
DECEMBER 2001

G A M E D E V E L O P E R M A G A Z I N E

G A M E P L A N
L E T T E R F R O M T H E E D I T O R

Out to Launch

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief

Jennifer Olsen jolsen@cmp.com
Managing Editor

Laura Huber lhuber@cmp.com
Production Editor

Olga Zundel ozundel@cmp.com
Product Review Editor

Tor Berg tberg@cmp.com
Art Director

Audrey Welch awelch@cmp.com
Editor-At-Large

Chris Hecker checker@d6.com
Contributing Editors

Daniel Huebner dan@gamasutra.com
Jonathan Blow jon@bolt-action.com
Tito Pagán tpagan@w-link.net

Advisory Board
Hal Barwood LucasArts
Ellen Guon Beeman Beemania
Andy Gavin Naughty Dog
Joby Otero Luxoflux
Dave Pottinger Ensemble Studios
George Sanger Big Fat Inc.
Harvey Smith Ion Storm
Paul Steed WildTangent

ADVERTISING SALES
Director of Sales & Marketing

Greg Kerwin e: gkerwin@cmp.com t: 415.947.6218
National Sales Manager

Jennifer Orvik e: jorvik@cmp.com t: 415.947.6217
Senior Account Manager, Eastern Region & Europe

Afton Thatcher e: athatcher@cmp.com t: 415.947.6224
Account Manager, Northern California & Southeast

Susan Kirby e: skirby@cmp.com t: 415.947.6226
Account Manager, Recruitment

Raelene Maiben e: rmaiben@cmp.com t: 415.947.6225
Account Manager, Western Region & Asia

Craig Perreault e: cperreault@cmp.com t: 415.947.6223
Sales Associate

Aaron Murawski e: amurawski@cmp.com t: 415.947.6227

ADVERTISING PRODUCTION
Vice President, Manufacturing Bill Amstutz
Advertising Production Coordinator Kevin Chanel
Reprints Stella Valdez t: 916.983.6971

GAMA NETWORK MARKETING
Senior MarCom Manager Jennifer McLean
Marketing Coordinator Scott Lyon
Audience Development Coordinator Jessica Shultz

CIRCULATION
Group Circulation Director Catherine Flynn
Circulation Manager Ron Escobar
Circulation Assistant Ian Hay
Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes
t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas
t: 650.513.4234 f: 650.513.4482 e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall
Executive Vice President & CFO John Day
President, Business Technology Group Adam K. Marder
President, Specialized Technologies Group Regina Starr Ridley
President, Technology Solutions Group Robert Faletra
President, Electronics Group Steve Weitzner
President, Healthcare Group Vicki Masseria
Senior Vice President, Human Resources & Communications Leah Landro
Senior Vice President, Global Sales & Marketing Bill Howard
Senior Vice President, Business Development Vittoria Borazio
Vice President & General Counsel Sandra Grayson
Vice President, Creative Technologies Philip Chapnick

Game Developer
is BPA approved

W W W . G A M A N E T W O R K . C O M

✎

4

T he long and sometimes excru-
ciatingly anticipated North
American launch of Micro-
soft’s Xbox and Nintendo’s
Gamecube brings to a close

one of the longest “transition years” this
industry has had to bear; actually, it was
more like two years. Dwindling amounts
of new software reaching an existing
installed base, development projects mired
in midstream migrations to different hard-
ware, and hardware shortages of new sys-
tems provided the game industry plenty of
fodder for excuses for anything less than
spectacular performance.

Finally, we’ll be able to put all that behind
us. Now we sit back and wait to cash in on
all our hard work, patience, and sacrifice.
Unfortunately, the road we now find laid
out before us is anything but smooth.

Cycles of this sort of course aren’t
unique to the game industry. There are also
cycles of peace and prosperity that inter-
leave with cycles of war and economic
recession. We entered this transition period
at the extreme of one and have come out
decidedly at the other.

You’ve no doubt heard the cheerful
reminders that in times of national and
economic uncertainty, people flock to
entertainment for a low-cost diversion
from the weightier realities of life. While
this could be good news for the game
industry, we still have to compete with
movies, television, and other forms of
commercial entertainment for a shrinking
amount of consumer spending.

Hollywood faced a crisis in the 1960s
when the studios, which had been happily
churning out relatively uninspired contract-
based films in the 1950s, were thrown into
a tumult of consolidations and acquisitions
by multi-national conglomerates. Studios
found it difficult to recoup their skyrocket-
ing production costs (sounding familiar
yet?) as audiences increasingly abandoned
their lukewarm fare for television. Most
offerings did nothing to address a the evo-
lution in American tastes in the 1960s,
characterized by a more somber national
mood forged largely by a slowing economy
and a depressingly divisive and drawn-out
overseas conflict.

What could have spelled disaster for
Hollywood instead spawned a renaissance
that sustained the industry throughout the
1970s. Old conventions were thrown out
and a bold generation of young filmmak-
ers emerged to challenge audiences and
the medium alike with heretofore unheard
of content wrapped in films that were
meticulously nurtured by their creators as
works of art. It turned out to be exactly
what would draw audiences back to the-
aters in droves.

Now that game industry is poised to
unleash a torrent of product to potentially
languid consumers, are we mindful that
not only spending habits but also tastes
could be changing? That some established
themes may not appeal to audiences forev-
er, or even feel appropriate anymore? It’s a
pertinent time to contemplate what and
when the next renaissance in the game
industry should be.

In 1969 there were more than 500,000
American troops in Vietnam, the economy
plunged into recession, and Easy Rider
came out. The film was a both a break-
through commercial success and a harbin-
ger of an era of unprecedented creativity in
the medium. Hopefully our present circum-
stances will ultimately prove less dire than
those of the late 1960s, but given three
choices for our industry as the global econ-
omy heads south and the U.S. digs in its
heels for prolonged military action — do
nothing, make a slew of bargain-bin OSAMA

GAME HUNTERs, or seize an opportunity to
evolve our craft — which would you rather
see, and what do you want to be part of?

Programming Notes. This month we are
pleased to present a new programming col-
umn written by longtime contributor
Jonathan Blow, “The Inner Product.” It
replaces “Graphic Content,” which has
been under the venerable stewardship of
Jeff Lander since March 1998. Graphics
will still feature highly in “The Inner Prod-
uct,” but look for expanded coverage of
topics such as mathematics, networking,
and more in the near future. We hope this
broader focus serves you better and invite
your feedback.

600 Harrison Street, San Francisco, CA 94107 t: 415.947.6000 f: 415.947.6070

6 d e c e m b e r 2 0 0 1 | g a m e d e v e l o p e r

I N D U S T R Y W A T C H
Jd a n i e l h u e b n e r | T H E B U Z Z A B O U T T H E G A M E B I Z

Square deals with Sony, cuts movie
funding. Sony Computer Entertainment
took a 19 percent stake in Tokyo-based
Square. Sony purchased 11.2 million new
shares in Square at an 18 percent discount
from the trading price. The total value of
the investment is approximately $124 mil-
lion. Sony said that investing in Square will
allow both companies
to work together to
develop online games,
though a Square
spokesperson insisted
that the deal will not
limit the Square’s abili-
ty to develop games for
non-Sony platforms.

Bringing in Sony
wasn’t Square’s only
financial move. The
company cut funding to
it Square Pictures ani-
mation subsidiary after the studio’s first
project, Final Fantasy: The Spirits Within,
failed to reach revenue targets. Square Pic-
tures president Jun Aida said Square does
not plan to sell nor close his studio, which
currently employs 125 people. The studio
will continue to operate independently on
for-hire projects.

Codemasters appointment in North
America. Codemasters has appointed
Sebastien Soulier to the position of president
of Codemasters North America. Soulier,
who has over 15 years of experience in the
entertainment and software industry, was
previously the general manager of Codemas-
ters, France. Prior to joining Codemasters,
Soulier worked for Infogrames and Ecudis,
a French software distributor.

Infogrames financial picture
improves, but still posts loss. Info-
grames Inc., the NewYork–based sub-
sidiary of the French publisher, showed
improvement in its fourth quarter and fis-
cal 2001 results. Improved sales coupled
with cost cutting helped the company trim
quarterly losses to $23 million on revenues
of $72.7 million, compared to a loss of
$55.4 million on revenues of $48.5 million
in the same period one year ago.

Fiscal 2001 revenues of $310.5 million,
a slight dip form last year’s $313.2 million,
translated to a loss of $60.7 million. This
year’s red ink is a vast improvement from

last year, when the purchase of Hasbro
Interactive pushed the company to a loss of
$397.6 million.

Activision acquires Treyarch. Activision
announced the acquisition of Santa Moni-
ca–based developer Treyarch. Treyarch’s
five teams and 140 employees are engaged

in the development of
several key Activision
titles, including sports
games TONY HAWK’S
PRO SKATER 2X and
KELLY SLATER’S PRO

SURFER. Activision pur-
chased Treyarch, which
will become a wholly-
owned subsidiary, for
$20 million in stock.
Treyarch’s management
and key employees will
stay with the company

under a long-term contract signed as part
of the sale agreement.

United Developers launches. Ron
Dimant and Mark Dochtermann officially
launched United Developers, their Dallas-
based development and publishing compa-
ny. The company, which was originally
conceived early last year, plans to offer
administration, business and management
infrastructure for game development and
game publishing. With Dimant serving as
managing director and Dochtermann as
director of development, the management
team is rounded out by Mark Cottam as
president and Drew Fisher as director of
technology. The first companies joining

under the Unit-
ed Developers
banner include
ALICE developer
Rogue Enter-
tainment, Iner-
tia, and Mac
Play.

Share buy-
back. Ninten-
do, Take- Two,

and Electronic Arts are both combating
fluctuating share prices with ambitious
buyback plans after the Security and
Exchange Commission loosened rules on
corporate share buying. Electronic Arts
announced that it plans to buy back almost

2 million shares of its common stock
because of the recent low market condi-
tions, while Nintendo issued plans to
repurchase as many as 14 million share of
its stock. Take-Two announced undisclosed
open market share purchases from a num-
ber of key board members.

Sony cuts PS2 price in Europe, Aus-
tralia. Citing better production efficien-
cies in its Japanese factories, Sony reduced
the retail price of the Playstation 2 in
Europe and Australia by more than 25 per-
cent, to $293. The company did not indi-

cate whether prices elsewhere in the world
would be reduced in the near future. Some
analysts had predicted that Sony would
reduce the PS2 prices in the U.S. prior to
the November launch of the Gamecube
and Xbox, but Sony flatly denied any cut
in U.S. pricing. q

D V E X P O
LOS ANGELES CONVENTION CENTER
Los Angeles, Calif.
December 3–7, 2001
Cost: variable
wwwdvexpo.com

M A C W O R L D C O N F E R -
E N C E A N D E X P O
MOSCONE CENTER

San Francisco, Calif.
January 7–11, 2002
Cost: variable
www.macworldexpo.com

U P C O M I N G E V E N T S

CCAALLEENNDDAARR

SPIDER-MAN, on his way to fight evil, pub-
lished by Activision.

OH, BEHAVE, featuring
Austin Powers, published
by Take- Two Interactive.

NBA SHOOTOUT 2002, available on Sony’s
Playstation 2.

W hen I mention to
colleagues that I
work with motion
capture, usually
their response is

“Oh, so you work with Filmbox?” Kay-
dara’s Filmbox, recently upgraded to ver-
sion 3, is the hidden weapon of many a
motion capture artist. Filmbox provides a
robust and focused toolset for editing and
creating motion, especially motion capture.
Kaydara has chosen, rather wisely, not to
dilute their product with a halfhearted
attempt to match the full toolsets offered
by such products as 3DS Max or Light-
wave. However, the tools for handling
motion are without peer in any of its off-
the-shelf competitors.

Filmbox is, quite simply, a rather com-
plex program, especially for one so
focused. Its interface and terminology can
be rather intimidating, and it could take an
artist quite a while to become accustomed
to its working environment and proficient
in its tools. To be fair, Kaydara repeatedly
cautions the user all throughout the tutori-
als that only with time and experience will
the skills emerge to truly take advantage of
all that Filmbox offers.

The interface itself is a variation on
what has become the standard structure
for 3D applications, with tool palettes
down either side of the workspace, which
lives in the center of the screen. Clicking
on any tool refreshes the workspace with
the controls for that tool. One feature I
was very happy to find was transforma-
tion manipulators. For those of you not
familiar with the concept, transform
manipulators give a visual tool for mov-
ing, rotating, and scaling objects. Some-
how, in an amazing confluence of agree-
ment, it seems that as manufacturers add
this feature, they keep the interface of red,
green, and blue arrows, circles, or squares
for the XYZ axes of the move, rotate, and
scale tools. While this may seem to be a
minor thing to get excited about, the fact
that the basis of Filmbox’s functionality

requires it to work smoothly with other
software means that adopting this inter-
face eases the strain on the artists of hav-
ing to work across multiple programs.

Bringing in motion capture from a mag-
netic or optical system is rather similar,
regardless of source. Filmbox supports a
breadth of motion capture formats, from
the ubiquitous Acclaim .ASF format to
Biovision .BVH to Motion Analysis to
Vicon .C3D, among others. Once imported
into Filmbox, motion needs to be fitted to
an Actor. The concept of Actors and
Characters is quite important to the func-
tionality of Filmbox. It allows you to use
multiple sources of motion for a single
character or one motion for multiple char-
acters. When you create an Actor you get a
generic biped figure, which you scale and
translate to fit the sensors from your cap-
ture session, and create comparable mark-
ers in the scene to link the Actor figure to

your data. This is where a large amount of
documentation on the user’s part is neces-
sary at the time of the shoot. Once the
placement is complete and associations
between your placed markers and your
captured markers are made, you can spend
time tweaking the position of the body
parts making up your Actor. Time spent
here is a valuable investment, resulting in
cleaner data. The process of marking up an
Actor is somewhat nonintuitive and defi-
nitely will take some practice.

Now you have to apply the motion from
the Actor to the Character. Characters usu-
ally come in from other packages, such as
3DS Max, Maya, or Lightwave, through
the use of plug-ins. Filmbox’s functionality
works best with Characters oriented in the
so-called da Vinci pose, which is somewhat
unusual. While the da Vinci pose is conve-
nient in a mathematical sense, most mod-
ern modeling and skeletal setup techniques
use a less rigid, more natural pose. None-
theless, the pose is not a stringent require-
ment, and you can reposition and reorient

8

XXT H E S K I N N Y O N N E W T O O L S

P R O D U C T R E V I E W S

Kaydara’s Filmbox 3.0
by david str ipinis

d e c e m b e r 2 0 0 1 | g a m e d e v e l o p e r

The Filmbox Character tool allows for the retargeting, editing, and real-time filtering of motion data
for the animation of 3D characters.

D A V I D S T R I P I N I S | David is director of animation at Factor 5. Contact him at
david@factor5.com.

w w w . g d m a g . c o m 9

the limbs of your imported character from
within Filmbox.

Once your data is in, editing it is pretty
much a dream come true. Whether you are
creating raw motion through keyframing or
editing motion capture, Kaydara provides
amazing tools right out of the box. One of
the absolutely mind-blowing aspects of
working with data in Filmbox is the concept
of a floor — a simple idea brilliantly execut-
ed. Once you define a floor level, feet refuse
to pass below that point. While it is merely
an implementation of inverse kinematics, its
simplicity of setup and use is a testimony to
Filmbox’s focused functionality. Creating
what is most analogous to character setups
in other programs, Filmbox has what are
called Control Sets. Control Sets allow the
user to create animation from scratch, using
a variety of IK and FK tools. The same tools
can be used to modify, tweak, and generally
mess with captured data. Interaction was
fast, and for the most part the quality of
altered motion is dependent on the anima-
tion skills of the artist doing the alterations,
as is to be expected.

One of the great ironies of motion cap-
ture in games is that the main requirement
of game animation, motion that cleanly
cycles and blends together, is contrary to the
very nature of motion capture. No live per-
former has the precision to hit the exact
marks to create a perfect, seamless cycle.
Luckily, Filmbox offers a very viable solu-
tion in their nonlinear editing (NLE) system.
NLE allows an artist to treat motion, or
pieces of motion, as clips, which can be
blended together in many ways. An artist
can simply chain multiple shots together to
create one long animation. Or, they can
combine different parts of different anima-
tions to create new assets, such as the legs of
a walking animation and the torso of a
shooting animation to create a walking and
shooting character. Filmbox’s NLE also
offers a ghosting feature that allows you to
see multiple clips at the same time. The con-
cept of Stabilizing Objects allows you to
pick a piece of your character that is aligned
among multiple clips to create a seamless
blend. Using pose-based blending, an artist
can create clips, which not only seamlessly
loop within themselves, but also cleanly
flow into each other. This functionality is, of
course, what every game animator is after.

Out of the NLE, you can export differ-
ent assets of a character out to separate
files to be loaded into the trigger tool. The
trigger tool is a feature unlike any I’ve
seen outside of dedicated real-time pup-
peteering software or games themselves. It
allows users to link separate assets to an
input device, such as the keys of a key-
board, and then interact with the charac-
ter. It’s a basic control system just like
those you would find on any PC-based
title. It is an amazing advantage for an
artist to be able to see and adjust all assets
on the desktop, directly in the application,
rather than having to constantly re-export
to the game’s format and check it inside
the game. Obviously that step is ultimately
necessary, but this feature makes it
required much less frequently.

Overall, Filmbox is a pretty fantastic
product for what it does. It tries to be the
best motion editor available today and to
ease the interaction between artist and
motion capture data, and for the most part
it succeeds. Its seamless interaction with
most other software provides motion cap-
ture artists no excuses for not having this
gem in their toolset. q

XXXXX
XXXX
XXX
=XX
X

excellent

very good

average

disappointing

don’t bother

With a static floor and clear XYZ orientations, applying animation data to a Character is straight-
forward, but only for experienced animators.

F I L M B O X 3 . 0 XXXX

STATS
KAYDARA INC.

4428 Blvd. St-Laurent #300
Montreal, Quebec, Canada
H2W 1C5
(514) 842-8446
www.kaydara.com

PRICE
$5,000

SYSTEM REQUIREMENTS
Pentium processor running Windows NT 4.0
(SP 6), Windows 2000, or Red Hat Linux 6.1
or higher or MIPS R5000 processor running
SGI IRIX 6.5.9 M; 128MB RAM (192MB rec-
ommended); 300MB disk space; OpenGL
graphics card (8MB RAM min.)

PROS
1. Powerful editing tools.
2. Game-specific features, such as the trigger

tool.
3. Good interaction with other software.

CONS
1. Interface is sometimes confusing.
2. Tutorials, while present, are not extremely

in-depth.
3. Technical as well as artistic proficiency is

required to access the full power of Filmbox.

w w w . g d m a g . c o m 10

P R O F I L E S
j e n n i f e r o l s e n | T A L K I N G T O P E O P L E W H O M A K E A D I F F E R E N C E

R ich Vogel is an elder statesman in the relatively
young world of massively multiplayer online
gaming. He produced MERIDIAN 59, the first
MMPORPG to feature a flat-monthly-fee sub-
scription model, which launched way back in

1996. He then moved to Origin where he was producer for ULTI-
MA ONLINE, then to Verant Interactive (now Sony Online Enter-
tainment), where he is currently the executive producer of the
upcoming STAR WARS GALAXIES. We recently caught up with Rich
to talk about the state of online gaming and what it takes to pro-
duce a world for hundreds of thousands of people to play in.

Game Developer. What are some of the challenges unique to pro-
ducing for massively multiplayer online games?

Rich Vogel. These games are very complicated to make. They
are twice as hard to make as any single-player game because
they require more content than any single-player game could
imagine. You don’t keep people for 30 to 60 hours of gameplay
as in single-player games, you have to keep people for six
months of gameplay.

Also, you’re managing large teams. You have 40-plus people
developing these games, because they have both a client and a
server, and that takes different disciplines too. Normally in the
gaming business you have people who just work on displaying
game code. Now we have people who have to work on the
Linux server side of things, those people are not normally in the
game business. They are professionals that come out of the busi-
ness sector, so it takes a melding of a large team with very differ-
ent diverse backgrounds to make these games. It’s a huge task.

GD. What should producers do to earn and maintain the coopera-
tion and support of all the disparate elements of the development
team, especially during those times when things get difficult?

RV. Good project management is a necessity. The biggest dif-
ference between a single-player game and an online game is that
we have to survive and live on for five-plus years — that’s what
these games last. So we have to do things differently. We have to
plan ahead, design systems well, spec things out. It takes a lot
more discipline, to make sure that all the pieces are working
well together and communicating.

We have an organizational structure on our team that’s a lot
different from most games. We have more management. We
have a server lead, and a client lead reporting to a lead engineer.
We have a game system lead, a content generation lead reporting
to a lead designer. We have an art director that has a world lead
and a creature/player-character lead.

The producer works with an associate producer and we
schedule everything out.

GD. If something starts slipping unexpectedly, that’s addressed
quickly and decisively?

RV. Yes. We have priorities. Everything is prioritized in our
games. We have a vision statement which lists what our game
wants to be. Then we list all the priority one tasks, without

which we cannot ship. Priority two tasks are things that would
be nice to have. Priority three’s are cuttables — we have to do
that all the time. You can’t ship a game of this type that is
incomplete, and we’ve seen the disasters of that.

GD. Apparently you can ship a game like that.
RV. It’s a huge mistake, and I hope people learn from that.

Anybody that makes a bad product is going to face the conse-
quences in an online game. Feedback is immediate. You only get
one launch, and if it’s poorly done, that’s it. You’ve lost your
customers’ confidence. Companies have to understand this is a
service, not a product. What you’re going after is subscriptions.
If you turn crap out then you’re not going to get the subscrip-
tion revenue that you’re expecting or the amount of people play-
ing your game. That is the problem that’s happened lately, they
pushed the product out too early.

GD. Do online games that have bad launches create a negative
feedback loop among consumers toward online gaming that could
harm the market as a whole?

RV. No, this market still has a lot of growth. UO has been
growing ever since it launched and so has EVERQUEST. They
haven’t stopped. There is a big potential out there, you just have
to be careful about when you launch a product, and I don’t
think it has anything to do with negative publicity at all when
that happens. They look at it and say, “Oh, that company does-
n’t know what they’re doing.” Now, if that company comes out
with another product, they’re probably less likely to have people
join up on it. It’s all about the service, and people’s perceptions.
Perception is reality in our business.

GD. How would you sum up your role on GALAXIES?
RV. I help the team towards our goal by providing what each

individual might need to be successful, solving problems and
conflicts and removing bureaucratic hurdles from our path. I'm
succeeding at my job when our team is working towards bring-
ing all these moving parts together into a single vision. q

Rich Vogel:
Producing Worlds

Sony Online executive producer Rich Vogel with an old friend.

w w w . g d m a g . c o m 13

W elcome to the first
installment of “The
Inner Product,” the
successor to the col-
umn “Graphic

Content.” “Graphic Content” was first
written by Brian Hook in 1997, and the
torch was carried by Jeff Lander from
1998 through to the present day.

The new name indicates a change in
theme; graphics are important, but we
don’t want to neglect other areas. How
often do you see games ruined by bad AI
or faulty network code?

As with “Graphic Content,” each “Inner
Product” will be highly technical in nature
and come with full source code. My goal is
to make this column as useful as possible
to experienced and expert game developers.
My content guideline is this: if it wouldn’t
have been new and useful information to
me two months ago, then I won’t write it.

The inner product, also known as the
“dot product,” is a mathematical opera-
tion on vectors. It’s one of the simplest
and most useful pieces of 3D math; I
chose the name to underscore the impor-
tance of mathematics in building game
engines. Additionally, the phrase “the
inner product” refers to the game engine
itself. The people who play your game see
a lot of obvious things created by texture
artists, 3D modelers, and level designers.
But the inner part of the product, the
engine, makes it possible for all that art
stuff to come together and represent a
coherent game world. As such, the engine
is all-important.

Though eventually we will cover sub-
jects besides graphics, we’re going to start
by looking at the process of mipmapping.
Our goal is to achieve a sharper display of
the entire scene, and perhaps to improve
color fidelity, too.

What Is Mipmapping All
About?

W hen mipmapping, we build scaled-
down versions of our texture maps;

when rendering portions of the scene
where low texture detail is needed, we use

the smaller textures. Mipmapping can save
memory and rendering time, but the moti-
vating idea behind the technique’s initial
formulation is to increase the quality of a
scene by reducing aliasing. Aliasing hap-
pens because we’re coloring each pixel
based on the surface that, when projected
to the view plane, contains the pixel center.
Small visual details can fit between pixel
centers, so that as the viewpoint moves
around, they appear and disappear. This
causes the graininess that makes some
Playstation 2 games look icky.

Fortunately for us, a lot of smart people
have been thinking about aliasing for a
long time; all we have to do is stand on
their shoulders.

Way back in 1805, Karl Friedrich Gauss
invented the Fast Fourier Transform, a
way of decomposing any sampled function
into a group of sine waves. The Fourier
Transform is more than a mystic voodoo
recipe for number crunching; it often pres-
ents us with a nice framework for thinking
about problems. When manipulating an
image, sometimes it’s easier to visualize an
operator’s effect on simple sine waves than
on arbitrary shapes.

So how does the Fourier Transform help
us here? To eliminate aliasing, we need to
throw away all the sine waves with narrow
wavelengths — which represent the only
things that can fit between pixels — and
keep the waves with broad peaks. Such a
task is performed by a digital filter. For a
detailed introduction to filtering and other
signal processing tasks, see the books by
Steiglitz and Hamming listed in the For
More Information section.

Once we understand that generating
mipmaps is just the task of building small-
er textures while eliminating aliasing, we
can draw on the vast signal processing
knowledge built up by those who came

before us. So much work has been done
already that once we have the basic con-
cepts, our code almost writes itself.

The Usual Approach to
Mipmapping

H istorically, game programmers
haven’t thought very hard about

mipmap generation. We want to make a
series of textures that decrease in size by
powers of two. So we tend to take our
input texture and average the colors of
each four-pixel block to yield the color of
one pixel in the output texture. Listing 1
depicts this technique, which we’ll call
“pixel averaging” or “box filtering.”

This function looks like it works —
when we try it, we get textures that are
smaller versions of what we started with.
We often figure that that’s the end of the
story and move on to think about other
things. The fact is that this technique gen-
erates images that are blurry and a little
bit confused. We can do better.

We can view Listing 1 as a digital filter
operating on our image data; then we can
investigate what the filter does to all the
sine waves that compose our texture map.
Figure 1 contains a graph of the frequency
response of the pixel-averaging filter; the
X-axis represents the frequencies of waves
in our input image, and the Y-axis shows
the magnitude by which they’re multiplied
to get the output.

To perfectly eliminate aliasing, we want
a filter that matches the brown line in
Figure 1 — zero amounts of high frequen-
cies, full amounts of low frequencies. In
signal-processing terms, we want an ideal
low-pass filter. The graph shows that the
pixel-averaging filter doesn’t come very
close to this. It eliminates a big chunk of
the stuff we want to keep, which makes

Mipmapping, Part 1

j o n a t h a n b l o w I N N E R P R O D U C T

J O N A T H A N B L O W I Jon is a game technology consultant living
in San Francisco. His e-mail address is jon@bolt-action.com. Music
that influenced this article includes Sleepytime Gorilla Museum,
“Grand Opening and Closing”; Nick Cave and the Bad Seeds, “No
More Shall We Part”; and Jarboe, “Sacrificial Cake.”

the output blurry; it keeps a lot of stuff
we’d rather get rid of, which causes alias-
ing. This is important: switching to a
smaller mipmap for rendering will not
eliminate as much aliasing as it could,
because we accidentally baked some alias-
ing into the smaller texture.

How to Build a Better
Filter

I t’s well established what we must do to
achieve an ideal low pass on our input

texture. We need to use a filter consisting
of the sinc function, where sinc(x) =
sin(πx)/(πx), x indicating the offset of each
pixel from the center of the filter. (At the
center, x = 0, recall the Fun Calculus Fact
that lim x->0 sin(x)/x = 1.) The problem
with sinc is that it’s infinitely wide; you
can go as far as you’d like along positive
or negative x, and sinc will just keep bob-
bing up and down, with an amplitude that
decreases slowly as you zoom toward
infinity. Filtering a texture map with sinc
would require an infinite amount of CPU
time, which is a bummer.

We can compromise. First we decide how
much CPU we want to spend building
mipmaps; this roughly determines the width
of the filter we can use. Then we construct
an approximation to sinc, up to that width,
and use the approximation to filter our
images. We could create our approximation
by just chopping off the sinc function once
it reaches our maximum width, but this
introduces a discontinuity that does bad
things to the output. Instead, we multiply
sinc by a windowing function; the job of
the windowing function is to ease the sinc
pulse down to 0, so that when we chop off
the ends, badness is minimized.

For a very accessible description of why
sinc is the appropriate filter, and how win-
dowing functions work, see the book Jim
Blinn’s Corner: Dirty Pixels in For More
Information.

So, to design our mipmap creation filter,
we just need to choose a filter width (in tex-
ture map pixels) and a windowing function.
Windowing functions tend to look similar

when you graph them, but the differences
matter. Filters are funny that way: they’re
just arrays of real numbers, but just small
tweaks to those numbers can significantly
change the output. (If you start with a good
filter and tweak the coefficients arbitrarily,
know that the result is most likely bad.)

Each windowing function represents a
different compromise between blurring
and aliasing. We can predict what the win-
dow will do by graphing the frequency
response of the resulting filter, as we did in
Figure 1, or we can write some experimen-
tation code that builds mipmaps with arbi-
trary filters and look at the results. This
month’s sample code does just that.

Filters We’ve Tried

W e tried out several filters. The first
is the point filter, which is what

you get when you just pick one value from
every four pixels and use that in the lower-

d e c e m b e r 2 0 0 1 | g a m e d e v e l o p e r14

I N N E R P R O D U C T

FIGURE 1 (left). Frequency response of the box filter versus the ideal. The brown line represents the
ideal frequency response; yellow represents the box filter. FIGURE 2 (center). The filters discussed in
this article. The brown line represents the ideal; cyan represents the point filter; yellow represents
the box filter; green represents Lanczos- and Kaiser-windowed sinc pulses (the graphs nearly con-
incide). FIGURE 3 (right). Kaiser filters at different filter widths. The brown line represents the ideal;
green represents 16 samples; yellow represents 64 samples.

LISTING 1. A common method of building mipmaps, known as “pixel averaging” or
“box filtering.”

void build_lame_mipmap(Mipmap *source, Mipmap *dest) {

assert(dest->width == source->width / 2);

assert(dest->height == source->height / 2);

int i, j;

for (j = 0; j < dest->height; j++) {

for (i = 0; i < dest->width; i++) {

int dest_red, dest_green, dest_blue;

// Average the colors of 4 adjacent pixels in the source texture.

dest_red = (source->red[i*2][j*2] + source->red[i*2][j*2+1]

+ source->red[i*2+1][j*2] + source->red[i*2+1][j*2+1]) / 4;

dest_green = (source->green[i*2][j*2] + source->green[i*2][j*2+1]

+ source->green[i*2+1][j*2] + source->green[i*2+1][j*2+1]) / 4;

dest_blue = (source->blue[i*2][j*2] + source->blue[i*2][j*2+1]

+ source->blue[i*2+1][j*2] + source->blue[i*2+1][j*2+1]) / 4;

// Store those colors in the destination texture.

dest->red[i][j] = dest_red;

dest->green[i][j] = dest_green;

dest->blue[i][j] = dest_blue;

}

}

}

level mipmap. (For textures displayed at a
scale of one texture pixel per screen pixel,
it’s also equivalent to rendering without
mipmapping.)

The second filter is pixel averaging, the
algorithm given in Listing 1.

Third, we gave the Lanczos-windowed
sinc function a try, since Jim Blinn says
good things about it in his book, and it is
popular among graphics programmers.

Fourth, we look at the Kaiser window.
Don Mitchell recently did some experiments
revealing that the Kaiser window, with
alpha parameter 4, is noticeably better than
Lanczos for graphics purposes. Don’s been
around enough to have a filter named after
him, so it seemed prudent to pursue this.

Figure 2 shows the frequency responses
of all these filters. The coefficients for the
Kaiser filter are only subtly different from
the Lanczos filter, so their frequency
responses are almost the same. Eyeing
images on the screen that were
mipmapped by each, I can’t see the differ-
ence. Mipmapping is not a very strenuous
application of image filtering, though;
Don’s tests were more hardcore. I figure
that, so long as the computational
expense is the same, we should be in the
habit of using the slightly better filter, so
it’s all warmed up for more difficult
future problems.

Avoiding Ripples

Y ou can see from Figure 2 that there are
some ripples in the frequency respons-

es of the higher-quality filters. Signal-pro-
cessing math says that we can increase the
quality of these filters just by making them
wider. When we do this, we get a curve
that more closely approximates the ideal
low-pass filter; but it has more ripples, and
each peak and trough is concentrated on a
tighter group of frequencies. Figure 3 con-
tains a graph of the Kaiser filters for sizes
of 16 and 64 samples.

In the world of audio
processing, it’s common
to ignore ripples of this
magnitude, but our eyes
are pickier than our
ears. As those ripples
become concentrated
around tighter (more
coherent) frequency

groups, they create more coherent visual
artifacts in the image. Pick a wide enough
filter, apply it to a texture map that has
large areas of constant color, and you’ve
got artifacts (“ringing”) all over the place.

I was only able to crank the width of the
Kaiser filter up to 14 samples before I start-
ed seeing prominent ringing in some test
images. To show what happens beyond that,
I ran a wide filter on the texture of a road
sign. Figure 4 compares the ringing induced
for filters at widths of 14 and 64 samples.

One might think that if you were willing
to spend a lot of CPU time, you could use
a filter so huge — that is, so close to
approximating the ideal low-pass response
— that you wouldn’t see the ripples. I tried
this for filters up to 1,000 samples wide,
and the amount of ringing never seems to
decrease.

Preventing the
Propagation of
Distortion

S o we’re restricted to relatively narrow
filters; their frequency responses will

be better than the box filter, but there will
be some distortion that we can’t avoid.
Fortunately, we can reduce that distortion’s
influence on our images.

When we sit down to create a mipmap
generator, we often think up the following
procedure: Take an input image of some
width, perhaps 256 pixels, and pump it
through a mipmapping function that
returns a texture 128 pixels wide. Then
take that result, push it through the same
function, and get back a texture 64 pixels
wide. Repeat until it’s gotten as small as
you need.

This technique causes problems
because the output of each filtering step,
which contains distortion due to the
imperfect filter, is used as input to the
next stage. Thus the second stage gets
doubly distorted, the third stage triply
distorted, and so on.

We can fix this by starting fresh from the
highest-detail image when generating each
mipmap level. We still want an ideal low-
pass filter, but we want to vary the filter’s
cutoff frequency. (For the first mipmap level,
we want to throw out 1/2 of the frequencies;
for the second, we want to discard 3/4; for
the third level, 7/8; and so on.) To accom-
plish this, we progressively double the width
of our filter and tweak the parameters so the
sinc pulse and the window become wider
too. (It is O.K. to make the filter wider and
introduce more ripples, because the size
ratio between the source and destination
images gets larger.) This procedure provided
the highest-quality results.

d e c e m b e r 2 0 0 1 | g a m e d e v e l o p e r16

I N N E R P R O D U C T

FIGURE 5A (top left). A texture from MAX PAYNE. FIGURE 5B (top center). Results of box-filtered
mipmapping, zoomed in on the lower right corner. FIGURE 5C (top right). Results of Kaiser-filtered
mipmapping. FIGURE 6A (bottom left). Another texture from MAX PAYNE. FIGURE 6B (bottom center).
Resuls of box-filtered mipmapping, zoomed in on the upper right corner. FIGURE 6C (bottom right).
Results of Kaiser-filtered mipmapping.

FIGURE 4. Ringing induced by different filter widths, 14 samples for
the image in the left; 64 samples for the image in the right.

The Sample Code

T his month’s sample code demonstrates
these filters acting on a bunch of

images. The code is built for versatility
and readability, not speed; it’s meant to
serve as a code base for you to experiment
with. It uses only simple OpenGL calls, so
it should work for most people; it’s been
tested on a few GeForce and Radeon
cards.

To emphasize the difference between
box filtering and Kaiser filtering, there’s
also a “fill screen mode” that you can tog-
gle by pressing the F key. This tiles the
entire screen with the current mipmap;
pressing the spacebar switches filters. You
can see the effect of the whole screen get-
ting slightly sharper.

The Results

I n general, the output images from the
Kaiser filter look better. Some examples:

Figure 5 shows a billboard from Remedy
Entertainment’s MAX PAYNE. In the pixel-
averaged version, three mipmap levels
down, the copyright notice along the bot-
tom of the billboard has disappeared, and
the woman’s mouth is something of a blur.
In the Kaiser-filtered version, the copyright
notice is still visible and the woman’s teeth
are still easily distinguishable.

Figure 6 shows another billboard. In the
box-filtered version, the text is more
smudged and indistinct, and the bottle
label is less clean-cut.

From the sample application you can also
see that once the images get small enough,
the choice of filter doesn’t matter much;
you just get a mess of pixels either way.

Next Month

T here are some mipmapping quality
issues that don’t actually have to do

with filter choice: I’ll confront those next
month, and see if there’s anything we can
do to eliminate this problem of wide filters
causing our output images to ring. I’ll also
question the appropriateness of the Fourier
Transform. q

w w w . g d m a g . c o m 17

A C K N O W L E D G E M E N T S

Thanks to Remedy Entertainment for allowing
us to use images from MAX PAYNE in this arti-
cle and the sample code.

The “Phoenix 1 Mile” texture in Figure 4 is by
Dethtex, see http://users.nac.net/schwenz.

Thanks to Don Mitchell, Sean Barrett, Chris
Hecker, and Jay Stelly.

F O R M O R E I N F O R M AT I O N

Watt, Alan and Mark Watt. Advanced
Animation and Rendering Techniques:
Theory and Practice. Addison-Wesley,
1992.

Blinn, Jim. Jim Blinn’s Corner: Dirty Pixels.
Morgan Kaufmann, 1998.

Hamming, R.W. Digital Filters. Dover Publica
tions, 1998.

Steiglitz, Ken. A DSP Primer: With
Applicaitions to Digital Audio and
Computer Music. Addison-Wesley, 1998.

B eing the art lead or art
director in the computer
gaming industry can be a
glorious and high-profile
position with many oppor-

tunities for creative expression. Today’s
computer and console games have become
an overwhelmingly prolific and advanced
visual media that captures the attention of
huge player audiences of every age in near-
ly every country. These prolonged game
experiences, in a feast of visual pleasure,
make up-and-coming computer artists
yearn for total control in defining and cre-
ating the rich images and 3D content in a
game. Consequently, highly motivated and
ambitious artists may accept a rare oppor-
tunity to become responsible for leading art
production efforts by a team of game
artists through a game’s development cycle.
These individuals may or may not have had
any art direction, art asset organization, or
art resource management experience.

If you have the right mix of creative and tech-
nical art-related talent, play computer and con-
sole games, and are more than just casually
acquainted with the tools commonly used by
most game developers, then maybe you too have
recently become the designated point person for
art content creation on a project. Maybe you can
credit your new lead status to having been at the
right place at the right time, or knowing the right
people. Success is sometimes as much a matter of
luck as a matter of ability. Well, for better or
worse, congratulations. In an industry that bases
so much value on what title you worked on last,
my advice to you is to take great care to ensure
as much success for your current project and

those who work with you as you would with
your own professional career.

Now that you’ve been granted the privi-
lege to take charge, you should ask your-
self some important questions. Do you
have what it takes to lead a team of skilled
artists through months (or years) of cre-
ative and technical production work and
complete all art assets on time? Do you
have the ability to carry out daily the
broad range of responsibilities you have to
your development team, to the product,
and to the creative individuals that report
to you? Are you committed, disciplined,
and yet flexible enough to accommodate
the needs of your evolving product, the
publisher, and the many others involved
that contribute their unique ideas to your
game? This privilege comes with a price.
Are you ready to pay it?

This month’s column is much more
about managing art talent resources —
employees — than it is about managing
the visual content these creative and
skilled individuals produce for your game.
For anyone who hasn’t already figured
out what this role entails, I want to help
bleach out some of the uncertain gray
areas of what this job has grown into
within our industry. Having had the good
fortune of working my way up the ladder
from an entry-level artist position 10
years ago, I have been directly exposed to
both the good and the bad aspects of
being an art lead and an art director.
Hopefully the “dos” and “don’ts” that I
learned the hard way can save you
heartaches and headaches.

By nature, the art lead or art director
depends on the support and help of many
colleagues. I’ve gained much insight on the
job from other artists, art directors, pro-
ducers, programmers, game testers, design-
ers, and sales folks who are in the business

of making and selling successful games
beyond a single published title.

Job Title vs. Job
Description

N ot all game companies share the same
art team structure. Art team job titles

vary considerably with many job responsi-
bilities overlapping horizontally and verti-
cally in a team hierarchy. Our industry’s
job titles are borrowed primarily from the
print advertising and film industries and so
are quite loosely used and defined. Let’s
assume for now that all game development
teams have a leading artist called an art
lead, an art director, a technical or creative
art director, a senior artist, or even an art
manager. In larger companies, art leads
may report to art directors who then
report to art department managers. Where
I currently work, the development teams
are so small and streamlined that art leads
report directly to studio producers in most
cases. For this reason it is important to
keep in mind that an art lead at company
X isn’t the same job title and set of respon-
sibilities as it is at company Y.

For now, I’d like to narrow my focus to
the person specifically responsible for man-
aging the creation of art assets on a proj-
ect, defining the art paths for producing
and implementing such game content, and
delegating art tasks to several art
resources. I’ll refer to this function from
here forward as the art lead (AL).

The art lead for a game development
team has many responsibilities and obliga-
tions common to games of any genre, plat-
form, or company. A successful and sea-
soned AL is a fairly well rounded creative
person that is usually proficient with
drawing and composition, color and light-
ing theories, 3D modeling, design, anima-

19w w w . g d m a g . c o m

t i t o p a g á n A R T I S T ’ S V I E W

The Role of the Art

T I T O P A G Á N | Tito is a seasoned 3D artist/animator work-

ing at WildTangent and teaching at DigiPen in Seattle. His

e-mail address is tpagan@w-link.net, and his web site is

www.titopagan.com.

Lead

tion timing, and texture map creation and
application. This person is also technically
inclined and is often called upon to resolve
issues like art content optimization, pro-
duction automation, and defining and
streamlining art paths. The outstanding AL
is a manager of people resources that exe-
cute orders and deliver the best game art
possible from the team. The ALs’ skills
and knowledge go far beyond the realm of
art and technology to include managerial
and organizational skills, communication
skills (both written and verbal), and busi-
ness/marketing and media knowledge.
Today’s successful AL is something of a
renaissance person.

Lead If You Must,
But Learn How

A s the job title implies, it’s the art
lead’s job to lead or direct others.

This may be a staff of several CG artists or
just one concept artist, modeler, or con-
tract artist at the beginning of a project.
The AL guides artists to achieve depart-
ment objectives. Some people are born
with all the traits of a leader. Others have
to develop leadership skills.

Leadership is not about making a quick
decision, but making the right one at the
right time. The ability to do so consistently
comes with experience. Becoming a good
leader requires having individuals who
want to follow your lead. This, in turn,
comes from having gained the trust of
other professionals by demonstrating the
ability to make good decisions and treating
others with respect. This level of trust is
almost always earned on the job and never
assumed because of credits or claims the
lead has made of past work at some other
company. Once this trust is gained, howev-
er, it can be lost again quickly should it be
taken for granted, not reaffirmed periodi-
cally, or simply abused.

Staying on Top and
Reaching Higher

F ollowing are 11 suggestions for first-
time art leads who want to improve

ongoing relations with members of a staff
and continue to move up the food chain.
Keep in mind of that there is always

someone more ambitious and determined
than you who will take these to heart if
you don’t.

1. Educate yourself as a manager and an
artist. To the best of my knowledge, there
is no formal program available today that
teaches a computer artist to become the art
lead for a game — no college, art institu-
tion, or even company-sponsored training
program. On occasion you may find a
seminar or special training class regarding
a related topic at an industry conference. If
you have to, invest in yourself and attend.
Otherwise, all art leads today have to learn
through a process of trial and error, on the
job, and at the expense of a project and all
others involved on that project. If you take
your career seriously, I suggest you take
evening college courses or read books on
management principles. And if you find
that your skills in other areas are lacking
instead, such as drawing, knowledge of
color, or basic animation techniques, find
classes or tutorials that will round out
your abilities.

A good art lead will make an ongoing
effort to stay on top of the latest produc-
tion techniques and available tools that
help speed up art production time. Sharing
information with other artists on the team
is a great way for the AL to gain the trust
that makes people want to work and share
knowledge with them and others in return.
It helps people feel like the lead has their
staff’s best interest in mind as well. Of
course, this can have a reverse affect if
what the AL is sharing involves new high-
end tools that can’t be purchased for other
artists because of a tight budget.

2. Know your game. Know your competi-
tion and customers, too. Different games
require different kinds of art and different
ways of creating and implementing them.
The expectation of quality, quantity, and
complexity of art assets will vary between
genres and target audiences. Avid gamers
have an advantage because they under-
stand many of these issues more intuitively.
So do the required research, even it means
you have to take five and play another
darn game.

3. Treat people with respect and show con-
sideration. This is one of the most basic
principles in human relations. Far too often
I’ve witnessed people abuse their power in
a leadership role. Public reprimands, for

example, do nothing constructive in any
situation. In fact, it is the fastest way to
lose others’ respect and trust. It is usually
intended to belittle and stir fear in others
by demonstrating power over them. Avoid
doing so at all costs. If you have to disci-
pline an artist, do so in private.

4. Interact with other members on the
team from artists to programmers to game
testers. Get to know what they’re like,
what their strengths are, and what ideas
they may have to offer. Don’t work in a
vacuum. Let them share their vision of
what the final product will be and incor-
porate what you can to realize some of
these ideas. Let the game have parts and
pieces owned by others; a game should be
the end result of all involved in making it.
This practice usually goes a long way in
fostering a more cohesive and immersive
game for your players to enjoy. It would
be fairly pretentious of any art lead,
designer, or level designer to think that he
or she is the only one with great ideas all
of the time on a project (unless of course
they are the only person developing a
game, in which case they better have great
ideas). More people are willing to put in
time above and beyond the call of duty if
they are given opportunities to contribute,
learn, and grow on the job. To put it
another way, sharing creative opportunities
is a small price to pay for days and days of
free man-hours on your project.

5. Communicate. The word alone sounds
like a cliché. Perhaps this is because so
many people fail miserably at this crucial
aspect of leadership. A successful AL com-
municates ideas effectively and thoroughly
while allowing opportunities for some cre-
ative input by other members on the team.
Game development is a team effort involv-
ing many other creative individuals with
specific skills in storyboarding, 3D model-
ing, texturing, animation, level design, pro-
gramming, game design, and business man-
agement. Learn to appreciate and rely on
those other people sharing their opinions,
knowledge, and cooperation. The result is
more likely to be a successful launch of a
game that is engaging and cohesive.

Because an AL has to manage others,
avoiding them is never an option, no mat-
ter how annoying they may be. Be patient
with other artists. Newly formed teams
take time to gel as everyone becomes

d e c e m b e r 2 0 0 1 | g a m e d e v e l o p e r20

A R T I S T ’ S V I E W

acquainted with each other’s abilities,
strengths, and weaknesses, and members
settle into their established positions.

If you are the new guy or gal on an
existing team, things can be quite chal-
lenging at first. Let’s face it, there are inse-
cure people in our industry, just like in
any other, that fear losing their jobs or
status to some newcomer. You may be
confronted with a challenge to prove your
worth before you can gain their respect.
Take the time to foster and nurture that
relationship no matter how difficult the
other person makes it for you. I have seen
many people be won over with kindness
and direct attention. Here is where
patience, maturity, and experience really
pay off in the long run.

6. Preplan your work. Use the tools at
your disposal to get your thoughts out of
your head and on a visual medium as soon
as possible. Everyone can relate to an
image. Despite popular beliefs that others
can read minds, I have yet to meet some-
one who can. Examples of ways to facili-
tate better planning are storyboarding a
cinematic sequence, or drawing a concept
of a monument for a level design before
actual building the model. Designing on
paper first is much cheaper and faster than
designing as you go while modeling objects
on a computer. Once the preliminary
designs are done, others can more easily
develop a task list of required art assets
from them.

I have found that half of the average
artist’s time is spent actually designing and
creating the art, and the other half is
devoted just to getting it in the game,
looking good, and interacting correctly
with other game assets and the player. This
ratio varies, of course, depending on the
level of proficiency an artist has with the
tools he or she uses. Allow enough time
for integration.

7. Help others help you by being organized
and structured. The many individual pieces
of art content you and your team have to
create and manage throughout a develop-
ment cycle can be overwhelming. Set up a
well-thought-out directory structure and
naming convention for all of the art assets
you are planning to have your team create.
Being organized early on will help you
communicate and delegate smaller chunks
of the work much more easily.

8. Give credit where it is due. Seriously.
And do it often, not just at the end of a
project in the game’s credit list or only
during an employee’s review. A fair
amount of acknowledgment along the way
for a job well done will do wonders for
that person’s motivation, and consequent-
ly, the game. All artists want to know that
their work makes a difference in the out-
come of the game. It promotes responsibil-
ity and accountability to every other team
member and to the product.

And remember this: Even if you weren’t
the one to create all or even most of the
cool features that are the focal areas in a
game or specific level, know that in the
end, you will still get the credit you
deserve for having established a standard
of quality and having managed and direct-
ed a creative force to completion. Take
comfort in that and feel proud of your
many contributions, no matter how spread
out and tucked away they may seem.
Granting an opportunity for artists to earn
that credit doing something they enjoy,
instead of keeping it for yourself, is anoth-
er way to keep artists focused on the job
and devoted to you as a lead.

9. Accept criticism. This is a very impor-
tant and often hard thing for many artists
to do. As the AL, you bear the brunt of all
incoming art-related criticism daily. Art is a
very subjective thing and is at the mercy of
everyone involved, regardless of whether
they are part of the formal approval
process. Have confidence in yourself. Your
ability got you there in the first place. But
learn to compromise your ideas when nec-
essary in an effort to complete the work on
time. One thing that helps get me through
a public critiquing more quickly is to pres-
ent more then one option whenever possi-
ble. Giving others a couple of ideas to pick
from gets them to commit to one or the
other, instead of sending you away repeat-
edly with a response like, “I’m not sure
what I want but I’ll know it when I see it.”
Also, accepting criticism well makes you
better at critiquing others, much like how
waiters are better tippers at a restaurant.
They know what it’s like to be on the
receiving end.

10. Show support in all areas of your team.
Help foster a sense of teamwide cama-
raderie and collaboration by extending out
help to others that may need it. A good

example is a programmer in need of test
art early in a project. I strongly suggest
you support all efforts of programmers
that are working to develop internal tools
that will further your progress in creating
and implementing custom game art. Do
this by providing them with the artwork
they need regularly. If you know it’s going
to be placeholder art, get a less experi-
enced artist to create these pieces instead.
The practice provides another with good
experience while freeing up your time to
do other things, such as progress reports.

If you can’t delegate this support task to
another artist, consider the fact that the
interaction may improve your relationship
with that programmer. A goods relation-
ship can help you later on when you try to
sell the programmer on adding a new fea-
ture that can help make up for any lost
production time you have invested, as a
returned favor. In the meantime, your
direct involvement in a tool’s creation
reduces your learning time later when the
tool is ready and online.

11. Get the job done. This is more a mat-
ter of knowing when to call a job “good
enough.” We all take pride in a job well
done and want to create the best quality
art possible. However, art that is not com-
pleted will never help finish a game. A
game not finished will never make your
company any money.

Is It Worth It?

Having creative control as a leader in
the game industry does have a down

side. Among them is the high probability
of getting burned out. The many mundane
administrative responsibilities, pending
deadlines, and ego-driven personality
issues most leads have to deal with can be
mind-boggling. Being the art lead through
the course of one or more projects can
leave you wondering if it is even worth all
the hassle. I believe it is, but the job
requires that you work hard at trying to
stay positive.

For many art leads, art direction is an
all-encompassing and demanding under-
taking. This can make for a very dull exis-
tence over time. As you gain more respon-
sibility in this position, the tendency is to
become more administrative and less cre-
ative. Before long, you realize that you’ve

d e c e m b e r 2 0 0 1 | g a m e d e v e l o p e r22

A R T I S T ’ S V I E W

w w w . g d m a g . c o m 23

traded pushing a drawing pencil, pixels,
vertices, and keyframes for pushing Word
documents and spreadsheets through the
company’s internal network and e-mail
system. If this situation applies to you,
you’ll have to take certain personal meas-
ures to help you maintain a positive and
healthy outlook and continue moving for-
ward with your project.

If you really want to lead others, con-
sider it an obligation you owe to yourself
and to them to stay positive and opti-
mistic at all times. I have learned from
many other professionals that the cure for
this, simply put, is to get a life outside of
work. Make the time to pursue other
interests. Get a hobby. Get a dog. Make
new friends. Read books. Find some bal-
ance in your life by not just doing or
focusing on one thing all the time. Such
new activities will get your mind off your
work and may even lend new perspectives
to what you are doing on the job with
your game and how you relate to other
coworkers in the process.

The consequence of not finding an
alternate creative outlet to combat feel-
ings of burnout or the onset of a creative
funk can be demoralizing and even
destructive. Through the years I have wit-
nessed many industry friends fall victim
to this far less fulfilling and rather stale
state of being for months at a time. It has
eventually led to more serious problems
such as poor behavior, substance abuse,
and a negative outlook on their work,
their company, and even their personal or
family life. If and when it should get this
far, sometimes professional help is the
only real alternative.

One of the creative outlets that helps me
feel challenged and inspired is giving
myself personal art projects of my own
design that address specific goals. These
enable me to learn as much as I can about
the tools and techniques used to create
things I like in 3D art and character ani-
mation. These assignments certainly don’t
feel like “work” to me. Since this was my
passion at the time I embarked on this
career, I still fill what spare time I have
with more advanced projects. Here I can
make up for what fun things I don’t get to
do at work, while honing my skills in pre-
ferred areas. My greatest challenge so far
has been making the time to work on them

and buying the hardware and software
required. The end result every time, how-
ever, has been very rewarding and fulfill-
ing, personally as well as professionally.

One Step at a Time

If you’re working on becoming an art
lead on a game title, you’ll find that you

do have a tall order to fill. Of course, the

sooner you can get a handle on what is
expected of you in this new position, the
sooner you can take measures to ensure
that you’re on a good course to getting
there. The process can be long, but take
your time and do it right. In the end, it’s
the respect you’ll have earned from your
team members that will take your new role
as a leader to new heights in achievements
and personal satisfaction. q

T he first motion capture sys-
tems were designed for the
medical industry to better ana-
lyze physical injuries and
defects. By the mid-1990s,

motion capture developers recognized a
potential market in the entertainment
industry and began to modify their systems
to suit the needs of production houses and
game developers.

The transition from medical tool to ani-
mation tool has been a difficult and
painful struggle, and motion capture has
left some ugly marks on game developers.
Entire projects have been canceled due to
problems related to motion capture.
Motion capture hardware and software
developers as well as motion capture serv-
ice providers have sometimes struggled to
stay in business, and some have not sur-
vived. Many animators rejected motion
capture even before attempting to make it
useful. Some said that a true artist would
never use motion capture or that using
motion capture was cheating.

Despite the challenges, few would argue
that motion capture is an essential aid in
character animation. Game developers
have come to rely on motion capture as a

vital tool in producing quality and efficient
character animation. Today, motion cap-
ture systems are utilized in a number of
industries. None, however, comes close to
competing with the amount of motion cap-
ture used in game development.

The same game developers that once
canceled projects due to motion capture
problems now have their own motion cap-
ture studios and highly skilled technicians,
or wranglers, to operate them. Animators
have realized that motion capture can be a
tool just like any other effect available in
3D animation packages and are learning
how to work with motion capture rather
than fight it.

Incredible results can be seen where
motion capture has been implemented cor-
rectly. Namco’s SOUL CALIBUR is a good
example of how motion capture can really
bring a game to life.

Still, many game developers face the chal-
lenge of acquiring quality motion capture
data and implementing it correctly. We’ve
all seen the ugliness: sliding feet, jittering
spasms, snap-crackle-pop, mushiness, and
weird mesh deformations. For some reason,
things just don’t look right. The biggest
problem is that most often what you see in

the motion capture performance is not
what you see in the game. Motion capture
departments are constantly striving to
reach the goal of WYSIWYG (what you
see is what you get) motion capture.

This article examines some of the obsta-
cles in reaching this goal and how to mini-
mize or solve them. One must consider
many issues: various aspects of preproduc-
tion, performance, data quality, and soft-
ware tools. Some of the information present-
ed here is specific to retro-reflective, optical
motion capture systems, but much of it can
be applied to any system you choose.

Planning

C ertain aspects of preproduction are
critical to WYSIWYG. This article

can’t cover every point in preparing for a
motion capture shoot, but some key issues
must be considered before acquiring and
implementing motion capture data.

Character definition. One of the first
issues to address is character definition. A
complete character design includes art-
work that illustrates the character’s dimen-
sions and physical traits, a description of
its personality, its special abilities, and any-
thing else that defines the character. A
biography of the character can be very use-
ful. Super-human features are often key
elements of a character. A character with
long gorilla arms or with no neck and long
bull horns coming out of its head must be

M O T I O N C A P T U R E d a v i d w a s h b u r n

D A V I D W A S H B U R N | David began his motion capture career as a technician for
Biovision Motion Capture Studios in 1994. He has done motion capture for more than 100
games, various commercials, and numerous sports analysis sessions. He has also worked as a
motion capture consultant providing training, system installations, and production pipeline
optimization for new studios. He is currently employed by Westwood Studios.

24 d e c e m b e r 2 0 0 1 | g a m e d e v e l o p e r

The Quest for
Pure Motion

Capture

25w w w . g d m a g . c o m

precisely articulated before attempting
motion capture.

Poorly defined characters are often
changed significantly after the capture, and
of course the original motion data won’t
look right. Character design is directly relat-
ed to performance and casting issues that
are discussed later. Without a well-defined,
solidly built character, directors and actors
cannot possibly hope to create believable,
interesting, and appropriate motion.

Character scaling. Differing sizes and
proportions between the live actor and the
virtual character can also cause problems.
This scaling issue is even more critical
when props or set pieces are used.

For example, you might capture a five-
foot, two-inch woman to portray a ten-
year-old girl. You can always scale the
motion to the mesh, right? What if the ten-
year-old girl sits down at a table and puts
her hands under her chin and then stands
up and leans on the table with her hands?
When the motion is scaled she will not
interact with the floor, the chair, the table,
or herself correctly, because the distance
between the table and her chin will not
match the distance between her elbow and
her hands. Interaction with the other char-

acters will not match up either. One then
tries to tweak the data, apply offsets, and
add keyframing to make everything match
up. Invariably someone asks, “Why doesn’t
that look right?” Poor planning is the
answer.

When possible, casting the right person
for each character will make a big differ-
ence. Another solution is recognizing the
problem before capture and choreograph-
ing motions that will scale better. For
instance, if the girl’s motion were choreo-
graphed so she didn’t put her hands under
her chin and didn’t lean on the table when
she stood up, then simply scaling the
motion would work.

Skeleton design and solving. Skeleton
design is another piece of the puzzle. To
achieve the best results from capture data,
skeletons must be designed and tested
before the shoot. The first rule of building
a skeleton is never to rotate or scale the
bones. Always use translations to position
the joints in the mesh. When joints are
rotated or scaled, the motion data is
applied on top of those offsets, which usu-
ally causes problems such as flipping,
snapping, and popping. Motion capture
data always tests the limits of mesh defor-
mation, so the number of joints and their
locations are critical (see Figure 1). A
skeleton with a short femur (thighbone)
and an extra long tibia (shinbone) will not
be able to follow the motion capture data
and thus won’t look like the performance

because the knee joint can never reach its
correct position.

Most game skeletons don’t allow bones
to stretch or allow joints to move in and
out of sockets like they do in real life. The
hip and the shoulder ball joints move
around a great deal in their sockets and
can be very noticeable in certain anima-
tions. Sitting and kneeling cause the hip
bone to move in its socket so much that
the knee joint can no longer reach its posi-
tion. Ideally, prerendered animations
should be set up with dynamic bones,
allowing child joints to vary in distance
from the parent.

The character mesh should be designed
to deform correctly with the skeleton.
Vertices in the wrong places and vertices
that are incorrectly weighted or bound to
the wrong bones will never produce ani-
mations that look like the motion capture
performance (see Figure 2).

Most of the mistakes made when config-
uring translational marker data to drive
skeleton joint rotations are related to the
difference in scale between the actor and
the virtual character. The details of how to

FIGURE 1. When the distance between the hip
joint and the first spine joint goes beyond the top
of the pelvis, the back will break as the charac-
ter bends over.

correctly map/solve/characterize (all the
same thing) are application dependent and
too complex to articulate here. The goal
should be a mapping solution where the
joints mirror the markers. Inverse and for-
ward kinematics and all other constraints
shouldn’t modify the motion but rather
help solve scale issues.

Marker set. A marker set designed for
each character obviously must be well
thought out. Choosing the right marker set
has a major impact on whether animations
end up looking like the reference video.
Decisions regarding where to put markers
and how many to use should be based on
your software tools and the skeleton design.

Software tools can take advantage of
redundant markers to create rigid bodies
for gap filling and smoothing caused by
occlusion or dropout. Additional markers
can be used to create asymmetry for label-
ing. The design must be balanced, though;
having too many markers causes them to
merge into each other. Inner knee markers
will interfere with each other, but markers
just above the knees on the thigh can be
just as useful. Hands, arms, and props
often occlude chest markers, but back
markers may be adequate to articulate all
torso movement.

You must also consider the skeleton
design when designing a marker set. A
skeleton with two spine joints doesn’t need
as many markers as a four-segmented
spine. Configuring translational marker
data to drive skeleton joint rotations
should be optimized with the right number
of markers placed on the right body loca-
tions (see Figure 3).

Using translational marker data to drive
facial bones is a simple way to produce
facial animation. Because the facial bones
have no children, marker data can be
scaled to match the bones without any
complications.

Attaching markers to clothing is another
reason why motion capture data doesn’t
look like the performance. Usually you
want the motion of the body, not the
motion of the clothes. For example, the act
of sitting causes clothing to slide up the
leg. When arms are raised above the head,
clothing on the elbows slides up the arms.
It’s best to attach markers directly to the
skin where possible. The best motion cap-
ture suit a birthday suit.

Props and set design. Props and set
pieces need to be designed with motion
capture in mind. Where possible, struc-
tures and props should be frames only;
solid structures occlude markers, making
the motion capture data noisy and frag-
mented. In addition, props need to be the
right dimensions and weight, or else per-
formance believability will suffer. The
props Namco used in SOUL CALIBUR added
a lot of believability; you can actually see
the weight of the weapons as the charac-
ters swing them around.

Audio. When characters are speaking or
responding to speech or other sounds, it’s
important to have the audio playing during
the capture. Actors should actually vocalize
along with the prerecorded dialogue during
the capture session; this extra measure of
authenticity will come through in the per-
formance. You cannot synchronize motion
capture data to specific audio unless you use
that recording during the performance.

For example, if you have three people
talking to each other and you want both
body and facial animation, what are the
logistics of getting everything to synchro-

nize in post? Assume that the body and
facial animations will be captured sepa-
rately. First, there should be a source audio
file with all the characters interacting for
the entire shot. From that source file, cut
out the pieces that represent the body
takes and use them during the body cap-
ture. Then cut out all the little pieces of
dialogue from the body takes to be used
for the facial takes. Create a hierarchy of
audio files: the facial audio files are chil-
dren of the body audio files, and the body
audio files are children of the source audio
files. It’s critical to keep track of the frame
range numbers extracted from each parent
file so you know the exact sequence and
ranges to blend back into one take.

Continuing with the preceding example,
let’s say you have 30 seconds of interaction
between the three characters. Jim and Ed
are arguing, when Tim enters and solves
the dispute. During this interaction, the
camera cuts to three different perspectives.
The body takes are decided by the actions,
and the facial takes are decided by the
length of the dialogue. The first body take
will be Jim and Ed arguing for 16.8 sec-

26

M O T I O N C A P T U R E

FIGURE 2 (above). Knees, armpits, and elbows
need enough vertices to allow each joint to bend
in the right place. The correct setup is on the top;
the skeleton at on the bottom has been set up
incorrectly.
FIGURE 3 (right). It has always been difficult to get
good motion capture data for shoulder joints
because of their complex anatomy and movement.
Placing markers on the front of the shoulder, the
back of the shoulder, and down the arm a few
inches articulates a plane for the shoulder rotation.

d e c e m b e r 2 0 0 1 | g a m e d e v e l o p e r

onds. The second body take will be Tim
entering and approaching for 3.2 seconds.
The third body take will be Jim, Ed, and
Tim for 18.8 seconds. (Capturing extra
time provides some freedom when cutting
the scene.) Then capture 12 facial takes
ranging between 1.2 and 8 seconds. Using
the table you created that lists the frame
ranges of each audio file (Table 1 shows an
example), you know the exact frame num-
ber where the sixth and seventh facial
takes fit in the 3.2 seconds of the second
body take.

Obviously, audio must be recorded and
prepared before the shoot. Create each
body audio file and each facial audio file,
and prepend each file with a specified
number of beeps or tones so the actors
know exactly when to begin each motion.

Shot lists. Like the character definition
step, the shot list should be thorough and
complete in numerating and accounting for
each shot needed. A poor shot list will
limit the ability of the director and the
actor to produce a believable performance.
Time will be wasted, props and set pieces
may not be prepared, and some motions
may require the motion capture volume
(the stage) to be reconfigured.

When defining a shot list, it is important
to be clear in describing the exact motion
desired. Motion should not be confused
with emotion. For example, “sad” is not a
motion. It is, however, a fine descriptive
word for the quality of a particular

motion. “From a neutral position, actor
slumps shoulders forward, tilts head to the
left, shakes head back and forth” is a
fairly complete description of a motion.
“From a neutral position, actor slumps
shoulders forward, tilts head to the left,
shakes head back and forth sadly” will
only help to reinforce the desired quality
of the movement.

Performance

G etting good animations out of a per-
formance obviously requires starting

with a good performance, but achieving a
desirable performance is its own chal-
lenge. Performance is where observing
even small considerations can have a big
impact on results.

Casting. Casting the right talent to do
motion capture is the first step and one
that is overlooked too often. Designers
and producers need to take the time to
audition talent until they find the right
person who will bring the character to
life. They must have the skills related to
the character: a dancer, a soccer player, a
martial artist. They should match the
character’s scale and proportions as close
as possible. Strong muscle memory (the
ability to remember the exact ready pose
or idle pose and return to that pose) is
required for in-game characters, and
actors should be auditioned with this in
mind. Mimes or actors with mime training

usually have good mus-
cle memory. All charac-
ters that interact with
each other need to be
cast in relation to each
other’s size so that those
interactions can be per-
formed realistically.
Performance is one case
where what you see is
truly what you get. For
example, preference to
an old injury that was
not noticed during the
performance may be
painfully obvious in the
animation. You can’t fix
an animation if it wasn’t
performed correctly.

Character interpreta-
tion. Character design

and performance are closely related.
Understanding the character design and
performing the motions is what acting is
all about. An actor cannot get into char-
acter if he or she doesn’t know the char-
acter. The director and the actor need to
see artwork of the character and get to
know its personality, its special abilities,
and its role in the game. Even a simple
walk cycle should be performed based on
the particular character design. Character
interpretation is subjective and will often
differ from designer to artist to director
to actor. Clear and complete character
design will help to bring varying opinions
closer to agreement.

Directing. Using an experienced director
will significantly affect the quality of the
performance. The director needs to under-
stand the motion capture technology, the
software pipeline, and how the data will
be implemented. A great performance is of
no use if the cameras can’t see the mark-
ers. A good director also knows the per-
formance he or she is looking for and
doesn’t miss it when it happens. Often
poor performances are accepted and
pushed through the production pipeline,
only to be cut later on.

Sequencing the motion list so the actor
can stay in character is also helpful. It
may be difficult for an actor to perform a
death by fire, followed by a sword fight,
an idle, a run, and then another death by
sword. In addition, separating motions
according to their degree of difficulty
saves time. The motion capture technician
may spend a great deal of time replacing
markers that fall off during aggressive
takes, so it is usually best to group similar
motions together: idles, walks, runs,
fights, deaths.

Attendees. The lead designer and lead
animator should be at the shoot. The
designer should be available for questions
and watching the performance to evaluate
it for gameplay. The animator should be
taking notes on the performance so he or
she can understand how the markers are
going to make the character move and
how characters will interact with virtual
sets and props.

Etiquette. Studio etiquette is required for
the actor to give the best performance. Too
many cooks in the kitchen will ruin the
performance. Only the director should give

d e c e m b e r 2 0 0 1 | g a m e d e v e l o p e r28

M O T I O N C A P T U R E

TABLE 1. Macro Express can create a series of macros that
extract the separate audio files and create a spreadsheet with all
the audio file names and frame number offsets that are needed to
sync and blend all the motions back together. The offset numbers
are embedded in the audio file names. The spreadsheet is used
as a shot list during capture, and for tracking progress and as a
reference during post.

ID Filename Offset Length
1 20_02_0090_Nep-Welcome 90 138
2 20_06_0000_Kat-You know me 0 210
3 20_06_0231_Nep-Of that 231 152
4 20_06_0403_Nep-I knew your 403 296
5 20_06_0721_Kat-Seems everyone 721 244
6 20_06_0978_Nep-It is the time 978 177
7 20_06_1172_Nep-Your mother 1172 245
8 20_06_1441_Kat-Well it certainly 1441 89
9 20_06_1530_Nep-Wait a moment 1530 199
10 20_06_1754_Nep-It was your mother's 1754 188

direction — an actor that has been over-
directed can’t even walk. A chain of com-
mand should be established so the director
takes input from interested parties and
then decides if and how to direct that
input to the actor.

Noise

O bviously you can’t expect an anima-
tion to look like the performance if

you have noisy marker data. A good
example of noise is the jitter you see in a
character’s foot when he stands still.
There are many variables to address
when optimizing a system to get the
cleanest possible marker data. We won’t
discuss this in detail, but we know that
cameras must be configured with the
right lenses, optimally positioned around
the capture volume, and correctly cali-
brated to each other. Positioning cameras
at different heights provides better van-
tage points and better triangulation.
When all cameras are at the same height,
they tend to produce noisier data. Dirty
or misshapen markers, bad camera
cables, outdated algorithms, fluctuations
in the video capture signals, and Gooch’s
microwave can all cause noise.

Noise is also introduced when an actor
performs at or near the limits of the cap-
ture volume or when markers are occlud-
ed. Motions need to be choreographed for
optimal marker exposure while staying
within the motion capture volume.

For example, when an actor lies on his
back and his chest gets covered by a prop
or another actor, chances are the anima-

tion won’t look like the performance
because of occlusion (see Figure 4). The
cameras can’t see the markers on his back
when he’s lying on them, and the other
actor is covering his chest markers.

Cleaning. Filtering out noise in transla-
tional data, or smoothing, cannot be
applied with a broad stroke. Each frame of
each trajectory (X, Y, and Z) for each
marker must be evaluated individually.
Too much filtering will ruin motion data
too. Motions that look soft or mushy have
been filtered too much (see Figure 5).

Cleaning motion capture data is a skill
developed by experience. The amount of
noise or data quality is usually directly
related to the amount of experience the
data wrangler has and the amount of time
available for cleaning the data. Experi-
enced wranglers know how to use good
data from one marker to fix bad data in a
related marker. They recognize the differ-
ence between spikes, tails, noise, and
good data. They know the order in which
markers should be cleaned, just how
much to smooth a marker, and when to
fill gaps. Without the right tools, cleaning
noise can be very tedious and time
consuming.

From bad to worse. Motion capture data
should be cleaned at the raw marker level.
When you filter hierarchical rotational
data, the children get really mad, so if you
smooth a noisy elbow, the child hand is
going to become even noisier. To under-
stand this, it’s important to understand
how markers drive joint rotations.

Markers are translational data only,
individual points in space over time. Three
or more markers are used to create a
plane, and the translation and rotation of
that plane is what drives a joint. One
plane drives the elbow and another plane
drives the hand, and the two planes have
their own data sources. When noisy elbow
markers and clean hand markers are baked
into the skeletal data, editing the parent
elbow joint causes the child hand joint to
leave its clean path and be augmented by
its parent’s new path.

It’s the wrangler’s job to produce good
skeletal motion capture data. Markers
that are noisy or have been swapped or
mislabeled should be reprocessed and
cleaned using motion capture tools such
as House of Moves’ Diva or Kaydara’s

Filmbox (see page 8 for a review of
Filmbox). The motion capture depart-
ment should have the source data, the
right tools, and the experience to fix the
problems.

Joint constraints and inverse and for-
ward kinematics setups can cause prob-
lems, too. When animators keyframe
skeletal data, too many keys often end up
getting cut. Before you know it, the per-
formance you saw captured . . . is gone!
Filmbox has keyframing tools that pre-
serve the motion data and allow motions
to be modified without deleting keys.

Real-time by-products. One of the solu-
tions hardware vendors have been working
on is real-time motion capture. Broad-
casters and filmmakers have been patiently
waiting for real-time optical motion cap-
ture systems to portray their virtual char-
acters. Game developers should be very
excited about the by-products of real time,
such as instant playback, updated algo-
rithms for cleaner data, and no labeling or
marker cleanup. When these real-time
products mature a bit more, an optimized
setup could mean that the time taken to
reconstruct, label, clean markers, and fill
gaps will happen in real time during the
capture, and animators would have quality
data the same day.

Even with the latest real-time products
and the best camera setup, noise is still a
problem that motion capture hardware
developers need to work on. More devel-
opment needs to be put into the algorithms
that calculate the 3D coordinates.

d e c e m b e r 2 0 0 1 | g a m e d e v e l o p e r30

M O T I O N C A P T U R E

FIGURE 4. It ain’t mocap if you can’t see the
markers. Some of the markers on the bottom
actor have been occluded during this motion
sequence, jeopardizing the likelihood of getting
clean animation out of his performance.

FIGURE 5. Graph of a jittery foot marker, a clean
foot marker, and an over-smoothed foot marker.

A Working
Software Pipeline

A ll the proper planning, perfect per-
formances, and masterful noise clean-

ing in the world won’t produce WYSIWYG
motion capture without the right software
pipeline. The following is my current setup
that I have devised in my ongoing attempt
to achieve pure motion capture.

The Vicon Workstation is a solid tool for
capturing data, calculating the 3D coordi-
nates, and labeling the raw marker data.
The Vicon system is a retro-reflective, opti-
cal motion capture system.

Macro Express is a very efficient way to set
up hotkeys that copy file names and
descriptions from a shot list into the Vicon
interface. Rather than typing in each file
name, notes, and descriptions, or renaming
files after the capture session, you just press
one key and you’re ready to capture the
next take. Once you start using macros, you
won’t be able to go back; you’ll always find
new ways to improve efficiency.

Diva, a brand-new product by House of
Moves, is another very powerful tool. Diva
replaces all other marker cleanup tools. It
imports and exports almost every type of
motion capture data and is a powerful
component in any production pipeline.
With a marker set designed to take advan-
tage of Diva’s tools and scripts optimized
for the data it’s processing, the bottleneck
in motion capture production shifts to
marker labeling.

What makes Diva so useful is that it
was (and is being) designed in a produc-
tion house. The wranglers on the front line
who have to produce clean data every day
have provided the input to build this
panacea application. House of Moves lis-
tens to its users. The studio takes all
requests and asks for clarification when

the request is not clear. Valid requests are
prioritized and implemented as soon as
possible. House of Moves provides simple,
customized scripts for special needs, on the
same day when possible. The interface is
completely customizable, and the best
parts of the Maya and 3DS Max GUIs
have been rewritten for Diva. Every imagi-
nable tool that you would ever want to use
with raw marker data is scriptable, batch-
able, and assignable to buttons, hotkeys,
and marking menus. Diva is surprisingly
mature for its age, but it is still maturing
and growing beyond expectations.

Kaydara’s Filmbox is the tool for mapping
motion capture data onto a skeleton. It has
taken giant steps to fill the need for a pre-
cise and flexible solution to constrain skele-
ton joints to marker data. The Actor and
Character tools are innovative, powerful,
and smart. Filmbox includes a nonlinear
editing interface that allows you to create
loops and blends, and the Control Set is the
answer to keyframing data that needs to be
modified without destroying the motion
capture data. Every motion capture depart-
ment should be using Filmbox. My pipeline
depends on it. Nonetheless, many features
are buried in its obtuse and cumbersome
interface. It has a very steep learning curve,
and many tools and functionality still need
to be added.

Westwood animators use the Maya, 3DS
Max, and Lightwave animation packages.
The skeletons built in these packages are
imported into Filmbox, where the motion
capture data is applied and then saved out
in the Filmbox file format. These anima-
tion packages then import/merge back the
animated .FBX data into the scene. The
skeleton in the animation package and the
skeleton in Filmbox must be identical or
the merge back will not work correctly.

Discreet’s Character Studio is very easy to
use. Using the right motion capture data,
it’s a simple process to load motion cap-
ture data onto a character. Many anima-
tors prefer Character Studio because of its
layering tool, which is used in keyframing,
looping, and blending. Character Studio is
well suited for many projects, but it can be
limiting. For example, Character Studio
only supports the .BVH hierarchical data
format or the .CSM data format, which is
limited to a specific marker set that often
causes occlusion of the chest, knee, and

elbow markers. With a different marker
set, Diva can be used to generate the
required .CSM markers and then export
clean .CSM marker data.

Work in Progress

T he efficiency and quality of character
animation, for better or for worse, is

now directly tied to the science of motion
capture. Arguments against the artistic
integrity of using motion capture are rap-
idly falling by the wayside as more game
developers are anxious to capitalize on the
realism that motion capture affords.
Motion capture can save time and money,
but software pipelines and techniques for
implementing motion capture data need to
be improved and refined continuously.
Experienced wranglers are becoming valu-
able assets.

Slowly, the challenges that have plagued
developers trying to turn motion capture
into accurate in-game animations are being
improved or eliminated. Real-time technolo-
gy is advancing and will eventually resolve
the problems of raw marker noise and
develop robust interpolation for marker
occlusion and dropout. Skeleton-solving
tools will become more powerful and flexi-
ble, and new tools will be developed for
animators to keyframe over motion capture
data. Those of us in motion capture anx-
iously await such developments, hoping
that one day WYS will truly be WYG. q

w w w . g d m a g . c o m 31

When setting up the Actor init pose, notice
that the shoulders need to be translated up
and back, away from the torso, just like the
markers do when the live actor raises his or
her arms into the init pose. When this is
not done, the character will have droopy
shoulders.

F I L M B O X T I P

F O R M O R E I N F O R M AT I O N

House of Moves’ Diva

www.moves.com

Insight Software Solutions’ Macro Express

www.macros.com

OMG’s Vicon

www.vicon.com

Motion Analysis’s Eagle Camera

www.motionanalysis.com

Kaydara’s Filmbox

www.kaydara.com

Discreet’s 3DS Max and Character Studio

www.discreet.com

Alias|Wavefront’s Maya

www.aliaswavefront.com

Newtek’s Lightwave 3D

www.newtek.com

Greeted initially with fair helpings of
both optimism and skepticism, mid-
dleware has been gaining momentum
over the past couple of years. New
products are appearing all the time,

and older ones are maturing nicely with revisions
and refinements based in part on feedback from
developers using these tools in shipping products.

Of all the different kinds of middleware avail-
able today, licensable game engines are clearly the
most complex to make workable in a production
environment. The promises of shorter and less
painful development cycles are many, while the
burden on those charged with incorporating
licensed technology into a project remains consid-
erable. In many cases, developers find that licensed
technology didn’t save the months of project devel-
opment time they thought it would, but instead
that time and effort ended up redistributed to
other areas such as art, game design, and story
development. This kind of trade-off is gaining
appeal: development cycles won’t shorten them-
selves, nor can most developers stand to see them
grow any longer.

Here we present the first in a recurring series of
features that will take an in-depth look at engines
available to developers. For this installment, we sat

two experienced game programmers down with
two different engines: NDL’s NetImmerse — one of
the more mature offerings on the market — which
has been used in numerous PC and console titles
including, recently, Oddworld Inhabitants’
MUNCH’S ODDYSEE and Mythic Entertainment’s
DARK AGE OF CAMELOT; and Intrinsic Graphics’
Alchemy, a more recent arrival on the scene, which
debuted in October 2000. – Jennifer Olsen

G A M E E N G I N E S

32 d e c e m b e r 2 0 0 1 | g a m e d e v e l o p e r

Test
Drive

A N D R E W K I R M S E | Andrew’s previous projects
include the games MERIDIAN 59 and STAR WARS:
STARFIGHTER, and contributions to the Game
Programming Gems books. He is currently a lead
programmer at LucasArts, where he can be reached
at akirmse@lucasarts.com.

D A N I E L S Á N C H E Z - C R E S P O | Dani has a
degree in computer science from the Universitat
Politècnica de Catalunya. He has a four-year rela-
tionship with the Computer Graphics Group at
UPC, where he has been active in the fields of
human-computer interfaces and real-time graphics.
In March 2000 he founded a game development
studio called Novarama. You can reach him at
dani@novarama.com.

On the Open Road
with Two of Today’s

Most Powerful
Game Engines

33w w w . g d m a g . c o m

A relative newcomer to game middle-
ware, Intrinsic Graphics Inc. was

founded by former Silicon Graphics
employees in 1999 and released version 1.0
of its flagship product, Intrinsic Alchemy,
in October 2000. For this review, I looked
at Alchemy 1.5, which supports develop-
ment for the PC, Sony’s Playstation 2, and
Microsoft’s Xbox. Version 1.6, which adds
Gamecube support and additional features
and includes some bug fixes, should be
available by the time you read this. A
major new 2.0 release is planned for
February 2002. At the moment, the PC and
Playstation 2 versions are the most mature.
Supported compilers are Metrowerks
Codewarrior for the Playstation 2 and
Gamecube, Microsoft Visual C++ for the
PC and Xbox, and SN Systems ProDG and
GNU C++ for the Playstation 2 (though
not yet for the Gamecube).

I tested Alchemy on a 1GHz Pentium III
with 512MB of memory, an Nvidia
Geforce 2 MX graphics card, a clean
install of Windows 2000 with service pack
2, and Microsoft Visual C++ with service
pack 5. There is one installation for the
programming environment and another for
the Artist Pack, which contains the
exporters and art conversion tools. The
installation is straightforward, though it
shows some rough edges: it places short-
cuts to the Alchemy documentation on the
Start menu without asking, yet it requires
a manual setup of environment variables
and shortcuts to frequently used executa-
bles, such as the art preview tool.

Art Path

A lchemy ships with exporters for 3DS
Max 3.0 and 4.2, Maya 3.1 and 4.0,

and Lightwave 6.5 (the Max exporters are
currently the best supported). Max can be
configured to show a real-time, in-engine
view of the model in one of its viewports,
while Maya can launch the viewer from a
menu. The Max exporter adds numerous
rollouts to the interface, including the
option to optimize the result for the PC,
Playstation 2, or Xbox.

One of the exporter’s convenient fea-
tures is its integration with the preview
tool Insight. A PC can be configured so
that an exported model is automatically
sent down to a Playstation 2 debug station
via a USB connection, where it appears on
the screen after a few seconds. From with-
in the Insight viewer, an artist can rotate
around a model, activate its animations,
and enable or disable various rendering
features to see their effect on frame rate.
The viewer is equipped with on-screen
counters detailing memory usage, scene
graph traversal time, rendering time, and
frame rate.

Animation is bone-based, using the tools
built into the modeling packages. Alchemy
supports skinned animation, with up to
four bone weights per vertex. On the
Playstation 2, models that restrict them-
selves to a palette of 16 bones are skinned
on VU1; models with more bones are
skinned on the CPU and VU0 at a greatly
reduced speed. In addition to exporting
keyframes from inverse kinematic (IK) ani-
mations in the modeling tools, Alchemy
has its own run-time IK solver for two-
bone chains.

The exporter exports .IGB files, which
are collections of art assets in a proprietary
format. An unoptimized .IGB file contains
model data in a platform-independent rep-
resentation. Alchemy can apply a sequence
of optimizations at export time or as a
postprocess to accelerate the rendering of a
model for each platform. Examples include
computing triangle strips, flattening the
scene graph, or decreasing texture resolu-
tion. A sequence of optimizations can be
saved as a script, so that a particular
model is always exported with those opti-
mizations applied. A GUI tool called the
Finalizer allows an artist to modify opti-
mization parameters interactively and view
the resulting frame rate and memory usage
in the Insight viewer. Alchemy also ships
with a command line tool that applies an
optimization script to an .IGB file, which
is useful for batch processing. Applications
can define their own optimizations, which
are then available for use in these tools.

Touring the Subsystems

A lchemy’s PC version includes one ren-
derer for OpenGL and one for DirectX

8. The Playstation 2 version is implemented
through custom VU1 microcode. Applica-
tions can still send their own microcode to
VU1 through an extension interface.

The current graphics state is stored in an
object called the visual context. Invoking
methods on the visual context changes the
current drawing state; the model is very
similar to that of OpenGL. The abstract
visual context class handles settings com-
mon to all platforms, such as textures,
lights, and material settings, while plat-
form-specific subclasses allow more direct
access to hardware features, such as the
Playstation 2’s quirky blend modes and
mipmapping settings.

Alchemy stores model data in vertex
and index buffers in the style of DirectX 8.
The system supports dynamic geometry by
marking in advance those buffers that will
change, then retrieving direct pointers to
the buffers, making modifications, and
committing the changes. Naturally, dynam-
ic geometry involves a performance penal-
ty that static geometry does not.

Intrinsic’s developers have tuned the per-
formamce of its Playstation 2 renderer
considerably. One real-time demo shows
36 skinned characters of 2,500 polygons
and 18 bones each animating at 60 frames
per second, while another shows a texture
transfer rate of 600MB per second. Given
the Playstation 2’s deserved reputation as a
difficult platform to work with, this kind
of performance represents a significant
time investment. Starting from scratch,
achieving these levels might take six to
twelve months of dedicated development.

Alchemy’s input system supports the
Playstation 2 and Xbox controllers, includ-
ing analog buttons, the multitap, and force
feedback. An important omission is the
debugging keyboard for the Xbox and the
Playstation 2 (via USB). Applications can

34

G A M E E N G I N E S a n d r e w k i r m s e

d e c e m b e r 2 0 0 1 | g a m e d e v e l o p e r

Alchemy’s Finalizer, showing optimizations
being applied to a 3D scene.

Intrinsic Graphics’
Alchemy 1.5

w w w . g d m a g . c o m 35

either implement platform-specific keyboard
classes or replace the input system altogeth-
er without disturbing other subsystems.

Alchemy implements audio through
DirectSound on the PC and Xbox and a cus-
tom IOP module on the Playstation 2. The
current implementation is rather inefficient
on the Playstation, as all audio requests are
immediately communicated to the IOP
through a remote procedure call. Version 2.0
of Alchemy will include a deferred mode, in
which audio requests are batched together
for better performance. It supports both
streamed and nonstreamed audio.

With Alchemy, Intrinsic has foreseen the
need for application-defined memory usage.
Without application intervention, objects are
allocated from a default memory pool,
which is a wrapper around malloc(). Applica-
tions are free to create memory pools that
redirect allocations to a custom allocator. In
addition to the default pool, Alchemy pro-
vides a fixed-sized memory pool and two
variations of pools that work on the stack
discipline (last in, first out). Console games
in particular require this kind of absolute
control over memory usage.

Nuts and Bolts

One of the most distinguishing charac-
teristics of Alchemy is its particular

use of C++. The libraries themselves make
use of a minimalist subset of the language;
there is no use of multiple inheritance, run-
time type information (RTTI), the Standard
Template Library (STL), or the new and
delete operators. This approach is some-
thing of a mixed blessing, as it ensures
cross-platform compatibility and requires
only a passing familiarity with the language,
but places C++ aficionados in the uncom-
fortable position of programming outside of
their usual idiom. Without new and delete,
for example, programmers must instead call
the special static method called instantiate()
to create new objects. This can be more
than a nuisance — it means that these
objects cannot be declared on the stack,
used as (nonpointer) member variables, or
passed by reference. The Alchemy headers
also make heavy use of templates and nest-
ed namespaces. Any project that needs a
thorough understanding of Alchemy’s archi-
tecture will require at least one programmer
well versed in the nuances of C++.

Alchemy’s object system is based on a
Scheme-like class description language
called ODL (Object Description Language).
In the header file for each class that’s
derived from the base igObject class, a sec-
tion of ODL code appears at the top,
describing the name, type, and default
value of each of the class’s data members,
called fields. All of the ODL class files are
preprocessed into a single source file, which
is then compiled like normal C++ code.

A C++ class description language will
appear both strange and familiar to game
developers. The approach is similar to
scripting languages in some games, with
similar advantages. Repetitive code such as
get and set methods can be generated auto-
matically by the preprocessor, fields are
automatically persisted along with an
object, and code can enumerate field
names and values at run time, much like
the Reflection API in Java. This kind of
flexibility is critical in tools, which typical-
ly expose hundreds of settings to level
designers. Simple projects will have no
need to extend Alchemy’s ODL class hier-
archy (or even be aware of ODL), though
doing so is straightforward and well docu-
mented. It is, however, a bit inconvenient.
The custom build step required under
Visual C++ for ODL preprocessing is con-
voluted, and it isn’t even possible to do
this within the Codewarrior IDE, requiring
a manual prebuild step (for example,
through a makefile). New ODL classes are
required to add scene graph node types or
traversals, so most commercial projects
will need to understand the language and
extend the class hierarchy.

Support

Intrinsic’s product support is generally
excellent. A small full-time support staff

answers questions quickly and knowledge-
ably. Because support engineers are located
in the U.S., Europe, and Japan, replies are
possible anytime during the day. Questions
that stump the support engineers are passed
on to the product’s development engineers
with minimum delay. A training course is
included with Alchemy’s licensing fee, which
will help familiarize a project team with the
design and implementation of the libraries.

Alchemy comes with a fairly complete
set of HTML documentation (also avail-

able in PDF format, suitable for printing).
All of the major subsystems have thor-
ough, plain-language descriptions and
small code examples. There is also a com-
prehensive set of documentation for every
C++ class in the system, which is automati-
cally generated from the source code.

As a rule, Alchemy does not come with
source code. Source is included for the
exporters and the Insight viewer, but not
the core itself. The .IGB file format, which
contains all art assets, is undocumented.
And some of the plug-in optimizers come
with source, while others don’t. Intrinsic is
willing to make some source available for
support purposes on a case-by-case basis.

The Bottom Line

A lchemy is clearly still in its first gener-
ation, but even at this stage, it’s worth

a look for certain projects and should be a
strong contender with the 2.0 version. By
the time you read this, at least one major
title using Alchemy should be announced.
The library, like the company itself, is new
and unproven, and it shows in the scaffold-
ing that is visible in places throughout the
code and tools. Sometimes, though, it takes
a new entry to push the cutting edge.

With some planning, it’s certainly possi-
ble to pick and choose the parts of
Alchemy to integrate into a project. As a
practical matter, though, project teams are
better off swallowing Alchemy whole,
accepting at a minimum its renderer,
object model, scene graph, and art path.
For some developers, restricted access to
the source code for such a large part of a
project would be a scary proposition
indeed. But for others, Alchemy is well
worth the time saved. Middleware is usu-
ally best suited to developers who are in a
hurry or who want to leave the details of
the hardware to someone else; Intrinsic’s
Alchemy is no exception. q

Intrinsic Alchemy 1.5 | Intrinsic Graphics Inc.
www.intrinsic.com

Alchemy’s Insight viewer running within one of
3DS MAX’s viewports.

N etImmerse is an open game engine or,
more accurately, a game toolkit. By

supplying a wide array of features and
technologies out of the box, game toolkits
don’t attempt to eliminate, but do signifi-
cantly reduce, a developer’s coding needs.
NetImmerse 4.0, the latest version of this
already well-established product, continues
to improve upon this design philosophy.
Boasting enhanced multi-platform support
and many cutting-edge features, it looks
very promising but, does it live up to the
expectations?

Architecture
and Features

N etImmerse is a scene-graph-based
toolkit, providing a set of primitive

nodes and traversal algorithms to access
the data in an efficient manner. The scene
graph itself is a Directed Acyclic Graph
(DAG), where each leaf node represents
world entities. These entities can be trian-
gle (normal and stripified) meshes, portal
and particle systems, skinned characters,
and so on. Organizing the data into a
graph structure allows hierarchical tests to
be performed, and irrelevant data can be
efficiently discarded on the fly.

The core engine is object-oriented,
written in standard C++. The distribution
comes with source code (and convenient
Visual C++ project files), so it is possible
to add new primitives to the scene graph.
All you have to do is derive new classes
from existing ones to create the new func-
tionality. File access is managed by an I/O
abstraction layer, and rendering is done
through platform-specific renderers,
which can access Gamecube, Playstation
2, Xbox, and PC hardware. For the PC,
both DirectX and OpenGL are supported,
with DirectX 8.0 being the preferred
option. By using these renderers,
NetImmerse simplifies porting your title
among the different platforms. Some fea-
tures (especially eye-candy-style features)
aren’t supported in some systems, but in
case of discrepancies, the offending fea-
ture is simply ignored, so the game is still

playable. Besides these minor glitches,
games built with NetImmerse should be
rapidly portable.

As with most scene graph management
tools, graphics is the driving force behind
NetImmerse. The engine boasts a rather
impressive feature set: triangles and trian-
gle strips (which can be generated with a
handy bundled processor), portal render-
ing (both the strong/convex and weak/non-
convex visibility approaches), mesh skin-
ning, particle systems, a configurable tex-
ture engine (supporting diffuse, specular,
gloss, shadow, environment, and bump
maps), and many more.

NetImmerse includes an interface that
wraps on top of the Miles Sound System,
which must be purchased separately. Thus,
you can expect all state-of-the-art audio
features: positional sound sources, envi-
ronmental audio, MP3 playback, and so
on. As far as physics are concerned,
NetImmerse sports a dynamic collision
detection library, but it doesn’t include a
full-fledged physics module. Still, good
synergy exists between NetImmerse and
the Havok physics toolkit. Some customers
are already using both packages together,
and as version 4.1 of NetImmerse ships in
January, we can expect an improved inter-
face to Havok.

NetImmerse can work with data
extracted from 3DS Max or Maya. All sys-
tems are supported via plug-ins that make
editing and exporting art assets quite
straightforward. You can assign texture
maps, tweak UV coordinates, and create
animation loops all within your tool of
choice. Then, all you need to do is use the
plug-ins (which include real-time previews
of what your scene will look like) to create
.NIF files, the NetImmerse file format. In
some cases, specific tools are required to
tune the data for the various uses, be they
terrain, LOD data, animation keyframes,
or others. The supplied tools are well
designed and documented, but familiariz-
ing yourself with the conversion process
can take some time. Some tools are com-
mand-line only, so the learning curve is
rather steep.

Documentation
and Samples

T he documentation for NetImmerse
comes in digital form only, and con-

sists of both manuals and samples. The
documents come in Windows Help File
format. Manuals are also provided for
artists, covering their specific subjects and
tools: plug-ins, modeling tips, system limi-
tations, and other topics.

The code samples are organized in three
categories. First, dozens of test scenes
showcase the art production pipeline.
Second, the tutorials, which are small test
applications, are a great place from which
to borrow code while you’re getting start-
ed. Third, several advanced demos are
made up of lengthy pieces of code that
combine all elements together to create
more involved applications. Some of these
demos are quite sophisticated and really
give you a glimpse how NetImmerse can
be used to create a cutting-edge title. In an
ideal world, including the source code
from a completed commercial project
would be a nice touch, granting users some
perspective on how NetImmerse works
within the whole production pipeline. Even
with the dozens of demos available, the
gap between a demo and a full game
becomes pretty wide, and more help and
documentation in this respect would cer-
tainly be appreciated.

The Production Pipeline

N etimmerse is a well-built and feature-
rich package, but what’s it really like

to work with it? What should your compa-
ny expect?

To begin with, man-hours will shift
from brute-force programming to soft-

d e c e m b e r 2 0 0 1 | g a m e d e v e l o p e r36

G A M E E N G I N E S d a n i e l s á n c h e z - c r e s p o

Totally Games' STAR TREK BRIDGE COMMANDER, a
space adventure, was developed using NDL’s
NetImmerse.

Numerical Design’s
NetImmerse 4.0

ware engineering and analysis.
Netimmerse certainly frees you from
many time-consuming programming
tasks, offering tools and building blocks
that would require months, if not years,
to build from scratch. NetImmerse is a
mature package, and component quality
is generally top-notch. Still, a clear vision
on how to make these bricks work
together is fundamental. Spend some time
reading the documentation and under-
standing the potential of each component.
Don’t be tempted to code something in-
house when the desired feature may
already be somewhere in the toolkit.
When you’ve read the documentation, the
fun part begins: translating your game
design in terms of what NetImmerse
offers and figuring out how to get things
done using the existing tools. Staying
away from a keyboard and relying on the
toolkit might be hard to get used to, but
in the end it’s certainly worthwhile from a
time and results standpoint.

From an artist’s perspective, NetImmerse
is great. All game content can be created
with your modeler of choice, and little or
no training effort is required. Both the sup-
plied plug-ins and the artist-specific manu-
als and samples do a great job of keeping
the artists in a familiar environment where
they are most productive. But there still
exists the no-man’s-land that affects art
tuning and importing: Who will take care
of using the different tools (stripifiers,
keyframe tweakers, terrain cachers) to fill
the gap between the art package and
NetImmerse and ensure that art assets
make it safely to the main engine? In
today’s games, where assets are counted by
the thousand, this gap can be a potential
problem, so you should face it from day
one. Having dedicated personnel handling
that incoming datastream is a wise move,
as the tools to be used are likely beyond
the skills of the average artist. It all boils
down to the type and amount of data to
be gathered and the technical expertise of
your team.

From a production perspective, your
company will experience a faster deploy-
ment phase. Once the game is working on
one platform, deploying it on others is far
faster than having to port it by hand. All
you need to do is test the code on the new
system and fix all glitches and anomalies

caused by each platform’s nuances. The
only caveat here is that you need to pay
additional license fees for each platform,
but these are certainly less costly than a
full port and, luckily, multi-platform
licenses are available at reduced cost.
Assuming that your game is to ship on all
four platforms (that’s PC, Xbox,
Playstation 2, and Gamecube) the overall
license fee is $200,000, compared to the
$100,000 you should pay to make your
game available for just one of the game
consoles (or $75,000 for PC-only titles).

Where It Takes You

T he benefits of using NetImmerse are
clear and proven. Having cutting-edge

features available from day one allows for
smaller teams, faster prototyping and
development, and more time dedicated to
creating better content. Additionally, using
a scene graph model gives the developer
creative freedom over the game design.
Still, your mileage may vary, as not all
game genres will take equal advantage of
the toolkit’s features.

A media-rich game that uses simple AI
and physics (such as an action/adventure
game) can be created easily using this
package. The geometry, collision, terrain,
indoor, and animation components will
likely fit your needs and save lots of engi-
neer-hours. All you have to do is under-
stand NetImmerse’s layout and concentrate
on creating the proper AI and game logic
to ensure smooth gameplay. Still, if you are
creating something like an RTS title, you
will experience a bumpier ride. In these
types of projects, media is usually second-
ary, as you need to free as many CPU
cycles as you can for your game’s AI. Two
issues will certainly arise. First, you will
only use the basic features of NetImmerse’s
scene graph, and the advanced functionali-
ty will remain untouched. After all, RTS
titles with shaders, environment maps, and
inverse kinematics aren’t that common,
right? To complicate things further, after
the graphics engine is in place, you will
have to write the AI system from scratch.
NetImmerse does not provide the finite
state machines, scripting languages,
pathfinding solvers, and other AI systems
that you will certainly need to complete
your game.

So it seems NetImmerse is biased
toward media-rich games (action, RPG,
adventure, simulation, and sports) rather
than behavior-rich games. (Clearly, craft-
ing something like THE SIMS or BLACK &
WHITE with NetImmerse would be com-
plex.) Outside factors, however, may influ-
ence your purchase decision. Many devel-
opers doing action titles find it preferable
to create their own graphics engine and
will thus be uncomfortable using NetIm-
merse. On the other hand, a studio doing
a RTS game may have a great team of AI
coders but no graphics programming
skills. In this situation, even if the tools
provided by NetImmerse are not especially
designed to do an RTS title, having a
toolkit that saves the burden of creating a
graphics engine will be a blessing for the
team building it. So you really need to
examine your team, understand its skills
(and thus where can NetImmerse help),
and analyze just what kind of game you
really want to build.

All in all, NetImmerse offers a host of
features and time-saving utilities that can
shorten your development path. Once
you’ve passed the initially steep learning
curve, NetImmerse can help you concen-
trate on gameplay and content and free
you from the burden of crafting a new
engine. The latest release keeps up very
well with the times, offering state-of-the-
art features such as programmable textur-
ing and hardware skinning to keep the
wow factor high. Still, this is not a pack-
age for the faint of heart. NetImmerse
may give you powerful building blocks,
but your hard work is still required to
build a great game. q

NetImmerse 4.0 | Numerical Design Ltd.
www.ndl.com

w w w . g d m a g . c o m 37

OPEN TENNIS, a fast-action sports title from
Montreal-based developer Microids, was devel-
oped using NetImmerse.

K E V I N B A R R E T T | Kevin is the project
director and lead designer at Pseudo
Interactive. CEL DAMAGE is Kevin’s first
videogame release, though he has been an
active designer in the adventure game industry
for more than 15 years.

J O H N H A R L E Y | John is PI’s quality
assurance lead. He joined the CEL DAMAGE

team earlier this year. Active in the online
FPS community, he is also content director
of XMedia, out of xenoclan.com.

R I C H H I L M E R | Rich is the development
lead at PI, which is a suitably broad title
for the diverse role he fills. He combines
programming, level building, and design
and generally avoids bossing other people
around.

D A N I E L P O S N E R | Dan is PI’s code
lead, a role made easy by the quality of the
code team. He believes anything can be
accomplished with teamwork, passion, and
optimism.

G A R Y S N Y D E R | Gary is the art direc-
tor at Pseudo Interactive. Responsible for
a talented team of artists and animators,
he has the added bonus of getting to watch
cartoons whenever he wants in the name
of “research.”

D A V I D W U | David is PI’s president,
director of technology, and the creator of
the CEL DAMAGE game engine. He is on a
mission to prove that in humankind’s end-
less pursuit of happiness, good physics is
just as vital as good coffee.

d e c e m b e r 2 0 0 1 | g a m e d e v e l o p e r38

P O S T M O R T E M k e v i n b a r r e t t , j o h n h a r l e y , r i c h h i l m e r ,

T he story behind CEL DAMAGE

is long, winding, and harrow-
ing, but ultimately uplifting.
And because CEL DAMAGE is
our first published title, its

story is also the story of our company,
Pseudo Interactive. Based in Toronto, we
began work on the technological core of
the game four years ago. A demo of our
driving-combat physics engine at the Game
Developers Conference in 1997, PI’s first
year of operations, received a warm recep-
tion. Shortly thereafter, PI struck up a rela-
tionship with Microsoft’s Entertainment
Business Unit (EBU). Over PI’s first two
years, we started up and killed a few proj-
ects. However, with the coming of Xbox,
we found a proper niche for our emerging
technology.

The physics engine that PI president and
technology director David Wu was devel-
oping lent itself well to console applica-
tions. EBU recognized this, and an early
alliance was formed between PI and the
embryonic Xbox team. A high-profile
Microsoft producer came to PI with a
vision of where PI needed to take its game
technology, and a new project was born. At
that time, the project was called CARTOON

MAYHEM and was primarily a car-based
racing game with ancillary gag and weapon
features. As we struggled with the demands
of Microsoft’s vision for IP development,
rendering, and weapon effects, we realized
that the game engine, which was a patch-
work of two years’ worth of diverging

demands and evolution, would need a com-
plete overhaul.

For better or for worse, we undertook
that overhaul. So it was that just as we
were getting into CARTOON MAYHEM’s
development, our engine, and our ability to
iterate content in playable builds, went
down for over eight months. This was a
crucial time for Xbox and its first-party
developers. Microsoft was allocating its
resources to those teams with proven track
records and those showing steady progress.
We were obviously lacking in both areas.
Microsoft cut PI, along with our Xbox
title, at the end of 2000. Though this was a
disheartening development for us, by this
time we had the game engine back up and
running, and we were suddenly able to pro-
duce good demo levels. It wasn’t long
before we drew interest from several other
publishers.

We had a quickly evolving technology
and a ton of assets ready to go. The demos
we put together enabled us to land a new
publishing deal with Electronic Arts.
Switching publishers allowed us to prepare
some great new material, including an
internally developed IP, extra gameplay fea-
tures, a new renderer, and a new title: CEL

DAMAGE. We realized we were going to
make the Xbox launch, and we were going
to do it with our own property and the
backing of the world’s largest third-party
publisher. These three facts alone made all
the work of the previous several years
worthwhile.

Pseudo
Interactive’s

CEL
DAMAGE

w w w . g d m a g . c o m 39

G A M E D A T A
PUBLISHER: Electronic Arts

NUMBER OF FULL-TIME DEVELOPERS: 16
NUMBER OF CONTRACTORS: 12

ESTIMATED BUDGET: $2 million
LENGTH OF DEVELOPMENT: 2 years
RELEASE DATE: November 1, 2001

PLATFORM: Microsoft Xbox
DEVELOPMENT HARDWARE USED: 600MHz

Pentium IIIs with 256MB RAM, 30GB hard
drives, and Nvidia GeForce cards

DEVELOPMENT SOFTWARE USED: Microsoft
Visual Studio, 3DS Max, Photoshop,

Illustrator, Winamp, SourceSafe
NOTABLE TECHNOLOGIES: pitaSim, Vtune,

Microsoft Visual C++
PROJECT SIZE: 800,000 lines of code

d a n i e l p o s n e r , g a r y s n y d e r & d a v i d w u

What Went Right

1. Staffing. Two years ago, when we
started work on our Xbox title, we

had a core group of about eight people. It
was apparent that if we wanted to develop
a console game, whole cloth, in time for the
Xbox launch, we would need more staff in
every department. We hired more team
members as we progressed through devel-
opment. We were fortunate in that we were
able to find very talented and motivated
people who were also able to contribute to
our corporate élan. We brought our staff in
from all over North America, and although
none of us had console development experi-
ence, each new member brought a rich skill
set to the company. The search and inter-
view process for each team member was
exhaustive. We would often see a candidate
two or three times before rejecting him or
her and moving on to someone else. Talent
and experience were sought-after attributes,
but not at the expense of team chemistry. In
the end, our hiring methods were vindi-
cated. We were able to create a group
of friends who enjoyed
working with one anoth-
er and were deeply
devoted to the project.

Our approach to team
communication went
hand in hand with our
approach to staffing.
We found that weekly

full-staff meetings, individual weekly lec-
tures or presentations to the entire staff,
and regular departmental reviews greatly
improved all team members’ understanding
of how their co-workers contributed to the
project.

We also held an ace up our sleeve. We
formed a strategic alliance with a local
technical college that offered a diploma
course in 3D visual arts. Through the
school, we instituted an internship program
in our art department. We integrated top
students into our team, which was a very
successful exercise that we will maintain
during our next project.

Moral: Wait for the cream to rise, then scoop it

off the top.

2. Early development with Xbox. As a new entrant in the
highly competitive console market, the Xbox group was

looking for game experiences that would make their console
stand out. As Microsoft pointed out so often during the Xbox
design period, “Great technology does not sell game systems,
great games sell game systems.” Picking up on that mantra, we
started our development when the console was little more than an
optimistic dream championed by a charismatic team of visionar-
ies. Chief among them was their bold Advanced Technology
Group manager, Seamus Blackley. We were converts to his ambi-
tious plans for the Xbox. With the promise of a stable, RAM-
packed, hard-drive-enabled computational powerhouse, we were
confident that we could deliver the breakthrough game experience
that Microsoft was seeking.

Our game grew and achieved its focus as the Xbox did the
same. Knowing that CEL DAMAGE would be held to standards set
by second-generation Playstation 2 titles during the 2001
Christmas buying season, we were spurred on to utilize whatever
technology the Xbox team was stuffing into the system. We
believe that through this evolving relationship, we’ve managed to
create an innovative and highly entertaining title. It’s also worth
noting that CEL DAMAGE probably would not exist today were it
not for the support and inspiration provided by Seamus and the
rest of the Xbox team. They stood up for our project and pushed
as hard as any of us to make CEL DAMAGE a reality.

Moral: It’s all about whom you know.

3. Synchronization tools. PI grew a great deal over the
course of the project, and we knew it was important to

keep everyone synchronized. The increasing size of the team,
combined with the growing mountain of content and code, made
regular updates more difficult and time consuming. The process
of creating a build became a black art that only one or two peo-
ple could do correctly.

The first step toward synchronization came fairly early on with
the creation of an automated code-compilation process, dubbed
AutoBuild. We investigated a few different automated build pro-
grams, but none was as flexible or complete as a home-brewed
batch file (or rather, a collection of batch files and supplementary

programs). Each night, or whenever necessary,
AutoBuild could check out all source code to a

clean directory tree. It then built and executed
any code generators, built all binaries, copied
the output to a shared directory, and generat-
ed an e-mail report containing a .ZIP file of
all build output, along with a summary of

errors and warnings. Whenever convenient, our
programmers could run another batch file to syn-

chronize completely.
Although we implemented AutoBuild with low-
tech Windows commands and utilities, this one-

button solution proved to be extremely valu-
able. Each build that the process generated
served as the absolute point of reference for
the current code base. Even with six people

working simultaneously on the same source code, we were able to
keep inconsistencies and problems to a minimum.

Another low-tech solution, MakeBuild, filled our largest gap in
synchronization, though its implementation came quite late in the
project. MakeBuild consisted of our source game content, automat-
ically compiled into run-time format by adding a few simple com-
mands to the game editor, and a few batch files. By automatically
running MakeBuild after AutoBuild, we had a brand-new build
waiting for us each morning. Our daily build process kept artists
and QA staff up to date without bogging down any individual with
responsibility for creating the builds. MakeBuild accelerated the
feedback cycle between content creation and gameplay review.

Of course, not all updates were visible in the build, and we made
several other utilities to help keep everyone abreast of changes
under the hood. Our CheckInReporter was a simple Visual Basic
program that scanned the SourceSafe database for all check-ins
over the previous 24 hours, and then created and e-mailed out an
Excel spreadsheet report. These were especially helpful in tracking
down regressions. We created another simple VB program that
e-mailed out active bug lists to each team member once per day.

Moral: Spending a few days creating simple tools pays big dividends

throughout the project.

4. Internal bug tracking and QA. We made sure that our
daily build process was up and running before we built

our internal QA department. The daily build mentality was
instrumental in the iterative process and was QA’s greatest ally.
New art and game logic assets could be evaluated in-game within
24 hours of their creation, allowing broken assets and bad func-
tionality to be identified immediately.

Asset pound-downs and targeted focus testing ran concurrently
as soon as we had four functional game levels. As development
progressed, focus testing generated reams of data, which was boiled
down to nearly 400 gameplay and asset recommendations. This
information provided an important perspective on what people

d e c e m b e r 2 0 0 1 | g a m e d e v e l o p e r40

P O S T M O R T E M

Early in development, CEL DAMAGE was more race-themed. Here’s an early
concept for a loop-the-loop road gag in the desert theme.

d e c e m b e r 2 0 0 1 | g a m e d e v e l o p e r44

P O S T M O R T E M

were interpreting as fun and fair. This feedback was very valuable,
since we’d lost all objectivity toward the game and its difficulty
level once we’d mastered the various weapons and gags.

The bug-tracking software that our internal QA used for the
duration of the project was called PI_Raid. This tool, designed and
customized in-house, allowed us to stay on top of game defects,
generate work items, and comment on evolving game features. We
kept our bugs small and focused. While this approach often left
each of us with a lot of bugs in our “bin,” we were able to close
out several per day, providing mini morale boosts throughout the
project. Though some of the bugs that we logged might have been
considered trivial, cumulatively tackling them had a dramatic, pos-
itive effect on the game and our level of polish.

Moral: Get fresh eyeballs on your game and efficiently iterate gameplay.

5. Coordinated schedule. One of the pleasures of working
on CEL DAMAGE was the lack of a brutal crunch period in

the final weeks of development. We also felt throughout the last
year of the project that we’d be able to realize our desired feature
set. A good schedule, coordinated with each department, helped
us achieve this unique state. Our early work with Microsoft
taught us the value of adhering to a schedule, and after we moved
on from that relationship, we were able to maintain, and even
improve, our scheduling skills. Our guess is that badly maintained

and poorly enforced schedules are the primary cause of game
projects missing their ship dates, dropping features, and winding
up with morale-busting, project-end crunch periods. Following are
some schedule-related factors that worked for us:

Estimating task duration. No one can estimate with 100 percent
accuracy. However, our leads and staff communicated constantly to
refine delivery date estimates. If an asset looked as though it was
going to run overtime, we would cut it or some of that person’s later
deliverables, from the schedule. If such changes created holes in the
game’s design, we would be flexible and design around the holes.

Software. We used Microsoft Project. If you’ve used it, you
know it’s not great, but it gets the job done. That was all we
needed. Once we got used to Project’s idiosyncrasies, it was
smooth sailing to the end of development.

A before and after shot showing cel-shaded smooth groups on Violet’s APC.

Team-wide involvement. We periodically printed the master
schedule and posted it on a wall where everyone could see it. This
helped in many ways. First, it demonstrated the interdependence
of the departments. Each staff member could see that an asset he
or she was working on was needed by someone in another
department. Second, missing items could be identified more easily,
since more eyes were looking at the schedule. Third, seeing the
schedule updated gave people a strong sense of making progress.
This progress contributed to team confidence and morale.

Short, staggered crunches. We crunched, but we did it early in
small, manageable, prescribed intervals, giving us a buffer at

the end of the project, after our feature set was complete.
People were then freed up to work on visual weapon enhance-
ments and level polish. At the end of the project, the team was
playing full- and split-screen CEL DAMAGE during and after
business hours. This intense play period helped identify exploits
and balance the gameplay. This data wouldn’t have been avail-
able to us if we had crunched long and hard at the end of the
project.

Moral: The schedule is your friend. Never let friends down.

d e c e m b e r 2 0 0 1 | g a m e d e v e l o p e r46

P O S T M O R T E M

An early concept for a weapon pick-up, using one of the original CARTOON

MAYHEM cast members as a scale reference.
A before and after shot using the desert theme’s General Store. Cel-shad-
ing conventions were prototyped in 3DS Max using the Illustrate! plug-in.

w w w . g d m a g . c o m 47

What Went Wrong

1.Design on the fly. Once we got our tech-
nology back online in December 2000, it

began evolving very quickly. Feature sets for weapon
and death effects, driving behaviors, gag functionality, and
animations were growing every day. Because we were
designing a game to the technology (rather than the other way
around), we were throwing out design documents as quickly as
they could be written. Art assets had to be revised, retextured,
discarded, and rebuilt from scratch several times. As most readers
will know from experience, this is a scenario for feature creep,
obsolete tool sets, and blown deadlines.

While we were able to nail down our feature set four months
before shipping, our evolving engine did cause other problems.
Essentially, our strategic preplanning was stillborn. Every week,
we had to revise our perceptions of what the game would really
be, which frustrated our attempts to describe the game to
prospective publishers at the beginning of 2001. Different staff
members had different ideas of what our game would finally end
up looking and playing like. Fortunately, once publishers and
press played the game for themselves, the core of CEL DAMAGE’s
identity as a cartoon-based vehicular combat game became self-
evident.

Moral: It’s O.K. to design to an evolving technology, but institute hard

cut-off dates for code development and features.

2.Asset tracking and implementation. Our initial
efforts produced large amounts of art content to show off

the Xbox’s power. However, evolving performance specs for the
Xbox and our game engine, along with a new IP introduced early
in 2001, generated several massive content revisions. These revi-
sions were necessary for level geometry, static world objects, gags,
skyboxes, cars, characters, weapons — everything. In the worst
cases, we saw at least 12 major revisions to individual assets.

While we had an established directory structure for storage at
the beginning of the project, new workflows, staff, and manage-
ment methods precipitated a patchwork of file-naming conventions
and tracking methods. Final game meshes were inadvertently over-
written with geometric primitives. We “lost” assets on the server
for days at a time. Other tracking problems cropped up as well. A
bug in our game engine created duplicate textures that were diffi-
cult to hunt down and eliminate. Also, we had a problem with tex-
ture revisions that got wiped out on import to the game editor. To
compound our headaches, objects were often used in several differ-
ent levels, but if an optimization was made to one, that change was
not automatically propagated through all levels.

Obviously, we needed a tool to track our art assets and their
properties and to update content in the game. We created the
robust PI_Asset for just such a use. Unfortunately, it was intro-
duced too late in the project for full implementation. As a stop-
gap measure, artists began sending out dailies through e-mail.
These reports proved useful in tracking what had been accom-
plished in the course of a day and what should be updated in
the build, but data management was still a problem. PI_Raid

showed us just how many holes our pipeline had in it. While
the primary purpose of PI_Raid was to track and resolve

bugs, the artists and level builders found themselves
using it as a means to provide a pathway to updated
content. Through PI_Raid, a person could know when
an asset had been updated, where it could be found,

and what had changed in it. Using our bug reporter to
track game assets was not an ideal solution, but it did serve

us well in a pinch.
While the build-discard-rebuild process hit our staff pretty

hard, it created a sturdy springboard for future asset-tracking
methods, and it also reinforced a better mentality for thorough-
ness in our development procedures. Our next project will defi-
nitely see better tracking and implementation methods.

Moral: Don’t overwrite finished, textured building models with spheres.

3. Single member over-tasking. Due to our relatively
small staff, we had to put managers in the critical path of

day-to-day asset delivery. These same people held crucial, unique
skill sets. As you know, this is a recipe for bottlenecks that ham-
per development.

Some early desert environment renders made to test scale, detail,
and color. Our tests included fog, vertex lighting, and gradations with
the goal of evoking a classic Warner Brothers style. These elements
were actually dropped as the vision of our own house style came
into focus.

d e c e m b e r 2 0 0 1 | g a m e d e v e l o p e r48

P O S T M O R T E M

One example among several was the role of our art direc-
tor. We made this person responsible for overseeing the game
art, scheduling his staff’s workweeks while developing their
technical expertise, modeling, creating the game’s interface, pro-
ducing our cutscenes, overseeing interns, and distributing hundreds
of art bugs. The time needed for one person to do all these things
just wasn’t available every day. Fortunately, we were able to create
an art lead position to handle the staff and bug tasks. However, not
every instance of over-tasking could be fixed by adding a new body.

We had one texture artist, but three or four art staff members
were generating meshes. Add to this the frequent discarding of tex-
tures and rebuilding of models, and the amount of work crossing the
texture desk became enormous. We also had a single staff member
who was responsible for updating level content every day. If you
consider that on some days we’d generate 100 updated assets, and
each one had to be imported, adjusted, and hand-tweaked in the lev-
els, you can gain an appreciation for the bottleneck occurring there.
With so many items funneling through one mouse, the balance
between efficiency and human error was highly stressed. Ultimately
we dealt with the regressions that cropped up, but it’s clear that bet-
ter integration tools for our next project will help a lot.

Moral: Spot bottlenecks early and divert the work as necessary.

4. Last-minute implementation of crucial elements.
Our inexperience in console game development caught up

with us about three months away from the end of the project. For
the better part of two years, we had spent all of our efforts on
developing in-game assets and gameplay. As our delivery date to
EA came into focus, we realized that we still needed to get a fair
bit of content underway, including a solid front-end interface,
music, cutscenes, voice acting, foley sound, and sound effects.
Once we had our budget in place, we scrambled to pull together a
stack of contracted, out-of-house assets.

We drew up a shopping list that looked something like this: 13

cutscene scripts and storyboards, 12 pieces of in-game music, a
theme song, interface music, 450 sound effects, 1,000 lines of in-
game dialogue and 200 lines of cutscene dialogue to be read by
seven different voice actors, six minutes of foley sound and
cutscene music, and six man-months of modeling and animation
talent. We also realized we needed a way to play back our
cutscenes in real time through the game engine and renderer, even
through these code elements were not designed to handle the task.

We took on the interface and playback tasks in-house, but
farmed out everything else. Obviously, the work was finished on
time, but to accomplish this we had to divert the attention of all
of our in-house managers to get these items implemented.
Spillover bottlenecking was unavoidable. Though we were ironing
out implementation bugs until the day we shipped, the quality of
the talent and assets we were able to find on short notice shone
through in the finished product.

Moral: The last 5 percent of a game takes 50 percent of the effort.

5. Switching publishers. As we already mentioned, we
switched to a new publisher halfway through develop-

ment. Going from Microsoft to EA was a mixed blessing. While we
were able to improve gameplay and develop our own IP, we lost
both our financial backing and our internal focus at a crucial time
in the project. We were also forced to reinvent all of our art assets
to avoid an IP conflict with Microsoft. However, what could have
been a project-wide meltdown actually hardened our resolve to get
CEL DAMAGE on store shelves. Once we realized that the CEL

DAMAGE property would belong to us, and that our mistakes and
successes would be our own, the training wheels came off. We
became more determined and professional. As a rite of passage, this
publishing switch might have been exactly what we needed. In the
end, perseverance carried the day, and getting dropped as a first-
party title was a black eye from which we recovered.

Moral: When life gives you lemons, start drinking hard lemonade.

Damage Control

N ow that CEL DAMAGE is out the door, PI’s last monkey is off
its back. We are published and moving ahead. There is plen-

ty for us to look forward to now, not the least of which is CEL

DAMAGE 2, which we will deliver for next holiday season. We are
excited about the prospects for Xbox and hope to continue to
exploit its strengths with network and team-based play in our
next game. Fortunately, our experiences with CEL DAMAGE have
shown us where we can improve our processes and strategic plan-
ning on our next venture. q

Fowl Mouth and Sinder get down to business in a CEL DAMAGE promotional
scene created for EA.

56 d e c e m b e r 2 0 0 1 | g a m e d e v e l o p e r

S O A P B O X c e l i a p e a r c e

G ames have taken their place in the entertainment
pantheon alongside film and television in a fraction
of the time of their forebears. Nonetheless, from a
perceptual standpoint, there still remains the notion
that games are violent, primarily geared towards

teenage boys, at best a waste of time, and at worst a breeding
ground for high school snipers. Stereotypes tend to overshadow the
facts: games are becoming more and more mainstream and reaching
a broader audience than ever. But as
the preceding quotation and definition
demonstrate, prejudices continue to
dominate in academia.

In many respects the controversy
comes down to a simple generation
gap. The primary audience for com-
puter games is college students. But
their professors (generally in their for-
ties and fifties), tend to see games as a
cultural scourge and an unwanted
distraction from homework.

In spite of the fact that our col-
leagues find it profoundly distasteful,
a small cadre of game scholars has
been at large, propagating the new
field of “gaming studies.” Most of us
have designed games, either in com-
mercial-, art-, or research-based con-
texts. We tend to be media and cul-
tural theorists, computer scientists,
artists, or all of the above. Most of us
look at game making as a model for
the multi-disciplinary convergence of
art, technology, and culture.

There are a range of challenges
faced in creating a meaningful movement in game studies, and I
want to take this opportunity to enlist anyone reading this, from
either side of the fence, to help move some of these agendas for-
ward as they see fit.

The first and foremost challenge that we face is the culture gap.
While it’s true that most academics frown on game culture, much
of the game industry doesn’t seem to hold academia in very high

regard either. The game industry is decidedly unacademic. Very
few experienced game designers have advanced degrees. Most
game companies look with suspicion upon a candidate with an
MFA. But consider this: One of the biggest evolutionary leaps in
the art of film was its introduction into the university curriculum.
This industry has a lot to gain from supporting a well-developed
and well-rounded game studies curriculum.

The second challenge has to do with the content of this cur-
riculum. The best game studies pro-
grams try to merge theory and prac-
tice. We want to train people to be
good game designers by industry
standards, but we don’t want our
curriculum dictated by industry.
Universities are not in the business of
vocational training. We want to
introduce a deep level of understand-
ing, cultural critique, research, and
discourse, a big-picture approach
that puts game design in the larger
historical and cultural context.

The good news is that people in
the game industry are a lot smarter
than people in the film and television
industries. For one thing, game peo-
ple understand the value of research.
Research is vital to both the game
industry and to academia, and is thus
a fertile area for collaboration.
Randy Pausch’s students at Carnegie
Mellon did the play-testing for
DISNEYQUEST, Disney’s location-based
entertainment product. Both industry
and academia agree that play-testing

is one of the best ways to learn about game design. (Many game
designers, including myself, got their start in play-testing.) Plus,
Disney got what it needed by donating to the university a fraction
of what it would have spent on in-house testing. Last summer,
Will Wright had some of Randy’s interns doing research on play
patterns for THE SIMS. These sorts of relationships are mutually
beneficial for everyone.

Ill
us

tr
at

io
n

by
 K

er
i S

m
ith

Learning Curves:
The Present and Future of Game Studies

“An academic program of study officially listed as focusing on gaming studies runs,
I think, the strong risk of attracting people on the basis of prurient interest. I do not
think we should send forth messages of this type if we wish to be a research university
of the highest level of distinction.”

— academic official as quoted in “Gaming: Too Cool for School?”
by Katie Dean (Wired News, January 15, 2001)

continued on page 55

w w w . g d m a g . c o m 55

S O A P B O X

Applied research is another fertile area for collaboration. LEGO

MINDSTORMS, for example, was developed originally at the MIT
Media Lab with support from Lego. Researchers (and their stu-
dents) such as Ken Perlin at New York University, Michael
Mateas at Carnegie Mellon, and Bruce Blumberg at the MIT
Media Lab have been developing ways to make more compelling
autonomous characters and interactive narrative scenarios. Aca-
demic research is of huge benefit to industry because it’s done
without the pressure of economic justification. This freedom
enables researchers to explore aspects of character and drama that
might not otherwise be investigated when immediate profit is a
pressing objective. There is a great deal of potential synergy in
that equation that can be exploited by both parties.

In the end the controversy will be resolved by two things:
demand and money. The demand for game studies is growing. For
many young, smart, creative kids, game design has supplanted
filmmaking as a cool career. Even art students are starting to treat
games in the same way that experimental artists viewed video in

the 1970s and 1980s. The September 2001 issue of Next
Generation magazine featured a cover story called “Video Games
101” with a guide to all the current game design programs. This
kind of coverage is about as mainstream as it gets. As to the
money part, well this is where you come in. At universities, just
like anywhere else, money talks. If game companies come forth
and support us, then all the arguments will quickly become moot.
I anticipate that this will happen relatively quickly. When it does,
the rest of the world will have no choice but to bestow game stud-
ies with the respect that it deserves. q

C E L I A P E A R C E | Celia is an interactive multimedia designer,
artist, researcher, teacher, and author of The Interactive Book: A Guide
to the Interactive Revolution (Macmillan). She is currently a lecturer
at the Claire Trevor School of the Arts at the University of
California, Irvine, and acts as liaison between the game industry and
academia for the Education Committee of the International Game
Developers Association (www.igda.org/Committees/education.htm).

continued from page 56

	04gameplan
	06indwatch
	08prodrev
	10profile
	13innerp
	19artview
	24f-washbu
	32f-kirmse
	38postmort
	56soapbox

	return:
	cover:

