

Get your game performing like a
scripted masterpiece.

SPAC EW RINE

http://www.havok.com/havok-script

\

POSTMORTEM

18

GUNSTRINGER

THE GUNSTRINGER was conceived in one night, in a restaurant, in front
of a Microsoft executive. From this curious beginning, the team
went on to create a compelling core-friendly Kinect game, complete
with a full-motion video downloadable episode, all in 12 months,
without an environment artist. Former indie developer Twisted Pixel
was purchased by Microsoft post-release, so they must have done
something right! By Bill Muehl

FEATURES

13

INTUITION, EXPECTATIONS, AND CULTURE

What makes a game mechanic intuitive? How about a user interface?
Game developers have grappled with these questions for years,
usually relying on user tests and player feedback. This article
proposes that in addition to playtests, developers should brush up on
a bit of psychology to measure players' expectations against the final
game. By Ara Shirinian

ALL THAT GLITTERS: AN INTERVIEW WITH BUNGIE'S
SENIOR GRAPHICS ARCHITECT

Hao Chen leads Bungie's graphics team, which helped bring the world of
HALO to life, and now a brand new IP. We spoke in depth with Chen about
trends in graphics, and revamping the company's engine for multiple
platforms and the next generation of consoles. By Brandon Sheffield

"DEPARTMENTS

2

26

29

36

38

41

42

43

44

45

48

GAME PLAN By Brandon Sheffield
Virtually Occupied

HEADS UP DISPLAY

[EDITORIAL]

[NEWS]

Front Line Awards finalists, and top Xbox Live Indie Games

TOOL BOX By Jens Hauch
Allegortithmic Substance Designer 2

THE INNER PRODUCT By Niklas Frykholm
Managing Coupling

DESIGN OF THE TIMES By Damion Schubert
No "I"in Team

PIXEL PUSHER By Steve Theodore
Nurbstalgia

GOOD JOB By Brandon Sheffield
Allen Murray moves to PopCap, who went where,
and new studios

GDC NEWS By Staff
Top Quotes From GDC Online

THE BUSINESS By David Edery
Evolving TRIPLE TOWN

AURAL FIXATION By Jesse Harlin
The New Kid in School

EDUCATED PLAY By Tom Curtis
DIG-N-RIG

ARRESTED DEVELOPMENT By Matthew Wasteland
I'm Almost Done

[REVIEW]

[PROGRAMMING]

[DESIGN]

[ART]

[CAREER]

[NEWS]

[BUSINESS]

[SOUND]

[EDUCATION]

[HUMOR]

WWW.GDMAG.COM

http://WWW.GDMAG.COM

GAME PLAN

VIRTUALLY OCCUPIED

WHEN PROTESTS IN MMOS MIRROR REAL WORLD ACTION

ON NOVEMBER 2ND 1 STOOD AT

the front of a group of thousands

of people, as Occupy Oakland shut
down the port in Oakland, California,
the fifth-largest in the nation. People
across the world are upset about the
economy right now, and when they
get upset, they can take that anger
to the streets. Shutting down the
port was a massive show of human
power, against those who dictate

our economy. This is precisely what
happens in in-game protests, as well.

THE EVE EXODUS

EVE ONLINE developer CCP launched
avirtual item store in June, and

its rollout was much maligned by
EVE users. Nothing was priced
reasonably, and some cost over $60
in real world currency. Players felt
as though EVE was moving further
away from a skill-based game, and
more toward a pay-for-play model,
wherein the rich players would rule
over the poor, due to having better
equipment. They also decried several
subtle gameplay changes that
changed the user experience.

Upset fans clogged major
cities, disrupting the entire game’s
economy, since EVEis runon a
single instance where everyone
plays together. This was, in effect,
a massive Occupy-style protest.
CCP has an elected board of
player representatives, which it is
supposed to consult on all major
decisions. This time around, the
representatives were ignored, and
players caught wind of the store's
impending launch through leaked
memos. At the time, CCP CEQ Hilmar
Petursson was confident in his
approach, stating in an internal
memo that "Having done this for
a decade, | can tell you that this is
one of the moments where we look
at what our players do and less of
what they say.”

This is sometimes the correct
tactic, but your players are your
lifeblood in an MMO, and without
them you have no game, and no
income. If players start to think that
you're operating far more in your
own interests than in theirs, you are

going to lose their confidence. EVE’s
virtual items had little perceived
relevance to the game world, but
costanarmand a leg. Since that
incident, a CCP source reported to
Massively.com that four months
later, EVE had lost 8% of its accounts.
In the Occupy movement, one
of the major statements these
encampments make is, "if you do
not fix your system, we will attempt
to live outside it." These folks have
moved further off the grid, and are
moving their money to credit unions
instead of large banks. In MMOs,
this is analogous to rage-quitting. To
slightly pervert William Congreve's
famous quote for the game world,
"Heaven has no rage like love to
hatred turned, nor hell a fury like a
warrior scorned.” If people didn't love
the things they felt were changing
for the worse, they wouldn't get so
upset. In the real and virtual spaces,
they're fighting for what they love.

DON'T HATE THE PLAYER...
Monetization isn’t the only issue
fans get up in arms about. In WORLD
OF WARCRAFT in 2005, warriors felt
their class had been “nerfed” in

an update. To protest, they took
Ironforge Bridge on the Argent
server, and removed their clothes
en masse. GMs began kicking any
warrior in the region from the game,
but players just came back with
new level one warriors, in such great
numbers that GMs announced that
anyone doing so would potentially
have their account canceled. But
were those warriors really doing
anything wrong? They were upset,
and they were congregating—but
why shouldn’t they? The GMs were
shutting down a peaceful protest
because it was inconvenient. This

is a similar pattern to many of

the arrests at Occupy protests;
someone is standing around
holding a sign or camera, and out of
nowhere they get shot with a rubber
bullet, or teargassed.

THE BIGGER PICTURE
There's a lot that games can learn
from real-world social movements.

GAME DEVELOPER | DECEMBER 2011

Economists have applied their
knowledge to MMOs, so why not
social psychologists and political
analysts?

In the real world, the Occupy
protests hope to persist until
government action is taken to
regulate banks and promote jobs.
In games, protest goals tend to be
remarkably similar—players want
to feel as though they're being
treated with fairness. If you make
decisions in your games that offer
little benefit to the player, they will
revolt. The best way to avoid this
is prevention, though it is difficult
to predict player response. A good
yardstick for monetization might be
for a designer to think, "would | be
happy to pay for this, if this weren’t
my game?"

Once the damage to player
confidence is done, it can be hard
to undo. Players invest so much of
their lives and money into MMOs
that it becomes our duty as game
makers to serve their interests as
well as, or even above our own.
There are ways to make money and
please your players, which EVE is
trying to do again now. As Petursson
admitted in a public apology,
"Somewhere along the way, | began
taking success for granted. As
hubris setin, | became less inclined
to listen to pleas for caution.” Fans
left the game as a result.

There’s an even greater
issue with games that obfuscate
monetization, and target a less
tech-savvy crowd. Business
persons who have no interest in
games are making big bucks off
first-time players. While there’s not
enough space to cover this subject,
it may be a matter of time before
these players realize what's going
on and revolt, as has happened
across the world with the Occupy
movement. In that case, developers
had better take a close look at
these real-world protests as they
develop and come to conclusions,
and figure out how to apply those
lessons in their games. (@

—Brandon Sheffield
twitter: @necrosofty

GAME DEVELOPER
MAGAZINE
WWW.GDMAG.COM

FOR INFORMATION, ORDER QUESTIONS, AND
ADDRESS CHANGES

FOR DIGITAL SUBSCRIPTION INFORMATION

PUBLISHER

EDITOR-IN-CHIEF

PRODUCTION EDITOR

ART DIRECTOR

DESIGNER

CONTRIBUTING WRITERS

ADVISORY BOARD

GLOBAL SALES DIRECTOR

MEDIA ACCOUNT MANAGER

GLOBAL ACCOUNT MANAGER, RECRUITMENT

GLOBAL ACCOUNT MANAGER, EDUCATION

PRODUCTION MANAGER

TYSON ASSOCIATES

LIST RENTAL

WWW.UBM.COM

http://www.GDMAG.cOM
mailto:gamedeveloper@halldata.com
http://www.gdmag.com/digital
mailto:scarless@gdmag.com
mailto:bsheffield@gdmag.com
mailto:jkraus@gdmag.com
mailto:jmitch@gdmag.com
mailto:wski@ubm.com
mailto:jmwatson@ubm.com
mailto:ggross@ubm.com
mailto:rvallin@ubm.com
mailto:peter.scibilia@ubm.com
mailto:jpampell@wrightsmedia.com
mailto:Elaine@Tysonassociates.com
http://WWW.UBM.COM
http://Massively.com

with 180 million Ara!os

...th
boom in the Arab world.

twofour54° Abu Dhabi - the tax-free gateway to a new world of gamers

The MENA region is one of the world’s fastest growing media and entertainment markets with 19%
growth in recent years. And with 80% of under-25s owning mobile phones; strong broadband
take-up and new gaming innovations, it's a prime opportunity for gaming businesses. Over 100
leading media companies are already capitalising on the opportunity at twofour54° Abu Dhabi.

setto

e 100% company ownershipina e unique campus environment with e the region's only stereoscopic

stable, tax-free environment facilitated business networking 3D Lab
¢ twofour54° gaming academy e easy licensing and business e guidance and liaison with UAE
in partnership with Ubisoft® set-up services content regulatory bodies

e dedicated fund for mobile apps e full on-site HD production and
development via Apps Arabia™ post-production facilities

Find out how we could help grow your business today. tmfm‘m

twofour54.com/gaming Abu Dhabi

+9712 401 2454 media & entertainment hub

*Sources: Arab Media Outlook 2010. Media on the Move 2009. A.T. Kearney. Introduction to Gaming. Michael Moore. Screen Digest. IDC.

twofour54° is an initiative of the Abu Dhabi Government.

http://twofour54.com/gaming

HEADS-UP

TOP XBLIG OF LATE 2011

EVERY SO OFTEN WE LIKE TO TAKE STOCK OF WHAT'S BEEN GOING ON IN THE WILD FRONTIERS OF XBOX LIVE INDIE GAMES. MANY
OVERLOOK THE SERVICE ENTIRELY, SO WE'VE CHOSEN 10 GAMES FROM THE LAST FEW MONTHS THAT ARE AT LEAST WORTH A TRIAL.

In DEAD PIXELS you're a survivor of
the zombie apocalypse, trying to
fight your way to freedom while
looting shops, collecting money,
and upgrading your weapons and
character stats. The game is tightly
balanced—you can be out of ammo,
trying to make it through hoards of
zombies while covered in zombie
goop, only to die just in front of the
shop. The game also has a great
DLC model—if the game hits certain
sales targets, the developer starts
working on new content.

This is a cute play on the nickle-
and-diming in some titles,
especially in free-to-play games.
DLC QUEST is an action platformer,
but if you want sound, that'll be
five coins (in-game currency only,
of course). Want the map that gets
you through the forest? Well, that'll
be 120. The game is good fun,

and lasts just an hour. Going Loud
decided that since there's a barrier
to folks buying $3 and $5 games,
he'd make the game "worth” $1.

SOULCASTER series creator
MagicalTimeBean's newest title
surrounds the fate of a goat
imprisoned for witchcraft, a magical
mouse, and several slumbering
sheep. The physics and Rube
Goldberg machine-based action
platformer mixes tight control
with excellent 16-bit-style music
and graphics. Many puzzles have
multiple solutions, and the robust
level editor is deep and intuitive,
extending the life of the game.

This is one of the oddest games
I've had the pleasure of playing
recently. Graphics are MS Paint

sketches, the soundtrack is utterly
bizarre, and the story is no less
normal. You'll be talking to aliens
(and a giant ogre crotch bulge),
fighting plants, and generally
being confused about what's
happening. You play as an old

man whose son may or may not
be a jerk, in this very difficult but
curiously compelling action RPG.

Werewolf Studio has put together a
nice spin on the classic WARLORDS
arcade game. You play as the
dragons this time, defending your
eggs against villagers, and against
each other. Powerups spice up the
action, and polished visuals and a
dragon-y story keep players going.
LAST DRAGON STANDING looks to help
popularize the trend of four player,
single-screen XBLIG.

MEGA SHOOTER 11 is a rather faithful
NES-style horizontal shooter with
powerups and levels aplenty, but
often it behooves you to avoid
enemies entirely until you can
power up your ship. It's a game
that's more about survival than
score, and which relies heavily
on its pleasing aesthetic to pull
players through. Beneath the
shell, there's an interesting game
of cat and mouse, as you rescue
scientists and gain new powers.

RAVENTHORNE is a testosterone-
fueled brawler with METROID-style
progression. RAVENTHORNE'S
detailed flash-style 2D graphics
and ambient score give it a unique
atmosphere, and the combat is
deeper than it initially appears,
with spells, combos, and dashes
to integrate into battles. The whole
game has a great energy to it—the
only major failing is that the story

GAME DEVELOPER | DECEMBER 2011

progresses, and seems to be
building toward something, but at
some point just...stops.

Silver Dollar Games has been
maligned in the past (for games
like TRY NOT T0 FART), but everyone
starts somewhere. SINS OF THE FLESH
has the best voice over of any
XBLIG I've heard, and has a pleasing
visual aesthetic to boot. The player
is a man who has recently died,
whose sins are recounted as you
fight off angels and demons with
the left and right sticks.

The game begins with a big bang.
You're an asteroid, floating about,
trying to absorb other asteroids.

Absorb enough and you become a

planet, which can later sustain
life. Ships and civilizations spring
forth, allowing you to take on rival
planets. Ultimately you become a
black hole, absorbing everything
in sight. There are missions and
objectives, but you can ignore
those completely if you like,
playing vengeful KATAMARI among
the stars.

WIZORB takes the ARKANOID
formula and adds an RPG slant
to it. As a traveling wizard, you
have to bring prosperity back to
a ruined world, controlled by an
evil force. Your ARKANOID paddle
can use magic, so you're not
just bouncing a ball about. The
game also features charming
animations by Paul Robertson.
—Brandon Sheffield

FRONT LINE
AWARDS

2011

ART
= 3DS Max 2012 (Autodesk)
= MotionScan [Depth Analysis)
= Modo 501 (Luxalogy)

= Substance Designer 2 (Allegorithmic)

== 7Brush 4R2

AUD O
= Wwise 2011.2 (Audiokinetic)

= Fmod Designer 3.4.8 (Firelight
Technologies)

= Miles Sound System 9 (Rad Game Tools)
== Pro Tools 10 (Avid Technology)

= Soundminer HDv4.3 (Soundminer)

FRONT LINE
AWARD

01

= (4 Engine 2.6 (Terathon Software)
=VisionEngineIIIIEN
= Unity 3.4.1 (Unity Technalogies)

= Unreal Engine 3 [Epic Games)

= CryEngine S| IEEG

VMIDDLEWARE
= Scaleform GFx 3.2 (Scaleform)
= XaitContral 3.4 (Xaitment)

= Kontagent kSuite User Analytics Platform
(Kontagent)

= Kynapse 2012 [Autodesk)
= Havok Physics [Havok)

NETWORKING
= I (CxitGames)
= GameSpy Technology (GameSpy Industries)
= OpenFeint [Aurora Feint)
= ReplicaNet 7.0 (Replica Software)
=2 DeNA Mobage N

™ FlashDevelop 4.0.0 (FlashDevelop
Project)

22 RAD Telemetry (RAD Game Tools)

= Hansoft 6.6 (Hansoft]

= Perforce 2011.1 (Perforce Software)
2 UAS5.2 (LUA)

WWW.GDMAG.COM

http://WWW.GDMAG.COM

__L:Fz—— e - _—

i

LVI hWpk | i
EXPICRA
ANDLguejiL

A R A S HI RI N1 A

/// Canversely, other games seem ta be bewildering and abtuse. When you
play those games, your capabilities are unclear, you find yourself punished
for reasons you don’t understand, and you take guesses (often to find out

mare time thinking abaut “how to work” the game. If you're an experienced

H GAME DEVELOPER™| DECEMBER 2011

ECHSIIRI RISV CHICID Y SR

= = - - - - = AA lI Fl-_':ﬂIIT - —
BN RS S e S e e ':'lel\-r kv 1 RILSo

FIGURE 1A Mystery GUI A. FIGURE 1B Mystery GUI B.

WWW.GDMAG.COM

http://WWW.GDMAG.COM

a

FIGURE 2A

I N —
.
I N—
X
-
|
-
e
-
|
-
e
|
side-view screenshat, you can see the vertical space on the screen and
it’s very easy ta imagine your character jumping. After all, most games

FIGURE 3A FIGURE 3B

GAME DEVELOPER| DECEMBER 2011

-F_

FIGURE 2B

[

— —_—

fordances as actual ones.

%
b
EC

=
=
S
o,
o
)
o
=
<
z
3
I
7]
2N
=3
@
o
=
<
3
3
I
7]
o
5]
=
oy
(2}
R
©
&
=
=)
2
a
C T
@,
S
g
53
o
o
c
-
T
=)
£
3
<
3
=

—

on
[=3
QU
=

E
=
@
=
@

[13e3
e

’ 3

E3
=p
@
>
£
@
©
=
&3
@
3
ksl
=3
=
o
o
c
o
=
=
=
Er
@
o
@
=
=
@
<
a
=
o
=
@
13
=
o
5]
@
n
=]

© =
a2l e
= =3
@ o
g 3
o =
z =
2 o
< o
=
- o
@ s
& @
el =
= =
S =
w 4
= S
=4 =)
o =
© &
> =
o =
@ o
‘n’; ©
4 5
@ o
o s
=
Bl B
© oy
b | =
o @
= i)
= @
3 a
g =2
= <
5 3
@ o
© o
Q =
= =)
=3
@ o
= B
r:g o ¢
% ®

WWW.GDMAG.COM ﬂ

http://WWW.GDMAG.COM
http://www.gamecareerguide.com
http://www.gamecareerguide.com
http://www.gamecareerguide.com

L
17

B

e N
@ —
S
4]
_—w e _ 7
7 E
Amm

lwi

GAME DEVELOPER™| DECEMBER 2011

references

An analysis of Querty vs Dvorak keyboard layouts http://patorjk.com/keyboard-layout-analyzer/

Liebowitz, S.J and Margolis, Stephen E. (1990) The Fable of the Keys. Journal of Law & Economics vol. XXXIII
http://www.pub.utdallas.edu/ffliebowit/keys 1.html

"The Design of Everyday Things" Norman, Donald A. (1990)

Norman’s further clarification of affordance www.jnd.org/dn.mss/affordances and design.html

"Population stereotypes: An attempt to measure and define" Proceedings of the human factors society 25th
annual meeting. p.662-665. A discussion of cultural norms: Bergum, B.0. & Bergum J.E. (1991)

"Principles of S-C-R compatibility with spatial and verbal tasks: The role of display-control location and voice-
interactive display-control interfacing" Human Factors, 26(5), 533-543. Wickens, Christopher D., Vidulich, Michael
& Sandry-Garza, Diane (1984)

"Cognitive Aspects of Skilled Typewriting" Edited by William E. Cooper. Norman on typewriting skills: Norman,
Donald A. and Rumelhart, David E. (1983 Studies of Typing from the LNR Research Group.

WWW.GDMAG.COM

http://www.pub.utdallas.edu/ffliebowit/keys1.html
http://www.jnd.org/dn.mss/affordances_and_design.html
http://WWW.GDMAG.COM
http://patorjk.com/keyboard-layout-analyzer/

GAME DEVELOPERS CONFERENCE

EAH FRAMCISCO, CA
MARCH 5-8, 2012
EXPO DATES: MARCH 7-8

ES
UBM

http://www.goconf.com

http://WWW.GDMAG.COM

managed is less relevant in the ¢

Chen at work.

14

HALO REACH.

BS: | don’t know if you have been keeping up on advances in voxelization...

BS: How much time in your department do you spend being concerned
about game performance? Can you push the boundaries as much as
possible with your effects and then get reigned back in, or do you have
to be constantly on top of memory management and that sort of thing?

BS: Any word on the new project?

'8t L RS

15

http://WWW.GDMAG.COM

BS: What for you

mul@d-platform?
H

ature tha
e visiona

technology.

game are e o
. In the HALO engine, we place great

HALO REACH test.

16

BS: My graphics programmer friends are curious to compare how
you spend your day-to-day. Are you mostly writing shaders, or doing
engine development, or do you develop tools for the artists?

BS: Do you work on more tools development on the front end to get
people implementing stuff faster?

=l

BS: This is a broad question, but what do you think are the big problems
to solve in the coming years from your perspective, graphics-wise?

BS: How far away are we from having realistic hair? | know that’s one of the
big reasons that we have so many bald space marines in games right now.

[
|+=:'& A
d 5 is &

http://WWW.GDMAG.COM

http://WWW.GDMAG.COM

|
1 game as a stage play.

2 designing to the strengths of kinect.

GAME DEVELOPER | DECEMBER 2011

mailto:tony@twistedpixelgames.com
mailto:tony@twistedpixelgames.com

4 content pipeline.

3 joining forces to hit retail.

WWW.GDMAG.COM

http://www.gdmag.com

5 fmv—bringing back the '90s.

GAME DEVELOPER | DECEMBER 2011

|
1 the double punch of a new team + new platform.

2 late vertical slice.

WWW.GDMAG.COM

http://www.gdmag.com

3 two teams with lock-step development schedules.

5 boss battles slipped to the end.

4 prototyping with the first level.

BILL MUEHL

GAME DEVELOPER | DECEMBER 2011

GAME DEVELOPER

MAGAZINE

the best of
postmortems,
product reviews
and standou
columns

NOW AVAILABLE FOR
e DIGITAL DOWNLOAD AND
.-“ur.uwm.m;u.me GAME - FDR IOS DEVICES

[OF #5540 EVELOPRER APP
r‘rﬂth DEV e |

.. § : bit.Wf-gdmag__'i.DE S U B s C RI B E TD DAY!

' WWW.GDMAG.COM/SUBSCRIBE

http://www.gdmag.com/subscribe
http://bit.ly/gdmag_iOS

ALLEGORITHMIC

Substance Designer 2

TEXTURE MAPPING HAS COME A LONG WAY SINCE DR. EDWIN CATMULL DEVISED THE PROCESS
in 1974. Its usage in real time is now commonplace, and the tools and techniques are very
sophisticated. There are a few exceptions, though, one of which is the way textures are animated.
That is still mainly accomplished using the same visual trickery zoetrope employed almost two
thousand years ago. We are due for an upgrade. The latest version of Substance Designer from
Allegorithmic attempts to do just that—and a whole lot more.

For those unfamiliar with Substance Designer, it creates “substances,” which Allegorithmic refers to
as smart textures. These differ from bitmap textures in that they are parametric and dynamic (you can
completely change the look of a texture by adjusting or animating exposed parameters), lightweight
(usually only a few KB), resolution-independent (32 to 2048), and can include inputs that turn them
into “smart filters” (think Crazy Bump or Filter Forge). It is a mature product, and it is the current
evolution of Allegorithmic’s procedural texturing software that was previously called MaPZone.

WHAT'S NEW

» With the arrival of version 2,
which now supports Mac 0SX,
Allegorithmic has rewritten the
scalable vector graphic (SVG)

complex substance graphs into
more workable chunks, and then
blend them all together using
masks and layer blending modes.
The graph gets noticeably slower

at home. The normalizing sliders
are really nice, especially since
there are so many value ranges that
substances can use. The ability to
toggle tiling view on and off makes

editor, and added a layer-based
compositing system. Also included
in the release are a host of smaller
features and bug fixes.

The rewritten SVG editor now
includes multiple colors, a new brush
tool, and the ability to import SVG
files. The brush tool is a nice addition,
but it falls a bit short. While it gives
you the ability to paint and perform
Boolean quick shapes, don't expect
to create complex masks without a
lot of fiddling. This is mainly due to
the fact that the shapes the brush
creates are fairly inaccurate and
that the software lacks basic vector
editing capabilities. While it is unfair to
expect Designer to do everything that
llustrator or other dedicated vector
editors can, it certainly needs more of
the fundamentals. As an example, you
can't quickly switch between handle
selection and editing mode.

The SVG-import feature is
a welcome addition that allows
complex shapes to be imported,
but again, lllustrator format support
would be nice to have since most of
the popular image editing packages
can't export SVG.

New to Designer is a layers-
based interface that lets you
composite substances. This
allows you to compartmentalize

when you start combining multiple
substances, so you will want to plan
accordingly when using this feature.
The Ul continues to be very
pleasant to interact with, and anyone
familiar with Maya’s Hypergraph or
Unreal’s material editor will feel right

Designer’s main view.

E GAME DEVELOPER | DECEMBER 2011

it easy to check timing in the 2D
view. Newly created nodes in the
graph auto-connect to what you have
selected, which speeds up creation
time. The Ul does have a couple
oddities, however. First, you need

to press tab twice to move between

value fields, since the focus moves
out to the Ul control. Second, the
color picker needs to be closed to
dedicate a color choice. These are
small irritations in the big picture,
which will hopefully be resolved in
future releases.

NOVEL TEXTURES
» Designer’s learning curve has
always been pretty steep, but for
technical artists who are used
to editing shaders in a graph
environment, it shouldn't take too
long to get comfortable.
Designerincludes a vast array
of filters, functions, and elements
(patterns and noises) with which to
create or alter existing substances.
Alot of these effects are very
difficult or expensive to achieve
with High Level Shader Language
(HLSL) vertex or pixel shaders. This
is one of the main things that makes
Designer so powerful and intriguing.

Also included is a library of 130
sample substances (more are
available from Allegorithmic’s store),
and a vast array of extensions can
easily be dropped into Designer,
such as Seamless Random Noise
and the Grunge Maps Toolkit.
Substance Designer can also
create textures from scratch.
Everything done in Designer is
nonlinear, nondestructive, and except
for external bitmaps, all results
are stored in the substance itself.
Substances are kept in packages
and can be instanced into other
substances, which allows you to
manage a very large network of
textures that can be updated en
masse if needed. The non-linear
workflow allows upstream changes to
cascade down to all your outputs, so
changes can be made very quickly.
Once you get comfortable with the
graph, you can create variations of
existing substances in no time at all.

SUBSTANCE SUPPORT

» Outside of game engines,
substances are currently supported
in Maya, Max, and Flame. This
review was done with Maya,

but features are very similarin
Max. Using substances in Maya

is straightforward but a little
cumbersome. CgFx shaders are
provided that allow you to attach
substances to file 2D nodes,
when partnered with mel scripts.
These are then attached to the
CgFx shaders, allowing you to see
the results in Maya's viewport.
While this is not the most optimal
workflow, it does show that
substances can be used with
hardware shaders in DCC apps for
eventual export into a game engine.
Since Flame is not typically used
to create in-game assets, | didn’t
evaluate its substance support.

MATTER MATTERS

>> Now that we have our substances,
there are effectively two options:
export textures as traditional bitmaps
using the free Allegorithmic player,
or use the substances directlyinan
engine that’s running Allegorithmic’s
Air texture engine. The latter is where
substances really shine. With Air,
substance textures are generated at
run time and can be edited in-game
by updating their parameters to

create dynamic effects. Also, because
substances are so compact, games
using Air can reduce their texture
package size by up to 99%.

Using substances in a game
engine is done by exporting
assets from a supported 3D
application and/or directly
assigning them to shaders in
a game editor. There is a catch,
though: you must license
Allegorithmic’s Air texture engine
or use a commercial engine
that supports the substance
format. At the time of this review,
substances drop right into Unity
3.4 and ShiVa, with additional
unannounced engine support
forthcoming in the next few
months. Be sure to check out
the “Airstream” tech demo that
showcases substances in Unity.

DECIDING ON DESIGNER

» Unless you leverage the run-

time benefit of substances with
Allegorithmic’s Air, the cost and
learning curve of Designer won't
seem worthwhile, since you will need
to eventually save everything as
traditional bitmaps before you can get

ALLEGORITHMIC

www.allegorithmic.com

PRICE
$990

SYSTEM REQUIREMENTS
0S: Windows XP, Vista, 7 (all

editions), CPU: x86 with SSE2
GPU (Windows only): DX9, DX10 -
shader model 3.0 minimum
Video RAM: 512MB minimum
RAM: 4GB recommended

PROS

Organic tiled noise and pattern
creation is unmatched

Layering expands the flexibility and
dynamic nature of substances
Space savings of substances
continues to be astonishing

CONS

Expensive. $990 puts it above
Photoshop and Genetica Pro

SVG editor is cumbersome to use
Hard to justify using without the Air
texture engine

them into your game. You are probably
better off just using Allegorithmic’s
B2M (Bitmap to Material) and 3 la
carte substances purchased from
Allegorithmic's online store.

On the other hand, if you're
using an engine that runs Air,
Designer is a must-have, since you
are going to want to customize
substances to fit your needs.

Things could also get really
exciting for substances if they
supported a UV-less workflow
(like Ptex). | put this question to
Allegorithmic, and they said it is
in their “mid-term” plan and is
currently in a prototype stage.

Is Designer 2 worth checking
out? Absolutely. At the very least,
you should be aware of what
Designer is capable of, and try to
leverage its abilities at your studio.
While many of the things it does
are not yet ubiquitous, it has the
potential to set a new standard for
how game textures are created. @

JENS HAUCH has been cranking out
pixels in the game industry since 1997 He
is currently the technical art and FX lead at
ArenaNet, working on GUILD WARS 2.

WWW.GDMAG.COM

http://www.gdmag.com
http://www.allegorithmic.com

i & ”
3

"\.l‘

r*-—

"'"E'he art and. business. @f making games

f-fp

- 4 , .0 y
1.1' B! 4 .‘u 5 i ; i"

r#"‘-“} ""'h;--’- T o .1.." e S U'EM

hWb

Yol R, | el
R P e B R N g e g et ORI i L T bl)i

¥ I h : : ‘r
; y z = A ¢ ; :
A | ':,-'E _t"’fﬂ, 4 1 :‘ &L i A ¢ lr 7 b

FEE =k i

http://www.gamasutra.com

THE INNER PRODUCT

MANAGING COUPLING

TIPS FOR KEEPING SYSTEMS AS INDEPENDENT AS POSSIBLE

The only way to stay sane while writing a large, complex software system is to look at it as a collection of smaller, simpler systems.
And this is only possible if the individual components are properly decoupled.

Ideally, each system should be completely isolated. The effect system should be the only system manipulating effects, and
it shouldn’t do anything else. It should have its own update() call just for updating effects. No other system should affect how
the effects are stored in memory, or what parts of the update happen on the CPU, SPU, or GPU. A new programmer wanting to
understand the system should only have to look at the files in the effect_system directory. It should be possible to optimize,
rewrite, or drop the entire system without affecting any other code.

Of course, such complete isolation is not really possible. If anything interesting is going to happen, different systems will at some

point have to talk to one another, whether we like it or not.

The main challenge of keeping an engine healthy over time is in finding ways
to allow these necessary interactions to take place while still keeping the
systems as decoupled as possible. When a system is properly decoupled,
adding features is simple. Want a wind effect in your particle system? Just
write it. It’s just code. It shouldn’t take more than a day. However, if you are
working in a tightly coupled project, such seemingly simple changes can
stretch outinto nightmarish day-long debugging marathons.

If you ever get the feeling that you would prefer to test out anideaina
simple toy project rather than in “the real engine,” that’s a clear sign that you
have too much coupling.

Sometimes, engines start out decoupled, but as deadlines approach and
features are requested that don't fit the well-designed APls, programmers get
tempted to open back doors between systems and introduce couplings that
shouldn't really be there. Slowly, through this “coupling creep,” the quality of the
code deteriorates and the engine becomes less and less pleasant to work with.

Still, programmers cannot lock themselves in their ivory towers. “That
feature doesn’t fit my API” is never an acceptable answer to give a budding
artist. Instead, we need to find ways to manage the challenges without
destroying our engines.

In this article, I'll look at some different ways in which coupling tends to
sneak into a project and suggest alternative ways of handling the issues.

FOUR QUICK IDEAS

1 // BE WARY OF FRAMEWORKS

By “framework” | mean any kind of system that requires all your other code
to conform to a specific worldview, such as a scripting system that requires
you to add a specific set of macro tags to all your class declarations.

Other common culprits are root classes that every object must inherit from,
RTTl/reflection systems, serialization systems, and reference-counting systems.

Such global systems introduce coupling across the entire engine. They
rudely enforce certain design choices on all subsystems—design choices
that might not be appropriate for them. Sometimes the consequences are
serious. A badly thought-out reference system may prevent subsystems
from multithreading. A less-than-stellar serialization system can make linear
loading impossible.

Often, the motivation for such global systems is that they theoretically
increase maintainability. With a global serialization system, we just have to
make changes in one place. Thus, it is claimed, refactoring is much easier.

In practice, however, the reverse is often true. After a while, the global
system has infested so much of the code base that making any significant
change to it is virtually impossible. There are just too many things that
would have to be changed, all at the same time.

You would be much better off if each system just defined its own save()
and load() functions. Then, you could incrementally move them over to a
new implementation, starting with the most important ones.

Frameworks also make code sharing harder. You can't take someone else’s
code and plug it into your engine, because it doesn’t use your frameworks
the right way. And you can’t share your code with someone else without also
giving them the 200 framework files that your code depends on.

2 // USE HIGH-LEVEL SYSTEMS TO MEDIATE BETWEEN
LOW-LEVEL SYSTEMS

Instead of directly coupling low-level systems, use a high-level system to

shuffle data between them. For example, handling footstep sounds might

involve the animation system, the sound system, and the material system;

however none of these systems should know about the others.

So instead of directly coupling them, let the gameplay system handle
their interactions. Since the gameplay system knows about all three
systems, it can poll the animation system for events defined in the
animation data, sample the ground material from the material system, and
then ask the sound system to play the appropriate sound.

Make sure that you have a clear separation between this messy
gameplay layer (that can poke around in all other systems] and your clean
engine code (that is isolated and decoupled). Otherwise, there is always a
risk that the mess will propagate downward and infect your clean systems.

In BitSquid Tech, we put the messy stuff in either Lua or Flow (a visual
scripting tool, similar to Unreal’s Kismet). The language barrier acts as a
firewall and prevents the spread of chaos.

Sending information down to a low-level system is simple; you can just
call the functions of the system. Sending information back up is trickier,
because the low-level system shouldn’t know about the high-level systems.
Later in this article, I'll look at some possible approaches to this problem.

3 // DUPLICATING CODE IS SOMETIMES OK!

Avoiding duplicate code is one of the fundamentals of software design.
Entities should not be needlessly multiplied. However there are instances
when you are better off breaking this rule.

I'm not advocating copy-paste programming or writing complicated
algorithms twice. I'm saying that sometimes people can get a little
overzealous with their code reuse. Code sharing has a price that is not
always recognized: an increase in system coupling. Sometimes, a little
judiciously applied code duplication can be a better solution.

Atypical example is the String class (or std: :string if you are thusly
inclined). You see the String class used almost everywhere in some projects. If
something is a string, it should use the String class, the reasoning seems to be.
But many systems that handle strings do not need all the features that you find
in your typical String class: locales, find_first_of (), and so forth. They are fine
with just a const char #, stremp() and maybe one custom-written (potentially
duplicated) three-line function. So why not use that? The code will be much
simpler and easier to move to SPUs.

Another culprit is FixedArray<T>. Sure, if you write int a[5] instead, you

WWW.GDMAG.COM

http://www.gdmag.com

THE INNER PRODUCT

will have to duplicate the code for bounds checking if you want that; however
your code can be understood and compiled without fixed_array.hand
template instantiation.

Also, if you have any method that takes a const Vector &vas argument
you should probably take const T #begin, const T *end instead. Now,
you don't need the vector.h header, and the caller is not forced to use a
particular Vector class for storage.

Sometimes, you want to be even more flexible and write code that
doesn’t know anything about the objects it manipulates. Later in this article,
I'lllook at how that can be achieved.

As a final example, | recently wrote a patching tool that manipulates our
bundles (aka pak-files). That tool duplicates the code for parsing the bundle
headers, which is already in the engine. Why? Well, the tool is written in C#
and the engine in C++, but that is beside the point in this case. The point is
that sharing that code would have required a significant effort.

First, it would have to be broken out into a separate library, together with the
related parts of the engine. Then, since the tool requires some functionality that
the engine doesn't (it needs to parse bundles with foreign endianness), | would
have to add a special function for the tool, and probably a #define TOOL_COMPILE,
since | don't want that function in the regular builds. This means | would also
need a special build configuration for the tool, and debug and release versions
of that configuration. And the engine code would forever be dirtied with the
TOOL_COMPILE flag. And | wouldn’t be able to rearrange the engine code as | wanted
in the future, since that might break the tool compile.

In contrast, rewriting the code for parsing the headers was only 10
minutes of work. It just reads a vector of string hashes. It's not rocket
science. Sure, if | ever decide to change the bundle format, | might have to
spend another 10 minutes rewriting that code, but | think | can live with that.

Writing code is not the problem. The messy, complicated couplings that
prevent you from writing code are the problem.

4 // USE IDS TO REFER TO EXTERNAL OBJECTS

At some point, one of your systems will have to refer to objects belonging
to another system. For example, the gameplay layer may have to move an
effect around or change its parameters. | find that the most decoupled way
of doing this is by using an ID. Let’s consider the alternatives.

Effect *

Adirect pointer is no good, because it will become a dangling pointer if the
target object is deleted, and the effect system should have full control over
when and how its objects are destroyed.

shared_ptr<T>

A standard shared_ptr<T>won’t work for the same reason; it puts the lifetime
of Effect objects out of the effect system's control, since they will be forced
to live as long as the reference exists.

weak_ptr<T>

By this, | mean some kind of reference-counted, indirect pointer to the object.
This is better, but still too strongly coupled for my taste. The indirect pointer will
be accessed by both the external system (for dereferencing and changing the
reference count) and by the effect system (for deleting the Ef fect object or
moving it in memory). This has the potential to create threading problems.

Also, this construct kind of implies that external systems can
dereference and use the Effect whenever they want to. Perhaps the effect
system allows that only when its update() loop is not running and it wants
to assert() that. Or perhaps the effect system doesn’t want to allow direct
access to its objects at all, but instead double buffer all changes.

In contrast, using IDs as external references allows the system to freely
reorganize its data and processing in any way it likes. The IDs are just integers
that uniquely identify a particular object and that can be thrown away when the
user is done with them. They don’t have to be “released” like a weak_ptr, which

GAME DEVELOPER | DECEMBER 2011

removes a point of interaction between the systems. It also means that the IDs
are PODs. We can copy and move them freely in memory, juggle them in Lua,
and DMA them back and forth to our heart’s content. All this would be a lot more
complicated if we had to keep reference counts.

Later in this article, I'll demonstrate how you can create a data structure
that allows you to quickly look up objects based on their IDs.

SIGNALING

Signaling is the general problem of how a low-level system can notify a
high-level system that something of interest has happened. For example, the
animation system may want to notify the gameplay system that a character’s
foot has touched the ground, so that a footstep sound can be played.

Note that, as mentioned previously, we don’t allow direct communication
between two low-level systems. The communication is always mediated by a
high-level system that sits above the low-level systems.

Also, the low-level systems cannot call high-level systems directly, because
they shouldn’t know about them. That would introduce strong coupling and
break the hierarchical decomposition of the engine into simpler and simpler
systems. Instead we want to use some form of indirect notification. There are
three common techniques for doing so: polling, callbacks, and events.

// POLLING

Ina polling solution, the high-level system calls some function every
frame to check if the event it's interested in has occurred. Has the file been
downloaded yet? What about now? Are we there yet?

Polling has a pretty bad rep. It's considered ugly and inefficient. And
indeed, in the desktop world, polling is very impolite, since it means busy-
waiting and tying up 100% of the CPU with nothing.

However, the situation is completely different in game development. The
CPU is already up and spinning. We are already doing a ton of stuff every
33 ms (or half a ton of stuff every 17 ms). As long as we don't poll a huge
number of objects, polling won't have any impact on the framerate.

Code that uses polling is often easier to write, and it ends up better
designed than code that uses callbacks or events. For example, it's much
easier to just check if the Akey is pressed inside the character controller,
than to write a callback that gets notified if Ais pressed and somehow
forwards that information to the character controller.

So, in my opinion, polling is actually preferable to other solutions, when
you can get away with it from a performance perspective (i.e., when the
thread is awake anyway, and you don’t have to monitor a huge number of
objects). Some areas where polling works well include file downloads, server
browsing, game saving, and controller input.

An area less suited for polling is collision notification, since there are N?
possible collision pairs that you would have to poll for. You could argue that,
rather than polling for a collision between two specific objects, you could poll
for a collision between any two objects. In that case, | would say that you are
no longer strictly polling but are actually using a rudimentary event system..

// CALLBACKS

In a callback solution, the low-level system stores a list of high-level functions
to call when certain events occur. An important question when it comes to
callbacks is whether the callback should be called immediately or whether it
should be queued up and scheduled for execution later in the frame.

I much prefer the latter approach. If you do callbacks immediately, you
not only thrash your instruction and data caches, but you also prevent
multithreading (unless you use locks everywhere to prevent the callbacks
from stepping on each other]; plus, you open yourself up to nasty bugs when
a callback through a chain of events ends up destroying the very objects you
are looping over.

It's much better to queue up all callbacks and only execute them when
the high-level system asks for it (with an execute_callbacks() call]. That
way you always know when the callbacks occur. Both the high-level system

and the low-level system are in safe, well-known states. Side effects can be
minimized, and the code flow is clearer. Also, with this approach, there is no
problem generating callbacks on multiple threads and merging the queues.

The only problem with delayed callbacks is that the world state can change
from the time when the event happens to the time when the callback is called.
In some cases, such changes can invalidate the callback; for example, if one
of the objects involved in a collision is destroyed before the callback is made.
Luckily, we can handle that by using the ID reference system described in this
article to determine whether the objects are still alive.

Note that the callback system outlined here has some similarities to a
polling system in that the callbacks only happen when we explicitly poll for
them. It also shares similarities with the event system; the callback queue
and the event queue are close cousins.

It's not self-evident how to represent a callback in C++. You might be
tempted to use a member function pointer. Don’t! The casting and typing
rules make it nigh impossible to use them for any kind of generic callback
mechanism. Also, don’t use an “observer pattern,” where the callback must
be some object that inherits from an AnimationEventObserver class and
overrides handle_animation_event(). That just leads to tons of typing and
unnecessary heap allocation.

There is an interesting article about fast and efficient C++ delegates
at www.codeproject.com/KB/cpp/FastDelegate.aspx. It looks solid, but
personally, 'm not comfortable with making something that requires so
many platform-specific tricks one of the core mechanisms of my engine.

Instead, | use regular C function pointers for callbacks. This means that,
if lwant to call a member function, | have to make a little static function
wrapper that forwards the call to the class. That's a bit annoying, but it's
better than the alternatives.

To be useful, C callbacks need some context data. The typical approach
is to pass a "user data” void *to the callback function. | actually prefer a
slightly different mechanism, since | sometimes want to pass more data
than asingle void *. |use something like this:

struct Callback16
{
void (*f)(void);
char data[12];
IR

There aren’t a huge number of callbacks, so using 16 bytes instead of 8
matters little. You could even go to Callback32 if you needed room for more
data. | like to think of this as a “poor man’s closure.”

When calling the callback, | cast the function pointer to the appropriate
type and pass a pointer to its data as the first parameter.

typedef void (*AnimationEventCallback)(void *, unsigned);
AnimationEventCallback f = (AnimationEventCallback)callback.f;
f(callback.data, event_id);

I'm not worried about casting the function pointer back and forth between
a generic type and a specific one, nor about casting the data in and out of a raw
buffer. Type safety is nice, but there is an awful lot of power in juggling blocks
of raw memory. You don’t have to worry that much about someone casting the
data to the wrong type, because doing so will cause a huge spectacular crash.
Huge spectacular crash bugs are not scary. “l only show myself in release
builds with at least 16 networked players”-bugs are scary.

// EVENTS

As | mentioned, event systems are very similar to callback systems. The only
difference is that, instead of storing a direct pointer to a callback function, they
store an event enum. The high-level system that polls the events decides what
action to take for each enum.

In my opinion, callbacks work better when you want to listen to specific
notifications, such as “Tell me when this sound has finished playing.” Events
work better when you process them in bulk: “Check all collisions to see if the
forces involved are strong enough to break the objects.” But it is largely a
matter of taste.

For storing the event queues (or callback queues), | just use a raw buffer
(array<char> or char [FIXED_SIZE] Jwhere | concatenate all events and their data:

[event_1_enum] [event_1_data] [event_2_enum] [event_2_data] ...

The high-level system steps through this buffer, processing each event
in turn. Note that event queues like this are easy to move, copy, merge, and
transfer between cores. (This shows, again, the power of raw data buffers.)

In this design there is only a single high-level system that polls the
events of a particular low-level system. It understands what all the events
mean, what data they use, and how to act on them. The sole purpose of the
event system (it isn't even much of a “system,” just a stream of data] is to
pass notifications from the low level to the high.

This is, in my opinion, exactly what an event system should be. It should
not be a magic global switchboard that dispatches events from all over the
code to whoever wants to listen in on them. That kind of spooky "action at a
distance” tends to lead to code that is hard to debug, cache inefficient, and
strongly coupled in unexpected ways.

DUCKTYPING

Some systems need to manipulate objects whose exact natures are not
known. For example, a particle system has to manipulate particles that
sometimes have mass, sometimes have full 3D rotation, sometimes have
only 2D rotation, and so on.

(That's what a good particle system does, anyway; a bad particle
system could use the same struct for all particles in all effects, with
“magical” fields called things like custom_1, custom_2 used for different
purposes in different effects.)

Another example is a networking system tasked with synchronizing game
objects between clients and servers. A very general system might want to
treat the objects as open JSON-like structs, with arbitrary fields and values:

{
"score" : 100,
"name": "Player 1"

Such systems need to be able to handle these “general” or “open”
objects in C++ in a nice way. Since we care about structure, we don’t want
the system to be strongly coupled to the layout of the objects it manages;
and since we are performance junkies, we would like to do it in a way that
doesn’t completely kill performance. That is, we don't want everything to
inherit from a base class 0b ject and define our JSON-like objects as below:

typedef std::map<std::string, Object *> OpenStruct;

Generally speaking, there are three possible levels of flexibility with
which we can work with objects and types in a programming language:

1 /7 EXACT TYPING—IF IT IS A DUCK
We require the object to be of a specific type. This is the typing method used
in Cand for classes without inheritance in C++.

2 // INTERFACE TYPING—IF IT SAYS IT'S A DUCK

We require the object to inherit from and implement a specific interface
type. This is the typing method used by default in Java, C#, and in C++ when
inheritance and virtual methods are used. It's more flexible than the exact

WWW.GDMAG.COM

http://www.codeproject.com/KB/cpp/FastDelegate.aspx
http://www.gdmag.com

THE INNER PRODUCT

NIKLAS FRYKHOLM

approach, but it still introduces a coupling, because it forces the objects we
manage to inherit from a type defined by us.

Side note: My general opinion is that, while inheriting interfaces
(abstract classes] is a valid and useful design tool, inheriting
implementations is usually little more than a glorified hack—a way of
patching parent classes by inserting custom code here and there. You
almost always get a cleaner design when you build your objects with
composition instead of with implementation inheritance.

3 // DUCK TYPING—IF IT QUACKS LIKE A DUCK
We don't care about the type of the object at all, as long as it has the fields
and methods that we need. For example:

This method integrates the position of the object o. It doesn’t care what
the type of 0 is, as long as it has a “position” field and a “velocity” field.

Duck typing is the default in many scripting languages, such as Ruby,
Python, Lua, and JavaScript. The reflection interface of Java and C# can also
be used for duck typing, but the code tends to become far less elegant than
in the scripting languages, as below.

This is fixed by the type in C# 4.0, which behaves more like the
duck types in Ruby and Python. What we want for systems of this type is
some way of doing duck typing in C++.

Let’s look at inheritance and virtual functions first, since that is the
standard way of generalizing code in C++. It’s true that you could do
general objects using the inheritance mechanism. You would create a class
structure looking something like this:

You'd then use either dynamic cast or perhaps your own hand-rolled RTTI
system to determine an object’s class.

But there are several drawbacks to this approach. Itis quite verbose, and
the virtual inheritance model requires objects to be treated as pointers, so they
(probably) have to be heap allocated. This makes it tricky to get a good memory
layout, and that hurts performance. Also, they are not PODs, so we will have to do
extra work if we want to move them to a coprocessor or save them to disk.

So | prefer something much simpler. A generic object is just a type enum
followed by the data for the object (see Figure 1].

To pass the object you just pass its pointer. To make a copy, you make a
copy of the memory block. You can also write it straight to disk and read it
back, or send it over network or to an SPU for off-core processing.

To extract the data from the object you would do something like this:

You don’t really need that many different object types: bool, int, float,
vector3, quaternion, string, array, and dictionary are usually enough. You
can build more complicated types as aggregates of those, just as you do in
JSON.

For a dictionary object, we just store the name/key and type of each
object (see Figure 2).

I tend to use a four-byte value for the name/key and not care if it is an
integer, float, or a 32-bit string hash. As long as the data is queried with the
same key it was stored with, the right value will be returned. | only use this
method for small structs, so the probability of a hash collision is close to
zero and can be handled by “manual resolution.”

If we have many objects with the same “dictionary type” (i.e., the same
set of fields, just different values) it makes sense to break out the definition

GAME DEVELOPER | DECEMBER 2011

of the type from the data itself to save space (see Figure 3).

Here, the offset field stores the offset of each field in the data block. We
can now efficiently store an array of like data objects with just one copy of
the dictionary type information, as seen in Figure 4.

Note that the storage space (and thereby the cache and memory
performance] is exactly the same as if we were using an array of regular
C structs, even though we are using a completely open free-form JSON-
like struct. And extracting or changing data just requires a little pointer
arithmetic and a cast.

This would be a good way of storing particles in a particle system.

Note that this is an array-of-structures approach. You can also use duck
typing with a structure-of-arrays approach. | leave that as an exercise to the
reader. If you are a graphics programmer, all of this should look pretty familiar.
The “dictionary type description” is very much like a “vertex data description”
and the “dictionary data” is awfully similar to “vertex data.” This should
come as no big surprise. Vertex data is generic, flexible data that needs to be
processed fast in parallel on in-order processing units. It is not strange that
with the same design criteria we end up with a similar solution.

THE ID LOOKUP TABLE

I have made several mentions of IDs in this article, and how they are a better
way of referring to objects than pointers or references.

By an ID, | simply mean an opaque data structure of n bits. It has no
particular meaning to us, and we'll just use it to refer to an object. The
system provides the mechanism for looking up an object based on it. Since
we seldom create more than four billion objects, 32 bits is usually enough
for the ID, so we can just use a standard integer. If a system needs a lot of
objects, we can go to 64 bits.

To be able to efficiently use IDs, we need a way of looking up system
objects based on IDs. There are several requirements that such a data
structure needs to fulfill.

e There should be a one-to-one mapping between live objects and IDs.

e If the system is supplied with an ID to an old object, it should be able
to detect that the object is no longer alive.

e Lookup from ID to object should be very fast (this is the most
common operation).

* Adding and removing objects should be fast.

Let’s look at three different ways of implementing this data structure,
with increasing degrees of sophistication.

// THE STL METHOD
The by-the-book object-oriented approach is to allocate objects on the heap
andusea to map from ID to object.

Note that the counter will wrap around if we create more than
four billion objects, and we risk getting two objects with the same ID.

Apart from that, the only problem with this solution is that it is really
inefficient. All objects are allocated individually on the heap, which gives bad
cache behavior; plus the map lookup results in tree walking, which is also
bad for the cache. We can switch the map to a for slightly better
performance, but that still leaves a lot of unnecessary pointer chasing.

// ARRAY WITH HOLES
What we really want to do is to store our objects linearly in memory, because
that will give us the best possible cache behavior. We can either use a fixed-
size array if we know the maximum number of objects that
will ever be used, or we can be more flexible and use a

If you care about performance and use then you
should make a variant of it (call it for example) that doesn’t
call constructors or initialize memory. Use that for simple types, when
you don’t care about initialization. A dynamic buffer that grows
and shrinks a lot can spend a huge amount of time doing completely
unnecessary constructor calls.

To find an object in the array, we need to know its index. But just
using the index as D is not enough, because the object might have been
destroyed and a new object might have been created at the same index. To
check for that, we also need an ID value, as before. So, we make the ID type a
combination of both:

Now, we can use the index to quickly look up the object and the
to verify its identity.

WWW.GDMAG.COM

http://www.gdmag.com

THE INNER PRODUCT

Figure 5

f ec\ i{h e

Since the object index is stored in the ID, which is exposed externally,
an object cannot move once it has been created. Objects will, however, leave
holes in the array when they are deleted see Figure 5).

When we create new objects we don’t want to just add them to the end of
the array; we want to make sure that we fill the holes in the array first.

The standard way of doing that is with a free list. We store a pointer to the
first hole in a variable. In each hole we store a pointer to the next hole. These
pointers thus form a linked list that enumerates all the holes (see Figure 6).

Interestingly, we usually don’t need to allocate any memory for these
pointers. Since the pointers are only used for holes (i. e., dead objects], we
can reuse part of the objects’ own memory for storing them. The objects
don’t need that memory, since they are dead.

Listing 1 shows an implementation. For clarity, | have used an explicit
member next for the free list rather than reusing the object’s memory:

This is a lot better than the STL solution. Insertion and removal is 0(1).
Lookup is just array indexing, which means it is very fast. In a quick-and-
dirty-don't-take-it-too-seriously test this was 40 times faster than the STL
solution. In real life, of course, it all depends on the actual usage patterns.

The only part of this solution that is not an improvement over the STL
version is that our ID structs have increased from 32 to 64 bits.

There are things that can be done about this. For example, you can get by
with 16 bits for the index, if you never have more than 64 K objects live at the
same time, which leaves 16 bits for the inner_id. Note that the inner_id doesn't
have to be globally unique; it's enough if it's unique for that index slot. So a 16-bit
inner_idis fine if we never create more than 64 K objects in the same index slot.

If you want to go down that road you probably want to change the
implementation of the free list slightly. The code above uses a standard free-
listimplementation that acts as a LIFQ stack. This means that, if you create and

\\'\AE* avvay with "Woles

N\
R Figure 6
i

delete objects in quick succession, they will all be assigned to the same index
slot, so you'll quickly run out of inner_ids for that slot. To prevent that, you
want to make sure you always have a certain number of elements in the free
list (allocate more if you run low) and rewrite it as a FIFQ. If you always have
Il free objects and use a FIFO free list, then you are guaranteed that you won't
see an inner_id collision until you have created at least Il 64K objects.

Of course, you can slice and dice the 32 bits in other ways if you have
different limits on the maximum number of objects. You have to crunch the
numbers for your particular case to see if you can get by with a 32-bit ID.

// PACKED ARRAY

One drawback with the approach sketched above is that, since the index is
exposed externally, the system cannot reorganize its objects in memory for
maximum performance.

The holes are especially troubling. At some point, the system probably
wants to loop over all its objects and update them. If the object array is nearly
full, no problem; however, if the array has 50% objects and 50% holes, then
the loop will touch twice as much memory as is necessary. That seems
suboptimal.

We can get rid of that by introducing an extra level of indirection, where the IDs
point to an array of indices that point to the objects themselves, as seen in Figure 7.

This means we pay the cost of an extra array lookup whenever we
resolve the ID. On the other hand, the system objects are packed tight in
memory, so they can be updated more efficiently. Note that the system
update doesn’t have to touch or care about the index array. Whether this is
a net win depends on how the system is used, but my guess is that, in most
cases, more items are touched internally than are referenced externally.

To remove an object with this solution, we use the standard trick of
swapping it with the last item in the array. Then, we update the index so it

\

\ / / / /
el

fac ked Olo:)cect Cltrr'aj

GAME DEVELOPER | DECEMBER 2011

Figure 7

LISTING 2

points to the new location of the swapped object.
I've provided an implementation in Listing 2. To keep things interesting,
this time there’s a fixed array size, a 32-bit ID, and a FIFO free list.

COUPLES THERAPY

As I've shown in this article, writing modular, reusable, and decoupled code
doesn’t require heavy use of templates, virtual inheritance, or other advanced
C++ constructs. In fact, | think such solutions can often be counterproductive.
A“too pure” approach to object-oriented design can lead to tightly coupled
class systems where nothing can be moved, changed, or replaced.

Certainly, if I'm going to incorporate some third-party code in my engine,
I would like it to be isolated, free of dependencies and inheritances, and
preferably just a few files with a simple no-nonsense pure C or barebones
C++ interface. Shouldn’t | apply the same standards to my own code? @

typedef unsigned ID;

#define MAX_OBJECTS 64%1024
#define INDEX_MASK Oxffff
#define NEW_0BJECT_ID_ADD 0x10000

struct Index {
ID id;
unsigned short index;
unsigned short next;

Y

struct System

1

'

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

NIKLAS FRYKHOLM is a founder of BitSquid AB and the system architect of BitSquid { :

Tech, a licensed game engine. Prior to starting BitSquid he worked at Grin AB for six unsigned _num_ob jects; H

years where he served as lead programmer and technical director on multiple titles for Object _objects[MAX_OBJECTS]; :

PC, Xbox 360, and PS3. Index _indices[MAX_OBJECTS]; H

__ unsigned short _freelist_enqueue; :

] v ! i i . !

: LISTING 1 : : unsigned short _freelist_dequeue; :

1 1 1 1

! struct System ! H System() { H

! { ! , _num_ob jects = 0; ,

! unsigned _next_inner_id; ! , for (unsigned i=0; i<MAX_OBJECTS; ++i) { H

! std: :vector<Object> _objects; ! , _indices[i].id = i; H

! unsigned _freelist; ! , _indices[i].next = i+1; H

' L } i

! System() { ! ' _freelist_dequeue = 0; i

: _next_inner_id = 0; : : _freelist_enqueue = MAX_OBJECTS-1; :

: _freelist = UINT_MAX; b } :

' } b .

: b inline bool has(ID id) { :

' inline bool has(ID id) { b Index &in = _indices[id & INDEX_MASK]; i

! return _objects[id.index].id.inner_id == id.inner_id; ! H return in.id == id && in.index != USHRT_MAX; .

i } ' } i

1 [1

1 | 1

1 1

: inline Object &lookup(ID id) { o inline Object &lookup(ID id) { '

! return _objects[id.index]; ! H return _objects[_indices[id & INDEX_MASK].index]; H

! } i } i

1 [] 1

1 L'} 1

1 1

: inline ID add() { ' inline ID add() { :

! 1D id; ! H Index &in = _indices[_freelist_dequeue]; H

: id.inner_id = _next_inner_id++; : : _freelist_dequeue = in.next; :

: if (_freelist == UINT_MAX) { : : in.id += NEW_OBJECT_ID_ADD; H

! Object o; ! . in.index = _num_objects++; '

1

' id.index = _objects.size(); ! . Object &o = _objects[in.index]; '

: 0.id = id; : H 0.id = in.id; .

1

! _objects.push_back(o); ! H return o.id; '

1 1

' } else { 1 } 1

1

: id.index = _freelist; : : 1

1 1

' _freelist = _objects[_freelist].next; H inline void remove(ID id) { 1

1 1

1 } 1 Index &in = _indices[id & INDEX_MASK]; 1

1 1 1

1 return id; 1 : 1

1 [| 1

1 } I Object &0 = _objects[in.index]; '
1 LI |

' ' o0 = _objects[--_num_objects]; 1

1 | I § 1

1 inline void remove(ID id) { ' _indices[o.id & INDEX_MASK].index = in.index; 1

1 [I | 1

1 Object &o = lookup(id); I '
1

: 0.id.inner_id = UINT_MAX; ' in.index = USHRT_MAX; 1

1 1

: o.next = _freelist; : 1 _indices[_free‘L’Lst_enqueue]Anext = id & INDEX_MASK; :
1

: _freelist = id.index; : : _freelist_enqueue = id & INDEX_MASK; :

. } ' ' } '

' IH i h 1

|)t 1

WWW.GDMAG.COM

http://www.gdmag.com

DESIGN OF THE TIMES

NO “I” IN TEAM

THE INCREASING IMPORTANCE OF COOPERATIVE MULTIPLAYER

LEFT 4 DEAD has many things going for it. It's got tight mechanics, a compelling atmosphere, and great characters, all of which make
Valve’s zombie-pulping, low-budget masterpiece a must buy for serious gamers. Without a doubt, though, the center pillar of the game

is the focus on cooperative play—the idea that all players are working for a common goal.

Cooperative play used to be an afterthought in games, except those made to be played on the same couch. For a while, designers
focused more on direct conflict (i.e., player-vs-player combat or deathmatch] as the default way to play with others. In spite of this,
cooperative play has survived, and indeed now thrives, frequently as a fulcrum to a multiplayer game’s design.

CAPTURE THE FLAG

» The shooter market seemed to almost
abandon the concept of co-op for many years,
implementing token modes while spending more
and more time making the other multiplayer
modes more fluid. But along the way, a funny

thing happened; the two gameplay styles merged.

As id moved from DOOM to QUAKE and QUAKE I,
capture the flag slowly emerged as a gameplay
mode far preferable to straight-up deathmatch,
and almost every gameplay mode that has

emerged since then has focused on various team-

vs-team structures.

There are a lot of reasons for this. Capture
the flag offers a lot more strategy and depth than
straight-up deathmatch, and there are many
more ways to vary the game. One could play
defender of the home base, or the kamikaze flag
runner, or the sniper taking potshots across no
man's land. But | think most of all, it is the sense
of teamwork and camaraderie that enriches the

game experience and keeps players coming back.

Consider the various psychological emotions
that happen in a good game of capture the flag.
Leaders get a chance to shine. The very skilled
get a chance to display mastery over other
players, but the lesser skilled can still contribute
and feel positive about a group victory. Winning
team members congratulate each other. Losing
members console each other. The odds that a
player will have a positive interaction in a game
with a cooperative element are far higher than
in one where everyone is trying to crush each
other—especially online, where the other driving
factor is anonymity.

COOPERATIVE BOARD GAMES

» While itis by no means the first, the excellent
board game Pandemic ushered in a wave of
cooperative dice-throwers (other games like
Forbidden Island and Defenders of the Realm
offer very similar gameplay styles). It's not
difficult to see why this became a trend, even
ignoring the fact that they offer different game
mechanics from the usual fare.

GAME DEVELOPER | DECEMBER 2011

In most of the great board games, gathering
six people means that after a couple of hours of
play, one player will be the winner and five will
be losers; and of course, the math is even worse
on a 32-person QUAKE deathmatch server. But
in Pandemic, either everyone wins or everyone
loses. As a person who runs a lot of board games,
this comes in very handy when, for example,
you have more than one person who cares a
little too much about winning. Or more crucially,
when you have a new person at the table who is
unsure of the rules and concerned about making
foolish decisions. The tone of the table changes
considerably when everyone has a vested
interest in the new guy’s success.

Pandemic is not without its flaws. The
nature of the game means that it's possible (and
indeed likely) that one domineering player may
effectively run the game, controlling everyone’s
turns. And some designers, such as the team
that created the excellent Battlestar Galactica
board game, have managed to find success
creating tension and dynamic social mechanics
with the introduction of a traitor concept. Board
games have improved dramatically as a whole
since some designers have taken cooperative
gameplay to heart.

FORCE MULTIPLIERS
» When many people imagine the possibilities
inside an MMO like ULTIMA ONLINE or EVE, they
tend to gravitate toward the “massive” part of
the equation. Getting hundreds or thousands of
people in the same space is interesting because
there are possibilities of doing something much
larger than yourself, whether it's attacking an
enemy's city with 50 teammates in SHADOWBANE
or killing the Lich King with 25 close friends in
WORLD OF WARCRAFT. These spaces are interesting
largely because of the uniqueness of the
experience, and what adventuring with other
players brings to the table.

Even on PvP servers, MMOs are largely all
about cooperative play, and the cutting edge of
that play is typically dominated by guilds that

have embraced the three great force-multipliers:
leadership, teamwork, and communication. Guilds
with strong, charismatic leaders can motivate
and drive their players through conflict. Players
acting in concert can be devastating to their
in-game enemies. And the degree of coordination
and responsiveness that can be achieved with
strong communication tools like voice chat can
dramatically increase a team’s effectiveness.
One of the great challenges of an MMO
designer is to find ways to test those players who
have embraced these tenets of cooperative play
while also keeping the game playable for those
who can’t find these guilds. But the interesting
thing about these principles of leadership,
teamwork, and communication is that they take
hard work to achieve. Whether it be hardcore PvP
or top-level raiding, excelling requires players
to get to know each other, learn how to work
well with each other, and depend on each other.
And these dependencies work to build strong
communities inside your game space.

ASYNCHRONOUS PLAY

» One of the principal knocks against Facebook
games is that they are typically profoundly
asocial, despite being called social games. Most
Facebook games are remarkably solitary, and
the play patterns are very short. A player may
spend 15-20 minutes getting a group together
in an MMQO like WORLD OF WARCRAFT or RIFT, while
few MAFIA WARS game sessions last more than 10
minutes for the entire experience.

Some games, like FRONTIERVILLE, allow the
player to visit another player’s lot, but the time
cycles are so brief that the odds of actually
running into the owner of that lot are fairly
low—and considering many people are tending
their crops when they'’re supposed to be at work,
they may not be in the mood for a prolonged
conversation anyway.

At the same time, Facebook games lean
heavily on cooperative play in order to build
virality into their products, and they do so with
asynchronous game concepts, such as finding

ways for players to assist each other even
when they're not playing at the same time.
They like to do this with both carrots (offering
rewarding mechanics for giving gifts) and
sticks (putting in roadblocks that can only be
overcome by getting help).

Facebook games are still hitting their stride
in terms of finding the best ways to do this.
Spamming someone’s wall provokes a fair
amount of backlash from players, which | think
not enough Facebook developers worry about.
Asking for help is often socially awkward, and
introverts in particular may resist. But logging in
to find that your high school girlfriend gave you
a rusty pump handle while you were offlineis a
surprisingly powerful emotional event.

OTHER PLAYERS AS CONTENT

» Playing GUITAR HERO and ROCK BAND alone is
one thing. Playing it with a full group of four is
quite another. The former is a test of one’s own
personal skill, and little more. The latter is more
social, and more fun. Suddenly, new concerns
come up, such as maximizing star power

bonuses or saving a weaker member of the
band. Players play songs outside their comfort
zones. Virtuosos have an audience to show

off to. And like most cooperative gameplay,
the sense of shared triumph is even more
intoxicating than beating the game alone.

One critical aspect of multiplayer game
design is that, when designed correctly, other
players are the content. Few things drive this
home like handing the microphone around
in ROCK BAND and hearing your mother sing
Metallica, often while reading the lyrics for
the first time. Like all cooperative games, the
presence of other people makes old content new
again, and the presence of different people brings
new strengths and challenges.

A GROUP EFFORT

> Making great cooperative content isn't

easy, but if done right, it can result in powerful
gameplay elements that strike strong emotive
notes in a larger group of players. Principles like
cooperation, teamwork, and leadership become
very important. Designers need to work to

ILLUSTRATION BY JUAN RAMIREZ

account for these, and to encourage players to
bond and sympathize with each other to achieve
loftier goals inside the game space.

One of the best ways to make cooperative
gameplay interesting is to elevate the other
players to the status of interesting actors inside
the space, who can bring different skills, talents,
and personality to a task. Designers who succeed
may find themselves rewarded with games that
have greater replayability, stronger communities,
and memories that resonate in the players’ minds
long after the game is gathering dust on the
shelf. Other people are interesting. Cooperative
gameplay should embrace that. @

DAMION SCHUBERT is the lead systems designer

of STAR WARS: THe OLD RePUBLIC at BioWare Austin. He has
spent nearly a decade working on the design of games,
with experience on MERIDIAN59 and SHADOWBANE as well as
other virtual worlds. Damion also is responsible for Zen of
Design, a blog devoted to game design issues. Email him at

dschubert@gdmag.com.

WWW.GDMAG.COM

http://www.gdmag.com
mailto:dschubert@gdmag.com

PIXEL PUSHER

STEVE THEODORE

NURBSTALGIA

REDISCOVER THE LOST ART OF NURBS MODELING

Given the game industry's penchant for turnover and the endless drumbeat of technological change, it's a good bet that

most artists don't remember the days when the phrase “NURBS modeler” was a high-status bullet point on a resume. In the
current era of ZBrush and Mudbox, when every kid fresh out of art school has a portfolio of zillion-poly characters with lovingly
detailed wrinkles and pores, it's hard to find a modeler who remains devoted to the esoteric tools and workflows of NURBS,
even though that's the tech that gave us Jurassic Park, Terminator 2, and Independence Day. Nowadays, it's a lot easier to find
Max and Maya users who have never even explored the NURBS tools than it is to find a dedicated Birail junkie.

The lost world of NURBS is more than just a historical curiosity, though. There remain a lot of modeling tasks where the old-school
techniques can pay off handsomely. If you're modeling vehicles, architecture, or almost any kind of hard surface, NURBS can be a
valuable addition to your toolkit. This month, we're going to delve through the modeling archives in search of the forgotten lore of
NURBS modeling. We'll have to stick to theory, since implementations in Max, Maya, and XSI (not to mention Rhino, Cinema 4D, or
form.Z) differ greatly in their details. The basic toolset is similar across all the packages, though, so we can cover the highlights that

make this overlooked set of tools attractive.

///You probably already know the basics. NURBS
models are built using smooth curves, rather
than polygons. NURBS surfaces are just extruded,
lathed, or swept curves. NURBS curves and
surfaces smoothly interpolate between control
points, much as a subdivision model interpolates
between polygon verts (see Figure 1). When

you work on a NURBS surface with its control
points turned on, you can almost imagine you're
working on a subdivision model. However, once
you spend some time pushing and pulling verts
in both systems, you'll notice that NURBS curves
and surfaces are slightly “stiffer” than their
subdivision counterparts.

WHAT'S IN A NAME
» NURBS stands for “non-uniform rational
B-splines,” a lighthearted mathematician's way
of saying “curves.” The verbiage also includes
some useful hints about what's really going
on. In particular, it explains why NURBS and
subdivisions respond differently to similar vertex
pulls. It also explains where NURBS get their
unique strengths for mechanical modeling.
The "non-uniform” part of the acronym
means that the control points of a curve can
have different degrees of influence on the final
curve. This is what allows NURBS to represent
everything from flowing freehand curves to
carefully controlled Beziers. It also means that

any NURBS surface or curve can be rebuilt with
different degrees of flexibility: you can take a
curve with 20 control points and rebuild it to have
10 (or 100) without changing the appearance of
the curve. This makes it easy to find the balance
between point-by-point control and simplicity
when modeling.

The really important keyword, though, is
“rational,” which in this context means that the
underlying math of a NURBS curve or surface
is precise enough to allow for all sorts of useful
geometric calculations. While the subdivision
models we're familiar with from, say, Mudbox
look pretty and smooth, they are ultimately just
approximations of mathematically smooth surfaces.

FIGURE 1: NURBS and subdivision surfaces work in similar ways. In both cases, you work with a low-res mesh of control points and get a smooth, high-resolution surface. NURBS math,
however, is not the same as subdivision math. Here, identical control cages produce noticeably different results from NURBS (left) and subdivision (right). It's the differences in the
math that make NURBS such a powerful tool for hard-surface modeling.

GAME DEVELOPER | DECEMBER 2011

FIGURE 2: Traditional Bool hni

1

They're good enough for eyeballs,
but not for computers. You can't,
for example, ask the computer to
produce a neat radius fillet between
two subdivision meshes, because

it doesn't have enough information.
With NURBS, on the other hand, a
computer can resolve the math
exactly. ANURBS circle is an actual
circle in the true Platonic sense,
where a subdivision circle will
always be a bunch of almost-but-
not-quite-perfect line segments that
approximate a circle.

This cleanliness and precision
is the reason manufacturers and
industrial designers still use NURBS
tools rather than polygons and
subdivisions: NURBS are as precise
as you need them to be. This fact
makes them invaluable to the
builders of cars and aircraft, who
need to know that their CAD models
can be accurately embodied in
aluminum or fiberglass. They can
analyze their surfaces to be sure
that they don't exceed the tolerances
of sheet steel or the aerodynamic
demands of a wind tunnel.

In our profession, we obviously
don't worry much about these
things, but even game models can
benefit from that mathematical
precision. To give a concrete
example, think about intersecting
shapes. We're all familiar with

Boolean operations on solid meshes.

We're also all too familiar with the
sliver polygons and stray vertices
that result from the intersection of
oddly angled shapes, and so on. Not
only do the limitations of polygonal
intersections demand a lot of
irritating cleanup work, they also

produce messy intersections between polymeshes, and they don't
make for clean subdivision modeling. Here, intersecting two tubes and subdividing the result doesn't produce a
nice clean T-junction. Cleaning this up would require a bunch of hand work to add edge loops and fix the divots.

get in the way of clean subdivision
modeling.

FIT AND TRIM

» Check out the example in Figure
2. Getting a good Boolean to start
the mesh requires careful snapping,
and even then the resulting mesh
isn't subdivision-friendly. With
NURBS, on the other hand, the
intersection between two surfaces
can be calculated perfectly. This
makes it easy to create clean
intersections, as in Figure 3. This is
all due to the inherent “rationality”
of NURBS, which allow the computer
to know exactly where the surfaces
hit without any worries about
triangulation or mesh tessellation.

Another really important aspect
of the NURBS toolkit is its ability to
selectively remove bits of complex
surfaces. In the example above,
intersecting two shapes is only
interesting if you can discard the
intersected geometry. Fortunately,
NURBS offer the unique ability to
lop off arbitrary regions of a surface
without affecting the underlying
surface curvature. Imagine, for
example, the way a wheel well is
cut out of the fender of a car: Even
though the quarter panel has a
complex swooping form, you want
to be able to remove a well-defined
semicircular part.

If you've ever tried to achieve
the same effect in a subdivision or
even a poly model, you know how
tricky it is to maintain both the large
scale curvature of a surface and
also the clean outlines of a cutout.
When using NURBS, on the other
hand, this is easy to do, and more

know

FIGURE 3: NURBS make clean cuts in intersecting surfaces. NURBS also

occurs, allowing for neat fillets (lower

importantly, it is easy to iterate on.
The trimming operation doesn't
change the underlying structure

of the surface the way a Boolean
operation would affect a poly mesh.
Instead, it simply turns off unwanted
areas of the quarter panel, as if they
had been masked out in a Photoshop
layer. This makes it easy to move or
reshape the trimmed areas without
affecting the form, or to re-sculpt
the form while keeping the same
trimming. (See Figure 4.) This ability
to separate the sweep of a surface
from its outlines makes trims one
of the most powerful and unique
features in NURBS modeling. You
can approximate the effect with
Booleans, Max's ShapeMerge tool,

or Maya 2012's new Projected Curve
feature, but only NURBS can create
cuts that are precise, flexible, and
easy to iterate on.

NURBS trims are flexible because
of the way the computer sees them.
Every NURBS surface is kind of like
a perfect subdivision mesh: these
surfaces are required to use nicely
gridded quad topology. This creates
some important limitations, which
we'll address shortly, but when it
comes to trims, it's a huge plus.
Knowing the surface is ultimately
a quad, the computer also knows
ithas inherent Uand V directions.
When you trim a NURBS mesh, you're
really finding an intersection with the
surface and then capturing itas a 2D
spline in that UV space. If you move
the control points and edit the mesh,
you'll move the trim curve as well,
since it's defined in the UV space of
the mesh you're editing. That's why
it's so easy to preserve the contours

Iy where the inter
left) or extruded beads (lower right) along the intersected geometry.

of your object while cutting out any
bits you don't need.

SIDEBAR: UAND V

> Our familiar “UV mapping” actually
gets its name from U and V, the two
parametric directions on a NURBS
surface. Many early poly modelers
had no way of permanently mapping
a polymesh onto 2D textures.
Workstation jockeys of the early
'90s, running PowerAnimator or the
original Softimage, used to sneer at
the poor PC drones who had to do
everything with planar and spherical
projections. For some applications,
the inherent UVs of NURBS are still

a big advantage. If you want to get

a repeating texture to flow precisely
along an extruded surface, for
example, NURBS are your friends.

Trimming isn't the only way
to exploit the inherent UVs of a
NURBS surface. In Figure 3, we
showed how the same trim curve
that cuts the intersection of two
surfaces can be used to create a
fillet or run a bead around the join.
ANURBS surface curve can do
anything that a regular curve could
do; you can use it for extrusions,
lathing, or as part of a loft. This is
great for embossed details and
surface features, like the flow lines
on a car hood or the expressed
piping of an engine block. Even
better, this ability makes it easy to
create complex surface-to-surface
relationships that are tedious to
model in polys or subdivisions.

For example, imagine you need to
model the complex fillet that joins an
aircraft wing to a fuselage (see Figure
5). Ina subdivision model, you'd need

WWW.GDMAG.COM

http://www.gdmag.com

PIXEL PUSHER

FIGURE 4: Trimming is a unique and powerful feature of NURBS modeling. This is the
ability to mark out areas of a smooth surface to be discarded. It's a very powerful tool for
handling tough modeling jobs where an object has continuous curvature but is divided by

doors, windows, or other cutouts.

to carefully add edge loops to both the wing and the
fuselage, spending a lot of time hiding the inevitable
pole points and trying to line up verts for a smooth
join. With a NURBS model, on the other hand, the
process is hardly more complicated than lofting
between two surface curves: one on the wing and
another on the fuselage. The NURBS math includes
all the information the system needs to ensure that
the ends of the loft are smoothly integrated into the
surrounding surfaces.

THE INEVITABLE DISCLAIMER

» With all this good stuff, you might wonder why
NURBS tools ever fell out of favor. The problem is the
flip side of something we touched on earlier, which
is the fact that NURBS surfaces are required to
have nicely gridded topology. This has some great
properties; it enables trimming and surface curve
modeling, for example. Experienced subdivision
modelers love quad meshes, because they behave
predictably and smoothly.

Unfortunately, the world isn't made of neat
grids, as any subdivision modeler knows all too
well. Non-quad meshes and intersections where
more than four edges come together are irritating
for subdivision modelers because the computer
doesn't really know how to smooth them out
properly. ZBrushers and Mudboxers spend much
of their lives hunting down the irritating divots and
bumps that come from non-quad meshes. The
armpits, groins, and inner ears of game characters
everywhere are the graveyard of countless pole
points, stuffed away by modelers trying to keep the
topology elsewhere neat and clean.

m GAME DEVELOPER | DECEMBER 2011

STEVE THEODORE

NURBS models
suffer from a worse
version of the same
affliction. NURBS tools
can ensure that two
NURBS surfaces that
share an edge appear
smooth, but there's
nothing in NURBS
math that can ensure
smoothness across
a corner where three
or more surfaces come
together. It was this limitation that set the stage
for the explosion of subdivision modeling tools and
workflows 10 years ago. Even the most dedicated
NURBS modelers got heartily sick of trying to
divine the correct web of surfaces to capture the
folds of a face or the musculature of a body.

Starting with an arbitrary polymesh and simply
smoothing it out into a single continuous model
was exhilarating after years of worrying about
exactly how to keep those pesky corners hidden.
Sure, subdivision models had little artifacts where
they weren't neatly quadded, but basically, they
“just worked,” while NURBS modeling of complex
organic shapes was too often “just work.”

Unfortunately, the passage of time has done
little to address this issue, as it's inherent to
the math. Maya and XSi include tools that can
minimize it by tweaking the continuity of adjacent
surfaces, but ultimately, it can't be eliminated
from the NURBS workflow. This means that some
kinds of modeling, particularly organic subjects

FIGURES: NURBS allow you to draw curves directly onto surfaces, and then use those
curves as the basis for new surfaces. Here, two surface curves define the complex
junction of an aircraft fuselage and wing.

like creatures or characters, are frustrating to

do in NURBS. Managing the topology crowds out
creativity and experimentation. Only diehards
would rather build a portrait head in NURBS than in
tactile sculpting tools like Mudbox or ZBrush.

On the other hand, mechanical modeling
remains an excellent application for this powerful
toolset. Manufactured objects are often designed
with NURBS, so it just makes sense to use a
similar toolset to recreate them digitally. Trims and
surface curves are irreplaceable when addressing
the complexities of industrial design. If your job
involves a lot of mechanical modeling, invest the
time to learn some of the lost art of NURBS. @)

STEVE THEODORE has been pushing pixels for more
than a dozen years. His credits include MecH COMMANDER,
HALF-LIFE, TEAM FORTRESS, COUNTER-STRIKE, and HALO 3. He's
been a modeler, animator, and technical artist, as well as
a frequent speaker at industry conferences. He's currently
the technical art director at Seattle’s Undead Labs.

HIRING NEWS AND INTERVIEWS

Hired someone interesting? Let us know at editors@gdmag.com!

Zynga vice president of studios Louis
Castle has left the company less than
eight months after his arrival, citing
work/life balance issues as the driving
factor for his departure.

ALLEN MURRAY JOINS POPCAP

Lloyd Melnick, formerly general manager
at Disney's social games branch Playdom,
has taken up a CEO role at social start-up
519 Games, and is looking to release the
company's first games in early 2012.

Social app and game monetization
company Tapjoy has hired Jim Jones,
formerly vice president at online

BRANDON SHEFFIELD: corporation Yahoo! as its new vice

How have you found the president and general manager of sales.
transition from triple-A

games to high-end casual? Activision Blizzard chairman and former

Activision publishing president and CEO
Michael J. Griffith has been named to the
board of directors for arcade operator
BS: What made you choose Dave & Buster's.
PopCap?

BS: You've worked in jobs
that interface with users
more directly at places
like En Masse, and more
abstractly at Bungie—how
does working on Facebook
games feel in comparison?

Industry veterans from
Insomniac, THQ, and
Liquid Entertainment
have formed LA-based
Hidden Variable Studios.
The studio’s first title, BAG

BS: How does the difference IT!, was released in November on the App
in scale and scope impact Store and Android market.
you as a producer?

West Pier Studio, which will focus on
online and mobile games, has been
formed in Brighton, UK by five former
staffers from recently closed SPLIT/
SECOND studio Black Rock.

Mob Rules, a new studio formed by
veterans from CHAMPIONS ONLINE developer

BS: Have you seen any Cryptic Studios, is letting contributors
changes after the €A to its Kickstarter fund have a say in the
acquisition, or is it business company's direction, including the subject
as usual? of its first game project.

Australian devel-
oper and publisher
Halfbrick, maker of
populari0S game
FRUIT NINJA, is
opening a second
studio in Sydney.

WWW.GDMAG.COM m

mailto:editors@gdmag.com
http://WWW.GDMAG.COM
http://Amazon.com
http://Amazon.com

GDC Online 2011's Most Memorable Quotes

\\\

"A few Kotaku articles and
IGN front pages do not make
a hit game.”

"That's bullshit. Are we going
to start hiring 10-year-old
kids to make games for 10
year old kids ?"

"What they're doing looks
a lot more like e-commerce
than game design.”

"We also ignored MySpace.”

“I'm inherently super-
duper lazy, so if | think of
something, it's going in.”

"kind of
counterproductive.”

‘Rarely waste an opportunity
to fire a brilliant jackass.”

"Designers are really worried
that their great idea is going
to be misunderstood or
unfairly judged if it's seen
too early.”

"My job is to get everyone on
the internet to want to have a
beer with me.”

"They would be insane not to."

“If you're engrossed in the
minutiae of running your
team, who's actually saying,
‘Well what are we going to do
next? What are the threats,
and how are we going to
mitigate them ?™

“If you don't make it fun
in the first three minutes,
you've failed.”

“I'tell you, it's not easy.”

"Players are genius at
missing stuff.”

"Theme is the oxygen of
narrative. You don't need
to see it to notice when it's
missing.”

‘Last year, we came here and

told you that everything had
to be a farm.”

"You click through everything
until it explodes with blood
and treasure.”

"If you dock a ship and you're
wearing a monocle, people
come and fight you.”

"On i0S you have 10 phones
you have to care about. On
Android it's over 100."

"Writers don't often get to sit
at the adults table.”

“It's pretty easy for a
sandbox to turn into a
desert.”

"Everyone who's had a
shower has had a good idea.”

http://WWW.GDCONF.COM

THE BUSINESS

EVOLVING TRIPLE TOWN

TALES OF A SINGLE-PLAYER SOCIAL NETWORK GAME

My company, Spry Fox, just recently released a game called TRIPLE TOWN on Facebook and Google+. It is, in its current incarnation,
primarily a single-player game that is made social by the prominent inclusion of an in-game leaderboard a la BEJEWELED BLITZ.

TRIPLE TOWN had the distinction of being featured by Facebook within days of its launch and of being the 20th game (and first indie-
developed title] on Google+. This month, I'll talk about why we chose to make TRIPLE TOWN our first game for social networks, and how

we have been surprised by the game thus far.

WHY TRIPLE TOWN ON SOCIAL NETWORKS?

» There are many other games we could have chosen as our first social network
title, all of which are probably more “social” than the current iteration of
TRIPLE TOWN. However, TRIPLE TOWN was a proven game—it first launched
on the Kindle, and has consistently held one of the highest user

ratings on that platform. We were nervous about the high failure rate of
independent game developers on Facebook, and wanted to do whatever
possible to reduce our risk; having a
proven game design was helpful in
that regard.

TRIPLE TOWN also has a relatively
small scope. We knew it would not
be too expensive to bring to social
networks, which was another
way we could control our risk.
Additionally, we were inspired by
the success of BEJEWELED BLITZ and
surprised by the relative scarcity
of games like it on Facebook; we felt that Triple Town represented an
opportunity to compete in a relatively underserved category of games
with a unique twist of our own invention.

An original, fun, proven gameplay mechanic, a low up-front
investment cost, and an undersaturated genre do not guarantee success;
however they do tilt the odds in your favor and increase the likelihood
that platform managers will notice and choose to feature you.

OUR FEARS AND EXPECTATIONS

> TRIPLE TOWN originally launched on Kindle as a paid game ($3.99) with

no in-app purchases, and it was unclear to us how best to transform

the game into a free-to-play experience suitable for social networks.

The example set by BEJEWELED BLITZ was to charge for power-ups, so we
adopted a somewhat similar strategy with the TRIPLE TOWN item store, but
it simply didn’t feel like enough. TRIPLE TOWN in its current incarnation is
basically a single-player experience with a leaderboard, and it is difficult
to imagine many players spending cash just to best their friends’ scores.
So, we did something scary and added turn limits to the game.

I call turn limits "scary” because players of puzzle games are not
used to them, even though many other social games incorporate limits
in the form of “energy” and similar concepts. We were nervous that turn
limits would put people off, but we were even more nervous about the
significant likelihood that the game simply wouldn’t generate enough
revenue to sustain itself. So we decided to experiment with turn limits,
understanding that if it seemed like they were really upsetting our
players, we would ultimately remove the limits and try something else.

“ It is worth noting that almost
every game designer I've spoken to
has questioned our use of turn limits,
and assumed that the limits

would destroy the game.”

WHY TESTING MATTERS
» It is worth noting that almost every game designer I've spoken to has
questioned our use of turn limits, and they all assumed that the limits would
destroy the game. As it turns out, turn limits are the least of our problems. While
some players have made negative comments about them, very few players
actually quit TRIPLE TOWN after hitting the limit for the first time (or second or
third for that matter). Our retention numbers are not great, but it has nothing to
do with limits. The vast majority of
players who churn out of TRIPLE TOWN
do so within the first few hundred
turns of the game—well before they
even realize there are turn limits.

If you would have asked
me three months ago what our
top three problems in TRIPLE
TOWN would be, | would not have
included retention during the first
30 minutes of gameplay on the
list. After all, Kindle users loved TRIPLE TOWN, and everyone who beta-tested
the game complimented us on our supposedly excellent tutorial. | was much
more concerned about the fact that we were launching without a metagame
and without any significant viral functionality. And of course, we launched
with those scary turn limits! All these things remain concerns, but they are
secondary to a short-term retention issue that we never even predicted. It
wasn't predicted by all those experienced game designers who rolled their eyes
at our use of turn limits and predicted it would be the game’s downfall, either.

Moral of the story? Don’'t make assumptions. Have the courage
to experiment, but be diligent enough to monitor the results of your
experiments carefully.

WHERE TO GO FROM HERE?

» We have pretty big plans for TRIPLE TOWN. We're revamping the tutorial in
order to address some of the short-term retention issues | mentioned earlier.
We're going to enable players to see each other's cities, and we're going to
enable players to view previously built cities. We've got a metagame planned
that should add a real sense of progression to the game, and it will afford

us opportunities to make the game more truly social, in addition to helping
with retention. We're also going to keep experimenting with monetization;
maybe we'll find something better to sell than turn limits, or maybe not. One
way or another, TRIPLE TOWN will be a very different game in three months,
and that's a wonderful thing! Rest in peace, “fire and forget” model of game
development...we don’t miss you one bit. @

DAVID EDERY is the CEO of Spry Fox and has worked on games such as REALM OF THE MAD GOD,
STEAMBIRDS, and TRIPLE TOWN. Prior to founding Spry Fox, David was the worldwide games
portfolio manager for Xbox LIVE Arcade.

WWW.GDMAG.COM

http://www.gdmag.com

AURAL FIXATION

THE NEWKID IN SCHOOL

PROFESSIONAL GAME AUDIO EDUCATION

All art forms wrestle with legitimacy. New forms of art first struggle to be seen as legitimate among peer artists, then by their audience,
and lastly by both the art world and society at large. Compared to ballet, portraiture, or even our closest cousin, post-production for film and
television, game audio is a nascent upstart in the art world, that snuck on stage just before the curtain came down on the 20th century.

Nothing legitimizes like the ivy-cloaked halls of academia, though. Across the globe, programs that focus on interactive audio as
an official field of study, career path, and artistic endeavor are springing up in trade schools and universities. This means an ever-
growing crop of young sound designers and composers are being trained and readied for assistant and entry-level jobs, and an ever-
growing list of potential teaching gigs are becoming available to more experienced audio professionals.

THE FIELD

» Game audio programs can be found in cities
across the country. They come with a variety of
available degrees, a mixture of topics, and a wide
range of experience levels from the instructors.
With one primary exception, game audio courses
are part of larger degree programs and come in
two distinct flavors: those focusing on sound
design, and those focusing on interactive music.
Few programs seem to blend the two into one all-
inclusive program.

Those programs focusing on sound design
and implementation for games are usually part of
recording arts degrees. Schools like California's
Ex’pression College for Digital Arts, and Florida’s Full
Sail University all offer Bachelor’s of applied science
degrees. Meanwhile, Chicago’s Tribeca Flashpoint
Media Arts Academy offers an Associate’s degree in
applied science for recording arts students. Each of
these programs is fundamentally about recording
engineering. Students focus on everything from mastering audio to the use of
large consoles and microphone placement.

Game audio in these programs tends to be represented by a single
unit on interactive audio. As such, students learn the basics, such as
file name management, introductions to the concepts of interactive
implementation, and the beginnings of working with audio middleware
engines. Students are often exposed to either the Unreal or Unity engines
as well as Max/MSP.

Just like game sound design programs, programs that teach game
music composition have a variety of degree levels available. Boston’s
notable Berklee College of Music offers a number of classes on interactive
scoring as part of its Bachelor's of music degree. Some of the game music
programs available are at a graduate level, since apart from smaller
trade schools and conservatories, even mainstay institutions are getting
into the act. The University of Southern California’s graduate scoring for
motion pictures and television program, for instance, has a game scoring
component that was taught for years by Lennie Moore and is now helmed
by BIOSHOCK composer Garry Schyman. Moore himself now teaches game
music composition at UCLA’s Extension campus as part of its graduate
film scoring program. BROTHERS IN ARMS composer Stephen Harwood
Jr. currently teaches "Composing for Video Games" as part of New York
University’s masters of music in film scoring program.

Like the recording arts degrees, interactive composition students
learn about the specific challenges related to the field, including nonlinear

m GAME DEVELOPER | DECEMBER 2011

composition and an introduction to middleware
such as XACT, FMOD, and Wwise. While the larger
focus for each of these programs remains film
scoring, each gives the distinct separation of game
composition its due.

THE PINNACLE

» As mentioned above, there is currently one
exception to the general model wherein game audio
is a component of a larger degree program. Los
Angeles’ Pinnacle College offers the world’s first
dedicated video game sound design program. In a
year of concentrated study, students emerge from
Pinnacle College with an occupational Associate's
degree in game sound.

Pinnacle’s program is in many ways the
reverse of most others, in that recording
engineering is a component of its game audio
curriculum. In addition to basics in recording
console operation and introductions to Cubase
and Pro Tools, students in Pinnacle’s program have game-specific
classes on the history of interactive audio, recording and producing
game dialogue, and hands-on experience with both the Unity and Unreal
engines. In addition to voice work, Pinnacle is also one of the rare
programs that teaches both interactive music composition and field
recording, allowing students to gain experience in all three of the main
game audio disciplines.

The course is run by Eitan Teomi, and it is quite intensive. It's
focused on current game technology like FMOD and Wwise, and its
curriculum has been guided by a board of advisors from within the
game audio world that includes folks like Activision’s Don Veca and
THO’s Victor Rodriguez.

Knowledge that once passed from sound designer to assistant like a
medieval apprenticeship is now being standardized and refined, focused
and institutionalized. Students are finding a well-marked path into what
has traditionally been a difficult industry to enter. Sound designers and
composers are also finding that the option exists to move from the role of
audio professional to audio professor. While Pinnacle is the first dedicated
game audio program, it will not be the last. As time moves on, interactive
audio will only continue to find itself increasingly legitimized. @

JESSE HARLIN has been composing music for games since 1999. He is currently the
staff composer for LucasArts. You can email him at jharlin@gdmag.com.

ILLUSTRATION BY KELSEY KRAUS

mailto:jharlin@gdmag.com

DIG-N-RIG

SYNTACTIC SUGAR'S DIG-N-RIG IS A BLEND OF RESOURCE MANAGEMENT AND CREATIVE STRATEGY, IN WHICH PLAYERS TAKE CONTROL OF A FUTURISTIC MINING ROBOT

EDUCATED PLAY!

s://www.di

en.edu/?id=11

WHOSE ONLY TASK IS TO DIG INTO THE EARTH TO COLLECT VALUABLE ORE. AS PLAYERS DIG FURTHER INTO THE GROUND, THEY MUST CONSTRUCT INCREASINGLY

ELABORATE SYSTEMS OF CONVEYER BELTS TO BRING THEIR SPOILS TO THE SURFACE. WITH THIS ORE, PLAYERS CAN BUY UPGRADES TO TUNNEL EVEN FURTHER INTO

THE DEPTHS OF THE EARTH. HERE, WE TALK TO THE TEAM OF DIGIPEN STUDENTS AT SYNTACTIC SUGAR TO DELVE INTO HOW DIG-N-RIG CAME TO BE.

Tom Curtis: Let's start by talking
a bit about the origin of the
project. How did you all come

up with the premise and basic
design for the game?

DiG-N-RIG Team: We decided

that we wanted a game in which
players use creative building
mechanics to traverse their
environment. We found that most
games that involved building
typically had the player building
upward. Andrew Colean (lead
producer) joked about the idea

of building downward—and it
sounded silly at first—but after
Kirk Barnett (project manager)
drew a quick concept on a
whiteboard, we actually found the
idea quite compelling. From there,
we just went with it.

TC: How much did the game
change between the initial
concept and the final version?
The core mechanics of DIG-N-RIG
were always about collecting
resources and building
creatively. The gameplay was
designed to be heavily item-
based. We did this in order to
have the ability to cut content
if necessary. This was a very
important decision for us
because, as a student game
team with limited development
time, we needed to keep scope
under control. Aside from cutting
some features, the concept of
DIG-N-RIG changed very little
from initial design to release.

TC: What would you say was the
biggest challenge you faced
during development?

As a DigiPen student game team,
we had to balance making a game
along with the homework for the
rest of our classes. Most of the
time the biggest challenge was
just that: finding time. DIG-N-RIG,

being our first game project, was
the largest coding task that any
of us had ever encountered. In
fact, most of us were just learning
how to program for the first time.
This resulted in many hours of
bug fixing that we wish we could
have spent developing additional
content. In the end it was actually
quite surprising to us that DIG-N-
RIG came together as well as it did.

TC: Looking back on the project,
is there anything you wish you
had done differently?

Absolutely. One feature we

all wanted was an interactive
tutorial—a step-by-step guide

to assist the player with their
journey. At the start of the game
an overwhelming amount of
information is presented to the
player. Introducing our gameplay in
smaller chunks would have worked
much better. DIG-N-RIG could also
have benefited from additional play
testing. It was only through player
feedback that we discovered our
game's mineral economy and layer
progression were both completely
unbalanced. Unfortunately we
began play testing late in the
development process, leaving us
with very little time to fix those
issues. The most important thing to
us is the players' experience, and
going forward we plan on learning
from our mistakes and using the
knowledge we've gained to build
better games.

TC: DiG-N-RIG is a very Ul-heavy
game with a number of menus
and resources to keep track of.
Can you describe your process for
Ul design, and did you encounter
any challenges communicating
information to the player?

We embraced the idea of a
Ul-intensive game very early on. We
rearranged its composition many

times, adding menus as necessary
and reducing screen clutter where
possible. This made our game more
user-friendly by transitioning an
otherwise overwhelming number
of key presses to simple point-and-
clicks. This also, however, created a
lot of menu-based information that
needed to be displayed compactly

and meaningfully. The vertical Ul
flow was chosen as a complement
to the vertical gameplay flow. This
was done intentionally to keep
the player on-screen as much as
possible. Some Ul problems still
exist in DIG-N-RIG, and to this day
plenty of players still aren’t sure
how to use the Vac Pak. @

the DIG-N-RIG development team

Kirk Barnett project manager

Andrew Colean lead producer

Brandon Stenen tech director

Derek Opitz lead designer

proj=24629

45

https://www.digipen.edu/?id=1170&proj=24629
http://www.gdmag.com

THE

LOS ANGELES

FILM SCHOOL

ANIMATION +

Game Art

Bachelor’s Degree Program
Campus & Online

Game Development
Bachelor’s Degree Program
Campus

+ FILM + GAMES

Game Design
Master’s Degree Program
Campus

Game Design
Bachelor’s Degree Program
Online

DECEMBER 2011 | GAME DEVELOPER

© 2011 Full Sail, LLC

Create Your Future Today. Call:

" Start Living The Dream!

Scan for more
Information

800.406.7485

“Length of program and start dates are dependent on course of study and degree option. For more information on our programs and their outcomes visit wwwafilm.edu/disclosures.
©2011 The Los Angeles Film School. Al rights reserved. The term “The Los Angeles Film School” and The Los Angeles Film School logo are either service marks or registered service marks of The Los Angeles Film School. Accredited by ACCSC

Master’s
Entertainment Business
Game Design

Bachelor’s

Computer Animation
Creative Writing for Entertainment
Digital Arts & Design
Entertainment Business
Film

Game Art

Game Development

Music Business

Recording Arts

Show Production

Sports Marketing & Media
Web Design & Development

Associate’s
Graphic Design
Recording Engineering

www.DesignLAFilm.com

Master’s
Creative Writing

Education Media Design & Technology

Entertainment Business
Internet Marketing
Media Design

New Media rnalism

Bachelor’s

Computer Animation
Creative Writing for Entertainme
Digital Cinematography
Entertainment Business
Game Art

Game Design

Graphic Design

Internet Marketing

Mobile Development

Music Business

Music Production

Sports Marketing & Media
Web Design & Development

Winter Park, FL
800.226.7625 « 3300 University Boulevard

Financial aid available to tho:

o qualify * Career development as

To view detailed information regarding tuition, student outcomes, and related statistics,
please visit fullsail.edu/outcomi

ance ¢ Accredited University, ACCSC

http://www.designlafilm.com
http://fullsail.edu
http://www.lafilm.edu/disclosures
http://fullsail.edu/outcomes-and-statistics

Game Design at VFS lets you
make more enemies, better levels,
and tighter industry connections.

In one intense year, you design and develop
great games, present them to industry pros,
and do it all in Vancouver, Canada, a world
hub of game development.

The LA Times named VFS a top school
most favored by game industry recruiters.

ellipez|ed zauriel opjy Aq 31om Juapn3s S4A .

"VFS prepared me very well for the volume
and type of work that | do, and to produce
the kind of gameplay that | can be proud of. "

DAVID BOWRING, GAME DESIGN GRADUATE
GAMEPLAY DESIGNER, SAINTS ROW 2

RADGAMETOOLSooooiiitn, C4
TWOFOURS4 3
VANCOUVER FILM SCHOOL 47

gd Game Developer (ISSN 1073-922X) is published monthly by UBM LLC, 303 Second Street, Suite 900 South, South Tower,
San Francisco, CA 94107, (415) 947-6000. Please direct advertising and editorial inquiries to this address. Canadian Regis-
tered for GST as UBM LLC, GST No. R13288078, Customer No. 2116057, Agreement No. 40011901. SUBSCRIPTION RATES: Sub-
scription rate for the U.S. is $49.95 for twelve issues. Countries outside the U.S. must be prepaid in U.S. funds drawn on a
U.S. bank or via credit card. Canada/Mexico: $69.95; all other countries: $99.95 (issues shipped via air delivery). Periodical
postage paid at San Francisco, CA and additional mailing offices. POSTMASTER: Send address changes to Game Developer,
P.O. Box 1274, Skokie, IL 60076-8274. CUSTOMER SERVICE: For subscription orders and changes of address, call toll-free in
the U.S. (800) 250-2429 or fax (847) 647-5972. All other countries call (1) (847) 647-5928 or fax (1) (847) 647-5972. Send pay-
ments to gd Game Developer, PO. Box 1274, Skokie, IL 60076-8274. Call toll-free in the U.S./Canada (800) 444-4881 or fax
(785) 838-7566. All other countries call (1) (785) 841-1631 or fax (1) (785) 841-2624. Please remember to indicate gd Game
Developer on any correspondence. All content, copyright gd Game Developer magazine/UBM LLC, unless otherwise indi-

cated. Don’t steal any of it.

WWW.GDMAG.COM

http://WWW.GDMAG.COM
http://vfs.com/enemies

ARRESTED DEVELOPMENT

MATTHEW WASTELAND

I’'M ALMOST DONE!

WHY THAT TASK TOOK LONGER THAN | THOUGHT

Hey, thanks for checking in with me on that feature request! | know | told you that adding an “effectiveness” stat to all the weapons in the
game was going be a snap, so | understand that it might seem like I've been spending an unreasonably long time on it.

Thing is, when you emailed me to ask for that, | didn’t know if you meant, like, “effectiveness” as a function of damage, or
something like apparent effectiveness to different kinds of enemies, or maybe some kind of recommendation system that would tell

players what weapons would be most effective for them.

I called your name a couple times
but you must not have heard me over
the cubicle wall, so | decided | would
try to code up something that would be
flexible enough for you to be able to do
any one of those things. | thought, well,
the damage stat isn’t the only thing that
determines effectiveness: there’s how
fast the weapon is, if you can dual-wield
them, your own character’s level, skill
trees, and all that crazy stuff.

It seemed pretty clear to me
that you'd at least want access to
all of those parameters so that you
could iterate on the design of the
“effectiveness” stat, right? So, | started
to implement a generalized suite of
classes and other tools that would
anticipate all of the ways you and the
other designers might want to use
them. It’s all contained in this new top-
level category on the debug menu. | call
it the EFFECTIVATOR.

Basically speaking, the
EFFECTIVATOR is an abstract,
component-based analyzer that takes
well-formed inputs and measures them
against a configurable set of criteria that are then saved as Effectiveness
Evaluation Parameters (I've created a file format, too—.eep files). You can
see that | now have an EEP set up to evaluate the weapon’s color and its
number of rune slots as a function of how long the player has had at least
three friends online! Pretty cool, huh?

Then I thought, well, you probably need some kind of interface to put
those criteria together, since | didn’t want the designers to have to learn
another new scripting language (you remember what happened the last
time we introduced those six new languages for you guys to use). Plus, the
hallmark of a good game dev tool is that it doesn’t just expose values for
people to tweak: it makes authoring content just as fun as playing it!

With that in mind, | spent a few days gathering information on
various GUI libraries that we could leverage. Hey, I'm no “not invented
here” guy. I'm all about saving as much time and being as efficient as
possible with all our tool efforts! It’s results that matter, not how we got
there! Anyway, | eventually settled on creating the graphical interface to
my new data format using Swing.

Surely you remember the Java Swing library? That thing really came in
handy, because | know the music guy who sits in the corner uses a Mac, and

m GAME DEVELOPER | DECEMBER 2011

I wasn’t sure if he might need to use
the graphical editor too. So | thought I'd
make it cross-platform, you know, just
in case. As soon as we get that good ol’
Java Runtime Environment installed
on every computer in the studio, we'll
all be able to create our own EEPs

in an easy-to-use, drag-and-drop
environment! I'm so stoked!

Oh yeah, there’s one more thing
I'thought I should tell you about. As |
was wrapping up the interface work,

I noticed that there were a couple of
bugs that cropped up whenever | tried
to actually pull down those damage
values from each weapon object. It
turns out that you don't really know
what damage a weapon will do until
you try it in-game because of the way
different materials dampen the hit.

To solve for that, | took the
gameplay engine and wrapped that
up inside the front end, so that the
front end can run a simulation of the
damage code anytime it wants to pull
the damage value! | went and built
a tiny level environment off-screen
that actually tested the weapon against a variety of targets for over 65,536
iterations to calculate extremely accurate average damage values.

Actually, I guess | shouldn’t call that a “simulation,” since it really just
runs the game in the background! Ha ha! So those values it generates are
100% true to the game. Damn, that's even more awesome than | thought.

I see the look on your face now—I hope you aren’t worried about speed.
It's all very functional. It only takes a couple of seconds to load everything,
and then another couple seconds to run the simulation and get the result.
Right now, | have that test run whenever the game grabs the stats of any
weapon for display so that it’s always up to date.

Good stuff, huh? And the best part of it is that I'm really for reals all done
now. Yup, I'm ready to check this bad baby in. You'll finally have not just the
rudimentary effectiveness stat you asked for, but the best stat-computation
framework in the industry!

Actually—let me send it to a couple other people for a code review first.
That should only take a couple more days. Then it'll be done. @

MATTHEW WASTELAND writes about games and game development at his blog,
Magical Wasteland (www.magicalwasteland.com). Email him at mwasteland@gdmag.com.

ILLUSTRATION BY JUAN RAMIREZ

http://www.magicalwasteland.com
mailto:wasteland@gdmag.com

R

NGINE NEWS

BATMAN: ARKHAM CITY
TAKES UNREAL ENGINE 3
TO NEW HEIGHTS

WWW.UNREAL.COM

Canadian-born Mark Rein is vice
president and co-founder of Epic Games
based in Cary, NC. Epic’s Unreal Engine
3 has won Game Developer magazine’s
Best Engine Front Line Award seven
times, including entry into the Hall of
Fame. UE3 has won four consecutive
Develop Industry Excellence Awards.

Epic is the creator of the mega-hit “Unreal” series of games and

the blockbuster “Gears of War” franchise. Follow @MarkRein

on Twitter.

Please email licensing@epicgames.com for appointments

mailto:licensing@epicgames.com

) J 'S a FVO7V«VV\VA;'\7
l.‘Lfawy and SQ{ o‘g {oolS ‘cow |~AS{V\)W\QU\{;K7) FVOAG.'L\?)
tuning end visselizing <pplicetion PEOFOOMANC

c ! -
/‘7 VISVALIZE veal-time goame pevformance, G Q(>O
&
S~

see WHEN things happen — wot wmevely WHAT hoppenea!
5{;4 PROBE the hievavchical Aisplay — Yk%

see thread nteractions, context switches, and mutex locking!

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

THIS IsNTJusT 'gCket CCienCe, THIS IS [("?CJ‘

——L

-

www.vadgowmetools.com/telemetry
(425) 8734300
G AME TO

oLs W////
20y S

—=
=<

http://www.radgametools.com/telemetry

	Contents
	POSTMORTEM
	GUNSTRINGER

	FEATURES
	INTUITION, EXPECTATIONS, AND CULTURE
	ALL THAT GLITTERS: AN INTERVIEW WITH BUNGIE'S SENIOR GRAPHICS ARCHITECT

	DEPARTMENTS
	EDITORIAL - Game Plan
	NEWS - Head Up Display
	REVIEW - Tool Box
	PROGRAMMING - The Inner Product
	DESIGN - Design of the Times
	ART - Pixel Pusher
	CAREER - Good Job
	NEWS - GDC News
	BUSINESS - The Business
	SOUND - Aural Fixation
	EDUCATION - Educated Play
	HUMOR - Arrested Development

