operations, a good place to start would
be an introductory linear algebra book, such as Introduction to Linear Algebra by Gilbert
Strang (Wellesley-Cambridge, 1993).
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S
oftimage — known to the
initiated by its UNIX com-
mand-line nickname “Soft”
— has long numbered
amongst the royalty of 3D
graphics tools. Its perfor-
mance in such high-profile
projects as Saturday morn-

ing’s computer animated Reboot, the
Hollywood special-effects blockbuster
Jurassic Park, and the coin-gobbling
arcade milestone VIRTUA FIGHTER — to
name just a few — have made this soft-
ware an object of desire for many com-
puter animators. Desirable as it may be,
its home on the SGI platform has made
Softimage an expensive choice for the

small game developer to consider as a
standard production tool. Happily, the
barrier to entry has been lowered by the
arrival in fall ‘96 of Softimage 3.51 for
Windows NT.

Microsoft — which purchased Sof-
timage in 1994 — saw to it that all the
features of Softimage for SGI were
brought to its own more accessible Win-
dows NT operating system. This means
you can now run Softimage on Pentium
Pro, Alpha, and MIPS RISC systems. It
remains a demanding application, how-
ever, and your Windows NT worksta-
tion will have to be stocked with at least
64MB RAM (you’ll want more), 200-
300MB swap space, and a “Softimage-

certified” OpenGL card (check with the
company for an up-to-date list of com-
patible cards). That’s not a cheap sys-
tem, but you can set up Softimage on a
Windows NT render farm for about the
same cost as a single seat on an SGI
workstation.

The base package, Softimage 3D,
provides a seemingly bottomless treasure
trove of top-shelf modeling, animation,
and rendering tools in exchange for a
goodly chunk of your own treasure:
$7,995 to be exact. Softimage Extreme,
at $13,995, includes all these baseline
features and adds a shader-based raytrace
renderer (dubbed “Mental Ray”), a meta-
ball modeler (“Meta-clay”), a standalone
particle generator (“Particle”), and a real-
time 3D scene viewer (“Softimage Live”).
Mental Ray is needed for distributed
rendering, with additional licenses for
render-only modules starting at $2,495.
Note that an additional license is neces-
sary even to make use of distributed ren-
dering with a multiprocessor computer.

In addition to bringing the high-
end Softimage toolset to the Windows
NT platform, Microsoft hopes to appeal
to game artists with a host of new fea-
tures tailored to our particular needs.
Softimage 3.51 boasts robust polygon
reduction tools, palette control, a pain-
less UV texture manipulation feature,
motion-capture support, and export for-
mats for Sega Saturn, Playstation,
Direct3D, and VRML. Accordingly, a
number of companies, such as Digital
Domain, Electronic Arts, and Psygnosis,
have joined Sega in adopting Softimage
as their 3D standard. So let’s take a clos-
er look at its features and see if you want
to get on that bandwagon.

Getting Soft

A R T I S T ’ S  V I E W

42 GAME DEVELOPER • MARCH 1997 http://www.gdmag.com

The Softimage interface showing depth-cue, shaded, ghost, and schematic windows. With
Matter module active, the menu cells to either side offer an array of tools for assigning and
manipulating material and texture assignments.



Windows Defenestrated
Though its somewhat windowfied inter-
face may appear friendlier than one
expects from software with a UNIX
pedigree, Softimage still presents a for-
midably steep learning curve. Witness
the manuals: over 20 pounds of them,
occupying roughly a linear foot of shelf
space. Given this abundance, it would be
unfair to slight Microsoft for not provid-
ing sufficient documentation; but under-
stand that this mass of paper is more a
testimony to the breadth and depth of
the Softimage toolset than to the thor-
oughness of the manuals themselves.

After working through two books
of tutorials, you’ve barely scratched the
surface of Softimage’s features, and the
encyclopedic reference volumes leave the
complex workings of many details largely
unilluminated. That’s par for the course
with a fully-featured professional tool:
Real mastery of the software can’t be
printed in a book; or even, apparently, in
20 pounds of books. You can spend an
awful lot of time tinkering with vaguely
described settings to get the results you
require. The upside is that, for once,
you’ll have more features than you know
what to do with. Fortunately, a helpful
user’s e-mail list is available for swapping
tips and commiserating. List members
have even made home-brewed tutorials
and a searchable archive available on the
World Wide Web.

Minor though it may be, the non-
standard interface is another hurdle
that Windows users must overcome.
Softimage runs just fine on Windows
NT, but has yet to adopt Windows
conventions, despite being a Microsoft
product. The directory structure is pure

UNIX, drop-down menus follow their
own logic, and even the mouse buttons
behave differently than expected when
used to highlight text entries. A com-
puter-literate user can adapt to these
differences in relatively short order, but
it remains somewhat awkward when
one is moving between Softimage and
other applications that do follow Win-
dows conventions. 

Despite its quirks, working with the
Softimage interface is relatively simple
and efficient once you get to know your
way around. View windows take up most
of the screen real-estate, flanked to the
left and right by vertical rows of “menu
cells” (tool buttons), and below by the
ubiquitous time slider and a handy status
bar that prompts you for the mouse but-
ton functions relating to the currently
selected tool. This layout remains con-
stant as you switch freely between five
different internal “modules”: Model,
Motion, Actor, Matter, and Tools. In
each module, most of the menu cells
change to provide an appropriate toolset
for that area of functionality. 

The buttons are called menu cells
because, when clicked, each opens a
drop-down menu listing possible appli-
cations of that tool. Many of those
choices lead to yet another drop-down
menu, and another, and another. If the
sheer volume of options isn’t enough to
confuse you, the fact that they appear to
be in completely random order will.
Here’s a free design tip for Microsoft
when they tackle the next revision:
alphabetize. Fortunately, oft-used func-
tions can be more quickly invoked by
employing a variety of shortcuts: most
notably, preset and customized “Supra

With Hollywood

special-effects

credits and SGI roots,

Softimage 3D comes

to Windows NT with a

host of welcome new

features for the game

developer.

David Sieks
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keys” on the keyboard. These shortcuts
help to maintain a productive workflow.

The view windows themselves pro-
vide some extremely useful features.
Geometry in each window can be shown
in a variety of display modes, including
the standard wireframe and shaded, plus
rotoscoping in wireframe or shaded
modes, depthcue (a wireframe display in
which more distant geometry is faded),
ghost (which shows the current frame
and bracketing keyframes for traditional
in-betweening), and a matte view. You
can also color-code wireframes, which
helps greatly in keeping track of things
in a busy scene. A handy schematic win-
dow can be opened in place of any of the
view windows, showing a hierarchical
tree for all objects in the scene. Also, in a
special “Fcurve” window, users can view
and edit function curves on which the
value of an animated parameter over
time is plotted graphically.

Other amenities include a save-
scene feature, which stores the current
version of the scene without overwriting
the previous version (up to a user-defined
number of iterations), and an option to
view thumbnails rather than filenames of
rendered images in a directory. Ultimate-

ly, the sheer number of features crammed
into Softimage, combined with the hap-
hazard placement of many controls,
makes the package something of a maze
to the uninitiated. Nonetheless, one
quickly discovers that almost any func-
tion is only a couple of mouse clicks
away, and the Supra keys make it easy to
get into a productive groove.

Super Model
Modeling tools in Softimage are numer-
ous and hard to fault. Modeling ele-
ments can be combined within a scene,
letting users mix polygons, patches, and
a variety of curves including Linear,
Bezier, Cardinal, B-spline, and NURBS.
I was somewhat surprised to find that
Softimage provides one of the easiest
and quickest means for switching
between manipulation of objects, points,
polygons, or object centers, which is
especially helpful when creating low-
count models for real-time applications.
As mentioned before, Softimage
includes excellent polygon reduction
tools for rule-based or optimization-
based simplification of geometry. Any
production environment will benefit
from having scene geometry optimized.
Still, the best way to create a low-count
model is to build it up from scratch,
rather than optimize a more detailed
model. The ease with which polygons
and points can be manipulated in Soft-
image makes this approach not only fea-
sible, but enjoyable.

Modeling of an object often begins
with basic building blocks called geo-
metrical primitives. Softimage lets you
choose between primitives derived from
polygons, spline patches, or NURBS.
Boolean operations can combine or sub-
tract objects from one another and can
be performed on polygon, patch, or
NURBS objects, though the resulting
object is always polygonal. You can also
animate boolean operations.

