
February/march 1995

G A M E D E V E L O P E R M A G A Z I N E

T
here may never be a game with a
“Windows ’95 Compatible” logo,
not even from Microsoft.
Microsoft, by arrogant fiat, has
decided that the seemingly literal
phrase, with it’s seemingly
straightforward purpose, should
be held hostage to the whims of

some Redmondian marketing genius.
Windows ’95, the new operating system
from Microsoft, will roll out later this year
and, largely due to the bundling agree-
ments Microsoft has with clone makers,
will quickly gain its greatest marketshare
in the home computer market.

To run under Windows ’95, your
program will have to do one of two things:
run as a Windows program, with the
input, output, and multitasking methods
dictated by the Win32 API, or run in a
virtualized DOS box.

It’s likely that much of the hard-won
knowledge of how to get the most perfor-
mance from machines running DOS may
no longer work on machines running
Windows ’95. We all know how few
games run in the DOS boxes of Windows
3.1, the Windows ’95 DOS box will be
like that (except different in unknown
ways). The only answer seems to be the
off-putting boot disk.

Your alternative is to create a true
Windows application. There are some
advantages, the greatest of which is device
independence. Lifting the burden of pro-
gramming for every video and sound
chipset in the known world should free up
time for...well...learning the confines of
the Windows API.

But let’s say that you’ve PeekMessaged
and PostMessaged your way around the
event queue; your program is WinGed and
WinTooned, and you’re the happiest little
WinCamper in the whole wide Win-
World. Can you put that logo on your
game? Not even close.

First, can you send your saved game

over your home’s Ethernet backbone (that
is, is it mail-enabled)? Second, can you
embed an Excel spreadsheet of your
inventory in the middle of your character
sheet (that is, does it support OLE 2.0)?
Do you have a tabbed dialog that walks
you through the game (that is, do you
have Wizards)? Finally, does it work on a
different operating system, with a different
base architecture including a different
tasking model (that is, Windows NT)?

In other words, to be “compatible”
with Windows ’95, your game has to be a
mail-enabled, en-Wizarded OLE Server
application that runs under NT. All criti-
cism to date about this policy has come
from shrinkwrap application vendors, who
have pointed out that this is burdensome
even for office products. Honestly,
though, I can understand the argument
that “compatible” when applied to an
office application may mean a certain set
of services above and beyond display ser-
vices. With entertainment products, the
very products most needy of some kind of
validation, this argument is without merit.

I suggest two courses of action. First,
complain to Bill Gates himself, asking for
a reconsideration of the policy or suggest-
ing an alternative “Ready to Run Under
Microsoft Windows ’95” validation appro-
priate for digital entertainment products.
Mail directed to billg@microsoft.com will
not get through without being screened,
but it will be read by someone and, per-
haps, even by Gates himself. Second, cre-
ate a utility—a character editor or some
such—that has all the necessary compo-
nents. The functionality or appropriate-
ness isn’t important, this is just a silly way
to get around the silly restrictions. With
such a utility, your game isn’t overly bur-
dened, your box gets the logo, and your
users, if you have a dynamite game, are
oblivious to this tempest in a teakettle. ■

Larry O’Brien, Editor

The No
Go Logo

G A M E P L A N

2 GAME DEVELOPER • FEBRUARY 1995

Editor Larry O’Brien
gdmag@mfi.com

Senior Editor Nicole Freeman
76702.706@compuserve.com

Production Editors Barbara Hanscome
73611.633@compuserve.com

Nicole Claro
76702.1141@compuserve.com

Editorial Assistant Diane Anderson
diane_anderson@mfi.com

Contributing Editors Alex Dunne
75010.2665@compuserve.com

Chris Hecker
checker@microsoft.com

David Sieks
dsieks@arnarb.harvard.edu

Wayne Sikes
70733.1562@compuserve.com

Editor-at-Large Alexander Antoniades
sander@mfi.com

Cover Photography Charles Ingram Photography

Publisher Veronica Costanza
Group Director Regina Starr Ridley

Advertising Sales Staff

West/Southwest

Yvonne Labat (415) 905-2353
ylabat@mfi.com

New England/Midwest

Kristin Morgan (212) 626-2498
kmorgan@mfi.com

Marketing Manager Susan McDonald
Art Director/Marketing Christopher H. Clarke
Advertising Production Coordinator Denise Temple
Director of Production Andrew A. Mickus
Vice President/Circulation Jerry M. Okabe
Group Circulation Director Gina Oh
Circulation Manager Kathy Henry
Circulation Assistant Phil Payton
Newsstand Manager Pam Santoro
Reprints Stella Valdez (415) 655-4269

Chairman of the Board Graham J.S. Wilson
President/CEO Marshall W. Freeman
Executive Vice President/COO Thomas L. Kemp
Senior Vice Presidents H. Vern Packer, Donald A.
Pazour, Wini D. Ragus
Vice President/CFO Warren (Andy) Ambrose
Vice President/Administration Charles H. Benz
Vice President/Production Andrew A. Mickus
Vice President/Circulation Jerry Okabe
Vice President/Software Development Division Regina
Starr Ridley

MGA EGAME

MillerFreeman
A MEMBER OF THE UNITED NEWSPAPERS GROUP

N
inety years after it first burst
onto the scene, the cinema is
undergoing a renaissance.
More than just a rebirth,
actually, it’s really a fusion
with computer and video
games that’s resulting in
some cool entertainment: a

new breed of interactive, “live-action”
games featuring Hollywood movie
stars. Such games, like Hell, Under a
Killing Moon, and Wing Commander
III, are coming out with more frequen-
cy, and they’re boosting the acting
careers of some people in Tinseltown.

Before we look at l ive-action
games, let’s first take a quick look into
the past. The evolution of the Ameri-
can film industry might be a good
model to explore in attempting to
extrapolate the future of these games
and their impact.

First invented by Thomas Edison
in the late 19th century, motion pic-
tures were a new form of entertainment
that appealed to the masses, relied on
state-of-the-art technology, and made
stars out of performers like Charlie
Chaplin, Rudolph Valentino, and Mary
Pickford. As film technology evolved,
so grew the impact of the industry on
the nation. The first movies shown in
nickelodeons were 10 minutes long,
black-and-white, and silent. However,
as the medium evolved, sound and
color were added, and movies got
beefed out to two hours in length. (I
won’t even talk about today’s cutting-
edge advancements like THX sur-
round-sound and IMAX screens.)

In terms of their economic impact,
look where American movies are today.

Hollywood is the undisputed entertain-
ment mecca of the world. Take the fact
that the French refused to drop eco-
nomic barriers to the American film
industry during the Uruguay round of
the General Agreement on Tariffs and
Trade (GATT) talks a couple of years
ago. Why? Because they feared that a
flood of American movies into France
would strangle the relatively small
French film industry.

America is good at delivering
entertainment to the world, hence its
value to our country as a viable com-
modity. As we enter the 21st century
and face increasing technological com-
petition from abroad, American enter-
tainment is going to be a lucrative
export for the country. I predict that a
significant component of that enter-
tainment export will consist of live-
action games that star American actors
and actresses. Like the early cinema,
however, live-action games have some
technical hurdles to clear before they
attain widespread popularity: better
player navigation and better player
interaction.

Enter the Dragon
Live-action games have roots that can
be traced back to that (in)famous
arcade game Dragon’s Lair. I remem-
ber it well—as a vidiot in the early
1980s, I dropped way too many quar-
ters into that game at the local pizza
parlor (it was one of the first games
that demanded 50 cents, which really
chapped my hide). Looking back, the
game wasn’t as exciting as other arcade
games of its day, yet one element made
it unique: rather than being composed

The Golden
Era of Siliwood

As the artistic lines

separating Hollywood

and Silicon Valley

increasingly blur, two

major entertainment

industries—film and

computer and video

games—find they

might not make such

strange bedfellows.

Alex Dunne

C R O S S F I R E

GAME DEVELOPER • FEBRUARY 1995 5

of sprites and tiles, it was an animated
cartoon you played off a laser disc.

The game was based on a series of
short cartoon scenes spliced together in
real time and controlled by the player’s
actions at key junctures in the game.
Using liberal amounts of fast-twitch
muscle tissue and a good memory, the
plot of Dragon’s Lair came together,
and the player eventually rescued the
princess from the dragon. Now that the
industry is seeing the convergence of
fast video transfer rates, CD-ROM
storage, and the ubiquity of personal
computers in homes, the consumer
market is ripe for live-action games that
follow the Dragon’s Lair paradigm and
feature familiar actors and actresses.
Siliwood is starting to capitalize on this
market.

What’s Siliwood?
Siliwood is the combination of Silicon
Valley technical sophistication and the
glitzy star power of Hollywood, evi-
denced in the newest crop of multime-
dia games. Siliwood is just a buzzword,
but the promise that these two indus-
tries hold for creating a new entertain-
ment industry is real. At a time when
America’s competitive edge in software

development is being threatened by
increasingly educated and efficient
third-world countries, the marriage of
entertainment and technology will defi-
nitely give the resulting products the
21st-century spin they’ll need.

I recently had a brush with Sili-
wood. This past summer I was fortunate
to be invited to the making of a new live-
action game, The Daedalus Encounter,
developed by Mechadeus. Starring Tia
Carrere (of Wayne’s World fame), the pro-
ject’s live footage was shot in a warehouse
soundstage near San Francisco’s multi-
media gulch area before it was brought
back to the Mechadeus developers for
integration with the interface and the
game’s logic. It was an interesting film
set that relied on the same film tech-
niques as Star Wars and Superman. The
two leads acted out sequences against
invisible enemies and traded lines against
a blue screen backdrop. Behind the
bright lights, cameras, and film crew was
a monitor that showed the performers
superimposed into rendered scenery. It
was quite different than other game
development shops I’ve had a chance to
see, needless to say.

Unfortunately, as with Dragon’s
Lair a decade ago, many of these live-

action adventure and role-playing
games suffer from a stifling story line
that forces players to pursue a limited
course of action through the game
world. If you screw up at a particular
juncture (zigged when you should have
zagged, and subsequently got shot by a
bullet, for instance), you’re forced to
back up to the beginning of the scene
where you died, listen to the same dia-
logue again, and correct your mistake
(“I have to zag this time—I can’t bear to
hear that scene’s dialogue one more
time!”).

Improving Playability
Just as leaps like sound and color helped
movies catch on with the public, tech-
nological advancements in live-action
games will help them mature and gain
popularity. For instance, the repetitive
nature of these games will be overcome
by sophisticated, highly developed plots
containing dozens, hundreds, or thou-
sands of unique solutions.

I know that using a flexible story
line was a priority for Mechadeus
because the game’s story board was
posted on a wall and looked like the
flow chart from hell: lines from a start-
ing point that connected to a number of
different hubs, which in turn connected
to more, like a geometric function. The
paths between hubs crossed everywhere,
and eventually funneled back down to a
series of end points—the finishing
scenes. This large road map of the
game’s plot, we were told, allowed play-
ers to accomplish tasks in no set order
and allowed more flexibility in game
play. In addition, a player’s “attitude”
affected how the story unfolded, so that
a Doom-style, shoot-everything strate-
gy revealed a different side to the game
than an “I’m O.K., you’re O.K., let’s be
friends” style of play.

Another (probably years away) step
forward for live-action games will be
the inclusion of sophisticated artificial
intelligence, allowing interaction with
nonplayer characters (NPCs) that is less
scripted and more spontaneous. It
would require some fairly intense
graphics and sound manipulation to
make NPCs say something intelligent

C R O S S F I R E

6 GAME DEVELOPER • FEBRUARY 1995

The Daedalus Encounter stars Tia Carrere and Christian Bocher. “Using name talent will
enrich the game and its consumer appeal,” says John Evershed, Mechadeus’s executive
producer.

in the right voice and with the right
facial expressions! Perhaps someday in
the future, game AI will get good
enough to produce game solutions that
even the developers hadn’t anticipated.

Finally, it’s interesting to consider
that these games might be the launch-
ing point for future acting careers. We
might see the rise of some cyber Chap-
lins and Pickfords. Maybe some lucky

ones will begin their rise to fame in the
game industry and then cross over to
television or movie spots. In the mean-
time, the faces that have already
appeared in games lend credence to
these games as an acting vehicle:
Jonathan Frakes, Morgan Fairchild, Joe
Piscopo, Mark Hamill, Malcolm
McDowell, Dennis Hopper, Grace
Jones, and Margot Kidder. (And that’s
just what I could dig up in two minutes
from scanning some ads.)

As Siliwood comes into its own,
the line between games and movies will
rapidly fade. Ads in game magazines
already look like blockbuster movie ads,
and we’ve begun to see stars’ mug shots
alongside blurbs detailing the mini-
mum system requirements. Interactive
game drama is here, so forget the the-
ater and renting movies—fire up the
Intel nickelodeon. ■

Alex Dunne is contributing editor for
Game Developer magazine.

C R O S S F I R E

8 GAME DEVELOPER • FEBRUARY 1995

John Rhys-Davies and Mark Hamill, two veterans of George Lucas’s films, star in Origins’s
Wing Commander III.

Autoplay On!

B I T B L A S T S

I
nstalling and running CD-ROMs
on Windows can be an onerous
task. You insert the disk, go to the
File Manager, click on the corre-
sponding drive, find and execute
the installation file—all time that
could be spent more productively.
Good news for Windows develop-

ers and users alike. Microsoft has con-
ceived a new technology that makes
CD-ROMs install and run automatical-
ly on the Windows ’95 operating sys-
tem. Developers will be able to add the
support, called AutoPlay, to any applica-
tions they create for use with Windows.

AutoPlay is currently being used in
development of titles by Humongous
Entertainment and Hummer Winblad
Venture Partners. Developers say making
this coding investment during the design
phase will save time and money in sup-
port calls after the product’s release. As
long as a title has been AutoPlay-
enabled, you simply insert the disc in
the CD-ROM drive and, after checking
for a file named AUTORUN.INF in the
root directory, Windows ’95 will imme-
diately run the title.

For More Information Contact:
Microsoft Corp.
1 Microsoft Wy.
Redmond, Wash. 98502-6399
Tel: (206) 882-8080
Fax: (206) 936-7329

More Power to the Power Mac
Electric Image Inc. has released Elec-
tricImage Animation System Power
Macintosh 2.1, a three-dimensional
graphics system designed specifically for
computer graphics and animation creat-

ed on the Power Macintosh. The newest
version still incorporates all the features
of its predecessor, v. 2.0, but can work
much faster. Electric Image says it’s seen
rendering improvements of between
three and eight times faster than the
first system. Certain effects can render
over eight times faster. The company
projects an average of about four to five
times faster than the Macintosh version.

The increase in speed will be espe-
cially applicable to motion-picture
work. In fact, ElectricImage has been
used for special effects in Star Trek:
Generations, The Mask, and Jurassic
Park, as well other films and interactive
CD-ROMs. A “snappier” interface also
allows the choreography to occur at a
faster pace. ElectricImage Power Mac-
intosh 2.1 imports, renders, and ani-
mates objects from mulitplatform mod-
eling programs. It includes sync sound
animation and blur techniques includ-
ing Motion Vector, adaptive anti-alias-
ing, and many plug-ins. It also lets you
create lens flares at assigned light
sources with elements in the flare con-
trolled from the project window. Elec-
tricImage Power Macintosh 2.1 is
priced at $7,495. Registered owners of
ElectricImage 2.0 can upgrade for $495.

For More Information Contact:
Electric Image Inc.
117 E. Colorado Blvd., Ste. 300
Pasadena, Calif. 91105
Tel: (818) 577-1627
Fax: (818) 577-2426

Online Onslaught
When I was a teenager, video game
play was an isolated, solitary pursuit.

10 GAME DEVELOPER • FEBRUARY 1995

New technology in the

game industry evolves

at an increasingly

rapid pace.

Animation tools,

accelerator cards, and

new online systems

are just some of the

things shaping the

industry today.

Nicole Claro

I’d put on headphones (you know,
those big, weird, early-80s ones that
pumped music into one entire side of
your head, rather than just your little
ears), lock out the rest of the world,
and play Venture for upwards of three
hours. My, how things change. Now
here’s a system that can run games and
hook up one player in California and
one in Texas. No, it’s an e-mail net-
work. No, it’s a goldmine of profes-
sional sports tie-ins. No, it’s a dessert
topping and a floor wax. Actually, it’s
all these things—o.k., maybe not the
last two.

Catapult Entertainment recently
went online with its XBAND video
Game Network, a venture designed to
coincide with the release of THQ Inc.’s
XBAND Video Game Modem for Sega
Genesis. Currently, the XBAND Video
Game Network and Modem is available
in New York, Los Angeles, San Fran-
cisco, Dallas, and Atlanta. The
XBAND modem supports Sega Genesis
only, and the XBAND Network sup-
ports Mortal Kombat, Mortal Kombat
II, NBA Jam, Madden NFL ’95, NHL
’94, and NHL ’95 (Will there even be
an NHL ’95?).

The XBAND Network will go
nationwide, and Super Nintendo-com-
patability will be available by the first
quarter of this year. The network fea-
tures a mail system, an online newspa-
per, and entertainment, sport, and video
game news updates. You (that is, par-
ents) will be able to set controls on num-
ber of hours, times of day, and long-dis-
tance restrictions. (Three hours a day, no
more—after the afternoon T.V. you’re
not supposed to be watching.)

For More Information Contact:
T-HQ Inc.
5016 North Pkwy. Calabasas
Ste. 100
Calabasas, Calif. 91302
Tel: (818) 591-1310
Fax: (818) 591-1615

Copies in No Time
When I master programming, I ’m
going to do a series of cool interactive
CD-ROMs—my first one is going to
incorporate a voice recognition system
to teach users different dialects of New
York accents (each borough is distinct,
you know). And how will I copy my
master disk?

MicroTech Conversion Systems
has released ImageMaker, a recordable
CD duplication system that produces
48 disks per hour. The product uses 12
Yamaha CDR 100 4X drives and is
twice as fast as any previous system
from MicroTech. With record drives
working from a master CD at up to
36MB per minute—writing both 63-
minute (550MB) and 74-minute (650
MB) media—it can write a 650MB
disk in about 18 minutes.

Each ImageMaker starts out as an
80486 DX-66 computer, SVGA mon-
tor, SCSI 1.2 GB drive, and 14.44
baud modem with full remote diagnos-
tics. Individual customer specifications
then determine the final version of
each ImageMaker, the price of which
varies depending on configuration.
However, average price is $1,875 per
“X” (X being the data transfer rate of
CD drives as a multiple of the stan-
dard audio CD rate or 150-KB per
second).

For More Information Contact:
MicroTech Conversion Systems
940 Industrial Ave.
Palo Alto, Calif. 94303
Tel: (415) 424-1174
Fax: (415) 424-1176

Chips and Cards
Criterion’s RenderWare-based applica-
tions will now use ATI’s 64-bit graph-
ics accelerator cards and chips. Render-
Ware, used in Criterion’s three-dimen-
sional games and virtual reality applica-
tions, is the first interactive three-
dimensional graphics API for Win-
dows and DOS. RenderWare is
designed to provide real-time graphics
without the need for a separate three-
dimensional accelerator. Used with an
accelerator, though, performance is
greatly increased.

ATI’s mach64 family of chips and
cards was designed to take advantage of
486 and Pentium-based systems. Ren-
derWare’s mach64 device driver will
give RenderWare applications a 30% to
100% boost in performance. The result
is a an efficient, low-cost three-dimen-
sional development platform. ATI’s
accelerator cards range in price from
$179 to $699.

For More Information Contact:
Criterion Software Ltd.
20 Alan Turing Rd.
Guildford GU2 5YF, U.K.
Tel: 44 483 448800
Fax: 44 483 448811

Nicole Claro is production editor for
Game Developer magazine.

GAME DEVELOPER • FEBRUARY 1995 11

Changing
The Rules for
Transparent BLTs

U N D E R T H E H O O D

W
hen I sit down to write an
article, the first question I
always ask myself is, “Who
is going to read this?” No, I
don’t mean, “Who in their
right mind would read
this?” I mean who is the
audience for this article, and

how technical are they?
For this column, I’d like the answer

to be “experienced programmers,” and I
intend to aim the content at just such a
readership. My goal is to provide
detailed coverage of specific game pro-
gramming techniques and to present
production-quality code, sometimes at
the expense of less experienced develop-
ers who might want to read the code a
few times and step through it in a
debugger to see how it works. This is not
to say I’ll be cryptic, but I’m going to try
to move fast enough to keep the
advanced people interested, while giving
the beginners something they’ll need to
think about for a bit before grasping all

the issues, both explicit and implied. Let
me know what you think via the contact
information at the end of the article!

Transparency
Transparent block transfers (BLTs—
pixel copies) are one of the more useful
techniques for game programmers. A
transparent BLT can be roughly defined
as a block transfer where some pixels are
not copied from the source to the desti-
nation, leaving destination pixels show-
ing through. The list of effects you can
generate with a simple transparent BLT
is endless: sprites, floating text or game
scores, cursors, shadows, floating maps,
and the like. How are transparent BLTs
implemented? We’ll answer that ques-
tion with working code, optimize the
code, and write a transparent BLT that
will handle both WinG DIB orienta-
tions as a bonus.

There are a number of ways you can
implement transparent BLTs. The most
common specifies a single pixel value in
the source bitmap (the sprite, if you will)
that will not be copied from the source
to the destination. The BLT routine
examines each pixel and decides whether
it is the “transparent color” or whether
it’s an actual data value that needs to be
copied to the destination bitmap, as
shown in Figure 1. Other techniques
include using a mask to specify which
pixels are copied, using raster operations
under Windows, and using special
bitmap formats (like run length encod-
ing) for the source sprite. When we start
optimizing, we’ll look into some of these
other techniques and how they compare
with the base technique.

First, we’ll create a relatively naive

12 GAME DEVELOPER • FEBRUARY 1995

Figure 1. A Transparent BLT

Transparent Color

Opaque Pixel

transparent BLT. I’m going to write the
BLT for use under Windows (my pre-
ferred development environment), but it
isn’t Windows specific and should port
to DOS or other platforms without
problems. We’ll use device independent
bitmaps (DIBs), which are just in-mem-
ory bitmaps with a header describing
their pixel format.

Our naive implementation will read
every pixel in the source DIB, check for
the transparent color, and optionally
write the pixel to the destination DIB.
Since we want this code to work well on
Windows with WinG, we’ll need to deal
with the two possible destination “DIB
orientations.”

Orient Yourself
There are two DIB orientations, top-
down and bottom-up. Top-down DIBs
are arranged in memory much like the
DOS Mode 13h frame buffer or your
average DOS bitmap. The pointer to the
DIB bits points to the topmost scanline
on the DIB, and as the value of the
pointer increases, it moves down the DIB
surface. On the other hand, bottom-up
DIBs are “upside-down,” with the point-
er referencing the bottom-most scanline,
its value increasing as it moves up the
DIB surface. Movement across scanlines
from left to right is always accompanied
by an increase in memory address; only
the vertical movement is affected by the
orientation. WinG chooses the fastest
DIB orientation based on the run-time
configuration, so code that expects the
best performance must be prepared to
deal with either type. This is actually
quite easy in practice, and the technique I
describe here draws to both orientations

without any performance penalty.
Listing 1 shows our first transpar-

ent BLT. This code only handles 8 bits-
per-pixel DIBs, but could you can easily
extend it to other formats. Our initial
inner loop looks like this:

for(Y = 0;Y < Height;Y++) {

for(X = 0;X < Width;X++) {

if(*pSourceBits != TransparentColor) {

// not transparent?

*pDestBits = *pSourceBits;

// copy the pixel

}

pDestBits++;

// advance to next pixels

pSourceBits++;

}

pDestBits += DestDeltaScan;

// advance to next dest

pSourceBits += SourceDeltaScan;

// and source pixels

}

We introduce the DeltaScan vari-
ables (DestDeltaScan and SourceDeltaS-
can) to enable top-down and bottom-
up drawing. We always start the BLT
from the top, and the DeltaScans move
their respective pointers down the DIB
surface from one scanline to the next.
We set up the DeltaScans to move from
the end of one processed span to the
beginning of the next span, so we step
directly to the next span of pixels to
BLT without calculating a new X or Y
offset from the start of the DIB, avoid-
ing multiplies in the loop and other
overhead. On top-down DIBs, the
DeltaScan is positive (the “down” of
“top-down” indicates the direction in
which a positive pointer increment

What‘s a good

concept to follow

when you‘re

working with

transparent BLTs?

If the rules forbid

you from getting your

images onscreen

quickly enough,

change the rules!

Chris Hecker

GAME DEVELOPER • FEBRUARY 1995 13

U N D E R T H E H O O D

14 GAME DEVELOPER • PREMIER 1994

#include<windows.h>
#include<assert.h>

void TransparentBlt(BITMAPINFOHEADER *pDestHeader, BYTE *pDestBits,
int XDest, int YDest, BITMAPINFOHEADER *pSourceHeader,
BYTE *pSourceBits, BYTE TransparentColor){

int DestDeltaScan, DestWidthBytes, DestRealHeight;
int SourceDeltaScan, XSource = 0, YSource = 0;
int Width, Height;

DestWidthBytes = (pDestHeader->biWidth + 3) & ~3; // dword align

assert(pDestHeader->biSizeImage); // insure biSizeImage is set

if(pDestHeader->biHeight < 0){
// dest is top-down
DestRealHeight = -pDestHeader->biHeight; // get positive height
DestDeltaScan = DestWidthBytes; // travel down dest

}else{
// dest is bottom-up
DestRealHeight = pDestHeader->biHeight;
DestDeltaScan = -DestWidthBytes; // travel down dest
// point to top scanline
pDestBits += pDestHeader->biSizeImage - DestWidthBytes;

}

// pDestBits -> top scanline of dest
// DestDeltaScan -> distance from scan to scan in dest

// clip source to dest

assert(pSourceHeader->biHeight < 0); // assume top-down source DIB
Width = pSourceHeader->biWidth;
Height = -pSourceHeader->biHeight;

if(XDest < 0){
// left clipped
Width += XDest;
XSource = -XDest;
XDest = 0;

}

if((XDest + Width) > pDestHeader->biWidth){
//right clipped
Width = pDestHeader->biWidth - XDest;

}

if(YDest < 0){
// top clipped
Height += YDest;
YSource = -YDest;
YDest = 0;

}

Listing 1. Simple Transparent BLT

if((YDest + Height)>DestRealHeight)
{ // bottom clipped

Height = DestRealHeight - /
YDest;
}

SourceDeltaScan = /
(pSourceHeader->biWidth + 3)/

& ~3; // dword align

// step to starting source pixel
pSourceBits += /
(YSource * SourceDeltaScan) + /
XSource;

// step to starting dest pixel
pDestBits += /
(YDest * DestDeltaScan) + XDest;

// account for processed span in
// delta scans
SourceDeltaScan -= Width;
DestDeltaScan -= Width;

if((Height > 0) && (Width > 0))
{

// we have something to BLT
int X, Y;

for(Y = 0;Y < Height;Y++) {
for(X = 0;X < Width;X++) {

if(*pSourceBits != /
TransparentColor) {

// not transparent?
*pDestBits = /

*pSourceBits; // copy the pixel
}
pDestBits++;

// advance to next pixels
pSourceBits++;

}
pDestBits += DestDeltaScan;

// advance to next dest
pSourceBits += /

SourceDeltaScan;
// and source pixels

}
}

}

Listing 1.

travels), and the pointer increases
through memory as we process the
BLT. On bottom-up DIBs, the pointer
needs to decrease to move down the
surface, so the DeltaScan is negative.

Because we always want the BLT
to start at the top of the DIBs, we need
the pointers to start there, too. For top-
down DIBs, this is no problem; the bits
pointer already points to the top scan-
line. For bottom-up DIBs, we need to
move the pointer from the bottom scan-
line to the top using the following
expression:

pDestBits += pDestHeader->

biSizeImage - DestWidthBytes;

This adds the size of the DIB in
bytes to the pointer—bringing it past the
top scanline—and subtracts the width of
a single scan to bring the pointer back
onto the DIB, leaving it pointing at the
beginning of the top scanline.

The last bit of code in Listing 1
(before the actual BLT) clips the source
to the destination. We step through the
extents, adjusting the source and desti-
nation offsets and the width and height
when necessary. Finally, if we have pixels
to draw after the clip, we go into our
loop.

Change the Rules
Now that we’ve got the setup code out of
the way, we can try to optimize the inner
loop. The first question we must ask is
always, “Do I need to optimize the inner
loop?” If this code is just supposed to
draw a score on top of a bitmap the
answer might be no. But if that were the
case, this would be a short column, so
let’s assume this code is our program’s
bottleneck.

Many people, including myself,
make the same mistake over and over
again when they start to optimize a piece
of code. They usually look at the C ver-
sion they have working and start rewrit-
ing it in assembly language, without tak-
ing a step back to ask themselves,
“What’s this algorithm really doing?”

The key to writing code that runs
very fast is not to optimize code that
obeys the current set of rules and struc-

ture you’ve imposed on it, the key is to
change the rules. My favorite scene from
Star Trek 2: The Wrath of Khan is the
one where Bones introduces Kirk to a
young Starfleet Academy graduate as
the only person who has ever aced the
final exam, the Kobiashi Maru. When
the graduate asks Kirk how it is possible
he beat a test that’s specifically pro-
grammed to be unbeatable, Kirk replies
that he sneaked into the testing room
the night before his exam and repro-
grammed the computer. Kirk would
make a great optimizer.

Let’s step back and see if we can
change the rules. The answer to “What’s
this algorithm really doing?” is not,

“Checking every byte for the transparent
color and copying it if necessary.” That
just happens to be the way the current
implementation works. The real answer
for most sprite-type source bitmaps is,
“Skipping a bunch of transparent bytes,
copying some data bytes, skipping some
more, and then doing it all over again.”
If we understand this latter answer, a
whole range of optimization opportuni-
ties open up to us.

We can take advantage of these
opportunities by examining the way our
current implementation deals with com-
mon input data and looking for ways to
change it for the better. Most sprites are
irregular shapes with transparent areas
on the sides of the bitmap and pixel data
in the center. Let’s take an example

scanline from such a sprite. These values
are in hex:

FF FF FF FF FF FF FF FF FF FF FF FF FF

FF FF 01 01 02 02 03 03 03 04 04 04 03

03 03 02 01 FF FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF

If we assume FF is our transparent
color, the current code will loop through
these 46 bytes and skip 31 of them
because they’re transparent. In other
words, it’s spending 67% of its time on
this scan deciding to do nothing. The
other 33% of the time, it’s checking for
the transparent color when all it needs to
do is copy the data. The amount of
transparent color per scanline is obvious-
ly dependent on your sprite artwork; I’m
using the doggie2.bmp bitmap (as shown
in Figure 2) supplied with the WinG
SDK, which is a fairly typical sprite
image.

The “rule change” we need so we
can take advantage of the source redun-
dancy is a change to the source bitmap
format. Instead of storing each pixel sep-
arately (and processing each pixel sepa-
rately in the BLT), let’s use a compres-
sion technique to encode pixel spans
compactly. This technique is called run
length encoding (RLE).

There are many forms of RLE, but
most use a few different “token” types to
compress bitmaps. Common tokens
include Run records, which have a value
and a number of pixels to copy that value
in the destination; Copy records, which
tell the decompressor to copy a series of
pixels from the source like a normal
BLT; and Skip (or Jump) records, which
give a number of pixels to skip in the
destination. (You can find documenta-
tion for one type of RLE format in the
Windows SDK documentation under
BITMAPINFO. The PCX file format is
another RLE format commonly used on
PCs.)

I’ve defined a simple RLE format
for compressing our source bitmap, with
the tokens shown in Table 1. Each
record is a DWORD in the source bitmap,
with the high word specifying the type
of the token, and the low word specify-
ing the run length for each token.

U N D E R T H E H O O D

16 GAME DEVELOPER • FEBRUARY 1995

Figure 2. Doggie2.bmp

Here is the same scanline encoded
with this RLE format:

0000001F 0001000F 0002000F 01 01 02 02

03 03 03 04 04 04 03 03 03 02 01

00010010

Now, instead of checking every byte
as it transfers, the code can look at each
record. If it’s a SKIPRUN, the decompres-
sor just increments the destination
pointer, skipping over the pixels that
wouldn’t be drawn anyway (they’re
transparent in the source), and if it’s a
COPYRUN, the decompressor copies the
pixels without checking for the transpar-
ent color. Plus, although we’re not con-
cerned with size compression right now,
this encoding is only 31 bytes long, com-
pared to 46 bytes for the raw scanline.

Instead of using SKIPRUNs to com-
press transparent runs, an alternative
encoding would use another record type,
the COLORRUN. This record encodes a strip
of pixels with the same value. If we used
COLORRUNs, we’d be able to change the
transparent color on-the-fly to make
new parts of the source bitmap invisible,
but our decompressor would need to
treat COLORRUNs differently depending on
whether they encoded the transparent
color or not.

In an RLE bitmap, each scanline is a
different length in memory, so it’s some-
times hard to find a certain line. The NEW-
LINE record makes clipping and subrectan-
gle BLTing much easier. If we want to
skip to a certain line, we start at the first
scanline and move from NEWLINE to NEWLINE
until we get to the one we want.

Listing 2 shows the new transpar-
ent BLT, TransparentBltRLE. The setup
code for the destination and the clipping
calculations stay the same, and both were
copied from Listing 1. The actual inner
loop looks a lot different from Listing 1
because we need to parse the source

RLE. Clipping an RLE bitmap in the
X-axis gets interesting; we need to loop
over the records until we find one that
intersects our BLT rectangle, process the
“active” portion (the portion that actually
intersects), then start the BLT loop on
the next record.

Listing 3 is the RLE compressor,
CompressSprite. It’s a fairly simple state
machine that writes out records on state
transitions from SKIPRUNs to COPYRUNs or
vice versa. This code could use a bit of
work. It doesn’t shrink the allocated
memory after compressing the sprite, for
example. We’ll discuss other optimiza-
tions to the format below.

Numbers
Listing 2 is significantly faster than List-
ing 1 when BLTing the doggie. Table 2
contains some performance numbers (for
1,000 iterations). Listing 2 is two times
faster than Listing 1. More interesting
still, Listing 2 is almost twice as fast as
fast32.asm, the assembly language trans-
parent BLT we shipped with the WinG
SDK! Fast32.asm is basically an opti-
mized 386 assembly language version of
Listing 1, and it uses some special tech-
niques to increase speed, but it’s clear
that changing the rules gives a much
bigger payoff than just brute force opti-
mization or assembly language.

Give Me More
If we want to max out Listing 2, there
are a number of other techniques to con-
sider. You’ll notice that if a source scan-
line looks like this:

FF 01 FF 01 FF 01 FF 01 FF

CompressSprite will generate this:

0000002C 00010001 00020001 01 00010001

00020001 01 00010001 00020001 01

00010001 00020001 01 00010001

This is definitely a waste of space
and almost certainly a speed loss, too. To
fix this case, we could extend our RLE
format to contain a transparent color,
and instead of simply copying the COPY-
RUN data bytes with memcpy, as we did in
Listing 2, we could run the equivalent of
Listing 1’s inner loop on them. This
gives us the benefits of both techniques.
We could go even farther and make a
new record type, TRANSCOPYRUN, for runs
that contain pixels with interspersed
transparent colors and keep COPYRUN for
plain copies so we don’t slow down the
normal nontransparent runs. Our com-
pressor would have to be smarter, too. It
would look at the data and make a deci-
sion about whether it is better to com-
press a run of transparency with a
SKIPRUN or to simply embed the transpar-
ent pixels in a TRANSCOPYRUN.

Obviously, well-written assembly
language code would make things faster
as well, but we could probably optimize
the C code without resorting to assembly
language and still get some more perfor-
mance. For example, we could DWORD align
our copies, we could unroll once or twice
(although on a Pentium especially, this
probably wouldn’t be a big win and it

would make our code bigger and less
cacheable), and we could redesign the
RLE format so we read less (using DWORD
tokens is wasteful in most circumstances).
Another option to consider is compiling
code to do the transparent BLT, so
instead of our sources being bitmaps,
they’d be blocks of code that draw the
sprite directly. Fast32.asm uses hysteresis
to speed things up, and we could put that
in our RLE decompressor as well.

Hysteresis is basically “stickiness,”
or a tendency to stay the same. For
example, when I’m awake, I tend to stay

U N D E R T H E H O O D

18 GAME DEVELOPER • FEBRUARY 1995

Listing 1 7,100 ms
Listing 2 2,414 ms
fast32.asm 6,950 ms
[Fast32.asm is from the WinG SDK
doggie sample application.]

Table 2. Timing Numbers

NEWLINE 0000NNNN NNNN=number of bytes to next NEWLINE record
SKIPRUN 0001NNNN NNNN=number of pixels to skip in destination
COPYRUN 0002NNNN NNNN=number of pixels to copy from source to

destination

Table 1. RLE Tokens

awake for a long time, and when I’m
asleep in bed, I stay there, too. You can
use hysteresis in transparent BLTing by
recognizing that when you’re in a trans-
parent run you’ll probably be there for a
while, and similarly, when you’re copy-
ing pixels, you’ll do that for a bit rather
than switching between the two. Of
course, our RLE format takes advantage
of a lot of this redundancy, so hysteresis
might not make much sense for our
decompressor.

The only way to know is to under-
stand your data and truthfully answer
the question, “What’s this algorithm
really doing?”

Actually, you need to answer this
question in two parts. The first, as we
discussed, is understanding what the
algorithm is supposed to do, not what
the current implementation does. The
second part comes in when you’ve decid-
ed on an optimization strategy, and is
best summarized by Michael Abrash’s
quote from Zen of Code Optimization
(Coriolis, 1994), “Assume nothing!”
Time your algorithms, don’t assume cer-
tain performance. I use the timeGetTime
API on Windows, which returns mil-
lisecond-accurate timings, and Michael
uses the Zen Timer, but whatever you
do, time your results.

One Last Word
In the future, I plan to cover (in a tech-
nical way, naturally) digital wave audio
mixing, perspective texture mapping,
animated cursors, and maybe some
wacky 32-bit programming hacks under
16-bit Windows. Write and let me know
what you think or, better yet, post to
rec.games.programmer or the Com-
puServe GAMDEV forum so everyone
can join in. I also hang out on BIX in
Michael Abrash’s ibm.pc/fast.code con-
ference, simply the best place to discuss
optimization I’ve ever seen. ■

Chris Hecker works for a large soft-
ware company in the Pacific Northwest. He
can’t mention the name because then he’ll
need all sorts of disclaimers. It’s just a coin-
cidence that he can be reached at
checker@microsoft.com or through Game
Developer magazine.

GAME DEVELOPER • FEBRUARY 1995 19

#include<windows.h>
#include<windowsx.h>
#include<string.h>
#include<assert.h>

#define ISSKIPRUN(Record) (int)((((DWORD)(Record)) & 0xFFFF0000) ==
0x00010000)
#define ISCOPYRUN(Record) (int)((((DWORD)(Record)) & 0xFFFF0000) ==
0x00020000)

#define RUNLENGTH(Record) (int)(((DWORD)(Record)) & 0xFFFF)

void TransparentBltRLE(BITMAPINFOHEADER *pDestHeader, BYTE *pDestBits,
int XDest, int YDest, BITMAPINFOHEADER *pSourceHeader,
BYTE *pSourceBits, BYTE TransparentColor){

int DestDeltaScan, DestWidthBytes, DestRealHeight;
int XSource = 0, YSource = 0;
int Width, Height;

DestWidthBytes = (pDestHeader->biWidth + 3) & ~3; // dword align

assert(pDestHeader->biSizeImage); // insure biSizeImage is set

if(pDestHeader->biHeight < 0){
// dest is top-down
DestRealHeight = -pDestHeader->biHeight; // get positive height
DestDeltaScan = DestWidthBytes; // travel down dest

}else{
// dest is bottom-up
DestRealHeight = pDestHeader->biHeight;
DestDeltaScan = -DestWidthBytes; // travel down dest
// point to top scanline
pDestBits += pDestHeader->biSizeImage - DestWidthBytes;

}

// pDestBits -> top scanline of dest
// DestDeltaScan -> distance from scan to scan in dest

// clip source to dest

assert(pSourceHeader->biHeight < 0); // assume top-down source DIB
Width = pSourceHeader->biWidth;
Height = -pSourceHeader->biHeight;

if(XDest < 0){
// left clipped
Width += XDest;
XSource = -XDest;
XDest = 0;

}

if((XDest + Width) > pDestHeader->biWidth){
//right clipped
Width = pDestHeader->biWidth - XDest;

Listing 2. RLE Transparent BLT (Continued on p. 20)

U N D E R T H E H O O D

20 GAME DEVELOPER • FEBRUARY 1995

}

if(YDest < 0){
// top clipped
Height += YDest;
YSource = -YDest;
YDest = 0;

}

if((YDest + Height) > DestRealHeight){
// bottom clipped
Height = DestRealHeight - YDest;

}

// step to starting dest pixel
pDestBits += (YDest * DestDeltaScan) + XDest;

// account for span in delta scans
DestDeltaScan -= Width;

if((Height > 0) && (Width > 0)){
// we have something to BLT
int X, Y;
DWORD *pCurrentSourceScan = (DWORD *)pSourceBits;

// prestep to starting source Y

for(Y = 0;Y < YSource;Y++){
pCurrentSourceScan = (DWORD *)((BYTE *)pCurrentSourceScan +

RUNLENGTH(*pCurrentSourceScan));
}

for(Y = 0;Y < Height;Y++){
DWORD *pCurrentSourceRecord = pCurrentSourceScan + 1;

// prestep to starting source X

X = 0;

while(X < XSource){
X += RUNLENGTH(*pCurrentSourceRecord);

if(X > XSource){
// we need to partially process the current record

int Overlap = X - XSource;
int ActiveOverlap = (Overlap > Width) ? Width : Overlap;

if(ISCOPYRUN(*pCurrentSourceRecord)){
// copy overlap pixels to destination

// get pointer to data
BYTE *pCopyRun = (BYTE *)pCurrentSourceRecord + 4;

// prestep to desired pixels
pCopyRun += RUNLENGTH(*pCurrentSourceRecord) - Overlap;

memcpy(pDestBits,pCopyRun,ActiveOverlap);

Listing 2. (Continued on p. 21)

GAME DEVELOPER • PREMIER 1994 21

}

// skip to next dest pixel
pDestBits += ActiveOverlap;

}

// skip to next record

if(ISCOPYRUN(*pCurrentSourceRecord)){
// skip any data bytes
pCurrentSourceRecord =

(DWORD *)((BYTE *)pCurrentSourceRecord +
RUNLENGTH(*pCurrentSourceRecord));

}

pCurrentSourceRecord++; // skip record itself
}

X = X - XSource;

while(X < Width){
int RunLength = RUNLENGTH(*pCurrentSourceRecord);
int RemainingWidth = Width - X;
int ActivePixels = (RunLength > RemainingWidth) ?

RemainingWidth : RunLength;

if(ISCOPYRUN(*pCurrentSourceRecord)){
// copy pixels to destination

// get pointer to data
BYTE *pCopyRun = (BYTE *)pCurrentSourceRecord + 4;

memcpy(pDestBits,pCopyRun,ActivePixels);
}

// skip to next dest pixel
pDestBits += ActivePixels;

// skip to next record

if(ISCOPYRUN(*pCurrentSourceRecord)){
// skip any data bytes
pCurrentSourceRecord =

(DWORD *)((BYTE *)pCurrentSourceRecord + RunLength);
}

pCurrentSourceRecord++; // skip record itself

X += RunLength;
}

pDestBits += DestDeltaScan;

pCurrentSourceScan = (DWORD *)((BYTE *)pCurrentSourceScan +
RUNLENGTH(*pCurrentSourceScan));

}
}

}

Listing 2. (Continued from p. 20)

U N D E R T H E H O O D

22 GAME DEVELOPER • FEBRUARY 1995

State = InCopyRun;
*pOutputByte++ = *pSourceByte;
LineLength += 5;

}

pSourceByte++;

for(X = 1;X < Width;X++){
if(*pSourceByte == TransparentColor){

if(State == InSkipRun){ // still in skip run
CurrentRunLength++;

}else{ // changing to skip run
// write out copy record
*pOutputRecord = COPYRUN(CurrentRunLength);
pOutputRecord = (DWORD *)pOutputByte;

CurrentRunLength = 1;
State = InSkipRun;
LineLength += 4;

}
}else{ // source is data

if(State == InCopyRun){ // still in copy run
CurrentRunLength++;
*pOutputByte++ = *pSourceByte;
LineLength++;

}else{ // changing to copy run
// write out skip record
*pOutputRecord = SKIPRUN(CurrentRunLength);
pOutputRecord++;
pOutputByte = (BYTE *)(pOutputRecord + 1);

CurrentRunLength = 1;
State = InCopyRun;
*pOutputByte++ = *pSourceByte;
LineLength += 5;

}
}

pSourceByte++;
}

// finish off current record

if(State == InSkipRun){
*pOutputRecord = SKIPRUN(CurrentRunLength);
pOutputRecord++;

}else{ // InCopyRun
*pOutputRecord = COPYRUN(CurrentRunLength);
pOutputRecord = (DWORD *)pOutputByte;

}

*pNewlineRecord = NEWLINE(LineLength);

pSourceBits += SourceWidthBytes;
}

return (BYTE *)pOutputBuffer;
}

Listing3.

#include<windows.h>
#include<windowsx.h>
#include<string.h>
#include<assert.h>

#define NEWLINE(Length) /
((DWORD)(0x00000000 | /
(short unsigned)(Length)))

#define SKIPRUN(Length) /
((DWORD)(0x00010000 | /
(short unsigned)(Length)))

#define COPYRUN(Length) /
((DWORD)(0x00020000 | /
(short unsigned)(Length)))

BYTE *CompressSprite(
BITMAPINFOHEADER *pSourceHeader,
BYTE *pSourceBits,
BYTE TransparentColor){
int SourceWidthBytes = /

(pSourceHeader->biWidth + 3) & ~3;
void *pOutputBuffer = /

GlobalAllocPtr/
(GHND,pSourceHeader->biSizeImage);

DWORD *pOutputRecord = /
(DWORD *)pOutputBuffer;

BYTE *pOutputByte;
int X, Y;

assert(pOutputBuffer);

for(Y = 0;/
Y < pSourceHeader->biHeight;Y++){

int Width = /
pSourceHeader->biWidth;

enum state { InSkipRun, /
InCopyRun } State;

BYTE *pSourceByte = /
pSourceBits;

DWORD *pNewlineRecord = /
pOutputRecord++;

int LineLength = 4;
int CurrentRunLength = 1;

pOutputByte = /
(BYTE *)(pOutputRecord + 1);

if(*pSourceByte ==/
TransparentColor){

// we’re starting a skip run
State = InSkipRun;
LineLength += 4;

}else{
// source is data

// we’re starting a copy
run

Listing3. RLE Compressor

Ten Techniques
for Faster
Image Drawing

I M A G E D R A W I N G

O
nce again, we are off on our
quest for the fastest graphics
performance possible. This
time, we are going to take a
look at image drawing rou-
tines and the factors that
affect performance. In the
process, we’ll examine many

factors that negatively affect perfor-
mance and the techniques you can use
to minimize them. While I am going
to use Mode X image drawing as our
test example, most of these factors
apply to all graphics modes from EGA
16 color to Super VGA True Color.

For the techniques described in
this article, let’s suppose that we are
writing a game that needs to redraw a
tile-based background, like Ultima VI
or Gauntlet. We are using 256-color
Mode X at 320-by-200 pixels of reso-
lution, and our background is 18-by-12
tiles in size. This makes for an update
area of 288 pixels by 192 pixels or
55,296 total pixels. Tiles are stored in
memory line by line from left to right,
top to bottom.

For testing, I will time each rou-
tine on five different CPU and video
card combinations to get a good cross-
section of the machines a game design-
er would expect his or her programs to
run on today. Representing the lower
end of most systems is a 40MHz 386
with a slow ISA Trident VGA card.
To contrast the variations between
VGA cards is another 40MHz 386
with a fast ISA ATI Graphics Ultra
Plus. Next, a 33MHz Hewlett Packard
486SX with an S3-based VGA on the
motherboard and a 66MHz 486DX2
computer with a Diamond Stealth 32

on a VLB local bus. Finally, we will
test on a 90MHz Pentium computer
with a Diamond Stealth 64 PCI Bus
video card. To reduce the impact of
memory caches in our test results, each
routine will be called 10,000 times in a
loop using the same data buffers. The
final results are summarized in Table 1.

We will start by using the Mode
X drawing code from the article “Mode
X Revealed” (Dec. 1994) to write a
straightforward tile-drawing routine in
Borland C, as shown in Listing 1.

Our tile-drawing routine is pretty
simple and straightforward, wouldn’t
you agree? It’s small, flexible, uses only
integers, and has just three executing
statements. It’s also horribly slow and a
perfect candidate for our first speedup
technique.

Speedup Technique #1
Do not call a separate pixel-plotting
routine in image-drawing code. Use
inline code or functions instead. Think
about how many calls it takes to draw
one screen or image.

The crux of this technique can be
summed up in one word: overhead.
Every time you call a function or proce-
dure, your program incurs the overhead
of pushing parameters, executing a far
call, setting up a stack frame, decoding
parameters, cleaning up the stack, and
executing a RETurn instruction. For
something simple, like plotting a single
pixel, the time spent handling the call
can approach the time spent executing
the core of the function.

Let’s think about this: for each
screen we redraw, 55,296 calls are
made. Intel’s timings show a perfect

24 GAME DEVELOPER • FEBRUARY 1995

world time of 24 CPU cycles on a 486
for only the call, stack frame assign-
ment, and return. In reality, that time
can be more like 35 cycles per call.
Using a call for each pixel can eat up
nearly 1.3 to 2 million CPU cycles per
screen! These are CPU cycles we want
to use for other things.

Now we will rewrite our tile-draw
routine, putting the set_point routine
inline using Borland C’s inline assem-
bly language command, shown in List-
ing 2.

Although we added code to pre-
serve registers, this version showed
considerable improvement on our test
machines. We recorded speed increases
of 22%, 31%, 39%, 38%, and 10% for
about a 30% average increase. Put
another way, call overhead made up
the difference between 16 frames per
second and 20 frames per second! Call
overhead is only the tip of the iceberg.
Lurking in both examples is one of the
biggest obstacles to graphics perfor-
mance: the OUT instruction.

Speedup Technique #2
Minimize the number of OUT instruc-
tions to the video card. Switch video
planes or memory banks as infrequent-
ly as possible.

OUT instructions are the only way
to access the various control registers
on a graphics card, so they can’t be
eliminated. You need them to set bit
planes, write masks, and select banks
in just about every mode except mode
13h and CGA modes. They are neces-
sary, and they are slow.

According to Intel, an OUT

instruction takes 10 CPU cycles on a

386 and 16 cycles on a 486. While it’s
not the fastest instruction, 16 CPU
cycles doesn’t seem that serious. This
wouldn’t be a problem if the timings
told the whole story, but they don’t.
The 16 CPU cycles reflect only the
CPU processing overhead. No mention
is made of the I/O bus, or the VGA
card itself. Even on a local bus video
card, OUTs still have to go through the
8MHz bus protocol, which was
designed for the original IBM PC-AT
and PC/XT. In addition to the ISA
bus, the VGA card itself has to
respond to the OUT and signal the com-
puter that it has properly processed it.
Finally, as if this wasn’t bad enough,
under most memory managers or oper-
ating systems, the CPU has to check
the OUT instruction for validity against
the I/O permission bitmap, a process
that can add 10 to 20 more cycles.

Given all these factors, the OUT
instruction actually takes anywhere
from 30 to more than 70 CPU cycles,
with a wide variance due to differences
in CPU, motherboard, I/O bus, and
video card. With this in mind, how
many OUTs do we really need to draw
one of our tiles? Four. One OUT to
select each of the four Mode X planes.
If we rewrite our tile-drawing code to
plot all pixels on one plane before
going on to the next, it should be
much faster since we will have cut the
number of OUTs per time from 256 to 4,
about a 98% reduction.

Listing 3 shows our tile-drawing
code, rewritten to minimize OUTs. Tim-
ing this version, we see speed increases
of 43%, 19%, 51%, 50%, and 127%
over the last version. The scores on the

What affects image-

drawing speed?

Here are ten tricks to

help you get the

fastest graphics

performance—in

Mode X as well as EGA

and Super VGA modes.

Matt Pritchard

GAME DEVELOPER • FEBRUARY 1995 25

386 machines illustrate how big the
variation can be due to the video card
alone. The speedy Pentium showed
how factors outside the CPU can slow
it down. Compared to the routine we
started with, we are averaging about a
100% improvement.

The next couple of speedup tech-
niques are less obvious, but share the
same basic philosophy: reduce over-
head by removing unnecessary or
redundant portions of code.

Speedup Technique #3
For frequently drawn images, use spe-
cific routines with hard-coded values
instead of general-purpose routines.
You can choose the variables you
encode as constants and remove func-
tionality that you don’t need.

You should think about the rou-
tines you use, especially if they come
from third-party libraries. Ask these
questions about your routines:
• Do they have inputs that will always

be the same?
• Do they have features that will never

be needed?
• Are they more flexible than my pro-

gram will ever be?
If you answer yes to these ques-

tions, then you should consider writing
custom versions of those routines for
the specific task at hand.

Imagine a library routine that has
neat features like a transparent color,
or clipping the image to a rectangle.
But what if we know that certain
images are always solid or are never
going to need to be clipped? In this
case, it means every time we use them,
the computer spends part of its time
checking for things that will never
happen. With a little up-front plan-
ning and awareness, a good game
designer will avoid overhead by imple-
menting alternate versions of those
routines which don’t have features that
will go unused.

In our tile-drawing routine we
pass in two variables, Xwide and Ywide,
that tell us how big the tile image is.
But, according to our specifications,
the only size tile we will ever draw is
16-by-16. We can make a version

I M A G E D R A W I N G

26 GAME DEVELOPER • FEBRUARY 1995

void draw_tile (char* theTileData, int Xpos, int Ypos, int Xwide, int Ywide)
{

int x, y;
int c = 0;

for (y = 0; y < Ywide; y++) {
for (x = 0; x < Xwide; x++) {

set_point (Xpos + x, Ypos + y, theTileData[c++]);
}

}
return;

}

Listing 1. A Straightforward Approach in C

void Fast_Draw_Tile (char * TheTile, int Xpos, int Ypos, int Xwide, int
Ywide)
{

int x, y, z;
int c = 0;

for (y = 0; y < Ywide; y++) {
for (x = 0; x < Xwide; x++) {

asm {
Push SI /* Save SI & DI because */
Push DI /* the compiler is using them */

Les DI, dword ptr CURRENT_PAGE
Mov AX, y /* Get Line # of Pixel */
Add AX, Ypos /* Add Y position of Tile */
Mul SCREEN_WIDTH /* Get Offset to Line Start */
Mov BX, x /* Get X pos inside of tile */
Add BX, Xpos /* Add X position of Tile */
Mov CX, BX /* Save to get shift Plane # */
Shr BX, 2 /* X offset (Bytes) = Xpos/4 */
Add BX, AX /* Offset = Offset + Xpos/4 */
Mov AL, 2 /* Select Map Mask Register */
Mov AH, 0x01 /* Start w/ Plane #0 (Bit 0) */
And CL, 3 /* Get Plane Bits */
Shl AH, CL /* Get Plane Select Value */
Mov DX, 0x03C4 /* then Select Register */
Out DX, AX /* Set I/O Register(s) */
Mov SI, TheTile /* Point to Tile */
Add SI, c /* Get current data byte # */
Inc c /* Advance to next byte */
Mov AL, byte ptr [SI] /* Get Pixel Color */
Mov ES:[DI+BX], AL /* Draw Pixel */

Pop DI /* Restore SI & DI */
Pop SI

}
}

}
return;

}

Listing 2. Putting the Pixel Plot Function Inline

specifically for 16-by-16 tiles and save
the overhead of passing those variables
every call. If we need to draw tiles in
other sizes, we still have our general-
purpose routine, or we could write
another specific-sized routine.

While looking over the tile-draw-
ing code with this in mind, we see
another situation where the code is
doing something that may be unneces-
sary. Why are we doing a MULtiply every
time we plot a pixel? This leads us to
yet another speedup technique.

Speedup Technique #4
Precalculate frequently needed infor-
mation whenever possible. Use lookup
tables instead of calculations. Image
drawing should be about transferring
data, not calculating it.

Taking a closer look at our code,
we see that for every pixel plotted, one
MULtiply instruction is performed when
calculating the display address. That is
not terrible, but the multiply takes
anywhere from 10 to 26 CPU cycles,
and we do it 55,296 times for every
screen. If we stop and think about
what is being multiplied, we are hit
with this realization: we are multiply-
ing the same 200 numbers over and
over again. Because we know how wide
the screen is going to be, and we know
what Y values the pixels will be, why
not do all the multiplying once and
save the results in a table? This method
is known as using a lookup table.

By using a lookup table in our
tile-drawing routine, we can replace
the MUL instruction that takes 10 to 26
cycles with a lookup sequence that
takes two to four cycles. Even with
timings that depend on the exact num-
bers multiplied, we should easily see
savings of at least a half million cycles
per screen drawn.

Our tile-drawing routine doesn’t
actually do justice to the benefits a
lookup table can provide. More com-
plex calculations such as square roots,
sines and cosines, vectors, rotation, and
scaling factors, can take hundreds of
CPU cycles. But these, too, can be
replaced with lookups that take only a
couple of cycles. It should be no sur-

prise that graphics-intensive games like
Wolfenstein 3-D, Doom, TIE Fighter,
Wing Commander, and many more
make extensive use of lookup tables.

Now, let’s redo our tile-drawing
routine and apply speedup techniques
3 and 4, shown in Listing 4.

Timing this version again shows

GAME DEVELOPER • FEBRUARY 1995 27

All times in BIOS Ticks/10,000 tiles
Smaller Number = Faster Routine

Machine: 386DX/40 386DX/40 486SX/33 486DX266 Pentium 90

Routine: Trident VGA ATI VGA S3 VGA Stealth 32 Stealth 64

Listing 1: 375 291 201 99 65

Listing 2: 307 222 145 72 59

Listing 3: 214 186 96 48 26

Listing 4: 179 152 72 35 19

Listing 5: 56 25 9 4 4

Table 1. Tile Draw Routing Timings

healthy speed increases of 20%, 22%,
33%, 37%, and 37%. Overall, we have
achieved about a 100% speed increase on
the 386 machines, 180% on the 486, and
240% on the Pentium. It seems like we
are running out of techniques that
involve only modifying the code. It’s
time to turn our attention toward the
actual display data and the VGA card
itself. Understanding in detail how the
CPU, memory, and VGA card work and
interact with each other will allow us to
uncover facts that we can exploit to fur-
ther improve our routines.

Memory, it turns out, is the key.
We know that video memory is slower
than normal RAM, so what’s the best
way to access it? To study this, I’ve
turned to a tool that you can find on
your favorite bulletin board or online
service: Michael Abrash’s Zen Timer.
I’ve used the Zen Timer to time how
fast video memory can be written using
various methods. The results are sum-
marized in Table 2. You will notice
that 16-bit writes take the same
amount of time as 8-bit writes.

Looking at our tile-drawing code,
we are using 8-bit writes to draw one
pixel at a time when we could be using
16-bit writes to draw two pixels in the
same amount of time. This brings us to
our next speedup technique.

Speedup Technique #5
When writing data to the VGA card,
use 16-bit writes whenever possible.
They take the same amount of time as
8-bit writes, but transfer twice as much
data.

You’ll notice that I didn’t list tim-
ings for 32-bit writes. Thirty-two bit
writes bring up some other issues, such
as bus type and REP MOVSD interfering
with sound DMA on some 386 systems.
We are going to save this issue for
another time, when we can examine 32-
bit graphics in detail.

In Mode X, writing a 16-bit value
will plot two pixels that are four pixels
apart instead of right next to each
other. But our image data is stored lin-
early. We can either gather the two
pixels together before each write or use
this next speedup technique.

I M A G E D R A W I N G

28 GAME DEVELOPER • FEBRUARY 1995

void Faster_Draw_Tile (char * TheTile, int Xpos,
int Ypos, in Xwide, int Ywide)

{ int x, y, p, c;
for (p = 0; p < 4; p++) { asm {

Mov AL, 2 /* Select Map Mask Register */
Mov AH, 0x01 /* Start w/ Plane #0 (Bit 0) */
Mov CX, p /* Get Plane # */
Add CX, Xpos /* Adust to Image Xpos */
And CL, 3 /* Get Plane Bits */
Shl AH, CL /* Get Plane Select Value */
Mov DX, 0x03C4 /* then Select Register */
Out DX, AX /* Set I/O Register(s) */

};
for (y = 0; y < Ywide; y++) {

c = y * Xwide + p;
for (x = p; x < Xwide; x+=4) { asm {

Push SI /* Save SI & DI because */
Push DI /* the compiler is using them */
Les DI, dword ptr CURRENT_PAGE

Mov AX, y /* Get Line # of Pixel */
Add AX, Ypos /* Adjust to Image Y pos */
Mul SCREEN_WIDTH /* Get Offset to Line Start */
Mov BX, x /* Get X pos inside of tile */
Add BX, Xpos /* Add X position of Tile */
Shr BX, 2 /* X offset (Bytes) = Xpos/4 */
Add BX, AX /* Offset = Offset + Xpos/4 */
Mov SI, TheTile /* Point to Tile */
Add SI, c /* Get current data Byte # */
Add c, 4 /* Advance to next in plane */
Mov AL, byte ptr [SI] /* Get Pixel Color */
Mov ES:[DI+BX], AL /* Draw Pixel */
Pop DI /* Restore SI & DI */
Pop SI

}
}

}
}
return;

}

Listing 3. Minimizing the Number of OUT Instructions

Timings are in Microseconds
Smaller Numbers = Faster Time

Machine: 386DX/40 386DX/40 486SX/33 486DX2/66 Pentium 90

Routine: Trident VGA ATI VGA S3 VGA Stealth 32 Stealth 64

8-Bit
Writes: 1096 618 176 205 153

16-Bit
Writes: 1094 618 176 205 153

16-Bit
Odd Writes: 2180 1171 343 325 308

Table 2. VGA Memory Timings

Speedup Technique #6
Arrange your image data in the form it
will be drawn to video memory. For
Mode X or 16-color modes, separate and
store image data by video planes.

The way we store our image data is
up to us, the game designers. Those
decisions dictate how our graphic rou-
tines must work. This gives us another
area where we can design our routines to
work as efficiently as possible. Looking
at the video memory timings some more,
we come across a possible hitch with 16-
bit writes. When a 16-bit value is written
to an odd video memory address, it takes
twice as long as an even address. The
reason for that lies in how the VGA card
and the bus work together. When the
data written spans a 16-bit boundary, the
bus splits it into two separate writes.
Further testing shows that on the local
bus video cards tested, 16-bit writes
slowed down only on odd addresses that
cross double word boundaries. Aligning
write data to the size of the video bus (16
or 32 bits) gives us another speedup
technique.

Speedup Technique #7
When writing images, align the data on
word and double word boundaries when-
ever possible. It may be advantageous to
have separate routines for even and odd
image destinations.

This creates a problem for routines
that can draw an image at any position
on the screen. Some positions will start
on even addresses, and some will start on
odd addresses. The images drawn 16 bits
at a time on odd addresses will be slower
than those on even addresses. Depending
on the circumstances, it may be advanta-
geous to have two separate drawing rou-
tines, one for even destinations and one
for odd destinations. In the case of our
tile drawing, the positions we chose for
the tiles are at even addresses only, so we
can optimize our code for it.

While system RAM is faster than
video RAM, data alignment works the
same way. Most CPUs read 32 bits of
aligned data at a time, even if only 8 bits
are needed. A 16- or 32-bit read that
spans two 32-bit blocks will be broken
into two separate reads. This gives us

another speedup technique that exploits
memory alignment.

Speedup Technique #8
Try to store image data so that it will
be aligned on 32-bit boundaries in sys-

tem memory. Pad structures and tables
so the data after it will be aligned in
system memory.

This may seem like a repeat of
Technique #6, but it’s not. We could
reorder our image data and store it in

GAME DEVELOPER • FEBRUARY 1995 29

void EF_Draw_Tile (char * TheTile, int Xpos, int Ypos)
{

int x, y, p;
int c = 0;

for (p = 0; p < 4; p++) {
asm {

Mov AL, 2 /* Select Map Mask Register */
Mov AH, 0x01 /* Start w/ Plane #0 (Bit 0) */
Mov CX, p /* Get Plane # */
Add CX, Xpos /* Adust to Image Xpos */
And CL, 3 /* Get Plane Bits */
Shl AH, CL /* Get Plane Select Value */
Mov DX, 0x03C4 /* then Select Register */
Out DX, AX /* Set I/O Register(s) */

};
c = p; /* we can do this because */
for (y = 0; y < 16; y++) { /* we know the tile width */

for (x = p; x < 16; x+=4) { /* and the tile height! */
asm {

Push SI /* Save SI & DI because */
Push DI /* the compiler is using them */

Les DI, dword ptr CURRENT_PAGE
Mov BX, y /* Get Line # of Pixel */
Add BX, Ypos /* Add Start Y position */
Add BX, BX /* Scale to word offset */
Mov AX, SCREEN_OFFSET[BX] /* Lookup in Table */

Mov BX, x /* Get Xpos */
Add BX, Xpos /* Add in Image X Start */
Shr BX, 2 /* X offset (Bytes) = Xpos/4 */
Add BX, AX /* Offset = Offset + Xpos/4 */
Mov SI, TheTile /* Point to Tile */
Add SI, c /* Point to correct byte */
Add c, 4 /* Advance to Next in plane */
Mov AL, byte ptr [SI] /* Get Pixel Color */
Mov ES:[DI+BX], AL /* Draw Pixel */

Pop DI /* Restore SI & DI */
Pop SI

}
}

}
}
return;

}

Listing 4. Using Lookup Tables and Constants

system memory on odd memory address-
es. We have to look at where the image
data is coming from as well as to where it
is going. When our images are an odd
width, it may be advantageous to add
“padding” bytes in between each line of

data, so the routine that draws a line can
be assured of the fastest possible reads
from system memory.

Taking all of this knowledge
about how memory and the VGA card
works, we can go back and rewrite our

tile-drawing code again. Just because
we did general purpose optimizations
before, doesn’t mean we shouldn’t look
at them again. Now that we have
examined our needs in detail, we have
more information to work with. For
example, because we know the size of
our images, we can apply a technique
called “loop unrolling.” This gives us
another speedup technique.

Speedup Technique #9
Don’t forget about normal assembly
language optimizations. After applying
other techniques, your code may have
changed to where you can use standard
techniques such as loop unrolling,
branch elimination, and instruction
substitution. Gear your optimizations
toward the 486 and Pentium systems;
286 systems are all but dead now, but
many optimizations are still oriented
toward them.

Taking all we know into consider-
ation, we can write our 16-by-16 tile-
drawing code, shown in Listing 5. The
code is rewritten completely in assem-
bly language, with unrolled loops,
image data stored by planes, and
aligned 16-bit writes.

After testing, we see that image
data and alignment techniques really
do work. This time our results are even
better, as shown in Table 1. The speed
improvement over our original routine
is amazing! We have achieved total
increases of 500% and 1,000% on the
386 machines, 2,000% on the 486
machines, and 1,500% on the Pentium.
But in terms of results, we are still
doing exactly the same thing. At this
point, some of our results are looking
almost suspect. The test routines are
somewhat idealized because of the
attempts to nullify the cache’s impact,
but there is no denying that we can get
huge performance increases on every
system by applying all of our speedup
techniques.

Are there more ways to improve
our tile-drawing code? I am sure there
are. The fact that we have not dis-
cussed them here doesn’t mean they
don’t exist. With that thought, I give
you a final speedup technique.

I M A G E D R A W I N G

30 GAME DEVELOPER • FEBRUARY 1995

ASM_STACK STRUC
DW ?,?,? ; saved BP, SI, DI
DD ? ; Caller Return Address

ADT_Ypos DW ? ; Ypos of Tile to Draw
ADT_Xpos DW ? ; Xpos of Tile to Draw
ADT_Tile DW ? ; Near Prt to Tile Image

ASM_STACK ENDS

ADT_DRAW_PLANE MACRO
REPT 15

MOV AX, [SI] ; Get 2 Pixels
MOV CX, [SI+2] ; Get 2 More Pixels
MOV ES:[DI], AX ; Write 2 Pixels
ADD SI, 4 ; Update Source Address
MOV ES:[DI+2], CX ; Write 2 More Pixels
ADD DI, 80 ; Advance to next line

ENDM
MOV AX, [SI] ; Get 2 Pixels
MOV CX, [SI+2] ; Get 2 More Pixels
MOV ES:[DI], AX ; Write 2 Pixels
ADD SI, 4 ; Update Source Address
MOV ES:[DI+2], CX ; Write 2 More Pixels

ENDM

ADT_ADVANCE_PLANE MACRO
ROL BH, 1 ; Rotate Map Mask
ADC BP, 0 ; Adjust Start Address
MOV AX, BX ; Select New Video Plane
OUT DX, AX ; By OUTing to Map Mask
MOV DI, BP ; Start over at top

ENDM

ASM_DRAW_TILE PROC FAR

PUSH BP, DI, SI ; Preserve Registers
MOV BP, SP ; Set up Stack Frame

MOV DX, 03C4h ; VGA Map Mask Register
MOV CX, [BP].ADT_Xpos ; CX = Xpos
MOV AX, CX ; AX = Copy of Xpos

LES DI, dword ptr CURRENT_PAGE
MOV SI, [BP].ADT_Tile ; DS:SI - Tile Data
MOV BX, [BP].ADT_Ypos ; BX = Ypos
ADD BX, BX ; Scale to Word Offset
ADD DI, SCREEN_OFFSET[BX] ; Get Start of Line
SHR AX, 2 ; Add in Xpos / 4
ADD DI, AX ; DI = Final Address
MOV BP, DI ; Save to start each plane

Listing 5. Final Version (Continued on p. 31)

Speedup Technique #10
Never assume your routines are as fast
as possible. Always keep your mind
open for new ways to improve your
code.

By keeping an open mind we learn
more and discover more. Perhaps you
have a speedup technique that I’ve
overlooked. If so, why not drop a line
to Game Developer and share it with us.
Until next time, happy hacking! ■

Matt Pritchard is a software devel-
oper for Lacerte Software in Dallas,
Texas, and the author of MODEX110, a
comprehensive freeware Mode X library.
You can reach him via e-mail at
matthewp@netcom.com or through Game
Developer.

GAME DEVELOPER • FEBRUARY 1995 31

AND CL, 3 ; Get Plane Bits
MOV BX, 1102h ; Map Mask + Plane Select Bits
SHL BH, CL ; Rotate into position
MOV AX, BX ; Select video write plane
OUT DX, AX ; By OUTing to Map Mask

ADT_DRAW_PLANE ; Draw 16 Lines of 4 pixels
ADT_ADVANCE_PLANE ; Select Next Mode X Plane
ADT_DRAW_PLANE ; Draw 16 Lines of 4 pixels
ADT_ADVANCE_PLANE ; Select Next Mode X Plane
ADT_DRAW_PLANE ; Draw 16 Lines of 4 pixels
ADT_ADVANCE_PLANE ; Select Next Mode X Plane
ADT_DRAW_PLANE ; Draw 16 Lines of 4 pixels

POP SI, DI, BP ; Restore Saved Registers
RET 6 ; Exit and Clean up Stack

ASM_DRAW_TILE ENDP

Listing 5. (Continued from p. 30)

Beyond
Chrome
and Sizzle

B E Y O N D C H R O M E A N D S I Z Z L E

H
ey, professionals in the game
development industry, I’m here,
okay? I’m an adult woman
somewhere between the 20-
something generation Xers and
the successful baby boomers, I
own a computer, and I like to
play computer games. I like

Doom and Myst and Tetris, and other
games too. But you people don’t think I
exist. I’ve even heard some of you say so.
And frankly, I’m rather miffed about it.

But I guess I understand. Women
haven’t been big purchasers of computer
games and neither have our younger sis-
ters. If we do play games at all, we don’t

play them with the obsessive passion our
male counterparts have shown, and you
don’t see us hanging out in the arcades
jockeying for our turn at the joystick. You
say we stop playing games at age 12, we’re
not interested in computers, some of you
even say we’re not competitive. So why
bother making games that appeal to us.
It’s all our fault, not yours.

Well, I say things are changing.
Many of us own and use computers now,
and we are just beginning to get interested
in computer games. So if you build them,
we will play. But you’ve got to give us
more than Barbie and pink interfaces,
which is what some of you have done.
While we’ll play Mortal Kombat (and like
it) it’s going to take something else to
really get us hooked—all of us, not just
girls and women—but all of us “nontradi-
tional” game players who aren’t respond-
ing to the genre of shoot-em-up, beat the
clock, flesh flying, space invading, dun-
geons and dragons, psycho macho, occa-
sionally misogynistic stuff you’ve been cre-
ating for the past 10 years—the stuff
that’s geared to young boys and 18-to-35
year old males.

Computers at Home
As the computer moves into the hands of
more women and families, and games
move from boy-dominated arcades to the
privacy of our own homes, the market of
potential game players becomes larger.
And perhaps because half of the general
population is female, appealing to a larger
population of game players has become a
gender issue more than an issue of taste.
As game developers look to women and
girls to broaden their opportunities, the
answer to the Freudian question, What is

More pink, less guts? Crystal’s Pony Tale, a game designed for girls under eight years of age
by Sega’s girls task force of women developers, is one of the first efforts to target female
gamers. While little girls might think it’s cute, others say it barely scratches the surface of
what girls and women want in a game-playing experience.

32 GAME DEVELOPER • FEBRUARY 1995

it that women want? is becoming a rather
important topic. Some even call it the
Holy Grail of the ‘90s.

Game developers have been looking
to educational and psychological studies,
market research, and their own hunches
to answer this question, and what they’ve
found suggests that women and girls want
something different in a computer or
video game than what boys and men
want. Some research shows these different
game play styles begin to emerge at
around age eight, some research points to
differences as early as age four. Here are
some of the findings.

Girls and women like computer games
more than video games and enjoy playing
games at home.

A study conducted in 1993 by the
University of British Columbia’s comput-
er science department and funded by
Electronic Arts revealed that girls do
enjoy playing computer games and that
many of them are hip to the titles that
their male schoolmates are into. In the
study, researchers observed and inter-
viewed game players aged 3 to 18 during
their visits to a video and computer games
display at Vancouver’s Science World
B.C. museum. Girls interviewed said they
liked playing games at home more than in
a boy-dominated arcade. If boys were
swarming in front of a game console, girls
didn’t go up and ask for a turn.

Girls who were most comfortable
playing computer and video games came
from households with computers or game
consoles in them. If they had a video
game console and a computer in the
house—and games on each—they liked
computer games more than video games,
often expressing that playing on the com-

puter was more worthwhile.
Girls and women like characters and

story lines more than fast action.
The University of B.C. study showed

that girls were interested in story lines and
character, preferring to discuss these
things when talking about games instead
of how high they scored, which is what
boys liked to do. Girls often liked to dis-
cuss the relationships between the charac-
ters and often gave gender to androgynous
characters.

“Girls pay much more attention to
the real world,” says Barbara Lanza, a
game editor for Byron Preiss Multimedia.
“Girls like to find out the story behind a
game—what was really going on, what
were the characters like, were the charac-
ters like them, would they have fixed that
problem differently? Even girls’ books are
like that. If it’s a story of a girl whose par-
ents are going through a divorce, who’s 13
years old and facing her very first crush,
and who might possibly get kissed before
the book is over, you have one hot item
on your hands.”

What kind of characters do girls
like? They tend to like female characters
their age. Young girls also like fuzzy, cute
creatures. “We found that Sonic [the
Hedgehog] is fairly gender neutral,” says
Diane Fornasier, group marketing direc-
tor for Sega’s Genesis and Game Gear
games. “The girls like him a lot because
he’s cute and cuddly, and the boys like
him a lot because he’s fast.” And both
genders like him, Fornasier says, because
he has an attitude.

Girls and women want the game play-
ing to seem worthwhile.

While boys played video games to
“beat the game,” many female game play-

Are games designed

to appeal to women

and girls a ”separate

but equal“ kind of

entertainment—or

the beginning of a

new game genre that

will appeal to

everyone?

by Barbara
Hanscome

GAME DEVELOPER • FEBRUARY 1995 33

ers in the University of B.C. study
thought that wasn’t the best use of their
time. One girl interviewed in the study
said she’d play “mindless” games, referring
to Nintendo, only after playing “mind”
games, referring to Where in the World is
Carmen San Diego.

Other research points to this too,
especially as girls get older. “At about age
16 or 17, girls are not all that interested in
playing games for the sake of games,”
explains Solange Van Der Moer a multi-
media marketing consultant. “By that age,
young women start looking at computers
as tools rather than as entertainment
devices. They will play for diversion,
they’ll play to get information, they’ll play
something like Tetris, and they’ll play
simulation games like Sim City because it
accomplishes something.” Van Der Moer
says creative games that involve story writ-
ing, poster making, and rock video design,
are popular with this age group.

This desire for productivity or
worthwhile play might be why girls aren’t
into the repetitive aspect of some games as
much as boys are. “If a game is hard and it
means they have to play it over and over
again, it might bore the hell out of an
adult woman,” explains Lanza, “but a 10-
year-old male doesn’t mind this at all.
This is the same way that he learns every-
thing. With girls, it’s like (sigh) what’s the
point?”

Girls and women don’t like time limits.
Game designers agree that most boys and
men like the intensity of a time limit
when playing a game, while most girls
don’t. They prefer to explore things at
their own leisure. They like to be able to
leave a game and come back to it, and to
take the time they need to solve a puzzle
or mystery or get to the next level. Games
such as 7th Guest and Myst and many of
the newer “gender neutral” games for chil-
dren don’t have time limits at all.

What Everybody Likes
But what’s also interesting from this
research is what boys and girls and men
and women all like (and dislike) in com-
puter and video games—things that stray
from the tried and true, shoot-em-up-
and-score-high formula most games have
followed.

Collaboration and Socializing. Girls
enjoy collaboration and socializing during
game play and so do boys. In the Univer-
sity of B.C. study, girls enjoyed having
other girls around them while they played
video games and were highly social when
playing a game together. The girls talked
about many subjects and often encouraged
each other, appearing to enjoy themselves
just as much in between turns as when
they were playing the game itself.

The University of B.C. study showed
that this social aspect of game play is also
important to boys. Boys might compete
more aggressively in a group, but the boys
they interviewed said they enjoyed playing
games more when they played with
friends, and they often collaborated on
how to solve puzzles or get a high score.

Annie Fox, an independent game
designer who has developed games for
Electronic Arts and Humongous Enter-
tainment, says that both boys and girls
enjoy collaborating with characters within
a game if given the opportunity. Fox often
has the characters in her games turn to the
screen and ask the player what to do. “It
makes the game inclusive, it makes it
more intimate.” And boys seem to like
this as much as girls.

Challenge Not Frustration. Both boys
and girls in the University of B.C. study
could articulate the difference between a
game that was challenging and a game
that was too difficult. Boys and girls inter-
viewed said they liked mental challenge,
but if the game was too hard, the children
lost interest.

Confidence may be a bigger issue for
girls. Girls in the study were very critical of
their playing abilities, often saying things
like, “I’m so terrible at this,” even before
they’d given a new game a try. They would
stick to the games they mastered or had
played before more often than they would
venture forth and try a new game.

Several studies show that between
the ages of 11 and 13, girls begin to ques-
tion their self esteem, and socially con-
scious developers agree that games ignit-
ing a sense of accomplishment and victo-
ry are attractive to girls at this age, as well
as important.

Nonviolence. Studies show that vio-
lence in games generally isn’t appealing to

girls, but that most boys like it. But the
University of B.C. study pointed to several
exceptions to this video game rule. Many
of the violent games boys liked were also
thinking games, and some boys abhorred
violence altogether: one boy hated the fact
that he had to blow up the fuzzy creatures
in the game Lemmings to get to the next
level, and he apologized to each one
before he destroyed it.

Interactivity. Interactivity—the ele-
ment that has practically become a buzz-
word in the industry—is something peo-
ple of all ages and genders seem to like.
Developers of children’s games use inter-
active elements often. “It doesn’t matter
which gender it is, I think all kids love to
feel empowered,” says Fox. “To know that
your choice changed the story is very
exciting for kids.”

In EA’s game Madeline, for exam-
ple, players create a backdrop for a puppet
show. They enter a paint program that
lets them mix and create colors and paint
any number of backdrops. The backdrop
they choose appears for the rest of the
game, just the way they painted it.

Byron Preiss’s Ultimate Haunted
House—a game designed to appeal to
both boys and girls—also involves interac-
tivity. Each player gets a bag of items—
gruesome things like severed hands and
piles of guts—to help them find 13 miss-
ing keys in a house inhabited by quirky
characters and monsters. Players drag
their gory items to different places, and
each item sparks a different—and appro-
priate— reaction, depending on what it is
and where you drag it. The interactivity
keeps the player intrigued throughout the
game, and “winning” is almost secondary.

No Dead Ends. Regardless of gender,
players find paths that lead nowhere in a
game a real drag. They don’t like to be
told that they did it wrong and have to
start over. In Sanctuary Woods’ Hawaii
High, Mystery of the Tiki, a game
designed for girls, this never happens. If
players make a wrong move, they go back
to the “story map,” a kind of central direc-
tory where they can click on one of sever-
al icons representing various scenes in the
game and return to that point in the story
to start again.

If players must “lose” the game, sev-

B E Y O N D C H R O M E A N D S I Z Z L E

34 GAME DEVELOPER • FEBRUARY 1995

eral choices or actions that the player
takes should lead to that end—not one.
“That way, you don’t feel like you’ve been
clobbered by the game,” says Byron
Preiss’s Lanza. “You can see why you lost.
You took this risk and insulted that cop
and stole this evidence and did all this
stuff that you really shouldn't do, and it
kind of makes sense in the end. Then,
you play it over again and things happen
differently because you’re acting different-
ly and you get to a different ending.”

The Girl Game Formula
These gender-neutral / girl-appeal ele-
ments are popping up in many games for
children under 12. They include female
characters girls are familiar with, no vio-
lence, a story with an altruistic goal, no
time limits, and creative play. EA’s new
game Madeline, based on the beloved sto-
rybooks by Ludwig Bemelmans, is a story
adventure featuring a gutsy French school-
girl. Sega’s Crystal’s Pony tale, a game
designed exclusively for girls by Sega’s all
women development team, involves play-
ers in a story about a female pony and her
quest to save her friends from a wicked
witch. And Big Top Production’s Hello
Kitty Big Fun Deluxe is a learning toy
starring Sanrio’s cartoon cat, a popular and
familiar character with little girls.

While the developers of these
games—who are mostly women—hope for
high sales figures, they intend to secure a
place for women in the high-tech world by
designing games to make girls comfortable
with computers at an early age.

Sega’s girls’ task force is developing
games exclusively for girls under 12. “One
of our objectives is to equalize the oppor-
tunity for girls as well as boys in high
technology,” explains Sega’s Diane For-
nasier. “We found that by the time a child
is about 12 years old, their role models
and activities are quite well established. If
they have not interfaced with computers
by that age, they will be less likely to be
comfortable around them, and less likely
to go into future careers in science and
technology.”

The Teenage Void
While there is a lot of talk in the industry
about making games appeal to girls,

teenage and adult women are still shop-
ping in a void. Some game developers see
a huge potential market here—especially
in teenagers. “The 13 to 17 year old
spends more money than anyone. They
spend it on all forms of entertainment and
sports and literature and toys,” says Laura
Groppe, an independent game developer
in Houston Texas. Last year, Groppe and
her partner started their own company,
Girl Games, to design games specifically
for girls and women.

“The timing is so right. In literature,

female authors are out there like crazy.—
and they’re appealing to boys as well as
girls. The music industry has never seen
so many women-led bands, and they’re
appealing to everybody. I mean, we know
what girls like, it’s just a matter of pushing
the technology to that level.” Groppe
plans to enter the market with an educa-
tional game and an online multiplayer
game that will hook up women gamers
across the country.

Solange Van Der Moer, a market-
ing consultant for Sausalito, Calif. based

GAME DEVELOPER • FEBRUARY 1995 35

Infinity Marketing Group also thinks it’s
time for women’s games. Unimpressed
with the attempts of some companies to
appeal to girls and women and concerned
about the small number of teenage
women enrolled in computer courses
across the country, Van Der Moer start-
ed a non-profit game venture called
Womensware that will publish games
designed by teenage women, for teenage
women.

Van Der Moer and her associates
found several teenagers between the ages
of 14 and 19—women with no computer
skills whatsoever—and paired them up
with some of the industry’s hottest devel-
opers who tutor them in programming
and game design. All communication is
done via Internet, so the women can
become comfortable with online services
as well as computer programming.

Womensware hasn’t released any
games yet, because the designers work at
their own pace and must juggle school
work with game development. Van Der
Moer provides the women with equip-
ment, a salary, and educational scholar-
ships in computer education. She is very
protective of her designers. She won’t
reveal how she found them, who they are,
who’s working with them, or any of the
games they’re working on—for their own
personal privacy and perhaps to protect
her interests.

While the whole thing might smack
of teen labor exploitation, Van Der Moer
maintains that Womensware is nonprofit
and is not a game company. “To be frank,
if they never develop a game, I don’t care.
The point behind Womensware is the
transference of skills and building confi-
dence; to say, ‘No, this is not a boys game,
you too can play, you too can be just as
good, if not better at this.’ ”

Don’t Call It a Girl’s Game
But other developers who have tried to
design games for women have come up
against a number of challenges. For one,
publishers are reluctant to market a girl’s
or women’s game. The market doesn’t
have a proven track record and a tried-
and-true marketing path hasn’t been
established. Publishers prefer to sink the
quarter of a million dollars it costs to

develop a game into something they know
works.

Independent game designer Danielle
Bunten knows this as well as anyone. She
has been trying to pitch ideas for women’s
games for some time with no luck. Bun-
ten has been a game developer for 10
years, and she has a unique perspective on
gender-specific game design. Three years
ago Bunten changed her gender from
male to female. She designed three suc-
cessful war games—Modem Wars, Com-
mand HQ, and Global Conquest—as well
as the nonviolent hit, Mule, as male game
designer Dan Bunten.

Bunten says she never pitches a
game she thinks will appeal to women as a
“women’s game.” “That’s the kiss of death
as far as game publishers are concerned,”
she laughs. She instead uses the term
“family game,” which is gender inclusive
and easier for publishers to swallow.

Still, even when developing such a
family game, Bunten says it’s difficult for
publishers to break out of their fast-action
formula. Last year, Bunten was working
with 3DO on an updated version of her
game Mule, a popular nonviolent game
published by Electronic Arts in 1983. The
game, which involves four players who
land on a planet and work together to sur-
vive using robotic mules, was a proven hit
with both men and women. It includes
many elements that appeal to both gen-
ders: there’s no time limit, it’s collabora-
tive, and players take turns, which allows
socializing during game play.

But 3DO felt something was miss-
ing. They wanted intensity, and they asked
Bunten if she would remove the turn-tak-
ing element in the game and place all play-
ers on the field at once. Reluctantly, Bun-
ten agreed. “But as soon as I added the
simultaneity, it instantly put in their head,
‘Why can’t we shoot at each other?’ And I
said, ‘No, no guns.’ And they said, ‘What
about bombs? Can we drop a bomb in
front of you? It won’t hurt you—it will be
a cartoon thing, it will just slow you down.’
And I said, ‘You don’t get it, it’s changing
the whole notion of how this thing
works!’ ”

Their differences unresolvable, Bun-
ten stopped working on the game just
before entering the beta stage and left

3DO for home in Little Rock, Arkansas.
Bunten feels that there might be more
opportunities for alternative games in the
new platforms, such as 3DO and Sony,
but this hasn’t been the case for her.
“Here’s one (3DO) that’s staking its
future on the idea of a new generation of
hardware and therefore, you’d assume a
new generation of software, but they said,
no, our market is still 18 to 35, males. We
need something with action, something
with intensity. Chrome and sizzle. Ugh.”

Juicy Issues
Annie Fox and Laurie Bauman are two
other established game designers who
have come up against resistance when
developing games for women that push
the genre envelope. The two design part-
ners wrote the successful children’s Putt
Putt game series for Humongous Enter-
tainment and wrote Counting on Frank
and Madeline for Electronic Arts.

They also developed a prototype for
a large publisher specifically for teenage
women. The game was an interactive
advice game, akin to Dear Abby and Ask
Beth, featuring five teenagers—two male
and three female—who ask the player for
advice on a number of issues teens deal
with today, such as interracial dating,
drugs, and sex. The player would recom-
mend various actions for the characters to
take, and witness the outcome.

The game company that commis-
sioned the prototype decided not to pro-
ceed with the game for a couple of reasons.
Fox says that each problem had an almost
endless number of options and outcomes,
and the publisher felt the product would
involve too much branching and become
unrealistically large and complex.

But the issues presented in the game
were complex, too. “As a game publisher,
you have to decide whether or not you
want to get into advocating a certain sense
of morality vs. another sense of morality,”
says Fox. “And with this age group, do
you talk about sex and drugs or do you
whitewash it?”

Whitewashing was what the compa-
ny preferred. Their research showed that
younger girls like to peek ahead at what it
might be like to be adults and often read
literature meant for older readers. “They

B E Y O N D C H R O M E A N D S I Z Z L E

36 GAME DEVELOPER • FEBRUARY 1995

were thinking that 15 or 16 year olds were
not going to play this game because
they’re halfway through it. It’s like, who
reads Seventeen magazine? Not 17-year-
olds; 10-year-olds.”

Fox and Bauman were not comfort-
able presenting these issues to a younger
audience, but they also weren’t comfort-
able whitewashing problems important to
teens. There were so many potentially
thorny issues that the publisher decided
not to move forward with the project. “It
doesn’t mean we’ve given up on it,” says
Fox. “It’s on the back burner.”

Bombs Are Easy to Program
Danielle Bunten also wants to address
important social issues in her designs.
She’d like to create a game to help girls
and women deal with sexual harassment.
Bunten has yet to pitch this idea to a
publisher because she admits it might be
too alternative for the corporate game
publishing world—and it would involve
elements that have never been tackled in
game programming and design—things
like subtlety, responsibility, relationships,
emotions, and negotiation. How do you
transfer stuff like that into C++?

Bunten suspects the difficulty of cre-
ating the elements of a new genre is one
reason one hasn’t emerged. “The things
that boys care about are so much easier to
represent in a visual world. They are tan-
gible things—anything that moves and
moves fast, like projectiles. You can put a
picture of them on the screen, and you can
make them do the types of behaviors play-
ers expect them to do,” she says.

“But if you want to create an adven-
ture game where you have characters that
you interact with and negotiate with—
you’d have to invent a new level of AI for
these characters to behave like a reasonable
approximation of a human, and the heavy
duty scientific types have yet to come any-
where close to creating artificial personali-
ty inside a machine. The best they can do
is kind of digitize elements of people’s
superficial world, like voice maybe, pic-
tures maybe. But they can’t do what moti-
vates someone to say “yes” or “no” to a
question, and that’s necessary if you want
to interact emotionally with people. And
that’s what the rest of us care about.”

Where’s the Pink and Lace?
If designers can get past the hurdle of
reluctant publishers and the limits of tech-
nology, they will often meet opposition
from distributors and retailers. This group
is often not receptive to the idea of a gen-
der-specific game or clueless as to how to
display a product that might not fit under
the defined Adventure-Sports-Strategy
subject matter slots in a typical Egghead
store.

San Francisco-based Big Top Pro-
ductions ran into this resistance with its
Hello Kitty game. “When we first came
out with this product, we were marketing
it as a girl’s product, and we met a lot of
resistance in the retail channels for that,”
admits Big Top cofounder Lisa Van
Cleef. “We had basically narrowed the
retailer sellability by being that specific
with it. I think it was a brave move, par-
ticularly by a young company, to specifi-
cally try to address this issue. But we were
slapped down.”

“They looked at our product and
said, ‘Where’s the lace, where’s the pink,
where are the obvious signs of girlness,’ ”
says Van Cleef’s partner, Jim Myrick.

Gender stereotypes are something
developers face at the design stage, too.
Although Sanctuary Woods’ game Hawaii
High Mystery of the Tiki was lauded for
being one of the first games targeted
toward older girls, and while it features
two young women who independently
solve a mystery, tackle tough decisions on
their own, and have professional career
women as moms and role models, it was
also criticized by some developers for fea-
turing bikini clad, Barbie doll-esque char-
acters and a segment where players help a
character pick out her wardrobe.

Sega’s Crystal’s Pony Tale was also
criticized for featuring too much pink in
its graphics. Diane Fornasier says they
chose pink because their research came
back saying that girls prefer pastels—and
pink in particular. “It’s a tough line to
walk because we find there are certain
things girls naturally gravitate toward
whether its based on biological or gender
differences or social differences that are
already innate to them by [a certain age].
It’s been difficult because we want to
make the games appeal to girls but at the

same time, we don’t want to be over
stereotypic.” Fornasier says that they’ve
toned down the pink in the interface and
packaging of the game’s next release,
changing it to a more macha magenta.

Is This Just a Stage?
Despite all the challenges, there are a few
brave designers out there who are confi-
dent that all this resistance is just a stage
in a growing industry. Laura Groppe of
Girl Games says most publishers she has
talked to are responsive to new market
opportunities, but they are more comfort-
able outsourcing work to independent
companies like hers than they are to the
idea of launching their own women’s
games divisions.

Although the large, well-established
game publishers are cautious about mar-
keting games to women, the few that are
trying, such as Sega, will be the most
powerful of the pioneers. “We are work-
ing with the retailers to put the games in
and give them the opportunity to sell,”
explains Fornasier. “And we are working
to make the communication—the mes-
sage—something that’s appealing to both
girls and boys and parents, and have that
help drive the sales for the female prod-
ucts as well as the boys products.” Sega
recently began testing what might be the
first TV commercial for video games tar-
geted toward girls.

Still, reaching girls and women
gamers is only part of it. A new game
genre isn’t necessarily a gender issue as
much as it is an issue of creativity and
ideas—of moving this medium into a
new, wider direction that includes and
appeals to all kinds of game players. It’s
really just a matter of being gutsy
enough to break out of the chrome-and-
sizzle formula. Myst is just the begin-
ning. Game developers, don’t give up.
The nontraditional game players are out
there, and we’re waiting. ■

Barbara Hanscome is the managing
editor of Software Development magazine
and production editor with Game Develop-
er. Don’t be fooled—she likes Doom just as
much as the next person and hates pink. You
can contact her at 73611.633@compuserve.com
or through Game Developer magazine.

B E Y O N D C H R O M E A N D S I Z Z L E

38 GAME DEVELOPER • FEBRUARY 1995

O
n the chopping block this
month is TIE Fighter by
LucasArts Entertainment
Company. TIE Fighter is
the second game in
LucasArts’ Star Wars series,
X-Wing is the first. The
TIE Fighter game engine is

an improved version of the X-Wing
engine. The most noticeable improve-
ments were made in the graphics ren-
dering, artificial intelligence, and
cockpit data display areas.

The TIE Fighter engine and its
associated data structures are some-
what complex; therefore, this review
will span two editions of the Chop-
ping Block. In this issue, I will broadly
summarize the executable and data
files and focus on the pilot data file. In
the next issue, I will delve into mission
construction. I used TIE Fighter ver-

sion V1.0 (06/15/94) for this review.
TIE Fighter initially requires

about 14MB of hard disk space. A
minimum of 572k conventional RAM
and 900k of expanded memory are
required to run the game. Ideally, the
game wants 2MB of expanded memo-
ry. During installation the \CP, \MIS-
SION, and \RESOURCE subdirecto-
ries are created under the primary
\TIE directory. The \CP subdirectory
contains most of the data files for
vehicles the player is allowed to fly.
The \MISSION directory is loaded
with battle and historic mission data,
and \RESOURCE contains the
“generic” pieces of the game, including
battle summary information; music,
sound effects, and speech data; menu
screen graphics; the game logo and
credits; and registration (copy protec-
tion) data. The primary game subdirec-

Tie Fighter,
Part 1

Peer into the depths

of the TIE Fighter

game engine

from LucasArts

Entertainment and

discover a world of

complex data files,

file storing, and

file-naming

conventions.

by Wayne Sikes

C H O P P I N G B L O C K

GAME DEVELOPER • FEBRUARY 1995 53

A defender training mission in TIE Fighter.

tory, \TIE, contains the game executable
files, user configuration information, sys-
tem setup help routines, display fonts,
and various sound card drivers.

Tie Fighter Executables
TIE Fighter was written using the
Microsoft C development system. The
executable code consists of three files:
FLIGHT.OVL, FRONT. OVL, and

TIE.EXE. The game is started by run-
ning TIE.EXE, which subsequently
loads the FRONT.OVL and FLIGHT.
OVL overlay routines when required.
The various game functions are logically
organized into these three files.

The TIE.EXE routine performs
game start up. An initial part of the
start up includes memory allocation
and data validity checks. Once memory

has been verified, the iMUSE
(LucasArts’ proprietary Interactive
Music and Sound System) engine is
started. Another initialization function
involves setting up the flight combat
filming system. While examining the
TIE.EXE code, I noticed the unusual
character string “heidirobinyali” buried
in the data. Purusal of the Starfighter
Pilot Manual’s list of game credits
showed that this string was the first
names of three of the “Invaluable Sup-
port” personnel. It is possible that this
data string was used by programmers
as a trigger for debug or developmental
mode operation. Although TIE.EXE
is 368365 bytes in length, only about
59943 bytes are used for code and data.
The remaining 308422 bytes have a 0
value and are apparently used when the
Microsoft C run-time system loads the
FRONT.OVL or FLIGHT.OVL
overlay routines.

The FRONT.OVL module pro-
vides the front end for the game and
provides the overall, nonflight gaming
environment. This environment
includes most of the main menu Con-
course functions, cut scenes and other
battle-related animations, award func-
tions, funeral scenes, Tech Room and
Film Room operations, and the regis-
tration and copy protection modules.
To avoid violating LucasArts’ copy-
rights, I will not tell you how to over-
ride the game’s copy protection. I can
tell you that the copy protection con-
sists of standard C, null-terminated
character strings that begin at file off-
set 3E42A (hex) and the last string
ends at offset 3E5F1 (hex).

The FLIGHT.OVL overlay mod-
ule contains most of the flight data.
This file appears to contain the artifi-
cial intelligence used during combat
and other space flight sequences. There
are a number of possibilities for most
combat situations. For example, a cur-
sory scan of the “intelligence” given to
Rebel vehicles found references to over
70 presumed different actions or activi-
ties. Data structures that define the
general layout (weapons, shields, hull
strengths, etc.) of all game vehicles are
located in FLIGHT.OVL.

C H O P P I N G B L O C K

54 GAME DEVELOPER • FEBRUARY 1995

FILE NAME DATA TYPE
SUFFIX

TIE All Historical and Battle mission files.

LFD The most common data storage format for various types of data.

PNL Appears to contain raw graphics data.

INT Contains data for vehicles that the player can fly.
Primarily tabular in format.

TFR Pilot data file.

Listing 1. Data Storage Files

struct LFDRECORDHEADER
{
char RecordName[12]; // Record name string
long RecordSize; // Size of Record data
};

struct LFDRESOURCETAG
{
char ResourceTag[12]; // “RMAPresource” string
long FirstRecordOffset; // Offset of the first Record
};

Listing 2. LFD Storage File Structures

SHIP LETTER NUMERICAL
NAME REFERENCE REFERENCE

TIE Fighter (T/F) F 1
TIE Interceptor (T/I) I 2
TIE Bomber (T/B) B 3
TIE Advanced (T/A) A 4
Assault Gunboat (GUN) G 5
TIE Defender (T/D) D 6
(also known as the TIE Deluxe)

Listing 3. Spacecraft Name References

How Is the Data Stored?
TIE Fighter data is scattered among
numerous files, and I observed several
storage formats. Listing 1 gives a sum-
mary of several data storage file types.
Most mission data is stored in .TIE
files and the bulk of the general data is
stored in .LFD files. (I speculate that
the LFD suffix is a mnemonic for
“Lucas File Data,” and I will refer to
the files suffixed with LFD as “LFD
files.”) Pilot data is stored in files suf-
fixed with TFR.

The LFD file format allows for
the storage of single or multiple
Records. I observed two flavors of
LFD files, but the Record data is
stored basically in the same manner
between the two. I will refer to these
two types of files as Type I and Type
II. The difference between the two
LFD file types is that Type II has a
tabular header at the top of the file,
which indexes all of the Records in the
file.

In both LFD file types, each
Record consists of a 16-byte header
followed by the Record data. The 16-
byte header is composed of a 12-byte
Record name followed by the size of
the Record data expressed as a 4-byte
(32-bit long) value. The Listing 2
structure, LFDRECORDHEADER, gives an
example Record header. The actual
size of the entire Record would be cal-
culated by adding 10 (hex) to the
RecordSize value.

The Type II tabular header con-
sists of a 16-byte “Resource Tag” fol-
lowed by 16-byte headers for all
Records in the file. These 16-byte
headers are duplicates of the Record
headers previously discussed. The indi-
vidual Records immediately follow the
tabular header. The Resource Tag con-
sists of a 12-byte character string,
“RMAPresource”, followed by the offset
of the first Record expressed as a 4-
byte value. The LFDRESOURCETAG struc-
ture in Listing 2 gives an example
Resource Tag. (The actual offset of the
first Record following the tabular
header is calculated by adding 10 (hex)
to the FirstRecordOffset value.)

Mission File
Naming Conventions
As previously mentioned, the mission
files have a TIE suffix. Examination of
the \TIE\MISSION subdirectory
reveals many similar file names. Battle
and Historical mission files are named
using a standard convention. The Bat-
tle mission files are named using the
format shown in Figure 1.

Using the diagram in Figure 1,

the file named B7M3AW.TIE would
reference Battle 7 Mission 3, where the
player is flying a TIE Advanced vehicle
in the Wingman position. Listing 3
shows the spacecraft name references.
Historical mission file names are slight-
ly different, as shown in Figure 2.

Using the Historical mission file
naming diagram, a file named HG3M.
TIE would reference Assault Gunboat
Historical Mission 3, where the player
flies an Assault Gunboat and is the

GAME DEVELOPER • FEBRUARY 1995 55

B [1-7] M [1-6] V [MW] . TIE
| | | | | | |W = player is the Wingman
| | | | | | M = player is the Flight Leader
| | | | | Vehicle letter (see Listing 3)
| | | | Mission Number
| | | M for Mission
| | Battle Number
| B for Battle

Figure 1. Battle Mission File Naming

H V [1-4] [MW] . TIE
| | | | | W = player is the Wingman
| | | | M = player is the Flight Leader
| | | Mission Number
| | Vehicle letter (see Listing 3)
| H for Historical

Figure 2. Historical Mission File Naming

An assault gunboat flies by a buoy, one of several space objects in TIE Fighter.

Flight Leader for the mission. Listing 4
gives the TIE Fighter mission file
names.

Does Your
Pilot Need Help?
If you are like me, your computer pilot
needs help every now and then. Your
pilot may die unexpectedly (the “I didn’t
see that one coming” scenario) and
games such as TIE Fighter will penalize

the player when his or her character is
revived. In this section I discuss how
some of the data in the pilot file is orga-
nized; you may find the information
useful for pilot survival.

As mentioned previously, TIE
Fighter stores pilot data in files suffixed
with TFR. Pilot files are 3,856 bytes in
length, but the size is somewhat mis-
leading. During game play you can
press the “escape” key to bring up the

Personal Datapad, which can then
backup your pilot file. The backup
copy of your pilot data is stored in the
same file as your primary pilot data.
The first 1,928 bytes of the file are
your active pilot data, and the last
1,928 bytes are backup data. When
manually editing pilot files, avoid edit-
ing the backup data.

Listing 5 gives a summary of sev-
eral important data parameters and
where they are located in your pilot
file. (The FILE OFFSET references
in the listing assume the first byte in
the file is “byte 0”.) The pilot file has
open or add-on slots for future game
expansion. There are slots for eight
Historical missions for each vehicle
you can fly, but the current game only
has four Historical missions per vehi-
cle. There are eight available mission
slots for each Battle, but all Battles
currently have less than eight missions.

Feel free to experiment with your
pilot fi le (after backing it up, of
course). It is very easy to change your
skill level, scores, or reduce the number
of vehicles you have lost. Personally, I
usually edit the mission completion
flags to mark a difficult mission as
completed when my “computer pilot”
gets a little too frustrated.

Until We Meet Again
at the Imperial Starbase
As with many of LucasArts’ gaming
products, TIE Fighter is well written
and executed. The improved graphic
engine and artificial intelligence make
the game a true leader in the space
combat and simulator genre of games.
The clean layout of the mission and
pilot files makes tailoring the game
much easier and lots of fun.

In the next Chopping Block col-
umn, we will dig into the TIE Fighter
mission data structures. If you are
interested in editing mission files or
creating new missions, I would strong-
ly urge you to pick up a copy of The
TIE Fighter Official Strategy Guide.
The mission statistics tables located in
the back of the book were extracted
directly from the mission file data.
Once you understand how the mission

C H O P P I N G B L O C K

56 GAME DEVELOPER • FEBRUARY 1995

BATTLE MISSIONS

BATTLE FILE NAME (*.TIE)

Battle 1 B1M1FM B1M2FM B1M3BM B1M4IM B1M5GM B1M6GM
Battle 2 B2M1FW B2M2BW B2M3IW B2M4GW B2M5FW
Battle 3 B3M1BM B3M2BM B3M3FM B3M4GM B3M5BM B3M6GM
Battle 4 B4M1FM B4M2BM B4M3BM B4M4IM B4M5GM
Battle 5 B5M1IW B5M2GW B5M3GW B5M4AW B5M5GW
Battle 6 B6M1AW B6M2AW B6M3GW B6M4GW
Battle 7 B7M1AM B7M2AM B7M3AW B7M4DW B7M5DM

HISTORICAL MISSIONS

VEHICLE FILE NAME (*.TIE)

TIE Advanced HA1W HA2W HA3M HA4M
TIE Bomber HB1W HB2W HB3M HB4M
TIE Defender HD1W HD2W HD3M HD4M
TIE Fighter HF1W HF2W HF3M HF4M
Assault Gunboat HG1W HG2W HG3M HG4M
TIE Interceptor HI1W HI2W HI3M HI4M

Listing 4. Mission Files

TIE defenders approaching a space platform.

data is stored (by reading the next
Chopping Block column), the Strategy
Guide will make mission file editing
much smoother. ■

Wayne Sikes has been a computer
hardware and software engineer for the
last 10 years. He has an extensive back-

ground in C, C++, and assembly language
programming. He also has several years
experience as a computer systems intelli-

gence analyst, where he specialized in
deciphering and disassembling computer
code while working on classified govern-
ment projects. He has written numerous
computer gaming help utilities. You can

reach him via e-mail at 70733.
1562@compuserve.com or through Game

Developer.

GAME DEVELOPER • FEBRUARY 1995 57

FILE OFFSET DATA DESCRIPTION
(DECIMAL) TYPE*

1 byte Duty Status. 0=Alive, 1=Captured, 2=Killed
2 byte Rank. 0=Cadet -> 5=General
3 byte Difficulty Level. 0=easy -> 2=hard
4 long Score.
8 word Skill Level. 0=Novice -> 65535=Super Ace
10 byte Secret Order Ranking. 0=None -> 6=Emporer’s Hand
29-34 byte Next Training Level. off 29=T/F -> off 34=T/D **
42-62 long Training Scores. off 42=T/F -> 62=T/D **
90-95 byte Total Training Levels Completed. off 90=T/F -> 95=T/D **
136-164 long T/F Historical Scores. 136=Mission1 -> 164=Mission8 ***
168-196 long T/I Historical Scores. 168=Mission1 -> 196=Mission8 ***
200-228 long T/B Historical Scores. 200=Mission1 -> 228=Mission8 ***
232-260 long T/A Historical Scores. 232=Mission1 -> 260=Mission8 ***
264-292 long GUN Historical Scores. 264=Mission1 -> 292=Mission8 ***
296-324 long T/D Historical Scores. 296=Mission1 -> 324=Mission8 ***
520-527 byte T/F Historical Completion Flags. 0=Not Done, 1=Done ***
528-535 byte T/I Historical Completion Flags. 0=Not Done, 1=Done ***
536-543 byte T/B Historical Completion Flags. 0=Not Done, 1=Done ***
544-551 byte T/A Historical Completion Flags. 0=Not Done, 1=Done ***
552-559 byte GUN Historical Completion Flags. 0=Not Done, 1=Done ***
560-567 byte T/D Historical Completion Flags. 0=Not Done, 1=Done ***
617 byte Battle 1 Status. 0=Inactive, 1=Active, 2=Pending, 3=Done
618 byte Battle 2 Status. 0=Inactive, 1=Active, 2=Pending, 3=Done
619 byte Battle 3 Status. 0=Inactive, 1=Active, 2=Pending, 3=Done
620 byte Battle 4 Status. 0=Inactive, 1=Active, 2=Pending, 3=Done
621 byte Battle 5 Status. 0=Inactive, 1=Active, 2=Pending, 3=Done
622 byte Battle 6 Status. 0=Inactive, 1=Active, 2=Pending, 3=Done
623 byte Battle 7 Status. 0=Inactive, 1=Active, 2=Pending, 3=Done
637 byte Battle 1 Last Mission Completed. 0=None, 1=Mission1...
638 byte Battle 2 Last Mission Completed. 0=None, 1=Mission1...
639 byte Battle 3 Last Mission Completed. 0=None, 1=Mission1...
640 byte Battle 4 Last Mission Completed. 0=None, 1=Mission1...
641 byte Battle 5 Last Mission Completed. 0=None, 1=Mission1...
642 byte Battle 6 Last Mission Completed. 0=None, 1=Mission1...
643 byte Battle 7 Last Mission Completed. 0=None, 1=Mission1...
986-1014 long Battle 1 Scores. off 986=Mission1 => 1014=Mission8 ****
1018-1046 long Battle 2 Scores. off 1018=Mission1 => 1046=Mission8 ****
1050-1078 long Battle 3 Scores. off 1050=Mission1 => 1078=Mission8 ****
1082-1110 long Battle 4 Scores. off 1082=Mission1 => 1110=Mission8 ****
1114-1142 long Battle 5 Scores. off 1114=Mission1 => 1142=Mission8 ****
1146-1174 long Battle 6 Scores. off 1146=Mission1 => 1174=Mission8 ****
1178-1206 long Battle 7 Scores. off 1178=Mission1 => 1206=Mission8 ****
1626 word Total Kills.
1628 word Total Captures.
1926 word Number of Craft Lost.

* “byte” references an unsigned character.
“word” is a 16-bit unsigned value.
“long” is a 32-bit signed value.

** Vehicles are ordered as in Listing 3.
*** There are currently four historical missions for each flyable craft.

The pilot file has storage slots for eight historical missions per craft.
**** The pilot file has provisions for eight missions per battle.

Listing 5. Pilot File Data

Getting ready to dock, cockpit view.

More TIE Fighter action.

O
nly in America, the legend
goes, does the little guy have a
chance to hit the big time. This
story is true for a couple of
childhood friends from Dallas,
Texas, whose company, Apogee
Software, has come to domi-
nate the shareware game indus-

try and is now looking to become a major
player in the retail channel.

It all started in 1987, when Scott
Miller was working as a computer consul-
tant and wrote one of the early shareware
games for the PC, Kingdom of Kroz.
Although the game was a simple ASCII
text adventure, it became so successful
that Scott quit his job and formed Apogee
Software. (The name Apogee came from
a band that he had been with in 1982

and fit in with his interest in astronomy.)
He repeatedly tried to convince his
friend, George Brousard, author of the
shareware game Pharaoh’s Tomb, to join
him, but George kept his day job until
1991, when he eventually joined Scott as
partner in Apogee.

Apogee’s mission was simple: find
cool games and distribute them. Scott
and George scoured the BBSs looking
for cool games that just needed that fin-
ishing touch to become hits. Once they
found a cool game, they contacted the
authors, signed them up, and handled
the distribution and fee collecting.

Todd Raplogle was the first person
they signed up. His game, Caves of
Thor, was a prime example of the kind
of cutting-edge game Apogee was look-

In an attempt

to become more

than ”those other

shareware guys

from Dallas,“

Apogee Software

makes its move to

dominate the realm

of 3D gaming.

by Alexander
Antoniades

B Y D E S I G N

GAME DEVELOPER • FEBRUARY 1995 59

The Sultans
of Shareware
Go Retail

Rise of the Triad is Apogee’s first post-Doom, three-dimensional game release. The game
engine isn’t sophisticated enough to be released under Apogee’s new 3D Realms game label,
but it is a good example of the kind of three-dimensional game released under Apogee’s
name.

ing for. Eventually, Todd left his home
in Santa Cruz, Calif., for Dallas, where
he worked with Apogee on its first real-
ly big hit, Duke Nukem.

One reason behind Apogee’s success
is Scott’s “trilogy approach” to game mar-
keting and distribution. This method con-
sists of making the first third of the game,
which contains a subset of the features,
unconditionally free. To get the remaining
two thirds, players must register for the
game. He developed this style by accident
after he regained the rights to three games
he had written for Soft Disk. To test the
software market, he released the first
game as freeware and charged for the
other two. This approach helped Apogee
become the shareware game company.

But it wasn’t just creative marketing
that made Apogee successful—it was
also the ability to spot great talent, such
as Id software. Before the makers of
Doom were the masters of all they sur-
veyed in the gaming community, they
worked for Apogee. Scott wooed them
away from the company they were
working for, Soft Disk, by sending them
fan letters under fake names. Each letter
ended with the message “contact me”
and Scott’s phone number. (See the arti-
cle “Monsters from the Id: The Making
of Doom,” Premier issue, 1994.)

At the peak of their relationship, Id
accounted for about 20% of Apogee’s total
revenues. Id cranked out hit after hit, first

with the Commander Keen games, a
series of side scrollers in the same vein of
Sigeru Miyamoto’s Super Mario games
(see the article “Miyamoto’s World” by
David Sheff, June 1994). They next creat-
ed the then state-of-the-art Wolfenstein
3-D, one of the first faux three-dimen-
sional games to capitalize on texture map-
ping and fast bitmap manipulation.

Id’s success gave them enough name
recognition and money to distribute its
own games. So, after a very successful
three years, Id and Apogee split up to seek
their own fates, but they continued to
work on a few projects together.

The first game, BioMenace by Jim
Norwood, was the only finished product
to come from a Commander Keen cloning
workshop that Id taught to other Apogee
developers. A second project was Blake
Stone and the Aliens of Gold, made by
JAM productions, which used the
Wolfenstein 3-D game engine.

Their last project together was
Wolfenstein II. During this time, Doom
was becoming a huge hit, and the Id
developers broke away from the Wolfen-
stein II project, saying that they were too
busy to continue with it. Apogee was hav-
ing second thoughts about the project,
anyway. Both companies felt it was
heading in the wrong direction.

Apogee wasn’t left completely in the
lurch when Id parted. One of Id’s found-
ing members, Tom Hall, who had left Id

due to creative differences at the begin-
ning of Doom, moved over to Apogee and
became the leader of its first in-house
development team.

Goodbye Wolfenstein II
Tom was heading up the Apogee side of
the Wolfenstein II project, but he wasn’t
happy with it. His main problem was that
the iconography of the game was too con-
fining. He wanted to make a game that
had a wide variety of characters and crea-
tures, so when Id was too busy to continue
working on the project, Tom took the
opportunity to start from scratch.

A new game, Rise of the Triad,
started out with legacy artwork from
Wolfenstein II. Because the artwork had
taken six months to complete, Tom
didn’t want it to go to waste. In a
moment of Roger Corman B-movie
inspiration, Tom dreamed up a storyline
in which a super secret U.N. SWAT
team stumbles upon a terrorist plot to
destroy Los Angeles. The terrorist’s
cover is an old movie studio that looks
like a Nazi fortress.

To finalize the divorce from Id,
Tom plugged the data into a new game
engine. The engine that Wolfenstein II
was designed around was an enhanced
version of the original Wolfenstein
engine, which had texture-mapped floors
and ceilings. Tom enlisted the aid of
Mark Dochterman to build a new engine
that would expand the capabilities of the
game while using the current artwork.
The new engine included support for
multiple heights (such as three-story
buildings), translucent walls (sheets of
glass), and light sourcing. While the final
engine wasn’t quite up to par with Doom
(walls had to be at right angles and the
graphics tiles were bigger), it did have a
couple of things that Doom didn’t, such
as bullet marks on the walls and support
for more network players.

To take advantage of these new fea-
tures, Tom incorporated some ideas he
was originally going to put into Doom
had he continued working on it. One con-
cept was to have different characters, sim-
ilar to Street Fighter II, who would have
different appearances and characteristics.
Another theme was environmental dan-

B Y D E S I G N

60 GAME DEVELOPER • FEBRUARY 1995

Shadow Warrior is one of four games that will be released under Apogee’s 3D Realms title in
1995. The games, each developed by a different design team, will use Apogee’s Build
engine.

gers such as spinning blades, crushing
walls, and giant rolling balls to add anoth-
er element of chance when there were no
living enemies around.

Other touches show the depths of
Tom’s imagination. My favorite of the
power-ups is the dog mode, which
switches the perspective to a lower level
and places a dog snout where your
weapons were. Other playability exten-
ders include springboards that catapult
the player tens of feet in the air, random
actors (roughly the equivalent of wander-
ing monsters in Dungeons and Dragons),
and the ability to generate completely
random levels.

Network Heckling
Another aspect that Apogee didn’t want
to overlook with Rise of the Triad was
network play. The game can support up
to 11 network players as well as a
“remote ridicule” mode that can transmit
the players voice through a sound card
over a LAN to be played back on other
players’ machines.

Apogee considers projects of this
size the minimum for future develop-
ment. While Scott and George have got-
ten rich by releasing six to eight small
games a year, with up to 22 projects
going at one time, their goal is to become
big-time developers working on four to
six games a year.

Their first step is to use in-house
development teams, similar to Tom
Hall’s nine-person crew, that will be able
to flexibly build games in a reasonable
time frame. After working with many
small developers all over the U.S.,
Apogee has found that long-distance
relationships generally haven’t worked for
them. The communication gap between
what Apogee wanted and what the
developer wanted often resulted in so
many revisions that by the time some of
Apogee's games got to market, their
technology was too old to be competitive.

A new branding strategy is another
plan Apogee has to become more com-
petitive. Apogee is launching a different
company this year that will only do
three-dimensional games. The new com-
pany, called 3D Realms, will be a sister
company separate from Apogee that will

release games using the latest three-
dimensional technology. Apogee wants
to retain name recognition for making
general action games.

The key component to this strategy
is a new game engine called Build, devel-
oped by Ken Silverman, author of the
shareware game Ken’s Labyrinth. This
engine is capable of rendering a 640-by-
480 screen, and, according to Apogee, it
matches or surpasses the Doom engine
feature for feature. Four games are cur-
rently planned for release from 3D
Realms in 1995 using this engine.

Although shareware is important to
Apogee over the long run, one goal is to
break into the retail market. Apogee will
team up with FormGen, the distributors
it used for Wolfenstein, for all of its cur-
rently planned ventures. It will release
the shareware and retail versions of its
products as close together as possible,
unlike Id, which staggers its retail releas-
es a great deal behind its shareware.

Apogee’s shareware roots left the
company particularly well positioned in
the online market. Because of the distri-
bution model that shareware uses
(duplicate early and often), Scott and
George had to establish a presence
online from the very beginning. The
early days involved a week of 20-hour
days once a game was released to make
sure that it got on the shareware com-
munity’s 100 BBSs.

Today, after investing more than
$200,000, Apogee has the Software Cre-
ations BBS, which features more than
100 lines and services 3,500 distribution
points. Apogee also has its own section
on America Online and will soon open
an electronic software store on Com-
puServe. To manage these products,
Apogee employs two people, whose sole
job is to offer support online.

This infrastructure hasn’t changed
one thing, however: Scott and George
still work at home. A short distance from
their main offices where their 25 employ-
ees work, the principal partners in
Apogee find that they still keep hours
too irregular to be confined to an office
routine. They believe that this nontradi-
tional working style and hands-on man-
agement will keep them competitive as
they alternate between taking on other
shareware vendors and fighting for shelf
space with the big boys.

Still looking for hot technology,
they get 20 proposals a week from devel-
opers eager to become the next shareware
millionaires. If Apogee can make the
transition from shareware moguls to
retail darlings, they will have made a new
model for game companies to use and
further validated shareware’s impact on
the game market. ■

Alexander Antoniades is Game Devel-
oper’s editor at-large.

GAME DEVELOPER • FEBRUARY 1995 61

It’s creative touches such as Dog Mode and other surprises that Apogee hopes will make
ROTT a hit in 1995. (The guy in the Gilligan Hat is Scott Miller of Apogee.)

3D or Not 3D—
Is That
the Question?

A R T I S T ‘ S V I E W

F
irst, let ’s get this straight:
“Doom-style graphics” is not,
technically speaking, the cor-
rect term to describe a game’s
look. It is more proper to say
“Wolfenstein-style graphics.”
No, wait, that ’s not right
either.

Many of the terms required for a
discussion of game graphics have
entered the vernacular with subtly but
significantly altered meanings. Visual
perception is central to the way in
which most of us relate to the world,
yet translating those perceptions into
words or rendered images can prove to
be less than intuitive.

Software may largely obviate the
need for real technical drawing skill,
but to make the best use of graphics
possibilities and discuss them knowl-
edgeably, it helps to understand the real
building blocks of a scene. In this arti-
cle, I’ll cover various so-called projec-
tion methods used to create an illusion
of space, and framing considerations
that further define the look and feel of
a game. Along the way, I’ll try to clarify
terms to help alleviate some of the mis-
information already bogging down this
topic.

The Look
Of course, a game’s look is defined by a
number of factors. Of principle impor-
tance is view, commonly but not quite
accurately referred to as a game’s per-
spective. View is the element most
often invoked when a game is said to be
like another, familiar game. Other fac-
tors may contribute greatly to achieving
the overall look of a game and be of

equal or greater importance to its suc-
cess, but view is definitive.

As an example, in Halloween
Harry, gameplay consists of running
around toasting monsters and looking
for power-ups. The plot sounds a lot
like Doom, but you’d be unlikely to
compare Apogee’s four-way scroller to
Id’s first-person shoot-em-up. On the
other hand, Quarantine, a first-person
driving-and-shooting romp from
Gametek, is routinely compared to
Doom because of its similar visual style,
despite significant differences in plot
and gameplay.

View is readily understood on a
visual level; it presents an illusion that
the mind is easily able to interpret.
However, l ike most i l lusions, the
behind-the-scenes preparations require
a more specialized knowledge. To
understand the workings of a view, we
must first understand dimensionality,
projection method, and framing.

Dimensionality
Dimensionality refers, not surprisingly,
to the dimensions represented in an
image. A two-dimensional scene repre-
sents only height and width (and tech-
nically is not considered a view, though
personally I feel that may be slicing the
terminology a bit thinly). A scene ren-
dered in three-dimensions additionally
represents depth, thereby placing
objects in relation to one another in a
spatial context for a far more realistic
appearance.

Two-dimensional images are com-
mon in many arcade-style games, such
as two-way or four-way scrollers á là
Mario Bros. or vertical elevation

62 GAME DEVELOPER • FEBRUARY 1995

(bird’s-eye) shooters. Though many
two-dimensional games use simple
shading effects to create the illusion of
form, objects exist only on an X,Y axis;
space does not enter the equation.

This is a less sophisticated, less
convincing method for presenting a
scene, yet for certain game types, it is
preferable to a more realistic, three-
dimensional depiction. If you made it
to the secret Pac-Man level in Castle
Wolfenstein, you know what I mean
(Pac-Man never would have made it as
a three-dimensional game). Suffice it to
say that though it may be less of a visu-
al feast, two dimensions have a well-
established place as an electronic gam-
ing format.

“3D” is now officially a buzzword,
which means it can be dropped mean-
ingfully by people who don’t really
know what they’re talking about.
Games like Doom and its predecessor,
Castle Wolfenstein, are commonly
described as being three-dimensional
as though that tucks them in a neat lit-
tle cubbyhole. Three-dimensional they
are, but so are Origin’s Ultima 8,
LucasArt’s Sam & Max Hit the Road,
Infogrames’ Alone in the Dark, and a
great number of other games on the
market today. More definitive than the
tri-dimensionality of a game is the
method by which those three dimen-
sions are projected onto the viewing
plane.

Projection
Isometric projection is one such
method—and another term that tends
to be misused. It really only refers to a
specific view in which the sides of a

rectilinear object are each at a 30-
degree angle to the horizontal axis.
The impression achieved is of looking
down on the scene from a modest
height. Ultima 8 uses isometric projec-
tion, as does Mystic Tower from
Apogee.

Cabinet projection—often mistak-
enly referred to as isometric projection,
to which it is similar—is another sim-
ple system for suggesting space. The
main difference is that in cabinet pro-
jection the face of an object lies parallel
to the horizontal plane while the sides
are at a 45-degree angle to it. This
results in a seemingly less elevated
vantage point. A recent example of a
game that makes use of cabinet projec-
tion would be Theme Park, by Bull-
frog/Electronic Arts.

These two projection methods
create an effective enough illusion of
space when used to depict a scene of
limited scope. They are not suited to
presenting vistas, however, nor is the
sense of depth created especially con-
vincing. This is because in both sys-
tems, the scale of an object remains
constant regardless of its relative posi-
tion in space; a figure shown in the
extreme foreground at the bottom of
the screen appears the same size as a
figure positioned in the farthest back-
ground at the upper limit of the screen.
What’s lacking is perspective.

Though, again, the term is mis-
used frequently, perspective is itself a
projection method. Properly known as
central projection or scientific perspec-
tive, this is a more convincingly realis-
tic system for creating the illusion of
space. Distant figures are depicted as

Software may obviate

the need for

technical drawing

skill, but to

discuss graphics

knowledgeably it

helps to

understand the real

building blocks

of a scene.

David Sieks

GAME DEVELOPER • FEBRUARY 1995 63

appearing smaller, and parallel lines,
such as railroad tracks, converge at the
horizon. This is more readily accepted
by our minds as the way things are sup-
posed to look.

I might add here that any number
of arcade-type action/adventure games
use backgrounds that are rendered in
perspective (more or less), while the
figures are really only depicted in two
dimensions and move on an X,Y axis,
which does not represent the third
dimension of depth. This is not yet
another projection method, just a
hodgepodge. But, hey, it’s just a game.

Vantage Point
Critical to an understanding of per-
spective is the fact that the viewer’s
eye-level lies along the horizon line,
regardless of the height at which the
viewer is stationed. This raises another
issue, which is not a consideration with
projection methods other than scientif-
ic perspective: vantage point, also
known as point of sight or point of sta-
tion. (“Point of view” also sounds right,
but that term is widely used to describe
a specific vantage point, which we’ll get
to shortly.)

Whereas with isometric or cabinet
projection the apparent position of the
viewer is dictated by the prescribed
angles used in the rendering, a per-
spective view is infinitely flexible; the
viewer’s vantage point must be posi-
tioned relative to the scene. This posi-
tioning is no l ight consideration.
Rather, i t is one of a view’s most
important characteristics.

Which brings us once again to
Doom. We’ve established that the
game is three-dimensional; there is cer-
tainly an illusion of depth. Further, we
know Doom is rendered in perspective;
distant objects appear smaller, and par-
allel lines converge toward the horizon.
Since it’s in perspective, it has a van-
tage point: in this case, that vantage
point is known as first-person or, in
Hollywood, point of view (POV).

First-person perspective puts the
viewer in the driver’s seat, so to speak.
In cinema, the POV shot purports to
show the scene through one character’s

eyes. In gaming terms, the player is
looking through the eyes of the avatar,
the player’s gaming persona.

The effect of the first-person view
can be extremely immersive. It very
closely approximates the way we see the
world and so can really seem to put the
player in the middle of the action. This
works great for fluid, action-oriented
games. In addition to the myriad off-
spring of Castle Wolfenstein, almost all
flight sims are first-person.

First-person is not the answer for
all game types, though. Some games,
for one reason or another, rely on the
player being able to see the avatar with-
in the context of the scene. This calls
for the player’s vantage point to be
somewhere other than inside the
avatar’s head.

It is helpful to borrow some termi-
nology from the cinema to cover the
general range of options: A straight-on
view approximates eye-level. This is
quite common in film, where it pre-
sents the image in a neutral fashion
(high or low views are thought to
impart subliminal meanings to a scene).
The straight-on view is used in some
games, but action can tend to appear
crowded from this angle if there are
many figures moving at once. One
Must Fall from Epic Megagames is
well suited to a straight-on view; action
is well depicted, and with only two fig-
ures onscreen the view does not appear
cluttered.

For the purposes of some electron-
ic games, a high angle view is often
used. This vantage point positions the
player on a somewhat higher plane
than ground level, so that the player
appears to be looking down at the
scene as though viewing it from a bal-
cony or other elevated point. The
result is a good overall view of the
scene, showing the avatar in relation to
its surroundings.

Perspective can also be projected
from a low angle (below eye-level) or
an oblique angle (canted at an angle to
the horizontal plane, that is, crooked).
These are not generally useful for game
play, but can make a very effective view
for transitional animations.

A further consideration is the
shifting vantage point. With mobile
framing, the view tracks or jumps to
follow the action. This is used with
some sports games when play moves
from one end of the playing area to the
other. Front Page Sports: Baseball ’94
from Dynamix is one example.

Another use of a shifting vantage
point is with what is known as cine-
matic perspective. As its name suggests,
cinematic perspective mimics the fre-
quent cuts and varied angles of motion
pictures. It can have tremendous affect
on the mood of a scene and is an asset
to highly plotted games that have a
story to convey. Action-intensive
gameplay can be difficult in some
views, though, which is a consideration
to make in choosing angles to use. Ori-
gin’s Bioforge makes use of cinematic
perspective, and it is also used through-
out the Alone in the Dark series of
games.

Isometric, perspective, point-of-
view. For me, forgetting the definitions
I thought I already knew was the hard-
est part of understanding the technical
aspects of view. The rest is not really all
that complicated (well, not if the com-
puter does all the rendering for you).

Finally, there’s absolutely nothing
wrong with drawing comparisons
between games. It ’s natural and
inevitable. But it’s nice to not have to
resort to comparison when describing
your own new game design. I’d much
rather be able to say, “It’s like nothing
you’ve ever seen before!” ■

While a student at the Massachusetts
College of Art, David Sieks was chastised
for frequent absences from his technical
drawing class. He was probably out play-
ing video games. Dave can be reached via
e-mail at dsieks@arnarb.harvard.edu or
through Game Developer magazine.

A R T I S T ‘ S V I E W

64 GAME DEVELOPER • FEBRUARY 1995

	back:

