
february/march 1996

G A M E D E V E L O P E R M A G A Z I N E

I
recently spent some time in southern
Arizona, an area with dark skies, low
humidity, and still air. Throw in
some high desert and mountains to
give a few thousand feet more eleva-
tion and it’s understandable that the
area is a hotbed for astronomy, both
professional and amateur.
As with many of you, science fiction

was the staple of my literary diet from third
grade on, until it seemed that I’d read
everything from Asimov to Zelazny (Poul
Anderson may come before Asimov in the
alphabet, but not in my heart). Those sto-
ries of starship troopers, Bene Gesserit,
lensmen, K’Zinti, and their like, became
part of what I saw when I looked at the
night sky.

Since I grew up in pretty much urban
areas, I was mostly confined to stars of the
first few magnitudes, the moon, and the
more obvious planets. Nevertheless, it was
always my conviction that if I could just see
well enough, I would see a universe filled
with ships flying on solar sails, generation
ships carved from asteroids, fleets of inter-
stellar transports picking their way through
foggy nebulas, and stars winking out as the
last section of their Dyson spheres were
nailed into place.

Recent photos from the Hubble
Space Telescope reminded me of those
dreams. Recent images from the Great
Nebula of Orion show “cosmic eggs,”
their three-dimensional structure perfectly
lit by conveniently placed protostars. The
most spectacular space effects from Pixar
and Industrial Light and Magic have
nothing on these photos for sheer beauty.
So when I was in Arizona, I made sure
that I was introduced to someone with an
“amateur” telescope, an 11-inch Schmidt-
Cassegrain with worm-gear corrected
equatorial mount and a computerized
tracker containing virtually the entire
Messier catalog of deep-space objects. Of
course, I knew I was not going to see any-

thing similar to the HST photos, but I
did hope that on a clear night with no
moon, I would see my first nebula.

The photos in Sky & Telescope maga-
zine don’t do modern amateur telescopes
justice. Ed, the scope’s owner, has a special
indoor/outdoor room to house his equip-
ment. He moves the 11-inch scope with a
hand-truck out onto his patio. Tucson is a
town remarkably conscious of light pollu-
tion due to its proximity to the Kitt’s Peak
observatory, and excellent viewing can be
had in the suburbs. After setting up the
telescope in rough approximation with
Polaris, Ed centered Deneb in the tracking
scope and punched a button or two on the
mount’s control panel.

A few minutes later, the computer
had seen enough to do three-dimensional
transformations worthy of Chris Hecker to
calculate its exact orientation relative to the
Earth’s axis. At that point, the computer
and precision motors kept objects only a
few arcseconds wide locked in the center of
the view, despite the Earth’s rotation. A
charge-coupled device (CCD) can give the
even more precise control necessary for
long-exposure photography.

The computer handles one more
task. Ed types in a Messier number and
rotates the tube until the LED display
indicates precise alignment. Without
looking through the spotting scope, he
invites me to take a look. “That’s the Crab
Nebula,” he says. Chinese astronomers
have precise records of the appearance of
the nova that created the nebula, an
explosion so epochal that it could be seen
in daylight. I look out and back into time.
The nebula appears as a faint puff of
smoke, gray against black. Not even a
thousand years after the explosion, the
remains of the star are spread over light
years. Roughly 6 trillion miles in a light
year, cubed is 256 times 10 to the 12th to
the 3rd, so the volume of a single light
year is roughly, uh, really, really big. But

Legitimate Concerns

G A M E P L A N

4 GAME DEVELOPER • FEBRUARY/MARCH 1996

MGA EGAME

Editor Larry O’Brien
gdmag@mfi.com

Senior Editor Nicole Freeman
76702.706@compuserve.com

Managing Editor Nicole Claro
nclaro@mfi.com

Production Editor Diane Anderson
dianderson@mfi.com

Editorial Assistant Jana Outlaw
joutlaw@mfi.com

Contributing Editors Alex Dunne
76702.1142@compuserve.com

Barbara Hanscome
bhanscome@mfi.com

Chris Hecker
checker@bix.com

Mike Michaels
mike@irvine.com

David Sieks
dsieks@arnarb.harvard.edu

Editor-at-Large Alexander Antoniades
sander@mfi.com

Cover Photography Charles Ingram Photography

Publisher Veronica Costanza
Group Director Regina Starr Ridley

Advertising Sales Staff

Western Regional Sales Manager

Steve Nikkola (415) 905-2256
snikkola@mfi.com

Promotions Manager/Eastern Regional Sales Manager

Holly Meintzer (212) 615-2275
hmeintzer@mfi.com

Marketing Manager Susan McDonald
Marketing Graphic Designer Azriel Hayes
Advertising Production Coordinator Denise Temple
Director of Production Andrew A. Mickus
Vice President/Circulation Jerry M. Okabe
Group Circulation Director Gina Oh
Group Circulation Manager Kathy Henry
Circulation Manager Mike Poplardo
Newsstand Manager Debra Caris
Reprints Stella Valdez (916) 729-3633

Chairman of the Board Graham J.S. Wilson
President/CEO Marshall W. Freeman
Executive Vice President/COO Thomas L. Kemp
Senior Vice President/CFO Warren “Andy” Ambrose
Senior Vice Presidents David Nussbaum, H. Verne
Packer, Donald A. Pazour, Wini D. Ragus
Vice President/Production Andrew A. Mickus
Vice President/Circulation Jerry Okabe
Vice President/

Software Development Division Regina Starr Ridley

Miller Freeman
A United News & Media publication

there it is, rock steady in the eyepiece, a
structure so vast I can’t even tame it with
exponents.

Ed has a flare for the dramatic and
turns to the other extreme, the Great
Nebula of Orion, and shows me another
faint puff of smoke. He makes sure I note
some of the stars embedded in the nebula
and tells me I’m seeing the birth flares of
stars newborn just a million years ago.
The HST photos were of this area and a
thousand times more detailed and color-
ful, but there is something far more pow-
erful about the ancient light falling
directly on my retina.

Finally, Ed shows me the Androme-
da Galaxy. It’s 250,000,000 light years
away, but it’s so large that it doesn’t even
fit in the field of view. The extended
shape of the galaxy is apparent, but no
structure—like the nebulas, it appears as a
blob of grey that otherwise might be
taken for a lens smudge. But to me, it
instantly brings back those childhood
dreams of worlds like grains of sand. An

entire galaxy glowing as a homogenous
whole from its stars.

The point I’m trying to get at is that
many of the most powerful experiences
available to us are not inherently
grandiose. If there are two experiences
and one is somehow felt as “more legiti-
mate,” it won’t matter if the other is more
detailed, longer lasting, or more comfort-
able. Human eyes will never see the col-
ors and details of an astronomical photo-
graph. But looking through a telescope is
better. Any night on The Discovery
Channel, I can see better images of
sharks and whales than I’ve ever seen
underwater. But I’d never trade a single
dive for all the film in the world.

As designers of digital entertain-
ment, we have to always remind ourselves
that we will never create experiences as
physically legitimate as the simplest activ-
ity. There is not a fighting game that
compares to capture the flag, not a sports
game that compares to dodge ball, not a
strategy game that compares to cutting

over on the frontage road to avoid traffic.
So we must create our legitimacy from
game play. We must never smirk at the
universe we create (unless our universe
does nothing but smirk), we must never
wink at the player and say, “We both
know this couldn’t happen, but you’ll for-
give me because we both know this is just
a computer game.”

Too many games rely on just such
tactics, relying on either AI that cheats or
stories with very limited branching. Game
design, AI, and story-telling will be major
themes of Game Developer in 1996, and
we’re excited to kick off our third year of
publication with a major article on genetic
algorithms, beginning on page 26.

When we are done, Ed trundles his
telescope back into its private room. As I
walk away, I wonder what chip powered
its computer. A Z-80? An 8086? Who
says you need 32 bits to have fun? ■

Larry O’Brien
Editor

G A M E P L A N

6 GAME DEVELOPER • FEBRUARY/MARCH 1996

I
f you’ve been scanning the book-
shelves and magazine racks,
you’ve noticed that the number
of words devoted to game pro-
gramming isn’t quite on par with
the demand generated by devel-
opers. Information on developing
games is sparse. There is more

information available to developers of
web sites, general business applica-
tions, and the like. If you’re like many
others in this industry, you’ve either
begun to scan web sites and ftp
archives and online services such as
CompuServe, America Online, and
Microsoft Network for programming
information or you’re about to.

Unfortunately, the wired world
moves in mysterious ways, and trying
to locate current, pertinent informa-
tion on the World Wide Web and
online services can be a time-consum-
ing experience. It’s nice to have direc-
tions before setting out on this road.
I’ve pieced together my favorite sites
from long hours of browsing, which
will hopefully save your eyes and your
telephone bill from ruin. We’ll be
transferring this information to the
Game Developer web site shortly (prob-
ably by the time you read this), so
don’t worry about copying down the
long URLs.

If you come across some new web
or ftp sites that you’d like to let other
developers in on, let us know. Our goal
is to turn our own web site into a launch-
ing point for other information on the
Internet, and we’ll need your help to
keep our links hot and fresh. Send your
recommendations to gdmag@mfi.com
with the subject line “Hot URL.”

The World
Wide Web
As evidenced by
Netscape’s ridiculous
stock price, the web is

growing so fast we can’t keep up with it.
For this reason, the information you find
on the net is both fresh as this morning’s
Starbucks and as old as that tin of Folger’s
Crystals in the back of your pantry. As
many web pages went up yesterday as the
number of pages that haven’t been updat-
ed in the past year. So the web can be an
extremely efficient means of getting the
information you want, or a time-consum-
ing chase across the world that terminates
at an antiquated site. Here are some good
sites to visit for game development topics.
• 3D Graphics Engines page (http://

www.cs.tu-berlin.de/~ki/engines.html) A
fairly fleshed-out list of texture map-
ping engines, Gouraud shading
engines, landscape rendering engines,
flat-shading engines, and more. A bit
like a buyers guide, with links to ven-
dor home pages.

• Algorithm’s Graphics Hotlist (http://
www.algorithm.com/graphics/graph
hot.html) This contains links to all
sorts of graphics-related pages and,
like the Virtual Library, is a good
launching point.

• Computer Game Developers Conference
(CGDC) (http://www.mfi.com/sd
confs/cgdc) Information about the
West Coast version of the game
developer’s conference. Conference
schedule, location, and more.

• Computer Graphics Miscellaneous FAQ
(h t t p : / / w w w . a l g o r i t h m . c o m /
graphics/graphhot.html) A list of fre-
quently asked questions (“How do

Go On!
(Line, That Is)

You need to stay on

top of things to make

it as a game develop-

er. Here, Alex Dunne

gives you some

research assis-

tance—he‘s hunted

down some URLs you

simply cannot afford

to miss.

Alex Dunne

C R O S S F I R E

GAME DEVELOPER • FEBRUARY/MARCH 1996 9

I..”; “Where can I find...”) about
graphics as well as pointers to other
sites. Updated fairly regularly.

• Denthor of Asphyxia and the Asphyxia
Trainers (http://goth.vironix.co.za/
~denthor/) Don’t ask me about the
name, but this site offers about 20
downloadable tutorials, such as “wid-
gets and gismos,” “crossfading,” “full-
screen scrolling,” “starfields,” “pixel
morphs,” “scaling bitmaps,” and more.

• Egerter Software (http://peace.wit.
com/~kosmic/gooroo/software.html) A
small Canadian software company
posting three graphics programming
tutorials and two rendering engines.

• Ethan Brodsky’s page. (http://www.
xraylith.wisc.edu/~ebrodsky/) A source
of information for programming
Sound Blaster audio cards.

• Game Resource Page (http://www.cs.
umu.se/~christer/GR/) A directory of
game programming sites divided into
algorithms, graphics, FAQs, book
publishers, and more.

• Game Developers Contact List (http://
www.gamesdomain.co.uk/gamedev/
reslist.html) Conceptually a great idea,
but it could be updated more frequently
(it’s two months old as I write this). A
clearing house of people interested in
various areas of game development
(writers, programmers, musicians) who
want to get matched up with others in
the field. A bit like the personals sec-
tion of your local newspaper.

• Knut’s Homepage (http://www.
oslonett.no/home/oruud/homepage.htm)
This page contains information about
game programming and graphics. It
also contains links to shareware and
freeware graphics and sound libraries
available on the Internet.

• Game Developer magazine (http://
www.mfi.com/gdmag) I’ll be immodest
and recommend that you check out
our site. Up to this point, we’ve been
tentative about making a big splash on
the web because our resources are fairly
stretched just producing a print version
of the magazine. But we’re revamping
our web site and will be relaunching it
with a new interface and new content.

• Game Development Tools Listing
(http://www.cs.umu.se/~christer/GR/

game_company_page.html) This page
lists company web sites broken down
by product category, such as “Enter-
tainment Producers,” “Hardware
Manufacturers,” and “Multimedia
Software Manufacturers.” Listed
alphabetically. Very handy.

• Nexus Game Programming Links Page
(http : / /www.gamesdomain. co .uk/
gamedev/gprog.html) Based out of the
U.K., a well-maintained site for “all
things game-related on the Internet.”

• Searching: DejaNews (http://www.
dejanews.com) This is an incredible site
that searches for Usenet newsgroups
based on keywords you enter. Looking
for every mention of the term “texture
mapping” in rec.games.programmer?
Alternatively, check to see if anyone’s
been talking about you online.

• Searching: Savvy Search (http://www.
cs.colostate.edu/~dreiling/smartform.
html) A search engine that sends your
query in parallel to other search
engines including Yahoo, Lycos, Web
Crawler, and NIKOS (about 15 in all)
and displays the results in a single list.

• Searching: Yahoo’s Search Engine Master
List (http://www.yahoo. com/Comput-
ers_and_Internet/Internet/World_
Wide_Web/Searching_the_Web/) This
lists most of the search engines avail-
able on the web. Take your pick.

• Watcom Corporation (http://www.wat-
com.on.ca/c/c.html) Information about C
and C++. Watcom has downloadable
tutorials for those learning the lan-
guage, links to other C/C++ resources,
and a library of source code.

• WWW Virtual Library of Computer
Graphics (http://www.dataspace.
com/WWW/vlib/comp-graphics.html) If
you want a comprehensive list of
papers, organizations, and commercial
sites dedicated to graphics, this is a
good place to start.

File Transfer
Protocol (FTP)
Sites
These sites allow you to
download files (usually

zipped—make sure you’ve got PKunzip
handy) for offline viewing, inspection,

and cut and paste (careful with the copy-
rights though).
• Borland’s FTP Site (ftp://ftp.borland.

com/pub/techinfo/index.html) Whether
you’re looking for C, C++, or Pascal
source code or support, Borland’s put
together a comprehensive site that’s
logically organized.

• Creative Labs’s FTP site (ftp://ftp.
creaf.com) Sound files, utilities, and
the like.

• DEC’s FTP Site (http://ftp.digital.
com/cgi-bin/grep-index) Digital’s has a
large library of source code for a num-
ber of games. Most of the code isn’t
that fresh, but nevertheless it’s inter-
esting to browse.

• Fastgraph FTP Site (ftp://ftp.accessnv.
com/fg/) This is where you can find
the shareware version of the Fast-
graph graphics library (for PC). There
are also articles and chapters from
Action Arcade Adventure Set (Coriolis
Group, 1994).

• Game Developer magazine (ftp://ftp.
mfi.com/pub/gamedev/src/) You can
find the source code from our back
issues at this location.

• Game Programming Archives at Oulu
University, Finland. (ftp://x2ftp.
oulu.fi/pub/msdos/programming/) This
is a huge site with many different files
for downloading, ranging in topic
from graphics to AI, game program-
ming theory, sound, and much more.
Many web directories have links to
this source, as it’s very comprehensive.
Word has it that it’s not being updat-
ed anymore, however.

• Microsoft FTP site (ftp://ftp.microsoft.
com/dirmap.htm) This page helps you
navigate through the myriad files
found at Microsoft.

• Mode X Introduction (ftp:// x2ftp.oulu.
fi/pub/msdos/programming/docs/xin-
tro18.zip) Self-explanatory, eh?

Online Service:
CompuServe!
I admit I ’m heavily
biased toward Com-
puServe. I ’ve tried

America Online and the Microsoft
Network, and found both of them

C R O S S F I R E

10 GAME DEVELOPER • FEBRUARY/MARCH 1996

extremely lacking in technical informa-
tion. CompuServe, on the other hand,
has a fairly rich offering of technical
forums, hosted by magazines and soft-
ware and hardware vendors. What
makes these forums so valuable, howev-
er, isn’t these corporate sponsors, but
the CompuServe members who hang
out in these areas. Most have technical
backgrounds, contribute frequently to
forum libraries, participate in discus-
sions, and answer your questions. These
forums are moderated either by
employees of the sponsor or other citi-
zens, such as yourself, which helps filter
out spams, flames, and other noise. If
you only belong to one online service,
this is the one. Here are some forums to
visit:
• Autodesk Multimedia Forum (GO

ADESK) has project/mesh files for
3D Studio and support for both 3D
Studio and Animator Pro. If you’re
using either of these Autodesk tools,
this is your spot.

• CASE Forum (GO CASEFO) is a
forum where issues such as software
engineering, software quality, and
development teamwork are discussed.

• Dr. Dobb’s Journal Forum (GO DDJ-
FORUM) is sponsored by the maga-
zine of the same name. It contains
libraries on C/C++, artificial intelli-
gence, and of course code from the
magazine itself.

• Game Developer’s Forum (GO
GAMEDEV) contains good discus-
sions and searchable library sections on
Windows programming, DOS pro-
gramming, online and modem games,
design theory, hardware issues, and
more. Game kits, sample code, and
FAQ sheets galore. Advice on tools
and techniques.

• Game Players’ Forum (GO GAMERS)
is a forum for game players. It contains
comments about games, cheat files and
codes, and so on. A good barometer of
what players like and hate.

• Microsoft Multimedia (GO WINMM) is
the official Microsoft forum for multi-
media and game development with
Windows.

• Software Development Forum (GO
SDFORUM) contains source code

from Game Developer magazine and
sections devoted to C++, Visual Basic,
object-oriented programming, and
more.

• Visual Basic Forums (GO VBPJ, GO
MSBASIC) are two forums useful for
VB programmers.

Frequently
Asked
Questions
(FAQs)

Do you want to learn about a particular
topic, such as 3D programming, but
you don’t know the right questions to
ask? Try a FAQ sheet. Many FAQ
sheets describe Usenet newsgroups for
which they were created, but they’re
more than just newsgroup descriptions.
Questions that keep getting asked in
these newsgroups get added to the
newsgroup FAQs, and if you are new to
a newsgroup, you are often instructed to

read the group’s FAQ before you post
any questions. That saves bandwidth
and prevents people from having to
answer a question that might have been
answered ten— or 100—times already.
• 3D programming information (ftp://

x2ftp.oulu.fi/pub/msdos/programming/
faq/3d-prog.18)

• BSP tree FAQ (http://www.qualia.
com/bspfaq/)

• Getting Started in Game Development
FAQ (ftp://ftp.accessnv.com/fg/misc/
gamefaq.txt)

• comp.graphics FAQ (ftp://x2ftp.oulu.fi/
pub/msdos/programming/faq/graphics.
faq)

• comp.graphics.algorithms FAQ (http://
www.cis.ohio-state.edu/hypertext/faq/
usenet/graphics/algorithmsfaq/faq.html)

• comp.graphics.animation FAQ (ftp://
x2ftp.oulu.fi/pub/msdos/programming/
faq/animatio.12)

• comp.lang.c FAQ (ftp://rtfm. mit.edu/
pub/usenet/news.answers/C-faq/faq)

• rec.games.programmer FAQ (http://
www.ee.ucl.ac.uk/~phart/game/FAQ/
rgp_FAQ.html)

• rec.games.design FAQ (ftp://x2ftp.
oulu.fi/pub/msdos/programming/faq/desi
gn.201)

• Mode X FAQ (ftp://x2ftp.oulu.fi/pub/
msdos/programming/faq/modex.faq)

• PC soundcards FAQ (http://www.
cis.ohio-state.edu/hypertext/faq/usenet/
PCsoundcards/soundcard-faq/faq.html)

• Tile-based games FAQ (http://www.
io.com/~paulhart/FAQ/tilefaq.html)

Open the Floodgates...
You probably know of a number of sites
that I haven’t mentioned here. Hey, for
that matter, so do I! Unfortunately,
space constraints don’t allow me to
print every worthy site. For that reason,
we’ll be extending this list and posting
it on our own web site. Start sending us
your URLs! ■

Alex Dunne is a contributing editor
to Game Developer magazine. Contact
him via e-mail at 76702.1142@com-
puserve.com.

C R O S S F I R E

12 GAME DEVELOPER • FEBRUARY/MARCH 1996

CompuServe has a

rich offering of

technical forums,

hosted by maga-

zines and hard-

ware and soft-

ware vendors.

Shocking
the Monkey

B I T B L A S T S

W
hen you visit the Toy Story site,
you can see the delightful charac-
ters created by Pixar. Woody and
Buzz Lightyear have a game—

simple and silly, but a game nonethe-
less. It’s a game developed using the lat-
est Director technology—a memory
game, you know, like the Husker Du
game you played as a child in which you
turn over a card and try to find a match?
Well, Shockwave users get to turn over
cards of Toy Story characters and search
for matches. Okay, so it isn’t an intel-
lectually gruelling game of chess. But
this new technology should mean some

big things for interactive game pro-
gramming. It is definitely worth the
time it takes to examine what Macro-
media is doing with Director and
Shockwave. Check out Macromedia’s
web site at http://www.macromedia.
com. If you have the right version
(which happens to be 2.0 at the exact
moment of this writing) of Netscape
and are running Windows 95, you won’t
be bored by a static screen. You can see
what’s happening at Melrose Place,
c/net, DC Comics, Intel, MTV, CNN,
and the American Cancer Society. Your
monitor will be animated, which may
not be new, but coming over the Inter-
net, it is pretty exciting. Check it out
and then get started making interactive
games for the net yourself.

Get Your Macros Here
The Macromedia folks are up to other
things besides Shockwaving their pro-
grams. While Afterburner and Shock-
wave might seem cool enough to the
average bear, Macromedia has introduced
Extreme 3D for cross-platform modeling,
rendering, and animation. It uses Director
to provide advanced data filtering, visual
feedback, interactive keyframe manipula-
tions, and cut and paste in a single win-
dow. It costs $699. (They also agreed to
acquire OSC, makers of digital audio pro-
duction software.)
■ For more information contact:

Macromedia
600 Townsend St.
San Francisco, Calif. 94103
Tel: (415) 252-2000
Fax: (415) 626-1502

Is 3D Space True?
Caligari Corp. announced its 3D product,
TrueSpace2. TrueSpace2 uses Intel’s 3DR
acceleration to let the user create and ren-
der with drag-and-drop capabilities. Users
can perfom 3D Boolean operations and
model scenes. TrueSpace2 has PostScript
capabilities in which the user loads 2D
drawings in an .EPS format into 3D
spaces. The program for Windows costs
$499, but you can order a free CD-ROM
trial version if you agree to fork over
$14.95 to cover shipping and handling.
■ For more information contact:

Caligari Corp.
1955 Landings Dr.
Mountain View, Calif. 94043
Tel: (415) 390-9600
Fax: (415) 390-9755

14 GAME DEVELOPER • FEBRUARY/MARCH 1996

Find out what the

Internet may mean

for game program-

ming—it can be

“powered by Shock-

wave“ nowadays.

And see who‘s

upgrading what,

when, and how much

it‘ll cost.

Diane Anderson

Blast it!
Creative Technology Ltd. (Creative
Labs) announced a new version of its
3D game board, 3D Blaster for 486 VL-
BUS PCs. Now there’s Sound Blaster,
Phone Blaster, Modem Blaster, and 3D
Blaster. Creative seems to be working
with Microsoft to bring 3D to every
Pentium. 3D Blaster will be available
this spring and should retail for about
$349; it will be bundled with software
titles, like Magic Carpet, that were cre-
ated using Creative Labs’s product.
■ For more information contact:

Creative Labs
1901 McCarthy Blvd.
Milpitas, Calif. 95035
Tel: (408) 428-6600
Fax: (408) 428-2394

Use a Tool
The company formerly known as HSC
Software is now renamed to be known as
MetaTools Inc. MetaTools has an-
nounced that Kai Power Tools and KPT
Convolver can now plug into Autodesk’s
Animator Studio. These extensions for
Windows let animators blend, texturize,
and saturate their animations. These
imaging tools let you create gradients,
fractals, transparency effects, explosion
effects, particle effects, moving bubbles,
and spheres. You can adjust hue, sharp-
ness, contrast, relief, and edges of an
object or area using the KPT Convolver.
■ For more information contact:

MetaTools Inc.
6303 Carpinteria Ave.
Carpinteria, Calif. 93013
Tel: (805) 566-6200
Fax: (805) 566-6385
Web: http://www.metatools.com

Engine Engine
Number Nine Visual Technology
announced its 128-bit graphics accelera-
tor, Imagine 128 Series 2. Imagine 128
Series 2 has a built-in 256-bit video
engine and is capable of speedy genera-
tion of Gouraud-shaded lines and trian-
gles, Z buffering, spatial blending, and
decal-mode texture mapping. It can

handle three operand bit blts at two
operand speeds and has a hardware DIB
engine. Imagine 128 Series 2 costs $399.
■ For more information contact:

Number Nine Visual Technology
18 Hartwell Ave.
Lexington, Mass. 02173
Tel: (617) 674-0009
Fax: (617) 674-2919

Diane Anderson is managing editor of
Game Developer. Contact her at diander-
son@mfi.com.

Softkey yanked the rug out from under
Broderbund’s acquisition of The
Learning Company with a hostile
takeover bid. They went on to complete
their edutainment triple play by buying
Compton’s New Media and Mecc
(makers of Oregon Trail). Will these com-
panies experience the fate of Softkey
company WordStar—now just another
low-cost retail relicensor? According to
James Sigismonti, Compton’s Senior
Producer, Softkey says it wants Comp-
ton’s to keep up its quality development.
But Softkey shareware developers allege
Softkey has refused to pay them. Can
Softkey, who is closing in on the #2 spot
in software sales, change its low-end
image?Are developers at the hands of
miserly monopolies?

And from the #1 software company,
MicroSoft announced they bought
Bruce Artwick’s company, developer
of the highly successful MicroSoft
Flight Simulator. MicroSoft
cofounder, Paul Allen purchased 5% of
Broderbund stock for his own use.

Larry Kasanoff’s Threshold
Entertainment, creators of the Mor-
tal Kombat movie, secured film rights
to both The Seventh Guest and 11th
Hour, brainchildren of Trilobyte.

Sources at MicroSoft indicate that
Direct Draw in on track with the recent
ship on MSDN. Direct Play still has a
long way to go before being really useful.
Direct Sound is in much better shape.
Direct 3D should be in the hands of
developers early next year with the cur-
rent build fast, but not fast enough yet.

Technologist Steve Crane, recently
with Knowledge Adventure, has
joined Activision. Senior Producer
Leonard Mlodinow, of Knowledge
Adventure, is now bringing his sense of
humor to Disney Interactive. Jeff
Dee, formerly Art Director with Simtex,
has joined Illusion Machines Incor-
porated. Josh Davidson, producer
for Microsoft, has moved to Dream-
works Interactive in L.A. as part of
the Microsoft-Dreamworks joint venture.
Jason Rubenstein, formerly of the
ImagiNation Network, has joined
Dreamworks Interactive’s market-
ing. Geoffrey Selzer has joined Dis-
ney Interactive. Executive Producer
Lisa Linnenkohl, mostly recently with
Star Press Multimedia, has joined
Palladium Interactive.

Wanna gossip? E-mail The Gossip
Lady at: 71501.3553@compuserve.com.S
c
h

m
o

o
z
e

n

e
w

s
..

.
S

c
h

m
o

o
z
e

n

e
w

s
..

.

16 GAME DEVELOPER • FEBRUARY/MARCH 1996

B I T B L A S T S

!U P G R A D E

YOURS!
• You’ve seen Electric Image

in things like Congo, The
Net, Batman Forever, Juras-
sic Park, and Star Trek.
You’ve seen what it can do
in many of your favorite
games. You’ve even seen it
in action in those Intel com-
mercials (you know, the
ones with the flying Pen-
tiums and dolphins?). Well
now Electric Image has
released Electric Image
2.5.2. PICT and QuickTime
files can be used as maps
with the newest version.
Electric Image lets animators
finesse Inverse Kinematics
animation and render direct-
ly into the Quicktime anima-
tion codec format. It costs
$990 to upgrade from ver-
sion 2.0 to 2.5.2 and $495 to
upgrade from 2.1. to 2.5.2. If
you are buying it for the first
time, 2.5.2 costs $7,495.

• Fractal Design announced
the newest version of its
image editor, Painter 4.
Designers can now blend
raster and vector imagery
and collaborate on artwork
over LANs and the Internet.
It works with Photoshop,
Illustrator, and Freehand. It
runs on Windows and Mac-
intosh and costs $549.

W
hen I sat down to write
this article, it was supposed
to be the last installment in
our epic perspective texture
mapping series. Part of the
way through, I realized I
needed to cover what
ended up as the actual topic

of this article—floating-point optimiza-
tions—to complete the optimizations on
the perspective texture mapper’s inner
loop. So we’ll learn some generally cool
tricks today and apply them to the tex-
ture mapper in the next issue. In fact,
these techniques are applicable to any
high-performance application that mixes
floating-point and integer math on mod-
ern processors. Of course, that’s a long
and drawn-out way of saying the tech-
niques are eminently suitable to cool
games, whether they texture map or not.

The Real Story
A few years ago, you couldn’t have
described a game as an “application that
mixes floating-point and integer math,”
because no games used floating-point. In
fact, floating-point has been synonymous
with slowness since the beginning of the
personal computer, when you had to go
out to the store, buy a floating-point
coprocessor, and stick it into a socket in
your motherboard by hand. It’s not that
game developers didn’t want to use real
arithmetic, but the original PCs had
enough trouble with integer math, let
alone dealing with the added complexi-
ties of floating-point.

We don’t have enough space to
cover much of the history behind the
transition from integer math, through
rational (Bresenham’s line-drawing

algorithm, for example) and fixed-point
arithmetic, and finally to floating-point,
but here’s the quick summary: For a
long time, game developers only used
floating-point math in prototype algo-
rithms written in high-level languages.
Once prototyped, the programmers usu-
ally dropped the code down into fixed-
point for speed. These days, as we’ll see,
floating-point math has caught up with
integer and fixed-point in terms of
speed and in some ways has even sur-
passed it.

To see why, let’s look at the cycle
timings of the most common mathe-
matical operations used by game devel-
opers (addition, subtraction, multiplica-
tion, and—hopefully relatively rarely—
division) for fixed-point, integer, and
floating-point. Table 1 shows the cycles
times on three generations of Intel
processors, the PowerPC 604, and a
modern MIPS. We see that the float-
ing-point operations, with the exception
of additions and subtractions, are actual-
ly faster than their integer counterparts
on the modern processors (the 386, a
decidedly nonmodern processor without
an integrated floating-point unit, lags
far behind, and the transitional 486 has
mixed results).

Of course, these numbers alone
don’t tell the whole story. The table
doesn’t show that, although the cycle
times are still slow compared to single-
cycle instructions like integer addition,
you can usually execute other integer
instructions while the longer floating-
point operations are running. The
amount of cycle overlap varies from
processor to processor, but on really
long instructions, like floating-point

Let’s
Get to the
(Floating) Point

Question: Is floating-

point math inherently

evil? Answer: Maybe

not, if the instruction

timings of modern

chips are to be

believed. Question: But

are they to be

believed?

Chris Hecker

B E H I N D T H E S C R E E N

GAME DEVELOPER • FEBRUARY/MARCH 1996 19

division, you can usually overlap all but a
few cycles with other integer (and some-
times even floating-point) instructions.
In contrast, the longer integer instruc-
tions allow no overlap on the current
Intel processors and limited overlap on
the other processors.

On the other hand, the floating-
point operations are not quite as fast as
Table 1 implies because you have to load
the operands into the floating-point unit
to operate on them, and floating-point
loads and stores are usually slower than
their integer counterparts. Worse yet,
the instructions to convert floating-point
numbers to integers are even slower still.
In fact, the overhead of loading, storing,
and converting floating-point numbers is
enough to bias the speed advantage
towards fixed-point on the 486, even
though the floating-point instruction
timings for the actual mathematical
operations are faster than the corre-
sponding integer operations.

Today, however, the decreased
cycle counts combined with the tricks
and techniques we’ll cover in this article
give floating-point math the definite
speed advantage for some operations,
and the combination of floating-point
and fixed-point math is unbeatable.

If It Ain’t Float, Don’t Fix It
As usual, I’m going to have to assume you
know how fixed-point numbers work for
this discussion. Mathematically speaking,
a fixed-point number is an integer created
by multiplying a real number by a con-
stant positive integer scale and removing
the remaining fractional part. This scale
creates an integer that has a portion of the
original real number’s fraction encoded in
its least significant bits. This is why fixed-
point was the real number system of

choice for so many years; as long as we’re
consistent with our scales, we can use fast
integer operations and it just works, with
a few caveats. It has big problems with
range and is a mess to deal with, for the
most part. You need to be very careful to
avoid overflow and underflow with fixed-
point numbers, and those “fast” integer
operations aren’t as fast as the same float-
ing-point operations anymore.

Floating-point math, on the other
hand, is a breeze to work with. The main
idea behind floating-point is to trade
some bits of precision for a lot of range.

For the moment, let’s forget about
floating-point numbers and imagine we
have really huge binary fixed-point num-
bers, with lots of bits on the integer and
fractional sides of our binary point. Say
we have 1,000 bits on each side, so we
can represent numbers as large as 21000

and as small as 21000. This hypothetical
fixed-point format has a huge range and
a lot of precision, where range is defined
as the ratio between the largest and the
smallest representable number, and pre-
cision is defined as how many significant
digits (or bits) the representation has.
So, for example, when we’re dealing with
incredibly huge numbers in our galaxy
simulator, we can still keep the celestial
distances accurate to within subatomic
particle radii.

However, most applications don’t
need anywhere near that much precision.
Many applications need the range to rep-
resent huge values like distances between
stars or tiny values like the distance
between atoms, but they don’t often need
to represent values from one scale when
dealing with values of the other.

Floating-point numbers take
advantage of this discrepency between
precision and range to store numbers

with a very large range (even greater
than our hypothetical 2,000-bit fixed-
point number, in fact) in very few bits.
They do this by storing the real number’s
exponent separately from its mantissa,
just like scientific notation. In scientific
notation, a number like 2.345 x 1035 has
a mantissa of 2.345 and an exponent of
35 (sometimes you’ll see the terms sig-
nificand and characteristic instead of
mantissa and exponent, but they’re syn-
onymous). This number is only precise
to four significant digits, but its expo-
nent is quite big (imagine moving the
decimal point 35 places to the right and
adding zeros after the mantissa runs out
of significant digits).

The way the precision scales with
the magnitude of the value is the other
important thing. When the exponent is
35, incrementing the first digit changes
the value by 1035, but when the exponent
is 0, incrementing the first digit only
changes the value by 1. This way you get
angstrom accuracy when you’re on the
scale of angstroms, but not when you’re
on the scale of galaxies (when you really
don’t need it).

The IEEE floating-point standard
specifies floating-point representations
and how operations on those representa-
tions behave. The two IEEE floating-
point formats we care about are “single”
and “double” precision. They both share
the same equation for conversion from
the binary floating-point representation
to the real number representation, and
you’ll recognize it as a binary form of sci-
entific notation:

–1sign x2exponent–bias x1.mantissa (1)

The only differences between the two
formats are the widths of some of the

B E H I N D T H E S C R E E N

20 GAME DEVELOPER • FEBRUARY/MARCH 1996

Integer Float Integer Float Integer Float
Add/Subtract Add/Subtract Multiply Multiply Divide Divide

Intel 386/387 2 23-34 9-38 27-35 43 89
Intel i486 1 10 12-42 11 43 62 (35)
Intel Pentium 1 3 10 3 46 33 (19)
PowerPC 604 1 3 4 3 20 31 (18)
MIPS R4x00 1 4 10 8 (7) 69 36 (23)

Table 1. Various Instruction Timings (Parentheses Indicate Single Precision)

named fields in Equation 1, so we’ll go
over each part of it in turn and point out
the differences when they pop up.

We’ll start on the right-hand side
of Equation 1. The mantissa expression
(the 1.mantissa part of the equation) is
somewhat strange when you first look at
it, but it becomes a little clearer when
you realize that mantissa is a binary
number. It’s also important to realize
that it is a normalized, binary number.
“Normalized” for scientific numbers
means the mantissa is always greater

than or equal to 1 and less than 10 (in
other words, a single, non-zero digit).
Our previous example of scientific nota-
tion, 2.345 x 1035, is normalized, while
the same number represented as 234,500
x 1030 is not. When a binary number is
normalized, it is shifted until the most
significant bit is 1. Think about this for a
second (I had to). If there are leading
zeros in the binary number, we can rep-
resent them as part of the exponent, just
as if there are leading 0 digits in our dec-
imal scientific notation. And because the
most significant bit is always 1, we can
avoid storing it altogether and make it
implicit in our representation. So, just
like normalized decimal scientific nota-
tion keeps its mantissa between 1 and
10, the binary mantissa in a floating-
point number is always greater than or
equal to 1 and less than 2 (if we include
the implicit leading 1).

Next in line, the exponent expres-
sion shifts the binary point right or left

based on a positive or negative exponent,
respectively. This is exactly analogous to
the base-10 decimal scientific notation,
where the exponent shifts the decimal
point right or left, inserting zeros as nec-
essary. The exponent field is the key to
the range advantage floating-point num-
bers have over fixed-point numbers of
the same bit width. While a fixed-point
number has an implicit binary point and
all the bits are, in essence, a mantissa, a
floating-point number reserves an expo-
nent field to shift the binary point

around (hence the term, “floating-
point”). It’s clear that 8 bits reserved for
an exponent from a 32-bit word allows a
range from about 2127 to 2-127, while the
best a fixed-point number could do
would be a 32-bit range, for example 232

to 0, 216 to 2-16, or 0 to 2-32, but not all
at the same time. However, there’s no
such thing as a free lunch; the 32-bit
fixed-point number actually has better
precision than the floating-point num-
ber, because the fixed-point number has
32 significant bits, while the floating-
point number only has 24 significant bits
left after the exponent is reserved.

You’ll notice the exponent expres-
sion is actually exponent - bias. The bias
is a value set so that the actual bits of the
exponent field are always positive. In
other words, assuming the exponent is 8
bits and the bias is 127, if you want your
unbiased exponent to be -126 you set
your biased exponent bits to 1. Likewise,
a biased exponent field value of 254

yields an unbiased exponent of 127.
Exponent values of all 0s and all 1s are
reserved for special numerical situations,
like infinity and zero, but we don’t have
space to cover them.

Finally, the sign bit dictates
whether the number is positive or nega-
tive. Unlike two’s complement represen-
tations, floating-point numbers that dif-
fer only in sign also differ only in their
sign bit. We’ll discuss the implications of
this further. Table 2 contains the field
sizes for single and double precision

IEEE floating-point values, and Figure
1 shows their layout, with the sign
always at the most significant bit.

An Example
Let’s run through an example by con-
verting a decimal number into a single
precision, binary, floating-point number.
We’ll use the number 8.75 because it’s
easy enough to do by hand, but it still
shows the important points. First, we
turn it into a binary fixed-point number,
1000.11, by figuring out which binary
bit positions are 1 and 0. Remember, the
bit positions to the right of the binary
point go 2-1, 2-2, 2-3, and so on. It
should be clear that I chose .75 for the
fractional part because it’s 2-1 + 2-2, so
it’s easy to calculate. Next, we shift the
binary point three positions to the left to
normalize the number, giving us 1.00011
x 23. Finally, we bias this exponent by
adding 127 for the single precision case,
leaving us with 130 (or 10000010 bina-

GAME DEVELOPER • FEBRUARY/MARCH 1996 21

Figure 1. IEEE Floating-Point Layouts
Single Precision

0

Double Precision

063 62

31 30 23 22

52 51

s exponent mantissa

exponent mantissas

ry) for our biased exponent and 1.00011
for our mantissa. The leading 1 is
implicit, as we’ve already discussed, and
our number is positive, so the sign bit is
0. The final floating-point number’s bit
representation is shown in Figure 2.

Now that we’re familiar with float-
ing-point numbers and their representa-
tions, let’s learn some tricks.

Conversions
I mentioned that on some processors
the floating-point to integer conver-
sions are pretty slow, and I wasn’t exag-
gerating. On the Pentium, the instruc-
tion to store a float as an int, FIST, takes
six cycles. Compare that to a multiply,
which only takes three, and you see
what I mean. Worse yet, the FIST
instruction stalls the floating-point
pipeline and both integer pipelines, so
no other instructions can execute until
the store is finished. However, there is
an alternative, if we put some of the
floating-point knowledge we’ve learned
to use and build our own version of FIST
using a normal floating-point addition.

In order to add two floating-point
numbers together, the CPU needs to
line up the binary points before doing
the operation; it can’t add the mantissas
together until they’re the same magni-
tude. This “lining up” basically amounts
to a left shift of the smaller number’s
binary point by the difference in the two
exponents. For example, if we want to
add 2.345 x 1035 to 1.0 x 1032 in decimal
scientific notation, we shift the smaller
value’s decimal point 3 places to the left
until the numbers are the same magni-
tude, and do the calculation: 2.345 x
1035 + 0.001 x 1035 = 2.346 x 1035. Bina-
ry floating-point works in the same way.

We can take advantage of this
alignment shift to change the bit repre-
sentation of a floating-point number

until it’s the same as an integer’s bit
representation, and then we can just
read it like a normal integer. The key to
understanding this is to realize that the
integer value we want is actually in the
floating-point bits, but it’s been nor-
malized, so it’s shifted up to its leading
1 bit in the mantissa field. Take 8.75, as
shown in Figure 2. The integer 8 part is
the implicit 1 bit and the three leading
0s in the mantissa. The following 11 in
the mantissa is .75 in binary fractional
bits, just waiting to be turned into a
fixed-point number.

Imagine what happens when we
add a power-of-two floating-point
number, like 28=256, to 8.75, as in Fig-

ure 3. In order to add the numbers, the
CPU shifts the 8.75 binary point left by
the difference in the exponents (8 - 3 =
5, in this example), and then completes
the addition. The addition itself takes
the implicit 1 bit in the 256 value and
adds it to the newly aligned 8.75, and
when the result is normalized again the
implicit 1 from the 256 is still in the
implicit 1-bit place, so the 8.75 stays
shifted down. You can see it in the
middle of the mantissa of the result in
Figure 3. What happens if we add in
223, or the width of the mantissa? As
you’d expect, the 8.75 mantissa is shift-
ed down by 23 - 3 = 20, leaving just the
1,000 for the 8 (because we shifted .75
off the end of the single precision man-
tissa, the rounding mode will come into

play, but let’s assume we’re truncating
towards zero). If we read in the result-
ing single precision value as an integer
and mask off the exponent and sign bit,
we get the original 8.75 floating-point
value converted to an integer 8!

This trick works for positive num-
bers, but if you try to convert a negative
number it will fail. You can see why by
doing the aligned operation by hand. I
find it easier to work by subtracting two
positive numbers than by adding a posi-
tive and a negative. Instead of 223 + (-
8.75), I think of 223 - 8.75. The single
sign bit representation lends itself to
this as well (using a piece of paper and a
pen will really help you see this in
action). So, when we do the aligned
subtraction, the 8.75 subtracts from the
large value’s mantissa, and since that’s
all 0s (it’s a power-of-two), the subtract
borrows from the implicit 1 bit. This
seems fine at first, and the mantissa is
the correct value of -8.75 (shifted
down), but the normalization step
screws it up because now that we’ve

borrowed from the implicit 1 bit, it’s no
longer the most significant bit, so the
normalization shifts everything up by
one and ruins our integer.

But wait, all is not lost. All we
need is a single bit from which to bor-
row in the mantissa field of the big
number so that the subtraction will
leave the implicit 1 bit alone and our
number will stay shifted. We can get
this 1 bit simply by multiplying our
large number by 1.5. 1.5 in binary is
1.1, and the first 1 becomes the implic-
it 1 bit, and the second becomes the
most significant bit of the mantissa,
ready to be used for borrowing. Now
negative and positive numbers will stay
shifted after their normalization. The
masking for negative numbers amounts

B E H I N D T H E S C R E E N

22 GAME DEVELOPER • FEBRUARY/MARCH 1996

Figure 2. 8.75 As a IEEE Single Precision Value

031 30 23 22

10000010 000110000000000000000000

Total Bias
Width Sign Mantissa Exponent Value

Single 32 bits 1 bit 23 bits 8 bits +127
Double 64 bits 1 bit 52 bits 11 bits +1023

Table 2. Floating-Point Field Widths and Parameters

to filling in the top bits with 1 to com-
plete the two’s-complement integer
representation.

The need to mask for positive and
negative values is bad enough when you
are only dealing with one or the other,
but if you want to transparently deal
with either, figuring out how to mask
the upper bits can be slow. However,
there’s a trick for this as well. If you
subtract the integer representation of
our large, floating-point shift number
(in other words, treat its bits like an
integer instead of a float) from the inte-
ger representation of the number we
just converted, it will remove all the
high bits properly for both types of
numbers, making the bits equal zero for
positive values and filling them in with
ones for negative values.

You’ll notice that this technique
applied to single precision values can
only use a portion of the full 32 bits
because the exponent and sign bits are
in the way. Also, when we use the 1.5
trick we lose another bit to ensure both
positive and negative numbers work.
However, we can avoid the range prob-
lems and avoid masking as well by using
a double precision number as our con-
version temporary. If we add our num-
ber as a double (making sure we use the
bigger shift value—252 x 1.5 for integer

truncation) and only read in the least
significant 32 bits as an integer, we get
a full 32 bits of precision and we don’t
need to mask, because the exponent and
sign bits are way up in the second 32
bits of the double precision value.

In summary, we can control the shift
amount by using the exponent of a large
number added to the value we want to
convert. We can shift all the way down to
integer truncation, or we can shift part of
the way down and preserve some frac-
tional precision in fixed-point.

This seems like a lot of trouble,
but on some processors with slow con-
version functions, like the x86 family, it
can make a difference. On the Pentium
with FIST you have to wait for six cycles
before you can execute any other
instructions. But using the addition
trick, you can insert three cycles worth
of integer instructions between the add
and the store. You can also control how
many bits of fractional precision you
keep, instead of always converting to an
integer.

What’s Your Sign?
Before I wrap this up, I’d like to throw
out some other techniques to get you
thinking.

The exponent bias is there for a rea-
son: comparing. Because the exponents

are always positive (and are in more sig-
nificant bits than the mantissa), large
numbers compare greater than small
numbers even when the floating-point
values are compared as normal integer
bits. The sign bit throws a monkey
wrench in this, but it works great for sin-
gle-signed values. Of course, you can take
the absolute value of a floating-point
number by masking off the sign bit.

I’ve already hinted at the coolest
trick—overlapping integer instructions
while doing lengthy divides—but I
haven’t gone into detail on it. It will
have to wait until next time, when we’ll
discuss this in depth.

Two people introduced me to the
various tricks in this article and got me
interested in the details of floating-
point arithmetic. Terje Mathisen at
Norsk Hydro first showed me the con-
version trick, and Sean Barrett from
Looking Glass Technologies made it
work on negative numbers.

If you want to learn more about
floating-point, The Art of Computer Pro-
gramming, Vol. 2: Seminumerical Algo-
rithms (Addison-Wesley, 1981) by D.
Knuth is a good source for the theory.
Most CPU programming manuals have
fairly detailed descriptions as well. You
can get Adobe Portable Document For-
mat versions of the PowerPC manuals on
http://www.mot.com. If you really want
to understand floating-point and its
implications for numerical programming,
you’ll want to pick up a numerical analysis
textbook that deals with computers.

You also might want to look at the
Graphics Gems series from AP Profes-
sional. The series covers a number of
floating-point tricks like the ones dis-
cussed here. A good example calculates a
quick and dirty square root by halving
the exponent and looking up the first
few bits of the mantissa in a table.
Another takes advantage of the format
to do quick absolute values and compares
for clipping outcode generation. Once
you understand the floating-point for-
mat, you can come up with all sorts of
tricks of your own. ■

Chris Hecker tries to stay normalized,
but he can be biased at checker@bix.com.

B E H I N D T H E S C R E E N

24 GAME DEVELOPER • FEBRUARY/MARCH 1996

Figure 3. Adding Single Precision Floating-Point Numbers

+

=

031 30 23 22

10000010 0001100000000000000000005

031 30 23 22

10000111 0000000000000000000000006

031 30 23 22

10000010 00001000110000000000000075

Using Genetic
Algorithms to Evolve
Computer Opponents

G E N E T I C A L G O R I T H M S

I
love a good strategy game. I’ve
spent uncountable hours playing
Civilization and Master of Orion.
But I find I keep going back to my
ancient Diplomacy (CGA yet!) and
Risk programs with their klunky
and awkward user interfaces
because, as far as I can tell, they

aren’t “cheating” to play a good game.
To be fair, if computer strategy

games had to play by the same rules,
these games might still be in develop-
ment or possibly never even started, and
I certainly wouldn’t want that. I’m sure
I’ll keep playing both games and others

that cheat too. But whenever I think of
buying new games, part of my evaluation
includes trying to determine whether
and how much they might have to cheat
to be challenging.

One way to have a new strategy
game that played fair was to write my
own, so I set off to do just that. Hoping
to have strong computer players without
having to spend weeks or months writing
them, I looked for a way to let my com-
puter generate them with spare CPU
cycles.

This article is a description of how I
designed a game that could use genetic
algorithms to generate some decent com-
puter players. Although the computer
players do not have access to all the infor-
mation human players have, I have
evolved some that can beat me in an
evenly matched game—without cheating!

First, I’ll outline the game, dis-
cussing the major design issues. In fact,
there are many different rule options that
can be selected when designing a sce-
nario, so the rules I do mention will be
the default rules in the basic game.
Then, I’ll show how the design supports
computer players with a very small
“genetic” program, along with some
examples. Then, I’ll show how easy it is
to evolve these programs and how to test
whether they really improve over time.

Currently, a very high interest in
genetic algorithms exists, and it is get-
ting easier to find articles and books on
the subject with many examples and
details. (If you have Web access, just do
a search for genetic algorithms!) Unfor-
tunately, very few genetic algorithm
applications I’ve seen actually do any-
thing interesting from a games perspec-

Using OID, you can program a simple genetic algorithm that will evolve into a reasonably
intelligent computer opponent that doesn’t resort to cheating to stay in the game.

26 GAME DEVELOPER • FEBRUARY/MARCH 1996

tive. Here, I’ll try to concentrate on the
design of “something interesting” to do
with genetic algorithms and minimize
the tutorial and theoretical aspects.

A Description of Cloak,
Dagger, and DNA
The game is like a cross between Diplo-
macy and Stratego with a few mutations
thrown in. The playing field is a map
divided into areas, some of which con-
tain factories. The factories are needed
to support the armies that are used to
capture more areas. Each turn, a factory
supports one army or spy or puts one
credit in the player’s treasury that can be
spent later. All players’ armies and spies
are moved simultaneously, so a turn con-
sists of submitting a set of orders, not
actually moving pieces.

The legality of moving pieces is
based solely on the current position, so if
you are legally able to construct an order,
it will always be carried out. What you
won’t necessarily know until the next
turn is how many of your armies sur-
vived in each area and who ended up
controlling each area and any factories in
it. When all players are ready, the game
engine reads the human players’ orders,
generates the orders for the computer
players, performs all moves, and resolves
combat in areas where armies are owned
by more than one player.

In the entire design, the combat
resolution rules have seen the most revi-
sions. My design goals for combat were:
fair, simple, and repeatable. I have seen
fair and repeatable with Diplomacy,
which does those very well with no dice
rolls. But if you’ve ever played noncom-
puter Diplomacy, you know how com-

plicated resolving all the players’ orders
can get, as one set of orders very often
prohibits another set from being carried
out. The dependencies can be recursive,
so it is not simple.

In my game, all legal orders are car-
ried out, thus any pieces ordered built are
placed on the map, and all pieces with
orders to move are moved with no excep-
tions. Combat is then resolved in each
area that contains armies belonging to
more than one player (spies are not
involved in combat). Combat does not
necessarily result in only one player
remaining in an area, in fact all four play-
ers can have one army each in a given
area, and nothing will happen. However,
armies in an area that contains other
armies may only be ordered to leave that
area if they move to another area already
controlled by the owning player.

Each players’ combat losses are
computed separately, but in parallel, and
are based on the number of armies the
player has, the number of armies the sin-
gle largest opposing player has, and who,
if anyone, previously controlled the area
being contested. A player in an area he
or she controls loses one army for every
three attacking armies in the largest
opposing force. In an area he or she
does not control, the player loses one
army for every two armies in the largest
opposing force. After combat, if only
one player has surviving armies in an
area, that player gains control of that
area and any factories in it.

A player only knows about the
other players’ forces upon encountering
them, which can be done intentionally
by sending spies off into enemy territory.
A player’s map does show all the facto-

If you love strategy

games, but hate it

when your computer

has to cheat to stay

in the game, learn

about OID, the simple

genetic algorithm

that will evolve into a

worthy opponent—

and even beat you!

by Don O’Brien

GAME DEVELOPER • FEBRUARY/MARCH 1996 27

ries in the game, but not necessarily who
controls them.

When a game is over, each player
scores from 0 to 100, being the percent-
age of all factories in the game he or she
controls. There are early win cases
where one player can score all the 100
points. The actual scoring method is not
important, as long as there is some rela-
tive fitness evaluation available to the
genetic algorithm code.

Computer Player
Genetic Codes
Inspired by Tom Ray’s Tierra machine, I
decided that the bits in the computer
player genetic codes would be interpret-
ed like machine code instructions.
However, unlike the Tierra machine, a
program that can make copies of itself
isn’t likely to be very similar to one that
can play a strategy game. Intending to
spend as little time as possible writing
the initial opponents, I tried to design a
fairly powerful virtual machine that
would implement a simple computer

opponent language. I call this the OID,
which stands for Opponent Implemen-
tation Device.

It is also convenient that the suffix
“oid” is used to mean an imperfect
resemblance, since ultimately what we
are doing when writing computer players
is creating an imperfect resemblance of a
live human opponent. I wanted the OID
language to let me write a few simple
seed programs with a small number of
instructions that could play a game, even
if poorly, and hoped that evolution
would do the rest.

The OID language consists of a set
of instructions that do not directly move
individual pieces, but instead assign val-
ues to map areas and playing pieces.
These values are used to decide which
pieces, if any, move where. You can
think of the map values as elevations and
the pieces as marbles where their values
are heights. With the right instructions,
each marble on the map can add its
height to the elevation of the area the
marble is in. A single instruction can

modify a register in each area on the
map. For example, the instruction Add
R1 my Army will add the number of the
players armies, if any, to the R1 register
in each map area.

Once a sequence of instructions has
generated elevations on the map, a single
move instruction can query all pieces
individually to see if any want to “roll
downhill” into adjacent areas. Any that
do are given orders to move. Whenever
a piece is given these orders, its height is
used to reduce the elevation of the area it
will leave and increase the elevation of
the area it will enter before the next
piece is queried.

For example, imagine that all areas
with an enemy factory are assigned a low
elevation, say, the number of factories as
a negative number, and all areas with
your armies are assigned a high eleva-
tion, say, the number of armies as a posi-
tive number. The Move instruction will
then query all your armies to see if any
are adjacent to areas with lower eleva-
tions, which will include empty areas
next to areas with armies and, most
importantly, adjacent enemy factories.

Building new pieces is similar, the
Build instruction builds new pieces at
factories at the lowest elevations first,
adding the height of the piece each time,
surplus treasury, and other thresholds
permitting.

The following tiny OID program
can play a game, although not very well.
Yes, that is really all the code needed! If
the other players do nothing each turn,
this program will eventually take over
most of the map in the basic game:

Sub R1 notmy Factory

Add R1 my Army

Build Army 1

Move Army 1

Halt

First, let’s explore the architecture
and environment. Then, we’ll, step
through this program line by line to see
what it does in more detail.

The OID Architecture
The OID language has no loops or
branching; all programs start at the

G E N E T I C A L G O R I T H M S

28 GAME DEVELOPER • FEBRUARY/MARCH 1996

Figure 1A. A Simple Game Map

beginning and run to the end. All OID
programs have an (arbitrary) maximum
of 25 instructions, including the Halt
required at the end. If an instruction in
the program does not specifically gener-
ate an order for a given piece, the default
orders for that piece are to defend, which
is the same as doing nothing.

A program generated randomly in
this language is guaranteed not to crash
or cause any other kind of harm and to
terminate in a finite time. This is neces-
sary so that the genetic algorithms can
“cross” and “mutate” programs without
regard to the validity of the instructions
or sequences of instructions. If a pro-
gram does not generate any meaningful
orders for a player, the pieces will just sit
and defend until the end of the game or
until they are destroyed by other players.
The worst thing a program can do is dis-
band all its armies and leave its factories
undefended. A program only considers
one turn in isolation. There is no provi-
sion to store information to be used in a
later turn or keep track of what an oppo-
nent is doing over time.

The Area Registers
There are four signed integer registers for
each area in the game: R0, R1, R2, and R3.
These have independent values in each
area and are processed (virtually) in paral-
lel. For example, the instruction Add R3
my Factory inspects each area, and, if the
area contains factories owned by the
player running the OID program, each
area has the number of factories in that
area added to the area’s R3 register. The
R3 registers in all other areas have zero
added to them and remain unchanged.

At every program start, area register
R0 is 1 for all areas, and R1, R2, and R3 are
0 for all areas. Most instructions that
can change R1 are conditional on the
value of R0 in the same area being
greater than zero. Thus, for most
instructions, if R0 is 0 or negative in a
given area, an instruction that modifies
R1 would be skipped for that area. In
any other area where R0 is greater than
zero, the instruction modifying R1 would
be executed. R2 and R3 are general pur-
pose area registers and have no special
restrictions.

OID Program Walk-Through
Now let’s take our sample program
above, line by line. We will consider the
game map in Figure 1A and assume we
are running the OID program for the
Red player. Figure 1B shows the first
turn of a game after running the pro-
gram. The pieces that have been
ordered to move are shown with arrows
indicating their moves.

Listing 1 shows the debug output
produced by the OID when it runs a
program, showing each instruction as it
is encountered and showing a register set
after any instruction that might modify
that register. In this particular example,
the numbers have been formatted in a
three-by-three matrix to positionally
match the areas they represent on the
game map.

Since we know the program starts
with all R0 registers set to 1 and R0 is not
changed anywhere, all instructions in
this program that operate on R1 registers
will be performed. Also, all R1 registers
will be initialized to 0.

The first line, Sub R1 notmy Factory,
will subtract the number of enemy or
unowned factories in each area from that

GAME DEVELOPER • FEBRUARY/MARCH 1996 29

Figure 1B. The First Turn of the Game

Turn 1
Sub R1 notmy Factory
R1 contains:

0 0 -3
0 -5 0
-3 0 -10

Add R1 my Army
R1 contains:

10 0 -3
0 -5 0
-3 0 -10

Build Army 1
built=0

Move Army 1
moved=8

R1 contains:
2 1 -3
1 1 0
-3 0 -10

Halt

Listing 1. Debug Output

area’s R1 register. After the Sub R1 notmy
Factory instruction, you can see the neg-
ative values of all non-Red owned facto-
ries in the game. The factory in the
upper left is already owned by the Red
player and does not qualify as a notmy
Factory, leaving the upper left R1 register
unchanged.

After the Add R1 my Army instruc-
tion, the upper left R1 register contains
10, since Red has 10 armies in upper left
area. No other registers are changed.

The Build instruction needs a little
more explanation. There are some other
specific purpose registers that are used by
the Build and Disband instructions, relat-
ing to the players’ current cash flow and
treasury situation. Unfortunately, they
are one of the weaker aspects of this
design, as they don’t provide much flexi-
bility to make decisions about the rela-
tive proportions of armies and spies or to
change these proportions under different
circumstances. They, like the area regis-
ters, are initialized to 0 at program start.
If we don’t change them, the Build

instruction will default to building exact-
ly enough armies to make the Army and
Factory totals the same.

The Build Army 1 instruction does
nothing, since Red currently has 10
armies and 10 factories.

The Build and Move instructions do
not have a register field and always use
the R1 register. The Move instruction
essentially queries all unordered armies
one by one to see if any want to move.
More specifically, it sorts all areas with
unordered armies by elevation and, start-
ing with the highest elevations and
working down, determines whether an
army should move.

First it removes the armies height
from that area’s R1 register and looks for
an adjacent area with the lowest eleva-
tion. If the lowest adjacent area is lower
that the origin area, the army is given
orders to move to the adjacent area, and
the adjacent area’s R1 register is
increased by the army’s height. The
adjacent area is immediately repositioned
in the Move’s sort list if necessary, and, if
there are still unordered armies in the
origin area, the next army is considered.
If an army is not moved, its height is
added back to the R1 register of its area
of origin, and the Move instruction pro-
ceeds to the next area in the list.

Now, the Move Army 1 instruction
moves eight armies, and, as you can see
in the R1 matrix following Move Army 1 in
Listing 1, it manages to even out the ele-
vations of the three adjacent areas. The
upper left is still one unit higher than its
neighbors, but since an army subtracts its
own height before considering a move,
the last army that was considered for
moving did not see a lower elevation.

Following with turn 2, seen in Fig-
ure 2A, Red has not encountered any
other players, but has gained the five fac-
tories in the center of the map. Skipping
down to the Build Army 1 instruction, we
see that it will now come into play, as
Red has more factories than armies.
Listing 2 shows the OID output for turn
2, and Figure 2B shows the map after
the run. The Build instruction had to
build five armies and choose between
two factories. As you can see in Listing
2, before the Build instruction, the ele-

G E N E T I C A L G O R I T H M S

30 GAME DEVELOPER • FEBRUARY/MARCH 1996

Figure 2A. Red’s Position Following Turn 2

Turn 2
Sub R1 notmy Factory
R1 contains:

0 0 -3
0 0 0
-3 0 -10

Add R1 my Army
R1 contains:

2 1 -3
1 6 0
-3 0 -10

Build Army 1
built=5

R1 contains:
7 1 -3
1 6 0
-3 0 -10

Move Army 1
moved=7

R1 contains:
5 2 -3
2 1 1
1 0 -10

Halt

Listing 2. Turn 2

vation of the upper left factory was 2,
and the center factory was 6. The first
four armies were built at the lowest ele-
vation factory in the upper left, and for
the fifth factory a choice had to be made
because the elevations were equal.

When given such a choice, my
implementation always chooses the area
with the lowest internal index number,
which in this case is the upper left facto-
ry. The advantages are reproducible for
debugging and fitness testing for the
genetic selection, since in both cases a
given game between OID-run players
will always produce exactly the same
result. The disadvantages are that on a
rotationally symmetric board, OID play-
ers will not play symmetrically, and
when playing against a human, OID
players are very predictable, once you get
to know them and the map.

As you can see in Figure 2B, this
Red program does not protect the center
factory very well. In fact, if the same
OID program was playing for a different
player from a similar start in the lower
right corner, that player would take the
center factory from Red on turn 3.

Applying the
Genetic Algorithms
Now we have a design that may support
genetic algorithm evolution. After a
quick review of the genetic algorithm
technique and some hand-constructed
examples, I’ll try to evolve some new
players with the OID that was con-
structed with the design outlined here.

The genetic algorithm technique
for solving a problem is, simply stated:
1. Start with a pool of candidate solu-

tions.
2. Evaluate the fitness of each solution.
3. Replace some solutions with combi-

nations of others.
4. Possibly make random modifications

to the newly created solutions.
5. Go to step 2.

With the proper fitness function for
step 2, selection criteria for step 3, and
mutation rate in step 4, your pool of
solutions should improve as this process
iterates.

Generating an initial pool of OID
programs is, by design, reasonably sim-

ple. They don’t have to be good, but
they have to play well enough that if we
put them in a game they would do better
than just sitting in their initial positions.
We have seen this program play well
enough for this.

In this implementation, we can only
evaluate relative fitnesses of the OID
programs. To do that, they must play
against each other. The scoring system I
use can be thought of as food for the
programs. The programs consume a set

amount of food to enter a tournament,
and the winners are rewarded with more
food. After a number of games, the food
will be roughly proportional to the rela-
tive fitness of a program, and when a
program’s food supply goes below zero,
it becomes a candidate for replacement.

The game allows up to four players,
letting the OID evolution engine evalu-
ate four players relative to each other at
one time. The map in the basic game
does not necessarily contain starting

GAME DEVELOPER • FEBRUARY/MARCH 1996 31

positions of equal fairness, so four games
are always played as a tournament, with
the players rotating seats after each
game. I could have used all 24 possible
combinations of four players in four
seats, but it seemed like overkill. After
each tournament, each participating pro-
gram receives the average of its scores
from the four games in food points.

I wrote the Evolution Engine to
allow the user to control most things
that seemed interesting, including:
• The maximum food a pool member

can store

• How much food it costs to enter a
tournament

• How much food it costs when chosen
as a parent

• How much food a newly created pool
member starts with

• The mutation rate
• How parents are chosen
• How pool members are chosen for

each tournament.
There are many possible combina-

tions of parameters and techniques,
some more or less efficient than others,
and some that do not produce useful
evolution at all. We could write yet
another genetic algorithm to evolve an
efficient parameter set for this one. The
description that follows is an extremely
over-simplified version of what the OID
does, without worrying too much about
parameter settings.

A (Simplified)
Tournament Walk-through
Four pool members are chosen to play a
tournament. I wrote the following four

programs by hand for this example of
player evolution:

// Gene 0 (from above)

Sub R1 notmy Factory

Add R1 my Army

Build Army 1

Move Army 1

Halt

// Gene 1

Add R1 my Army

Mul R1 5

Build Army 2

Move Army 1

Halt

// Gene 2

Distf R1

Distf R1

Add R1 my Army

Move Army 5

Build Army 1

Halt

// Gene 3

Sub R1 notmy Factory

Avg R1 1

Add R1 my Army

Move Army 1

Build Army 1

Halt

After running a tournament with
these programs, the results shown in
Table 1 were produced. This matrix
shows the gene programs in the columns
and the seating positions in the rows.
As you can see in the first column, gene
0’s average score from the four games
was 60 points. The results from the four
individual game scores are placed diago-
nally in the matrix, so the map positions
can also be scored in the rows. I use this
to help me tune the starting positions as
much as possible for fairness. (Because
of rounding, scores from any given game
or tournament will often add up to less
than 100. So far, no computer players
have evolved sufficiently to complain.)

In this particular tournament, Red
seems to be a weaker position than
Green, but this minor difference could
easily change with different players.
Also, with these numbers, we might do

G E N E T I C A L G O R I T H M S

32 GAME DEVELOPER • FEBRUARY/MARCH 1996

Gene 0 1 2 3

Red 27 0 0 24 12
Yellow 56 1 18 0 18
Green 100 4 18 21 35
Blue 59 0 14 52 31

Score 60 1 12 24

Table 1. First Tournament

Figure 2B. The Map after Running OID

some statistical comparison between the
seating results in the right most column
and the gene score results across the
bottom.

For example, if the Red position
won every game played, the tournament
scores for each gene would be 25, and
we wouldn’t have learned anything
except to play Red if you want to win.
You could play around a little with sta-
tistical analysis in an attempt to evalu-
ate the significance of any tournament.
However, because we rotate the seating
positions, if a game is not fair, it will
tend to have only minimal effect on the
relative fitness comparisons of the
genes, since they will tend to get very
similar scores.

Survival of the Win(est)
Let’s assume that gene 1 needed to win
more than 1 food point to survive and is
replaced. The OID implements gene
crossing by taking a random number of
instructions from the beginning of one
program and concatenating them to a
random number of instructions from
the end of another program. The ran-
dom numbers are chosen, so the result-
ing program never exceeds the 25
instruction limit.

If we choose the new parents from
the two highest scoring genes, 0 and 3,
and cross them without mutation, we
might get the following result:

Sub R1 notmy Factory // 0

Add R1 my Army // 0

Build Army 1 // 0

Avg R1 1 // 3

Add R1 my Army // 3

Move Army 1 // 3

Build Army 1 // 3

Halt // 3

There is now a redundant Build
instruction of which, in this particular
program, the second will never build
anything. However, the interesting
thing is that some instructions have
been inserted between a Build and Move
instruction. Build and Move are using
different elevation maps to make their
decisions. None of the original four
programs does this.

Let’s run another tournament with
the new gene 1. The results are shown
in Table 2. There were no miracles here,
but the new gene 1 is a definite improve-
ment over the old.

Does It Really Work?
I loaded the original four gene programs
into the OID as the first of 50 pool mem-
bers. I filled the remaining 46 pool
entries with random crosses and muta-
tions of the original four. I locked the
original four so they would not be deleted
if they ran out of food; they would just
maintain a negative food supply. Then I
ran 300 tournaments or 1,200 total games
on a map that has 24 areas. This took
about 30 minutes on my 486DX2-66. I
scanned the resulting pool for a gene with
a high food score and found the following
program for gene 48:

Sub R1 notmy Factory

DistF R1

Mul R1 5

Add R1 my Army

Move Army 1

Build Army 1

Add R1 my Army

Build Army 1

Move Army 1

Halt

I noticed that all four original pro-
grams showed a food supply in the nega-
tive hundreds. Just to be sure, I set up a
tournament with this new program and
three of the original genes: 0, 2, and 3,
just to see what would happen. Gene 48
scored 100 in all four games!

I played a game as a human with
the original genes 0, 2, and 3 as the
opponents, and they were pretty easy to
beat. I won after just a few turns. Then,
I played another with gene 48 running
the other three opponents, and I had to
work a little bit to win. In fact, a couple
of turns took quite a bit of thinking, and
I came close to losing factories more
than once. For 30 minutes of evolution,
that’s not too bad.

Seeing the Enemy
Between the other users of the OID
program and me, we’ve run a little more

than a million tournaments. Many of
the newly evolved players can consis-
tently beat me—that is, until I learn
what they are doing. The game inter-
face allows human players to run an
OID program as an advisor and accept,
ignore, or modify the orders advised.
Because I can learn techniques for play-
ing my game from them, I get a little
better and can eventually beat the better
ones more often than not.

With a big enough map, say 50 or
more areas, which is a little more than a

Risk map and a little less than Diplo-
macy, I always seem to make a mistake
somewhere, and the enemy breaks
through the front lines. This almost
always leads to unrecoverable disaster—
even when I use spies, and no OID pro-
gram has evolved to use spies very well.

All in all, I’ve got some tough
opponents, which I didn’t have to spend
weeks or months writing. I don’t cheat,
and occasionally I even feel good about
it when I lose because, after all, I creat-
ed them, even if only indirectly. ■

Don O’Brien is on a quest for ways to
make a living and have a life at the same
time after many long years of PCB CAD
system design. You can reach him at
71702.2255@compuserve.com.

GAME DEVELOPER • FEBRUARY/MARCH 1996 33

Tom Ray’s Tierra program is
described in “An Approach to the
Synthesis of Life” (Artificial Life II,
Addison-Wesley 1992, pp. 371-408).

Gene 0 1 2 3

Red 27 25 16 24 23
Yellow 39 28 18 28 28
Green 29 21 18 21 22
Blue 33 25 14 25 24

Score 32 24 16 24

Table 2. Second Tournament

XSplat
Revisited

X S P L A T R E V I S I T E D

W
itty subject headings and
an engaging opening line
stump hundreds of techni-
cal writers every month.
The technical part of an
article like this comes easi-
ly; a programmer should be
able to crank out several

pages describing a piece of code if he or
she has thought it through carefully. It’s
repackaging all that technical drivel into
human speech that makes the writing
tough.

This month, I hit a wall trying to
segue from my last XSplat article to
this one. I wanted to talk about how
I’ve presented enough XSplat in the
last few installments of this series to
move away from examining multiple
implementations of the platform-spe-
cific stuff and toward demonstrating
the real gold mine of cross-platform
development—which is, of course, the

ability to tune code independently of
the target platform.

My girlfriend suggested I start the
article by telling a few jokes. Relax the
crowd a bit. Your basic toastmaster type
of stuff. I thought about trying the
“three strings walk into a bar…” bit, but
I think I’ll just skip the preamble and
cut to the chase.

But before I begin, I should
remind you that the code for this article
(and for others in this magazine) is
available at the Game Developer ftp site,
which is in ftp://ftp.mfi.com in the
/pub/gamedev/src directory, or on
CompuServe in the Game Developer
Library of SDFORUM.

XSplat Plumbing
We need to look at two things related to
the framework—they’ll fill in a couple of
gaps before we get started on this
month’s antics.

34 GAME DEVELOPER • FEBRUARY/MARCH 1996

Figure 1. Ball and Paddle Motion

1 Pixel

9 Pixels

1 Pixel
1 Pixel 49 Pixels 1 Pixel

Ball: Paddle:

New Position (Draw) Old Position (Erase) Overlap (Unchanged)

����
����
����
����

���
���
���
���

���
���
���
���

�
�
�
�

��
��
��
��

������
������
������
������

� � ��

I promised to provide a SwapRect
function to augment the SwapBuffer
function, which is all we’ve had until
now. On both Macintosh and Win-
dows, this is just a general case of the
SwapBuffer code, so I’ll leave you to
guess at its implementation or sneak a
peek at the Game Developer ftp site.
The function prototype looks like this:

void COffscreenBuffer::SwapRect(int

Left, int Top, int Right, int Bottom)

const;

Here’s a hint. You can now imple-
ment COffscreenBuffer::SwapBuffer as an
inline call to COffscreenBuffer::SwapRect
like this:

inline void COffscreenBuffer::Swap

Buffer(void) const

{

SwapRect(0, 0, Width, Height);

}

SwapRect is bottom-right exclusive,
meaning that column Right and row Bot-
tom don’t get copied. To swap a single
pixel (a 1-by-1 rectangle), call
SwapRect(x, y, x+1, y+1).

We’re also going to need a func-
tion to query the system clock. Macin-
tosh and Windows both provide
straightforward ways to get this informa-
tion, so we can just do some simple con-
ditional compilation. Here’s the function
we’ll use for now:

inline long unsigned GetMillisecond

Time(void)

{

#if defined(_WINDOWS)

return timeGetTime();

#elif defined(_MACINTOSH)

return (long unsigned)TickCount() *

1000 / 60;

#endif

}

On Windows, timeGetTime returns
the current value of the multimedia
timer, in milliseconds. Under Windows
NT, this function can have latencies
around 5 to 10 milliseconds, depending
on the hardware and NT version. The
solution to this latency problem is to use
QueryPerformanceCounter, but I’m not
going to do that right now. Under Win-
dows 95, timeGetTime is millisecond accu-
rate. On the Macintosh, TickCount
returns the number of ticks since the
computer started, with one tick being 1/60

of a second, so it’s accurate only to about
17 milliseconds.

Now that we’ve added these plat-
form-specific implementations to our
XSplat repertoire, we can tackle the plat-
form-independent problem of speeding
up graphics. I’ll shut up about XSplat for
the rest of this article.

Shoveling Dirt
Watching the sprite move in the sample
program made me feel like I was watch-
ing the arrival of the next Ice Age in real
time. There aren’t many games that
could be slower: if you played it for too
long, spiders may have started spinning
webs across your arms. I promised to
make it faster, though, and that’s what
I’m going to do.

Editor’s Note: In Part II of this series,

which appeared in the December

1995/January 1996 issue, Jon Blossom

used a simple game format to demon-

strate his approach to cross-platform

programming that played similarly to

the classic Atari video game “Breakout.”

Jon and the Editors of Game Devel-

oper want to remind our readers that

“Breakout” is a protected trademark

and copyrighted work of Atari Corp.

(copyright 1983-1996 Atari Corp., all

rights reserved). Unauthorized use of

others’ code or audiovisual elements

may constitute a violation of the

owner’s intellectual property rights. Use

of the “Breakout” name in Jon’s pro-

gramming exercise was not intended,

and should not be interpreted, as an

endorsement by Game Developer of

any unauthorized use of Atari’s “Break-

out” trademark or copyrighted game.

We regret any misunderstanding.

The code Jon has written for this series

of articles is now available on the

Game Developer ftp site, ftp://ftp.mfi.

com/pub/gamedev/src/. It includes the

various techniques and utilities dis-

cussed in the series, and a new game to

demonstrate their use.

Jon Blossom

GAME DEVELOPER • FEBRUARY/MARCH 1996 35

Speeding up a game that ignores
the basic code vocabulary of game pro-
gramming is a no-brainer. Ours is basi-
cally a sprite-based game, and no soft-
ware-sprite-based game should be with-
out dirty rectangles. I’m guessing that
anyone reading this magazine has heard
of dirty rectangles, but here’s a quick
review: a dirty rectangle algorithm lets
you take advantage of visual similarities
between frames by updating only the
areas of the screen that have changed.

In one implementation of a dirty
rectangle algorithm, an application stores
an image of the game in an offscreen
buffer. When an object in the game
moves, it erases the object in its old posi-
tion in the buffer and draws it again in
the new position, recording the coordi-
nates of the areas affected by the change.
To update the view, the game only has to
blt the areas that have changed to the
screen.

In my sample game, I redrew and
copied the entire game to the screen
every frame, even though only a small
portion of the rendered game changes
when the sprites move. Look at some
numbers, and you’ll see why dirty rec-
tangles are great. In the entire 500-by-
350-pixel window, there are 175,000
pixels, but the only things that change
position in an average frame are small
sprites. The ball is 10-by-10 and moves
diagonally one pixel in either direction,
so it affects an 11-by-11—or 121—
pixel area. The player’s piece is 50-by-
10 and will move one pixel horizontally,
so it affects an area that’s 51 by 10, or
510 pixels.

In other words, the game updates
100% of the frame even though only
0.32% of the frame changes. What idiot
would do that? We can cut away those
749,369 extra pixels by shoveling only
the dirty areas to the screen.

In fact, every pixel in the ball is the
same color, so there’s no point in redraw-
ing the whole thing. All we have to do is
erase the trailing edge and draw in the
leading edge, so instead of affecting 121
pixels, the moving ball actually changes
only 38 pixels. The same goes for the
player’s piece: instead of 510 pixels, it
actually changes only 10 pixels in front of

it and 10 pixels behind it, as shown in
Figure 1. Only 0.03% of the image
changes every frame.

There’s a tenfold difference between
0.03% and 0.32%, but I’m going to
implement the 0.32% version anyway.
The truth is, it’s not going to make much
of a difference. Video bandwidth, not

main memory bandwidth, is generally a
larger bottleneck, and we’re still going to
swap in the complete 11-by-11 and 51-
by-10 areas. If the sprites were larger, it
would make sense to spend more effort
optimizing the blts, but this will be plen-
ty fast. Besides, my computer freaked out
on me, and I had to kill off my compiler
before I could implement the 0.03% algo-
rithm.

Timing Valves
The source code for the 0.32% dirty rec-
tangle rendering algorithm appears in
Listing 1. But wait! There’s more! If you

implement that algorithm and try to play
the game, you’ll find that the Ice Age
has become the Warp Age. Now we’re
in game programmer’s heaven—that
mythical land where our game does
everything we want it to do, and it’s
actually too fast.

That’s wonderful. Slowing a game
down is infinitely easier than speeding it
up. We just use the timing functions I
introduced earlier to put two valves on
the game that control the speed of the
paddle and the speed of the ball. We’ll
need two new members of CPad-

dleGameWindow, called NextBallTime and
NextPaddleTime, which tell the game
when next to animate the two pieces,
and two others, called BallSpeed and Pad-
dleSpeed, which tell the game how to
compute the NextBallTime and the
NextPaddleTime.

During Idle, the game checks the
current time. If it’s later than NextBall-
Time, it calculates the motion of the ball
and advances NextBallTime to be the cur-
rent time plus BallSpeed. If it’s later than
NextPaddleTime, it calculates the motion
of the paddle and sets NextPaddleTime to
be the current time plus PaddleSpeed. We
control the speed of the game by adjust-
ing the two speed variables. The higher
the speed value, the slower that piece of
the game will move.

Listing 1 shows the heart of the
modified CPaddleGameWindow::Idle code.
To help experiment with it, I also imple-
mented code in KeyDown, so you can con-
trol the ball speed using the + and - keys.
You’ll find that code on the ftp site if
you’re interested.

Full Throttle
The coolest thing about timing valves is
that you can open them up as the game
progresses, pushing the game faster and
faster as the player completes more and
more levels. To determine whether a
player has completed a level, CPad-
dleGameWindow keeps track of how many
blocks remain using the BlockCount
member, decremented by CPad-

dleGameWindow::HitBlock when a wall is
destroyed. If BlockCount reaches zero,
CPaddleGameWindow::InitGame will reset
for the new level.

X S P L A T R E V I S I T E D

36 GAME DEVELOPER • FEBRUARY/MARCH 1996

A dirty rectangle

algorithm lets you

take advantage of

visual similarities

between frames

by updating only

the areas of the

screen that have

changed.

Every five complete levels, we’ll
increment the number of hits required
to destroy each block, and for every
level within those five, we’ll increase
the ball speed by seven frames per sec-
ond. If we include a CurrentLevel mem-
ber variable, the number of hits

required to destroy a single block will
be CurrentLevel/5 + 1, and BallSpeed
will be 1000 / (30 + 7 x (CurrentLevel %
5)). Adding a few entries to the kColor-
Block block array supplies colors for
blocks requiring more than one hit to
destroy.

Listing 2 shows the new version of
CPaddleGameWindow::InitGame that imple-
ments this behavior for us. Only one
problem (for now): if you’re playing the
game on a system with a low-resolution
timer, the timing valves don’t work as
smoothly as they should. For instance, if

GAME DEVELOPER • FEBRUARY/MARCH 1996 37

// Perform any velocity changes due to bounces

if (BounceX) BallXSpeed = -BallXSpeed;
if (BounceY) BallYSpeed = -BallYSpeed;

}

//——————————————————————————————-
// Follow the ball with the paddle center when in demo mode,
// allow the user to control the paddle in play mode

if (CurrentTime >= NextPaddleTime)
{

// Erase the paddle
int PaddleDirtyLeft = PaddleX - kPaddleWidth/2;
int PaddleDirtyRight = PaddleX + kPaddleWidth/2;
FillRectangle(pBuffer,

PaddleX - kPaddleWidth/2, kPlayAreaBottom - kPaddleHeight,
kPaddleWidth, kPaddleHeight,
kColorGameBackground);

NextPaddleTime = CurrentTime + PaddleSpeed;

if (IsDemoMode)
{

if (PaddleX < BallX + kBallSize/2) ++PaddleX;
else if (PaddleX > BallX + kBallSize/2) —PaddleX;

}
else
{

PaddleX += PaddleXSpeed;
}

// Make sure the paddle doesn’t move out of the play area!
if (PaddleX < kPlayAreaLeft + kPaddleWidth/2)

PaddleX = kPlayAreaLeft + kPaddleWidth/2;
else if (PaddleX > kPlayAreaRight - kPaddleWidth/2)

PaddleX = kPlayAreaRight - kPaddleWidth/2;

// Enlarge the paddle’s dirty rect
if (PaddleX - kPaddleWidth/2 < PaddleDirtyLeft)

PaddleDirtyLeft = PaddleX - kPaddleWidth/2;
if (PaddleX + kPaddleHeight/2 > PaddleDirtyRight)

PaddleDirtyRight = PaddleX + kPaddleWidth/2;

// Draw the paddle in its new position
FillRectangle(pBuffer,

PaddleX - kPaddleWidth/2, kPlayAreaBottom - kPaddleHeight,
kPaddleWidth, kPaddleHeight,
kColorPaddle);

pBuffer->SwapRect(PaddleDirtyLeft,
kPlayAreaBottom - kPaddleHeight,
PaddleDirtyRight, kPlayAreaBottom);

}

pBuffer->Unlock();
}

void CPaddleGameWindow::Idle(void)
{

// Don’t do anything while backgrounded
if (!IsActiveFlag)

return;

// Control the frame rate
long unsigned CurrentTime = GetMillisecondTime();
if (CurrentTime < NextBallTime &&

CurrentTime < NextPaddleTime)
return;

//——————————————————————————————-
// Prepare the buffer

COffscreenBuffer* pBuffer = GetOffscreenBuffer();
if (!pBuffer)

return;

pBuffer->Lock();

if (CurrentTime >= NextBallTime)
{

NextBallTime = CurrentTime + BallSpeed;

// Erase the ball
int BallDirtyLeft = BallX;
int BallDirtyRight = BallX + kBallSize;
int BallDirtyTop = BallY;
int BallDirtyBottom = BallY + kBallSize;
FillRectangle(pBuffer,

BallX, BallY, kBallSize, kBallSize,
kColorGameBackground);

//————————————————————————————-
// Move the ball and calculate a bounce off any walls

// ***** CODE OMITTED: SAME AS LAST MONTH *****
// ***** AVAILABLE ON THE FTP SITE *****

// Enlarge the ball’s dirty rect
if (BallDirtyLeft > BallX) BallDirtyLeft = BallX;
if (BallDirtyRight < BallX + kBallSize)

BallDirtyRight = BallX + kBallSize;

if (BallDirtyTop > BallY) BallDirtyTop = BallY;
if (BallDirtyBottom < BallY + kBallSize)

BallDirtyBottom = BallY + kBallSize;

// Draw the ball in its new position
FillRectangle(pBuffer,

BallX, BallY, kBallSize, kBallSize,
kColorBall);

pBuffer->SwapRect(BallDirtyLeft, BallDirtyTop,
BallDirtyRight, BallDirtyBottom);

//————————————————————————————-

Listing 1. Mostly Optimized XSplat

you’re playing on a Macintosh, GetMil-
lisecondTime returns numbers in incre-
ments of 17. The six-millisecond
changes in ball speed won’t be noticeable
for three levels, when they finally exceed
the resolution of the timer. At that
point, you’ll see one big jump in the
speed of the ball. Timer resolution can
be a huge hassle for programs like this,
but it’s a topic for another day.

Speeding it up and adding increasing
levels of difficulty pushes our paddle game
play forward a long way. Players can still
drop the ball with no penalty, which
means they don’t actually have to do any-
thing, but we can fix that later.

A Frayed Knot
As for the three strings and the bigoted
bartender, I can’t even remember the
whole joke, I can only remember how
bad it is. ■

You can reach Jon Blossom via e-mail
at blossom@slip.net or through Game
Developer magazine.

X S P L A T R E V I S I T E D

GAME DEVELOPER • FEBRUARY/MARCH 1996 39

void CPaddleGameWindow::InitGame(void)
{

// Start the paddle in the middle of the play area, not moving
PaddleX = (kPlayAreaRight - kPlayAreaLeft)/2 + kPlayAreaLeft;
PaddleXSpeed = 0;
// Start the ball just above the paddle
BallX = (kPlayAreaRight - kPlayAreaLeft)/2 +

kPlayAreaLeft - kBallSize/2;
BallY = kPlayAreaBottom - kBallSize - kPaddleHeight;
// Move the ball towards the upper-left
// TODO: Randomize initial ball velocity
BallXSpeed = -1;
BallYSpeed = -1;
// Start Slowly - ball at 30 frames per second, increasing 7 fps every level
BallSpeed = 1000 / (30 + 7 * (CurrentLevel % 5));
NextBallTime = GetMillisecondTime() + BallSpeed;
// Initialize the game field
BlockCount = kWallWidthBlocks * kWallHeightBlocks;
int HitCount = CurrentLevel / 5 + 1;
int Count;
for (Count = 0; Count < BrickCount; ++Count)

GameField[Count] = HitCount;
// Draw the complete initial game state
COffscreenBuffer *pBuffer = GetOffscreenBuffer();
if (pBuffer)
{

pBuffer->Lock();
DrawCompleteGameState();
pBuffer->Unlock();

}
}

Listing 2. XSplat Level Initialization

Organizing User Input,
Part II: Mouse, Timer, and
User-Defined Events

O R G A N I Z I N G U S E R I N P U T

W
elcome back! Last time, if
you recall, we discussed the
input queue concept, the
priority queue implementa-
tion of the input queue man-
ager, and how to capture and
enqueue keyboard events. In
this concluding article, we’re

going to look at the other types of events
the input queue manager can handle:
those events generated by the mouse and
timer as well as events defined and posted
by the user. As an added bonus, we’re also
going to talk about drawing the mouse
cursor ourselves, in any video mode, so we
don’t have to worry about whether or not
the mouse device driver supports that
mode.

Finally, at the end of the article, I’ll
introduce a simple example game that’s
both gratuitously violent and a fine
demonstration of the input queue manag-
er’s capabilities.

Timer Events
The input queue manager abstracts the
interface to the system timer through
countdown alarms. When an alarm is ini-
tialized, it’s given a starting count. With
each clock tick, the alarm’s count is decre-
mented. When the alarm’s count reaches
zero, a timer_alarm event posts to the
input queue, shown in Figure 1.

Alarms come in two flavors: one-shot
and continuous. A one-shot alarm is dis-
abled when its starting count reaches zero.
A continuous alarm reenables itself with
the same starting count as soon as it posts
a timer_alarm event. The input queue man-
ager provides up to 16 alarms, numbered 0
through 15, which are enabled using the
INPQ_set_alarm() function. This routine
accepts an alarm number and the starting
count. It also takes a Boolean value indi-
cating whether or not one-shot operation
is desired.

Before the alarm abstraction is feasi-
ble, we need to provide a timer with a res-
olution that is fine enough to be useful.
Let’s face it, the PC’s standard resolution
of 54.9 ms just doesn’t cut it. To much can
happen in 54.9 ms, especially with today’s
computers. Even the resolution that I set-
tled on, 1 ms, is rather coarse; but if it
were any faster, we’d spend altogether too
much time in the timer interrupt handler
to get any other work done.

Without going into too much gory
detail, the programmable interval timer
(PIT) chip has three timer channels, each
dedicated to a specific task. Channel 0
handles the system clock, channel 1 takes
care of DMA memory refresh, and chan-
nel 2 controls the PC speaker.

Of the three channels, we are going
to choose to share the channel controlling

40 GAME DEVELOPER • FEBRUARY/MARCH 1996

Figure 1. Timer Event Structure
31 0

Timestamp

Alarm

��������
��������
��������
��������

Ti
m

er

the system timer: channel 0. We certainly
wouldn’t want to take over the channel
controlling memory refresh (for obvious
reasons), while the output line of the other
channel is connected directly to the PC
speaker and can’t be made to generate an
interrupt.

Listing 1 contains the input queue
manager timer control routines. When the
machine starts up, PIT channel 0 is pro-
grammed by the PC BIOS to interrupt the
machine 18.2 times a second (every 54.9
ms). When the input queue manager timer
is initialized, it first reprograms this chan-
nel to a 1 ms resolution, which causes
interrupts to occur 1,000 times a second. It
then replaces the timer interrupt handler
with our own specially constructed inter-
rupt handler. Our handler counts the
number of clock ticks that have elapsed
and calls the BIOS timer interrupt handler
every 54.9 ms (approximately). In addi-
tion, our handler counts down each of the
16 alarms and, if appropriate, generates
timer events for alarms with expired
counts. Alarms in continuous mode are
reinitialized after their timer events have
been enqueued.

Mouse Events
Until now, whenever we’ve wanted to
gather events from a PC input device, the
input queue manager has had to usurp
control of that device at the interrupt han-
dler level. While this approach certainly
works, it is not a method I recommend to
novices. Even veteran PC programmers
can run up against unanticipated problems
leading to frustrating hours of debugging.

Luckily for us, we don’t need to use
this method to take control of the mouse.
When mouse support was added to PCs,

someone took the time to design a well-
thought-out and complete API to it. The
mouse API is available after the mouse
device driver has been loaded (this driver is
usually supplied with the mouse hard-
ware). Once loaded, the mouse driver API
is available via interrupt 33h and provides
an interface similar to MS-DOS’s inter-
rupt 21h services.

The mouse API provides a number
of features we’ll make use of: mouse
detection and initialization, movement
range and sensitivity adjustment, and,
most importantly, the ability to specify a
mouse event handler.

Mouse Initialization
Our initialization routine will configure
the mouse to take full advantage of the
desired graphics mode and install our
mouse event handler. Subsequently, any
mouse events that we’ve requested notifi-
cation on (mouse movement, button
presses, and so on) will cause our mouse
event handler to be called. From there, we
can figure out the type of the mouse event
and whether or not an EVENT object should
be created for it and posted to the input
queue.

Listing 2 contains excerpts from the
input queue manager’s mouse event code.
Initialize_mouse() is called when the
client specifies that mouse input is desired.
Because the mouse handler supports any
graphics mode for which a draw_mouse()
routine has been implemented, the initial-
ization routine accepts parameters specify-
ing the current video mode.

Since the first pixel of all video
modes is assumed to be at Cartesian coor-
dinates (0,0), the initialization routine only
requires that the user supply the maximum

Unfortunately, the

keyboard is only half

the battle. By con-

trolling timer,

mouse, and event

queues, you can

take absolute con-

trol of input.

Mike Michaels

GAME DEVELOPER • FEBRUARY/MARCH 1996 41

(x,y) coordinates of the mode. Pay close
attention to this detail; the maximum (x,y)
coordinate of a video mode is not the reso-
lution of the mode. For example, Mode
13h has a resolution of 320 by 200, but its

maximum coordinate is (319,199). We
also need to know how many bytes make
up a single scanline in the current mode
because drawing the cursor is an inherently
rectangular operation.

Finally, to support double buffering
(Mode 13h) and page flipping (Mode X),
we need a pointer to a routine that
returns the current frame buffer address.
This address is returned as a far pointer

O R G A N I Z I N G U S E R I N P U T

42 GAME DEVELOPER • FEBRUARY/MARCH 1996

#include “inpqpriv.h”
#pragma inline;

/*
** timer_events
*/

static void interrupt timer_events (void);

/* Local Data */

static void (interrupt *BIOS_timer_handler) (void) = NULL;
static u32 clock_ticks;
static u16 counter;

/* Interface Global Routines */

/*
** INPQ_set_alarm
*/

void INPQ_set_alarm (s16 alarmord, u16 milliseconds, BOOLEAN one_shot)
{

if (alarmord < 0 || alarmord > LAST_ALARM)
return;

if (milliseconds <= 0)
{

alarminit[alarmord] = -1;
alarm[alarmord] = -1;

}
else
{

if (!one_shot)
alarminit[alarmord] = milliseconds;
alarm[alarmord] = milliseconds;

}
}

/* Library Global Routines */

/*
** initialize_timer
*/

BOOLEAN initialize_timer (void)
{

if (!BIOS_timer_handler)
{

clock_ticks = 0;
counter = PIT_FREQ / MILLISECOND;
outp (PIT_COMMAND, PIT_SETFREQ);
outp (PIT_CH0, counter & 0xFF);
outp (PIT_CH0, (counter & 0xFF00) >> 8);
BIOS_timer_handler = getvect (TIMER_INT);
setvect (TIMER_INT, timer_events);
return True;

}
return False;

}

/*

** release_timer
*/

void release_timer (void)
{

if (BIOS_timer_handler)
{

outp (PIT_COMMAND, PIT_SETFREQ);
outp (PIT_CH0, 0);
outp (PIT_CH0, 0);
setvect (TIMER_INT, BIOS_timer_handler);
BIOS_timer_handler = NULL;

}
}

/*
** timer_events
*/

static void interrupt timer_events (void)
{

u16 i;
EVENT *e;

// adjust the count of the clock ticks
clock_ticks = clock_ticks + counter;

// time to call the BIOS timer to update the time of day?
if (clock_ticks >= BIOS_COUNT)
{

// adjust clock tick count and call BIOS timer interrupt han-
dler

// (don’t need to acknowledge interrupt since BIOS handler
will.)

clock_ticks -= BIOS_COUNT;
asm {

pushf
call dword ptr BIOS_timer_handler

}
}
else
{

// acknowledge interrupt
outp (PIC_REGISTER, NONSPECIFIC_EOI);

}

// process count-down timers, post events if appropriate
for (i=0; i<=LAST_ALARM; i++)

if (alarm[i] > 0)
{

—alarm[i];
if (!alarm[i])
{

// queue timeout event
e = allocate_event ();
e->type = timer_alarm;
e->data.timer.alarm = i;
alarm[i] = alarminit[i];

}
}

}

Listing 1. Timer.C

because it is not necessarily going to be
pointing to video memory.

The first thing the initialization rou-
tine does is grab a pointer to the InDOS flag.
This flag is nonzero when a DOS int 21h
function is currently processing. If this flag
is set when we enter our mouse event han-
dler, we immediately exit back to the
mouse driver (though the situation proba-
bly never occurs, it’s best to check for it).

Next, we ensure that the video sys-
tem is in graphics mode. The input queue
manager doesn’t support text mode
mouse cursors. After this, we actually
move on to initializing the mouse. Because
the input queue manager overrides a num-
ber of functions provided by the mouse
driver API, the names of all the functions
that actually talk to the mouse device dri-
ver are prefixed with an int33h_. The
int33h_init_mouse() routine requests the
mouse driver API determine if a mouse is
present and, if so, reset it to default opera-
tional values. If the mouse was properly
initialized, this routine returns a nonzero
value.

If the mouse was successfully initial-
ized, the mouse cursor interface is initial-
ized with a call to MCITF_init(). Here, all
the video mode parameters required by
initialize_mouse() are passed on to be
stored for later use. We will discuss the
mouse cursor interface and its associated
routines later.

By default, the mouse device driver
assumes a graphics resolution of 640 by
200. Because this is almost certainly not
the desired resolution, we call
int33h_set_mouse_limits() to adjust the
limits and sensitivity of the mouse. This
routine makes three calls into the mouse
driver API to set the horizontal limits
(0..max_x), the vertical limits (0..max_y),
and the sensitivity of the mouse.

The hardware mouse driver also ini-
tializes the mouse position at the center
of the screen. This position is no longer
going to be valid. Therefore, the initial-
ization routine calculates a new center
location from the maximum horizontal
and vertical positions and uses
int33h_set_mouse_position() to move the
cursor there.

The default configuration of the
mouse driver API does not provide a

mouse event handler. The client is expect-
ed to poll for changes in the mouse’s state.
Because we want to be notified automati-
cally when the mouse state changes, we are
going to introduce a mouse event handler
into the equation.

Int33h_set_event_handler() registers
a mouse event handler with the mouse
device driver. When a mouse event han-
dler is registered with the mouse device
driver, a mask of the events that the han-
dler is interested in is supplied. Subse-
quently, the mouse device driver will only
call the mouse event handler when those
specific events occur. The bit mask the
input queue manager passes to the mouse
device driver indicates that it will be han-
dling all mouse events.

Finally, we register the default cursor
shape with the mouse cursor interface via
the MCITF_shape() routine. The last thing
the initialization does before returning a
True indication is to set the mouse_visible
variable to -1 (for reasons I’ll explain).

Mouse Visibility
The mouse cursor is only made visible
when the mouse_visible variable transi-
tions from -1 to 0 on a call to
INPQ_show_mouse(). Subsequent calls to
INPQ_show_mouse() have no effect on this

value. Calls to INPQ_hide_mouse(), on the
other hand, always decrement this vari-
able. If the value transitions from 0 to -
1, the visible mouse cursor is hidden.
Thus, every call to INPQ_hide_mouse()
must be matched with a call to
INPQ_show_mouse() before the mouse will
again become visible, while excess calls
to INPQ_show_mouse() are ignored. These
semantics match those defined by the
mouse driver API.

Calls to INPQ_show_mouse() and
INPQ_hide_mouse() don’t just affect the visi-
bility of the mouse cursor, they also affect
whether mouse events are gathered. The
mouse event handler checks the mouse_vis-
ible variable before the mouse cursor
update and if it’s nonzero, exits the mouse
event handler altogether.

In some situations, this is the desired
effect, but if we’re double buffering or page
flipping, we want mouse events enabled
even when we’ve hidden the mouse cursor
so that we can draw the next frame. To
support this, the input queue manager
API includes two functions to show and
hide the mouse cursor without affecting
event gathering: INPQ_obscure_mouse() and
INPQ_unobscure_mouse().

The obscure and unobscure function-
ality is implemented at the lowest level,

GAME DEVELOPER • FEBRUARY/MARCH 1996 43

aaxx Mouse Event Flags Result
Bit 0 Mouse movement
Bit 1 Left button down
Bit 2 Left button up
Bit 3 Right button down
Bit 4 Right button up
Bit 5 Center button down
Bit 6 Center button up
Bits 7 to 15 Reserved (0)

bbxx Button State: Result
Bit 0 Left button is down
Bit 1 Right button is down
Bit 2 Center button is down
Bits 3 to 15 Reserved (0)

ccxx Horizontal (x) pointer coordinate
ddxx Vertical (y) pointer coordinate

ssii Last raw vertical mickey count
ddii Last raw horizontal mickey count
ddss Mouse driver data segment

Table 1. Register State when Mouse Event Handler is Called

O R G A N I Z I N G U S E R I N P U T

44 GAME DEVELOPER • FEBRUARY/MARCH 1996

#include “inpqpriv.h”
#include “mcitf.h”

/*
** initialize_mouse
*/

BOOLEAN initialize_mouse (s16 max_x, s16 max_y,
u16 bytes_per_scanline,
u32 (far *active_page) (void))

{
union REGS regs;
struct SREGS sregs;

segread (&sregs);
regs.h.ah = GET_INDOS_FLAG;
intdosx (®s, ®s, &sregs);

InDOS = MK_FP (sregs.es, regs.x.bx);

// make sure that we are in graphics mode (this handler
// is for use with the GFX library and doesn’t support
// text cursor updates).

regs.h.ah = GET_VIDEO_MODE;
int86 (VIDEO_INT, ®s, ®s);

if (regs.h.al <= 4 || regs.h.al == 7) // modes 0-4 & 7 are text
modes

return False;

if (!int33h_init_mouse ())
return False;

// call mode specific mouse initialization
MCITF_init (max_x, max_y, bytes_per_scanline, active_page);

int33h_set_mouse_limits (max_x, max_y, 8, 8);

current_x = (max_x + 1) / 2;
current_y = (max_y + 1) / 2;
int33h_set_mouse_position (current_x, current_y);
int33h_set_event_handler (ALL_MOUSE_EVENTS, mouse_events);
MCITF_shape (

default_cursor, default_width, default_height,
default_hotspot_x, default_hotspot_y, 1, 0);

mouse_visible = -1;
return True;

}

/*
** INPQ_show_mouse
*/

void INPQ_show_mouse (void)
{

// Only show the mouse cursor if the mouse_visible variable
// transitions from negative to zero.
if (mouse_visible == 0 || ++mouse_visible != 0)

return;
MCITF_draw (current_x, current_y);

}

/*
** INPQ_hide_mouse
*/

void INPQ_hide_mouse (void)

{
// only hide the mouse cursor if the mouse_visible variable
// transitions from 0 to -1.
//
if (—mouse_visible == -1)

MCITF_draw (-1, -1);
}

/*
** INPQ_mouse_visible
*/

BOOLEAN INPQ_mouse_visible (void)
{

return mouse_visible == 0;
}

/*
** INPQ_obscure_mouse
*/

void INPQ_obscure_mouse (void)
{

extern BOOLEAN MCITF_obscure;

if (!INPQ_mouse_visible ())
return;

if (!MCITF_obscure)
{

MCITF_draw (-1, -1);
MCITF_obscure = True;

}
}

/*
** INPQ_unobscure_mouse
*/

void INPQ_unobscure_mouse (void)
{

extern BOOLEAN MCITF_obscure;

if (!INPQ_mouse_visible ())
return;

if (MCITF_obscure)
{

MCITF_obscure = False;
MCITF_draw (current_x, current_y);

}
}

/*
** mouse_events
*/

static void far mouse_events (void)
{

// on entrance, registers are set up as follows:
//
// ax = mouse event flags:
// 0 = mouse movement
// 1 = left button down
// 2 = left button up
// 3 = right button down
// 4 = right button up
// 5 = center button down
// 6 = center button up

Listing 2. Excerpts from Mouse.C (Continued on p. 45)

GAME DEVELOPER • FEBRUARY/MARCH 1996 45

// 7-15 reserved (0)
// bx = button state
// 0 = left button is down
// 1 = right button is down
// 2 = center button is down
// 3-15 reserved (0)
// cx = horizontal (X) pointer coordinate
// dx = vertical (Y) pointer coordinate
// si = last raw vertical mickey count
// di = last raw horizontal mickey count
// ds = mouse driver data segment

s16 x, y;
s16 region;
u16 event_flags, event_mask, button_state;

asm {
push ax
push bx
push cx
push dx
push si
push di

push ds
push es

mov event_flags, ax
mov button_state, bx
mov x, cx
mov y, dx

mov ax, DGROUP
mov ds, ax

}

if (InMouseEvent) goto clear_mouse_event;
InMouseEvent = True;

asm {
mov cx, x
mov dx, y
mov current_x, cx
mov current_y, dx

// see if the cursor is visible to the user (mouse_visible ==
0)

test mouse_visible, 0xFFFF
jz draw_cursor
jmp clear_mouse_event

}

draw_cursor:
MCITF_draw (x, y);

if (*InDOS) asm jmp clear_mouse_event

asm {
// register event for this interrupt (if applicable)
push y
push x
call far ptr in_region

add sp, 4
cmp ax, -1

jne check_events
jmp clear_mouse_event
}

check_events:
asm {

mov region, ax

mov ax, 0
mov dx, event_flags
test dx, EF_MOUSE_MOVEMENT
jz button_down
or ax, mouse_move

}

button_down:
asm {

test dx, EF_MOUSE_BUTTON_DOWN
jz button_up
or ax, mouse_down

}

button_up:
asm {

test dx, EF_MOUSE_BUTTON_UP
jz verify_event
or ax, mouse_up

}

verify_event:
asm {

test ax, events_enabled
jnz queue_event
jmp clear_mouse_event

}

queue_event:
asm {

mov event_mask, ax

call far ptr allocate_event // returns far ptr to
event in dx:ax

cmp dx, 0 // null pointer returned?
je queue_overflow // drop event

mov bx, ax // move dx:ax => es:bx
mov es, dx

mov ax, event_mask
mov es:[bx].type, ax

mov dx, event_flags
mov cx, button_state

mov ah, 0
test dx, EF_LEFT_BUTTON
jnz set_left
test cx, BS_LEFT_DOWN
jz right_button

}

set_left:
asm {

or ah, LEFT_BUTTON
}

right_button:
asm {

test dx, EF_RIGHT_BUTTON
jnz set_right
test cx, BS_RIGHT_DOWN
jz center_button

}

set_right:

Listing 2. Excerpt from Mouse.C (Continued on p. 46)

within the routine that draws the mouse
cursor to the frame buffer. The show and
hide functionality, on the other hand, is
implemented at the topmost level, within
the input queue manager itself.

The obscure and unobscure model
does not follow the mouse driver API
nesting rules. Obscurity is maintained as
a Boolean value by the mouse cursor
interface rather than as a counter.

The Mouse Event Handler
Now, let’s examine the actual mouse
event handler. This handler is called by
the mouse driver any time a mouse event
occurs. Table 1 defines the state of the
CPU registers when this routine is called.
Because the interface is register based, I
decided to code the mouse driver in in-
line assembly language.

The first thing our mouse event
handler does is save the input data to the
stack. The x86 processors have never had
enough registers, so it just doesn’t pay to
keep values in them over the course of a
routine as large as this one.

One thing to pay close attention to
here is that the mouse device driver calls
our mouse event handler with its own
data segment in DS. To access our own
program specific data, we must reset the
data segment register. This is easily
accomplished by moving DGROUP, the
linker symbol for our data segment, into
DS.

Next, we do a little cursor house-
keeping. The current x and y coordinates
of the mouse cursor are copied to a pair
of global variables. These variables
maintain the input queue manager’s con-
cept of the current mouse cursor loca-
tion. We also draw the mouse cursor at
this point if it is currently visible (or
erase it if it ’s sti l l visible when it
shouldn’t be).

Now we’re ready to determine if we
need to translate the mouse event into an
input queue event. The first check we
make is to determine if we are within a
region the user registered to receive
mouse events from.

If the current mouse event has
occurred within a defined mouse region,
the region number is saved away for pos-
sible later use. Next, we build the event

type word and check to see if the client
requested notification for these specific
events. If so, an event will be posted to
the input queue. Figure 2 depicts the
structure of a mouse event.

The event is constructed and
enqueued by calling allocate_event() (I
described this routine in my previous arti-
cle). The event structure returned by this
routine is then filled in with the event
type, current state of all the buttons, the
region within which the event occurred,

and the current (x,y) coordinates of the
mouse cursor.

Mouse Regions
I’d like to spend just a little time talking
about mouse regions and their intended
use. The first thing I’d like to point out is
that mouse regions, unfortunately, are
brain-dead.

Mouse regions are rectangular areas
of screen space. When the mouse cursor
is within one of these regions, all mouse
events that have been requested by the
client are returned as input queue events.
Likewise, if mouse events occur outside
any mouse region, regardless of whether
the client enabled the mouse event, no
input queue events are posted.

On the plus side, mouse regions are
great for reducing the number of mouse
events enqueued. Most of the time, there
is no reason to handle movement events, it
just wastes processor cycles. Mouse
regions, by their very nature, eliminate the
majority of excess movement events.
Mouse regions work great for dialog boxes
and static introduction screens where there
are a number of boxes or buttons that can
be poked and prodded with the mouse
cursor.

Where mouse regions fail, though,
is with any sort of animation. This failure
is due mainly to the fact that mouse
regions cannot overlap. The current
implementation has no concept of over-
lapping regions and won’t allow a region
to be defined if it overlaps an existing
region. If you want to animate a sprite
over some region of the screen, do not
expect to be able to define an object that
the sprite can interact with anywhere
within the same region. It’s pretty obvi-
ous that mouse regions aren’t particularly
useful.

With these caveats in mind, we’ll
move on to the actual implementation of
mouse regions.

Mouse regions are maintained as a
stack of region lists. When INPQ_push
_mouse_regions() is called, a new entry is
placed on top of the region stack. The new
entry contains an empty region list.
INPQ_define_region() is then called with
the upper-left and lower-right screen coor-
dinates of the region being defined. If the

O R G A N I Z I N G U S E R I N P U T

46 GAME DEVELOPER • FEBRUARY/MARCH 1996

asm {
or ah, RIGHT_BUTTON

}

center_button:
asm {

test dx, EF_CENTER_BUTTON
jnz set_center
test cx, BS_CENTER_DOWN
jz set_attributes

}

set_center:
asm {

or ah, CENTER_BUTTON
}

set_attributes:
asm {

mov al, byte ptr region
mov es:[bx].attr, ax

mov ax, x
mov es:[bx].data, ax

mov ax, y
mov es:[bx].data+2, ax

jmp clear_mouse_event
}

queue_overflow:
asm {

inc lost_input
}

clear_mouse_event:
InMouseEvent = False;

asm {
pop es
pop ds
pop di
pop si
pop dx
pop cx
pop bx
pop ax

}

InMouseEvent = False;
}

Listing 2. Continued from p. 45

region doesn’t overlap with a previously
defined region, it is added to the current
region list. When you’re done with the
current list of regions, INPQ_pop_regions()
removes and discards the list of regions on
top of the stack. By default, the input
queue manager defines one region list con-
taining a single region encompassing the
entire visible screen. This region is never
popped by INPQ_pop_regions().

The Mouse
Cursor Interface
The mouse cursor interface defines a
mode-independent API that allows a
program to control how the mouse cursor
is displayed. The mouse cursor interface
comprises three functions: MCITF_init(),
MCITF_shape(), and MCITF_draw(). I’ve pro-
vided implementations of these three
functions for Mode 13h and Mode X.

All the mouse cursor interface rou-
tines are written in assembly language.
There really is no good reason that the
first two routines weren’t written in C.
They would certainly be more readable if
they had been. But when I started the
implementation of the input queue man-
ager, quite a bit was written in assembly
language, and I just haven’t seen any
pressing reasons to convert these routines.

Listing 3 contains the code to ini-
tialize the mouse cursor interface as well
as the code to change the mouse cursor’s
shape and hotspot. MCITF_init() initializes
the mouse cursor interface by storing
away the current video mode information.

MCITF_shape() updates the bitmap (or
masks) that control how the mouse cursor
is displayed. This routine accepts mouse
cursor shapes specified in one of two for-
mats: one bit per pixel or eight bits per
pixel.

In one-bit-per-pixel mode, the
bitmap pointer points to the start of two
concatenated masks. The first mask is
ANDed with the screen contents to create a
“hole” in the current image. The mouse
cursor is then displayed within the hole
by XORing in the second mask. To mini-
mize the amount of calculation required
when the mouse cursor is actually being
displayed, the AND and XOR masks are
expanded into eight-bits-per-pixel repre-
sentations as they are copied to the mouse

cursor save buffers within the mouse cur-
sor interface. Currently, the mouse cursor
interface doesn’t know how to deal with
16- or 24-bit color.

In eight-bits-per-pixel mode,
which I’ve dubbed direct mode in the
source code, the bitmap pointer points
to a block of memory that can be trans-
ferred verbatim to video memory. This
block of data is copied without transla-
tion to the mouse cursor save buffer.

One-bit-per-pixel mode is the clas-
sic method of drawing a mouse cursor. If
you use the change cursor shape routines
available via the mouse driver API, this
is the format that is expected. Eight-
bits-per-pixel mode was added because
it has become quite common in point-
and-click style games to change the
mouse cursor to some arbitrary bitmap
that isn’t representable using the AND/XOR
method of drawing the cursor.

Drawing the Mouse Cursor
The MCITF_draw() routine is called to erase
the previous mouse cursor from the cur-
rent frame and (possibly) redraw it at
another location. If you examine the code
in Listing 3, you’ll notice that while the
listing is long, it’s actually divided into
three distinct parts:
• Common initialization code
• Mode-specific code
• Common exit code.

This file must be compiled separate-
ly for Mode 13h and Mode X. Ideally,

you’ll choose one mode or the other with-
out needing to switch between them in
the middle of your program. The make-
files, provided in the archive, build both
types of libraries for you.

Let’s start at the top. After saving
away registers and making sure we know
what our data segment is pointing to, we
check to see if we’re being called recursive-
ly or if the mouse cursor is currently
obscured. Both conditions cause immedi-
ate exit.

Next, we determine where our frame
buffer is by calling the user supplied
active_page() routine (passed as a parame-
ter to MCITF_init()). This routine returns a
pointer to the current frame buffer. This
can be in main memory or somewhere in
video memory, it really doesn’t matter to
the MCITF_draw() routine. What is of con-
cern to us is that, for every allocated page,
we have a separate save space to store the
previous background and cursor clipping
information.

I designed the interface with the
expectation that, in Mode 13h, double-
buffering would be available through the
use of a single main memory buffer. In
Mode X, I assumed double-buffering or
triple-buffering would be available via
page-flipping. Because up to three frames
could be active simultaneously, I statically
allocated space for three mouse save areas.
These areas are initialized to -1 at startup.

The next section of code runs
through these save areas to see if it can

GAME DEVELOPER • FEBRUARY/MARCH 1996 47

Figure 2. Mouse Event Structure
31 0

Mouse
Region

�����
�����

���
���

M
ou

se
 m

ov
e

M
ou

se
 u

p
M

ou
se

 d
ow

n

Ce
nt

er
Ri

gh
t

Le
ft

Timestamp

Y-Coordinate X-Coordinate

O R G A N I Z I N G U S E R I N P U T

48 GAME DEVELOPER • FEBRUARY/MARCH 1996

;**
;** void MCITF_init (s16 max_x, s16 max_y,
;** s16 bytes_per_scanline,
;** u32 (far *active_page) (void))
;**

_MCITF_init proc far
arg _max_x:word, _max_y:word, _bytes_per_scanline:word,\

_active_page:dword

push bp
mov bp, sp

mov ax, _max_x
mov max_x, ax
mov ax, _max_y
mov max_y, ax
mov ax, _bytes_per_scanline
mov bytes_per_scanline, ax
mov eax, _active_page
mov active_page, eax

pop bp
ret

_MCITF_init endp

;**
;** BOOLEAN MCITF_shape (u8 far *bitmap,
;** u16 width, u16 height,
;** u16 hotspot_x, u16 hotspot_y,
;** u16 bits_per_pixel, u8 transparent)
;**

_MCITF_shape proc far
arg bitmap:dword, width:word, height:word, \

hotspot_x:word, hotspot_y:word, bits_per_pixel:word,\
transparent:word

local mask_size:word, direct:word=AUTO_SIZE

push bp
mov bp, sp
sub sp, AUTO_SIZE

push di
push si
push ax
push bx
push cx
push ds

mov ax, width
cmp ax, MAX_CURSOR_WIDTH
jg @@error_exit
mov cursor_width, ax

mov ax, height
cmp ax, MAX_CURSOR_HEIGHT
jg @@error_exit
mov cursor_height, ax

mov ax, hotspot_x
mov bx, hotspot_y
mov hot_x, ax
mov hot_y, bx

mov ax, transparent
mov mtransparent, al

mov ax, seg and_mask
mov es, ax
mov di, offset and_mask

mov ax, cursor_width ; calculate number of bytes
mov cx, cursor_height ; in the packed representation
mul cx
mov mask_size, ax

mov direct, 0

lds si, bitmap

cmp bits_per_pixel, 1
jne @@eight_bits_per_pixel

@@one_bit_per_pixel:
;
; es:di -> and_mask
; es:di+CURSOR_SAVE_SIZE -> xor_mask
; ds:si -> and bitmap
; ds:si+bx -> xor bitmap
;
mov cx, ax
shr cx, 3
mov bx, cx ; cx is count, bx is offset
mov al, 80h

@@set_mask:
test byte ptr [si], al
jnz @@set_and_mask
mov byte ptr es:[di], 0
jmp @@do_xor_mask

@@set_and_mask:
mov byte ptr es:[di], 0FFh

@@do_xor_mask:
test byte ptr [si+bx], al
jnz @@set_xor_mask
mov byte ptr es:[di+CURSOR_SAVE_SIZE], 0
jmp @@next_mask

@@set_xor_mask:
mov byte ptr es:[di+CURSOR_SAVE_SIZE], 0Fh

@@next_mask:
inc di
shr al, 1
jnz @@set_mask

dec cx
jz @@fini

mov al, 80h
inc si
jmp @@set_mask

@@eight_bits_per_pixel:
; In 8-bits/pixel mode, there is no and/xor masking going on.

We just copy the bytes as-is to the and_mask location and put them
; directly to the display when we draw the cursor.
;
; es:di -> and_mask
; ds:si -> bitmap
;
cmp bits_per_pixel, 8
jne @@error_exit

mov cx, mask_size
rep movsb

mov direct, 1
jmp @@fini

Listing 3. Excerpts from MCIINIT.ASM and MCISHAPE.ASM (Continued on p. 49)

match the current frame address, referred
to as the “current page,” with a previously
stored page value. If it encounters a -1
page value before it encounters a match-
ing page, it knows that the page has never
been seen before and can be allocated to
the current save slot.

Once we know where the save loca-
tion for the current frame is, we mirror its
contents to a series of stack variables.
Why? Because we don’t have enough reg-
isters that can be used as base registers in
16-bit mode (the same problem we
encountered when we were talking about
the mouse event handler). Instead, we get
to waste lots of time copying data to the
stack and later copying it back to its save
slot when a mouse is drawn or erased.
Once we’ve mirrored the data, it’s time to
move on to actually erasing the previous
mouse cursor.

For simplicity, the following discus-
sion is going to concentrate on drawing
the mouse cursor in Mode 13h. The
structure of the code in the Mode X
block is the same, it just has to do more
work to draw to the video buffer.

The first thing we check is whether
or not there is an existing cursor that

needs to be erased. If the screen offset
(stored in the cursor save area) is -1, there
isn’t a mouse cursor to erase. The screen
offset will be -1 in only two cases: the
first time MCITF_draw() is called and when
the cursor wasn’t drawn the last time the
current page was updated.

If there is a cursor on the current
page, all the required information is read
from the cursor save variables, and a loop
is entered to copy the save data from the
cursor save area to the current page, effec-
tively erasing the cursor from the page.

The drawing phase starts by writing a
-1 to the screen offset and checking to see
if we need to draw the cursor or not. If the
x-coordinate is less than zero, the cursor is
hidden, and we return immediately.

If the cursor isn’t hidden, we need to
reset a number of upkeep variables to their
default values. Mouse_x and mouse_y are the
(x,y) offsets into the mouse cursor bitmap
denoting the starting byte of the mouse
cursor. These values may be modified by
the clipping process. Mouse_skip is the dif-
ference between the width of the mouse
cursor and the number of bytes per scan-
line. If we’ve just drawn a row of the
mouse cursor, we can add this value to the
current x coordinate to get to the first byte
of the next row. Finally, mouse_width and
mouse_height are the clipped width and
height of the mouse cursor, respectively.

Before we can actually draw the
mouse cursor into the frame buffer, we
must clip it against the frame buffer’s
boundaries. All clipping takes place in
relation to the mouse cursor’s hotspot,
which is not necessarily going to be at the
upper left corner of the cursor rectangle.
We must clip in relation to the cursor’s
hotspot because the coordinate of the
hotspot is returned to the client when the
current mouse position is requested.

Clipping against the hotspot isn’t as
bad as it sounds because we are able to
clip the x- and y-axes independently. To
clip along the y-axis, we first subtract out
our y-axis hotspot position. If the resulting
y coordinate is greater than zero, then the
mouse cursor lies completely within the
display area vertically.

If the adjusted y-coordinate is nega-
tive, then we need to “shear off” the top
of the mouse cursor. We negate the y-

coordinate to find out how many pixels
we need to lose. This value is then added
to the mouse_y variable and subtracted
from the mouse_height. If the mouse_height
goes to zero, the mouse cursor is totally
obscured and need not be drawn.

Next, we clip the y-coordinate
against the bottom of the screen. We do
this by adding the height of the mouse
cursor to the previously calculated hotspot
coordinate and check to see if the result-
ing coordinate exceeds our maximum y-
coordinate. If so, we reduce the
mouse_height by the required amount and
again check to see if the height goes to
zero, exiting if it does.

Otherwise, we move on to clipping
along the x-axis, which I won’t go into
because it is analogous to the discussion of
y-axis clipping (replacing “top” references
with “left” and “bottom” references with
“right”).

After we’ve performed clipping, we
need to figure out where in the frame
buffer we need to draw the cursor. The
M13H_PIXEL_OFFSET macro figures this out in
an efficient manner. The offset is added to
the current frame buffer address, and the
result is placed in the screen offset save
location. Next, the offset into the mouse
cursor bitmap (or masks), specified by
(mouse_x, mouse_y), is calculated using the
MOUSE_OFFSET macro. With these two offsets
calculated, the rest of the work is just set-
ting up registers required for our draw
loop. The last check made before we actu-
ally draw anything is whether or not we’re
in direct draw mode or not.

Both draw loops are nearly identical;
for each pixel, the current page value is
grabbed and saved in the cursor save area.
New cursor data is placed in the display
buffer, either directly or via the AND/XOR
mechanism. While in direct draw mode,
there is an additional transparent pixel
check. If the current pixel value is equal to
the specified transparent pixel value, noth-
ing is drawn, and the background will
show through the mouse cursor.

When the entire mouse cursor has
been displayed, we jump down to the
common exit code. This code saves all the
stack values back to the appropriate cur-
sor save location, pops all the saved regis-
ters from the stack, and returns.

GAME DEVELOPER • FEBRUARY/MARCH 1996 49

@@error_exit:
mov ax, 0
jmp @@final_exit

@@fini:
mov ax, 1

@@final_exit:
pop ds

mov bx, direct
mov direct_draw, bx

pop cx
pop bx
pop ax
pop si
pop di

mov sp, bp
pop bp
ret

_MCITF_shape endp

Listing 3. Continued. from p. 48

This same code structure may be
used to draw the mouse cursor in any
mode. In addition to Mode 13h and
Mode X, I’ve also implemented a mouse
draw routine for 8-bit VESA modes.
Unfortunately, the code is much too inef-
ficient (and therefore embarrassing) to
release.

User-Defined Events
If you examine the EVENT_TYPE structure,
you’ll notice that very few of the bits
available are used for predefined events.
In fact, the entire range from 0x0040 to
0x8000 is available for user-defined events.

A user-defined event may be any-
thing you feel needs to be managed along
with other input. For example, you might
want to add user-defined events for joy-
stick or HMD input.

To define an event, choose an ordi-
nal from the unused range. I suggest
starting with 0x8000 and working back-
ward (if you’re adding multiple events).
This provides a vivid distinction between
your events and predefined events when
you’re debugging your code. Next, you
need to define structures analogous to the
_ATTR and _DATA structures provided for
keyboard, mouse, and timer events. That
is, you need to define a 16-bit attribute
structure and a 32-bit data structure that
your event handler will fill in.

That’s it for data definitions. Within
your initialization code, you’ll need to call

INPQ_enable_user(), passing the EVENT_TYPE
ordinal you’ve chosen and a pointer to an
initialization routine. At a minimum, this
routine needs to return a nonzero value to
indicate that the initialization completed
successfully and events of this type may
be enabled. You may use this routine, of
course, to load any interrupt handlers or
do any other startup that your event
requires.

You may then enqueue events by
calling INPQ_enqueue(). You must have
already constructed your data and attrib-
utes structures when you make this call.
This routine will allocate an available
event, fill in each of the fields and post
the event to the input queue.

I’ve created a simple program that
demonstrates user-defined events by cap-
turing joystick state changes and translat-
ing them so that they result in mouse-like
behavior. This example program may be
found in the test subdirectory of the
source archive, in the files JOYSTICK.H
and JOYSTICK.C.

Duck Hunt
The duck hunt example program
(HUNT.H and HUNT.C in the test
subdirectory of the source archive) is a
fairly complete example of everything
that we’ve discussed in the last two arti-
cles (and some things we haven’t). Basi-
cally, this program flies ducks across the
screen and lets you target them with the

cursor. Once targeted, you may blow the
ducks away with reckless abandon.

You may use the mouse, the key-
board, or the joystick to target and shoot
the ducks. Frame-rate limiting and
frames-per-second counting are provid-
ed using two separate timer alarms.

All in all, this program is a fairly
good demonstration of the capabilities
and ease of use of the input queue man-
ager, even if the “game” isn’t particularly
challenging.

Also, don’t forget to take a look at
GFX.C, a small graphics library for
Mode 13h and Mode X that fully sup-
ports double-buffering and page-flipping
(albeit, written in C and fairly slow). It’s
not much, but it can provide the basis for
your own efforts along these lines.

Now You Can Manage
That’s about all I have to say for now
about the input queue manager. I plan
on converting this code for use in a 32-
bit flat model environment in my copi-
ous free time, but that’s fodder for
another article. I’d like to thank Mark
Delmont for contributing the artwork
for the Duck Hunt example. Without
his help, we’d all be shooting white rec-
tangles on a blue background (and I’d
have to figure out a new name for the
program)!

As always, the complete input queue
manager source code may be obtained
from the Game Developer ftp site
(ftp://ftp.mfi.com in the gamedev/src/
directory) or on CompuServe (Game
Developer Library of SDFORUM). If
you don’t have access to either resource,
but you do have an e-mail address, I’d be
happy to send you a uuencoded version of
the archive. Just send mail to inpq-
source@irvine.com with a subject line of
“inpq source”. ■

Mike Michaels is a senior software
engineer at a small Irvine, Calif.-based
company. While he searches in vain for a
computer game company that can match his
aerospace salary, he develops his own ideas
at home in his nonexistent spare time. Con-
tact him via e-mail at mike@irvine.com or
through Game Developer magazine.

O R G A N I Z I N G U S E R I N P U T

50 GAME DEVELOPER • FEBRUARY/MARCH 1996

This is a screenshot taken from the duck hunt program, which you can access on the Game
Developer ftp site. It illustrates the principles discussed in this series.

Object Cache
Management

O B J E C T C A C H E M A N A G E M E N T

M
ost video games are con-
strained by memory limita-
tions. In a perfect world,
you’d use millions of frames
of animations, sound
effects, tiles, textures, and
the like, but often they just
won’t all fit in memory at

the same time.
One solution is object caching.

Object caching lets you have as much data
as you need. If extra memory is available,
object caching lets you take advantage of
it. If extra memory is not available, howev-
er, it will still run (with lower perfor-
mance). This is ideal in the PC world,
where the amount of available memory
available varies wildly from system to sys-
tem. A cacheable object is defined as a “set
of data” that can be recreated entirely,
either by loading it from the disk or by
recomputing it. This usually applies to
write-once, read-many data found on CD-
ROM and ROM cartridges.

The main component of a caching
system is the cache manager, whose job is
to provide virtualized accesses to objects,
usually through an ID or handle. For
example, to replace the conventional code:

image *im=load_image(“filename”);

im->put_image(screen,x,y);

a cache system would use:

cache_handle im=cache_manager.regis-

ter_image(“filename”);

c a c h e _ m a n a g e r . i m a g e (i m) -

>put_image(screen,x,y);

The function cache_manager.image
does a quick check to see if the object is

in memory and, if so, it returns a pointer
to object data. If the object is not in
memory, it reads it from the disk and
returns a pointer to the newly loaded
object. If there is not enough memory to
load up the new object, the cache system
scans all the cacheable objects and frees
the oldest one. The cache manager keeps
freeing the oldest cached object until
memory can satisfy the allocation request.
You can quickly access cache items using
a lookup table to the ID.

Dealing with Time Overflow
Each time an object is accessed, the time
marker is incremented and then stored in
the last_accessed field of the cache item. If
the last_accessed field is a short (2 bytes),
you can only access something 65,536
times before this overflows; but if it is a 4-
byte long, you can have 4 billion accesses.
If an overflow occurs, the system will still
work, but it will work poorly. Let’s take a
look at an overflow situation. First, there is
an access of a large, infrequently used data
item at time = 65,535. We increment time
and get an overflow, setting time back to 0.
Then we do two more accesses at time = 0
and time = 1.

Now let’s say at time=1, there is not
enough memory to load the object. The
cache system goes to free the oldest object
that appears to be the object from time=0,
but is really the large object from
time=65,535. The large object will never
get freed! The disk will thrash, and the
user will not think you are very cool.

There are two ways we can deal with
this. First, you can check the time after
each increment and see if it overflowed.
This can be coded in assembly language as
one instruction. If the time has over-

52 GAME DEVELOPER • FEBRUARY/MARCH 1996

flowed, adjust all the cache object
last_access times by dividing by some
number (say the number 2). This will pre-
serve the relative times for each object and
give you more time values to work with.

Or, you can check time periodically
from within the game. When it goes
above a threshold value, divide all the
cached objects time value by 2. This solu-
tion eliminates the need to compare each
object access, and it is preferable for
extreme speed-intensive needs, but it also
creates the possibility that time will over-
flow between checks.

Memory Management
and Fragmentation
If you use a conventional memory man-
ager you will have problems with memory
constantly freeing and reallocation blocks
of memory and thereby fragmenting. The
memory space becomes fragmented with
little holes from cache objects that have
been freed. If your memory is tight, you
will get to a point where the holes are no
longer big enough to satisfy a request.

For example, suppose your memory
layout looks like this:

static object

cached object

static object

cached object

static object

After freeing all the cached objects
during a new allocation request, the lay-
out looks like this:

static object

free

static object

free

static object

Although the two frees put together
might satisfy the request, you cannot span
your object across the static object in the
middle (that is, at least not unless you
depend on hardware paging).

The solution is easy. Keep two
heaps. One heap is used to satisfy static
allocation requests, and one for cached
requests. You can simulate this with one
heap by allocating the static requests at
the bottom of the heap (growing up) and
the cached requests at the top of the heap
(growing down).

As the static grows upward and
needs more space, the objects in the
cached space can be freed without any
problem.

Precache Modeling
When a game starts, how do you know
which objects to precache (or load into the
cache)? You can leave the cache empty,
but the disk will be hit every time some-
thing new is accessed, which can be
annoying to the user. Sometimes this is
not noticeable. For example, Doom’s pro-
grammers did not precache the sound
effects, and it didn’t negatively effect the
game play.

If the game is simple enough, you
can scan all the objects in a level and load
up all the associated art and sound effects
until it runs out of memory. This is fine in
some games, but a more flexible game
cannot predict at the start which objects
will appear in certain levels.

A much better solution is to use play
statistics. Have a level designer play a
level several times through, and, as each

Don‘t you hate that

little green light and

that little ”ching-

ching-ching“ sound

that means you are

thrashing your hard

drives? Your users

certainly do.

Jonathan Clark

GAME DEVELOPER • FEBRUARY/MARCH 1996 53

cache item is accessed, increment its
counter. At the end of the level, save all
the cache IDs and their access counts.
Now, the next time the level is played,
you’ll know which IDs to use. Sort the
IDs in descending order and load the
most frequently accessed IDs first. Keep
loading until you’re out of memory or
until they’re all loaded.

Cacheable Objects
It doesn’t make sense to cache an object
whose size is smaller than a cache entry.

A cache entry might look something
like this:

struct cache_item

{

void *data;

// NULL if object not loaded

long last_access;

// time stamp of last access

unsigned char type;

short file_number;

// index into filename list

long offset;

// offset into file to find this object

} ;

The size of this data structure is
4+4+1+2+4=15 + figure in 4 to 12 byte
overhead for the memory manager node
information, so anything less than or
equal to 27 bytes should not be cached.

When I was writing Abuse (a game
produced by Crack dot. Com and the
first affiliated game to be distributed by
Origin), I used caching as much as possi-
ble. While Abuse was written primarily in
C++, 8% of the code was written in LISP
and interpreted during the game. A demo
is available at http://crack.com or at
ftp://ftp.odrom.com/pub/abuse (the
demo includes a built-in level editor and
LISP source code). Following is a list of
cached objects I created while writing
Abuse:
• Frames of animation
• Tiles and textures
• Images
• Particle animation data
• Sound effects
• Compiled LISP functions.

Abuse has a LISP interpreter, which
compiles the program at run time into a

tokenized form and writes this out to a
cache file. Once this has been done, LISP
functions can then be accessed just like
regular cache objects.

You can also use caching for com-
putable operations to speed up your
game. For example, say slamming an
image right to left is faster than slamming
it left to right, but you still need to draw
the image both ways. When you cache in
the frame, duplicate it and make one of
the frames reversed.

Caching is also well applied to
memory compression. In a system that
can only access data through a CD-
ROM, a disk hit can be very irritating to
a user. How should you deal with this?
You can store all your data in memory
compressed and decompress it into
cacheable objects as memory becomes

available. Decompressing data is almost
always faster than a CD-ROM hit, and if
your data compresses well, this solution
will work well for you.

Optimization
When dealing with inner loop material,
you should save a pointer to a cache item
instead of asking the cache manager to
look it up everytime. For example, use:

image *img=get_img(tetxture);

for (int i=0;i<1000;i++)

img->put_image(screen,x,y);

instead of:

for (int i=0;i<1000;i++)

g e t _ i m g (t e x t u r e) - > p u t _ i m a g e

(screen,x,y);

Because you are not making any
other cache request inside the loop, you
can assume the object is still in memory.
It is usually safe to assume the last several
cache accesses will be in memory, but you
can run into problems with sound or
multithreaded programs. If you start
playing a large sound in the background,
and the cache manager frees and reallo-
cates it before it is done playing, you will
hear static. Either play small short sound
effects or use a cache-locking system with
sound callback.

The cache-locking system sets a bit
in the cache item that says, “Don’t free
me.” The sound system unsets this bit
when the sound has finished playing. A
lock and free system can be used to solve
multithreading problems as well. Locks
should not be obtained for long periods
of time, though, because defragmantation
cannot occur if an object is plugging a
hole. Instead, use static allocation when
you need “untouchable” objects for long
periods of time.

You can also run into trouble if you
work with large data objects. For example,
suppose you want to blend two 640-by-
480-by-256 images together and display it
on the screen. The most efficient way
would be :

char *scan_line1=get_img(image1)

->scan_line(0),

O B J E C T C A C H E M A N A G E M E N T

54 GAME DEVELOPER • FEBRUARY/MARCH 1996

Use caching for

computable oper-

ations to speed up

your game. When

you cache the

frame, duplicate it

and make one

frame reversed.

* s c a n _ l i n e 2 = g e t _ i m g (i m a g e 2)

->scan_line(0),

* s c r e e n _ s c a n _ l i n e = s c r e e n

->scan_line(0);

for (int count=w*h;count;count—,

scan_line1++,

scan_line2++,screen_scan_line++)

*screen=mix(*scan_line1,*scan_line2);

But if image1 and image2 don’t fit into
memory, you’re in trouble. You will either
have to break the images into smaller parts
or write two mixing routines—an efficient
one and another that runs in a low-memo-
ry environment by asking for the cache
item on each iteration.

Finally, here are a few good tips I’ve
picked up when writing cache systems
and memory managers.

Optimize for small memory alloca-
tions. C++ programs tend to allocate and
free small blocks of memory. I keep a list
of stacks of pages for block sizes less than
128 bytes. Then, if an allocation is less

than 128 bytes, the allocation time is usu-
ally a fast constant time. Memory profile
your game and see what kind of alloca-
tions are going on and how often, then
optimize for your needs.

Don’t use virtual memory. Virtual
memory involves writing pages to disk
and reading them back. A cache system
only needs to read, so it is much faster.

It’s a good idea to word align all allo-
cations to 4-byte boundaries. Though the
x86 supports nonword aligned memory
accesses, it does so only by reading twice.
This can also make a significant difference
if the stack is kept word-aligned.

A helpful debug tool is to zero out
all freed memory. Then, whenever a ref-
erence to memory that is supposed to be
free is used, a crash is likely to result and
you can track it down easily.

Another useful debugging tool is to
pass a string with each allocation which
can be used to quickly point out the source
of memory leaks or hogs. The LINE and

FILE macros can even be used if you get
lazy. These strings can be eliminated from
the final executable by a define :

#define MY_malloc(size,string) my_mal-

loc(size)

The two conditions above, bad refer-
ences and memory leaks, are a big cause of
bugs in games and are often hard to track
down. These two methods can save you a
lot of sanity and keep your game stable.

Don’t forget today’s freaks could be
tomorrow’s reality. 64-bit pointers seem
overkill right now, but a breakthrough in
memory production cost is all that is need-
ed to move them from high-end systems
to personal PCs. Think of the games you
could write with over 4GB of memory. ■

Jonathan Clark is a partner of Crack dot
Com and the author of Abuse. Contact him
via e-mail at jc@crack.com or through Game
Developer magazine.

GAME DEVELOPER • FEBRUARY/MARCH 1996 55

H
ello and welcome! This is my
first time wielding the cleaver
on the Chopping Block, so I
thought I’d introduce myself.
My name is Mike Michaels,
and I’m a software engineer in
Southern California. Part II of
my series on PC input man-

agement appears in this issue on p. 40.
Now they’ve asked me to pen the

Chopping Block. This was a difficult
decision for me to make. On the one
hand, writing a game review column has a
certain attraction. On the other, I really
wasn’t interested in doing the column in
the format that it had been rendered in
previous issues. That is to say, I am not
interested in hacking into a game’s save
file to figure out where and how every-
thing is stored. If I’m struggling to finish
my own games, why would I spend time
hacking into other people’s creations?

After a week of e-mail with the edi-
tor of this column, we agreed that a

change in format might be appropriate.
I’m going to try to structure these reviews
at a higher level, while still maintaining a
technical perspective.

Let’s Get on with It!
This month we’re going to take a look at
Mechwarrior 2, a combat simulation
game based on FASA’s BattleTech Uni-
verse. In the game, you assume the per-
sona of a MechWarrior, one of your
clan’s elite, who achieves honor, rank, and
prestige by piloting the enormous Battle-
Mechs (Mechs) into combat against the
rival clan. If this is all Greek to you, don’t
worry. It really just gives you an excuse for
running about in a mobile tin can and
blasting everything in sight.

The game allows two modes of play.
For the goal-oriented, there is a career
path option that lets you undertake and
complete missions that garner you pres-
tige, honor, and rank amongst your peers.
The ultimate reward for your selfless ser-

Gaming
Warrior

Be the hero of your

clan or just have fun

blowing things up.

Smart developers

should take note of

Mechwarrior 2‘s high-

resolution graphics

and movement effects.

Mike Michaels

C H O P P I N G B L O C K

GAME DEVELOPER • FEBRUARY/MARCH 1996 57

In Activision’s game, you assume the persona a MechWarrior.

vice is to battle for and become the leader
of your clan. If you couldn’t care less about
becoming a clan leader but you still want
to blow away a few Mechs, the game pro-
vides an unrecorded combat mode where
you lead up to two other Mechs into com-
bat against a series of enemy Mechs.

The cut-scenes must be seen to be
believed. Rendered in high resolution,
they look like something you might see in
a quality science-fiction movie. The only
thing about them I didn’t like was that I
grew jealous of the freedom of movement
that the choreographed Mechs had that I
didn’t—but I’m getting ahead of myself.

The actual simulation takes place in
a real-time, three-dimensional, polygon
rendered environment. Everything
appears flat shaded, the lack of texture
mapping probably accounting for the
excellent frame rates—even at the highest
resolution. Speaking of which, the game
may be played in standard VGA (320 by
200) or either of two VESA high resolu-
tion modes (640 by 480 or 1024 by 768). I
found the middle resolution to be the best
visually: standard VGA resolution is just
too chunky, while the highest resolution
made the enemy Mechs look too small.

The engine is also capable of a few
special effects. I noticed some light source
shading as well as a fog-and-dust-type
effect on some of the levels. Transitions
from day to night seemed to be accom-
plished using progressive palette updates.
There might be more effects in later lev-
els, but my dexterity isn’t such that I was
able to find out.

There are a few anomalies with the
rendering engine. In certain situations, it
looked like enemy Mechs were walking on
air. This usually occurred on a sloped sur-
face and was probably a result of the lack
of surface texture. Perhaps the most
annoying artifact is the unrealistic per-
spective of objects at a distance. Rather
than appearing gradually on the horizon,
objects such as mountains, buildings, and
enemy Mechs suddenly pop into existence
as you near them. It’s a little disconcerting
to know you are being fired upon, but you
can’t see the enemy Mech at all until
you’ve taken that last step.

You control your Mech using any
number of standard input devices (and

some nonstandard ones as well). You need
the keyboard regardless of which optional
input devices you choose. There are so
many commands, they couldn’t all be
mapped to joystick or mouse buttons. The
game supports input from a number of
specialized joystick systems, including the
Phoenix System, Microsoft Sidewinder
3D Pro, rudder pedals, and throttle con-
trol. In addition, Virtual I/O’s i-glasses
head-mounted display are supported.

The only real problem I had was the
sensitivity of the controls. A fractional
change in joystick position seemed to
cause a disproportionate change in Mech
position. I couldn’t line up on an enemy
Mech (even a stationary one) and hit it
with a series of shots; I was never able to
keep the target sighted in the reticle.

This problem was only aggravated by
the higher-resolution modes. Couple the
ultra-sensitivity of the controls with the
longer lag times between handling user
input (because it’s taking longer to paint
the screen), and you get a game
unplayable in most people’s resolution of
choice. I would have appreciated some
means of controlling joystick sensitivity.

If you know anything about the Bat-
tleMech universe, you’re going to appreci-
ate the effort designers went through to
make each mission coherent and logical in
the general framework. Those unfamiliar
with the universe will be grateful the game
was designed so you don’t have to read the
extremely long and sometimes cryptic
details of what is going on in the clan war.
In addition to detailed mission briefings,
there is extensive background information
to let you figure out where you and your
clan fit in the grand scheme of things.

The game’s designers have also
done an excellent job capturing the
physics behind Mech movement and
combat. The cockpit bobs as your Mech
walks or runs (à la Doom’s floating gun

affect). When you’re running at full
speed, it’s much harder to make a sharp
turn than when you’re going half speed.
When an enemy Mech fires and hits you,
your cockpit rocks violently with the
shock of the blast. Firing some of your
weapons too often can cause your Mech
to overheat and shut itself down—which
can be fairly annoying if you have two or
three enemy Mechs using you for target
practice at the time.

Wrapping Up
Mechwarrior 2 is an enjoyable and (prob-
ably for some) addicting game. If you get
past the sensitive controls, it’s fun blowing
other Mechs all over the landscape. The
sound, cut-scenes, and transition scene
graphics are excellent. While the polygon
rendering engine is by no means a techno-
logical breakthrough, it’s smooth, fast, and
sufficient to let you immerse yourself in
the BattleTech universe.

That’s about it. Let me know what
you think about the new direction this
column is taking. Is it good, bad, would
you rather we got rid of the it in favor of
longer articles on perspective-correct tex-
ture mapping? There’s been discussion of
diversifying the column to include book
reviews as well as reviews of game devel-
opment tools and environments. I’d like
to make this column as useful and enter-
taining as possible, so let me know what
you would like to see. ■

Mike Michaels works for a small com-
piler company in Irvine, Calif. Though
offered numerous jobs in the computer gaming
industry, he has been unwilling or unable to
take the pay cut involved in such a transition.
He resides on the fringes of game develop-
ment, living the life vicariously through
friends on “the inside.” Contact him via e-
mail at mike@irvine.com or through Game
Developer magazine.

C H O P P I N G B L O C K

58 GAME DEVELOPER • FEBRUARY/MARCH 1996

Suggested Retail Price: $59.95
System Requirements: 486DX2/66,
8MB RAM, 45MB free hard-drive space,
VGA or SVGA graphics, Soundblaster-
compatible soundcard, joystick, double-
speed CD-ROM.

Activision Los Angeles
10601 Wilshire Blvd. Ste. 1,000
Los Angeles, Calif. 90025
Tel: (310) 473-9200
Fax: (310) 479-4005
Web: http://www.activision.com/

MECHWARRIOR 2

S
omeone, I wish I could
remember who, once said that
music lives in between all the
notes. The comment has since,
quite appropriately, been
applied to the art of animation,
as in “Animation lives in
between all the frames.”

Beyond the Zen loopiness of the state-
ment is an unavoidable kernel of truth;
unavoidable, that is, for anyone who has
attempted character animation. Although
software tools can make it almost embar-
rassingly easy to, say, move a starship
across the screen, depicting a character
with convincing mass, momentum, and
personality still calls for skills and tech-
niques that animators have been refining
throughout this century—since long
before the advent of the computer.

It seems that many novice animators
or nonartists involved in game production

assume that technology has somehow
removed all or most of the hurdles
between them and snazzy animated rou-
tines. The truth is that it has made a lot of
things easier, and one of those things is
bad animation. Thanks to the computer,
it’s never been easier to create stiff, lifeless,
uninspired animation; all too often, due to
time constraints and laziness, that’s what
people are creating.

Doug Aberle, Master Animator at
Will Vinton Studios—and perhaps best
known to SIGGRAPH attendees as cre-
ator of the animated short Fluffy—
observes that “the computer should be a
tool, not a style. The basics of Squash
and Stretch remain the same.” Com-
putoons president Bob Terrell (another
Vinton alum) goes a step farther: “There
should be a sticker on the software box
that says Talent Not Included.” If you’re
not already familiar with the principles of

A Question
of Character

Computers make good

(and bad) animation

easier—that‘s why

more people than ever

are in the field. With

competition this stiff,

you need to have the

best possible graphics

to play the game well.

David Sieks

A R T I S T ‘ S V I E W

GAME DEVELOPER • FEBRUARY/MARCH 1996 61

“Martin [Hash] kids me that I used his spline-based modeling tool to create a polygonal char-
acter,” Doug Aberle says of Fluffy, hit of the SIGGRAPH95 Electronic Theatre.

Squash and Stretch, or if you’ve been
thinking the right software package
would make your first animation project a
snap, I hope you’ll keep reading. I think
I’ve got just about enough space here to
impart a healthy respect for the work
involved in character animation and to
give beginners some idea of how to go
about it.

Les Pardew, president of game pro-
duction house Sapphire Inc. (where
artists outnumber programmers nearly
four to one), makes it quite clear why you
should care: “Production values have gone
up tremendously. To compete in this
industry you’ve got to have really superior
graphics or people just don’t accept it as a
game anymore.” We’ve all seen too many
games fat with fancy graphics but starving
for gameplay, but we’ve also seen the
extent to which high quality graphics can
enhance the overall experience. All other
things being equal, the better-looking
game captures the player’s attention and
imagination, and solid character anima-
tion can make or break that overall look.

Know Your Roots
The key to good animation is in the very
definition of the word. Though many
would assume that “animate” means “to
make move,” its Latin root really means
“to bring to life.” The computer is good
at making things move on the screen but
making them seem alive is up to you.
This can only come from an in-depth
understanding of both traditional anima-
tion techniques and real-life movement.

As almost any animator will tell you,
one good starting point is The Illusion of
Life (Hyperion, 1981) by Frank Thomas
and Ollie Johnston. Recently reissued, this
massive tome contains the combined wis-
dom of these two renowned animators,
who worked at Disney Studios from the
mid 1930s until 1978, during which time
they helped raise animation from a crude
novelty to an art form. You may not be
going after a Disney look, but this book
covers all the basics every character anima-
tor should employ.

Another way to start gaining an
appreciation for character animation is to
really watch some of the classics: Disney
films, of course, and the old Looney
Toons and Tex Avery collections are all
worth a close look, though you can skip
the Hanna Barbera stuff. Classic live
action films can help too: Aberle draws
inspiration from the films of Laurel and
Hardy, other animators often cite Buster
Keaton and Charlie Chaplin, but what
you choose to pay particular attention to
really depends on what you plan to ani-
mate. I find Douglas Fairbanks and Errol
Flynn great to watch for action. In gener-
al, older films tend to have longer takes,
which let you watch the movement
through its course, while modern films are
composed of quicker cuts. Use a slow-
framing feature or the frame advance on
your VCR or laserdisk to observe every
stage of the action, and try to isolate the
extremes of motion. These correspond to
the key poses from which an animator
builds a routine.

Casting Call
Of course, character animation must start
with a character, and that character starts
with a design. The animator who has the
luxury of designing his or her own charac-
ters deserves the envy of every Hollywood
casting director, for therein lies the oppor-
tunity to literally create the perfect “actor”
for the role. Less enviable is the animator
who must bring to life a character
designed by a nonartist. The difficulty in
this not uncommon situation comes in
matching the demands of the concept with
the demands of the medium.

The first consideration in character
design should be the game style and target
audience. As Terrell points out, “Terms
like ‘cute’ or ‘scary’ can mean vastly differ-
ent things to different audiences.” A more
adult audience may be scandalized by the
violent death scenes in a fighting game
kids think is cool. What’s deliciously
creepy to a mature game player might
cause nightmares in young children, while
what kids find enjoyably spooky might
seem simply corny to an older sibling.
Keep in mind that much of the game’s
personality will reside in the depiction of
its characters.

The player’s view of the scene and of
the characters in it is another important
design consideration. How much of the
character is seen—and from what angles—
can help the animator determine what
level of detail needs to go into various
aspects of the design. As I’ll discuss later, a
character designed for side-scrolling game-
play can have very different needs than one
featured in a highly detailed cinematic
sequence. The key point is that the charac-
ter must work from every angle that will be
seen. Conversely, the animator can save
precious time by not putting design effort
into angles that won’t be seen.

Before even turning to their sketch-
book though, many animators will first
sketch out ideas for the character’s person-
al history. This isn’t strictly the artist’s job
and may be unnecessary if a complete
script has already taken care of these
details or if the character is a straightfor-
ward monster or a hero who’ll never be
seen out of battle armor. Then again, such
insight into the character can be helpful
even in the latter cases: think of how much

A R T I S T ‘ S V I E W

62 GAME DEVELOPER • FEBRUARY/MARCH 1996

Sapphire Inc. (formerly Cygnus Multimedia) has moved from creating game graphics to pro-
ducing entire games, though artists still outnumber programmers 3 or 4 to 1.

more interesting Tolkein’s Gollum was
because of his history.

Creating animation for the Cyclone
Studios/3DO title Captain Quazar, Ter-
rell found himself stopping production to
flesh out the musclebound hero’s back-
ground. “We did a full history for Quazar,
including a lot of stuff that doesn’t even
really enter into the game. It was unortho-
dox to stop in the middle of the project to
do it, and it did take up valuable time, but
we felt it was necessary to get a good feel-
ing for the character we were animating.”

Next stop on the road to a good char-
acter design is the model sheet. By this
time, the animator should have a very clear
idea of the character’s personality and of
what sort of action will be called for. It’s
time to determine what the character looks
like in detail. One common misstep is
drawing the character standing rigidly at
attention from square front and side
views—unless that’s appropriate behavior
for the character. Rather, the model sheet
should depict the range of attitudes,
expressions, and general positions that will
be called for in the animation.

Moving on from the model sheet is
what is known as inspirational reference or
atmosphere sketches. These are more fully
realized drawings, paintings, renderings, or
even sculptures depicting the character,
often in a setting. Terrell, whose back-
ground is in claymation (at Will Vinton
Studios he worked on the California
Raisins and the Domino Pizza Noid), now
does all his animation on the computer,
but he still creates characters in clay for
inspirational reference. “It helps for the
artist to be surrounded with actual, physi-
cal things relating to the character,” he
notes. And though artists working for
Animation Magic also do their animation
on the computer, traditional hand-painted
animation cels of the same characters hang
on the office walls as inspiration.

Plan to be Spontaneous
Does it seem like I’m taking a long time to
get around to talking about the act of ani-
mating? In a recent 3dSite IRC panel dis-
cussion on New Directions in Character
Animation, Tim Johnson, Animation
Director for Pacific Data Images, said, “I
believe passionately that diving in leads to

crummy animation. We all like to imagine
ourselves as the great jazz improvisors of
animation. Not true. If you don’t act it
out, draw it, think it through, your move-
ment will probably suffer.” The medium
presents a paradox for an animator to
overcome. An animated scene or routine is
usually short and the action quick and full
of life. But the process of making an ani-
mation is drawn-out and painstaking. Per-
haps the greatest challenge is not to be
defeated by that process, to resist being
bogged down by preparations that can sap
enthusiasm, and to reject the impulse to
simply skip all the careful preparation and
rush into animating the scene.

Though it is much more practical to
revise a computer animation than is the
case with either cel animation or clayma-
tion, it’s still important to approach the
scene with a well-thought-out plan in
mind. While spontaneous creative flour-
ishes will, hopefully, quite often enliven
the actual animation process, the principle
place and time for improvisation is in the
mind of the animator and in the sketch-
book, before ever bringing the project to
the computer.

To hear Thomas and Johnston tell it,
the halls and offices of Disney Studios
were filled with animators acting out rou-
tines for their characters to get a feel for
the movement, a tradition started there by
Walt Disney himself. Aberle slyly refers to
a reference tape of himself acting out the
part of Fluffy (no, he won’t show it to
you). Even when the character is nonhu-
manoid it can help greatly for the animator
to mimic the movement—as closely as
possible, anyway—to get a better sense of
the interplay of muscles and the shifting of
balance. Throughout, special attention
should be paid to anticipation and follow-
through—the movements that lead up to
and follow major actions. These are the
small touches that make a movement more
convincing and actually help to focus the
audience’s attention on the major action.

Once the movement is mapped out
in the animator’s mind, it’s time to begin
working out the key poses in a series of
small, rough “thumbnail” sketches. When
making such sketches, the artist should not
start with the character’s head, a common
practice. Almost all movement originates

in the pelvis or shoulders, and a sketch
meant to convey motion should follow the
focus of that action. At this stage, the
drawing should depict mass and momen-
tum more than surface detail. Disney
encouraged animators to work in a quick,
rough style, knowing the image retained
more vitality this way. (Most of the “clean-
up” was done later by junior animators.)
Though a computer animator’s sketches
might contribute less directly to the final
rendered product, capturing that energy
beforehand is still a critical step.

Once the animator has expanded on
the thumbnails to refine the key poses, the
next step is to create a storyboard; a sort of
visual map for the routine, progressing
from pose to pose and taking framing into
account. An important principle to keep in
mind at this stage is silhouetting. That is,
staging the action in such a way that it can
be clearly seen by the audience, being care-
ful not to allow important details or ges-
tures to be muddied or hidden.

Squash and Stretch is one of the
most basic principles of animation yet is
unfortunately neglected by some computer
animators. The idea is that living organ-
isms—a group that includes most of our
characters—are not as rigid in their move-
ments as is a folding chair or a slide rule or
any other inanimate articulated object. In
the course of a movement muscles flex and
extend, flesh sags or tightens, and these
effects impart realism to an animation and
can be exaggerated by the animator to
enhance movement. However, it’s relative-
ly easy to model a character on the com-
puter with limbs of the right proportions
and joints in the right places, to move it
around like a marionette and then wonder
why the action looks stiff and unconvinc-
ing. If an artist has managed to capture the
vitality and weight of a movement in the
sketchbook phase, it would be a shame to
abandon it at this stage. Squash and
Stretch has its place even in three-dimen-
sional modeling.

Once the animator has brought all
this preparation to the computer, there’s at
least one more impulse to resist—the very
natural wish to finally see everything ren-
dered in sparkling three-dimensional
detail. It’s usually more economical to first
render a rough pose test to check move-

GAME DEVELOPER • FEBRUARY/MARCH 1996 63

ment and timing: forget about texture
mapping and dramatic lighting, don’t use
antialiasing, don’t even think about ray-
tracing. A quick render will show how well
the action plays and point out areas where
the timing is off or the movement doesn’t
quite read. One of the things to really look
for at this stage is a sense of solidity and
weight to the character. This is one of the
most difficult things to simulate well and
will likely take careful tweaking.

The Play’s the Thing
This all may sound overly ambitious for
what is, after all, a game. Yet even if you
eschew (gesundheit) fancy splash
sequences, you should be wary of underes-
timating the importance of good character
animation for gameplay routines. Game-
play is after all where the player will be
spending the most time; if the character
movement is out of character, it’s just not
as captivating.

To remain visually interesting, char-
acters—especially the main character—
should have a variety of movement rou-
tines: walking, jumping, tripping, and so
on. One shortcut to take advantage of is
the character’s symmetry; the routines can
often be mirrored, so that when flipped a
left turn routine, for example, can also
serve for a right turn. Though this may
mean that your hero’s blaster suddenly
shifts from his right hand to his left, Ter-
rell cautions the animator not to obsess.
“As an animator, the lack of continuity
was difficult to accept, but the game for-
mat allows you to hide a multitude of

sins; sprites are only an inch or so on the
screen and fewer frames are rendered.
The game designers said not to worry, no
one would notice, and you don’t, really.”
Which is not to say that the Computoons
artists let Captain Quazar get sloppy.
With the lower frame count in gameplay
routines, they took advantage of the
opportunity to retouch images frame by
frame.

Actually, two distinct three-dimen-
sional models were created of Quazar: one
for the cinematic sequences and another
for gameplay with exaggerated features so
that details would read in the smaller
scale. The trick was to create models that
were different yet still read easily as the
same character, and the key to that was
having intentionally designed a character
that was appealing and still simple enough
to be flexible.

How Much is
the Free Lunch?
Inverse Kinematics is one of the buzz-
words that struggling novice animators
cling to faithfully, sure that it promises a
future of hassle-free character animation.
While Inverse Kinematics certainly has
its uses and its devotees, it should be
understood that it comes with its own
challenges and frustrations, too. What
Inverse Kinematics does is allow the ani-
mator to establish hierarchical chains; the
shin bone’s connected to the knee bone,
knee bone’s connected to the thigh bone,
and so on, and establish movement para-
meters for those chains. Then by “tug-

ging” on the foot, for example, you can
watch the leg extend, pivoting at the hip
and bending at the knee in a natural
manner.

Natural, that is, if you’ve made all
the right connections and set appropriate
parameters. Inverse Kinematics is gener-
ally a scripted process, and getting every-
thing connected just right can be an elab-
orate and time-consuming endeavor.
While it’s possible to get the same move-
ment in an animation without using
Inverse Kinematics, kinematics can defi-
nitely save time further down the road
once an animator has established a library
of parameters for different routines.

Though it’s still a more or less high-
er-end fantasy, the mention of motion
capture can also tend to invoke visions of
flawlessly realistic character movement
without all the work. Yet while many
accomplished animators are intrigued by
the possiblities, others suggest that at this
stage in the technology it may take more
effort to fix the captured data than to ani-
mate a scene from scratch. “Motion cap-
ture gets you about 60% of the move-
ment,” Sapphire's Pardew estimates,
while the rest needs to be tweaked or
completely redone by a skilled animator
to look right. Motion capture is probably
most useful for sports games calling for
realistic movement. But for many games,
realistic movement actually falls short of
the mark. “That's not the point of anima-
tion,” Tim Johnson states. “Great anima-
tion caricatures reality and makes it art-
ful. It caricatures motion to make a dra-
matic or narrative point.” Heroic, exag-
gerated movement is more the stuff of
video games.

Ken Cope, Senior Artist at Acclaim
Coin-Operated Entertainment puts forth
his aphorism #3C: “The closer reality is
approximated, the more glaring any dis-
crepancy becomes.” Maybe the real art of
animation is to be convincing without
being too realistic. After all, if reality
were all that, who'd bother playing our
games? ■

David Sieks is a contributing editor to
Game Developer. You can contact him via
e-mail at 103302.301@compuserve.com or
through Game Developer magazine.

A R T I S T ‘ S V I E W

64 GAME DEVELOPER • FEBRUARY/MARCH 1996

Computoons designed and animated Captain Quazar and others for the 3DO title produced by
Cyclone Studios. Animation included a 90-second rap video. Image courtesy of The 3DO Co.

	back:

