
DECEMBER 2002

G A M E D E V E L O P E R M A G A Z I N E

L E T T E R F R O M T H E E D I T O R

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief

Jennifer Olsen jolsen@cmp.com
Managing Editor

Everard Strong estrong@cmp.com
Production Editor

Olga Zundel ozundel@cmp.com
Product Review Editor

Daniel Huebner dan@gamasutra.com
Art Director

Audrey Welch awelch@cmp.com
Editor-At-Large

Chris Hecker checker@d6.com
Contributing Editors

Jonathan Blow jon@number-none.com
Hayden Duvall hayden@confounding-factor.com
Noah Falstein noah@theinspiracy.com

Advisory Board
Hal Barwood LucasArts
Ellen Guon Beeman Monolith
Andy Gavin Naughty Dog
Joby Otero Luxoflux
Dave Pottinger Ensemble Studios
George Sanger Big Fat Inc.
Harvey Smith Ion Storm
Paul Steed WildTangent

ADVERTISING SALES
Director of Sales/Associate Publisher

Michele Sweeney e: msweeney@cmp.com t: 415.947.6217

Senior Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 415.947.6224

Account Manager, Northern California & Southeast
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Account Manager, Recruitment
Raelene Maiben e: rmaiben@cmp.com t: 415.947.6225

Account Manager, Western Region & Asia
Craig Perreault e: cperreault@cmp.com t: 415.947.6223

Account Representative
Aaron Murawski e: amurawski@cmp.com t: 415.947.6227

ADVERTISING PRODUCTION
Vice President, Manufacturing Bill Amstutz

Advertising Production Coordinator Kevin Chanel

Reprints Cindy Zauss t: 909.698.1780

GAMA NETWORK MARKETING
Director of Marketing Greg Kerwin

Senior MarCom Manager Jennifer McLean

Marketing Coordinator Scott Lyon

CIRCULATION

Group Circulation Director Catherine Flynn

Circulation Manager Ron Escobar

Circulation Assistant Ian Hay

Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes

t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas

t: 650.513.4234 f: 650.513.4482 e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall

Executive Vice President & CFO John Day

Chief Operating Officer Steve Weitzner

Chief Information Officer Mike Mikos

President, Technology Solutions Group Robert Faletra

President, Healthcare Group Vicki Masseria

President, Electronics Group Jeff Patterson

President, Specialized Technologies Group Regina Starr Ridley

Senior Vice President, Global Sales & Marketing Bill Howard

Senior Vice President, HR & Communications Leah Landro

Vice President & General Counsel Sandra Grayson

Vice President, Creative Technologies Philip Chapnick

W W W . G A M A N E T W O R K . C O M

✎

I t’s been over five years since the

first Postmortem appeared in

Game Developer. Combining

equal parts vicarious wisdom

and Schadenfreude, the brain-

child of former editor Alex Dunne hit on

the same magic formula that has made

ABC’s Wide World of Sports a favorite

for more than 40 years: the thrill of vic-

tory, and the agony of defeat.

Since that first Postmortem of DARK

SUN ONLINE: CRIMSON SANDS in October

1997, the 61 Postmortems that have

appeared in every regular issue of Game
Developer have had one thing in com-

mon (besides scheduling gaffes): they

were about the development of a game.

This month we break with Game Devel-
oper’s longest-standing tradition by

bringing you the first Postmortem of a

recently defunct game studio.

Oh sure, game studios come and go all

the time, but the end of Presto Studios in

particular kept me thinking about the

current and future state of game develop-

ment for small independents. Just as sev-

eral years ago we saw some developers

fail to make the transition from one-to-

three-person teams to teams of 20 or

more, increasingly I worry about the fate

of many of today’s boutique development

houses as the industry moves toward

consolidation and teams continue to

grow and change their dynamics.

Multiple projects and team sizes of 50-

plus require a whole new level of man-

agement savvy above and beyond what’s

been passable in years past. (And the

past 61 Postmortems suggest that “pass-

able” is sometimes too generous a

description for game development man-

agement practices.)

The model of a game studio started up

by a committed group of friends or fami-

ly members isn’t just a familiar story in

game development, it’s one of the oldest

models of enterprise. Game developers

being the precocious lot they are often

start up studios before they’re out of

school. With any measure of success, a

few years later these entrepreneurs find

themselves leading companies of dozens,

even hundreds of people. How can you

learn to manage so many people when

you’ve never actually worked for anyone

else? How do you transition smoothly

from a startup where everyone puts in

long hours because their fortunes are

inextricably intertwined with the compa-

ny’s, to an organization where employees

are primarily concerned with supporting

their families at home and have little

regard for the fortunes of the owners?

I am optimistic that more experienced

managers, broad economic success, ever-

improving tools, and a growing pool of

diverse talent will conspire to make game

development processes less about reinvent-

ing the wheel and more about replicating

past success. The craft is a work in

progress, which is why game development

continues to be such a captivating field to

those who commit themselves to it. The

trick is for development managers to be

able to discern opportunities for change

and then implement them successfully

across a team.

My hat’s off to Presto for recognizing

what they felt was a good time to make

a graceful exit. Don’t give in to the lazy

rationale that a studio that made its

name with CD-ROM graphic adven-

tures had its days numbered. If you read

Michael Saladino’s article starting on

page 44 and don’t see something of

your own company in there, you’re

either not looking hard enough or you

have the good fortune to be working for

the best-run game studio out there (or

perhaps you’re managing it yourself!).

The industry’s continued success raises

the stakes every year, making even the

small mistakes more costly, sometimes

irrevocably so. Those who explain away

their company’s chronically broken

processes by saying, “That’s just the

way things are,” may eventually find

themselves, like Presto, saying, “That’s

the way things were.”

600 Harrison Street, San Francisco, CA 94107 t: 415.947.6000 f: 415.947.6090

6

Game Developer
is BPA approved

G A M E P L A N

Jennifer Olsen

Editor-In-Chief

It’s Just the Way Things Are

Mr. Brown takes on consoles and PCs. Black

Label Games, which Vivendi Universal

started up in August, announced they

will be working with film director

Quentin Tarantino in bringing an interac-

tive version of Kill Bill, his soon-to-be-

released movie, to consoles and the PC.

The movie, starring Uma Thurman and

Lucy Liu, is the tale of a former assassin

betrayed by her boss. This will be Taran-

tino’s first foray into games. The game is

scheduled for a year-end 2004 release.

Vivendi keeps growing. Vivendi Universal

Games has acquired Swedish interactive

development studio Massive Entertain-

ment, makers of GROUND CONTROL.

VR1 and Jaleco become one. Pacific Century

CyberWorks Japan recently acquired

both game developer VR1 and publisher

Jaleco USA, merging the two units into

a new company, Jaleco Entertainment.

The company, headquartered in Buffalo,

N.Y., includes 11 internal teams based

in Europe and the United States. Target-

ing the console market, the company

plans to publish nine titles by the end of

this year, including TRAILER PARK TY-

COON and FIGHTER ACE 3.5, on six dif-

ferent platforms.

Move over Tivo. Sony Computer Entertain-

ment has revealed that it is close to

bringing a kit to market that will enable

the PS2 to record television on a hard

disk, similar to a Tivo recorder. The tim-

ing and details of the product launch

have not been decided, but the product

will target the Japanese market first.

What a nickel buys these days. Interplay was

delisted from Nasdaq’s SmallCap Market

in October and was trading at 5 cents a

share at press time. The company’s over-

cast skies have been darkening since

Nasdaq demoted the company from

Nasdaq’s market to their SmallCap

Market last May.

Michael Crichton and Sega team up. Known

for science fiction best-sellers Jurassic
Park and The Andromeda Strain, author

Michael Crichton announced he will be

working with Sega in developing an orig-

inal videogame, not based on any of his

novels or characters. Crichton’s previous

efforts in game development include

founding Timeline Studios and then clos-

ing it after releasing a single title.

CEO bails out 3DO (again). Trip Hawkins,

3DO’s CEO, once again reached for his

checkbook, this time offering $3 million

of his money to help the company secure

a $15 million loan from GE Capital.

The silver screen is doomed. According to id

Software, Warner Brothers Pictures is in

final negotiatons to bring the first-person

shooter DOOM to the big screen within the

next 15 months. The movie’s story line

will most likely follow the third install-

ment of the DOOM series, set in the future

at a paramilitary base on Mars. q
Send all industry and product news to

news@gdmag.com.

d e c e m b e r 2 0 0 2 | g a m e d e v e l o p e r8

Uma Thurman’s Kill Bill character will soon
be slicing and dicing her way across consoles
and PC monitors.

S E C O N D I N T E R N AT I O N A L
C O N F E R E N C E O N A P P L I C AT I O N
A N D D E V E L O P M E N T O F
C O M P U T E R G A M E S

HKSAR
Hong Kong, China
January 6–7, 2003
Cost: variable
www.adcog.org

M I L I A
PALAIS DES FESTIVALS

Cannes, France
February 4–6, 2003
Cost: variable
www.milia.com

TTHHEE TTOOOOLLBBOOXX
D E V E L O P M E N T S O F T W A R E , H A R D W A R E ,
A N D O T H E R S T U F F

Intel releases free light-field mapping
toolkit. Intel recently released OpenLF,

an open-source light-field mapping

(LFM) toolkit. The tool lets developers

build 3D applications that model the

way light reflects off of real objects and

surfaces. Developers can use the code

freely as-is or modify it for use in their

applications. www.intel.com

NXN launches Alienbrain 6. With a revam-

ped interface and pricing scheme,

Alienbrain 6.0 is a thorough overhaul

of NXN’s asset and configuration man-

agement system. New tools include full

branching, branch merging, sharing,

and full integration with Microsoft

Visual Studio and Metrowerks’ Code-

Warrior, plus a license for Araxis

Merge Professional. www.alienbrain.com

Factor 5 teams up with DivX. In conjunc-

tion with DivX, game developer Factor

5 recently released a DivX for Game-

cube SDK, offering DivX video com-

pression with Gamecube-optimized

assembler code, the ability to map

video on any surface and run in paral-

lel with other applications, integration

with Factor 5’s MusyX and AX sound

libraries, and more.

www.factor5.com

I N D U S T R Y W A T C H; K E E P I N G A N E Y E O N T H E G A M E B I Z | e v e r a r d s t r o n g

P U P C O M I N G E V E N T S

CCAALLEENNDDAARRB

XX

T he first version of Kaydara’s

Motionbuilder (4.0, that is)

could be considered heir

apparent to the popular

Filmbox 3.5 package — but

should it? Only FBI recruits, atomic sci-

entists, and Navy SEALs require more

training than Filmbox users. After taking

Motionbuilder 4.0 for a small test run,

it’s safe to say that it is much more intu-

itive. The package’s user interface, work-

flow, and feature set are all different

from previous versions of Filmbox. In

fact, Motionbuilder 4.0 incorporates

drag-and-drop functionality that would

have probably been anathema to

Kaydara’s earlier offerings.

What it is

M otionbuilder 4.0 is a real-time ani-

mation system that lets anyone cre-

ate character animation quickly, without

having to wait for rendering to see the

results. The package contains dedicated

tools for creating cameras, lights, shad-

ing, cel shading, textures, shadows, and

various scene constraints. At its heart,

though, Motionbuilder 4.0 is all about

3D animation: keyframing, organizing

and preparing motion capture sequences,

and blending animation sequences of var-

ious types together.

It features an intuitive drag-and-drop

approach to content management and

importers for many file formats. Leading

3D content creation packages have emb-

raced Kaydara’s own .FBX file standard,

making it even easier to transport content

and data from package to package.

For this reason, Motionbuilder is a

viable choice for game developers who

need a single package to accomplish all

their 3D animation needs, both charac-

ter and facial; using a single package

will help improve and streamline

pipeline issues.

Some of Motionbuilder 4.0’s new fea-

tures (and benefits over Filmbox 3.5)

include floating windows, an asset brows-

er, a navigator window, a scene browser,

and new actor and character controls.

While floating windows are nothing

new, they are new to Motionbuilder,

increasing the package’s functionality by

making it more acceptable to a wider

variety of users. There are four prede-

fined layouts for creating, animating,

editing, and previewing, but the user can

customize the package to his or her own

tastes or to conform to the requirements

of a specific project.

The asset browser and scene browser

are very powerful tools. The asset brows-

er lets you select assets, such as lights

and cameras, from a pool of templates or

from your own added shortcuts. Assets

display in a tree hierarchy, and you can

use different layouts to view the content

d e c e m b e r 2 0 0 2 | g a m e d e v e l o p e r10

P R O D U C T R E V I E W S
T H E S K I N N Y O N N E W T O O L S

T O M C A R R O L L | Tom broke into videogame graphics in 1983 at Cinematronics (yes,
the warehouse was overflowing with dead laserdisc players and SPACE ACE cabinets). Cur-
rently, he is lead level designer at Vision Scape Interactive. You can reach him at
tcarroll@vision-scape.com.

Kaydara’s Motionbuilder 4.0
by tom carrol l

With new actor and character controls, Motionbuilder 4.0 offers animators a powerful program.

within the folders. The scene browser

lists every asset in the scene, showing

their composition and any ongoing rela-

tionships between them; it also enables

the user to control display of assets by

using filters.

The actor and character controls win-

dow displays options relative to a selected

actor or character. Some features that

were previously in the actor settings are

now in the actor controls window, letting

you manipulate and adjust your actor.

The character controls window includes a

new character animation system that lets

you work with control rigs on characters.

You can create your own character ani-

mation from scratch or modify your

motion capture data using control rigs.

Working with Motion

M otionbuilder 4.0 begins with a rel-

atively simple and recognizable

interface: windows, listers, pull-down

menus — nothing new or different. The

overall look is reminiscent of various

popular 3D packages, most strongly

Lightwave, with a clean layout that

allows users to work without too much

clutter. The Motionbuilder menu bar

lets you select commands to perform

various operations, including File, Edit,

Model, Animation, Media, Settings,

Window, Layout, and Help. You can

also use keyboard shortcuts instead of

menu commands.

Because of the flexibility of the .FBX

file standard and the package’s new

drag-and-drop functionality, workflow

with Motionbuilder was relatively sim-

ple. I used Maya to create and bone a

simple character. Using Motionbuilder’s

drag-and-drop menus, I imported the

character into a scene and used the

package’s character-rigging tools to rig

my character quickly. Soon I was ani-

mating with it, and I’m convinced this

happened much more quickly than if I

had stayed within Maya to do so. I was

pleased, to say the least.

Unfortunately, I wasn’t as universally

happy with Motionbuilder’s ability to

import every animation without some

flaws. While most of my scenes came

through acceptably, there were a couple

of occasions where some data was

munged, as happened with a 3DS Max

file from one of my previous games. The

fault may lie with my own inexperience

with Motionbuilder (and I’ve never

known a 3D package that was complete-

ly accurate in importing and exporting to

every other package — it’s 3D anima-

tion’s Achilles heel). In fact, Kaydara’s

engineers readily admitted that there

might be times when the package’s limi-

tations here might need to be smoothed

by a fix or workaround, especially when

establishing the asset pipeline for a new

project. Kaydara maintains a staff of

problem solvers that stands by to assist

development teams with similar problems

(and even ones that might make my little

glitches seem insignificant).

Motionbuilder ’s flexible nature does-

n’t negate the need for various kinds of

help. While the demonstration package

evaluated for this review came without

documentation, the online help system

seemed extremely complete and relatively

easy to understand and use. Also, the

company provides complete release notes

and valuable online tutorials from its

web site, www.kaydara.com.

Bottom Line

M otionbuilder 4.0 is a terrific pack-

age, especially for users importing

assets into the package and then marry-

ing them up with animation data. It

delivered everything I asked of it:

importing characters, creating scenes

with lights and cameras, automatic

character rigging, motion blending, and

retargeting animation data from one

character to another. The functionality I

tested leads me to believe Kaydara isn’t

trying to fudge the consumer in other

areas. This includes facial animation,

something that can be tough to get

started with in other packages.

There’s another, much smaller problem

that Motionbuilder has, and it’s not

about performance but rather economics.

Motionbuilder creates a requirement for

animators who are skilled in its use, and

$3,495 is steep for even established ani-

mators to fork out on their own. While

this isn’t the problem for Kaydara that

Filmbox was — again, Motionbuilder is

considerably more powerful and intuitive

— it’s a challenge that Kaydara is con-

fronting with its new offering.

CEBAS’S GHOSTPAINTER
by sergio rosas

G hostPainter is a great tool for game

developers that use Photoshop and

3DS Max. The program links a material’s

texture map in Max with the current file

in Photoshop and becomes a simple but

powerful 3D paint program.

Once installed, GhostPainter becomes

an option in any 3DS Max map slot

including bump, displacement, or opaci-

XP R O D U C T R E V I E W S

d e c e m b e r 2 0 0 2 | g a m e d e v e l o p e r12

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

KAYDARA
MOTIONBUILDER 4.0

XXXX]

STATS
KAYDARA

Montréal, Québec, Canada
(514) 842-8446
www.kaydara.com

PRICE
$ 3,495 (MSRP)

SYSTEM REQUIREMENTS
Intel Pentium processor with Windows
2000 SP2 or Windows XP, Red Hat Linux
7.2 or higher, Mac OS X 10.1 or higher;
256MB RAM: 300MB disk space: OpenGL
graphics card (16MB RAM)

PROS
1. Complete package lets users go as far

as they want.
2. Widespread acceptance of Kaydara’s

.FBX file format.
3. Any Filmbox user on active maintenance

gets free upgrade.

CONS
1. Newbies may be overwhelmed by pro-

gram’s depth and complexity.
2. Occassional problems in importing data

from other 3D packages.
3. Known release bugs (though

workarounds are often provided).

ty. Setting up a 3D painting environment

is easy: run Max and Photoshop side by

side and apply GhostPainter to a materi-

al. That’s all there is to it. With Ghost-

Painter’s straightforward interface, there

is no learning curve.

In paint mode, GhostPainter projects a

real-time line onto your 3D object repre-

senting the stroke to be applied in

Photoshop. As soon as you release the

mouse button or stylus, GhostPainter

applies the stroke in Photoshop and

updates the texture on your 3D model.

Since all image operations are done right

in Photoshop, you have all the power of

Photoshop’s tools: brushes, layers,

actions, and so on. You can also draw on

the map in Photoshop and see your

changes in Max.

Although it’s not quite a full-fledged,

real-time 3D paint program, GhostPain-

ter’s simple concept of combining two

very powerful graphics packages makes it

a great alternative.

GhostPainter works in 3DS Max ver-

sions 3, 4, or 5, and 3DS VIZ in conjunc-

tion with Photoshop 5 or later. The pro-

gram retails for $150 and is distributed

only through an American partner,

Trinity 3D (www.trinity3d.com).

XXX | GhostPainter
CEBAS | www.trinity3d.com

Sergio Rosas is an art director at Ion
Storm in Austin, Tex.

SONIC FOUNDRY’S ACID
PRO 4.0

by gene porfido

T his is not your momma’s Acid Pro.

The last time I took a good look at

Acid was version 2.x, and while the

looping creativity was inspiring, I felt it

lacked some of the strong points that

full MIDI/audio sequencers have. Ver-

sion 4.0, however, is so packed with fea-

tures that it’s hard to ignore. The incred-

ible loop flexibility that has made Acid

famous is back with a vengeance, and

there are a host of new features that

make Version 4.0 exciting and intense as

an audio tool, regardless of what project

you’re working on.

Acid Pro 4.0 comes packed with hun-

dreds of loops and material to use as a

starting point or an addition to your own

projects. The backbone of version 4.0

includes an easy-to-learn interface, real-

time tempo and pitch matching, unlimited

audio and MIDI tracks (limited only by

your computer’s capabilities), video scor-

ing, 5.1 surround mixing, DirectX effects,

support for VST instruments, tempo and

key mapping, locking envelopes for

effects volume and

pan, a wide range

of file format

support, 16- and

24-bit audio, and

the ability to

read/generate

MIDI time code.

But wait, there’s

more.

Important new

features include

plug-in automa-

tion, ASIO sup-

port, MIDI piano

roll and step

recording, loop

cloning, Master,

Aux, and Effects

“bus” tracks,

autosave for crash

recovery (this has

proved itself useful already), and

Windows Media import. Stack all of

these atop Acid’s already capable feature

set and you have a program with more

bells and whistles than nearly anything

out there. However, all the bells and

whistles in the world do not a perfect

program make. With all of its good

points there’s still room to improve.

Installing Acid Pro was a snap, as was

loading and playing a project file. Loops

rule in Acid, and I’m still impressed

with the speed with which the program

changes tempo while maintaining pitch

across multiple tracks of sampled audio.

This feature alone may be worth the

price of admission. While the Piano Roll

editor is a welcome addition and shows

that Acid is getting serious about MIDI,

MIDI is where Acid needs work. After

half an hour of serious digging around,

I still couldn’t figure out a simple task

like switching a MIDI patch (using the

built-in Sonic Foundry soft synth). Even

scouring the help file and following

instructions to the letter left me hang-

ing. Trying to add some of the cool VST

instruments, like NI’s great B3 and

DX7’s emulations, also proved to be

more difficult than I’d like. Acid handles

its MIDI tracks well once preferences

and settings are together, but getting

them there proved less intuitive than

most sequencers.

For those loop mas-

ters out there who use

Acid daily, 4.0 is an

extensive upgrade that

leaves little to be

desired when working

with audio and loops.

There are a million

ways to chop, slice,

dice, and mix those

samples. Playback

response and overall

program speed was

good even on my elder-

ly PII 400. The inter-

face, while different

from mainstream

sequencers, is easy to

use, and yet it masks the power of

Acid in its simplicity.

There are a million parameters, plugs,

and envelopes in 4.0, but strangely

enough, getting to them all is the hard

part. The program’s menus are almost

barren. Where are all those cool plug-

ins? You’ll have to dig through the

channels, mixer, and other areas to find

them. And while MIDI is not Acid’s

strong point yet, I’m sure future ver-

sions will improve. The level of creativi-

ty Acid Pro offers for remixers, sound

designers, and composers who do loops

is unequaled, and when MIDI catches

up, the whole package will be an indis-

ensible tool. q

XXXX | Acid Pro 4.0
Sonic Foundry | www.sonicfoundry.com

Gene Porfido runs his own company,
Smilin’ Pig Productions. E-mail
smilinpig@earthlink.net.

XP R O D U C T R E V I E W S

d e c e m b e r 2 0 0 2 | g a m e d e v e l o p e r14

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

W orking with different development hous-

es, I’ve seen that it’s often extremely dif-

ficult to get anything done. Most devel-

opers don’t work efficiently. Our pro-

gramming languages, compilers, debug-

gers, source control systems, and profiling tools are all flawed

in one way or another. These flaws cost us huge amounts of

time and money. This month, I’d like to attack one corner of

this problem space: the inadequacy of our profiling tools.

For the practicing game developer, there are a handful of

commercial profiling products to choose from. Two representa-

tive examples are Intel’s VTune and Metrowerks’ CodeWarrior

Hierarchical Profiler (HiProf).

Despite being profilers, these

products are inappropriate in

several ways, and using them in

a production environment can be

painful. Usually a profiler will

slow down the game tremen-

dously, preventing us from repro-

ducing the situations we want to

profile. VTune is not slow if you

do not collect any information

other than the program counter at each sample, but that infor-

mation is only useful in limited circumstances.

Because these products don’t satisfy our needs, a lot of games

get rigged with a homemade profiler. We manually mark sections

of the code with telltale names like “render_world” or

“simulate_physics,” and a heads-up display shows, in real time,

how much CPU we’re spending in each area.

How Interactive Profiling Is
Different from Batch Profiling

T here are some ways in which even the simplest in-game

profiler is more useful than a tool like VTune or HiProf.

With a real-time heads-up display, you can see correlations

between the frame rate and the activity of each game subsys-

tem and use human pattern-matching and intelligence to fig-

ure out what’s happening.

Suppose your game’s frame rate stutters annoyingly in a map

with lots of objects and busy activity, so that roughly one frame

out of every 30 takes three times as long as it should. If we try

to diagnose the problem with VTune or HiProf, we’ll meet with

some difficulty. Since the long frames are intermixed with nor-

mal frames, the code causing the problem is only taking one

and two thirds as much CPU as it should, when averaged over

time. This amount probably won’t be sufficient for that code to

stand out as the culprit in the profiling report.

We might be able to track down the problem in VTune by

enabling the “Collect Chronology Data” option. We’ll suffer

through annoying slowdowns, and if the problem is timestep-

dependent, it may no longer occur. To solve this problem robust-

ly, we can build our game engine to support full journaling and

playback. That’s useful in its own right, but it’s a big engineering

task that we’d rather not require just

to obtain a profile. After all this, we

may discover that the problem is

caused by our AI pathfinding code.

We may even know that a specific

loop is eating up a lot of time. But

the profiler can’t tell you why.

On the other hand, if we use an

in-engine interactive profiler, we’ll

see the problem instantly because

we’re watching a live report that

changes from frame to frame. Every time the frame stutter hap-

pens, we’ll see the program section “AI Pathfind” jump to the

top of the chart. And because we’re running around inside the

game world, we may be able to easily correlate the spikes with

specific problems. For example, now that we know the problem

is pathfinding, we can see that it happens whenever a monster

walks near a certain kind of lamp. So we go investigate the

geometry of the lamp to get to the heart of the matter. Because

we can turn on the interactive profiler at any time, we don’t

have to strain to reproduce a test case. When it happens, we

just hit the function key that turns on the profiler and it shows

us what’s happening.

Batch profilers try to help you visualize data with bar charts

d e c e m b e r 2 0 0 2 | g a m e d e v e l o p e r18

J O N A T H A N B L O W I Jonathan is a
game technology consultant hanging out in
Austin. He can’t find anything worth stealing
under 15 feet of white snow. Send him e-mail
at jon@number-none.com.

Interactive Part 1Profiling,

j o n a t h a n b l o wI N N E R P R O D U C T

Because most game developers
are not in the business of sell-
ing tools, the profilers we write
ourselves are usually minimal.

and pie charts and hierarchical diagrams. But our game render-

er is already a rich visualization of the game’s variables, a far

more complex and meaningful one than any batch profiler will

give us. Augmenting the world rendering with some supplemen-

tary data is usually the best visualization approach.

There are two things batch profilers are good for: giving us a

broad idea of a program’s behavior averaged over time and giv-

ing us precise, instruction-level performance data for small sec-

tions of code. We can obtain the former just as well through a

simple, in-engine profiler, and the latter represents a small frac-

tion of the profiling use cases of a modern game.

As game developers, we frequently write our own in-engine

profilers, but it’s seldom articulated that interactive profiling is

a different paradigm from batch profiling. The batch profilers

available to us now are useful, but most of the time we really

want a good interactive profiler.

Because most game developers are not in the business of sell-

ing tools, the profilers we write ourselves are minimal. I think it

would be worthwhile to spend some up-front effort to build a

high-quality interactive profiler that people can just plug into

their games. This month’s column and the next will take steps

toward that goal.

Goals of the Interactive Profiler

I want this profiler to be effortless to use. It should be so

fast that you can always leave it enabled in every build of a

game, removing it only when the time comes to ship the final

product. Disabling profilers with #ifdefs in various builds is a

bad idea. Suppose you see a problem and want to check it

out, but your current build doesn’t have profiling turned on.

You have to stop, change the #define, do a full rebuild (which

may take a while), and finally run the game and try to repro-

duce the case (which can be hard). That’s exactly the kind of

process impediment that stifles game development. By itself it

doesn’t seem like much, but these situations build up to where

many impediments affect our daily progress, and it becomes a

chore to do anything.

I’d like it to be easy to detect the kinds of performance

problems we care about with the profiler. I also want the pro-

filer’s behavior to be reliable; for example, it should not

change in character based on the frame rate. And I think it

would be helpful if it provided some tools that help us jump to

a higher level and see the different kinds of behaviors our

games exhibit and how common each behavior is within the

overall gamut.

Profiler Overview

I’ll create a small header file that I’ll include in all code I

want to profile. The header contains macros for declaring

different zones of the program (rendering, input, physics, and

so on) and for stating that code execution is entering or leav-

ing a given zone.

When we enter a zone, we’ll ask a high-resolution timer

what time it is and record that time. Upon leaving the zone,

we subtract that entry time from the current time, which tells

us how long we were inside. We add this to a total-time accu-

mulator for that zone. Once per frame, we draw the accumu-

lated results and reset them.

With a little bit of extra accounting, we can separately

track what HiProf refers to as the “hierarchical time,” which

is the time spent inside a zone and all zones that it calls, and

“self time,” which only counts time within a specific zone

body and stops when a new zone is entered.

Zone Declaration

I chose to declare zones by instantiating structs in the global

namespace. Each struct contains the variables used to store the

raw timing data for that zone. For convenience, I created a

macro called Define_Zone that declares the appropriate instance

(Listing 1). When entering or leaving a zone, we refer to the

name of that global variable; all references to zones are resolved

at link time, so no CPU is spent at run time matching zone IDs.

Also, you get a compile-time error if you try to use a zone that

isn’t declared, which is good for catching spelling mistakes.

There are two alternatives for declaring zones that people

often use, but they both have big disadvantages. One method

is to create a global header file with enumerated constants for

each zone; these constants index into an array. With this

approach, adding a new zone requires a full rebuild of the

project, and full rebuilds are horrible for many code bases.

Also, we often want to create temporary zones incrementally,

which is painful with this scheme. The struct-based scheme

I’m presenting here is confined to the files being worked on,

requiring minimal recompilation.

The other alternative is to use strings to designate zone

names, but this option incurs a lot of run-time overhead, and

d e c e m b e r 2 0 0 2 | g a m e d e v e l o p e r20

I N N E R P R O D U C T

LISTING 1. The Define_Zone macro helps the profiler store timing
data efficiently for each zone.

struct Program_Zone {

Program_Zone(char *name);

char *name;

int index;

Profiling_Int64 total_self_ticks;

Profiling_Int64 t_self_start;

.... // Other members deleted for brevity

};

#define Define_Zone(name) Program_Zone PZONE_ ## name(#name);

spelling errors can go unnoticed for a

long time.

Entering and Leaving
Zones

It’s easy to define macros to indicate

that you are entering or leaving a

given zone. When entering, the zone is

pushed onto a stack; when leaving, it’s

popped. However, I don’t like using these

macros directly, as it’s too easy to forget

an exit declaration in functions that have

a lot of exit points (Listing 2). I prefer to

make a C++ dummy class that contains

no local data, but that calls Enter_Zone

on construction and Leave_Zone on

destruction. Then I can instantiate that

class whenever I want to enter a zone,

and leaving will occur automatically.

Getting the Time

W e want to acquire an accurate

timestamp as quickly as possible.

We could use the Windows API function

QueryPerformanceCounter (QPC) for this, but

QPC is very slow. In Windows 2000/XP

it’s a wrapper function in a DLL, which

calls a different wrapper function in a

different DLL, which triggers a kernel

trap to a routine that reads the PCI bus

clock. If you want to be saved from the

agony of including windows.h in every

file of your game, you’ll probably wrap

QPC yet again. Add all that up, and it’s

just not lightweight.

Instead, I wrote some inline assembly

language that uses the rdtsc instruction,

which has been available on all new x86

chips for years now. This gives me inte-

ger timestamps in units of some arbitrary

chip frequency, but I want time measured

in seconds. For maximum speed, I per-

form all the timestamp accounting direct-

ly on these integer timestamps and only

convert to seconds once per frame, when

it’s time to process and display the profil-

ing data. To perform the conversion, I

use QPC at the beginning and end of the

frame to get a frame duration in seconds.

By measuring how many rdtsc ticks have

passed during the same interval, I can

convert from rdtsc ticks to seconds.

Unfortunately, newer mobile processors

have a feature called SpeedStep, wherein

they dynamically adjust their clock speed

based on demand. Even though rdtsc’s

name (“Read Time Stamp Counter”) indi-

cates that it was intended as a timer,

someone at Intel decided that it’s O.K. for

rdtsc to report clock cycles without com-

pensating for SpeedStep. As a result, if

you’re running on a laptop and your

application has bottlenecks that involve

blocking on I/O or accidentally sleeping,

rdtsc is unreliable as a measurement of

time. Fortunately, the profiler can detect

this situation and report that SpeedStep is

causing a problem (it just looks for fluctu-

ation in the number of rdtsc ticks per

QPC second). However, there is no way to

fix the profiling data itself. If this happens

to you, I recommend using a desktop

machine for profiling.

Displaying the Data

W e draw the profiling data with

one zone per line, sorting by

CPU usage so that the most expensive

zones are at the top. But since timings

in a game fluctuate a lot, if we do this

naively, lines of output will move

around haphazardly and the display will

be hard to read.

This is a good application for the

frame-rate-independent IIR filters I intro-

duced two months ago (“Toward Better

Scripting, Part 1,” October 2002). We

apply these once per frame to the timing

values and find the resulting numbers are

more stable and the display is easier to

read. By varying the filter coefficients, we

can decide whether we want to see long-

term averages or very recent values.

But we don’t just want to know about

frame-time hogs. Consistency of frame

rate is very important, so we should also

seek out routines that are inconsistent in

the amount of time they take. In that col-

umn on scripting, I showed how to com-

pute the variance of a filtered variable. We

square-root this number to get the stan-

dard deviation (stdev), which is measured

in seconds. Now the profiler can display

and sort by self-stdev and hierarchical

stdev. In addition, we color-code each line

of output depending on the predictability

of the zone’s timing. Steady zones are

drawn in a cool color, and vibrating zones

are drawn in a warm color.

Sample Code and Next
Time

This month’s sample code (which you

can download from

www.gdmag.com) is a toy game system

with the profiler built in. There’s a simple

world full of crates. Besides rendering, the

game has dummy functions for AI, audio,

and so on. To ensure that the different

systems run slowly enough for the profile

to be interesting across a variety of

machines, they artificially slow themselves

down. Some functions, such as the AI

code, fluctuate their CPU usage so that the

profiler can detect that variance.

The profiler itself is very modular, so

you should be able to use it in your own

game with minimal effort. I’ve only just

gotten started exploring what we can do

with an interactive profiler, and next

month I’ll look at some data processing

and visualization enhancements. q

I N N E R P R O D U C T

d e c e m b e r 2 0 0 2 | g a m e d e v e l o p e r22

LISTING 2. Multiple zone exit points can
cause problems.

bool foo(char *s) {

Enter_Zone(foo);

if (s == NULL) {

Exit_Zone(foo);

return false;

}

char *t;

// Do something complicated with s,

// putting the result into t...

t = result;

if (!well_formed(t)) {

Exit_Zone(foo);

return false;

}

do_something_complicated_with(t);

Exit_Zone(foo);

return true;

}

How to

d e c e m b e r 2 0 0 2 | g a m e d e v e l o p e r24

h a y d e n d u v a l l

Ishould have gotten up

and left before the

(seemingly) 14-year-old

assistant manager came

into the makeshift wait-

ing room and stopped chewing

her gum just long enough to

say, “Hayden Deeval? Deval?

Durvall? Is that you?”

Thirty-five minutes earlier, I

had entered the large electrical

goods retail outlet and had

been guided to sit next to the

other smartly dressed twen-

tysomething waiting to be

interviewed for the position of

store assistant. If I remember

correctly, my fellow intervie-

wee was called Henry, and as

we waited to be summoned,

we discussed, shamefacedly,

how appalling it was that two

intelligent young men with

degrees in history, psychology,

and film could be competing

for such an underpaid, mind-

numbing job, advising people

on the relative merits of cylinder versus

upright vacuum cleaners. But still, nei-

ther of us left.

Choosing not to dispute the pronunci-

ation of my name with the girl who

might shortly end up being my boss, I

indicated that I was the person in ques-

tion, and she motioned for me to follow

her from one starkly lit room into anoth-

er, where a tired-looking man wearing a

tie that could have stopped a charging

rhino at 25 paces smiled the smile of the

weary and offered me a seat.

The interview as a whole can be

summed up with the opening question:

“So, Mr. Duvall, why do you want to get

into retail?” To be honest, as obvious as

the question now seems, I genuinely was-

n’t expecting it. Sitting there, as my

heart, still riding the caffeine bicycle

from breakfast, pounded in my ears, the

only thing I could think of to say was:

“Well, it seems like a career with a lot of

potential.” Potential? Potential what?

Potential downward spiral into a chasm

of despair and hopelessness?

What I should have said was,

“Actually, I would rather eat my own

foot than work here, but it’s a

job, and I have two kids to

feed,” but whoever said that

honesty is the best policy was a

bit naïve. Not surprisingly, I got

a letter of rejection within the

week, but the experience taught

me two things: First, if you are

not serious about a job, chances

are that this will show up in the

interview. Second, if you are seri-

ous, you’d better be prepared.

Game Industry
Interviews

I s an interview for a job in the

game industry really different

from the majority of job inter-

views? Some elements are com-

mon to any area of business (like

trying not to sneeze on the inter-

viewer), but as the game industry

is in many ways peculiar (just

look around the office), it needs

to be treated as such.

While it goes without saying

that each studio has a different

approach to the whole recruitment

process, after I did some research across

a range of developers, I found it is pos-

sible to get a reasonable picture of what

to expect and how to maximize your

chances for success.

The purpose of the interview will vary

between developers, but in most cases,

the main thrust of the time they spend

H A Y D E N D U V A L L I Hayden started work in 1987, creating
airbrushed artwork for the games industry. Over the next eight years,
Hayden continued as a freelance artist and lectured in psychology at
Perth College in Scotland. Hayden now lives in Bristol, England, with
his wife, Leah, and their four children, where he is lead artist at
Confounding Factor.

the Interview Game
Play

A R T I S T ’ S V I E W

More and more developers seem to be including
some type of test in their interviewing process these
days.

with you will be assessing you as a per-

son, with regard to how you might fit in

with the team and project for which you

are applying.

Getting Yourself Ready

P reparation is always touted as being

the key to success, and there are a

few areas where some research and

advance consideration can definitely help.

Study up. Don’t go for an interview

without any knowledge of a developer’s

past games. If it is a new studio, it’s not

necessarily important to establish what the

founders did previously, but it’s very diffi-

cult to be convincingly enthusiastic about

working for a developer if you don’t have

much of an idea about their past games.

The best preparation is to have played

several of the games the studio has

released. If you want to be written off as

someone who’s just looking for any old

job, and not this specific job, then when

they ask what you thought of their last

game, just stare blankly at them (or per-

haps say it had a lot of “potential”).

Rest up. Try to get some sleep the night

before. It sounds trite, but the burned-out

look triggers instant alarm bells most of

the time. Ironic as it is, most developers

expect that you will come to work for

them as fresh as a springtime daisy, and

that they will have the pleasure of burning

you out.

Gussy up. Iron your clothes and have a

shower. This advice may seem facetious,

but too many experienced industry veter-

ans forget that applying for work some-

where else requires a certain level of

superficial grooming. Ours is not an

industry of high fashion and excessive

hairspray, but the difference between

working on a team and going for a job

interview is that in the latter you come

into contact with management. They

spend less time on the shop floor and

more time in front of a mirror. Until you

have earned a place on the team, you

need to give the 1987 Iron Maiden

World Tour T-shirt a few days off.

Build up. On average, between 80 and

95 percent of all portfolios and demo

reel submissions don’t result in an inter-

view. So remember that they already like

your work, and that this is a solid base

from which to build once you are talk-

ing to them.

Dealing with Pressure

O f all the exams I have ever taken,

my driving test made me the most

anxious. There’s nothing quite as bad as

having to perform live, and being nerv-

ous in an interview is perfectly normal.

A classic mistake is to overcompensate

and end up with what those familiar

with the film Trainspotting will recog-

nize as “Spud Syndrome.”

In the same way that most developers I

surveyed expressed dissatisfaction with

interviewees who knew nothing about

their previous work, many also highlight-

ed the negative impression left by those

who raved on obsessively about their last

games. Sufferers of Spud Syndrome

(whether amphetamine-induced or not)

tend to overwhelm the interviewer with a

tidal wave of enthusiasm, which ends up

having the same effect as if they stripped

naked and ran around the office singing,

“I love you, give me a job.”

Questions

M ost hiring managers rely on a port-

folio or demo reel as proof of your

artistic talent. They then use the inter-

view process to establish:

• That the work they have seen is actua-

lly yours.

• That you have represented yourself

accurately in your résumé.

• That you are the kind of person who

will fit well with the team.

• That you are the right person for the

specific position that they need to fill.

The exact form that an interview can

take varies a great deal. Some companies

have a single, long interview after a thor-

ough telephone vetting procedure, and

some use a short, preliminary interview

followed by something less formal once

you have impressed them sufficiently.

Whatever the format, the following ques-

tions are likely to feature at some point:

What kinds of games do you like?
Remember that there is no correct answer

to this question. It is often tempting to

present yourself as an RTS nut if the com-

pany you are applying for works in the

RTS genre, but this fact is usually of no

real consequence; the most important

thing is that you come across as someone

who enjoys playing games.

There are people in the industry who

have little real interest in games them-

selves, and quite often an artist who has

moved from another industry or another

area of art will not be into games. If his

or her work is good enough, many stu-

dios won’t mind, but the general feeling

among employers is that avid game

players are equipped with a better

understanding of the context in which

their work will appear.

What kind of games have you worked on,
and what was your role in their production?
Once again, this is a standard interview

question. The information will be avail-

able on your résumé, but as everyone who

has ever been involved in recruitment (or

has ever applied for a job) will know, a

résumé is often about as reliable as a

chocolate surfboard.

Talking to artists about their role in the

production of past games is the best way

to get a feel for what they actually did or

didn’t do. The number of “lead artists” in

our industry is in many ways similar to

the number of people who claim they

attended Woodstock, largely fictitious.

Employers see it as a major black mark

when candidates represent themselves as

much more senior than they actually are.

Hiring someone who needs to have real

experience of leading a team, when it

turns out that the only leading they really

did was in the lunchtime sprint to the

sandwich shop, usually leads to a speedy

and unceremonious parting of ways.

What Are Employers
Looking For?

When asked who would most likely

be doing the interviewing, more

than half of the developers I questioned

A R T I S T ’ S V I E W

d e c e m b e r 2 0 0 2 | g a m e d e v e l o p e r26

suggested that each candidate would be

interviewed by a panel of some kind, or at

least two people, usually the lead artist

and either some additional senior member

of the art team or the project lead.

Outside of your artistic talent, there

are three areas where it is vital to make

a solid impression at the interview.

Understanding the process. Showing that

you have a grasp of the game develop-

ment process illustrates that you are not

simply an artist but a capable game artist,

which includes an understanding of the

context in which you will be producing

your art. Each game and team are struc-

tured differently, but demonstrating

awareness of level structure, prototyping,

alpha and beta phases, and so on, will

help underline your competence.

Understanding the techniques. If you’ve

produced a quality demo reel or portfolio,

employers will see that you can deliver a

high standard of work. Beyond that, a dis-

cussion about the merits of texture baking

or vertex coloring, for example, can estab-

lish whether you have a broad range of

techniques at your disposal. As most

games have their own particular limita-

tions, showing that you are able to get

maximum impact within these boundaries

is a great advantage.

Understanding the technology. As a

game artist, you need to be as technically

well-versed as possible. Texture memory,

bump mapping, multi-texturing, and so

on, across the different platforms, all

influence the art produced for each game.

Most developers I talked to indicated

that an artist who can work closely with

a programmer to help get the maximum

performance from their technology is a

rare and precious thing.

Fitting In

A s I mentioned previously, the whole

interview experience is largely a

forum in which your future employer

(or their representatives) can establish

whether they want to work with you,

and if they do, how much you are likely

to contribute to the team.

The only possible advice I can give

(even though it is painfully lame) is to be

yourself. To be fair, to some extent you

will be the interview version of yourself,

but the more you try to put across a per-

sonality that isn’t your own, the more

potential trauma ends up lying in wait to

ambush you in the future.

The bottom line is that if they are put

off by the way you came across, and

that is in fact the real you, chances are

you wouldn’t have enjoyed working

there anyway.

The Test

More and more developers are

including some type of test in their

interviewing process these days. Each is

different, but they ask you to perform a

set task in a given time limit, using a

specific package or medium. Those tests

that I have come across have ranged

from a one-hour pencil and paper exer-

cise to a full level-building scenario com-

plete with texture limit and style guide.

It’s important to remember that any

test of this kind is unlikely to represent

your best work, and that it is also unlike-

ly that you will be thrilled with what you

produce. From the hiring manager’s point

of view, they want to see firsthand how

you approach a problem and whether the

work you produce fits to some degree

with the art in your portfolio.

Problems arise when a candidate does-

n’t clearly understand the instructions for

the test (and I have seen some pretty

awful sets of instructions). Don’t feel too

intimidated to ask for clarification.

Final Thoughts

Primacy and recency. Your interview-

ers will remember most clearly the

first and last contact they had with you.

First impressions always count, but last

impressions do, too. Try to leave on a

positive and enthusiastic note. If you feel

yourself drifting off in an interview (it’s

not hard to zone out for a couple of

minutes), snap yourself back into full

alertness before they pick up on your

glassy stare.

Asking questions. Most developers I

spoke to confirmed that they generally

end interviews with the classic “So, do

you have any questions for us?” Antici-

pate this, and have a couple of intelligent

questions in mind. What employers usual-

ly do not appreciate is an immediate

plunge into questions about working

hours, pay, benefits, and royalties. If you

ask about these things, employers will see

you as focused on your paycheck and not

the project.

Follow up. Unfortunately, not all

developers are the highly oiled machines

of efficiency that they think they are.

This means that after the interview, you

may be left hanging for an unnecessarily

cruel length of time. Before you leave,

you need to establish when you can

expect to receive word on how it went,

and once this deadline has passed by

two or three days, it is entirely appro-

priate to check up on things. Do not,

however, turn into a pest; if one or two

e-mails or phone calls haven’t elicited a

response, wait a while longer and try

again, but after that, you should always

assume that they aren’t going to take

you on.

In the end, interviews are almost

wholly subjective, and they can be

affected profoundly by the ravages of

nerves or even the aftermath of a bad

burrito from the night before. Try to

relax and avoid putting on an interview

“performance” to maximize your

chances. And someday when you’ve

made the leap from interviewee to inter-

viewer, remember the path that led you

there, and please, be gentle. q

w w w . g d m a g . c o m 27

Your interviewers
will remember

most clearly the
first and last

contact they had
with you.

A R T I S T ’ S V I E W

m o n t h 2 0 0 2 | g a m e d e v e l o p e r28

d e c e m b e r 2 0 0 2 | g a m e d e v e l o p e r28

T he recent production of live

orchestra soundtracks for

games like MAFIA and MYST

III provokes a stunning ques-

tion: If the time spent mas-

saging synthesizers were allocated towards

a live orchestra, could the value of that

time cover the cost of a live orchestra?

Given the right circumstances, it most

certainly can.

Time is money, and a significant part of

a composer’s fee is based upon the time it

takes the composer to program synthesiz-

ers. By dismissing the synthesizers, a pro-

ducer is significantly reducing man-hours.

I recently finished work on the score

for Merregnon 2, recording the entire

soundtrack with the Prague Symphony

Orchestra. A typical cue from this score

would have taken even the most experi-

enced synth programmer 35 to 40 hours

to create an almost-real sounding MIDI

recording. Instead, I spent under an hour

recording that very same cue with 54 live

musicians. If you do the math, you’ll see

that the producer has a choice: pay the

composer for the time it takes to massage

the synths, or pay an orchestra for the

time it takes to record live.

Let’s consider the cost effectiveness of a

live orchestra by examining a sample

budget for a 50-minute soundtrack

recorded by a 50-piece orchestra. Accor-

ding to Aaron Marks’ The Complete
Guide to Game Audio (CMP Books), “an

established composer can charge $1,500

per finished minute of music.” As such, a

$50,000 budget for a 50-minute orches-

tral score is a conservative estimate.

A competent 50-piece European

orchestra will cost $10 to $20 per player

per hour, including studio costs. Armed

with well-conceived orchestrations, flaw-

less parts and a knack for conducting, an

equally competent composer can record

50 minutes of music in 10 hours:

50 players @ $20 per hour � 10 hours =

$10,000

During an orchestral recording session

we need the assistance of a support staff:

4 support staff @ $30 per hour � 10

hours = $1,200

Based on my trip from New York to

Prague, when I was accompanied by a

senior producer:

Travel and accommodation for 2 people

= $1,600

Finally, let’s give ourselves a safety net:

Miscellaneous expenses = $1,200

Adding up all these costs, we get:

Total cost of production = $14,000

With a $50,000 budget, the producer is

now left with $36,000 for the composer’s

creative fee. Is it possible to convince a

composer to give up 28 percent of his or

her fee for a live orchestra recording? I

suspect a skilled composer would do it in

a heartbeat.

On the composer’s end, by dismissing

the synthesizers, you have eliminated

hours and hours of extremely labor-inten-

sive (and hence costly) work. In my earlier

example, I suggested that it would take

four or five days to program a four-

minute cue in a manner that would yield

an almost-real-sounding MIDI orchestra.

That’s approximately one minute per day.

In our budget example, we have eliminat-

ed 50 minutes, or 50 days’ work. Given

an eight-hour day, we have thus eliminat-

ed 400 hours of work. Provided you have

a composer that can make the transition

from MIDI to live orchestra, it is well

worth $14,000 both to eliminate 400

hours of work and to have a live orchestra

recording at the end of the day.

In order to record a live orchestra

successfully within our budget confines,

your composer must be able to make

the transition from MIDI to live orches-

tra. To do so, the composer must have

the skills necessary to write the music,

appropriately orchestrate it, create

proper sheet music, and conduct the

music during the recording sessions.

Make sure before you sign a contract

with a composer that he or she can do

all these things and has a proven track

record in all these areas. There is a

Catch-22 that confronts the game music

industry: in order for orchestral game

soundtracks to rise to the next level, we

must move to live orchestral recordings.

But as the quality of sample libraries

increases, the skills needed to handle a

live orchestra decrease.

Armed with both a solid understand-

ing of orchestral writing and an in-

depth knowledge of the available soft-

ware tools, it makes economic sense for

both the composer and the producer to

accept the budget I just outlined. It’s a

win-win situation when, by reallocating

resources and finding the right compos-

er, a producer can take an all-MIDI

music budget and create a live sympho-

ny orchestra soundtrack. q

a n d y b r i c k

A N D Y B R I C K | Andy is a New York–based composer whose game
credits include SHADOAN, THE FAR REACHES, Merregnon 2, KID PIX

DELUXE, and TESSELMANIA. Andy’s feature film credits include Little

Mermaid II, Lady and the Tramp II, and Chatham County. You can
learn more about Andy and listen to cues from many of his sound-
tracks by visiting www.andybrick.com.

The Live Orchestra Recording:

Andy Brick conducts the Prague Symphony
Orchestra during the Merregnon 2 recording
sessions.

S O U N D P R I N C I P L E S

A Producer’s Awakening

This month’s rule is one I learned from
one of my favorite game designers, Sid
Meier, at a conference years ago. In the
same lecture he acknowledged that many
of his best ideas have been borrowed
from other sources, and in that spirit I
pass it on to you.

The Rule: Make the game fun for the
player, not the designer or computer.

T his may seem like an obvious

concept, but often game

designers forget that the play-

er is the final audience. It’s

hard enough to make a game

fun for the player — in fact, that’s what

most of the craft of game design is about

— but it’s even harder when you lose sight

of your audience.

The Rule’s domain. This rule applies to

the process of game design and is meant

as a warning for designers to avoid a

common pitfall.

Rules that it trumps. “Make only

games that you really enjoy playing.”

I’ve heard this rule stated many times,

most often by people who have never

actually designed a game. It’s not a bad

rule, but it can lead to the mistake of

making a game that is fun for the

designer. An aspiring designer may rea-

son, “I’m representative of the audience

I have in mind, so if I enjoy playing the

game it will be popular.” But there are a

couple of fallacies there. First of all, a

person with that much interest in games,

the willpower to follow through and

actually make one, and the skills to do it

well is not representative of the general

game-playing public. Second, once

you’ve been working on a game for

many months, you perceive it differently

from someone coming to it for the first

time. If you continue to tune and tweak

the game to be fun for you at that

moment, you’re almost certain to make

it inaccessible to new players.

Rules it is trumped by. I can’t think of

any rules that should trump this — can

you?

Examples and counterexamples. Since

this is a rule of negation, let’s consider

what happens when it is broken. How do

designers make games that are fun for

themselves? There are many ways besides

the tuning example I just mentioned.

There’s another that I call the Egotistical

Dungeon Master trap, where a designer

considers the point of the game is to

show that he is smarter than the players.

This can take the form of a combat-ori-

ented game where the player is encour-

aged to follow a series of easy victories,

only to be ambushed at the end by vastly

superior forces and learn later through

trial and error that the only way to win is

to take the least logical step. Or it might

be an RPG or adventure game where the

only way to get past a monster is to pos-

sess an arcane and obscure piece of real-

world trivia that happens to be a favorite

topic of the designer. The point is to

always remember that we designers suc-

ceed when the players have fun, not

when they curse in frustration.

Making a game that is fun for the

computer is less common, but still a dan-

ger. Let’s take an illustration from a war

game. The player clicks on a German

artillery piece and then on its target, an

American tank. Then the computer goes

to work. Here’s what it is thinking:

“Let’s see, the gun is an 88, model G,

from 1943. It’s been in service for two

months and has seen heavy use. The

barrel was last replaced 14 rounds ago,

and it’s still in fair shape. The shell fires

successfully, muzzle velocity 178.4

meters per second, the wind is from the

northeast at 8 km/h, temperature and

humidity will slow the shell by an addi-

tional 0.7 percent — it’s a hit! But the

range is 2,743 meters, on frontal armor,

at an angle of 76.23 degrees off of per-

pendicular — the shell does not pene-

trate and detonates harmlessly.”

Several milliseconds later, the player

sees the message, “Attack ineffective.” The

computer has all the fun. Of course, if the

designer had made most of that informa-

tion accessible to the player, the player

would have had more fun (at least the sort

of player that likes WWII war games), and

the designer probably had a good time

taking all those factors into account.

Making a game fun for the computer is a

special case of making the game fun for

the designer, when the designer is proba-

bly also a programmer and so knows

what is going on beneath the surface.

I’m tempted to end this column with an

obscure joke that I’m sure only a few of

you would understand, but that would be

missing the point, wouldn’t it? q

N O A H F A L S T E I N | Noah is a 22-year veteran of the game
industry. You can find a list of his credits and other information at
www.theinspiracy.com. If you’re an experienced game designer inter-
ested in contributing to The 400 Project, please e-mail Noah at
noah@theinspiracy.com (include your game design background) for
more information about how to submit rules.

Fun for the Player

n o a h f a l s t e i n

How much fun did Sid Meier have designing
ALPHA CENTUARI? It doesn’t matter.

B E T T E R B Y D E S I G N

w w w . g d m a g . c o m 29

T hanks to ever-increasing

graphics horsepower on con-

temporary platforms, anima-

tors working with real-time

3D (RT3D) facial animation

have access to tools and technology pre-

viously available only to those in the film

and video industries. This flexibility can

be a double-edged sword, since choosing

the specific technique appropriate to your

project is a big responsibility. Facial ani-

mation can be expensive and time con-

suming, and it isn’t any fun to find out

— too late — that you’ve started down

the wrong path.

Like most development choices, the

decision to implement a particular tech-

nology is a balancing act between time,

money, user features, and in-house exper-

tise. If you have all the information in

place, deciding which system to implement

is often straightforward. This article will

shed some light on how to choose the

right facial animation technique.

In general, all the various facial anima-

tion methods available to RT3D animators

can be classified in one of two categories,

each characterized by how the 3D surface

is manipulated. For discussion purposes,

we’ll group these techniques into skeletal

networks and morphing systems.

Skeletal Networks

T he skeletal network technique

includes any system that uses a set of

nodes or channels to influence the 3D

surface indirectly, either by affecting clus-

ters of vertices through weighted

envelopes or through volume effects such

as free-form deformation matrices. The

most common implementation is a simple

skinned surface weighted to a network of

bones, as shown in Figure 1.

There are two key advantages to using

skeletal networks for facial animation.

The first is that because the animator is

only indirectly affecting the 3D surface,

he or she need not have access to the

actual “face” being animated. This means

that the facial animations can be generat-

ed in parallel with or even ahead of other

development, without requiring access to

the exact character mesh. Also, because

there is only a loose dependence on the

specific 3D surface being animated, the

animations generated using a skeletal net-

work are fairly easy to port between dif-

ferent facial surfaces.

The second advantage is that skeletal

animation of skinned surfaces is probably

the most widely supported in animation

packages and run-time engines. The tools

and techniques for skeletal animation are

proven and reliable, and there is a wide

variety of choices individual animators

have at their disposal.

However, a side effect of the indirect

method is that the facial animator does

not generally have direct access to the

facial surface being animated, implying

that some amount of finesse is being for-

m e l g u y m o n

M E L G U Y M O N | Mel has been working and consulting in the real-time 3D commu-
nity for several years and is currently working on a yet-to-be-announced project in
Silicon Valley. He can be reached at mel@infinexus.com.

F A C I A L A N I M A T I O N

d e c e m b e r 2 0 0 2 | g a m e d e v e l o p e r30

Animation
for the
Masses

Choosing the Right Facial
Animation Technique

FIGURE 1. An example of skeletal networks, as used in Sony’s THE GETAWAY.

feited. The inability to introduce extrem-

ely fine-grained nuances into facial ani-

mation is the primary disadvantage to

skeletal networks.

The second disadvantage is related to

performance: given a particular character

being animated in RT3D, the increase in

the number of bones may become prob-

lematic. At run time, part of the cost of

putting a character on-screen is the trans-

form cost associated with all of the bones

in a skeletal network. Typical bone counts

for average RT3D characters are around

20 to 30 bones for the body, arms, and

legs; yet in order to get any real degree of

finesse, a skeletal network may require

some 20 to 30 additional bones for the

face alone. And although advances in

hardware support for skeletal transforms

and aggressive use of skeletal level of

detail (SLOD) can alleviate this problem,

you need to plan for it in advance.

Morphing Systems

T he morphing system technique

includes any approach involving

direct surface manipulation: morph tar-

gets, BlendShape, and direct vertex or CV

animation. As shown in Figure 2, the

most common version of this involves the

use of a single primary surface, with

which are associated any number of

morph targets (the Morpher Modifier in

3DS Max and the BlendShape feature of

Maya are good examples), where a

morph target is a duplicate of the primary

surface stretched into a different shape.

Morphing systems come with two pri-

mary advantages. The first is that direct

access to the 3D surface offers the ani-

mator an incredible amount of finesse

and nuance in facial animation. For this

reason alone, many animators choose

morphing systems outright in lieu of any

other implementation.

The second advantage is the speed at

which changes to the primary surface can

be integrated into the facial animation.

This is a subtle point that I’ll cover in

more detail in the case studies that follow,

but in essence it means that you can modi-

fy the shape of the primary surface direct-

ly, and the facial animations previously

built for it will generally still work.

The major disadvantage of morphing

systems is their dependence on parity

between the primary surface and its asso-

ciated morph targets. The vertices in any

3D surface each have an assigned number,

or index. Morphing animation works by

generating deltas off of each numbered

vertex. This means that in order for there

not to be any artifacts, the vertices of the

primary surface and all its dependent

morph targets have to match exactly —

both the same number of vertices and the

same vertex indices. For example, if ver-

tex #57 is part of the eyebrow in the pri-

mary surface, but in one of your morph

targets vertex #57 has somehow been

assigned as part of the ear, you’ll end up

animating the ear when you meant to ani-

mate the eyebrow. To avoid this, structur-

al changes to the number and ordering of

vertices in a facial surface need to be

done very carefully.

The other major disadvantage is that

for complex surfaces the number of ver-

tices being morphed can become a limit-

ing factor to performance. And while the

specific limitations will vary from engine

to engine, it’s important to determine

early on the exact performance limita-

tions on how many vertices you can

manipulate and still maintain frame rate.

General Principles

I n the next section I’ll examine several

case studies, looking at them from the

perspective of the individual development

teams. In each case, I’ll demonstrate how

the answers to the following questions

w w w . g d m a g . c o m 31

FIGURE 2. Morphing systems entail direct surface manipulation.

Facial Animation
Planning Do’s and
Don’ts

DO USE BUILDING BLOCKS. Whether
you’re using morph targets or nodes, decon-
struct your character’s face into regions.
Common partitioning uses eyebrows (left and
right), eyelids (left and right), eyes (together or
left and right), upper lips, lower lips, and tongue.
By creating animations for these channels first,
you can combine them individually and in sets to
create more complex expressions (see Gary
Faigin’s book in For More Information).

DON’T RELY ON SYMMETRY. Although all
six of the primary emotions (happiness, sadness,
surprise, fear, anger, and disgust) are commonly
represented as bilaterally symmetric, subtle dif-
ferences between the left and right sides of the
face can add a huge amount of spice to any
given expression.

DON’T SHORTCHANGE THE EYES AND
MOUTH. With morph target animation, when
executing changes on the primary surface for
variation (as in case study 3), be especially care-
ful around the eyes and mouth. Because the ani-
mations of these areas are fairly complex,
changes to the initial surface can sometimes
have unpredictable results. In general, uniform
scaling of the mouth and eyes is O.K., but
stretching along one or more axes or discretely
deforming the surface can be problematic. Be
sure to test your results against as many combi-
nations as is reasonable.

helped determine the proper course of

action.

First, how important is facial anima-

tion to the product? Is it a primary user

feature or is it eye candy? How much of

your development budget and timeline,

and what percentage of the cost of the

retail product, are you willing to devote

to this feature?

Second, what does the art direction

dictate? Are the characters realistic or

highly stylized? Is there a need for subtle-

ty to convey mood and emotion? How

much diversity is there in the character

population? Also, how complex are your

characters? Are you dealing with many

low-resolution faces or very few rendered

at high resolution?

Finally, what expertise do you have

in-house to deal with the art path and

run-time implementations for each type

of system?

Case Studies

E ach of the following hypothetical

case studies has been set up to rep-

resent one or more of the challenges

today’s development teams face. Develo-

pers in each situation take into account

different considerations to arrive at the

best results for the team and the project.

Case study 1: A simple web-based game.
Alice, an animator on a small third-party

development team, has been given the

task of determining how to animate a

small number of medium-resolution char-

acters for a simple web-based game. The

art direction for the product has an anime

flair, it’s very stylized, and the character

size on-screen is small (Figure 3). For the

product, facial animation will be used to

convey basic mood and emotion, as well

as some dynamic lip-synching. The pub-

lisher, who will have final say over the

aesthetic, is providing the initial character

models to the team. The tools and engine

being used are off-the-shelf technology,

and while support for skeletal animation

is well-documented, support and tools for

morphing are not. Facial animation is not

the key feature of the product, and the

development budget and production time-

lines are both fairly small. This is a quick,

hit-and-run project.

Based on this information, we could

predict that Alice will sit down with the

engineering lead, and together they’ll

decide to use a skeletal network for facial

animation, with a network setup like

Figure 4 shows. In our tailored example,

the reasons for this are obvious. Because

facial animation is not a key feature, the

development team is wise in choosing the

most expedient path to success. In this

case, because the engine and tools are not

proprietary, the first course of action

should be to use what already works, in

this case skeletal animation.

Because this is a quick project, leverag-

ing a single set of facial animation on

multiple face meshes is a big advantage

and only requires some small modifica-

tions to the bones and weighting for each

character. Because of the low requirements

for subtlety in the characters (the emo-

tions are simple and the characters are

small on-screen), there doesn’t appear to

be a downside to using a skeletal system.

The fact that the publisher is providing

the initial character models and may

come back to request changes to them

later on is significant — if the team gen-

erated morph targets for animation and

were then told to make structural

changes to the primary surface, they’d

have a difficult, though not impossible,

challenge ahead of them.

Case Study 2: A mass-market CD-ROM
title. Bob is the lead animator at a large,

self-publishing development house. Bob

has just been handed the product design

for a RT3D product based on interaction

with famous historical figures. The art

direction for the characters involves a

slightly stylized rendering approach with

shapes that are closely true-to-life and

should be accessible to the mass market

(Figure 5). The character meshes are fair-

ly complex, and the faces will be viewed

close-up and only a few at a time. Facial

animation plays a fundamental role in

the product, both for expressing subtle

mood and emotion, as well as extensive

F A C I A L A N I M A T I O N

d e c e m b e r 2 0 0 2 | g a m e d e v e l o p e r32

FIGURE 3. Case Study 1: Character profile for a simple web-based game. The characters have a
simple, stylized look and will appear small on-screen.

FIGURE 4. Case Study 1: The skeletal setup will lead to quick results and flexibility for later
changes.

support for lip-synch. The engine being

used was developed in-house and has

already been used on several successful

projects. The tools and techniques for

skeletal and morph-based animation are

both supported. The engine has run-time

support for subdivision surfaces and B-

spline patch surfaces. The development

house uses both 3DS Max and Maya.

Given the above information, lead ani-

mator Bob would do well to implement

facial animation using a morphing sys-

tem. The primary reason for this is the

fidelity of expression and motion

required by the product. The fact that

the facial expressions will be viewed at

close range, coupled with the highly rec-

ognizable figures represented, means that

Bob will want access to as much of the

surface as possible through direct vertex

manipulation. Since the engine and tools

are proprietary and support both sys-

tems, there is no development cost for

creating a new process. Further, since

there will only be a few characters on-

screen at a time, a relatively large num-

ber of vertices and control points can be

animated. Also, the in-house develop-

ment probably means a more controlled

development environment, so there is less

chance of having to rebuild the character

heads to meet someone else’s aesthetic.

In Figure 6 we can see an example set

of some of the dozens of morph targets

that will be required for this project.

Note that in both Figures 5 and 6, the

surface that is actually being morphed is

a Bézier patch mesh (at left in Figure 5

and top row in Figure 6) of approximate-

ly 300 vertices, whereas the actual in-

world surface has been procedurally sub-

divided to be approximately 4,800 ver-

tices (at right in Figure 5 and bottom

row in Figure 6). This means that Bob

will have much less data to work with

while still being able to maintain a rela-

tively high resolution result. This is a key

factor in minimizing the amount of work

involved but would not sway the decision

either way by itself.

Case Study 3: Massively multiplayer
character-based PC game. Adrian, the

technical director, is working on a major

massively multiplayer PC game. The

game is a character-based pseudo-RPG

and is highly dependent on giving users

the ability to customize their individual

appearance. As seen in Figure 7, the

character art direction is highly stylized

but primarily humanoid. Facial anima-

tion plays a key role in user-to-user

communication and user-customization

of their avatars. The theoretical space

available to users for facial customiza-

tion is broad and deep. The faces come

in many shapes and sizes, and are cus-

w w w . g d m a g . c o m 33

FIGURE 5. Case Study 2: A mass-market CD-ROM title with complex meshes and where facial
animation is a focus.

FIGURE 6. Case Study 2: Animated expressions, morph targets, and function curves.

FIGURE 7. Case Study 3: Massively multiplayer character-based PC game.

tomizable through color, texture,

motion, and shape. In planning for this

project, the system built must be able to

accommodate thousands of user-tuned

combinations. The minimum specifica-

tion platform is a T&L-accelerated PC,

and the engine is capable of displaying

dozens of characters on-screen at any

given time. For close-up viewing, the

character head meshes will be subdivid-

ed to contain thousands of vertices.

On first glance, facial animation for

this type of project may not seem like a

straightforward problem to solve. The

large number of character combinations

may lead Adrian down the path of using

skeletal networks, since their portable

nature means they can be used on many

varied facial structures. However, the

key role played by facial animation in

customization and communication

means that Adrian will not be able to

cut corners on doing the skeletal anima-

tion — it will require many bones and

lots of finessing to keep the users happy.

With so many relatively high-resolu-

tion characters on screen, the cost of the

additional nodes for facial animation

starts adding up quickly. However, the

real deciding factor in this case is the

requirement to allow users to customize

the appearance of their characters. The

most expedient method for this is to

generate a morphing system that blends

between head choices. Since this system

will already be in place for the static

head variations, extending it to support

run-time facial animation should be a

small next step.

In Figure 8, we can see the power of a

morph-based system coming to the fore.

The art path and run-time implementa-

tion used by this system is identical to

that used for the run-time facial anima-

tion. The single requirement to which

Adrian will have to adhere is that blend-

ing will only be possible between heads

constructed from the exact same vertex

list. So, in Figures 7, 8, and 9, all of the

heads shown have been created using

the same initial primary surface. All of

the differences are in the position and

the texture — the actual vertex indices

and mapping coordinates are identical

for each.

In planning for this system to work,

Adrian also came across another happy

coincidence. Because all of the heads of

a given type (if a type is a set of heads

that shares the same vertex list) are

essentially identical, Adrian only needs

to create one set of expressions for all

of them. Figure 9 shows the result of

this: a single animation’s keyframes and

morph targets have been applied to both

heads. Since the heads stem from the

same primary surface, they both can be

animated from the same expression. The

big win is that this holds true for each

of the thousands of user-created combi-

nations of shape and texture. Put anoth-

er way, it would be nigh impossible to

create the same fidelity of motion and

diversity of character without using a

morph-based system.

Wrap Up

T he correct decision of which piece of

technology to use can make or break

a development effort, and facial animation

is no exception. By highlighting many of

the most common challenges faced by

teams using facial animation today, I hope

this article will help you weigh some of

your available options. Check your refer-

ences, do you homework, and choose the

technique most in line with your develop-

ment goals. Happy hunting. q

d e c e m b e r 2 0 0 2 | g a m e d e v e l o p e r34

FIGURE 8. Case Study 3: Example morphing system for static head variation.

FIGURE 9. Case Study 3: Reuse of animation between disparate meshes.

FOR MORE INFORMATION

Faigin, Gary. The Artist’s Complete Guide
to Facial Expression. New York:
Watson-Guptill, 1990.

Fleming, Bill, and Darris Dobbs.
Animating Facial Features and
Expressions. Rockland, Mass.: Charles
River Media, 1999.

Hamm, Jack. Cartooning the Head and
Figure. New York: Perigee Books, 1986.

Thomas, Frank, and Ollie Johnston. The
Illusion of Life: Disney Animation. New
York: Hyperion, 1995.

Williams, Richard. The Animator’s Survi-
val Kit. New York: Faber & Faber, 2001.

F A C I A L A N I M A T I O N

W hat a difference

two years make.

Two and a half

years ago, I wrote

in Game Devel-
oper (“All Aboard Hardware T&L,”

April 2000) about the upcoming graph-

ics boards that supported hardware

transformation and lighting. Nowadays

we’re all happily using hardware T&L,

while searching for the next big advance

that will set our games apart from the

crowd visually.

What we’ve been waiting for has

arrived. The current crop of performance

video cards has upwards of over 120 mil-

lion transistors — more than a Pentium 4.

They can address 16GB of memory and

can typically process four or more pixels

simultaneously and render to two moni-

tors simultaneously. Now the big chal-

lenge is overcoming the paradox that the

more triangles we push, the harder it gets

to give a game a unique visual character.

Lately, one of the biggest complaints

from artists and developers has been that

once you’ve got all the curved surfaces

and textures you ever wanted, it’s too

difficult to give the scene that drop-dead

gorgeous, oh-my-god-how-did-they-do-

that look. In order to achieve a unique

look, we’re forced to do some crazy stuff.

Brian Hook reported that QUAKE III

could use up to 10 passes to render a

scene with all the eye candy enabled. It’s

rumored that DOOM III can use up to 20.

It seems like a lot of effort just to get

some pixels set to a particular intensity

and hue.

Luckily, there’s been a lot of focus on

how to bring more creative freedom to

developers and artists. The graphics

hardware vendors have taken a page

from the successful model of Pixar’s ven-

erable RenderMan software and brought

programmability to consumer graphics

boards through the use of small pro-

grams called shaders that allow you to

r o n f o s n e r

R O N F O S N E R | Ron has been pro-
gramming 3D applications since before
there were floating point processors on PCs.
The rapid change of pace in 3D PC graph-
ics has provided an area rich for creating
new effects and techniques, where Ron’s
been consulting since 1994. He spent the
last two years crafting real-time animated
digital human faces for a failed VC startup
(anyone want some technology?). When not
programming 3D graphics he’s teaching it
through magazine articles and conference
courses. His most recent book is Real-Time

Shader Programming (Morgan-Kaufmann,
2002), a how-to book for shader writers.
He can be reached at ron@directx.com.

R E A L - T I M E S H A D E R S

RenderMan in Real Time:
Staying on Top

of Shaders

d e c e m b e r 2 0 0 2 | g a m e d e v e l o p e r36

FIGURE 3. Gooch shading draws out details
of shape and structure.

FIGURE 4. Hatching combines texture maps
with pixel brightness for artistic effects.

FIGURE 2. Cartoon shading using results from
traditional lighting calculations.

FIGURE 1. Traditional shading and its all-too-
familiar diffuse-matte look.

specify how vertices and pixels are actu-

ally output from the graphics processing

unit (GPU). These were available last

year with cards that supported DirectX

8.0 shaders, but it’s finally reached criti-

cal mass this year with the latest crop of

video cards. Unlike the transition to

hardware T&L, using shaders involves a

steeper learning curve.

My discussions with the various hard-

ware vendors indicated that the effort of

incorporating shaders into games is a

strenuous one. Only a few of the cutting-

edge developers are coming out with

games that make use of shaders. The rest

of them are busy getting ready to ship

games for Christmas 2002, whose base

technology predates that of the latest

shader techniques. Many have discovered

that implementing shaders is something

more than your graphics guru can

accomplish in a caffeine-fueled weekend.

In fact, adding shader support to a game

requires learning a new assembly-like lan-

guage, learning how to check for various

levels of shader support, treating shaders

like any other resource file, and finally

letting your artists have access to the

shaders. It’s no wonder that there’s a

dearth of shader-supporting games com-

ing out this year.

If this sounds like a lot of work for a

questionable return, you’ll understand

why the biggest changes in recent graph-

ics hardware have focused on shaders.

Shaders let you program the graphics

pipeline using a low-level assembly lan-

guage in DirectX 8, or a high-level lan-

guage in DirectX 9’s High-Level Shading

Language (HLSL), Nvidia’s Cg, and

OpenGL 2.0’s GL2.

In my previous article on hardware

T&L, I talked about the speed increase

that we’d gain from having the hardware

and not the driver perform the texturing

and lighting calculations for us. This

meant that the graphics hardware took

on some of the capabilities of the CPU.

In fact, modern graphics hardware has

the ability to perform complex math

operations on multiple data in a SIMD

fashion. You now have the ability to tell

the hardware exactly how you want

those calculations performed, and you no

longer have to suffer with the matte-plas-

tic-looking objects that the traditional

pipeline gave you.

A Toon Teapot

F igure 1 shows the ubiquitous teapot

model rendered by the traditional

graphics pipeline. There’s nothing sur-

prising about it, it’s got the diffuse-matte

look that the traditional graphics pipeline

is infamous for and that we’re all thor-

oughly sick of. Shaders, by contrast,

allow you to program the shading equa-

tions yourself.

Let’s start off with a simple cartoon

shader. The toon vertex shader computes

the light intensity at each vertex (like the

traditional graphics pipeline does), but it

stores the light intensity as an encoded

value. This value is then vertex-interpo-

lated and passed to the pixel shader. The

pixel shader then examines the intensity

of the light and selects one of three color

values representing the dark, illuminated,

and brightly illuminated values. The col-

ors can be part of the pixel shader code

w w w . g d m a g . c o m 37

A screen shot from id’s forthcoming DOOM III
showing what you can do with shaders and
some creativity.

or can be variables. Programmability is

part of the beauty of shaders. The car-

toon teapot in Figure 2 uses traditional

lighting calculations, but we took the

results from those calculations to choose

our cartoon-rendering scheme.

NPR

T he real power of shaders is demon-

strated by some of the non-photoreal-

istic rendering (NPR) techniques with

which developers are dabbling increasing-

ly. There’s a large number of these tech-

niques (see Craig Reynolds’ excellent list-

ing of NPR links at www.red3d.com/

cwr/npr), and we’re starting to see many

of these techniques show up as shader

programs.

Gooch shading, shown in Figure 3, is

designed for technical illustrations and is

intended to clarify shape and structural

details without cluttering up a rendering.

It uses a warm and a cool color scheme

to maintain edges and highlights.

Figure 4 shows an artistic hatching

technique. The hatches are part of a

carefully constructed set of texture maps

that replace the brightness of a pixel

with a selection of a texture represent-

ing that brightness. There are similar

techniques for representing charcoal

drawing, etching, dithering, and half-

toning effects.

Procedural Shading

S ome of the most creative shaders

have been created by RenderMan

users, and RenderMan has been the basis

for much of the current crop of hardware

shaders. However, the high-level lan-

guages that are currently being designed

for real-time hardware shading have

modifications based upon the limited

interface with the hardware and, while

they may look C-like, they aren’t general-

purpose programming languages. ATI has

been busily replicating many of the

shaders found in the RenderMan books,

and you can find many examples on their

web site (see For More Information).

d e c e m b e r 2 0 0 2 | g a m e d e v e l o p e r38

O ld-school developers who had to pro-
gram in x86 assembly language may

not find the low-level shader language that
intimidating, but considering the dearth of
games out there using DirectX 8 shaders,
the low-level approach doesn’t seem to be
all that popular.

Now that the next batch of shader-capable
hardware is making its way into the hands of
consumers, it’s time for the level of software
support to catch up. All of the hardware
manufacturers know that in order to differ-
entiate themselves from the pack they’ll
need to stay in the lead. Their tried and true
method for getting software to support their
hardware features is to give game develop-
ers gobs of support to show them how easy
it is to incorporate features into games that
they may have been reluctant to put in before
simply because they didn’t have the resources.

Everyone realized that shader support
would be a whole new ball game. Microsoft
has always stated that their goal was to pro-
vide a high-level shading language that would
make shader programming for PCs as easy as
writing RenderMan shaders, namely C-like
functions with a ton of built-in functionality.

Then Nvidia, a company never known for
sitting back quietly when it could be doing
something, preempted everyone by develop-

ing its own shading language/compiler called
Cg. Some saw this as a strange move, since
the Cg compiler currently only runs on Nvidia
hardware (or hardware that supports Nvidia’s
extensions), and proprietary languages are
not generally the path to market dominance
these days. Nvidia told me that they saw
developers’ need for a higher-level language
and wanted to provide a tool to fill that need.

Nvidia is still pushing Cg, even after
Microsoft proposed its own language, HLSL
(High-Level Shading Language). In addition,
the OpenGL 2.0 draft specifies a shading lan-
guage called GL2. Who wants to learn three
shading languages? Could Nvidia be feeling
some heat in the market? The press specu-
lated that Nvidia’s next-generation NV30
chipset missed some deadlines that were
going to get it out in time for a significant
presence this Christmas (at press time the
NV30 was scheduled to be unveiled at
Comdex in November), and in fact, the Cg
presentations were the first public revela-
tions of some of the NV30’s capabilities,
leading to a fair amount of early buzz.

I’m all for making life easier for program-
mers and artists, and Nvidia has been on the
forefront of providing good tools to help game
developers take advantage of the latest hard-
ware, but historically their tools have been

pretty agnostic. After the Cg announcement,
though, Nvidia managed to embroil them-
selves in a small mêlée. ATI and 3DLabs
jumped on Nvidia with both feet. Microsoft
was a bit more politic, wondering why Nvidia
didn’t simply work with them.

The firestorm culminated with id Soft-
ware’s John Carmack weighing in just before
the SIGGRAPH 2002 conference. 3Dlabs, who
has been leading the OpenGL 2.0 spec, had
sent Carmack a Wildcat VP board and an
OpenGL 2.0 driver. It worked with minimal
effort, and he was sold. Nvidia then sent
John the Cg spec. There’s really nothing too
major that sets Cg apart from the other shad-
ing languages, since they are all in flux and
still very similar at this stage. The Cg compil-
er was Nvidia specific, however, and hard-
ware-specific code is a hobgoblin to most
game programmers. Carmack stated that he
wouldn’t support Cg as it stands, since GL2
worked just fine for him.

In defense of Cg, it does provide the
opportunity to write shaders that will work
on both DirectX and OpenGL. Nvidia has
open-sourced the parser and a back end to
facilitate writing compilers for Cg, but there
is a caveat: you’ll need a compiler from each
hardware manufacturer in order to produce
optimized code for that hardware.

The Tower of Babel: The Latest Shader Languages

R E A L - T I M E S H A D E R S

They’ve recently released a RenderMan

shader compiler for RenderMonkey,

their shader exploration tool, which lets

you compile many RenderMan shaders

(with some limitations). For example,

Figure 5 shows the blue marble shader

from Steve Upstill’s RenderMan Com-
panion (Addison-Wesley, 1990). Since

there’s no built-in noise function, they

had to use a noise texture and perturb

the texture coordinates, but it’s basically

the same shader. Listing 1 shows the

actual code used in RenderMonkey to

generate the image.

If you’re familiar with traditional light-

ing calculations, you should have no prob-

lem figuring out this code; this listing

should give you a good idea of what the

higher-level shading languages look like.

By the time you read this DirectX 9 should

be out, and you will be able to download

the SDK and try these out for yourself.

w w w . g d m a g . c o m 39

In conversations I had with people at
ATI, they indicated they are happy with the
code produced by the Microsoft HLSL
compiler. After all, they said, Microsoft
knows something about writing optimizing
compilers. Their tests have shown that
beta version of the compiler produces code
for complex pixel shaders that’s within
three low-level shader instructions of the
hand-optimized 35 instructions their engi-
neers produced. That covers DirectX pro-
grams. The OpenGL solution for ATI is to
use the GL2 shading language.

If you program for both OpenGL and
DirectX, then a Cg implementation might
be worth looking at. If you’re monotheistic,
it’s still worth looking at Cg, if only for the
educational value. There’s a wealth of use-
ful shader information on the Cg web site
for programming in any shading language.

So what can you expect from a high-level
shading language? For now, they all look
similar. They are all C/C++-like and provide
support for vertex and pixel/fragment
shaders. The basic supported types are
floats and float vectors, like you’d expect for
SIMD architecture. High-level math func-
tions such as dot products, vector normal-
ization, and trig functions are built in.
Swizzling and masking capabilities on vari-
ables are supported.

The one thing I haven’t seen is the
abstraction of the hardware dependence

from the shader languages. It’s possible to
write a fairly complex shader (particularly
using a high-level language) and discover
that the compiled shader runs out of a par-
ticular resource (such as temporary regis-
ters). The only solution is to break the
shader into pieces and render it as a multi-
pass. This will force programmers either to
have multiple versions for different hard-
ware (the current awful situation), or to
write to the lowest common denominator
(an increasing likelihood as shaders
become widespread). It would be much
nicer to have the shader compiler figure out
that it has to break up a shader and do it for
you than to have to do this stuff by hand. In
order for everyone to readily and easily take
advantage of shaders in their games, this
aspect of shader programming will have to
be resolved.

The languages support shader files as
external ASCII files, making interactive edit-
load cycles possible for interactive shader
editing. Microsoft’s Visual Studio with the
DirectX 9 SDK allows you to have a shader
debugger, which is really handy when
you’re trying to figure out why a shader
doesn’t work right. DirectX 9 should be out
just about the time this article hits the
streets, so it will be interesting to see if Cg
can find a home with Microsoft’s HLSL and
OpenGL’s GL2.

— Ron Fosner

FIGURE 5. The RenderMan marble shader.

LISTING 1. The RenderMan marble
shader used in RenderMonkey.

#define NNOISE 3

#define snoise(x) (2*noise(x) - 1)

surface

bluemarble(

float Ka = 0.1;

float Kd = 0.8;

float Ks = 0.3;

float texturescale = 4.6;

float ifreq = .106;

float mfreq = 2.772;

float scaleA = 0.148;

float scaleB = .184;

color ambientcolor = color(1);

color specularcolor = color(1);

float roughness = .01;

color color0 = color (.93, .95, 1.0);

color color1 = color (.98, 1.0, 1.0);

color color2 = color (0.9, .9, 0.9);

color color3 = color (0.85, .85, 0.85);

)

{

color Ct;

point NN;

point PP;

vector V;

float i, f, marble;

float scale;

NN = normalize(N);

V = -normalize(I);

PP = P * texturescale;

marble = 0;

f = ifreq;

for (i = 0; i < NNOISE; i += 1)

{

marble += snoise(PP * f);

marble /= f;

f *= mfreq;

}

scale = scaleA * marble + scaleB;

f = clamp(scale, 0, 1);

Ct = spline(f, color0, color1, color2, color3);

Ci = Ct * (Ka * ambientcolor +

Kd * diffuse(NN) +

Ks * specularcolor *

specular(NN, V, roughness));

}

Roll-Your-Own Shading

U sing shaders, it’s possible to throw

out the traditional model and craft

something completely new. Figure 6

shows a detail of a car mirror and the

different stages used to construct the

final image. The base color is created

from a combination of a diffuse color

and two different specular colors, giving

it the appearance of changing color at

the middle of the specular highlight. A

stage reproducing a metallic flake medi-

um uses a highly specular term with a

noisy texture map to perturb the light

vector and give the appearance of embed-

ded reflectors. Finally, a cubic environ-

ment map is applied to simulate a gloss

finish. These three stages are applied in

one shader pass, resulting in the finished

image. The vertex and pixel shaders

together constitute about 35 low-level

instructions. As you can see, you get a lot

out of those instructions.

The shader capabilities of the latest

generation of hardware offer a great deal

to developers, artists, and consumers

alike. Nvidia is going to be pushing their

NV30 architecture aggressively, pushing

down the price point of their DirectX

9–capable cards to about $100 in early

2003. That’s right, a card capable of

playing DOOM III as it was meant to be

seen for $100.

So if you’ve been sitting on the side-

lines waiting for the time to be right to

start implementing shaders for your

game, now’s the time to get out on the

field. Download the SDK, brush up on

how lighting equations work, and start

thinking about how you can create your

own unique shaders. There’s a wealth of

information out there to help you get

started, so now that you’ve (hopefully)

finished crunch mode and are ready to

play, there’s a whole new world of cre-

ativity waiting for you to discover it. q

R E A L - T I M E S H A D E R S

W hile ATI and Nvidia are the current
leaders in the graphics hardware

arena, 3Dlabs (given new life through its
acquisition by Creative Technology) and
Matrox are following about six months
behind. Even on the low-end consumer level
we’ve got cards like the SiS Xaber 400 that
come with shader programmability, so it’s a
mix of players right now. The manufacturers
listed in the table at right represent more
than 90 percent of the current market. All
the leading cards from these manufacturers
come with at least DirectX 8 capabilities, and
by Christmas 2003 many games should be
taking advantage of shaders.

The two leading video cards come from
Nvidia and ATI. As I write this Nvidia’s
NV30 hasn’t shipped yet, but its current
specs make it more impressive than ATI’s
already shipping Radeon 9700 line. Both
fully support DirectX 9 shaders. 3Dlabs’
Wildcat VP and Matrox’s Parhelia are
hybrids, supporting DirectX 9 vertex

shaders but only DirectX 8.1 pixel shaders.
Matrox has also gone off on a bit of a tan-

gent from the rest of the graphics chipset
manufacturers with support for three
simultaneous monitors, compared to two
for the rest of the herd. While this might
seem strange at first, it makes a weird bit
of sense when you consider that all you
need to support it is an adjustable field-of-
view (FOV) parameter in your game, and

realize that QUAKE III, UNREAL, and a few oth-
ers already have an adjustable FOV. This
produces some perspective problems at the
edges, since it’s not a mathematically cor-
rect thing to do, but no one seems to be
complaining very loudly.

I’ve included SiS’s Xabre as well, since
it’s representative of those sub-$100 cards
that fully support DirectX 8 shaders.

— Ron Fosner

Nvidia NV30 ATI Radeon 9700 3Dlabs Wildcat VP Matrox Parhelia SiS Xabre 400

Picking over the Current Hardware Crop

d e c e m b e r 2 0 0 2 | g a m e d e v e l o p e r40

FIGURE 6. A three-color base coat, plus a
flake specular, and a specular environment
map, gives a two-tone metallic paint job.

AGP Bandwidth 8x 8x 4x 4x 8x
Memory NDA* 128/256MB 64/128MB 128MB 64MB
Bus Width DDR2 256-bit DDR 256-bit DDR 256-bit DDR 128-bit DDR
DirectX Support DirectX 9 DirectX 9 DirectX 8.1+ DirectX 8.1+ DirectX 8.1
Pixel Pipes NDA* 8 8 4 4
Pixel Shader Version 2.0+ 2.0 1.2 with partial 2.0 1.3 1.3
Vertex Shader Version 2.0 2.0 1.1 with partial 2.0 2.0 1.1
Simultaneous Textures NDA* 8 8 4 4
Floating Point Pixels Yes Yes No No No
*Still under NDA at press time.

F O R M O R E I N F O R M AT I O N

Various hardware vendors have good
resources on DirectX 9, OpenGL 2.0, and
shaders:
www.microsoft.com/directx
http://developer.nvidia.com
http://mirror.ati.com/developer
www.3dlabs.com

There are also a couple of books:
Engel, Wolfgang. Direct3D ShaderX.
Wordware Publishing, 2002.
www.shaderx.com
Fosner, Ron. Real-Time Shader
Programming. Morgan-Kaufmann, 2002.
www.directx.com

P O S T M O R T E M m i c h a e l s a l a d i n o

d e c e m b e r 2 0 0 2 | g a m e d e v e l o p e r44

M I C H A E L S A L A D I N O | Michael has been evolving over the last nine years from a
low-level graphic guru into a technical director and game producer. With the closing of
Presto, he is now spending his time searching for a new home for his purple velvet chaise
lounge and wine bar. He can be reached at mikeyspeakeasy@yahoo.com.

And Presto…
It’s Gone!

The Final Days of Presto Studios:
An Insider’s View

M any people in the game

industry grew up fol-

lowing the careers of

those who led the first

wave. Those mavericks

from the late 1970s and early 1980s

defined the punk rock, garage band

atmosphere that fed our dreams of some-

day doing the same thing: working with

a group of friends in a clubhouse for lit-

tle money, pushing for that big payday

when a man with a bag full of cash

walks in the door and makes all your

Ferrari-owning fantasies come true.

Now that I’ve been in the industry for

nearly 10 years, I’ve developed a more

realistic view of the business. Why do

most small startups never make it? What

mistakes are made? Is it inevitable that

most small developers will eventually fail

due to economic reasons beyond their

control, even if they make all the right

moves? Through the lens of Presto Studios’

recent demise, I will look at the state of

boutique development houses, examine

the industry as it has evolved over the

previous two decades and find how we

all fit into it, now and in the future.

Presto Studios was started 11 years ago

by a group of old friends from high school

and college, along with their respective

families. It started during the introduction

of CD-ROMs which ushered a new era of

photorealistic graphics. THE JOURNEYMAN

PROJECT, Presto’s first product, developed

into a profitable intellectual property, sup-

plying the bread and butter for the first

half of this small company’s existence.

While often taking second chair to the

hugely successful MYST/RIVEN license,

Presto enjoyed a rabid fan base and

became known as one of the premier art

houses in the business, attracting an excel-

lent collection of prerender artists.

Phase Two

A TOMB RAIDER–killer called BENEATH

marked the company’s push into

real-time 3D and the beginning of the

second stage for Presto. Along with that

ambitious project, we scored a Star Trek
adventure title under Activision that

showcased our prerender talent. In addi-

tion to these two projects, a prototype

team was assembled to explore even

more opportunities, marking Presto’s first

promising foray into multiple projects.

Unfortunately, the company stumbled at

this point and only the STAR TREK game

was released, winding us back to being a

single-project house.

The remaining three years saw Presto

returning to its roots to produce MYST

III: EXILE. Released in May 2001, it was

the sequel to Cyan’s original MYST and

C O M P A N Y D A T A
WHERE BASED: San Diego, CA

DATE FOUNDED: Incorporated in 1992

DATE CLOSED: Official final day October 15,
2002

HEADCOUNT AT FOUNDING: 8

HEADCOUNT AT CLOSING: 21

PEAK HEADCOUNT: 45 in 1999 during our
attempt at three projects

SOFTOGRAPHY:
THE JOURNEYMAN PROJECT;

completed in 1993

THE JOURNEYMAN PROJECT 2: BURIED IN TIME;
completed in 1995

GUNDAM 0079: THE WAR FOR EARTH;
completed in 1996

THE JOURNEYMAN PROJECT: PEGASUS PRIME;
completed in 1997

THE JOURNEYMAN PROJECT 3: LEGACY OF TIME;
completed in 1998

THE JOURNEYMAN PROJECT 4;
cancelled at conceptual stage in 1998

BENEATH;
cancelled in the final year of production, 1999

STAR TREK — HIDDEN EVIL; completed in 1999

STEPHEN KING’S F-13; completed in 2000

MYST III: EXILE; completed in 2001
WHACKED!; completed in 2002

45w w w . g d m a g . c o m

RIVEN, its follow-up. WHACKED, recently released for the

Xbox, was our final attempt at real-time. However, these

titles were essentially produced one at a time. On August 26

of this year, we announced to our employees and the world

that WHACKED would be Presto Studios’ last product.

I should point out that I joined the company during its second

phase, in which it was developing its own internal real-time 3D

engine. I am not a founder or an owner of the company; howev-

er, the details in this article from before my time come from the

people that were there. My view from the trenches also exclud-

ed me from inside information about the financial dealings that

kept Presto running for over a decade. Therefore, I won’t

attempt to expound too much on the financial state of Presto,

but instead I’ll focus on the internal development cycles and the

publisher relationships I witnessed firsthand.

What Went Right

1.Focus on great art. Unlike most game companies,

Presto Studios started as a storytelling enterprise.

Because they are less about the game and more about the

visual emersion, graphic adventures have a unique position in

our industry. Despite the gameplay derived from their puzzles,

they are very much digital coffee table books for users want-

ing to see something pretty. With this being the case, Presto

began developing a name as an “artist’s” game company. We

were never at a loss for résumés from talented young artists

around the world, and many of our team members have

moved into film work at companies such as Pixar and

Lucasfilm.

2.Unique, creative high concepts that pushed inno-
vation. The halls of Presto were filled with awards and

trophies. We delivered high-concept art that was at the top of

the industry. But one of our biggest problems when trying to

get contracts was the talent of which we were most proud.

Financially conscious publishers tend to handle new or unusual

ideas with skepticism. While I find this fact unfortunate, I

understand why it happens.

The game industry is like all other businesses, here to make

money for ourselves, our team members, and our financial

partners. Experimental movie projects are often passed over for

summer blockbuster action flicks starring everyone’s favorite

megastar, and the same holds true for games. It’s not true that

only bad, derivative works are published, and it’s not true that

only breakthrough games can be fun. If you want to stay in the

business relying solely on risky ventures, however, you’re in for

a long road with your publishers. Therefore, we played both

sides, building both license games and sure-thing sequels as a

way to get permission to do unique work later.

P O S T M O R T E M

d e c e m b e r 2 0 0 2 | g a m e d e v e l o p e r46

3.Built strong niche position with our own IP.
Regardless of the industry, if you possess intellectual

property of any value, it should be leveraged (or milked) for

everything it’s worth. Even if you don’t own the IP, if you’re the

studio that created it, you should at least get first right of

refusal to subsequent products. Presto Studios understood this

with THE JOURNEYMAN PROJECT. Award-winning and financially

successful (along with the original, two sequels and numerous

ports were spawned across the Macintosh, PC, and Playstation

platforms), it helped Presto establish its name as a premier stu-

dio for graphic adventure titles, bringing together people who

were experts in this craft. Michel Kripilani, one of Presto’s

founders, honed his ability to schedule complex resource trees

for both cutscenes and in-game flow. Phil Saunders, the creative

director, held all his projects to an extremely high level of quali-

ty, a major reason for our development into such a strong art

house. The foundation was thus laid for us to be the definitive

graphic adventure house in the industry.

4.MYST III. When Cyan wanted to farm out the third

installment of what was then computer gaming’s best-

selling franchise (before being surpassed by THE SIMS), Presto’s

reputation and experience gave us an incredible chance late in

our history to develop MYST III: EXILE. Cyan’s search for a

company that could deliver to their level of quality brought

them to Presto Studios in 1999.

One of my first responsibilities at Presto was creating the

prototype for pitching the game. Using the Sprint engine and its

hardware and software rendering capabilities, I programmed a

mini-adventure in which you could smoothly look around

inside 3D nodes. The nodes were cubes with prerendered

images textured onto them with the camera located at the cen-

ter. This created a powerful “you are there” feel that helped

push the experience beyond what even Cyan was familiar with.

The project turned into the biggest-selling game in Presto’s his-

tory and in many ways represented the pinnacle of our craft.

5.Leapfrogging into real-time 3D at the right time.
The first game created by Presto Studios was “pro-

grammed” in Director, so it was natural that for the first half of

its existence no one saw technology as a primary focus. In the

background of the Presto logo there are four words: animation,

interactivity, video, and music. This mantra really defined the

CD-ROM, multimedia mentality that spawned the company

during the early 1990s, a mentality that did not include

advanced game programming. So when the decision was made

to move away from the dying graphic adventure market and

into the mainstream arena of real-time 3D, a major retooling

was required.

This rebirth came in 1997 in the form of Max Elliott and

his Sprint engine. An agreement brought Max into Presto

Studios as the CTO along with all the technology that he had

developed over the previous two years at his own company,

Sibling Interactive.

The use for this new technology was already decided:

BENEATH, a third-person action-adventure done in an early

20th-century Jules Verne style. The Sprint engine came prepared

with a full software renderer and a Glide hardware renderer.

Other features included a sound system based on Miles, com-

plete physics and collision systems, and plenty of general-pur-

pose objects such as object emitters and switches. The package

also included a tool path that allowed the construction of levels

and characters inside 3DS Max. This suite of technology —

along with the leadership of Max Elliott — transported Presto

quickly from the stone age of game technology right up to the

cutting edge.

What Went Wrong

W e have a small startup, we have great art, we have a cut-

ting-edge engine, and we have truly unique concepts.

What could go wrong? Well, something did, because I’m sitting

here writing Presto’s postmortem.

1.Friends and family: Nice people. Maybe too nice.
There is a critical problem with the “garage-band” game

studio: these studios are usually started by a group of friends

and family. This is a natural course; who else beyond such close

associates is going to work that first year or two for next to

nothing? Who else will moonlight (for free) for the chance to

live the dream that they’ve had since they were 10 years old,

playing BEACH-HEAD on their Commodore 64? This business

model (for lack of a better term) is completely valid at the concep-

tion of a new company.

However, once the initial success is achieved, which for Presto

came in the form of the JOURNEYMAN IP and several successful

titles, the new company finds itself with money in its coffers for

the first time. Ramping up the production staff is a necessity,

and you’re able to attract experienced people from the industry.

People send their résumés to you in addition to Electronic Arts

and id. The company evolves to a higher level of professional-

THE JOURNEYMAN 3 STORYLOG. THE JOURNEYMAN PROJECT 3 story-
boards translating into the final product.

P O S T M O R T E M

d e c e m b e r 2 0 0 2 | g a m e d e v e l o p e r48

ism, and the new staff reflects that in

their skill levels and their salaries.

Unfortunately, these new people

being hired might be more experienced than

the founders. The modeler from the first garage

project that helped start everything now has a

team of modelers who are all more experienced

and skilled at their craft. How does a company

resolve these issues? Do you have founders work-

ing beneath new employees? What do you do if you

discover your good friend, even though he happily

pulled all-nighters on his own to support early

efforts, can’t manage a team to save his life? Do you

let go those that gave the company its initial breath

of life if they can’t keep up? If you ever want to move past being

a clubhouse and become a successful company, the answer has to

be yes. At Presto, the answer was no.

2.Who wants to be the producer? Now, who wants
to be the CEO? Presto suffered from its founders being

placed in positions of authority and responsibility when they

hadn’t yet learned the skills that would allow them to perform

the job well. Many of them wanted to be game designers, so

they made themselves producers, which experienced people will

realize is not the same job.

Most people entering the industry dream of being a game

designer and don’t even consider what a producer does, which

can be described as tedious at best. Without any real produc-

tion experience at the top of the company, Presto’s projects

were often lacking in direction and a fundamental understand-

ing of the steps needed to create the game. These flaws were

most evident in our forays into real-time 3D.

There was one exceptionally capable producer at Presto Stu-

dios, Michel Kripilani. Over the four years I was at Presto, I wit-

nessed his skills improve with each project. Unfortunately, his

business card didn’t read “producer,” it read “CEO.” His purpose

was to run the company day-to-day and procure new projects for

future development. The topmost reason Presto Studios closed its

doors was that we did not have a signed project when WHACKED

was finishing up. The idea of going into debt to finance proto-

types along with the inevitable layoffs that would accompany

another lean time made closing feel like the better option.

Funneling his leadership skills into marshaling game produc-

tion along kept Michel from focusing on his CEO role. He was

constantly being brought back into the trenches to fill a hole at

the top of any given project. On MYST III, he took on the

responsibility of producing the theatrical trailer. On WHACKED,

he was a hands-on executive producer through nearly the entire

project, and at the end referred to himself as the “emergency

online producer” for the Xbox Live portion of the game. While

his work on the project was invaluable, he should have been

able to hand these duties over to one of the numerous produc-

ers at the company, or as another possibility, return to produc-

ing full-time and hire a CEO to acquire new projects.

If you look in the WHACKED

credits you’ll find me pulling double

duty too, taking on a producing role

revolving around the technical understanding

of the project I had as lead programmer. I han-

dled deliverable preparation, managed

resources from the art team into the game,

oversaw QA bug distribution and early-out res-

olution, and much more. I was the point man for most

questions about how artists’ work would make it into

the final product.

I thrived on producing during the day, while other people

were around, and then programming on my own through the

night. However, this was not a great way of handling the work-

load. Performing as a producer came at the expense of my pri-

mary role as lead programmer. In that way, Michel and I are

cut from the same cloth. We both wanted to handle it all,

which led to deficiencies on all sides.

3.Failure at multiple-project development due to
gaps in management. Due to a lack of managerial

skills, the company was never able to grow successfully into a

multiple-project development house. Our one attempt saw three

signed projects across three teams. The primary project,

BENEATH, was the company’s first real-time 3D game using the

Sprint engine. Activision cancelled the project in its later stages,

officially because milestones were slipping and similar products

with close launch dates were adding to the risk of low sales.

However, I believe that another reason was that the game’s

“fun” had never been fully designed. Our art department creat-

ed vast stretches of beautiful levels, but the gameplay lagged

months behind, with most of the levels never being set up for

AI. It was enormous, it was beautiful, but it wasn’t fun; an

obvious breakdown at the producer level.

Meanwhile, the second team was working on another install-

ment of THE JOURNEYMAN PROJECT, which was supposed to be

the first done in real-time 3D. This project didn’t make it past

the initial conceptual production phase before it was cancelled.

The third project, STAR TREK — HIDDEN EVIL, for which I was

brought on as lead programmer halfway through development,

was also plagued by runaway design from a team with an

incomplete understanding of the tools at their disposal. Massive

rewrites of the game flow were done in the last third of the

project, leading to a schizophrenic gameplay experience.

I’ve met very few people in my career that possess a natural

ability to manage large teams; it’s something that is best

learned by working with another great producer. But Presto

Studios never hired that great producer. We had incredible

mentoring in our art department, hiring promising rookies to

Otto, a contestant in Presto’s
WHACKED, plays the game
from the confines of his fully
articulated comfy chair.

w w w . g d m a g . c o m 49

work alongside our proven art leads.

Under Max Elliott’s leadership, I came

up along a similar path in the compa-

ny’s engineering department. Howev-

er, we had nothing like this for our

producers. They were mostly

founders or friends of founders,

none of whom had ever worked in a

game producer capacity before. The

lesson was never learned.

Presto’s inability to transition suc-

cessfully to multiple projects also

incurred a less obvious expense that

hampered the company financially: the

cost of our internal Sprint engine. As a pro-

grammer and one of the chief architects of

Sprint, I was a strong proponent of owning our

own technology. Keeping control of your own

technology and creative IP is one of the only

ways a small boutique firm will ever survive.

However, keeping Max and me on the pay-

roll to develop the engine was expensive.

Distributing that expense across multiple

projects was an essential cost-saving measure

that we never achieved. Instead, with us producing

titles sequentially, licensing middleware solutions

would have been a more appropriate solution.

4.Layoffs, walkouts, canned projects,
and uncertain future led to low morale. After a

dismal year in 1999 that included layoffs, a mass exodus, and

two cancelled projects, we retreated to our roots with the suc-

cessful MYST III. We also finally got real-time 3D right with

WHACKED for the Xbox; however, these two projects were still

essentially done sequentially, with another round of layoffs and

departures separating the two. And on multiple occasions, we

suffered mass walkouts as people lost faith in the company’s

ability to acquire our next project.

These high turnover rates then affected the morale of the

people who remained, leaving them to wonder if they were

next. At three different times during my four years at Presto, I

found myself sending out résumés, not because I wanted to

leave but because I was certain that this time the company

wouldn’t be able to pull out of the dive. I had sent out résumés

one week before the closing of Presto was decided.

5.Presto’s offbeat style got riskier as the industry
evolved. Despite the internal problems, external

changes in the industry also made Presto Studios a riskier ven-

ture for publishers. Witness the evolution of other industries

such as movies and music. In their infancy, dozens or even hun-

dreds of small startups littered the field, each struggling to

carve out a share of the marketplace. Many in the beginning are

too idealistic about the business surrounding their personal art, so

industrial Darwinism takes hold as the large players

begin to emerge. The small companies are then

merged, purchased, or run out of business due to

the economy of scale. This promotes the consoli-

dation of the industry under a few major labels. It

happened to the music and movie publishing

industries, and it’s currently happening in the

game industry.

Reducing risk is where IP ownership

makes a major play. If you can retain con-

trol of your IP and it becomes successful,

you gain massive leverage when dealing with

potential publishers. When a publisher is lining up

the two dozen titles they want to release next year,

they want to see sure things: sequels to last year’s big

hit, movie licenses, top-40 music tie-ins. They want

to leverage what the public already knows and loves.

As a result, original content is on the decline. I don’t

write this to sound like a sensitive artist who believes

that all great work comes from poverty and all money-

making media are soulless. I believe that most of the

highest-earning games really are that good and deserve

all the success they achieve. However, truly inspired

works are sometimes passed over because the people

gifted at recognizing opportunity in this business are

few and far between at most publishers.

As the industry becomes

larger and more centralized

around a couple of compa-

nies, breakout ideas will become rarer. As is happening in the

music and movie industry, an independent subculture will hope-

fully continue to develop within the game industry and help pull

the larger companies into the “next big thing.”

A Familiar Story with a Now Familiar
Ending

T he fall of Presto Studios is probably a familiar story for

many of you. Working there was wonderfully creative,

insanely demanding, and always fun, even at the worst moments.

Despite any of the negatives, trying a startup is something

that I highly recommend for anyone that wants to test their

own abilities. Most of us want that opportunity to execute on

an idea that we’ve had for a long, long time. Just remember

that paying your dues is a prerequisite to that opportunity.

Maybe you will work on a few licensed products that offend

your independent creativity because your publisher wants a

sure thing. It’s only by building this trust between your small

boutique house and that big publisher that you’ll ever get the

chance to work on your dream project.

Working in this industry now and in the future will demand

that each of us find our own comfortable balance between the

financial realities of our growing industry and the artistic drive

that brought us here from our childhood dreams. q

Character sketch for MYST III’s Altrus.

S O A P B O X p a u l s i n n e t t

d e c e m b e r 2 0 0 2 | g a m e d e v e l o p e r56

A t some point while you

are presenting your latest

and greatest game idea,

somebody (usually your

publisher or product manager) will ask what

your USPs are. It seems like a reasonable question at first, but

it’s not. Whether they are asking this because they want to

assert their position, because they want to appear knowledge-

able, or because they want something to pass word for word up

the chain, they shouldn’t expect an answer — the question is

nonsense. Why? Good question.

Using acronyms can save you time in technical conversations,

but more commonly people use them in nontechnical conversa-

tions to fast-talk others into accepting their views. This becomes

obvious when such a person uses an acronym incorrectly. The

publisher’s use of the acronym “USP” in the situation I just

described is a blatant example. GameDev.net’s Game Dictionary

neatly sums up this widely accepted (but mistaken) definition of

the USP: “Unique Selling Points. Normally what will be put on

the back of a box or an advertisement showing how a game is

different and better than its competitors and predecessors.”

How am I sure this definition is wrong? I did some research.

USP stands for “unique selling proposition,” a phrase first coined

by Rosser Reeves, an adman and chairman of the board at Ted

Bates & Company, where the technique was invented. He pub-

lished a book in the early 1960s called Reality in Advertising, in

which he explained the USP and many other principles developed

over the previous 20 years at his company. He also published the

research that backed up these techniques. His purpose was to

evolve a body of theory based on collected evidence. Here is his

definition of the USP from Reality in Advertising:

“Each advertisement must make a proposition to the con-

sumer. Not just words, not just product puffery, not just show-

window advertising. Each advertisement must say to each read-

er: ‘Buy this product and you will get this specific benefit.’
“The proposition must be one that the competition either

cannot, or does not, offer. It must be unique — either a unique-

ness of the brand or a claim not otherwise made in that partic-

ular field of advertising.

“The proposition must be so strong that it can move the

mass millions, i.e., pull over new customers to your product.”

Now when you apply the real defini-

tion of USP to the question “What are

your USPs?” you should notice two

problems. First, you only make one

proposition, so the question should be, “What is your USP?”

And second, if you need to ask, then you don’t have one. It’s

that simple.

Apart from exposing a bunch of publishers and product man-

agers as the charlatans we knew they were, what does all this

have to do with your game? Well, before it became a mere buzz-

word to beat game developers with, the USP was a powerful

advertising technique. If it had not been, it’s unlikely the term

would still be in common (but mistaken) use half a century later.

And the USP, like many things, can work for or against you.

To understand how a USP can increase or decrease your sales,

you first have to measure the effectiveness of your advertising.

You can’t just measure the sales. Sales can go up and down for

dozens of reasons, only one of which is your advertising.

There are two statistics we need to know to measure a mar-

keting campaign’s effectiveness. The first is penetration, the per-

centage of people who saw and can remember your campaign.

The second is usage-pull, the difference between the percentage

of people who can remember your campaign and bought your

game, and the percentage of people who can’t remember your

campaign but still bought your game. Combining these two

measurements gives you your campaign’s overall effectiveness.

Although the penetration score cannot become negative (the

worst you can do is 0 percent), the usage-pull can. If people

who don’t remember your campaign buy more copies than

those who do, your penetration statistics will reverse, and you

will sell more copies if fewer people can remember your cam-

paign. A penetrative USP can actually decrease your sales. But

even that is not the worst of your worries.

Worse comes if you can’t distinguish your game in the market-

place. For example, if you have a driving simulation game, you

cannot use “simulating the driving experience” as your USP

because the GRAN TURISMO series already uses “the real driving

simulator.” If you try, you will actually spend money to lower

your own sales and boost the sales of your direct competition.

The
Real
USP

continued on page 55

Ill
us

tr
at

io
n

by
 S

te
ve

 M
un

da
y

Having a real USP lessens this risk. By

definition, a USP distinguishes your game

in the marketplace. By contrast, listing

the “unique” features of your game on

the back of the box does the opposite.

Only one game proposes “tactical espi-

onage action” (METAL GEAR SOLID), but

any number of games offer “unrivaled

realism,” “an epic tale,” or “superior

artificial intelligence.”

The USP is a powerful selling tech-

nique, and there’s a lot more to it than

what’s covered here. But I hope I have

pointed the way for those who want to

know more. You may not be in a position

to sell your games direct to your cus-

tomers, but you will have to pitch your

ideas to your publisher or producer, and

they will have to sell the same idea to

their marketing teams, and so on. The

next time somebody asks you what your

USPs are, fight the battle against buzz-

words. Getting it right will put you back

on your front foot, and down the line it

may save you some sales too. q

P A U L S I N N E T T | Paul is a game pro-
grammer at Coyote Developments Ltd. He
has been writing games since 1996.

S O A P B O X

w w w . g d m a g . c o m 55

continued from page 56

	06gameplan
	08indwatch
	10prodrev
	18innerp
	24artview
	28soundp
	29betterby
	30f-guymon
	36f-fosner
	44postmort
	56soapbox

	return:

