
DECEMBER 2003

G A M E D E V E L O P E R M A G A Z I N E

L E T T E R F R O M T H E E D I T O R

EDITORIAL
Editor-In-Chief

Jennifer Olsen jolsen@cmp.com
Managing Editor

Everard Strong estrong@cmp.com
Departments Editor

Jamil Moledina jmoledina@cmp.com
Editorial Assistance

Kenneth Wong kxwong@cmp.com
Product Review Editor

Peter Sheerin psheerin@cmp.com
Art Director

Audrey Welch awelch@cmp.com
Editor-At-Large

Chris Hecker checker@d6.com
Contributing Editors

Jonathan Blow jon@number-none.com
Noah Falstein noah@theinspiracy.com
Steve Theodore steve@theodox.com

Advisory Board
Hal Barwood Independent
Ellen Guon Beeman Monolith
Andy Gavin Naughty Dog
Joby Otero Luxoflux
Dave Pottinger Ensemble Studios
George Sanger Big Fat Inc.
Harvey Smith Ion Storm
Paul Steed Microsoft

ADVERTISING SALES
Director of Sales/Associate Publisher

Michele Sweeney e: msweeney@cmp.com t: 415.947.6217

Senior Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 828.350.9392

Account Manager, Northern California & Midwest
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Account Manager, Western Region & Asia
Craig Perreault e: cperreault@cmp.com t: 415.947.6223

Account Manager, Target Pavilion, Education, & Recruitment
Aaron Murawski e: amurawski@cmp.com t: 415.947.6227

ADVERTISING PRODUCTION
Advertising Production Coordinator Kevin Chanel

Reprints Terry Wilmot t: 516.562.7081

GAMA NETWORK MARKETING
Director of Marketing Michele Maguire

Senior Marcom Manager Jennifer McLean

Marketing Coordinator Scott Lyon

CIRCULATION

Circulation Director Kevin Regan

Circulation Manager Peter Birmingham

Asst. Circulation Manager Lisa Oddo

Circulation Coordinator Jessica Ward

SUBSCRIPTION SERVICES
For information, order questions, and address changes

t: 800.250.2429 or 847.763.59581 f: 847.763.9606
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas

e: msalinas@cmp.com t: 650.513.4234 f: 650.513.4482

EDITORIAL FEEDBACK
editors@gdmag.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall

Executive Vice President & CFO John Day

Executive Vice President & COO Steve Weitzner

Executive Vice President, Corporate Sales & Marketing Jeff Patterson

Chief Information Officer Mike Mikos

President, Technology Solutions Robert Faletra

President, Healthcare Media Vicki Masseria

Senior Vice President, Operations Bill Amstutz

Senior Vice President, Human Resources Leah Landro

Vice President & General Counsel Sandra Grayson

Vice President, Group Publisher Applied Technologies Philip Chapnick

Vice President, InformationWeek Media Network Michael Friedenberg

Vice President, Group Publisher Electronics Paul Miller

Vice President, Group Publisher Software Development Peter Westerm

Corporate Director, Audience Development Shannon Aronson

Corporate Director, Audience Development Michael Zane

Corporate Director, Publishing Services Marie Myers

W W W . G A M A N E T W O R K . C O M

✎

I f I had a penny for every issue

of Game Developer that’s hit

the streets, this month I’d final-

ly have a dollar. (And if I had a

dollar for each clump of hair

I’ve torn out writing this column every

month, I might have enough to buy a

cheap wig.)

One hundred issues is a big milestone

in the magazine business. Even though we

serve an industry that might take an aver-

age of 18 to 24 months to put out a

product, we have to put out a whole new

product every single month. Deadlines are

unforgiving. Slippage is not an option.

Sometimes bugs slip through. But we, like

you, persist in the face of these chal-

lenges, partly out of a belief that some-

how our output makes the world just a

tiny bit better, and perhaps partly out of

some foolish optimism that things will get

easier for us someday. Sound familiar?

While preparing “Game Developer’s
100th Issue Retrospectacular” (page 28),

I had a blast reminiscing with many con-

tributors, correspondents, readers, and

colleagues from yesteryear and today,

many of whom I now consider friends.

On several occasions I was genuinely

touched by some of the Game Developer
memories raised by taking people back

five or 10 years to seminal points in

their careers, and I was disappointed I

couldn’t fit more of those memories into

the article. Many found it sobering to

think quantifiably about how much the

industry has matured in the past 10

years, and how yesterday’s bedroom

hackers are today’s industry elite.

On a personal level, it’s been hum-

bling to look back at my own time with

the magazine: humbling not only

because it gave me pause to consider

how much knowledge I have gained

from the hundreds of extraordinarily

talented and intellectually generous peo-

ple Game Developer has connected me

with over the years, but also because

I’m 60 issues older than the naif who

washed up on Game Developer’s shores

five years ago. To what degree I am

wiser I can only credit to the many

readers who have offered their thought-

ful, honest, and unselfish feedback over

the years. My way has certainly been

smoothed by the many people who are

genuinely dedicated to improving games

and game development by the free

exchange of information and ideas.

For Game Developer, being an aging

figure in a young industry necessitates a

certain reckoning. As editor, I’m deter-

mined not to let the magazine’s middle-

age slow it down but rather let its expe-

rience buoy it through the development

challenges yet to be faced as the some-

times inspiring, sometimes terrifying

pace of game technology plods on. We’re

cooking up some exciting new things for

you to see and read in 2004, in an effort

to help you better understand the bigger

picture of the ever-changing game devel-

opment industry. Our goal is to continue

to help game developers understand and

define their craft, their business, and

their creative will, lest others seize the

opportunity to impose their definitions

upon you. We look forward to serving

you better than ever.

Game Developer’s next big milestone

is right around the corner; our 10th

anniversary arrives next spring. I had so

much fun talking with readers for our

100th issue, I’d love to hear from more

of you to help us look back at our first

10 years. E-mail your Game Developer
thoughts to editors@gdmag.com.

From the cockpit. This month we bid

farewell to our managing editor of two

years, Everard Strong, as trusty a first

officer as any captain ever had. Everard’s

off to start up his own independent pub-

lication, and we wish him great luck in

his new endeavor. Departments editor

Jamil Moledina will step up as managing

editor next month, and Kenneth Wong

will join as departments editor from our

sister publication CADENCE.

600 Harrison Street, San Francisco, CA 94107 t: 415.947.6000 f: 415.947.6090

4

Game Developer
is BPA approved

G A M E P L A N

Jennifer Olsen

Editor-In-Chief

www.gdmag.com

Celebrating 100

Courts of L.A. Activision’s True Crime:
Streets of L.A. shipped worldwide in

November as originally planned, despite

a court order filed in U.S. District Court

in Los Angeles by Robert Crais, the

author of L.A. Requiem (Ballantine

Books, February 2000). Crais alleged

that the game’s Nick Kang character

was based on his hero Elvis Cole, and

he sought an undisclosed sum and the

destruction of all infringing works.

Former Blizzard executives spawn new studio.
David Brevik, Max Schaefer, Erich Schaef-

er, Bill Roper, and Kenneth Williams — all

former executives at Blizzard North cred-

ited with games such as Diablo, Star-
craft, and Warcraft — have come

together to form a new game company

called Flagship Studios. Joining them as

additional cofounders are David Glenn,

Peter Hu, Philip Shenk, and Tyler Thomp-

son, the artists and programmers behind

Diablo and Diablo II. The new compa-

ny has yet to announce any games.

Preserving the real Atari. In response to a

filing by Brewster Kahle of The Internet

Archive, Lawrence Lessig of Creative

Commons, and others, the Librarian of

Congress granted access exemptions

from copyright protection measures in

the Digital Millennium Copyright Act to

obsolete videogames. The exemption

applies to games that require the original

media or hardware as a condition of

access, and it determines a format obso-

lete “if the machine or system necessary

to render perceptible a work stored in

that format is no longer manufactured

or is no longer reasonably available in

the commercial marketplace.” According

to the original filing, the exemption was

proposed in order to migrate degraded

and obsolete works to modern storage

systems and enable “archiving, future

scholarship, and commentary.”

Convergence, once more with feeling. Sony

demonstrated its new PSX multifunction

device at the fall CEATEC show in

Tokyo. The PSX includes a PS2, a hard

drive, a DVD burner, and digital televi-

sion recording functionality. Sony plans

to sell it in Japan by the end of the year

in two capacities, a 160GB version for

approximately $720 and a 250GB ver-

sion for approximately $900. Sony

expects versions for the U.S. and Europe

to follow in 2004.

SYPHON FILTER(-ed). Facing mounting pres-

sure from The Toronto Transit

Authority and Quebecois politicians,

Sony agreed to remove all references to

levels in a Toronto subway and terror-

ists named the “Quebec Liberation

Front” in its upcoming title SYPHON

FILTER: THE OMEGA STRAIN, in all terri-

tories. Canadian newspapers drew refer-

ences to the 1970 killing of government

official Pierre Laporte by the Front de

Liberation du Quebec, prompting Sony

Canada’s John Challinor to say that

they “deeply regret any misunderstand-

ing this may have caused.” q

Send all industry and product release
news to news@gdmag.com.

d e c e m b e r 2 0 0 3 | g a m e d e v e l o p e r8

I N D U S T R Y W A T C H; K E E P I N G A N E Y E O N T H E G A M E B I Z | j a m i l m o l e d i n a

U P C O M I N G E V E N T S

CCAALLEENNDDAARR

The Atari 2600’s port of Taito’s SPACE INVADERS

can now safely land at your local archive.

D V E X P O W E S T
LOS ANGELES CONVENTION CENTER

Los Angeles, Calif.
December 9-12, 2003
Cost: $75-$599
www.dvexpo.com/west

P TTHHEE TTOOOOLLBBOOXX
D E V E L O P M E N T S O F T W A R E , H A R D W A R E ,
A N D O T H E R S T U F F

Ghost 3D unveils 3DS Max plug-in. Ghost

3D announced that its 3D modeling,

conversion, digitizing, and reverse-engi-

neering products will now be available

as plug-ins for Discreet’s recently

released 3DS Max 6. The newest ver-

sions of Ghost products include Power

Modeler Pack, Power Digitizer Pack,

Reserect, Scribe-it, and Surf-it. They

offer tools for spline surface modeling,

spline rebuilding, parametric object cre-

ation, surfacing, digitizing, and reverse

engineering. www.ghost3d.com

Binary releases new game engine. Binary

Worlds recently released a demo ver-

sion of Descensor, a new game engine

for producing large 3D worlds in real

time. Descensor automates the process

of computing 3D objects during game-

play. The landscapes can be as large as

needed, since only the visible parts are

computed. According to Binary, the

engine is well-suited for online games,

because it can re-create the same

world on each player’s machine with

minimal bandwidth usage.

www.binaryworlds.com

OpenGL compiler front-end for Linux.
3Dlabs recently announced a compiler

front-end for Linux, integrated with

the previously announced OpenGL

Shading Language compiler for

Windows. It provides developers with

a single front-end for consistent cross-

platform portability of the OpenGL

Shading Language standard. The com-

piler is a free download.

www.3dlabs.com/opengl2

B

d e c e m b e r 2 0 0 3 | g a m e d e v e l o p e r10

M acromedia Director

MX is aimed at devel-

oping rich Internet

content and web or

stand-alone games,

similar to the casual games found on

RealArcade, Yahoo!, and MSN’s sites. It’s

also used by some companies as a proto-

typing tool to quickly test out ideas and

gameplay mechanics.

Director does a good job delivering

on some of its promises, but unfortu-

nately it fails on too many other ones.

Director MX is the upgrade to Director

8.5 and is already beginning to show its

age, both in its feature set and in its

user interface paradigm.

Working with Director MX means

becoming very familiar with Lingo,

Director’s built-in scripting language.

Lingo supports a primitive object-oriented

model that has no obvious way to protect

members from being called by other

scripts or child classes. The language is

extensive, with literally thousands of

commands, objects, and properties that

can be manipulated, and you have to

learn them all. The program attempts to

sell the user on ease of use and drag-and-

drop functionality, but these attempts

actually get in the way when creating a

large project. Director MX is nowhere

near as “click here, do this, click there,

do that” as it’s touted to be, and due to

the poor documentation and the small

number of examples included, I found

learning Lingo a lot harder than memo-

rizing the DirectX SDK or the Havok

Physics SDK.

The examples that are included are

simple enough, showing two or three

buttons that navigate a simple user inter-

face. However, try to create a game inter-

face with 20 or 30 buttons, and the

resulting spaghetti code arrives in one-

gallon catering packs. The interface

requires constant shuffling back and

forth with the slider, attempting to find

the current edit point. This is in direct

contrast to VisualBasic’s ease in letting

you navigate code.

Unlike a lot of scripting systems,

Director has the ability to single-step

through scripts with the integrated debug-

ger, setting breakpoints and inspecting

variables and properties with the Object

Inspector panel.

Director MX adds 3D capability that

automatically utilizes OpenGL, DirectX

5.2 or 7.0, or its software rendering

engine if hardware is not available.

DirectX 7 appeals to the broad, lowest

common denominator market but leaves

out niceties such as pixel and vertex

shaders. 3D content isn’t really an inte-

gral part of the package; usually it is ren-

dered in a separate window, preventing

compositing with 2D elements. And 2D

elements can’t interact with 3D objects,

confusingly also known as Sprites.

Xtra power. The real power of Director

comes in the shape of Xtras (third-party

plug-ins), some of which are free, many

of which you have to buy (with some

costing more than Director itself). Havok

ships its Havok Physics Xtra for free,

and it includes many great examples. I

was excited to get it and play around

with what Havok touts as a drag-and-

drop physics solution. However, I was

disappointed to find it wasn’t at all intu-

itive, requiring a lot of scripting and sev-

eral nights’ work to add interactivity to

the basic phsyics operations.

XX
P R O D U C T R E V I E W S

T H E S K I N N Y O N N E W T O O L S

JUSTIN LLOYD | Justin has over 18 years of commercial game programming experience on
almost every released platform.

Macromedia Director MX
by justin l loyd

Director MX’s Cast and Score interfaces are useful in creating quick game prototypes.

Director MX’s final output is a

Projector file, played back with Macro-

media’s Shockwave player, or bundled

into a stand-alone executable. Doing the

latter instantly creates a 2.5MB Windows

executable file. Authoring a stand-alone

executable on more than one platform

requires the purchase of a license for

each platform.

Director MX, as its name suggests,

uses a Hollywood movie metaphor to

refer to many of the actions, processes,

objects, and interface elements within the

package. The metaphor itself isn’t flawed,

just the application of it at times. Director

MX project files are referred to as

Movies: the Stage is the playfield where

game objects (cast members) are placed,

which then follow scripts. The metaphor

begins to break down when placing cast

members on the Stage, which are then

known as Sprites. To confuse matters,

everything on the Stage is a Sprite —

QuickTime movies, vector shapes, and

buttons all become Sprites.

The cast panel lists scripts and cast

members, which can include audio clips,

movies, buttons, bitmaps, scripts, and so

on. For a large project, the cast panel

quickly becomes cluttered; external

libraries of cast members help, but

there’s no way to place cast members

into logical groups.

The Score provides a non-linear edit

suite interface to control in what Frame

(an instant in time) Sprites appear and

how they move between frames. Think of

creating a movie in Adobe Premiere: A

Sprite is placed into the next available of

1,000 possible edit channels in the Score,

reusing channels for other cast members

as the movie progresses.

With so many hard-coded constants

floating around, there should be a way to

define global and local symbolic con-

stants, but the capability to do this in

Director MX simply does not exist. After

nine versions of Director, Macromedia

still doesn’t provide even the basics of a

real programming language.

With a package of this maturity and

complexity, I was expecting some refined

documentation, examples, and tutorials.