Still another modeling approach is
to draw curves (linear, cardinal, bezier,
B-spline, and NURBS), adjust the
placement of points and spline tension,
and then sweep these curves into an
object by extruding, skinning, or revolv-
ing them. Defining a modeling relation-

ship will update the object when the
original curve is edited.

Included in the basic package,
NURBS provides a flexible approach to
modeling. A NURBS curve can be pro-
jected onto a NURBS surface to easily fit
curved sections together. It is also possible
to “trim” a NURBS surface: to punch a
hole in it or cut away unwanted parts,
leaving a tailored shape. This is a very
powerful modeling tool, allowing for a lot
of control over the creation of smoothly
curved objects and organic forms.

Meta-clay in the Extreme package is
a good metaballs modeler that essentially
lets you build a compound object (a
“meta-clay system”) by globbing together
meta-clay “elements.” Elements within a
system can be blended together to create
smooth, clay-like sculptured forms. This
meta-clay system can then be used to
“skin” a skeletal structure for animation. It
can also be converted to a polygonal mesh,
which is a lifesaver if you need to export a
meta-clay model into another application.

Material World
The Softimage approach to materials and
textures is very practical and more
straightforward than other 3D animation
tools with fewer and less flexible features.
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Game developers such as Cyan, CAP-
COM, Electronic Arts Canada, NAMCO,
Mindscape, Rocket Science, and
Tribeca Interactive are discovering
Softimage. (Image from TEKKEN2 cour-
tesy NAMCO.)

Artists at Psygnosis used the advanced
modeling, animation, and rendering
features of Softimage in the lush intro
sequence for their new Playstation
title, TENKA.



Multiple image maps can easily be layered
and blended together, allowing complex
bump, reflectivity, and transparency map-
ping. The Mental Ray renderer adds a
displacement mapping option: Map fea-
tures actually alter object geometry at ren-
der time, letting you render an object that
is geometrically more complex than what
you’ve actually modeled.

A simple paint program is inte-
grated with the Softimage texture tools.
Its capabilities don’t rival those of a
dedicated paint program, but it can be
helpful to paint on a 2D map and see
the texture updated on your 3D model
after each stroke. More useful, howev-
er, is the UV editing feature that is
built into the paint tool. UV editing
lets you select a section of a map to
apply to a particular polygon. This is a
very handy tool for editing the default
UV mapping of a polygonal model, and
one that game artists, in particular, are
sure to appreciate.

The standard Softimage renderer
provides high-quality ray-traced render-
ings. The “mental ray” renderer that
comes with Softimage Extreme, on the
other hand, is a real standout feature.
Mental ray uses “shaders” — procedural
routines — to affect how an object is
rendered and can actually alter object
geometry. Shaders are far more powerful
than the surface fakery of bump maps.
Material shaders can create realistic
effects ranging from glass to fur. Volume
shaders can be used to create atmospher-
ic effects such as wispy fog, fire, or
smoke, or to define areas of transparency
that can extend through an object, such
as holes through Swiss cheese. Shadow
shaders affect the shadow cast by an
object, such as a green glass bottle. Light
shaders can be used to create projection
effects. Several shaders are packaged
with Softimage Extreme, and some of
them are astounding, such as the Oz
shader, which creates absurdly realistic
user-definable sky effects. Though more
canned shader effects would be welcome,
users can create their own custom
shaders using the C language. A Mental
Ray programmer’s guide is included in
the documentation. 

Animation Arsenal
The animation choices in Softimage
seem limitless. There is, of course, the
traditional keyframing approach. Com-
bined with the useful “ghost” view
option, excellent inverse kinematics
capabilities, and the ability to view and
manipulate function curves for all
keyframed events, keyframing gives you
all the tools necessary to craft a convinc-
ing movement sequence. There are many
other approaches to animation in Soft-
image, however, and some of them can
save you a lot of the time and effort of
keyframing, as well as help you achieve
more convincing results.

Traditional squash and stretch
effects are simplified in Softimage with
the Quick Stretch feature. The linear
and rotational velocity of an object auto-
matically deform it to help convey a
sense of movement. The user can define
parameters that limit the amount of flex,
stretch, and yield exhibited by the object,
as well as set the center of deformation.
You can actually see the squash and
stretch effect being applied as you move
the object around the screen.

An even flashier subset of anima-
tion features is the dynamic simulation.
This defines and simulates the physical
forces, such as gravity and wind, that act
on objects in your scene; objects blow in
the breeze of a virtual fan, fall as though
impelled by gravity, or bounce when they
collide with a surface. Dynamic simula-
tion is an amazing shortcut to certain
realistic animated effects and can be used
in conjunction with all other Softimage
animation tools.

Expressions can provide several
other animation shortcuts. These can be
as simple as constraining one object’s
movement to that of another: one actor
turns its head to follow the movement of
another, for example. Expressions can tie
movement to an external channel, caus-
ing an object to move in response to
channel input, such as mouse movement.
More involved expressions can be written
to create complex interrelations between
object movement and varieties of channel
input. Softimage is also well prepared to
accept motion capture data from various
tracking systems, such as Polhemus,
Ascension, Biovision, and others. 
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T
he availability of Softimage 3.51 on the Windows NT operating system opens this
high-end software to a whole new class of machine: the “personal workstation.”
While you may no longer need a Silicon Graphics workstation to take advantage of
the power and features of Softimage, some serious hardware is still required to
run it at all. To truly work productively, you’ll want a thoroughbred system indeed.

I’ve been running Softimage on a TDZ-410 from Intergraph’s line of Pentium Pro work-
stations featuring the RealiZm graphics card. With dual 200MHz P-Pro processors, 128MB
ECC memory, 2GB Ultra-SCSI disk, 8x CD-ROM, and a RealiZm Z13 graphics card with 16MB
frame buffer and another 16MB texture memory, this is only a middling powerful system
in the Intergraph line-up. It pushes Softimage around the screen with no problem, han-
dling large scenes with aplomb, allowing fluid interactivity during transforms of complex
objects, and smoothly performing textured, full-screen playback. Rendering times were
also impressive — especially so in the more roundly multithreaded 3D Studio MAX, which
can divide its scan-line rendering between processors.
Configurations are available sporting as many as four
processors, as much as 1GB four-way-interleaved RAM,
hardware RAID, and RealiZm graphics with up to 64MB
frame buffer, 64MB texture buffer, and dual screen
support! List price for my workstation configuration
with a 21" monitor was $18,690. Expect to pay roughly
85% of that through a dealer.
Intergraph Computer Systems
http://www.intergraph.com/ics
(800) 763-0242
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But Wait, There’s More!
In the space I’ve got here, I can’t hope to
touch on all the features available in Sof-
timage, but a few more major ones
deserve mention.

Particle, the pixel-based particle
system generator included with Softim-
age Extreme, can be used to produce
some great effects. With it, you can cre-
ate particle effects ranging from sand-
storms and snowstorms to contrails of
flame and smoke. Global forces such as
wind or gravity can be created, and
their effect on the particle system
defined. The options and parameters
provide a lot of flexibility for a wide
range of effects.

A minor but not insignificant prob-
lem is that Particle works only as a
standalone utility. You import a 3D
scene into Particle and generate effects
to match an existing animation. It is
possible to define a Z channel so that
particles correspond to the depth of the
scene. The end result is quite good, but
an integrated solution would be prefer-
able. A related drawback is that, unlike
Softimage 3D itself, Particle does follow
standard Windows interface conven-
tions. This inconsistency makes it all the
more difficult to segue smoothly from
one to the other.

Another Softimage extra of note is
the free Multiped plug-in, which pro-
vides canned walk routines for several-
legged creatures. This is a nice shortcut
to what can be an extremely complex
animation task. Realize, though, that
the motion produced is quite generic
and needs to be tweaked with Softim-
age’s routine animation tools. Though
it one-ups the Character Studio plug-in
for 3D Studio Max by providing a sort
of “Animation Helper” for quadrupeds
and even leggier actors, in other
respects it does not match the flexibility
of that program.

Any day now, we should see the
next incarnation of Softimage, dubbed
Sumatra, which promises to function as
an integrated component of a complete
digital graphics suite. That sounds like a
dream come true for anyone who has
struggled with compatibility issues
between different graphics applications.

But until that dream does come true,
Softimage 3.51 is here; and it’s already a
pretty dreamy package.

Regardless of what you might have
heard about its “difficulty” (or what you
might have heard me muttering during
the first week I spent learning it), Soft-
image is no harder to use than any other
full-featured 3D software and easier
than many. You’ll find it packed with
features to help you create glitzy and
gritty animation. It also now caters
enthusiastically to the needs of game
developers, with polygon- and color-
reduction tools; UV texture manipula-
tion; export formats including DirectX,
SEGA Saturn, and Sony Playstation;
extensive motion-capture support; the
Softimage Live viewer for interactive
previews of 3D environments; plus more
game-centric features planned for
upcoming service pack updates.

With Softimage, there’s a way —
and usually several ways — to accom-
plish almost any 3D effect you’re likely
to want. When you add the flexibility of
customizable shader effects in Mental
Ray, you’ve truly got a serious package
for the serious user. If you’ve got a
demanding production environment, if
you’ve got 3D needs that range from
gorgeous, prerendered animation to
polygon-scrimping real-time models,
and if you’ve got a healthy budget, then
Softimage is hard to beat.  ■

Dave Sieks is a contributing editor to
Game Developer. You can contact him via
e-mail at gdmag@mfi.com.
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Softimage 3.51 for Windows NT
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399
Tel: (800) 576-3846
Web: http://www.softimage.com
Price: Softimage 3D: $7,995; Softimage
Extreme: $13,995
System Requirements: Pentium Pro, Digital
Alpha, or MIPS R4400 processor; Windows
NT 3.51 with Service Pack 2 or higher; 64MB
RAM; 1GB hard disk; 200MB swap file; CD-
ROM drive. (Also available for SGI worksta-
tions.)

Softimage



E
very once in a while, a game
comes along that breaks the
mold in some form. In the
case of THE NEVERHOOD, it’s
somewhat ironic that the
mold-breaking came from
mold-making. Clay molds, to
be exact. 

THE NEVERHOOD, released this
past November, is the first computer
game to use claymation throughout,
including all of the characters and
scenery. The game was created by Nev-
erhood, a company founded in 1995 by a
small group of designers — including
five animators who worked on the suc-
cessful EARTHWORM JIM title. Never-
hood’s president Doug TenNapel was
the creator of EARTHWORM JIM, as well
as its lead animator. When talking with
TenNapel about THE NEVERHOOD, two

words come up repeatedly: “quirky” and
“simple.” In breaking out on their own,
Neverhood was determined to put its
own style of simple, quirky humor and
art onto the gaming scene. Thanks to
their innovative use of claymation and
their overall philosophy of game design,
they succeeded.

The game started out as many
game titles do, with eight developers
working out of TenNapel’s home. The
developers began the game-design
process by drawing some sample puzzles
on paper. The look-and-feel of the game
was based on TenNapel’s years working
in fine art.

While constructing the puzzles
and the storyboard for the game, the
development team adopted the philoso-
phy that it was best to overdesign ini-
tially and scale back later if necessary.

“We tend to over-
design every-
thing,” TenNapel
explained. “As
production goes
on, we cut out the
nonessentials or
the ideas that are
too hard to im-
plement. This
works out to
about half of the
ideas. You never
know if an ele-
ment is going to
be strong or weak
until you put the
engine together
and see what
works.”

How to Get Stuck
The philosophy of puzzle design at Nev-
erhood is to keep games simple and fair.
“I try to make puzzles that just about
anybody can figure out.” TenNapel
explained. “We try not to create unfair
or mean puzzles that punish the player.
Many puzzles in other games are too
hard to complete. We deliberately
designed easy puzzles to give players the
feeling of accomplishment.” 

The developers at Neverhood
believe that a game consists of two
player states: a player is either making
progress or is stuck. According to Ten-
Napel, “The fun part of a game is when
you’re making progress. However, you
also want to get stuck, because you
want to use your brain. You just don’t
want to get stuck forever. The chal-
lenge is to make it a pleasurable experi-
ence to be stuck.”

As with its predecessor, EARTH-
WORM JIM, THE NEVERHOOD has
excellent characters, takes place in a
novel world made entirely of clay, and
spices up game play with humor. “I like
to make the lead characters under-
dogs,” said TenNapel. “Imperfect char-
acters tend to have an innocent quality
to them.” 

When it comes to livening up a
game with comedy, TenNapel sticks to
the basics. “Humor in games often
comes in the form of little one-shot
jokes. But games aren’t like sitcoms. You
can’t refer back to broad instances, pre-
vious situations, or running gags — the
jokes have to stand on their own. Our
jokes tend to rely on physical humor, as
you’d see in a clip of Charlie Chaplin.” 

DreamWorks’
The Neverhood
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The completely clay look of THE NEVERHOOD immediatly sets it apart
from any other game out today. This ground-breaking look is backed
up by THE NEVERHOOD's simple interface, offbeat humor, and puzzles
designed for a broad audience of game players.



Once the design stage was com-
plete and the team felt they had enough
puzzles worked out, actual development
began. Oddly enough, the catalyst at
this point was office space. “Once we
had office space, we could begin the
research and development.” TenNapel
needed a bigger working space primarily
because THE NEVERHOOD required
entire clay sets to be built and filmed.
Of the 6,000 square feet the company
moved into, 2,000 square feet of it was a
warehouse attachment where the clay
sets and puppets were created and
filmed.

For TenNapel, the creation process
for the game’s graphical content was
challenging. “We’re inventing processes
that just didn’t exist before for capturing
images for video games.” The company
became a test site for the Minolta RD175
digital still camera.
Using stop-motion
animation tech-
niques, images from
the camera measur-
ing 1,100×1,400
pixels were crunched
through Equilibri-
um’s Debabelizer for
palette and resolu-
tion reduction. Se-
quences were then
assembled in Auto-
desk Animator.
Once up and run-
ning in Animator,
special effects and
sound were added.
Finally, the Auto-
desk files were run

through RAD Software’s Smacker for a
last blast of compression. These
sequences are seen in the first-person
3D sections of THE NEVERHOOD. The
animation worked out to 15 frames per
second. Compared to Saturday morn-
ing cartoons, which clock in at 12
frames per second, THE NEVERHOOD

is actually superior. 
Most of the game’s main charac-

ters were created using latex, which
looks like clay when filmed. These latex
puppets are supported by a metal skele-
ton, which puppeteers use to set the
poses during animation. Bolts on the
skeleton are loosened and retightened
to create a new pose. Small slits in the
latex, which are invisible to the eye,
give the puppeteers access to the skele-
ton’s joint. After a character has been
repositioned, it is bolted down to the

set for the shot.
Characters that
leave the floor
are positioned
on poles or with
string, which
can be edited
out later.

To avoid
as many palette
problems as
possible, char-
acters were kept
simple and had
little detail. The
palette for the
lead character,
Klayman, used
only enough
colors to show

Not many game

development teams

can boast that they

blew through 3.5 tons

of clay during

production. Welcome

to Doug TenNapel’s

Neverhood.

By Ben Sawyer
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After EARTHWORM JIM, Project G.eeK.eR, and
now THE NEVERHOOD, what curious characters
will Doug TenNapel bring us next?



the figure’s vol-
ume, not excessive
detail. The shad-
ows and high-
lights were made
as smooth as pos-
sible, and as Ten-
Napel pointed
out, “unlike poly-
gons,  clay casts
real shadows.”

For the char-
acter sprites,
Smacker was drop-
ped in favor of
Neverhood’s own
spr i te-handl ing
engine, dubbed
ToolX. All of THE

NEVERHOOD was
coded in C++,
using only a few of Microsoft’s DirectX
APIs. Actual work (animation testing and
main-engine coding) started in October
1995, and the game engine was refined
and extensive content creation began in
January 1996. About four months of the
game’s development time was pure
R&D.

Building a Neverhood.
If any statistic tells the story of the
making of THE NEVERHOOD, it’s the
three-and-a-half tons of clay that went
into the creation of the game’s sets and
sprites. Many of the sprites, all of the
rooms’ interiors, and the entire outside
world were constructed by hand from
clay. It took months to construct the
interiors, exteriors, and characters from
the storyboards (the sets alone required
three months to build and included the
bulk of the three-and-half-tons of
clay). The game uses over 20 minutes
of animated video and 50,000 frames
of film.

Mark Lorenzen, creator of VEC-
TOR MAN, built the interior back-
grounds for THE NEVERHOOD. Wood-
en boxes and planters from Home
Depot were lined with clay to create
room interiors, which were then shot
with the Minolta. 

Ed Schofield, Eric Ciccone, and
John Lorenzon labored intensely on the

outside sets, which
are featured in
first-person 3D
scenes as you ven-
ture to and from
various areas in the
game. “We used
Van Akin and
Harpets Clay.
Harpets is import-
ed from England.
It’s what they used
to create [Nick
Park’s Oscar-win-
ning characters]
Wallace and
Gromit. Van Akin
is what Will Vin-
ton used to create
the California
Raisins.”  Never-

hood consulted frequently with special-
effects experts and animators who’d
done stop-motion animation. “These
experts are a tight-knit group that

openly share information. In return, we
shared our experiences with them,” says
TenNapel.

One of the biggest problems for the
stop-motion animation technique was
adequate lighting. Two 30’×30’ ligh-
tracks were brought in to remedy the sit-
uation, and TenNapel said that the team
had to modify the electrical power in
their building. A peer-power source was
brought in to distribute an equal amount
of power to each of the lights to keep
them from fluctuating. Bulbs were
changed often. Cameras were reserviced
and recalibrated to ensure that the CCD
chips weren’t getting oversensitive to
certain lighting conditions. 

To complement THE NEVER-
HOOD’s unique graphics, TenNapel
recruited underground music star Terry
Taylor, a favorite of his for many years.
Taylor was given a simple mandate: “Just
make the music sound sloppy and drunk,
and don’t compose anything that
remotely sounds like videogame music.”
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Animated characters were built with metal
skeletons with laytex skin and then animat-
ed using digital cameras and stop motion
techniques.

Debut
THE NEVERHOOD is shipping now. A Macintosh version is possible,
provided sales of the Windows version are good. DreamWorks
states that only about an eighth of their fan mail comes from Mac
people looking for a port.

Distribution
CD-ROM. Retail SKU being distributed by Microsoft as part of
the DreamWorks label. 

Marketing Campaign
Net advertising and heavy publicity is being provided by
Microsoft and DreamWorks. TenNapel and Co. went on a nation-
wide tour of free media the week the game came out. 

Competitors
TenNapel’s former company, Shiny, is expected to debut its new
title, which could court some longtime EARTHWORM JIM fans.
Other than that, THE NEVERHOOD was up against everything else
this Christmas.

Outlook
The reaction from the game press and players has been very posi-
tive, with Microsoft’s solid distribution, novel gameplay, and
DreamWorks marketing touch, the outlook is good. A marketing
stategy that’s focusing on the nongaming press (Headline News,
USA Today, and others) has generated very favorable response.
While his  next product is not a claymation game, TenNapel
hopes that THE NEVERHOOD sparks developer interest in the graph-
ic format.
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The developers at Neverhood opted for
large .WAV files, rather than using the
MIDI format, due to .WAV’s superior
audio quality. 

For the Neverhood team, the chal-
lenge of constructing and working with
the clay models was offset by support
from big-name partners: DreamWorks

Interactive and Microsoft. “The biggest
thing DreamWorks brought to the table
was their hands-off policy. They funded
us, approved our ideas, and let us go.”
According to TenNapel, Microsoft
helped extensively by providing installa-
tion routines and beta-testers. Seeking to
dispel the Microsoft reputation, Ten-
Napel praised the giant for its approach.
“Microsoft wasn’t a juggernaut pushing
us around. They’re very sensitive to game
developers and respectful of our experi-
ence. I’d never had this much control on
a project before.”

“We looked at what the game
industry was about and just kind of took
a great big left turn,” says Tenapal.
“Simplicity is our number one rule of
design. And being quirky.”  ■

Based in Portland, Maine,  Ben
Sawyer writes and consults about the
interactive and consumer technology
industries.  His latest book, The Digital
Camera Companion (Coriolis Group
Books) is out now. He can be reached at
BenSawyer@worldnet.att.net
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Development Team:
Eight team members, five artists and animators, five program-
mers. 

Language Used:
Microsoft Visual C++ 4.1

Content Tools Used:
Adobe Photoshop 3.0.5, Autodesk Animator Studio 1.1, Sound
Forge 3.0, and Debabelizer for Macintosh 1.6.5.
Three-and-a-half tons of Van Akin and Harpets clay and latex pup-
pets over skeletons. 
A complete production-quality lighting scheme.  

Special Libraries:
DirectX 2.0 use was limited; sprite-handling routines for charac-
ters were created and dubbed ToolX.

Hardware Specialties:
The camera used was a Minolta RD175 Digital Camera. Calibra-
tion and lighting are key to CCD cameras, which require recali-
bration to avoid adaptation to custom lighting conditions.
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