But alas, I was disappointed. The docu-

mentation briefly covers each aspect of

the package but then leaves the rest of the

explaining to third-party books and web

sites, including the extensive Director

Users Group and Director Mailing List.

Wrap up. A rapid prototyping tool is

expected to shoulder the burden of han-

dling mundane housekeeping tasks along

with the necessary video and audio

requirements — sprites, 3D, streaming

movies, and physics, for example. Director

MX does this in spades, but where it falls

down is the archaic scripting system and

non-intuitive interface. Improvements in

interaction between 3D and 2D, more and

varied documented examples showing off

the power of the Xtras, and a more profi-

cient drag-and-drop interface (with differ-

ent interfaces for different types of con-

tent) would go a long way toward making

Director MX an ideal RAD tool.

Kaidan’s 360 One VR
by sean wagstaff

K aidan’s 360 One VR is one of the

best solutions I’ve seen for grabbing

full 360-degree panoramas from the

world around us. In a single shot, it cap-

tures a panoramic image that can be

mapped to cycloramas for in-engine back-

ground scenery, or used as an accurate

reference for painting your own back-

ground environment art.

The 360 One VR attaches to a wide

range of digital cameras, either via an

adapter ring or with the help of an

adjustable, calibrated mounting bracket. I

used the lens with a Nikon D100 SLR

and a Nikkor 60mm Macro lens, which

requires the optional machined-aluminum

SLR Bracket ($299) that separates the

camera from the lens by a measured dis-

tance. Since you’re focusing on the mir-

rored surface of the VR lens rather than

on your actual subject, your camera needs

to be able to focus at very close distances

while maintaining a decent depth of field

— so a macro lens or macro-focusing

capability is mandatory.

Once you’ve mounted the lens and

adjusted the focus properly, you set your

camera’s exposure normally (considering

the lighting from every direction) and

shoot away. Composing the shot is

another matter. The view through the

lens is extremely distorted, since it cap-

tures a donut-like image covering 50

degrees above and below the horizon.

This makes composing a picture awk-

ward at best, since it’s often difficult to

tell exactly what you’re looking at.

You also have to get yourself out of

the shot; you can choose to cower under

the camera’s tripod, or you can fire the

camera with the self-timer (giving you

enough time to run and hide behind a

large object), or you can trip the shutter

with a remote control.

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

w w w . g d m a g . c o m 11

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

STATS
Macromedia
San Francisco, Calif.
415.252.2000
www.macromedia.com

PRICE
$1,199 MSRP

SYSTEM REQUIREMENTS
For Windows: Intel Pentium II
Processor or higher, Windows 98
SE/2000/XP, 128MB RAM, 1024 � 768,
16-bit color display or better, Microsoft
DirectX 5.2 or OpenGL, 3D accelerator,
100MB disk space, CD-ROM drive.
For Mac: G3 Processor, Mac OS X 10.1.2
and up (10.2 recommended), 128MB
RAM, 1024 � 768, 16-bit color display or
better, OpenGL 1.1.2, 3D accelerator,
100MB disk space, CD-ROM drive.

PROS
1. Good, high-quality, third-party plug-ins.
2. Very low system requirements for play-

back.
3. Large community support.

CONS
1. Exceptionally steep learning curve.
2. Expensive for multi-platform stand-

alone delivery.
3. A lot of information needs to be “hard-

coded.”

DIRECTOR MX XXX

The PhotoWarp software

(Mac and Windows) that ships

with the 360 One VR instantly

unwarps the image with a sin-

gle click into a very normal-

looking cylindrical panorama.

New in version 2.0 is the capa-

bility to unwarp batches of

images, which is particularly

useful when you bracket expo-

sures to make sure you’ve got

one that works, or when you’re

ready to convert a day’s shoot-

ing back at the studio.

The software can also auto-

matically convert the resulting

rectangular images into a QuickTime

VR panorama or one of several other

panoramic formats, but for game artists

the process will usually end at saving

the rectangular file as an image that can

be texture-mapped onto a cylinder as a

background. You can also combine mul-

tiple exposures to create a high-

dynamic-range image, for use

as radiance maps and environ-

mental reflection maps, but

Kaidan’s software doesn’t offer

any help in this regard — and

the circular holes in the sky

and ground mean the images

really aren’t well-suited to

tasks that call for a spherical

map. (Kaidan’s panoramic tri-

pod heads for shooting with

fisheye lenses have more promise

for creating HDR images, but

this is still an awkward process

awaiting an elegant solution.)

The 360 One VR does a great job of

quickly and painlessly capturing panora-

mic scenes, and the included software

effortlessly handles the conversion into

usable images. However, at $750, it is

somewhat expensive for game artists. A

rotating tripod head and capable stitch-

ing software can give equivalent results

if you’re willing to spend a little more

time on the image. But if you’re grab-

bing lots of urban or natural panoramas

for use as background scenery or tex-

tures, then this strange-looking gadget is

definitely worth considering. q

XXX | 360 One VR
Kaidan

www.kaidan.com

Sean Wagstaff is a freelance 3D artist.
You can reach him at www.wagstaffs.org.

Graphics Programming
Methods
Edited by Jeff Lander

reviewed by daniel sanchez-crespo

G raphics Programming Methods is a
collection of papers about graphics

XP R O D U C T R E V I E W S

Kaidan’s 360 One VR
with optional SLK
mounting brace.

programming edited by

Jeff Lander. The 400-page

book contains over 35

papers, arranged under

three areas: animation,

geometry, and rendering.

The authors are a mix of

academic and industry

people, with the former

outweighing the other in

terms of topics covered.

Topics covered in the different papers,

though diverse, are all geared toward real-

time applications; expect little content on

offline rendering techniques. Though this

focus makes the book a good companion

for game technology programmers, this is

a book about graphics programming, not

game programming specifically. On the

other hand, this book is not another itera-

tion of the Graphics Gems or Game
Programming Gems series: articles here

are longer and more involved, and readers

are treated to more background

and mathematical information.

Given the professional tone of the

book, this approach is welcome.

The first section of the book

covers subjects such as tree ani-

mation, new methods for IK,

facial animation, and soft-body

animation. Though this is the

shortest section, the selected

papers are top-quality. John Van

den Burg’s paper on facial animation and

Jason and Andrew Weber’s text on multi-

resolution dynamics for deeply hierarchical

bodies are great reads.

The second section covers geometry, the

most heterogeneous of them all. The

papers (11 total) cover subjects as diverse

as portal rendering, landscape engines, sur-

face smoothing, and texture-mapping tech-

niques. Terrain rendering is one of the sub-

jects more widely covered by this book, as

there are three papers in this section, along

with four in the rendering section, that

deal with this subject in detail.

The book’s section on rendering is its

strongest section, with lots of useful

material on subjects including Metropolis

sampling, outdoor lighting, and volume

shadows. Techniques described here are

on the cutting edge, so the section is real-

ly a joy to read.

Overall, Game Programming Methods
is a great addition to any 3D program-

mer’s battle chest. It provides many cut-

ting-edge algorithms along with a com-

panion CD-ROM with ready-to-use

implementations.

XXXX | Game Programming
Methods

www.charlesriver.com

Daniel is a programmer at Novarama,
a Barcelona-based development studio.
He also teaches at Universitat Pompeu
Fabra.

XP R O D U C T R E V I E W S

F eargus Urquhart likes RPG titles

a lot, as he should, given his past

involvement in their creation. For

the last six years Feargus has

been involved in Black Isle

Studios’ most successful titles, including

BALDUR’S GATE, PLANESCAPE: TORMENT,

ICEWIND DALE, and FALLOUT. Before that he

was involved with other RPG titles at

Interplay, Black Isle Studios’ parent company.

However, he and Interplay were looking

toward different futures. “Interplay changed

directions a number of years ago and put most

of their efforts behind next-gen consoles,”

Feargus told us. “However I still think PCs

have a place as a gaming platform.”

Following his instincts, he looked into

developing his own company, and with steer-

age help from BioWare, launched Obsidian

Entertainment earlier this year. We took some time to talk to

Feargus about the challenges in starting up Obsidian, why the

RPG format works for him, and the future of the PC as a gam-

ing platform.

Game Developer: How does Obsidian treat the issue surrounding
non-compete agreements with its employees?

Feargus Urquhart: We don’t have non-compete agreements

with employees other than they can’t compete with us while

they are working at Obsidian. We chose not to have employees

sign one because they are questionably enforceable; if someone

wants to leave then we either need to let them go or do some-

thing about it. Having someone feel trapped with a company

because of a non-compete doesn’t help their morale on a day-

to-day basis, which doesn’t really help the company.

GD: What about Obsidian sets it apart from other studios?
FU: Obsidian’s strengths are a wealth of experience in the

business and process of making games and the ability to make

those two diverging aspects work together. When we approach a

new project we are able to tell a publisher what it will take to

make the game, how long, and that we will budget for it effec-

tively. Coupled with that, we have a very strong group of guys

making games, with the core group having over 50 years of

combined industry experience.

GD: Has your life become more chaotic or less since launching
Obsidian?

FU: Weirdly enough it’s become less chaotic. With Obsidian

there seems to be both fewer and more working parts at the

same time. If we need a new computer, we just go online and

order it, while at Interplay it might have

taken three months, six e-mails, and three

meetings. That’s not to say it will stay that

easy. If we end up going to more than two or

three teams in the future, we will have to get

more structured, which will mean that we

will need to have more approval processes.

However, things can get a little chaotic when

it takes six weeks to get medical insurance

going for the company because of all these

hoops to jump through and forms and more

forms and more forms and more forms to fill

out. Did I mention the forms? All in all,

though, it’s been a great experience.

GD: What kind of structures will you put in
place to prevent decisions from being mired down
in committees and meetings?

FU: It just has to do with focus. My opinion

is that Interplay lost this focus as it grew and

became a publisher. For us to stay on track, we are going to

make sure that the company’s largest priorities always relate

to the development of our products.

GD: Why is it that so many developers eschew PCs in favor of
console development?

FU: When talking to publishers in the industry, most are

much more interested in hearing about ideas for your $4 mil-

lion console game rather than your great $2 million PC game.

I don’t mean to fault publishers by saying this, because in many

ways sales data supports why this is the case. However, there

are still a bunch of games that sell very well on the PC, and

they don’t require console licensing fees.

GD: What surprising turns have you seen the game development
industry take?

FU: I am somewhat surprised at the lack of support for the

PC as a gaming platform right now. It’s not that I just want to

make PC games instead of console games, but there are cer-

tain kinds of games that I would like to make that just work

better on the PC. I would hope those ideas would actually be

for games that people would buy, but it’s hard to get other

people in the industry excited about a game if it is PC only.

There are companies that are still very successful on the PC,

like Blizzard, but many see that success as an anomaly for

some reason.

GD: What five key components make up a successful RPG game?
FU: In no particularly order, they are a player-driven story, a

robust character development system, believable non-player

characters, heroic quests, and a living world. q

d e c e m b e r 2 0 0 3 | g a m e d e v e l o p e r16

P R O F I L E S
T A L K I N G T O P E O P L E W H O M A K E A D I F F E R E N C E | e v e r a r d s t r o n g

Keeping the Faith
Obsidian’s Feargus Urquhart on RPGs and PCs

Behind Obsidian’s stone facade,
Feargus is all smiles.

d e c e m b e r 2 0 0 3 | g a m e d e v e l o p e r18

j o n a t h a n b l o wI N N E R P R O D U C T

W e are in the midst of a software engi-

neering crisis. While games are getting

larger and more complicated, our pro-

gramming tools — languages, compiler

systems, debuggers — are remaining

stagnant. We’ve been saved, so far, by the fact that computers

get faster every

year, so our code

gets worse, and

we still get by. But

big, sprawling,

complex code will

eat up as many

person-hours as

you can dish out,

and this year more

than ever we’ve been seeing the results.

Delays and feature cuts are nothing new in our industry,

but now it feels as though we are hitting a wall: there seems

to be no cutting-edge game that isn’t horribly delayed, its fea-

tures slashed, released as a mere shadow of its creators’ inten-

tions. Consequently, each year’s cutting-edge is landing ever

closer to the previous year’s cutting-edge. We are traveling

along a convergent series, and we will soon be stuck at the

furthest point of complexity to which our development meth-

ods can reach.

So we try to improve our development methods. Toward

that end, the programmers of our industry have dived headfirst

into a pool of object-oriented programming (OOP) books; they

bury their programs’ data and flow control deep within tan-

gled nests of C++ features. I believe that these recently adopted

ideas are wrong, that these techniques are failing us. After all,

the proof is in the pudding — if the techniques were working,

then games using them would become shining development

successes. But to the contrary, the games making heaviest use

of C++ features are among the tardiest, most spectacular mess-

es. The programmers of our industry are buying heavily into a

dogma that has not been sufficiently field-tested.

But if you denounce this dogma in public, you’ll be scoffed at.

How could that huge stack of OOP books be wrong? What kind

of joker are you to deride these things that have become standard

practice? Well they can scoff at me, because I’m just not buying

any of that crap. I spend a lot of time doing contract work with

various developers, and I see them shooting themselves in the

foot with this stuff, over and over.

I want to explore alternative programming techniques, in

areas far away from the current OOP morass. We’re now in the

habit of needlessly complicating our programs; we need tech-

niques that simplify programs, enabling us to accomplish more

with less exertion. This month I begin a series of articles inves-

tigating one trail off the beaten path. I don’t promise that it will

revolutionize pro-

gramming, but it

may help some. If

every game studio

were doing a little

bit of open-minded

investigation like

this, we’d all be

much better off.

Data Structures and Redundancies

A s experienced game programmers, there are many small

problems we solve by rote — we set up some data struc-

tures and go, same as we’ve done for years. I’ll illustrate this

with an example of such a situation and then question it.

Suppose you’re making a game, and you’ve got objects in the

game world — Entities — and some of these Entities are play-

ers who can carry other Entities. We need some way to repre-

sent who is carrying what. Typically we would implement this

as follows: each Entity is represented by an instance of a C++

struct or class, and each of those instances contains a list (or an

array) of all items carried by that Entity. When a player gives a

command to drop an item, we step through his “carrying” list

to find that item, and we remove it.

Now suppose we have a magical disappearing Stone that needs

to remove itself from our inventory of its own volition. Starting

with only a pointer to the Stone, we need to remove that Stone

from the appropriate carrying list. We could find that list by iter-

ating over all Entities in the world, searching for the Stone in

every carrying list. But that’s a big pain and it’s slow. So we tend

to put a pointer on the Stone (actually, on every Entity) that

points to the entity that carries it (or NULL if the Stone is not

Predicate Logic

J O N A T H A N B L O W | Jonathan is not
normally this ranty, but recently he has
become a student of rant-jitsu. If you
know any good instructors, send recom-
mendations to jon@number-none.com.

Programmers are buying heavily into a dogma of object-

oriented formalism that has not been sufficiently field-

tested — leading to tardy, spectacular messes.

being carried). Now we face an odd issue. A single fact about the

world, “The Dude is carrying the Stone,” is represented by two

different pieces of state: the carrying_list on the Dude, and the

carried_by pointer on the Stone. Our code must be careful to keep

these two pieces of data in sync, or else we’re in trouble.

Quantifying this situation, suppose that the concept of “carry-

ing” represents one unit of game functionality (because it’s diffi-

cult to see how you might subdivide “carrying” into sub-concepts

that make sense on their own). How many units of work does it

cost us to implement this one unit of functionality, “carrying”?

As described earlier, we need to first (1) implement the

carrying_list, then (2) implement the carried_by pointer, and then

(3) maintain the constraint between them. By a naively simple

method of accounting, this is three units of work, yielding one

unit of functionality. Probably item (3) is more expensive than

the other two, as it’s more subtle and is a long-term concern.

Ideally, to implement one unit of functionality, we want to do

one unit of work (or less). Now, taken in just the isolated case

of “carrying,” this three-unit situation is not a huge problem —

we do the work and then move on. But as our program

becomes larger, filled with analogous cases, and becomes host

to a tangle of interdependent concepts, suddenly we find that

we’re spending great piles of work units for mere handfuls of

functionality units. We can use all the simplicity we can get.

High-Level Languages?

T he stated goal of a high-level language is to reduce the

amount of work required to create software. However, I

think most such languages take insufficient approaches toward

this goal (this is especially true of the scripting languages we have

been developing for games). Often they provide features that

make programming a little easier, but they fall short of the dra-

matic changes we need. Using a language like LISP or Objective

CAML to implement our “carrying” functionality, we may end

up typing a little bit less, so our three units of work will become

slimmer, but they are still three pieces of work, and that’s bad.

The situation can be compared to optimizing a program’s CPU

usage. Suppose you profile your program, and there are some fre-

quently called functions that are taking up a lot of time. The

straightforward approach — streamlining these functions to make

them faster — will give you a speed benefit. But experienced opti-

mizers know that it’s more effective to redesign the code to elimi-

nate those functions (if possible). A function that you think is fast

is infinitely slower than a function that doesn’t exist.

We face the same situation with another optimization prob-

lem: reducing the time we spend creating software. Many lan-

guages have set out to reduce the amount of typing you have to

perform in order to make things happen, but if data manipula-

tion and flow control still occur at roughly the level of C++,

then there’s a limit to how fast programming can go, and it’s

not all that much faster than what we already have. Rather

than trying to make our small-grained manipulations faster, we

should find ways to eliminate them altogether.

The Predicate Logic Experiment

W hich brings us to the title of this article. To eliminate

redundancies like carries/carried_by, I want to use an

unstructured database that just holds facts about who carries

what. There are several ways to build such a database, but I

chose the style of first-order predicate logic. Predicate logic has

been deeply studied throughout the history of computer science

so a simple web search provides lots of reference material.

To use predicate logic for our “carrying” example, we want

to insert a fact into the database that says “Dude is carrying

Stone.” Only that single fact represents the carrying relation, so

there is no redundancy. We can perform queries like “What is

Dude carrying?” and “Who is carrying the Stone?” with equal

ease — the database engine uses a matching system to generate

the answers.

To represent facts, my syntax is a set of arguments enclosed

in parentheses, with the predicate listed first. So the fact “Dude

is carrying Stone” is written like this: (carrying dude stone). The

“carrying” is just an arbitrary label that we are free to choose.

In a real game, you would want “Dude” and “Stone” to be

identifiers of instantiated Entities. For this simple example,

though, we will just use labels for them.

To ask what Dude is carrying, we perform the following

query: (carrying dude ?x). The question mark indicates that x is a

variable. The database engine looks for any facts that are three

arguments long and have carrying and Dude as the first two argu-

ments. It returns a list of all possible values for x; in other words,

everything that Dude is carrying. If we want to know who is car-

rying the Stone, we can make this query: (carrying ?x stone); now

we will get back a list containing everyone who is carrying the

Stone (which should be only one or zero items long).

As programmers who care about the speed of things, we

might worry: when there are a lot of facts in the database, how

do we organize them so that these queries can be answered

quickly? My answer for now is, we’re simply not going to opti-

mize. All database items will be stored in one big linked list and

the search will proceed through them all. I will be changing this

system rapidly over the next few articles, so it needs to be very

simple and flexible.

LIST ING 1 . DATABASE FACTS.

w w w . g d m a g . c o m 19

(female ann)

(male mark)

(male don)

(parent mark don)

(parent ann don)

// Inference rule:

// Is y the sister of x?

(sister ?x ?y) <- (female ?y), (parent ?x ?p), (parent ?y ?p),

(notequal ?x ?y)

In the long term, when we care about speed, we can let the

script programmer set policies about which labels or argument

slots get indexed by primary hashes, secondary hashes, and so

on — decisions that are hopefully informed by a good profile

report. These policies would be set late in development, allow-

ing for a rapid development model where the programmer can

create initial functionality without worrying about speed.

Interestingly, we now have a full implementation of the

“carrying” functionality without performing any of the three

work units listed earlier. We have no interdata constraints to

maintain, and we don’t have to declare anything either,

assuming we can just dump all the “carrying” facts into a

global namespace. I would say that there’s about one work

unit here, which involves remembering that the label “carry-

ing” has been used, and that it’s a predicate with two argu-

ments, first the guy who carries, second the guy being carried.

Though this isn’t directly comparable to our earlier implemen-

tation method, it seems to be much less effort.

With this predicate logic approach applied across an entire

code base, the resulting simplification would be significant.

Speaking of lists of Entities, in my current game, implemented

the old-school C++ way, I have many views of the same set of

data: one hash table of all Entities that exist, mapped by an

integer ID; one list for each type of Entity (containing all of

that type); lists for Entities that have been created but not

fully initialized by network traffic; lists of Entities that have

been fully initialized but not yet added to the world, or that

have been removed from the world but not yet destroyed; and

lists for Entities that are “awake” or “asleep” according to

the physics system. All of these are just the poor C++ pro-

grammer’s method of performing simple hard-coded database

operations. (There are further redundant views that are

beyond our scope today, such as spatial partitionings of

Entities for visibility culling or collision management.)

Properly juggling Entities between all these lists, in response

to game events, can be a challenge.

Within a fact-database framework, we can perform database

queries directly, and most of the lists above simply disappear —

they go away and are replaced by nothing. It is infinitely easier

to program nothing than to program a lot of small things.

The Logic Part

B esides adding bare facts to the database, we can also add

rules of inference: if such and such things are true, that

implies that this other thing is true. The implied fact can be

queried, just like facts that are asserted directly into the database.

Let’s look at a time-honored example, the “sister scenario,”

which seems to have been expounded in every tutorial ever

written about the programming language Prolog. We have

some people, Ann, Mark, and Don, and some facts about

them: (female ann) — “Ann is female,” (parent ann don) — “A

parent of Ann is Don,” and so on. See Listing 1 for the full

set of asserted facts. In addition to these, we can assert an

inference rule, “Is y the sister of x?”as follows:

(sister ?x ?y) <- (female ?y), (parent ?x ?p), (parent ?y ?p),

(notequal ?x ?y)

The <- means “is implied by,” and the comma is a logical

AND. So y is the sister of x if y is female, the parent of x is

some p, the parent of y is that same p, and x and y are not

equal (assume notequal is a built-in primitive). Now suppose

we want to perform a query like “Who is Mark’s sister?” —

in other words, (sister mark ?s). The database engine will

match this query against the rule for sister, substituting the

arguments mark for ?x and ?s for ?y, giving us the following

temporary rule:

(sister mark ?s) <- (female ?s), (parent mark ?p),

(parent ?s ?p), (notequal mark ?s)

The engine will then attempt to handle all the queries on

the right-hand side. If each query can be resolved (whether by

a direct assertion or another inference rule), then a result will

be returned, a binding for the ?s in (sister mark ?s). In this

case, the query will return Ann as the result. See Listing 2 for

more examples of queries we can perform. More complex

inference rules can be asserted, including recursive ones (as we

will see in a future article). The general framework of predi-

cate logic can include other operations besides what we have

described here. However, just with assertion and implication,

we can do some very interesting things.

Sample Code and Next Month

T his month’s sample code (available at www.gdmag.com) pro-

vides a simple predicate logic assertion and querying system.

Next month, we’ll expand the power of this system, building it

into the larger framework of a full programming language. q

I N N E R P R O D U C T

d e c e m b e r 2 0 0 3 | g a m e d e v e l o p e r20

(sister mark ?x) -> { x = ann } // “Who is mark’s sister?”

(sister ?x ann) -> { x = mark } // “Who is ann the sister of?”

(sister don ann) -> false // “Is ann don’s sister?”

(sister ?x ?y) -> { x = mark, y = ann} // “Who are all the sisters we know about, and who are they sisters of?”

(sister ? ?y) -> { y = ann } // “Who are all the sisters we know about?” (not caring who they are sister of)

(?r mark ?x) -> { r = parent, x = don ; r = sister, x = ann } // “What relationships do we know of with mark in the second slot?”

LIST ING 2 . QUERIES AND RESULTS.

A R T I S T ’ S V I E W s t e v e t h e o d o r e

d e c e m b e r 2 0 0 3 | g a m e d e v e l o p e r22

D ear Santa, it’s getting around to the holidays,

and I’d like to remind you that I’ve been a very

good animator this year. I made all my mile-

stones, more or less. I was very disciplined

about keeping my source control up to date —

and you know what a pain that can be. Heck, at a party, I even

said some nice things about my producer — when he wasn’t

anywhere within earshot! So as you can imagine, I’m feeling

pretty virtuous, and I’ve got a rather long list this year.

First off, let me say that I’ll make it easy for you this time

around: no feature requests! So I won’t say anything about being

able to play back my animations without prerendering. I won’t

even mention IK/FK switching, or real-time muscle systems. I’ve

learned my lesson and I’m going to stick to practical requests.

1: A MiniDV Camcorder

Imight as well start with the big one: I’d really like a miniDV

camcorder for capturing reference. Trying to catch my reflec-

tion in the conference-room window while I’m crawling around

on the floor pretending to be wounded has given me a serious

crick in the neck. I promise this is only for study — I swear I’d

never stoop to rotoscoping! I just want to be able to scrub

through things, look at them from different angles, and see how

the actions unfold. I especially find it useful to look at the

motions playing backwards because it helps to highlight the

anticipations and follow-throughs.

Please, Santa, before you skip to the next item, hear me out!

Nowadays capturing video is simple and cheap. All you need is

a $20 Firewire card and a camera with a Firewire port. I won’t

need any fancy editing software — I can just grab clips with

Windows Movie Maker or iMovie on a Mac. Since I’m only

concerned with reference, I’m not asking for one of those 3-

CCD monster cams. All I want is a camera that takes decent

footage in natural light so I can catch myself working out

moves, or go to the zoo to capture some animal reference. The

camera doesn’t even have to be the latest model — almost any

miniDV camera built in the last three years is probably ade-

quate. I’d be very happy with one of the early models of the

Canon ZR series, for example — the latest entry level model

(the ZR60) is around $500, but the earlier models like the ZR45

can be found online for as little as $350. I like the Canons

because they have good image stabilization, so footage shot by

hand doesn’t have that distracting shaky-cam effect.

Now, since I’ve been so good this year, would it be too much

to ask the elves to include a progressive scan mode too? I know

that progressive scan generally kicks the price up a bit, but it’s

vastly better for reference work. Progressive scan captures full-

frame images, instead of half-resolution interlaced pictures, so

the stills are sharper and don’t suffer from that nasty interlace

blur. Pro-scan video compresses better too, so it’s easier to keep

around on disk. I’ve seen new progressive scan cameras under

$650, but I’d be satisfied if you can have the elves scrounge up

an older JVC GR-DVM80, which now only costs around $500.

2: An MPEG Video Camera

I know that $500 — or even $350 — is a big present, so

maybe you want a cheaper option. I could try one of the lit-

tle SD-card-based cameras that are coming out now for around

$100, like those from Mustek and SiPix. They always squeeze a

“DV” into the name but they aren’t related to miniDV cameras.

And a Partridge
in a Poly Tree

STEVE THEODORE I Steve started animat-
ing on a text-only mainframe renderer and
then moved on to work on games such as
Half-Life and Counter-Strike. He can
be reached at steve@theodox.com.

Any miniDV format camcorder, such as this Canon ZR60, is adequate
for capturing reference footage in natural light.

Instead they shoot MPEG-4 video. Unfortunately it’s usually

pretty low resolution — 320�240 at about 15fps seems to be

the going standard. 15fps is pretty crude for subtle timings, but

at least it should be good for establishing key poses and tem-

pos. Plus, most MPEG cameras are tiny so they’re easy to carry

around, and some of them (for instance, the Panasonic

SVAV30) double as MP3 players, so maybe it wouldn’t be too

bad. For around $200, Gateway’s DV-S250 MPEG camera

promises around 24fps, which should be enough for some seri-

ous work. None of these little cameras includes auto-focus or

auto-exposure, and they won’t be as easy to work with as stan-

dard camcorders but they are a lot cheaper.

Actually, the best cheap option is probably a Firewire- or USB

2.0–based webcam. Now, the image quality isn’t as good as a

camcorder, and obviously a webcam is going to be physically

tied to the computer, but the throughput is high enough for

640�480�30 capturing. The frame rate and size are a lot more

important for motion study than color fidelity, and I don’t

absolutely need auto-focus when I’m just capturing around the

office. I have heard that webcams need more light than cam-

corders, since they use smaller sensors, so maybe you should

throw in a little halogen mini-spot. It shouldn’t be too much of a

stretch, since a Firewire webcam such as the Orange Micro I-Bot

can be had for as little as $100. If you are thinking about the I-

Bot, though, please throw in a tripod — that little wire foot

thingie is rather prone to tipping over.

3: Books on Animation

N ow, I know a camcorder, even a little tiny one that shoots

grainy MPEGs, is a pretty big present, so I’ll try to under-

stand if you don’t get it for me. But surely you can’t object if I

ask for books — we’re all supposed to pursue self-improvement,

right? So here’s a list of books I’d love to fill my bookshelf with.

The very best thing you could get me from the bookstore is

the complete three-volume set of Eadweard Muybridge’s Animal
and Human Locomotion. The short versions from Dover,

Human Figure in Motion and Animals in Motion are okay, but

the big hardcover edition that covers his whole career is much

better printed and clearer. Moreover, a lot of interesting material

isn’t in the smaller editions — particularly unusual subjects like

people walking with crutches or disabilities. Unfortunately,

Volume 3 of the complete set, which covers animals, is very hard

to come by, even on the web. But Volumes 1 and 2 are priceless,

and the short edition of Animals in Motion is better than noth-

ing. Even after 115 years, Muybridge is essential for anybody

who wants to study motion over time. If only somebody would

do equally good editions of other early motion photographers,

such as Etienne-Jules Marey or Otto Anschütz. Maybe for next

Christmas?

Another huge hardcover book I’d really love to have is

Richard Williams’s The Animator’s Survival Kit. Books by tradi-

tional animators tend to get bogged down in the mechanics of

timing for film or economizing drawings, but Williams soars

above the minutiae. Williams’s style translates particularly well to

computer animation, because he’s always argued for a very light

touch on the most graphic squash-and-stretch techniques, in con-

trast to other old masters like Preston Blair. His staple technique

focuses on the use of progressive breaks — whip action — to

emphasize movement rather than wholesale deformations, and

thus works much more naturally in a skeletal animation system.

But The Animator’s Survival Kit is not just a handbook on fun-

damentals; it’s also a treasury of several decades’ worth of practi-

cal solutions to common animation problems. If you think I’ve

been really good this year, maybe you could just get me a spot in

one of Williams’s Animation Master Class seminars.

Another great reference that I’d really like to have in the

bookshelf is The Artist’s Complete Guide to Facial Expression
by Gary Faigin. Perhaps because this book is intended for tradi-

tional artists, it’s actually much easier to work with than photo

reference — the drawings emphasize the main components of

displaying facial expression more dramatically than the photos

in many competing books. The accompanying text combines

detailed knowledge of anatomy with a good theatrical sense of

mood and nuance. Even though there are a number of decent

books that cover some of the same ground and also discuss

practical problems such as morph targets and mesh construction

(notably Animating Facial Features and Expressions by Bill

Fleming and Darris Dobbs and Stop Staring by Jason Osipa),

Faigin’s book is still the most comprehensive treatment of facial

expressions and the one I’d pick first.

I’m a little embarrassed about this next one, but I swear my

interest in the Pose series (Basic Pose, Daily Pose, and Moving
Pose) of reference photo books from the Japanese publisher

Bijutsu Shuppan-Sha (Books Nippan in the U.S.) is purely pro-

fessional. The gimmick of the series is photos capturing actions

from multiple angles, which is great for keeping track of things

that often get obscured when the reference contains only one

view. The fact that they tend to have a nude and lingerie section

is just accidental. Really! They’re very hard to get outside of

w w w . g d m a g . c o m 23

Cutting-edge animation tools: The Animator’s Survival Kit and Posefile
Reference.

Japan these days, but you can usually find them in bookshops

that cater to animé and manga fans. I hear that Antarctic Press,

a manga-style comics publisher in Texas, is starting a similar

series under the name Posefile Reference. The first volume

includes 360-degree views, low, medium, and high shots, and a

pretty impressive arsenal of prop weapons from swords to

grenade launchers. There doesn’t seem to be a lingerie section,

although all of my Japanese-schoolgirl-in-sailor-suit-with-big-

gun reference needs will be nicely covered.

The last item in my book list is a small volume that seems like

a stocking-stuffer after all these enormous reference books.

Acting for Animators by Ed Hooks is a condensed introduction

to acting theory aimed at animators rather than stage actors (for

a taste, turn to page 30 of this magazine for his feature

“Chasing Gollum”). The book’s main idea is that our job starts,

rather than ends, with the mechanics of movement and timing.

While it doesn’t have much to offer on mechanics, Acting for
Animators is a great reminder of what we should be striving to

do in our work. If you’re feeling especially generous, Santa, you

could even get Ed Hooks to come out and give one of his work-

shops for the whole department! But seriously, Santa, perform-

ance is a terribly overlooked topic in our business. If we want to

create characters that move people instead of just characters that

move, we’re all going to have to accept the fact that animation

is as much a branch of theater as it is of computer graphics.

Come to think of it, how about giving a copy of this book to

everybody in the department?

A R T I S T ’ S V I E W

d e c e m b e r 2 0 0 3 | g a m e d e v e l o p e r24

Stickfas action figures blend the artist’s mannequin with iconic action
sculpting, resulting in a great tool for posing practice.

4: Gifts for Coworkers

F or Yu Tang, who has trouble with his

timings: a sports stopwatch. There are

two requirements. First, the watch has to

be accurate to 1/100th of a second (the

1/10th of a second watches that you see

for $10 or so are usually pretty inaccu-

rate, as well as a little crude for key-tim-

ing). Second, the watch needs enough

memory for at least a few dozen laps and

splits. Delta timing, which displays the

offset between “laps,” which for us means

timing keyframes, is a useful extra. Prob-

ably the most important feature of all is

large, easy-to-use buttons that can be

operated while acting something out. It’s a

shame that nobody seems to make a stop-

watch that works in SMPTE time-code or

30Hz frames, since it’s a pain to do the

math to turn 1/100th of a second meas-

urements into frame numbers. The Frame

Master II time-code calculator from

Calculated Industries doubles as a stop-

watch, but at more than $100, I’m not

sure it’s worth it just to avoid some math.

For Sharon, who spends way too much

time staring at her hotkey cheat-sheet: an

X-Keys Desktop programmable keypad

from P.I. Engineering. The X-Keys

Desktop, which has 20 buttons (capable

of holding up to 38 functions), has three

main advantages as a hot-key replace-

ment. First, it is very easy to program —

it takes any arbitrary sequences of charac-

ters, so wacky combinations such as Ctrl-

Alt-Shift-P are easy to set up. In fact, you

could even program a macro string or

script into a single button. Second, it

stores all of its programming internally in

an EEPROM, so you can unplug it from

one machine and take it to another with

no hassle. Finally, it comes with remov-

able key caps, so you can print out and

attach labels. The only drawback to the

X-Keys box is that the device doesn’t

know what application you’re running, so

there’s no way to have different hotkey

mappings for different programs. P.I.

makes a variety of programmable input

devices, including jog-shuttle dials and

footpedals. The basic X-Keys box is

about $80, while specialty devices such as

the jog-shuttle can run as high as $250.

For Alexander, who needs to work on

the rhythms in his gestures: a Microsoft

Sidewinder joystick. It’s not for games —

it’s a simple way to let him do gestural

input of timings. He can read the motion

and buttons on the joystick right into

Max via the Motion Capture utility, or

into Maya with the freeware program

JoystickServer.exe. It’s a great way for

people who have good posing skills but

trouble with sequencing to get some vis-

ceral feeling for the timing of their ex-

tremes. Even if he never tries to capture

an animation directly off the joystick, just

recording a bouncing-ball movement on a

dummy object is a great way to control

the tempo of a scene. If you’re not willing

to shell out the $25 for a joystick, at least

give the poor guy a simple noise-canceling

PC microphone. Almost any mic will do

— all he needs is a way to hum, mumble,

or say, “Da-dum-di-dum-di-dum!” into

the Windows Sound Recorder. And once

he gets used to having that nice waveform

display in his timeline to help him hit his

beats, he’ll thank you for it.

For Dean, who is a great concept artist

but whose characters always look like

they’ve got lumbago: a set of Stickfas

action figures. These little guys look like

the result of crossbreeding a traditional

artist’s mannequin with one of those little

1980s GI Joes. They’re very iconic in

design, and since they’re not burdened

with typical action-figure sculpting they’re

eminently poseable. They usually come

with some mix-and-match equipment, and

they can even be put together in non-stan-

dard ways to create unusual characters. At

less than $10 for the basic model (ranging

up to about $25 for a dragon), Stickfas

make a great stocking stuffer for anybody

who needs some posing practice.

Finally, for my producer: no coal —

I’m not vindictive. How about a large

bottle of Tums and an audio book (does

he know how to read?) of Wess Roberts’s

The Leadership Secrets of Attila the Hun?

Happy holidays! q

w w w . g d m a g . c o m 25

T here’s more to dialogue

localization than being mul-

tilingual. For example, in

Colombia, the word pito
refers to the cord you pull to

signal the bus driver to stop. However, in

Mexico, where they speak Spanish with

their own regional and cultural dialects,

the same word is slang for “penis.”

If your plans include localizing your

game for different markets, the time to

prepare is at the beginning of the devel-

opment process. There are several things

you can do to reduce the cost of transla-

tion, making your move to other mar-

kets much more profitable.

Size does matter. When translating

English into almost any other language,

more syllables are required to say the

same thing. For example, an English

sentence translated into Japanese or

German can be up to 20 percent longer.

So what happens in a cutscene with

dialogue that is tightly synchronized

with the graphics? If there is no space

for the dialogue to spread out, either the

actor has to read the lines more quickly

(which will sound rushed to a native

ear) or the dialogue has to be crafted

ahead of time by the translator so that

it will fit the allotted time. The latter

scenario is better, so long as you realize

the problem before the first round of

recordings is made — which can other-

wise become a costly mistake.

Alternatively there might be a creative

way to put together the cutscene so that

there is some room to maneuver the

audio — again, something that won’t

cross anyone’s mind if only an English

version is being considered.

By the way, length is also a considera-

tion for anything written in the game —

can your maps, inventory lists, and

menu items adapt to phrases of different

lengths? Is it easy to update every single

piece of text without having to recom-

pile or re-render anything?

Don’t try this at home. In the same way

that an intern is probably not the right

casting decision for the voice of a Crypt

Warlock, a level designer is probably not

ideal for translating dialogue or voice

acting just because she speaks Spanish.

You may need a translator who can

create dialogue that keeps within broad

regions that have localized differences.

For example, Spanish pronunciation in

Spain is radically different from Mexican

Spanish, so a Mexican actor delivering

the lines of a conquistador would be as

out of place as an American actor por-

traying Winston Churchill. However,

there are a few exceptions in which cer-

tain languages can be written and deliv-

ered in a manner that sounds generic

across a fairly wide region. Consider the

way all newscasters in the U.S. sound

like they come from Iowa.

Cultural considerations. Localization

professionals must not only get the words

right but the cultural nuances as well.

Consider that “football” means “soccer”

to most of the world, and many non-U.S.

fans prefer English terms when talking

about American football. When Inter-

national Contact was localizing an

American football game recently, they

consulted with translators and sportscast-

ers in Montreal to get French versions of

idiomatic American terms, translating

“go-to guy” as “receveur désigné” (desig-

nated receiver), for example.

Expert knowledge can also be useful

when choosing voice characters — keep-

ing the same voice types might not be the

best choice for a localized version. A voice

type that works well for the American

market may seem weak or just plain

strange in another culture, so consider

allowing for some creative leeway in the

casting and translation for non-English

versions of your game. This approach is

more likely to produce a version that

seems as if it were created in the target

country rather than originating elsewhere.

Speaking of being in the country, you

may also want to cast and record actors in

the countries you are exporting to. If your

game needs a large number of different

character voices, you need a large pool of

talent from which to draw. It may be

cheaper and easier to get a large group of

good Japanese actors in Japan than in the

U.S. However, casting and recording in

another country requires experience and

good contacts.

Local loyalty. Often, companies that

take a country’s language and culture

into consideration are rewarded with

dedicated fans in that market. Since

brand loyalty is extremely significant in

many countries, spending more to local-

ize by region is worthwhile.

Yet the greatest benefit in understand-

ing localization is simply becoming con-

scious of the potential hazards. With a

little preparation and advanced plan-

ning, you can save time, money, and a

lot of embarrassment. q

S I M O N A M A R A S I N G H A M | Simon is a composer, sound de-
signer, and co-founder of dSonic, an audio production company dedi-
cated to the game industry. Contact him at simon@dsonicaudio.com.

J O N G O L D I N G | Jon is co-author of The Apple Guide to Local-

izing Multi-Media and VP of International Contact, a multi-language
communications agency. Contact him at jon@intlcontact.com.

Don’t Pull Your Pito
To Get off the Bus

j o n g o l d i n g & s i m o n a m a r a s i n g h a mS O U N D P R I N C I P L E S

d e c e m b e r 2 0 0 3 | g a m e d e v e l o p e r26

T his month I’ll consider rules

gleaned from the recently

released book Chris Craw-
ford on Game Design (New

Riders). I should begin by

stating that I have no financial ties to

Chris’s book, and although I’ve known

him for many years we’re not close

friends. Furthermore, I’ve learned to be

cautious in recommending his lectures or

writings to others. In fact, to continue a

food-related theme from my last column

(“Tapas-Down Design,” November

2003), I’ve found that my appreciation

of Chris’s point of view is much like my

love of brussels sprouts. Sure, they can

be bitter and occasionally unpleasant,

but they can also be very good for you

and sometimes surprisingly pleasant.

Perhaps it’s an acquired taste — or per-

haps it’s deeper than that. I participated

in a study in college that suggested that

there is a genetic variation among peo-

ple’s sense of smell related to their

appreciation of cabbage-related vegeta-

bles, so I may also have the Chris

Crawford appreciation gene too.

Most of the examples in the book focus

on Chris’s own games that go back 25

years, but I found much of his advice to

be valid and topical. What really caught

my eye were the “lessons” included as

small sidebars. These are brief, imperative

sentences intended to guide the behavior

of developers — in short, much like the

400 Project rules. He has 96 of them in

the book. As with much of Chris’s work, I

think some are right on target, others

interesting, and some just plain wrong,

but they’re all thought-provoking.

I’ve tried to solicit rules from other

established game developers with limit-

ed success, so I was excited to see this

potential treasure trove. But alas, we’re

not 96 rules closer to the goal of 400

game design rules, as many of his rules

are not strictly design oriented. They

include producer-oriented rules like

number 72: “No matter what the sched-

ule says, give the game enough time to

get it right,” or 83: “Decide whether to

hire an artist or an illustrator.” There

are quite a few programmer-oriented

ones, like 80: “Use only one mathemati-

cal operation per line of code.” And

many range from the philosophical (94:

“Integrity is an unexpected virtue”)

through the cynical (86: “In the games

biz, trust no one”) to the cranky (36:

“Young programmers can be stubborn

asses” — a bit of Chris’s infamous cur-

mudgeonly streak there). Lest you jump

to conclusions from my excerpts, he

does take the time in the main text to

justify and explain each of these points.

Study your lessons. So what are some

of the design-oriented rules that I found

particularly useful? Here are a few:

11: “Interactivity is the essence of

what you are selling.” Chris has always

been a proponent of this point of view,

since all too often designers start to

think like frustrated filmmakers and

include long, boring movies.

31: “Begin each project with a one-

page specification of the gameplay.”

Not a universal truth, but a handy,

practical place to start.

43: “Always ask, ‘What does the user

do?’” A great precept, many amateur

designers forget this repeatedly.

Chris also has a lot of solid advice

about becoming a designer and thriving:

13: “Read more.”

23: “Don’t get a job in the games

industry unless you really, really love

games.” Great advice — otherwise

you’ll be at a competitive disadvantage

to the many who do.

24: “Learn everything you can.”

53: “Read! Read! Read!” See a pat-

tern here? All the great designers I know

read a lot.

56: “Polish, polish, polish! Take a min-

imum of 6 months after alpha for polish-

ing.” A good rule — but all too often

real-world contingencies get in the way.

Bitter sprouts. Some of the lessons

are, in my opinion, more indicative of

Chris’s own prejudices than of underly-

ing truths. For instance:

39: “Other people can’t see your

vision; you have to make it happen

yourself.” Some people do work best as

individuals, but there are numerous

counterexamples of game designers who

have successfully shared their vision

with a large team.

47: “Sequels are for entertainment,

they have no artistic content.” I think

the folks at Blizzard as well as Shigeru

Miyamoto might take exception to that

one. For that matter, the implication

that “entertainment” and “art” are sep-

arate categories doesn’t sit well with me.

As I warned at the start of this column,

this book is not for everyone. But to

sum up, Chris says it better than I do:

40: “Always be on guard against the

tendency to think in the old ways.” q

B E T T E R B Y D E S I G N

w w w . g d m a g . c o m 27

Eat Your Vegetables

n o a h f a l s t e i n

N O A H F A L S T E I N | Noah is a 23-year veteran of the game
industry. His web site, www.theinspiracy.com, has a description of
The 400 Project, the basis for these columns. Also at that site is a
list of the game design rules collected so far, and tips on how to
use them. You can e-mail Noah at noah@theinspiracy.com.

Chris Crawford’s BALANCE OF POWER: lessons
from gaming history.

G A M E D E V E LO P E R ’ S 1 0 0 T H I S S U E

S taving off the unrelenting

advance of deadlines doesn’t

offer much opportunity for

reflection for those of us who

put Game Developer together

each month. But recently, as I was unceremo-

niously shoving another journalistic triumph

into my sacrosanct canon of complete back

issues, I stumbled upon the realization that

my shelf was straining under the weight of

nearly 100 issues of Game Developer. Looking

back at the long history of a magazine in a very

young industry, the number seemed at the same

time so many and yet so few.

The truth is, everyone and everything in the

game industry is getting older. Or perhaps more

mature. Yes, let’s say more mature.

In the Beginning

I ssue number one of Game Developer mag-

azine was born into somewhat deliberate

obscurity in the spring of 1994, when 20,000

copies went out to newsstands nationwide.

Once the magazine was out on the street, its

obscurity was limited only to its parent com-

pany, Miller Freeman, and its executives:

Game Developer was a guerilla launch. Only

after garnering widespread favorable response

from the first issue did an insurgent cabal

from the editorial team of Software Develop-
ment magazine tell the purse-string holders

where their money was really going.

After almost a year of volunteering their

time (and some of Software Development’s
budget) to the magazine’s first issues, founding

editors Larry O’Brien, Alex Dunne, Alexander

Antoniades, and Nicole Freeman got the cor-

porate investment they needed to keep Game
Developer going officially, though at first on a

bimonthly basis. “The sell-through on that

first issue was something like 60 percent,

which is astronomical in newsstand terms,”

recalls co-conspirator Dunne, who served as

editor-in-chief from 1996 to 2000 and now

produces Gamasutra.com. “It was extremely

encouraging.”

Fortunately for Game Developer, many of

the folks who picked up that first issue sup-

ported it by subscribing, contributing, and

spreading the word. “I received a copy of the

premiere issue,” remembers longtime

“Graphic Content” columnist Jeff Lander. “I

was amazed that there was enough of a com-

munity to support a magazine devoted to the

industry. It legitimized in my mind that this

could be a real, grown-up job.”

Others, sensing the vacuum of available

information at the time, couldn’t wait to con-

tribute. “I bought a copy of issue #1 and

called the editor that same week asking for

author’s guidelines,” recalls frequent contribu-

tor Matt Pritchard of Ensemble Studios. “He

blew me off, leading me to get mad and yell at

him online, which led to my first article in

issue #4.”

Building a Name

G radually, the magazine picked up steam,

and it would evolve substantially over the

years as the industry and the market developed.

Back in the earliest years, Game Developer’s
focus was strictly on programming and almost

exclusively programming for PCs. Its first tag

line, “Programming for fun,” reflected the idea

that the industry at that time was characterized

largely by hobbyists. Later, the focus grew

stronger on the rising prominence of profes-

sionals, and the “for fun” factor was down-

played. In April 1997, the magazine relaunched

with a new tag line, “On the front line of game

innovation,” to include all disciplines of game

development. The magazine also began to grad-

ually add more console-oriented content.

The first true Postmortem appeared later

that year, and the feature’s overwhelming

popularity hasn’t waned since. “One of my

favorite parts of making a game is writing the

Postmortem,” says longtime reader and con-

28 d e c e m b e r 2 0 0 3 | g a m e d e v e l o p e r

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

March 1994
Game Developer is launched
guerilla-style by Software
Development editors Alexander
Antoniades, Alex Dunne, Nicole
Freeman, and Larry O’Brien

January 1995
Game Developer goes bimonthly

November 1995
Game Developer parent Miller
Freeman acquires the Computer
Game Developers Conference
(CGDC) from the Computer Game
Developers Association

April 1997
Game Developer relaunches,
encompassing all disciplines of
game development

June 1997
Game Developer goes monthly;
sister site Gamasutra.com
launches at E3

October 1997
First official Postmortem appears,
chronicling SSI’s DARK SUN ONLINE:
CRIMSON SANDS

June 1998
First annual Front Line Awards
recognize outstanding game
development products

April 2000
Miller Freeman Inc. merges with
CMP Media, bringing Game
Developer under the CMP brand

August 2002
Game Developer launches its
first annual Game Career Guide
for aspiring pros

February 2003
CMP Books publishes a Game
Developer Postmortem com-
pendium

December 2003
Game Developer celebrates its
100th issue

tributor Jamie Fristrom of Treyarch, who

has penned four Postmortems for Game
Developer and Gamasutra. “The games

themselves appear on the shelves for a few

months and disappear, but the Postmortem

is forever.” Within a few years there were

enough Postmortems to fill a book, and

Postmortems from Game Developer was

released earlier this year.

Into the Future

W hile respect for the game develop-

ment profession has grown during

the magazine’s lifespan, the industry and

the roles developers play in it continue to

evolve as gaming plays a bigger part in the

entertainment and business worlds. Some

of today’s trends were readily predictable

back in 1994: rising production values,

increasing IP crossover with other media,

and consolidation with market growth.

Other trends, however, were not so easily

predicted: the proliferation of mobile

phones and their near-immediate ubiquity

as a new game platform, the spike in con-

sumer savvy and expectations, and the rise

of fledgling game studies programs at

schools and universities around the world,

which is shifting the knowledge-transfer

base in game development from the bed-

room to the classroom.

“I certainly envy the kids learning this

stuff today,” confesses former columnist

Lander. “I received an e-mail from a fifth

grader a month or so ago who not only

understood my particle system article from

1998 [“The Ocean Spray in Your Face,” July

1998], he had improved upon it in a lot of

very interesting ways.” Those who’ve been in

the business for a few years and are still

looking at the studio down the street as their

competition might want to check out the

schoolyard too. q
by Jennifer Olsen

w w w . g d m a g . c o m 29

• “Game Development Myth vs. Method”
by Mark Cerny and Michael John (June 2002)
Cerny’s many collaborators over the years may not
appreciate that this production manifesto has
come to be known widely as “The Cerny Method,”
but this article exposed the common foibles that
have long besieged game production and deftly
explained how to allocate resources to circumvent
them. It’s the preproduction, stupid!

• “How to Hurt the Hackers: The Inside Scoop on
Internet Cheating and How You Can Combat It”
by Matt Pritchard (June 2000)
When online gaming exploded in popularity, develop-
ers quickly found themselves besieged by cheaters
exploiting game systems to their advantage. Fed up,
Ensemble’s Pritchard got into their diabolical
minds in this widely circulated investigation.

• “Physics, The Next Frontier”
by Chris Hecker (October/November 1996)
Hecker kicked off his seminal four-part series on
how (and why) to build a physics engine seven
years ago; today the tree of physical simulation is
finally bearing the fruits of emergent gameplay.

• “Postmortem: Ion Storm’s DEUS EX”
by Warren Spector (November 2000)
I have since forgiven Spector for the sleepless,
deadline-addled night I spent pruning his mag-
num opus down to the requisite 4,000 words from
the staggering 9,000 he submitted. That Spector
himself used to be a magazine editor only made
me question his sadistic prolificacy more. Thank
goodness he spins a great yarn.

• “Postmortem: DreamWorks Interactive’s
TRESPASSER” by Richard Wyckoff (June 1999)
Nearly three years after Hecker’s physics articles,
we learned that dynamically stacking crates was

still pretty difficult. TRESPASSER was the original
“and now . . . the rest of the story” Postmortem. I
still remember the calls from DreamWorks’ lawyers-
claiming-not-to-be-lawyers. TRESPASSER developer
Austin Grossman later edited CMP Books’ collected
Postmortems from Game Developer.

• “Game Developer Reports: The Top 20 Publishers”
by Tristan Donovan (September 2003)
Nibbling the hand that feeds us is an irrepressible
tradition for game developers, but with the trend
toward consolidation in publishing, it was time to
reevaluate the publishing landscape and learn
how developers were feeling about their place in
it. Confidential surveys showed which publishers
produced happy developers and which did not.
That got their attention.

• “Postmortem: Presto Studios”
by Michael Saladino (December 2002)
We broke from tradition and did a Postmortem of
a recently defunct studio, examining how circum-
stances at a company that did so many things
right could suddenly turn so very wrong. Life is
getting harder for small developers, and sadly I’ve
gotten quite a few “it happened to us too” e-mails
since Saladino’s article appeared.

• “Formal Abstract Design Tools”
by Doug Church (August 1999)
Playing games is easy; talking about game design
is hard. Church realized that while hardware was
advancing, analytical tools for game design were
not. Step one: Try to create a common vocabulary.

Many of these articles are available at Gamasutra.com.
Hecker’s articles are available at
www.d6.com/users/checker/index.htm. Can’t find an
issue with one of our favorites? Pick up a back-issues
CD-ROM at the Gamasutra.com Store.

O U R F A V O R I T E A R T I C L E S

The development team
behind Game Developer.
Front row, left to right:
Jennifer Olsen, Kenneth
Wong, Audrey Welch
Back row, left to right:
Everard Strong, Jamil
Moledina, Peter Sheerin

ed hooksM O T I O N C A P T U R E

d e c e m b e r 2 0 0 3 | g a m e d e v e l o p e r30

Chasing Gollum:
How to Bridge Acting
and Mocap to Create
Compelling Performances

E D H O O K S | The author of Acting for Animators (Heinemann
Publishing, 2001), Ed teaches acting to both stage actors and animators.
His clients include Disney Feature Animation, Valve, Ringling School of Art
and Design, PDI/DreamWorks, Electronic Arts (LA), Midway Games,
Filmakademie Baden-Württemberg (Stuttgart), Animal Logic (Sydney,
Australia), Microsoft X-Box/Sports Games, BioWare and others. You can
learn more about him by visiting his web sites: www.actingforanimators
and www.edhooks.com. His e-mail is edhooks@edhooks.com.

Chasing Gollum:
How to Bridge Acting
and Mocap to Create
Compelling Performances

ill
us

tr
at

io
n

by
 D

om
in

ic
 B

ug
at

to

w w w . g d m a g . c o m 31

M ocap, the strange sister in the attic, is final-

ly being brought downstairs. Animators

may not like their sibling very much, but

they’re learning to live with her. After years

of awkward silence interrupted by angry

outbursts, everybody can at least sit in the same room and

watch The Simpsons together. And by the way, that’s Gollum

you see crouched in the corner over there. We can probably

thank him and the team at Weta Digital for this new living

arrangement.

The relationship between animators and motion capture

specialists is strained for several reasons. First of all, the

respective job functions are a classic left-brain versus right-

brain conflict. The technical capture of motion data is

arguably more science (left brain) than art (right brain), while

animation, regardless of whether it is 3D or traditional, is

more art than science.

Second, if peace in the family was part of the goal, mocap

got off to a perfectly lousy start. It was sold as the expensive

new family car that anybody at the company could drive if they

had a set of keys, even if they only had a learner’s license.

Several years ago, someone got up at the Game Developers

Conference and said that it doesn’t matter if you are a produc-

er, programmer, or animator, if you’re directing mocap, you are

Steven Spielberg or James Cameron. Yeah, right. And if I ride a

bicycle, I’m Lance Armstrong. Given the production-quality

demands of today’s consumers, it is essential to recalibrate the

game industry’s perspective on acting. A company’s animators

cannot make good acting out of bad mocap.

Let’s repeat that: Animators cannot make good acting out of

bad mocap.

Having taught at a lot of game companies, I’ve perceived a

systemic schism between the animators and the programmers

and between animators and mocap. Given the complexity of

programming that goes into the typical game nowadays, plus

the astronomical costs of game development, this divide is

understandable. But it’s a schism that needs to be bridged

going forward. More often than not, when I teach a class to

game animators, someone will say to me afterward, “Gosh, if

only Sam the programmer had been here,” or, “I sure wish

the mocap people were here. They were working today.” The

goal is to get the entire production team, from designers to

animators, on the same page. But because animators are

more right-brained than many of the other developers, it’s a

difficult challenge.

In an effort to bridge this creative schism, this article presents

a collection of acting pointers to mocap developers, regardless

of the system used or the size of the company.

Good Acting Isn’t as Easy as It Looks

S everal years ago, when I went to teach a class at a game

company, one of the producers took me into his office to

explain what he wanted the class to accomplish. He loaded up

one of their current games and started playing it, telling me that

he had personally acted out much of the mocap on the screen.

He explained that he was a better actor than others in the com-

pany, which was why he did it himself. Then he put down the

controls and demonstrated how a “good actor” takes a bullet

and how a “bad actor” takes a bullet.

I stood there with a silly agreeable grin on my face as this

fellow took bullets and did falls on the carpet in his office. He

wanted me to teach everybody else in the company to do it

like he did it. There was nothing I could do but keep grinning

and nodding my head in agreement. I couldn’t very well tell

him that what he was doing didn’t have much at all to do

with acting. He may have been the Bill Gates of games and a

prince among men, and I’m positive he meant well, but he

was not an actor. It was a classic case of someone underesti-

mating the art.

It is true that some people have a natural feel for acting in

the same way that Eric Clapton has a natural feel for music

or Seabiscuit had a natural feel for racing. However, acting is

not usually something a person can do without training.

Peter Jackson understood this when he hired classically

trained actor Andy Serkis to help create Gollum for his Lord
of the Rings movie trilogy. The realization of that character

was a watermark in animation history, a true collaboration

between an actor and the animators. Unless they were all at

the top of their form, you wouldn’t have had a Gollum.

When I first saw that character come slithering out of the

rocks, my jaw dropped. The earmarks of a good actor are all

over the place. A prime example is the way Serkis obviously

understands Michael Chekhov’s concept of the psychological

gesture (see Lessons for the Professional Actor in For More

Information). When Gollum is being extra crafty, note what

he’s doing with his arms and hands. Those are psychological

gestures, and they create a complex emotional response in the

viewer, capitalizing on the fact that our sense of sight is more

powerful than our sense of hearing.

Casting Is Half the Battle

G ood performance animation in a game requires that you

begin with a skilled performer. It makes sense to consider

casting a physically fit and agile, classically trained actor rather

than a gymnast, dancer, stunt person, or athlete if the end

character must interact with others and behave believably in

complex gameplay situations. A gymnast or athlete may be a

fine choice for a sports or arcade game but will probably not

have a lot of knowledge about acting. A performer may be

able to move beautifully but still deliver a weak performance.

If you have a director who is also weak on acting theory or

directing such a performer, you have a certain recipe for a

wooden end result.

Shakespeare advised that actors should “Hold the mirror up to

nature” (Hamlet, act 3, scene 2), and it was more than a superfi-

cial suggestion. Your player is hard-wired by nature to read subtle

signals in other humans. That is why acting matters. If your game

characters move in a stiff and unmotivated way, you will probably

not receive any protesting e-mails about it because the players

know it’s only a game; they cut you a lot of slack because they

know you’re just spoofing. But if someone in the player’s own life

moves that way, it would set off emotional alarms.

Human beings begin recognizing what kind of human move-

ment rings true when still in the crib. By the time a person gets

to be 13 years old, he or she already has a doctorate in human

movement, even if he or she can’t conceptualize and explain it to

you. It is primal and evolutionary; we learn from one another

through a process of mimesis. We understand early on, for

example, what tension in the body looks like and that it often

precedes an outburst of some kind; we recognize that relaxation

manifests itself as a feeling of weight, not lightness; and we rec-

ognize that there are smiles that can be trusted (the muscles

around the eyes contract) and smiles that perhaps cannot be

trusted (they don’t contract).

Dancers, gymnasts, and athletes do not typically move like

normal people. They are trained to stand up straight and not

slouch, for starters. If you pass such a person on the street, you

recognize right away that he or she is different. An experienced

ballet dancer tends to walk by putting one foot directly in front

of the other; an athlete or gymnast is going to be more loose-

limbed than most of us. Depending on his or her sport, an ath-

lete will likely have unusual upper-body or lower-body strength

and musculature. Stunt performers move more normally but

may not know much about acting. I have worked on TV shows

with some stunt doubles who were actually pretty good actors,

but most of them are more athlete than actor.

In a mocap session, the goal is often to capture hundreds of

photo-real moves that will later fit together. From my perspec-

tive as an acting teacher, that is a technical limitation, not an

end goal. I understand why you must do it and don’t envy you

the task. But if you are looking for strong performance anima-

tion, movement cannot be separated from acting.

Here are some examples of how motivations and objectives

affect movement in a performance, and why the director must

keep them in mind to achieve optimal results. If you direct a

mocap performer to “walk slowly from point A to point B and

stop on the mark,” that is not actor-sensitive direction. The per-

former must have a reason for walking, a destination. If you

don’t give him a contextual reason, he’ll do the move as you

request, but the move will be hollow. A character will walk one

way if she is moving across the room to take a lover into her

arms and another way if she is moving to answer the phone. She

will walk one way if she is moving across the room to meet her

boss and another way if she is moving to greet a child. She will

move one way if she is timid and another way if she is bold. She

will walk across the room one way if she forgot to turn off the

stove and another way if she has a rock in her shoe.

Certainly, a non-actor will understand simple contextual

directions such as “Xenon is chasing you with a ray gun!” or

“If you step on a land mine, you’re toast.” But a non-actor

may well be weak on characterization itself. Your end charac-

d e c e m b e r 2 0 0 3 | g a m e d e v e l o p e r32

M O T I O N C A P T U R E

Actor Andy Serkis in full motion capture regalia, and behind the CG mask of Gollum. Photos courtesy of New Line Cinema.

ter may or may not be intended to walk and run like the

mocap performer you have hired. An actor can likely make the

proper physical adjustments; a football player probably can’t.

Another example: If a guy is feeling amorous and goes out

on a date, he has an objective. He may put his arm around his

date’s shoulder and look longer into her eyes. In acting theory,

these are actions in pursuit of an objective, a concept that is

workaday for a trained actor but may be Greek to a gymnast.

Actor Constantin Stanislavsky, father of “the method,” defined

acting as “playing an action in pursuit of an objective while

overcoming an obstacle.” If an actor knows why he is moving

or carrying out a particular action and what the obstacle is, the

capture will look more believable.

Even a straightforward war-themed game can improve by

understanding this principle. A soldier at war wants to survive.

That is his objective. He may have signed up for patriotic rea-

sons, but in the heat of battle he simply wants to do the job

and get out of there alive. The objective of survival and the

obstacle is the situation. If this scenario is enunciated in mocap

session, it will make the character movement edgier and more

credible. All humans act to survive. We automatically recognize

and respond to the survival strategies of others we meet in the

world, including the characters in a game.

Thinking Leads to Conclusions;
Emotion Leads to Action

Emotion may be defined as an automatic value response.

When you feel an emotion (such as fear), you tend to do

something about it — run, confront the danger, scream, reach

for your gun, and so on. Each of your characters has his or her

own set of values and resulting emotions.

We humans relate to one another largely through our emo-

tions; captured movement should ideally also expose emotion.

Many years ago at the Disney Studios in Hollywood, Disney’s

drawing instructor, Don Graham, gave a famous lecture about

the importance of animating force (impulse) rather than form

(movement). In general, 3D leans heavily toward the animation

of form, and mocap tilts even further in that direction. One of

the biggest problems in games is that the character movement

often appears mental. A character decides to move from here

to there rather than doing so in response to an emotion. One

reason it can look like that is because mocap is capturing

movement rather than acting.

Acting theorist Artonin Artaud famously pointed out that

actors are “athletes of the heart.” Movement that is motivated

by thought instead of emotion will inform your players, but it

will not move them emotionally.

Animation vs. Live Acting

T hat old saying about how “animators are actors” is not

strictly correct. In preparation for this article, I went look-

ing for current wisdom about mocap. I came across a man —

no names, please — who evidently owns a mocap studio. He

explained in his sales pitch how he often uses the animators at

the client company as performers because they have a good

understanding of the character and because “animators are

actors, too!”

I’ve heard this “animators are actors” thing a thousand

times, and I get the drift. I understand that an animator gets

into the skin of the character and, in that sense, can be thought

of as an actor. However, acting as perceived by the rest of the

world is something that happens in the present moment.

Animation and live acting are two very different skills. If I

kiss you on the cheek, you’ll have an emotional response, pro

or con. Actual actors have to deal with that reaction in the

present moment. Animators don’t have a present moment. They

have to create the illusion of a present moment. The performers

in your mocap session are acting in the present moment, but

the animators that lay the last mile of the performance pipe are

not. This is another reason why there is a natural tension

between mocap and animators.

Scenes Begin in the Middle

L et’s say a character enters from the left, crosses to the cen-

ter of the room, glances this way and that, and exits on the

right. Simple, right? You can direct that easily, right? Okay, let

me ask you if you considered the following questions:

Where did the character come from when he entered? What

happened before the sequence? Whatever happened prior to the

sequence will dramatically affect the movement and dynamic of

the sequence being captured.

When the character looks this way and that, will you have the
actor actually see something, or will you have him pretend to be
looking at something? Even if the character’s face is not being cap-

tured, the body will move differently if your performer actually

looks at something. Have him, for example, look at a shelf on

the back wall of the studio to his left and then look at the bath-

w w w . g d m a g . c o m 33

Andy Serkis on the Weta Digital performance-capture stage in
Wellington, New Zealand. Photo courtesy www.serkis.com.

room door in the far right corner. Acting is doing. The more you

can have the character actually do something rather than pretend

to do it, the better it will look.

When the character exits, where is he going? You may not care

because it is only necessary to get him out of the room, but in act-

ing, the purpose of movement is destination. The character enters

for a reason and exits for a reason. It is not simple movement.

You can extend this principle for sequences that involve mul-

tiple characters. Every single one of them has a “moment

before” and a “moment after.” Every single one of them has a

context and his or her own set of emotional responses.

Actions Act upon Actions

A character should play an action until something happens

to make him play a different action. This principle is a

close cousin of scenes beginning in the middle and is particu-

larly important for your secondary characters. Remember in

the early-generation games, when the player would enter a

room and discover some character in there just rocking back

and forth in a hold cycle? You can’t get away with that kind of

thing any longer. A character who is discovered in a room pre-

sumably was doing something before we arrived. Our arrival is

what causes him to do something else. To capture the action of

such a character, don’t have him start from a static place.

Come up with something he is already doing before the

sequence begins.

Going back to the example of an amorous guy on a date, he

may have roaming hands, but if she pushes him away, he’s

going to have to try another strategy if he wants to achieve his

objective. He was playing an action until she did what she did.

Then he played a different action.

Creating Atmosphere

A character moves differently in the cold than in heat. He

may move differently at 2 a.m. than he will at 10 a.m.

Each room or set has its own atmosphere that ideally will be

taken into account by your director and mocap performer. A

chapel, for example, has a different atmosphere from a party,

and both of these have different atmospheres from a poker game

or a jail cell. It is very easy to overlook this aspect of perform-

ance, but it can make a big difference to the resulting credibility.

The Point of No Return

L ooking five or seven years down the road, there is no ques-

tion that the most successful titles will feature characters

with more human complexity and better-motivated movement.

Oh sure, we’ll still have games that are basically the equivalent

of Mister Toad’s Wild Ride. The situations in racers and foot-

ball games and shoot ‘em ups won’t evolve all that much, and

there will always be a market for them. But increasingly the

players that prefer more situational games will expect more

believable characters, and they will cut you less and less slack if

you don’t give it to them. Just as there is no going back to rub-

ber hose animation in feature films, there is no going back to

the first generation of character games.

Motion capture is here to stay, but right now the game industry

is not using it to its full potential. The feature film crowd is doing

better. True, feature film artists have an advantage over game

artists; they can work on a single scene until utter perfection is

achieved. Games need hundreds and thousands of variables

depending on gameplay. The financial structure and development

process between films and games is also different. But we’re look-

ing into the future, remember? Game companies are going to have

to come to terms with the ever-higher expectations of players. Ten

years from now we will look back on 2003 as quaint. We have

already passed the point where whoever is in the office kitchen

can put on the suit while somebody else in the office directs.

Mocap sessions will increasingly require the skill of specialists that

have a seat-of-the-pants understanding of acting principles and

theory, plus the input and performance of strong actors. q

d e c e m b e r 2 0 0 3 | g a m e d e v e l o p e r34

Richard Boleslavsky. Acting, the First Six Lessons. Theatre Arts
Books, 2003.

Michael Chekhov. Lessons for the Professional Actor. Performing Arts
Journal Publications, 1985.

Harold Clurman. On Directing. Simon & Schuster, 1997.
Uta Hagen. Respect for Acting. Macmillan, 1979.
Issac Kerlow. The Art of 3D Computer Animation and Effects (revised

third edition). John Wiley & Sons, 2003.
Alberto Menache. Understanding Motion Capture for Computer

Animation and Video Games. Morgan Kaufmann, 2000.
Frank Thomas and Ollie Johnston. The Illusion of Life: Disney

Animation. Hyperion, 1995.
Jeff Young. Kazan, the Master Director Discusses His Films

(Interviews with Elia Kazan). Newmarket Press, 1999.

F O R M O R E I N F O R M AT I O N

M O T I O N C A P T U R E

Trained actors approximate natural movement better than other
physical performers, such as athletes.

di davies with charlesV I S U A L D E V E L O P M E N T

d e c e m b e r 2 0 0 3 | g a m e d e v e l o p e r36

W hen visual style is one of the distinguish-

ing features of a game, an ad hoc

approach is not a sure way to execute a

strong visual direction. In the handful of

cases where such an approach has

worked, usually there is a strong initial vision that helps guide

the direction. The typical game development approach, however,

involves floundering around in hopes that a direction will magi-

cally appear. This naïveté can be the death of polished visual

style and is easily remedied. If you know where to look and

know how to plan, resources are available that can help jump-

start the creative process and actually save production time.

As the scope of game projects attempt to match the entertain-

ment value of feature film productions, game companies are

specializing, adding new, more compartmentalized departments

that mimic film production models, adopting a more disciplined

approach to preproduction. This approach is not just necessary

for big-budget games but also for mid-budget games. More and

more, game companies will look to feature film animation pro-

fessionals and CG film professionals to help answer the call.

Using CRASH NITRO KART, released for the Gamecube, Xbox,

Playstation 2, and Game Boy Advance as an example of an

approach to visual development, we’ll examine the challenges

faced and processes used by the visualization teams at Vicarious

Visions in Troy, N.Y., and Animation Academy in Burbank,

Calif., to bring a vision for a cartoon-style racer into focus.

Goals

I n order to have successful art direction in games, developers

must decide early on what the visual goals are and how the

visual direction can complement the game design and technical

goals of the project. There is an assumption that prerendered con-

tent has fewer technical constraints than real-time game content.

This may be partially true, however in both cases, technology will

D I D A V I E S | Di is the visual development manager at Vicarious
Visions in Troy, N.Y. She has eight years of traditional animation
experience in addition to 11 years of game development experience.
She can be reached at di@vvisions.com.

Racing Toward
A Vision:
Racing Toward
A Vision:

IInntteeggrraattiinngg TTrraaddiittiioonnaall
VViissuuaalliizzaattiioonn TTeeaammss iinnttoo
GGaammee AArrtt aanndd AAnniimmaattiioonn

w w w . g d m a g . c o m 37

zembillas, joe pearson, and john nevarez

often determine what can be achieved creatively. Established goals

are not only critical to sustaining focus during highly creative

brainstorming, they can also prevent time-consuming departures

from the intended vision. Full understanding of the license and the

approach ties in with the design work. For example, Disney

encourages its entire team of artists to avail themselves of the

script and storyboards so that the artists are continually thinking

about the property and the motivation for their work.

Key questions should be asked before any visual team is

sought out to begin visualizing the world, which will avert

wasted effort and assist in defining goals: What is the intended

effect of the visuals? (Does the overall game want to convey

humor or horror?) What are the property’s origins? Is it depict-

ed in other media? (For instance, comic book heroes are born

in strong graphic worlds and can serve a great starting point for

visual direction.) How does the protagonist fit the world to be

designed? (Color schemes can be designed to play up the main

character or characters, to frame key moments in worlds, or to

convey an overall mood.) What is the timeframe? (Time can

certainly determine the scope of the visual development and the

complexity of the world that can be created.) What are the

technical constraints? (Visual direction can sometimes be inef-

fective if limitations are not considered before designing, taking

into account the target platform and game genre.)

Preparing for the Work

F irst, do your homework. Learn as much as you can about

your subject matter and jot down your observations.

Design notes go a long way toward building a foundation for

art direction. It doesn’t matter if you are tackling a new license,

an established license, or original IP (intellectual property).

Film’s visual development giants (Disney, Pixar, Warner Bros.,

Dreamworks) build their style guides from the notes and obser-

vations of the art director. The style guide gives production

artists a direct reference for the visual direction.

The more preparation the art director can do to help the pre-

production and production artists understand the intent of his or

her art direction, the quicker the implementation aligns with the

vision. The pressure to be artistically specialized is greater now,

and so is the need for more efficient direction. Encouraging all

team artists to adopt more disciplined attitudes toward prepar-

ing for the work is critically important for efficient development.

It is equally important for project managers and project planners

to allow and support for this time.

Another part of preparation is asking lots of questions.

Regardless of whether artists are coming from animation,

comics, graphics, or illustration, there will be numerous issues

that affect their approach to the work. The communication

pipeline, interpretation of direction, and other work commit-

ments can affect your schedule, your workflow, and your end

result. Make sure you have the opportunity to discuss and doc-

ument your processes, and be sure you learn about theirs. What

is obvious to you may be completely counterintuitive to them.

In our case, three of the five professional film animation artists

on our off-site team in Burbank were new to visual development

for games, and we had to spend some time getting our bearings.

While story and acting are key for a film animation artist, games

rely on events and gameplay timing. Camera angles and game

engine speed affect the artistic decisions for a game artist work-

ing on a cartoon racer, rather than character motivation or scene

staging. The Burbank team played the prototype of CRASH NITRO

KART not only for creative reference but also to better understand

the nature of gameplay progression and timing. Gameplay events

were described as opportunities for visual staging in the same

way as a movie relies on cues and story progression.

Finally, don’t assume too much in your preparation. Defining

and proving visual direction early enough to reduce risks or

challenges before too much has been invested in actual produc-

tion is wise, but setting expectations based on assumptions can

cause problems. Some common misconceptions can lead to big

disappointment and unexpected results:

All of the work that is generated in preproduction is going to be
used. Typically, 95 percent of what will be created early in the

visual development phase will be scrapped, because the nature of

early visual development is more like visual brainstorming; we

FIGURE 1. Steps showing the progress from concept to implementation for the clock tower track in CRASH NITRO KART.

called this the “free-form process” on CNK. It was a fast and

loose, highly creative process using rough sketches which helped

move the visual and design direction along. Without this process,

we may have committed to ideas and generated polished concep-

tual work that would have ultimately amounted to nothing more

than a great effort wasted. The smaller percentage of actual con-

ceptual work that is used for the game will set the tone for entire

worlds or characters, and is worth that investment.

Any visualization professional can jump in and nail the style.
Without an assigned “keeper of the vision” or art director, it is

difficult for artists to interpret the intent of the design and focus

on a cohesive vision. If the visual development team is trying to

emulate the vision of someone not available to them, then it is

essential to develop a style guide before the artists start visual

development, which will lend focus to the production team who

must implement the visual direction. Don’t overlook the impor-

tance of finding visual artists with the skills appropriate to the

style needed. If you want a cartoon-style game, hire animation

professionals from the film or TV animation industry. If you

want a comic book–style game, hire professional comic artists.

The development team will readily implement the visual work.
Sometimes 2D conceptual work is difficult to translate in 3D

space, especially where scale and perspective issues arise. Be

prepared to test the production implementation of conceptual

work early on, before the visual development work is too far

along, to determine whether you should modify your approach.

If we hire an off-site team, we just hand them the work and they
will deliver exactly what we want. When traditional artists have

to adjust their approach to account for unfamiliar technology, it

is very important that at least one person be available from the

game development team to support the creative process.

References are very important to convey ideas and to help give

context to the game design.

For CRASH NITRO KART, the non-game artists spent a lot of

time looking at the design of a variety of games to help them get

a feel for the work they were assigned, in addition to the visual

references provided. Recognizing similarities between the design

process for games and the design process for film animation was

crucial for the non-game artists to frame a context for their work

and made their designs stronger and more relevant to the game.

Two Industries, Separated by a
Common Language

W hen professionals in two industries converge to work on

a project, terminology can be a challenge to communica-

tion. It is important to establish a common language or choose

the terminology to be used when working between industries.

Our process for world visualization was formed partly from tra-

ditional animation processes and partly for custom needs. A

detailed description of that process, complete with visual exam-

ples, follows. The name of each stage of the process used for

game development visualization is followed by a comparative

name in parentheses, which is used in animation development.

High concept (script). The high concept is a broad-strokes

description of all of the game’s worlds which describes the

essence of the world. The high concept tries to capture the pro-

gression and tie in elements of the world to jump-start the visu-

al brainstorming process before the level is designed. In essence

it serves as the script for visualization.

For example: In Lava World, large pools of lava bubble by
the path’s edge, steam vents intermittently blow steam across
the path, and there is a large series of caverns in the distance. A
giant broken statue of a Roman god lies half-sunk in the mud.

Free-form sketch (inspirational sketches). The free-form is not

tied to the map overview or to progression specifically but

rather attempts to unify the high concept and thumbnail sketch-

es to begin to shape the world and the props within it (Figure

2). The free-form is intended to encourage the creative brain-

storming of visuals rather than restrict it by thinking too much

about the technical constraints.

Overview map (workbook). The overview map sketch uses the

track or level design generated by the design team and brings

together all sections of the world in an overhead shot, directly

using the shape of the track or AI path, and indicating the

placement of landmarks, props, and reuse of elements. This

overview helps provide contextual reference for how the player

will experience the world.

Screenshot (camera layout). The screenshot can help frame a

series of key moments experienced during gameplay. This image

can be taken from raw playable levels, may include placeholder

objects, and can cut down substantially on the time spent trying

to find appropriate concept perspectives.

Moment sketch (layout). The moment sketch (Figure 3)

frames key moments in the level. It is the final result of having

d e c e m b e r 2 0 0 3 | g a m e d e v e l o p e r38

FIGURE 2. Free-form sketch — inspirational sketches from a brain-
storming phase can help streamline the visual direction.

V I S U A L D E V E L O P M E N T

taken the free-form concepts, raw screen captures of the bare

track or level, if available, and developing the fully stylized ver-

sions of the key moments. The sketch should be clean and

ready for color, and in the proper visual style.

Color moment (color key). The color concept (Figure 4) is the

color version of the black and white, finalized moment sketch.

The color version should attempt to capture color schemes

accurately, as well as lighting and effects as accurately as possi-

ble. It can also convey texture map ideas. The color concept

artist should be aware of the color scheme outlined either in the

high concept or by the concept lead.

Gameplay sketch (layout notes). While not a sequential part of

the process, the gameplay sketch (Figure 5) is a rough sketch, sim-

ilar to the free-form or thumbnail, which specifically demonstrates

gameplay ideas. Some gameplay sketches can be rough layouts of

gameplay progression through a level, others might convey char-

acter moves or boss fight designs. Ideally, the gameplay sketch is

created early in the design process to help prove design ideas.

Object detail sketch (thumbnail). The object detail sketch is a

focused drawing of a particular object or path element that needs

specification for the development team to implement. Often the

object detail sketch is an afterthought, when a development artist

or designer realizes he or she needs to see a mockup in order to

fully understand the idea. Sometimes the object detail is a power-

up or a hazard, again serving as a visual aid for an idea before

implementation is attempted.

Model sheets (same). Character visualization has closer simi-

larities in process between games and traditional art, since it has

its own unique set of needs. Developing a character for games

still requires the development of a model sheet and pose sheet to

assist the animators and modelers, so in this regard it is very

much like traditional methodology. One of the key differences in

creating a character design for 3D games as opposed to 2D film

media is that the character has to be approached more thor-

oughly. Planning for interaction, collision in the game environ-

ment and range of motion affects the character’s girth and scale

as well as the shape and design of cloth, equipment or weapons.

Production flowchart (none). The production flowchart is a

simple, one-page visual diagram to help convey the overall

process flow. It can be very helpful as a quick reference for the

design team to understand the context of their process and to

demonstrate when and how to seek out approvals. In traditional

animation production, the process has been established for a long

time, and most companies invest in internships to train their new

artists in their processes. Since game production is still in its

infancy, tools such as the flowchart help speed along the compre-

hension of the process structure.

Working with Off-Site Teams

I n situations where there is an off-site team, it is critical for

the art director to spend some time early in the process with

that team. Visiting the off-site environment makes it easier to

identify some of the issues the team is facing; you can learn

about the team members, help with communication setup and

protocol, and in general be available for the team to communi-

cate expectations and test the process discussed.

For CRASH NITRO KART we scheduled an extended visit to

Burbank right at the beginning of the collaboration. This time

was hugely beneficial in establishing a smooth communication

pipeline, but in retrospect, we probably could have scheduled

another visit to offer the off-site team more instruction on how

their work was being interpreted and to share work in progress

via testing stations.

Scheduling and budgeting for on-site visits is one of the best

investments a producer can make and facilitates a much

smoother pipeline for your preproduction leads. If you have

visual development occurring over several months or even a

year, plan to schedule at least three or four visits to facilitate

feedback and reviews, especially if it is not possible for your art

director to be on-site full-time with the visual development team.

Part of the challenge of successful communication is taking into

w w w . g d m a g . c o m 39

FIGURE 3. Early blocked out levels can help frame key moments.
FIGURE 4. A color version of the moment sketch conveys color
schemes and lighting.

account personality and methods of communication. In particular,

if you are coordinating a group of visualization contractors, it is

critical to adapt your approach for the inevitably different needs

of your visual team. For example, if a freelance artist has several

commitments to juggle but you really need his or her style of

work, you need a very strong communication loop with that indi-

vidual to ensure the work is not slipping and that other issues are

not deterring the artist from getting your work done on time.

Visualization Variables

S omething to keep in mind when considering the approach

described in this article is that it was appropriate for our

style of the game, the time constraints, and the professionals

involved. For instance, if you are looking at doing a free-roam-

ing platform game, you do not necessarily have the same techni-

cal or design constraints present in developing visuals for a rac-

ing game. Your level of detail in off-the-path elements may be

greater, you may have a greater number of concepts to develop,

and you may need to introduce different steps into the process.

Visual development is usually a much greater investment for a

free-roaming character platform game. For example, on a recent

high-profile character license just the character development took

roughly 12 months for one artist and required about 70 draw-

ings. The time spent developing new characters for CRASH NITRO

KART was closer to three months, but this was with already-

established main characters. If the license required all-new char-

acters including the main characters, and the design of the char-

acters was completely open, it would take that much more time

to develop the characters.

For the world visualization on CRASH NITRO KART, six on-

site and off-site artists worked for a concentrated period of

nearly five months, then a smaller core group of on-site artists

worked for an additional three months. In total, 800 inspira-

tional drawings were created, not including the final concepts

which added up to 60 black-and-white moment sketches and

50 color moments (keys) for 13 worlds. Compare that output

to world development for a free-roaming character platform

game that required one year of preproduction to produce hun-

dreds of inspirational drawings, and then two years of concen-

trated visual development with two concept artists in parallel

with production.

Demands for visual excellence keep rising while budgets stay

the same. Achieving solid visual development takes a strong art

director, a professional concept team, and the willingness to invest

proportionally more in preproduction. This investment proved

that it reduces the amount of time that is wasted on art produc-

tion that needs to be redone due to a lack of clear vision of what

the game visually should look like. To date, the game industry has

made more use of preproduction for cinematic portions of games

than for the in game visual direction. For in-game visualization,

certain types of games such as character platform games or RPGs

have historically made more use of preproduction. But as our

efforts on CRASH NITRO KART proved, the benefits of using visual

development to help focus visual content creation are clear. q

d e c e m b e r 2 0 0 3 | g a m e d e v e l o p e r40

V I S U A L D E V E L O P M E N T

FIGURE 5. The gameplay sketch illustrates design ideas.

Thanks to artists Rui Tong and Chongguang Zhang, who created the
beautiful color work seen in this article. Thanks also to Karthik Bala
for the great creative direction on CNK and for the opportunity.
Kudos to the many production artists on CNK who worked hard to
implement the vision. Thanks also to Tobi Saulnier and Steve
Derrick for proofreading and support.

A C K N O W L E D G E M E N T S

BOOKS
Don Hahn. Disney’s Animation Magic. New York: Disney Press, 1996.
Frank Thomas and Ollie Johnson. Disney Animation: The Illusion of

Life. New York: Abbeville Press, 1984.
Mark Cotta Vaz. The Art of Finding Nemo. San Francisco: Chronicle

Books, 2003.
WEB SITES
The Animation Academy

www.theanimationacademy.com
Animation school featuring animation industry professional faculty

Animation Industry Database
www.aidb.com
Search for production companies, freelancers, and art schools

Mega Animation
www.meganimation.com
Resource for layout and concept artists

Games 411
www.games411.com
Resource for layout and concept artists

Gamasutra.com
www.gamasutra.com/companies
Directory of game art and animation contractors

F O R M O R E I N F O R M AT I O N

P O S T M O R T E M

d e c e m b e r 2 0 0 3 | g a m e d e v e l o p e r42

c a s e y h u d s o n , r a y m u z y k a , j a m e s o h l e n ,

Combat System
Development on
BioWare’s STAR WARS:
KNIGHTS OF THE OLD REPUBLIC

Combat System
Development on
BioWare’s STAR WARS:
KNIGHTS OF THE OLD REPUBLIC

C A S E Y H U D S O N | Casey was producer and project director on
STAR WARS: KNIGHTS OF THE OLD REPUBLIC.
R A Y M U Z Y K A | Ray is joint-CEO of BioWare Corp. and was
executive producer of STAR WARS: KNIGHTS OF THE OLD REPUBLIC.
J A M E S O H L E N | James was the lead designer of STAR WARS:
KNIGHTS OF THE OLD REPUBLIC.
G R E G Z E S C H U K | Greg is joint-CEO of BioWare Corp. and was
executive producer of STAR WARS: KNIGHTS OF THE OLD REPUBLIC.

Creating a new type of combat system
inside a 60-hour RPG is a daunting task.
There’s a spectacular amount of com-
plex interactions between the combat
system, data structures, and in-game
objects that make even visualizing such
a system difficult. Yet this is exactly what
BioWare did with its newest title, STAR

WARS: KNIGHTS OF THE OLD REPUBLIC.

a n d g r e g z e s c h u k

43w w w . g d m a g . c o m

M any of the design decisions made, and project

management methodologies used at BioWare

during the development of STAR WARS:

KNIGHTS OF THE OLD REPUBLIC (KOTOR)

were built on the experience of our excep-

tional staff from our past projects such as BALDUR’S GATE 1 and

2, NEVERWINTER NIGHTS, and MDK2. We set our high goals for

the combat system: first, we wanted our system to leverage the

fun of BioWare’s past RPGs and the experience we gained from

them. In addition, the combat system needed to look as excit-

ing as the battles in the Star Wars movies. Finally, the combat

system and the game in general had to feature an interface that

was very accessible; we wanted any player who likes Star Wars,
likes playing Xbox or PC games, or likes console or PC RPGs,

to have fun with the combat techniques in KOTOR.

What Went Right

1. An experienced team. Building a new and unique

game system is difficult at the best of times, but the most

valuable asset a team can have is people that have tried similar

things in the past. Fortunately, many of the senior members of

the KOTOR team cut their teeth on the original BALDUR’S GATE,

where we first developed the processes allowing us to make enor-

mous games with new methods of depicting RPG combat. After

developing BALDUR’S GATE 1 and 2, NEVERWINTER NIGHTS, and

expansions to both series, we had trained — and retained — a

very strong group skilled in the development of far-reaching

game systems, and we had prototyped many different combat

models over the years. Add to that experience a few forays into

console development (MDK2 for the Dreamcast and PS2), and

we had a team with all the experience required to navigate the

pitfalls and rewards for a large, mainstream console RPG.

We leveraged the experience of our team by making use of the

personal round-based system (one action per three-second round

per character) used in our previous titles. In addition, we had

experience in using Dungeons & Dragons’ D20 system to create

a satisfying type of party-based combat, something we wanted to

replicate in KOTOR. By basing the system on the personal round-

based system of the Star Wars D20 rules, we weren’t trying to

reinvent the wheel. Instead, we built upon what had succeeded in

the past, adjusting it for the new goals for this particular game.

We did add highly choreographed combat actions to provide

a more action-oriented experience for players. Success in this

area would have been much more difficult had we not worked

on a similar system for NEVERWINTER NIGHTS. It’s also worth

noting that a number of new, inexperienced people worked on

STAR WARS: KNIGHTS OF THE OLD REPUBLIC; BioWare’s matrix

structure mixes new and experienced team members to build an

efficient group dynamic.

2. Focusing on mainstream players. One of our

most important goals was to create a combat system

that would be easy to use for a broad cross-section of players.

Knowing that LucasArts’ revered Star Wars brand would give

the game widespread attention, we wanted to make sure that all

types of players — not just experienced console RPG fans —

could jump in and have fun.

To this end, we started with an over-the-shoulder view of the

action, giving a cinematic view of the surroundings, rather than

the top-down view of more traditional PC RPGs we had created

in the past. We also needed the combat to look as action-packed

as other mainstream games but be controllable through a simple

interface. These goals prevented the system and interface from

becoming overly complex and added weight to any feedback

from QA or focus tests that certain parts of the combat system

should be easier to use. Usability testing with fresh perspectives

played a large part in the development of the combat system.

We also adjusted our implementation of the Star Wars D20

rules, simplifying the player’s interaction with the rules in a

videogame setting. Fortunately our publisher, LucasArts, sup-

ported us in this endeavor, and we were able to balance our

attention to the D20 rules with playability considerations for

mainstream fans.

In the end, we were surprised at how well the combat system

turned out. Even though combat seemed complex at first glance,

most people mastered the system before completing the game.

Much of the positive feedback we received about the game was

from people who have never played role-playing games before.

3. Combat choreography. While the combat system

featured personal rounds for each character, we didn’t

want it to look like the combatants were taking turns via a strict

alternating system (we at BioWare affectionately call this “cave-

man combat,” where each combatant politely takes turns bonking

G A M E D A T A

PUBLISHER:
LucasArts
NUMBER OF FULL-TIME
DEVELOPERS:
20 at onset, 70 at peak
NUMBER OF EXTERNAL STAFF
AND CONTRACTORS:
15 QA, 5 for voice, 8 for sound
effects and music
LENGTH OF DEVELOPMENT:
3 years
RELEASE DATE:
July 2003 for Xbox,
Fall 2003 for PC
PLATFORMS:
Xbox and PC
DEVELOPMENT HARDWARE:
Dual 1600+, 512-1024 MB RAB with
a GeForce 3 or 4 graphics card
DEVELOPMENT SOFTWARE USED:
Visual Studio.NET, Borland C++
Builder, 3DS Max, Photoshop
NOTABLE TECHNOLOGIES:
BioWare Odyssey Engine

P O S T M O R T E M

the other on the head with a large club). To capture the excite-

ment of a Star Wars blaster or lightsaber battle, the action had to

look as fluid as possible.

To achieve this kind of realism, we used a “choreographed

animation” system for playing our combat animations. Each

character would “lock” with one enemy, attacking for part of

the round and defending for the other part of the round.

Animations were therefore made in 1.5-second choreographed

sequences, where one character did an attacking motion and the

defender performed the appropriate countermoves. Essentially,

combat actions were predetermined and synchronized between

interacting combatants.

This meant that characters could do virtually any combat

move that you see in the movies, and each attack would be

choreographed with the defender’s animations, enabling char-

acters to do spins, backflips, and rapid lightsaber flurries while

appearing to interact physically with other characters. Making

multiple animations for each combination of weapon types lim-

ited excessive repetition.

Choreographed animation was also efficient for the develop-

ment process. Since both characters were animated in tandem in

3DS Max, animators were able to see exactly how the anima-

tions would look in the game, streamlining development of the

system and the adjustment of animations. However, it was still

essential to review all combat actions within the context of the

game engine, to discover any subtle differences in playback with-

in the engine, on both Xbox and PC.

4. Interface iteration. In the early design stages of

STAR WARS: KNIGHTS OF THE OLD REPUBLIC we put a

lot of thought into the main interface and how the game would

be controlled. Since we were taking a new approach in creating

a strategic, party-based console RPG, we couldn’t be absolutely

confident in the interface design until we experienced it under

true game conditions. As we had learned on many of our past

projects, our first attempt at an interface simply initiated a

process of repeated iteration (including usually two to three

major revisions and multiple smaller iterations of each major

revision) that lasted right up until the project was complete.

The first version of the interface was crude, lacking the ele-

gance and simplicity that we later realized was needed. A set of

combat actions was attached to each button, which would gen-

erate a menu of context-specific combat choices. The complexi-

ty was confusing to casual players.

After watching the uninitiated struggle with the first interface

at E3 2002, the team leads, QA, and other senior members of

the company spent time that fall to record all known concerns

about the main interface, which prompted a fundamental change

in how we let the player interact with the world during combat.

As a result of this feedback, we decided to create more rigid

frameworks for player control. Players could interact with ene-

mies only by entering a combat mode. In combat mode, the

camera would focus on the hostile target, and non-hostiles were

non-selectable. In addition, we felt it was important to depict the

range of possible combat actions to players in the form of an

always-visible combat action menu (we extended this to non-

combat as well to keep it consistent, and called this the “hori-

zontal action menu”). These two factors made the combat much

less confusing, and with the addition of action icons instead of

drop-down menus, we finally had an interface that was becom-

ing easy and fun to use.

Between spring 2002 and summer 2003 (when the Xbox ver-

sion of the game was released; the PC version followed later in

2003), we did around 10 smaller iterations to arrive at the final

interface. After the most coarse, time-consuming, radical changes

(such as the ones just described), we eventually tunneled down to

dozens of smaller changes that took only a few hours to make.

We incorporated extensive feedback from QA teams at BioWare

and LucasArts, plus valuable feedback from usability and focus

testers at Microsoft, internal usability tests at BioWare, and mul-

tiple rounds of comments from the press, compiled during vari-

ous press tours and demos. This iterative process gave us confi-

dence that players would be able to control the game easily, but

d e c e m b e r 2 0 0 3 | g a m e d e v e l o p e r44

A 3DS Max 3.1 textured version for the Ebon Hawk, and a final PC in-
game version.

w w w . g d m a g . c o m 45

more importantly, we were starting to have fun playing it

ourselves.

5. Using feedback to tune the game.
One of the main problems with many

RPGs is game balance: it is easy to make a game

that is perceived as either too difficult or too easy,

but balance is elusive. Thus, we sought more

effective methods of getting fun-factor feedback

from our QA department during the course of

development. While we’d used feedback from

QA to improve balance and fun factor in previ-

ous games, we explored new ways of doing it

this time.

We devised a system to document combat feedback

that was used extensively by our testers during the last

few months of development. These documents listed

every combat encounter in the game, and each tester in

the QA department filled it out during their play-

through. The document included fields that detailed

the general difficulty of each encounter, the

amount of credits and experience points they

received, and the tactics and Force powers

they used to defeat the encounter.

Most of the testers could finish the game in

a weeklong session, so at the end of each week

we would review all of the data from the QA departments at

BioWare and LucasArts . We identified levels that were too

easy or too difficult. We looked at the overall treasure allot-

ment and decided whether it needed to be increased or

reduced. We also reviewed level progression and then tweaked

the experience point system throughout the game. This was an

ongoing, repetitive process that lasted through the last few

months of development; only through our quality assurance

teams’ painstaking effort, where they repeatedly documented

combat difficulty, were we able to hone the gameplay experi-

ence for both casual and hardcore players.

Balance testing was also aided by BioWare’s and LucasArts’

QA teams’ game-playing skills. Because QA was always trying to

plow through the game as quickly as possible, they would dis-

cover which Force powers and combat tactics gave them the best

playing advantage. Once we identified these overpowered cul-

prits, we’d “nerf” them, forcing the testers to use a broader vari-

ety of tactics and powers. By the end of the testing cycle we dis-

covered that people used a very large range of tactics, and no

one method proved superior.

What Went Wrong

1.Using a round-based system. Demonstrating the

first playable version of the game at E3 2002 uncovered

one of our biggest hurdles in the combat system’s development:

the graphics and camera angle made the game look so much like

an action title that people didn’t intuitively play it in a turn-

based manner. Novice players wanted to mash buttons

and twirl the thumbsticks during battle, breaking the

combat system and making the game look extremely

awkward. The interface’s discrete character control

enabled players to disrupt their current attack by

moving or accidentally selecting a container while

attempting to engage the enemy.

We battled this problem to the end of the devel-

opment cycle, and it required a lot of concerted

planning and work to overcome. Carefully control-

ling the player’s access to gameplay functions in

and out of combat produced a more intuitive sys-

tem, but consumer trade shows are not the place to

discover such problems in the first place, and we had to

recover from some of the poor press at the show.

The fundamental lesson learned, albeit in retrospect, is

that the scale of player actions allowed by a combat sys-

tem must match the scale of actions on which the system

operates; if a combat system is based on doing discrete

combat actions at any time (like throwing a sin-

gle punch or firing a single magic spell, as

occurs in our upcoming Xbox RPG JADE

EMPIRE), you should allow equivalent “per-

action,” low-level player control. Games like

STAR WARS: KNIGHTS OF THE OLD REPUBLIC with

higher-level strategic systems should actually restrict players to

only controlling higher-level strategic actions.

2. Tutorial handling. Though we were able to find a

good balance between strategic control and ease of use,

the final combat system still required considerable player adjust-

ment, because at the time no similar system had been implement-

ed. This uniqueness led us to attempt to train the player in all of

the basic control and combat systems in the first few areas of the

game. Many players found the complexity of the resulting tutori-

al areas detracted from their initial immersion in the story.

The tutorial condensed too much information into the first

hour of the game, when it would probably have been better for

us to spread the tutorial elements throughout three or four

hours of gameplay. Not only would this have been better for

the flow of the story, but also for the player’s retention of the

information. However, a benefit of condensing the tutorial to a

small number of areas was that iteration of the tutorial itself

(such as rewriting the tutorial text as interface changes

occurred) could occur more frequently and be tested separately,

with less risk to the overall project.

Another option would have been to include a separate,

stand-alone tutorial. We considered this in the initial design

meetings for the game but decided against it, fearing too many

players would skip the tutorial. To improve the game’s accessi-

bility, we felt console players unfamiliar with PC RPG conven-

tions needed training before getting into the bulk of the game.

An early color concept for the
HK-47 character.

d e c e m b e r 2 0 0 3 | g a m e d e v e l o p e r46

3. Lack of interface prototyping. Through an iterative

process of implementation, testing, feedback, and

redesign, we arrived at a main interface that exceeded our original

design goals. That process, however, was extremely lengthy — over

one full year — and required a huge amount of manpower, which

drove up our development costs. The key missing element from

our early paper sketches and graphical mockups was interactivity.

After several iterations of the interface, it became clear that

we were simply waiting to see how certain actions would

“feel” with the Xbox controller or PC keyboard and mouse,

and see how the game would respond. If we had an interac-

tive method for quickly prototyping our ideas, we could have

drastically shortened the iteration period. Though we had

actually experienced similar issues in all of our past RPGs,

KOTOR proved once and for all that more complex RPGs

require early hands-on design to develop powerful, transpar-

ent, easy-to-use interfaces.

On future RPGs like JADE EMPIRE, we hope to test our inter-

face ideas interactively much earlier in development, so we can

work out the “feel” issues well in advance of implementing the

interface in the actual game.

4. Sequencing of resources. One of the challenges in

working in a multi-project company like BioWare is

that sequencing of resources is a constant learning experience.

Over the years we have developed a number of techniques to

optimize the use of our matrix personnel system (see Ray

Muzyka and Greg Zeschuk’s “Managing Multiple Projects,”

March 2003), but there is always room for improvement.

Since the combat system in STAR WARS: KNIGHTS OF THE

OLD REPUBLIC was different from anything we had encoun-

tered in the past, we planned to mitigate risk with lots of

early preproduction and prototyping. We initially planned on

putting designers on the project early to prototype gameplay

into placeholder areas of the game, but things didn’t pan out

as expected. Instead, we ended up doing a fair amount of

retroactive design while balancing the requirements for story

and event scripting.

To solve this problem on future projects, we now pay closer

attention to the planning of personnel scheduling based on

what we learned in our past projects’ schedules, with the aim of

maintaining adequate staffing throughout each project. In some

cases this involves outsourcing or hiring additional staff much

earlier than we have in the past, anticipating their need later on

in the project and allowing sufficient ramp-up time. Hiring the

right staff early enough can actually reduce the overall develop-

ment time and cost of a project.

5. Not using enough feedback to tune the game.
Our use of feedback was both a strength and a weak-

ness in the development of KOTOR. While we extensively used

team and QA feedback to fine-tune the interface and balance

the combat system, there were several areas where we could

have made much better use of feedback.

First, our measurement of the game balance was more of

an art than a science. We didn’t have adequate metrics in

place early enough (or in some cases, ever) to determine

whether the game was doing what we wanted it to as players

fought enemies, gained experience, and moved up in level.

QA testers didn’t have a formalized way to report combat-

balancing statistics until the later stages of testing. We also

didn’t build enough automated testing systems into the game

engine to track statistics on character experience, abilities,

and combat encounters.

We also underestimated the importance of the feedback sys-

tem in the game. Intended only as a means of letting the player

know exactly what happened in a tough battle, the message

screen that formed the heart of the feedback system wasn’t

given much priority. However, during testing, bugs in the feed-

back system made it extremely difficult for testers to determine

whether the game was performing properly (appearances are

often deceiving). It required a large amount of work very close

to the end of development to make the feedback system work

well enough to be used as a testing tool, presenting a signifi-

cant risk to the schedule. Planning for a clear and robust in-

game feedback system much earlier in the project is now some-

thing we now consider essential in our RPGs.

Fruits of the Mainstream

D espite the challenges encountered during development,

STAR WARS: KNIGHTS OF THE OLD REPUBLIC ended up

being a big success. Microsoft touts the Xbox version of the

game as the fastest-selling Xbox title ever released, and the

game is also one of the highest-rated RPGs of all time accord-

ing to Gamerankings. Based on this success, we have high

hopes for the PC version, which expands on what we learned

in the development of the Xbox version.

In addition, we are actively applying the lessons on what

worked well and what didn’t work as well to the three new

intellectual properties in development at BioWare, one of

which, our recently announced Xbox-exclusive title JADE

EMPIRE, will be published by Microsoft.

Credit must be given where it is due: STAR WARS: KNIGHTS

OF THE OLD REPUBLIC’s success is entirely due to the hard work

of the team at BioWare and also that of our publisher,

LucasArts, who fully supported our development efforts and

who shares the high quality standards toward which we were

all aiming. The team who worked on the game, like the other

teams at BioWare, are all hard-working, smart, creative, pas-

sionate individuals, and it is an honor for the authors to work

with all of them. Our goal at BioWare is to try to exceed the

quality of our past games with each new game we make; we

felt we accomplished that with STAR WARS: KNIGHTS OF THE

OLD REPUBLIC, and we will continue to strive toward this goal

in the future. q

P O S T M O R T E M

S O A P B O X f r a n ç o i s d o m i n i c l a r a m é e

d e c e m b e r 2 0 0 3 | g a m e d e v e l o p e r56

new EA studio, claiming that their contracts barred them from

working for any other game company, anywhere in North

America, for an entire year.

And I thought serfdom had been abolished. Silly me.

No-Competes Serve Nobody’s
Interests

A ll legal merits of the Ubi Soft case aside, the entire practice

of no-compete agreements between employers and emplo-

yees is bad for individual developers, not much better for com-

panies, and terrible for the industry as a whole.

As an individual, you are signing away your right to earn a liv-

ing in the future. That’s a bad bargain, even in a tight job mar-

ket. Some enlightened jurisdictions may refuse to enforce an

overly aggressive contract (such as California, which has a statu-

tory prohibition against enforcing no-competes except under

extreme circumstances), but getting out of it may require an ugly,

expensive court battle. And should the judge decide against you,

you may suddenly find yourself unemployable, at least in regards

to making games: not a pretty sight, especially with two kids and

a mortgage on your hands.

If you’re a studio manager, the no-compete is one of the least

effective human resource strategies imaginable. If you’re hiring,

it will offend candidates, driving the best of them away and

stranding you with employees who can’t attract attention from

your more liberal competitors. Disgruntled staff, on the other

hand, will stick around longer than they should, because they

can’t legally go elsewhere. Predicting the effect on morale and

performance, especially at crunch time, is left as an exercise for

the reader. Even good employees who would be perfectly happy

otherwise may falter in an environment driven by fear — suc-

cessful companies behave like teams and families, not harems.

And finally, as an industry, can we really afford to kick our

best people to the curb? Let’s face it: if Danny Developer,

who has made games all his life and never really considered

doing anything else, is forced to spend a year or two away

under threat of legal action, there’s a pretty good chance that

he’ll find a non-game job that pays better and demands fewer

all-nighters. Once he’s used to the money and to seeing his

wife more often than if they were both on death row, he

might not come back.

Meanwhile, another studio hires newbies and misses milestones.

It’s Your Job to Keep Your Staff
Happy

B ottom line: a no-compete is not the way to protect a com-

pany. Ditch the attorney and create an environment in

continued on page 55

S uppose that you’re the owner of a

game development studio and that the

publisher with whom you are negotiat-

ing your next title insists on a nasty lit-

tle clause that forbids you from making

another game for anyone else, not only while the two

of you are under contract, but for years afterwards,

thus effectively putting you out of business the

minute your relationship sours. You’d never sign

such an egregiously unfair piece of tripe, right?

Then why should a no-compete clause in an employ-

ment contract be treated any differently?

Last September, Ubi Soft Montreal filed for an injunction to

prevent a handful of former employees from joining the city’s

No-Competes:
Bad for Business

Illustration by A
lana M

achniki

which your employees are happy. For game developers, this

doesn’t take more than creating interesting projects and being

treated with common decency. If half of your team quits on the

same day, it’s your fault, not theirs, and there isn’t a coercive

contract in the world that could fix the problem.

But what if you treat your employees like your firstborns and

they still want to leave anyway?

Let them. If they were crucial to your team’s success, trying

to enforce a no-compete is not going to win them back. In fact,

it might trigger a larger exodus. If they weren’t crucial, you are

wasting your time and your money by blocking the door. Hire

someone else.

Quid pro Quo

Employment is voluntary. You pay me X amount of money

for Y amount of work. When I’m done, you’ve received

what you’ve paid for, and probably a lot more, given this indus-

try’s propensity for unpaid overtime. Employers aren’t entitled

to anything more.

You don’t want me to work for your evil competitors? Fine,

pay me to sit at home and write a novel. This way, whatever

trade secrets I know are safe, which is the only thing you have

a right to care about. And it’s probably going to cost you a lot

less than dragging me to court.

Do Something

I f you’re concerned about abusive employment practices in

the game industry, the IGDA’s Quality of Life Committee

will be releasing a white paper at GDC 2004 covering many

issues, including no-competes. They will also be hosting

roundtables, which will help to gather input from the commu-

nity and orient its endeavors for 2004 and 2005. You can also

voice your experiences and ideas related to quality-of-life

issues on our web forum, found at www.igda.org/qol. q

F R A N Ç O I S D O M I N I C L A R A M É E | A 12-year veteran of
the industry, freelance designer and writer Laramée is the chair
of the IGDA’s Quality of Life Committee. He is also editor and
principal author of Game Design Perspectives and Secrets of the

Game Business (Charles River Media) and a regular speaker at
the Game Developers Conference. You can contact him at
francoislaramee@videotron.ca.

S O A P B O X

w w w . g d m a g . c o m 55

continued from page 56

	04gameplan
	08indwatch
	10prodrev
	16profile
	18innerp
	22artview
	26soundp
	27betterby
	28gd100th
	30f-hooks
	36f-davies
	42postmort
	56soapbox

	return:

