
DECEMBER 1999

G A M E D E V E L O P E R M A G A Z I N E

I think most of us in this industry
are pretty happy about the fact
that interactive electronic enter-
tainment has rapidly become a

widespread form of entertainment
around the world. And in case you
didn’t notice, game development itself
has spread around the globe with simi-
lar speed. This fact was made abundant-
ly clear to me last year when entries for
the GDC’s Independent Games Festival
poured in from far-flung countries like
Poland and Pakistan. (That was a bit of
a mind-blower.) It really makes you
realize that there’s much more to this
industry than meets the eye at E3,
ECTS, and the Tokyo Game Show.

What’s becoming increasingly clear to
me is that many overseas game develop-
ers want to come to America. I know
this firsthand, because I regularly get
asked to write letters of reference for for-
eign game developers trying to make
their way through the U.S. Immigration
and Naturalization Service bureaucracy.
While my experience is just anecdotal,
I’ve spoken to enough game executives
around the industry to know that many
American companies actively recruit
overseas game development talent.

It’s probably not too tough to entice a
foreign developer over here. It’s no
secret that American companies pay
game developers more than those in
most other countries (and that probably
holds true for most professions). A
salary survey conducted last spring by
the Miller Freeman Game Group (which
this magazine is affiliated with) and
Market Perspectives revealed that the
average total salary — including any
sort of cash bonus — for an American
game programmer in the U.S. was
$49,991, and the median total salary for
a game programmer was $50,000.
Compare that to a Polish company that
we recently talked to, which pays its
staff programmer the equivalent of
about five hundred U.S. dollars per
month. Though the cost of living in the
U.S. is substantially higher, that magni-
tude of a discrepancy lures many for-
eign game developers away from their
native lands.

As an American, however, I must
admit to having reservations about an
influx of foreign talent. It’s not that I
think American jobs will be stolen by
immigrants, nor that I adhere to isola-
tionist beliefs. On the contrary, I say
the more the merrier here in the U.S.
What I fear is the result of a slow,
steady exodus of game developers from
countries whose game industries are
just beginning to form. I don’t think
that’s good for the countries in ques-
tion, nor for their burgeoning commu-
nities of game developers. Sometimes
all it takes is a few key people leaving a
team to kill a game, and in some coun-
tries, the development of a single com-
mercial game is a real feat.

I also feel (and I think many would
agree) that our industry needs to
explore more game designs, and I fear
anything that will homogenize game
development. Cultural differences
between countries make many titles
extremely entertaining, simply due to
their (for lack of a better term) exotic
design. When I first saw PARAPPA and
DANCE DANCE REVOLUTION, I knew
they weren’t developed in America.
There is something distinctly Japanese
about them which I really enjoy. It
would be a pity to lose some of that
diversity in favor of Yet Another FPS.

In the newspaper this morning I read
that French chefs staged a protest in
Paris, in part to voice their anger against
America’s growing economic and mar-
keting muscle overseas — in this case,
McDonald’s was the object of their
scorn. The French want no more of our
fast food, music, and movies. They
probably still hold Euro Disney against
us. And while I used to write these com-
plaints off as poor sportsmanship in the
arena of international business, I’m
coming around to see that it’s impor-
tant to grow our industry outside the
clutches of Uncle Sam.

Sigh. Maybe a croissant will cheer
me up. ■

G A M E D E V E L O P E R D E C E M B E R 1 9 9 9

4

P L A NG A M E

Down With Global

Homogenization!

D E V E L O P E R

ON THE FRONT LINE OF GAME INNOVATION

600 Harrison Street, San Francisco, CA 94107
t: 415.905.2200 f: 415.905.2228 w: www.gdmag.com

Publisher
Cynthia A. Blair cblair@mfi.com

EDITORIAL

Editorial Director
Alex Dunne adunne@sirius.com

Managing Editor
Kimberley Van Hooser kvanhoos@sirius.com

Departments Editor
Jennifer Olsen jolsen@sirius.com

Art Director
Laura Pool lpool@mfi.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Jeff Lander jeffl@darwin3d.com
Paul Steed psteed@idsoftware.com
Omid Rahmat omid@compuserve.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook Verant Interactive
Susan Lee-Merrow Lucas Learning
Mark Miller Harmonix
Dan Teven Teven Consulting
Rob Wyatt DreamWorks Interactive

ADVERTISING SALES

National Sales Manager
Jennifer Orvik e: jorvik@mfi.com t: 415.905.2156

Publisher Relations Manager
Ayrien Houchin e: ahouchin@mfi.com t: 415.905.2788

Account Executive, Eastern Region
Afton Thatcher e: athatcher@mfi.com t: 415.905.2323

Account Executive, Western Region
Darrielle Sadle e: dsadle@mfi.com t: 415.905.2182

Account Executive, Northern California
Dan Nopar e: nopar@mfgame.com t: 415.356.3406

Account Representative, Silicon Valley
Mike Colligan e: mike@mfgame.com t: 415.356.3406

ADVERTISING PRODUCTION

Senior Vice President/Production Andrew A. Mickus

Advertising Production Coordinator Dave Perrotti

Reprints Stella Valdez t: 916.983.6971

MILLER FREEMAN GAME GROUP MARKETING

Marketing Director Gabe Zichermann

MarCom Manager Susan McDonald

Junior MarCom Project Manager Beena Jacob

CIRCULATION

Vice President/Circulation Jerry M. Okabe

Assistant Circulation Director Sara DeCarlo

Circulation Manager Stephanie Blake

Assistant Circulation Manager Craig Diamantine

Circulation Assistant Kausha Jackson-Crain

Newsstand Analyst Joyce Gorsuch

INTERNATIONAL LICENSING INFORMATION

Robert J. Abramson and Associates Inc.
t: 914.723.4700 f: 914.723.4722
e: abramson@prodigy.com

CEO/Miller Freeman Global Tony Tillin
Chairman/Miller Freeman Inc. Marshall W. Freeman
President & CEO Donald A. Pazour
Executive Vice President/CFO Ed Pinedo
Executive Vice Presidents Darrell Denny, John Pearson,
Galen Poss
Group President/Specialized Technologies Regina Ridley
Sr. Vice President/Creative Technologies KoAnn Vikören
Sr. Vice President/CIO Lynn Reedy
Sr. Vice President/Human Resources Macy Fecto

h t t p : / / w w w. g d m a g . c o m D E C E M B E R 1 9 9 9 G A M E D E V E L O P E R

New Products
by Jennifer Olsen

But Does It Walk the Walk?

LIPS INC. has developed Ventriloquist, a
plug-in designed to aid animators by
automating the complex task of lip-
synching facial animations to audio
files. Typically, facial animation is a
grueling process for animators. To do it
correctly, one practically needs an
advanced degree in linguistics to figure
out all the phonemes, visemes, and
every other -eme one needs to master
before a speaking character is ready for
its close-up. What Ventriloquist aspires
to do is to let animators plug character
dialog straight in from one of numer-
ous standard audio file formats, and
then quickly and painlessly deliver an
output stream of precise morph targets.

The immediate results from this
process look admittedly stilted, but a
one-size-fits-all answer to the infinite
range of human (or animal, or robot,
or alien) emotion and expression is a
tall order. By the time animators are
ready to keyframe the finishing touch-

es they’ve already saved a lot of time,
which they can then spend tweaking
those faces to perfection instead of
sweating the set-up.

Ventriloquist is appearing first for
3D Studio Max 3 at a suggested price
of $595. Versions for Lightwave, Soft-
image, Maya, and others are to follow
soon.
■ Lips Inc.

Cary, N.C.

(919) 468-7005

http://www.lipsinc.com

Common Environment Still Uncommon
for Consoles

MICROSOFT has released the Windows
CE Toolkit 2 for the Sega Dreamcast.
With the advent of the Dreamcast, con-
sole development is finally emerging
from its smoke-filled room, no longer
the arcane process associated with the
current, aging generation of consoles.
Sega is banking that it will be able to
attract more developers already familiar
with the Windows CE development
environment to their new console.

Windows CE for Dreamcast means
that porting games between Dreamcast
and PC will be relatively easy, and is

sure to encourage more
simultaneous cross-
platform development
since many of the
hardware barriers of
traditional console
development will be
mitigated or eliminated
altogether. Memory-
light but feature-rich,
the Toolkit of course
incorporates the
DirectX library of APIs
and is compatible with
Visual C++ and Visual
Studio.

One new feature of
the Toolkit that may
prove interesting for

Dreamcast development is its browser
support. Internet Explorer 4 HTML
Control enables developers to give
players access to HTML content from
within a game so they can post high
scores, link to hints and cheats, and
lose some of that excess disposable
income with e-commerce functionality.
■ Microsoft Corp.

Redmond, Wash.

(425) 882-8080

http://msdn.microsoft.com/cetools/

platform/support.asp

Another Loopy Trip for Musicians

SONIC FOUNDRY introduced a new ver-
sion of Acid Pro, its groundbreaking
loop-based music production tool.
When it debuted in 1998, Acid thrilled
music professionals with its ability to
change tempos without altering pitch.

New to Acid 2 is Sonic Foundry’s
XFX 1 DirectX audio plug-in which
enables real-time tweaking of mixes. It
also includes Sound Forge XP 4.5, a
digital audio editor that lets users cre-
ate and edit loops, synchronize audio
and video, and manage file conversion.
Hundreds of royalty-free loops are
available that users can simply drag
and drop from the explorer window
into their track view and arrange into
multiple-track creations. Acid automat-
ically adjusts the key and tempo of
incoming loops to keep things from
getting out of whack, which means less
dirty work for you, the artiste.

Once your magnum opus is com-
plete, you can output your music to
.WAV, .MP3, .WMA, or .RM files,
export as digital audio tracks, or burn
it on CD with track-at-once CD burn-
ing. Acid Pro 2 is available for
Windows 95/98/NT 4.0 and carries a
suggested price of $399.
■ Sonic Foundry Inc.

Madison, Wis.

(608) 256-3133

http://www.sonicfoundry.com

New Products: Lips Inc. yaks it up
with Ventriloquist, Microsoft whips out
new CE for Dreamcast, and Sonic
Foundry takes another trip. p. 9

Industry Watch: Sony seeks desktop
real estate, Titus nibbles at Virgin
Interactive, and Sierra lets fly an
avalanche of canned titles. p. 10

Product Review: Jeffrey Abouaf puts
Mirai, Nichimen’s new 3D modeling
and animation package, through the
wringer. p. 12News from the World of Game Development

9

Ventriloquist brings easy lip-synching to Max.

B I T B L A S T S - I N D U S T R Y W A T C H

Industry Watch
by Daniel Huebner

PLAYSTATION GOES DESKTOP. Accord-
ing to some reports, Sony plans to fol-
low the March release of the Play-
station 2 with a series of desktop
workstations based on the console’s
Emotion Engine processor. SCEA chair-
man and CEO Ken Kutaragi noted that
the current Emotion Engine is equal to
Intel’s Pentium III in transistor count,
and he expects the next-generation
Emotion Engine 2 to surpass the
Pentium when it’s released in 2002.
The workstation will be aimed primari-
ly at users in broadcasting, film pro-
duction, and software development. As
we went to press, Sony had yet to com-
ment on an OS, but it is suspected that
Linux will power the new systems.

CODEMASTERS PICKS UP YOSEMITE. A
closed studio will gain new life in the
so-called “birthplace of computer gam-
ing.” U.K.-based Codemasters has
announced a plan to open a studio in
Oakhurst, Calif., a town that gained
notoriety as the home of Sierra’s first
headquarters 20 years ago. Much of the
staff and management of the new stu-
dio will be veterans of Sierra’s Yosemite
Entertainment studio. Craig Alexander,
who served as Yosemite’s general man-
ager for nearly five years and directed
games such as PHANTASMAGORIA and
POLICE QUEST: SWAT, will lead the
group. The studio is expected to start
with two dozen employees and ramp
up to 70 in the coming months. The
group will keep the Yosemite name,
which was purchased from Havas, and
will pursue development of both PC
and PS2 projects.

TITUS TAKES VIRGIN INTERACTIVE.
Acquisitive French publisher Titus con-
tinued its expansion by purchasing a
controlling interest in Virgin Interact-
ive, a move that should further bolster
Titus’s position in Europe. The firm
gained a 43.9 percent share in Virgin as
part of an earlier deal to take control-
ling interest in Interplay. Titus pur-
chased additional shares to expand
that stake to 50.1 percent and a con-
trolling interest in the company. The
terms of the sale were not disclosed,
and neither company has yet com-
mented on its plans.

SIERRA PULLS PLUG ON BABYLON 5. In
what was billed as a move to “enhance
focus on market success,” Sierra killed
off several titles and eliminated 105
jobs. The cancellation of DESERT FIGHT-
ERS and PRO PILOT PARADISE at Dynamix
in Eugene, Ore., sent 60 employees
packing. An additional 45 jobs were
lost with the cancellation of BABYLON

5, a title that had been relocated to
Bellevue, Wash., after Sierra shuttered
Yosemite Entertainment earlier this
year. Other titles cut in the restructur-
ing included ORCS: REVENGE OF THE

ANCIENTS and the persistent-world pro-
ject MIDDLE-EARTH. The reorganization
will ultimately see Sierra divided into
three business units: Core Games will
focus on Sierra’s high-profile games
and includes HALF-LIFE publisher Sierra
Studios, Impressions Games, Papyrus,
Sierra Northwest Studios, and the
remaining teams at Dynamix; Casual
Games will focus on Hoyle card games
as well as hunting, fishing, and rodeo
titles; and Home/Productivity will deal
with cooking, gardening, and genealo-
gy titles.

AMEN DESIGN STAFF DUMPED. Cave-
dog Entertainment, well-known maker
of strategy games TOTAL ANNIHILATION

and TA: KINGDOMS, cited problems
with the technological development
of its much-anticipated shooter AMEN:
THE AWAKENING as the basis for its deci-
sion to let go of the entire AMEN

design staff and push back the game’s
release date. While Cavedog hasn’t
elaborated on the game’s problems,
the design staff were praised for their
“talent, dedication, and contribution”
and were invited to return to the pro-
ject when, and if, the development
difficulties are resolved.

BALLARD RESIGNS FROM 3DFX.
L. Gregory Ballard tendered his resigna-
tion as chief executive officer of 3dfx
effective October 31, 1999. Ballard
spent three years at the company, see-
ing revenues grow to more than $400
million. “I truly believe that the chal-
lenges in this next phase of the compa-
ny’s growth will be more technical
than marketing and strategic, and that
3dfx can benefit from the fresh per-
spective that a new CEO can bring,”
said Ballard. 3dfx is forming a search
committee, which Ballard himself will
lead, to find a replacement. ■

G A M E D E V E L O P E R D E C E M B E R 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

10

Digital Content Creation

LOS ANGELES CONVENTION CENTER

Los Angeles, Calif.
December 6–8, 1999
Cost: variable
http://www.dccexpo.com

Game Developers Conference
HardCore Technical Seminars

HYATT REGENCY

SAN FRANCISCO AIRPORT

Burlingame, Calif.
PHYSICS: December 6–7, 1999
GRAPHICS: December 8–9, 1999
Cost: $1,950/each; $3,300/both
http://hardcore.gdconf.com

Game Developers Conference
1999 RoadTrips

WYNDHAM GARDEN HOTEL

San Rafael, Calif.
December 10, 1999

MEYDENBAUER CENTER

Bellevue, Wash.
December 14, 1999

Cost: $120 ea. (discounts available)
http://roadtrips.gdconf.com

UPCOMING EVENTS

CALENDAR

AMEN: THE AWAKENING has gone into

hibernation, at least for now.

B I T B L A S T S - P R O D U C T R E V I E W

G A M E D E V E L O P E R D E C E M B E R 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

12

Nichimen’s
Mirai

by Jeffrey Abouaf

I f you attended Siggraph ‘98 in
Orlando and rested your feet at
the Nichimen booth, you saw the

promise of something new in character
animation: Mirai. The promise was
realized with the product’s release last
May, followed by unanimously positive
critical reception. It brings many firsts
to character animation, and is well
worth looking at whether your pas-
sions run to cinematic or real-time 3D.

The most noticeable innovation is
the degree of skeletal intelligence built
into the animation module. The first
demo involved a generic bipedal char-
acter performing a gymnastic exercise
— taking two running steps toward a
wall, kicking one foot against the wall
to push up and off into a backward
somersault, catching a trapeze, then
dropping to the floor. The naturalistic
motion sequence took about two min-
utes, required only eight keyframes,
and was actually usable. The second
part of the demonstration involved
the artist refining and smoothing the
model, texture-mapping it, and
adding touch-up paint, all from with-
in Mirai, with changes updated across
all modules in real time. No doubt
that first demo belied the technologi-
cal advances under the hood, because
Mirai didn’t ship until the following
May. Mirai’s power and advantages are

more subtle and far-reaching than the
demo showed: it begins with a work-
ing environment, which strives to be
more like a 3D operating system than
a user interface, and builds on this
with a comprehensive, advanced fea-
ture set.
A 3D OPERATING ENVIRONMENT. Some
leading 3D applications have a UI
organized into modules (modeling,
animating, rendering, and so on); oth-
ers perform all operations within a
single perspective window, enhancing
this with a series of modeless dialog
boxes. Each approach has its strengths
and limits. Of the former, few, if any,
let you work in more than one mod-
ule at a time; of the latter, the single
interface is usually supplemented by
floating dialogs. Mirai’s designers con-
ceived the interface as a 3D operating
system, in which modules behave like
applications, each complemented
with its own floating dialogs, yet all
are dynamically linked so changes to
one propagate through the others
instantaneously.

This means, for example, you can
have multiple geometry editors, 2D
paint sessions, 3D paint sessions, and
UV mapping windows open simultane-
ously. In each geometry window, how-
ever, you control what is visible vs.
what is hidden — that is, you can dis-
play different objects or sets of scene
objects in different windows, even
though you’re looking through the
same camera from the same vantage
point. Having isolated objects and
groups this way, you could bring up
one or more 2D and 3D paint windows
showing the isolated objects. Because
these editors are linked, as you paint in
2D it updates both the 3D view and
any geometry editors.

This differs from working in an appli-
cation such as 3D Studio Max, in which
you can have more than one instance
of a single viewport, but could not hide
or show different objects in each one.
(In Max, you’d achieve isolation with
additional cameras in the scene; in
Maya, you’d accomplish a similar result
by assigning objects to different layers.)
Mirai operates from a single-camera
perspective; you look through this cam-
era at all times. (Additional cameras are

planned for a future release.) While you
will occasionally set the camera to the
XYZ orthographic views, the traditional
four-windowed orthographic presenta-
tion is not the intent. To model and
animate in Mirai, you see the scene
through the camera lens’s perspective.
You have a wide choice of lenses, and
can save multiple viewpoints, animate
camera motions, and attach the camera
to a path.

Mirai is “selection driven” as
opposed to “tool driven.” All 3D pro-
grams have you select objects, faces,
edges, or vertices, and then perform
an operation on them, but generally
you choose a tool first. In Mirai, your
selection defines your options to a
greater degree than in other programs
— if you click on the geometry view
while working on the model, you can
switch to camera mode where all
actions change your viewpoint, then
click back on an edge or polygon to
bring up a menu of everything you
can do to that face. When you first
encounter this, you may find it so
seamless that you inadvertently
switch from camera mode to object
editing without warning — quite dis-
concerting. Also, when you’re used to
manipulators constraining transform
operations, it’s a little awkward trying
to control manipulations in a perspec-
tive window. Once you understand
the orders, however, this is a remark-
ably fast way to work.

Although available for both IRIX and
NT, Mirai reflects its IRIX roots.
Nichimen’s N-World (Mirai’s predeces-
sor) was deservedly recognized as a pre-
mier real-time 3D character animation
system. This was when most real-time
developers used the SGI platform
exclusively. When they ported N-World
to Windows NT three years ago, its
hefty price tag and high-end hardware
requirements kept it out of the hands
of all but the most dedicated, well-
funded game shops.

Mirai’s “SGI” style comes through in
its clean interface, with minimal icons
and no tool tips; you drive it with left,
middle, and right mouse clicks, with
results dependent entirely on sequence
and context. It supports hot keys, but
has far too many commands to be
hot-key driven. This is wonderful for
the initiated, but will cause consterna-
tion for newcomers. The good news is
that Nichimen has anticipated the

Jeffrey Abouaf is an artist, animator, and instructor who appears at home in a couple
of institutions in downtown San Francisco.

B I T B L A S T S - P R O D U C T R E V I E W

G A M E D E V E L O P E R D E C E M B E R 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

14

problem with superior printed and
online documentation and tutorials.
You’ll save a lot of time and minimize
frustration if you follow the “Getting
Started” manual before exploring on
your own. By the time you’re through
with it, you’re comfortably reoriented
and ready to play.
ONE HELLUVA MODELER. Because of its
roots in real-time 3D, Mirai has one of
the most extensive modeling toolsets
available. The ability to align and
bevel vertices, edges, and faces enables
precise, easy control of any object
property. In the hands of an experi-
enced artist, edges are quickly aligned
to follow a character’s head and body
contours and muscle formations
(“Edge Loops”); when these edges are
extruded and the mesh area subdivid-
ed and smoothed, you achieve high
detail and control that rivals any
package. Figure 1 demonstrates the
smooth yet highly detailed work
achievable in Mirai.

The 2D and 3D paint modules com-
plement the extensive materials editor
and mapping capabilities. Like many
competing packages, Mirai supports
UVW mapping parametrically by pro-
jection and face-mapping. You can
assign multiple types of mapping
coordinates (such as planar and spher-
ical) to the same selection set, and
you can composite multiple layers of
materials on a face selection, taking
advantage of different types of projec-
tions. In addition, Mirai’s painting
capability allows you to paint over
any seams that might result where dif-
ferent mapping coordinates meet.

Nichimen’s
August 1999
update to Mirai
introduced “mag-
net moves” along
face normals with
falloff. This feature
allows artists to
model by painting
surface deforma-
tions and displace-
ments. This is
handy, for exam-
ple, for painting
extrusions on edge
loops to create
cheekbones,
brows, and so on,
or for painting an
extruded layer of
clothing or armor
on a character.
SUBDIVISION MESH MODELING — NO

NURBS, B-SPLINES, OR H-SPLINES

ALLOWED. Because if its real-time 3D
roots, Nichimen has always been a
polygonal modeler and never support-
ed spline technologies. Building on
the pioneering efforts of Symbolics,
and boasting a staff whose credits go
back to 1980’s Tron, Mirai’s developers
were among the first to embrace sub-
division-mesh modeling as their tech-
nology for delivering smooth, organic
surfaces, only they followed this
approach before it became fashion-
able. They call it “Volume Modeling,”
and the surface the “Derived Surface”;
it amounts to making a low-resolution
geometric form, and a reference copy
with high-resolution smoothing

applied. Changes to the control vol-
ume update on the high-resolution
version. The value, of course, is that
working with polygons presumes you
can generate multiple levels of detail
(LODs) from the same control vol-
ume, that surface deformations do not
change the face count, and that poly-
gons provide the lowest overhead for
texture mapping. Yet the control vol-
ume also acts like a lattice deformer,
in that generating poses or morph tar-
gets is a very elastic experience.
FK/IK ANIMATION. Mirai’s FK/IK solution
is to create a stop-motion puppet.
Rather than keyframing each skeletal
joint rotation, keyframes are set for
the entirety, pose to pose. The IK sys-
tem uses quaternion algorithms simi-
lar to those used in other packages,
with a second-pass analysis checking
for incorrect or less-than-natural
motion. Whereas other applications
have skeletal motions dependent
upon pulling the skeleton along a
path, Mirai is about altering poses.
The poses can be set by rotating joints
and/or by “pinning” bones. This pin-
ning can be in the nature of “glue” or
a “tack”; if you glue a left foot and
pull a right hand, the foot will remain
in place as long as possible before
pulling away. If you tack a foot, the
foot will not move and the hand will
move until it slips away. The pins can
be temporary; different bones can be
pinned or unpinned at different
frames.

Second, Mirai’s skeleton responds to
“magnet” moves, that is, you can

F I G U R E 1 . This character shows off the smooth and highly

detailed work achievable in Mirai.

F I G U R E 2 . Combining Mirai’s various animation effects offers naturalistic results

for complex animation sequences.

B I T B L A S T S - P R O D U C T R E V I E W

G A M E D E V E L O P E R D E C E M B E R 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

16

move one bone relative to
another specified bone.
This allows naturalistic
squash and stretch. These
features combine, for
example, to let the charac-
ter crouch (magnet move),
spring upward (pinned
feet); loop around the
trapeze (feet unpinned,
hands pinned), and drop
into a crouch. The fairy
sequence in Figure 2
shows how these work
together.

Mirai supports the most
common motion capture
formats (such as Acclaim,
Motion Analysis, and
Biovision), and can send
the data out to Nichimen’s
Game Exchange utility.
Nichimen’s current devel-
opment direction is expanding this
biomechanical capability. In addition,
Testarossa (which won an Emmy
award for its figure skating simula-
tions for the most recent Winter
Olympics) has written a set of mo-cap
plug-in tools for Mirai, designed to
extract added functionality from the
data files (for more information, see
http://www.toolsinmotion.com).

Finally, Mirai supports full non-
linear editing of motion and motion
capture data. For example, you can set
up a run cycle and loop it (using
motion capture data or keyframing),
then add a second layer of dodging
and weaving obstacles. The two

motions combine seamlessly into the
final sequence, but could also be
taken apart and recycled. Mirai also
lets you stitch two motion sequences
together, and gives you full control
over the transition. Figure 3 shows the
animation editor set up for a transi-
tion between two motion clips. Not
only can you control the speed, num-
ber of frames, and other characteris-
tics for the transition, you can layer
other motions on top of the source
clips. Further, with Mirai’s scripting
capabilities you can call and recom-
bine additional premade layers or
scripts to make complex, unique
results.

FACIAL ANIMATION: DISPLACE-

MENT EQUALS LIP-SYNCH.

“Displacement” in Mirai is
what other packages refer
to as morphing or blend
shapes — in each case it’s
isolating a series of facial
expressions for direct or
indirect use as morph tar-
gets in facial animation.
Mirai has this capability, as
did N-World before it. The
documentation shows how
to set up the displace-
ments, how to “wire” them
to sliders, and how to use
the sliders to generate
unique expressions.
Because motion editing
supports layers and scripts,
setting up displacements
for one character implies
you can adapt these to a

different characters without starting
from scratch. Figure 4 shows Bay
Raitt’s Horus character set up for lip-
synching. Note you can see the
smoothed version, the connected low-
polygon modeling version, and the
slider-driven animated composite all
within the working environment,
together with the graphs and timeline
pertinent to Horus’s speech.

Figure 5 shows John Feather’s Grunty
character, specifically how you would
set up to animate him in Mirai. The
facial features have been wired to slid-
ers in the Animation Mixer, the charac-
ter’s hierarchy is laid out in the Anima-
tion: Viewer Graph, and we see the

F I G U R E 3 . Mirai allows you to stitch two motion sequences

together and retain control of the transition.

F I G U R E 4 . A character set up for lip-synching. All the

information pertaining to the character’s speech is shown.

F I G U R E 5 . A typical facial animation setup in Mirai, with

all the relevant information at the user’s fingertips.

Excellent Very Good Average
 PoorBelow Average

G A M E D E V E L O P E R D E C E M B E R 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

18

hierarchy of movements in the Anima-
tion: Script Graph and the Animation
Timeline. The results appear in Figure 6
which shows the smoothed, high-reso-
lution model of Grunty, together with
four morph targets.
PARTICLES, RIGID DYNAMICS, GELATIN,

AND ROPE. Mirai supports both rigid
and soft-body dynamics, allowing you
to set up interactions between objects
such as collision detection, wind, grav-
ity, and so on. The soft-body dynamics
include Gelatin and Rope simulations.
Gelatin is intended to simulate jig-
gling, as in the belly of a fat man or
something more exotic/erotic by the
heroine/hero. Rope calculates the
effect of a tire tethered to a tree
branch, and should be very useful
where any two objects or characters
are bound together. The particle sys-
tem responds not only to forces and
turbulence, but can work into simula-
tions as any other object. Further, par-
ticles can be the built-in standard
shapes or any geometric shape.
OUTPUT: COMPOSITING AND LAYERING

ANIMATION. If Mirai has a weakness, it’s
the renderer. To be fair, however, this
weakness in Mirai simply means that
the built-in renderer does not rival
Renderman or Mental Ray 2. This
review did not pit Mirai’s renderer
against the new renderers built into 3D
Studio Max 3 and Maya 2, but it cer-

tainly measures up
to the renderer
included in the
first releases of
these competitors,
and exceeds the
quality of many
other packages.
Like the best of the
renderers, Mirai’s is
multi-threaded.
For the profession-
als, Mirai will be
adapted to work
with Renderman
on IRIX and NT by
year’s end.

You can render
to stills, play them
back in real time,
and/or compile
them into a movie.
Mirai includes
compositing tools
for layering anima-
tion and combin-

ing work with live-action output,
titling, and the like. While the post-pro-
duction tools are not nearly as extensive
as the modeling tools, and lack the
state-of-the art reflected in its FK/IK,
Mirai’s output tools reflect the fact that
this product has earned a place in both
cinematic and real-time 3D production.
CONCLUSION. Nichimen held its first
annual Mirai user meeting at Siggraph
‘99. While I was not surprised to see
several hundred show up, I was sur-
prised at how many were serious game
artists (averaging ten years’ experience),

many of whom have been devotees of
the competing high-end 3D modeling/
animation packages, who said they had
switched to Mirai for character anima-
tion production, or would be soon. The
consensus among the faithful was that
Mirai’s FK/IK capabilities are at least
one generation ahead of the competi-
tion. When I brought this up with the
many representatives of competitors at
the show, they made it clear they’re
watching Mirai.

Mirai is a solid, versatile package
with cutting-edge character animation
capabilities. With its highly evolved
FK/IK, biomechanics, and facial ani-
mation capabilities, it’s ready for
mainstream use in games and all real-
time 3D. But to limit it to this niche is
to underplay its full capability,
because the modeling, texturing,
painting, and dynamics properties
make it as viable for prerendered use,
and compatibility with Pixar’s Render-
man targeted for year’s end can only
enhance that. The obstacles facing
Mirai’s entry into the production
pipeline appear to have little to do
with the product, because it looks able
to compete with the best. Building a
large user base and replacing existing
production systems will prove the
biggest barriers. ■

Nichimen Graphics
Los Angeles, Calif.
310-577-0500
http://www.nichimen.com

Price: $6,495. Nichimen
also offers a 90 percent
educational discount.

System Requirements:
Windows NT 4.0 or SGI
IRIX 6.3. Both operating
systems require 128MB
RAM, 300MB disk space,
300MB virtual memory,
three-button mouse.
Windows requires
266MHz Pentium II plus
OpenGL accelerator.

Pros:

1. “3D operating system”
interface enables multi-
ple windows of the same
type, revealing/hiding
different objects, and
hot-linking to other mod-
ules such as paint.

2. Intelligent IK/FK system
is very easy to use in
final animation.

3. Motion capture and
motion layering; sophis-
ticated support for main
motion capture systems.

Cons:

1. NT users may have diffi-
culty with IRIX-inspired
interface.

2. Rendering engine as it is
now is adequate, but not
world-class.

3. Needs larger user base
before cross-user sup-
port and third-party
plug-in development get
fully underway.

Nichimen’s Mirai:

F I G U R E 6 . The facial animation results: a high-resolution

version of the character with four morph targets.

Special thanks to Intergraph Computer

Systems for use of a TDZ workstation, and

to 3Dlabs for their GVX1 card used to test

Mirai. No virtual humans were damaged

in the course of preparing this article.

Acknowledgements

b y J e f f L a n d e r G R A P H I C C O N T E N T

I for my part am going to toast the
new millennium next year, but who
wants to miss out on the big party?
Let’s make it a yearlong celebration.
What the hell, it only happens once
every thousand years — I’m going to
enjoy it.

For the doomsdayers, it’s going to
be a year of hunkering down in their
battery-powered shelters,
hoarding food, waiting for
everything technological to
spiral out of control. Many
will be nostalgic for the grand
old days of mechanical cash
registers and supermarket
checkers who knew the actual
prices. However, I look for-
ward to the new year. I like all
things techie and don’t really
care if they get the date wrong.
To quote Douglas Adams, I
still think digital watches are a
pretty neat idea. The year 2000
is going to be full of exciting
new toys for game developers
to play with.

In fact, if you watch the
news you’ll know that game
developers are going to get
equipment so sophisticated
that the government considers
them weapons. This will be the first
year that we create games for home
machines that can perform more than
two billion operations per second.
Some of the press I’ve read said that
developers aren’t ready to handle that
much power. I don’t know what
sources they have been talking to. I
have never met any developers who
didn’t think they could use more
power even on their current projects.

Hype and Demos

T hat brings me to something that I
find annoying in the industry.

News in the high-tech business seems
to surf hype waves constantly. Nothing
gets any press unless it has “never
before been seen on a game console!”
or is “unlike anything ever created in a

computer game!” These quotes general-
ly come from very early views of tech-
nology demos or art tests. Any evi-
dence of game play or interactive
experience is completely missing.

Game companies realize this so a
great deal of effort is spent just com-

ing up with the technology. A flashy
demo can get them press coverage,
attention from publishers, and that
intangible “hype” from the gaming
public. Some of this forms the back-
bone of a healthy development cycle.
However, when the game engine is
directing the development of the
game, priorities are out of whack.

Most gamers fondly recall
games that lacked flashy tech-
nology yet captured their souls
for hours.

When it became public that
QUAKE 3: ARENA would support
a form of curved surface geom-
etry, suddenly this became the
must-have feature for 3D
action games. Games were con-
sidered to be using “old” tech-
nology if their engine didn’t
support curved surfaces. This
happened regardless of
whether the game had envi-
ronments that would benefit
from curves. Programmers had
to go back and retrofit their
engines with some kind of
parametric surfaces. Level
designers had to go back and
invent places that would bene-

fit from some kind of curves.
Didn’t matter what they were or
where they were used, just as long as
it could be added to the feature list.

It should be clear to anyone who has
read this column before that I believe
technology can be a strong force in cre-
ating a more compelling game experi-

h t t p : / / w w w . g d m a g . c o m D E C E M B E R 1 9 9 9 G A M E D E V E L O P E R

23

A Clean Start: Washing Away

the Millennium

T he millennium is coming to a close at the end of the month. While I

actually believe that the turn of the century is a year from now, I am

going to fight it no longer. The Y2K hype has washed away any chance

of restraining the feeling that something big is about to happen.

Whether he’s testing the theories of water displacement while scuba diving or in the
tub with his duckie, you can drop Jeff a line at jeffl@darwin3d.com.

ence. However, technology should not
be turned into a checklist and become
the only determination for a game’s
potential for success. The game is what
is important. The technology is just a
vehicle to enhance the experience for
the player.

At E3 this year, I was amazed at the
Playstation 2’s reception. There we
were at a show filled with amazing
games for all platforms. Real-time 3D
graphics were represented everywhere.
The level of art was unbelievable.
Game play and production on every
platform from PC to Game Boy were
very impressive. But what was the
“buzz” in the press? The Playstation 2
demos. The Playstation 2 is going to
revolutionize gaming. Games will

never be the same. What interactive
demo was shown that elicited these
opinions? Some footage of a car dri-
ving through a scene and a duck in a
tub of water.

Sure, it was a beautiful car and a cool
duck. However, it was just a display of
technology and computing power.

Don’t get me wrong. I am certain the
Playstation 2 will be an amazing con-
sole. The hardware looks impressive.
Sony has definitely proved they can
foster the creation of great games and
lots of them. They also wanted to build
up momentum for the new console,
and I think they succeeded. They rec-
ognized that technology can be used to
build hype and anticipation without
even having a game.

Yes, I Have a Point

Iwant people to realize that technolo-
gy is just a means for achieving a

result. I hope to discuss techniques that
make you think about ways you can
attack a particular problem. Hopefully,
these ideas can be used on a variety of
platforms in a variety of ways.

For example, let’s take the water
effect from the Playstation 2. I think
one of the reasons it was so impressive
is that water is terribly difficult to rep-
resent in a real-time 3D simulation. It
remains hard even for the visual effects
community. They have unlimited poly-
gon budgets yet modelers will still
groan if you ask for realistic water. In
the early days of real-time 3D games
(what was that, like three years ago?),
polygons were at a premium. You
could not represent water with lots of
geometry so developers had to create
animated textures that showed nice
rippling water. It was still pretty life-
less. It could not react to what was
going on around it and sort of just did
its own thing.

However, with all the billions of oper-
ations per second the new millennium
will offer to developers, we can do bet-
ter. You probably have seen waterlike
ripples as Java web site banners. The
effect has been around for years and is
quite simple. It does a good job of simu-
lating how ripples will interact with
each other and reflect off barriers. Since
it can be created in Java, it’s obviously
not too complex, either.

G R A P H I C C O N T E N T

G A M E D E V E L O P E R D E C E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

24

///

// Procedure: ProcessWater

// Purpose: Calculate new values for the water height field

///

void CAguaDlg::ProcessWater()

{

//// Local Variables //

int i,j;

float value;

///

for (j = 2; j < WATER_SIZE - 2; j++)

{

for (i = 2; i < WATER_SIZE - 2; i++)

{

// Sample a "circle" around the center point

value = (float)(

READBUFFER(m_ReadBuffer,i-2,j) +

READBUFFER(m_ReadBuffer,i+2,j) +

READBUFFER(m_ReadBuffer,i,j-2) +

READBUFFER(m_ReadBuffer,i,j+2) +

READBUFFER(m_ReadBuffer,i-1,j) +

READBUFFER(m_ReadBuffer,i+1,j) +

READBUFFER(m_ReadBuffer,i,j-1) +

READBUFFER(m_ReadBuffer,i,j+1) +

READBUFFER(m_ReadBuffer,i-1,j-1) +

READBUFFER(m_ReadBuffer,i+1,j-1) +

READBUFFER(m_ReadBuffer,i-1,j+1) +

READBUFFER(m_ReadBuffer,i+1,j+1));

value /= 6.0f; // Average * 2

value -= (float)READBUFFER(m_WriteBuffer,i,j);

// Values for damping from 0.04 - 0.0001 look pretty good

value -= (value * m_DampingFactor);

SETBUFFER(m_WriteBuffer,i,j,(int)value);

}

}

SetDisplay(); // Draw and Swap Buffers

}

L I S T I N G 1 . Processing the height field.

F I G U R E 1 . Sampling the water

field.

In fact, the effect is really just a form of image processing.
Start by creating a double-buffered height array that will hold
the values for the water level at each position in the grid. The
key to making this array behave like water is to determine the
new level at each location. This is done by sampling the sur-
rounding locations to determine whether the current location
should be moving up or down. I chose to sample a rough cir-
cle around the center point as you can see in Figure 1.

If I wanted to average the water levels over this region, I
would add the values together and divide by 12. However,
this is where we are going to fake some of the fluid dynam-
ics that make this look like water. Water level actually rises
when the surrounding pressure is increased. Think of
squeezing water in a plastic bottle and watching the water
in the center rise. So, I can think of the water level at each
location as representing the water pressure. When the
water level surrounding a
location is high, that has the
effect of raising the water
level at the center above the
surrounding locations. Like-
wise, when the surrounding
level is low, the pressure is
greatly reduced and the level
at the center should drop
below the average. So,
instead of dividing by 12, I
divide the sum of the sur-
rounding levels by six, dou-
bling the average height.

In order to give the water
motion, the height of the cur-
rent position in the previous
frame is subtracted from the
new calculated height. Now
everything is in motion. How-
ever, there is no way to reduce
that motion. I can cause the
system to lose some energy by
applying a damping factor
that is multiplied by the
change in height. That way, I
can be sure that the field will
come to rest if nothing is
changed manually. The code
for calculating the water level
is in Listing 1. To get things
started, I simply write some
values directly into the height
array and let it run.

Viewing the Water

Inow have a height array
that animates in a way that

forms ripples and wakes. I can
easily turn that height field
into an image and display it
by converting the values to
grayscale or to some color

scheme. This image ends up looking like a bump map. You
can see what it looks like to convert the height array into an
image in Figure 2.

This creates a pretty good texture that could be used in a
3D environment to simulate a pool or fountain. However, I
can make it even more interesting by applying some envi-
ronment mapping techniques. The gradient of the water lev-
els surrounding a location can be used to define “normals”
like you would find on a 3D mesh. I could then trace these
normals to see where they intersect my environment map.
However, an even faster way is to treat these gradients as off-
sets into the environment map. At position (u,v) in the
Height array:
offsetX = height_array(u + 1, v) - height_array(u - 1, v);

offsetY = height_array(u, v + 1) - height_array(u, v - 1);

sourceTexel = (u + offsetX, v + offsetY);

This can be blended with
the height color to create a
shaded reflection, as you can
see in Figure 3. However, this
kind of blending is processor-
intensive. But, since I eventu-
ally want to use this in a real-
time 3D environment, why
not make use of my graphics
card?

Hardware Help

Ihave a nice 3D graphics
card that can blend two tex-

tures together without involv-
ing the CPU. To make this
work with my textures, the
environment map calculations
set the UV coordinates for the
environment map pass. Most
of the graphics hardware that
is currently popular with game
players can blend two textures
together in a single pass. This
means that if your hardware
can handle it, the blending of
the environment map and
bump map are rendered at
once.

Once hardware is in charge
of the blend, it’s easy to con-
trol the amount each image
contributes to the final render
by using the alpha values. I
can also take advantage of the
built-in filtering to smooth
out the fact that my maps are
of relatively low resolution
(say, 128×128).

I can also use the informa-
tion I now have to make the
scene even more immersive.
Water consisting of a single

G R A P H I C C O N T E N T

G A M E D E V E L O P E R D E C E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

26

F I G U R E 2 . A water image.

F I G U R E 3 . Environment mapping and shading.

flat polygon looks strange no matter
how interesting the animated texture
looks. However, I could create the sur-
face on the same grid as the height
array. If my height array is 128×128, I
can create a polygonal grid that is also
128×128. I then use the data in the
height array to displace the vertices
in the water mesh. Now, when the
water ripples, the texture not only
changes, but the actual surface of the
water moves also. This all combines to
create a very realistic looking water
simulation.

Best of all, there are built-in perfor-
mance adjustments to make sure it
runs well on all sorts of systems. If the
player doesn’t have fast 3D hardware
you can use a lower resolution for the
displacement mesh. If the CPU is older,
lower the resolution in the original
height array. You can also turn off the
environment map if fill rate is an issue.
If the player has a really nice system,
all features are set at the highest resolu-
tion. This kind of detail adjustment is
critical as the number of possible user
configurations increases.

Improving the Accuracy

If I generated actual normals, I could
improve the look a bit. For one

thing, I could simulate the light diffrac-
tion through water. I could then create
another environment map represent-
ing the reflection, which is underneath
the water. I’m not sure that it would
look any better than the environment

map hack I already
described. However,
actually using the
normals to generate
the map for the
reflection makes
some sense. Real
environment maps
are view-dependent
and require the nor-
mals for calculation.
The next generation
of graphics cards
coming out this year
support cubic envi-
ronment mapping.
That will enable
effects such as water
reflection to be cal-
culated more easily.

I saw another
effect recently that really adds to the
realism of rendering water. Nvidia has
been showing a demonstration of
Fresnel Reflections where they create a
completely variable reflection based on
the viewing angle. It produces a much
more accurate reflection image at the
cost of extra CPU calculations. They
may have some information on their
web site about the technique by now.

Considering the actual physics of
the water itself, the method I described
here is completely inaccurate. There is
no physical simulation of water hap-
pening at all. Like many game pro-
gramming methods, tricks are used to
achieve the desired look without the
complex calculations.

These days, however, it’s worth con-
sidering designating more CPU power
for methods that increase the dynamic
realism in the scene. When I wrote the
column on mass-and-spring systems
for cloth animation (“Devil in the
Blue Faceted Dress: Real-Time Cloth
Animation,” May 1999), it may have
occurred to you that a spring system
could be made to behave like water.
Each element in the mesh could be
restricted to move only up and down
and each element is connected to its
neighbors by springs. You can see this
in Figure 4.

However, even this method differs
from the way actual water performs in
several ways. One key difference is the
way true water behaves when com-
pressed. The total volume of the water
should be preserved. If I compress the
water on one side, the level should

respond by rising on the other side.
Also, the methods I have discussed do
not account for what is in the water. I
am interested in simulating the actual
flow of the water. It should be able to
spill across a terrain as well as form
eddies and standing waves. Also, a
height field naturally makes effects such
as breaking waves or splashes that flow
over into adjacent cells impossible. To
get these kinds of interactions, I need to
make the simulation more complex. I
will have to look towards the field of
computational fluid dynamics (CFD).
Perhaps there are some lessons in that
field for game developers.

But that will have to wait until next
time. For now, play around with the
simple image processing method for
water. It is easy enough to understand
and you can quickly experiment with a
variety of effects. ■

G R A P H I C C O N T E N T

G A M E D E V E L O P E R D E C E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

28
F I G U R E 4 . Water made from springs.

The image-based water effect has been

kicking around so long, I don’t know

where it originated. I see it crop up on

Internet forums every couple of months.

A quick pass over the search engines

yielded quite a few links:

• http://www.remedy.fi/company/

cool_stuff_data/stone1.shtml

A Java-based applet implementing

something similar to what I described.

• http://freespace.virgin.net/

hugo.elias/graphics/x_water.htm

Hugo Elias has a little bit of every-

thing on his site. The section describ-

ing the water effect is pretty thorough,

complete with a sample application.

Also check out:

• Fournier, Alain, and William Reeves.

“A Simple Model of Ocean Waves.”

Siggraph 1986, Vol. 20, No. 4, pp.

75–84.

I didn’t talk about generating wave

motion via simple trigonometric func-

tions. This paper examines this in

depth.

• Kass, Michael, and Gavin Miller.

“Rapid, Stable, Fluid Dynamics for

Computer Graphics,” Siggraph 1990,

Vol. 24, No. 4, pp. 49–55.

If you want to read ahead and learn

about real-time methods for CFD,

check this out.

FF OO RR FF UU RR TT HH EE RR II NN FF OO

b y P a u l S t e e d A R T I S T ’ S V I E W

my art tools or stay where I am?”
While the answer to the first question
often varies, the answer to the second
shouldn’t.

Spending more than a year or two
working on a game means that the
tools you started with have invariably
evolved into their next version or iter-
ation by the time you have finished.
Unless you’ve switched mid-project,
you have to take the time at the end of
a project to learn the new tools — that
is, if you’re given the time to train and
the upgrade of the product itself.

Changes from Q2 to Q3A

W hen we completed QUAKE 2 at
the end of 1997, we started in

on our next project, QUAKE 3: ARENA.
For id, this new project introduced a
dramatic departure from the usual first-
person shooter formula. Instead of hav-
ing players opposing a horde of blood-
thirsty monsters while struggling to
figure out puzzles and find keys that
would allow them to escape a
labyrinthine maze, QUAKE 3: ARENA

would be all about deathmatch. Gone
was any sort of suspense or story-dri-
ven tension. Instead, the game was
about combat and competition — play-
ers pitted against other human oppo-
nents or complex, artificially intelli-
gent bots via a LAN or the Internet.

During QUAKE 2, I modeled in
Kinetix’s 3D Studio R4 (DOS) and ani-

mated in Alias|Wavefront’s Power Ani-
mator. The reason I went with Alias is
because fellow artist and id co-owner
Kevin Cloud had been using it since
QUAKE and already integrated it into
the production pipeline. Recombined
by Carmack’s wizardry, the game
engine animated characters in the
game via vertex deformation using a
string of .TRI files exported from Alias
as basic, linearly interpolated key-
frames. Each animation cycle — walks,
runs, deaths, and so on — were stored
as separate files that could be accessed
and re-exported to .TRI files whenever
we wanted. Of course, the immediate
problem that comes to mind when
creating models and animations this
way is that when any changes are
made, a plethora
of files must be
tweaked and re-
exported — very
painful, trust me.

Since the ques-
tion of utilizing
new technology for
a new project is
moot at id
(Carmack always
retools or recreates
the game engine for
new projects), it came as no surprise
when John announced the implemen-
tation of a new animation system for
Q3A. The new “tag” system would save
storage space by using a single triangle
to represent certain body parts such as

the head and upper body, and would
give me more flexibility to create bet-
ter animations at a higher polygon-
per-model budget. This system also
enabled more realistic and sponta-
neous animations, since the lower and
upper body animations were complete-
ly detached and unrelated unless
explicitly specified otherwise.

For me, the new animation system
meant I could consolidate the anima-
tions for a single character into one
file. This in essence rendered the ani-
mation file for a character in Q3A a
“folder” in which sequences are like
pages that the engine references when
animating the game’s characters.
Making changes to the model became a
lot easier, to say the least. Another

advantage of keep-
ing the animations
in one file was that
it allowed me to
utilize a great fea-
ture of Character
Studio: sharing .BIP
files. Character
Studio’s ability to
stream different
animations togeth-
er via its Flow

Manager was one of
the primary reasons I chose Max after
Q2 instead of Maya, Softimage, Light-
wave, Nichimen, or any other program.
Sharing animation data is so important
because, in a crunch, I can simply plug
one character’s animation data into

h t t p : / / w w w . g d m a g . c o m D E C E M B E R 1 9 9 9 G A M E D E V E L O P E R

31

No Pain, No Gain: Implementing New

Art Technology in QUAKE 3: ARENA

W hen beginning a new project, an immediate question that comes

to developers’ minds is, “Are we going to use the same technolo-

gy or an entirely a new game engine?” A question that pops up

for the artist in particular is, “Do I upgrade to the next version of

Paul Steed is a Guy. He likes Guy things: working out, playing pool, drinking beer, and trying hard to stay out of trouble. He happens to
make art for computer games and occasionally convinces learned editors he’s a competent enough writer to contribute to their esteemed
publications. Write him at psteed@idsoftware.com if you’re bored. Contrary to popular belief, there’s no such thing as too much e-mail.

another and make tweaks instead of
having to animate 40 characters
entirely from scratch. This worked
only because the sequence of all the
character’s animations had to be the
same (for example, three death anima-
tions, then gestures, then walks, then
runs, and so on). The length and style
of animations could vary from charac-
ter to character, but the basic order
had to remain the same due to the
new animation code.

Match Tag “A” with Tag “B”

In QUAKE 2, each frame of animation
I exported served as a keyframe for

the engine to interpolate the position
of the mesh’s vertices linearly to the
next saved animation frame. Although
the frame rate was only 10 frames per
second, some characters had up to 500
frames of animation to support — not
only, say, firing a weapon, but firing a
weapon while standing and firing a
weapon while crouched. There were no
animations of characters firing while
running or moving, since I couldn’t
anticipate where in their stride they
would be when attacking. Of course,
this quickly reveals the limitations of
the vertex deformation scheme as the
character slides all over the place while
firing on the move (hence the term
“skating”), because his body is locked
in the stationary “firing-while-stand-
ing” pose.

Hierarchically, implementing the tag
system (see Figure 1) meant that the
lower body would be the parent and
the upper body the child (since the
lower body incorporates locomotion).
Getting a character into the game went

something like this:
create the character,
assign the Physique
modifier to the mesh,
animate it in a specific
order of animations
(both body parts
together, then upper
only, then lower), cre-
ate a small right trian-
gle with the point fac-
ing forward, name it
TAG_TORSO, link it
(again by assigning
Physique to it) to the
point where the biped
spine rotates, and save
it. Once I had the file saved I’d delete
the upper body and export the lower
body only as a .3DS file (the engine
couldn’t work with the native Max file
format), keeping the tag as a represen-
tation of the upper body. (It was linked
to the skeleton/biped, which the
exporter ignored.) I’d then do the same
for the upper body.

This sucked — mainly because of
having to remember which body part
to delete, and the fact that after doing it
for a couple of characters the poor
artist’s mind can get confused. Also,
once we got the model to show up in
the game world by converting the .3DS
files to a game-digestible format, the
animations weren’t quite right. While it
was cool to move the mouse and see
the upper torso move with the “free
look” motion of the mouse, the upper
body was stiff. Once you passed a
threshold of 30 degrees or so, the feet
would stay still while the body rotated
in place. This rotation (like the sliding
effect in our previous system) broke the
illusion of the character having contact

with the ground, exhibit-
ing any sense of weight,
and it was generally not a
good thing. So we made
some changes.

Instead of deleting any-
thing, we just kept every-
thing in one file and
made sure the different
body parts adhered to a
strict naming conven-
tion. Any file associated
with the upper body
would be preceded with a
“U_” (U_TORSO, U_ARM,
and so on). Files associat-
ed with the lower body

would be preceded with “L_.” We also
determined that the reason the upper
body still appeared stiff was that peo-
ple naturally lead turns with their
heads. So we detached the head,
necessitating a third naming conven-
tion (“H_”), as well as a new tag
(TAG_HEAD). To counter the problem
of sliding in place while turning, we
added a “shuffle” where the character
would pick up his feet and turn pro-
grammatically (Figure 2).

This was really no big deal as all ani-
mations have to be done “in place” for
bounding-box consideration. (The
bounding volume of a model created by
its aggregate vertices equals the area in
XYZ space that registers a hit when fired
upon.) Another change we decided to
make was to export the models as ASCII
files instead of .3DS. From the huge
amount of information contained in an
ASCII file (or in Max’s case, .ASE), the
programmers could cull all the informa-
tion they wanted about normals, UVWs,
and animation data.

This worked much better. The head
detachment as yet another layer in the
tag hierarchy made the motion of the
character’s upper torso correspond
almost eerily with the movement of the
mouse. As the mouse moved, the head
would move just barely, and then the
torso, and then the character would
raise and lower his feet as he turned in
place to look where the mouse was
telling him to look. Of course, the draw-
back to this was that facial expressions
and any sort of hair animations went
out the window. Still, the in-game ani-
mations didn’t quite jibe with how I
wanted them to look and definitely dif-
fered from an orientation standpoint
from their Max file counterparts.

A R T I S T ’ S V I E W

G A M E D E V E L O P E R D E C E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

32

F I G U R E 1 . Mesh, skin, and Character Studio biped

with proper tag placement.

F I G U R E 2 . To combat characters sliding around in

place while turning, a “shuffle” was added to give them

something else to do with their feet.

Jane! Stop This Crazy Thing!

A fter some research, it became clear
to me why the animations were

off — it was the stupid tag. I had been
linking the TAG_TORSO to the torso of
the skeleton or biped (first spine link).
This was wrong. I was supposed to be
linking it to the pelvis. (I was confused
— sue me.) I also misunderstood the
fact that the base of the right triangle
of the tag was the exact point at which
the rotation needed to occur (not the
overall area of the triangle as I had
thought).

After I got that straight, things looked
better, but if the pelvis rotated at all or
was otherwise moving inappropriately,
the torso of course did its animations
from whatever position the sometimes
errant tag told it to. Since the tag repre-
sents the upper body’s position relative
to its predefined default position (a sin-
gle frame in the animation set), rotating
the tag itself during the animations
would rotate the base at which the
upper body was attached. So, happy
with this second level of “after market”
animation capability, I went and started
rotating the tag so it would always face

forward. Soon I became frustrated, how-
ever, because the tag would do this
weird shearing thing and the triangle
would try to skew itself in a seemingly
random fashion.

This...drove...me...nuts.
After all kinds of kludgy, inefficient,

mickey-mouse attempts at band-aiding
the problem, I resorted to bugging
Character Studio’s developers and ask-
ing them for help. After much experi-

menting and exchanging of e-mails and
Max files galore, Jeff Yates at Kinetix
asked me if I had unchecked a particular
option in the Hierarchy options of the
mesh. D’ohh. How the heck was I sup-
posed to know that? (This series of
check boxes is in the Inherit Scale sub-
menu of Link Info.) Once I turned the
Inherit Scale off for the tag (Figure 3),
the shearing went away and I was
happy...for a while.

33

F I G U R E 3 . Hours of consternation over inappropriate shearing could have been

avoided by turning off the animation tags’ Inherit Scale at the start.

Then I noticed
some other prob-
lems with the torso
moving around
and, clever guy that
I am, I thought
about the process
some more. You see,
the conversion
process of .ASE to
.MD3 (game format)
happened via strict
adherence to nam-
ing convention.
This basically
allowed me to have all kinds of props
with the file and, of course, made the
converter ignore them along with the
biped geometry (among other things)
through “wrong” naming conven-
tions. Since the tag at the torso was
essentially doubled (according to
Carmack) as the code separated the
upper and lower body, why couldn’t I
double the pesky tag, name it some-
thing besides TAG and use it as refer-
ence? This way I could see why the
upper body wasn’t seating properly on
the lower body.

So that’s what I did and, lo and
behold, there were some discrepancies
(mainly due to the mostly goofy IK
solution Character Studio uses for the
upper body). Utilizing the oft-unsung
“snap to vertex” power of Max’s Grid
and Snap Setting dialog box , I adjusted
the position of the tag and made sure it
matched my reference tag at the base
of their respective right triangles.

This Is My Weapon, This Is My Gun...

Having mastered the basic
mechanics of the new tag sys-

tem it was time (naturally) to make
some more changes. People com-
plained about the difficulty of see-
ing which weapon they held in Q2.
Mod authors quickly rectified this
by adding customized code that
allowed players to see their
weapons during deathmatch. In
Q3A, we decided to go ahead and
implement the multiple weapons,
but added a “weapon-switch” ani-
mation. This departed from
QUAKE’s original instant weapon-
switch that the diehard fanatics
were clamoring for even during Q2
(Figure 4).

Carmack wanted me to use the same
animations for all weapons (one default
position, one firing, and one weapon-
switch). I balked, saying I wanted to
have different positions for each
weapon so the design wouldn’t be dic-
tated by a single grip. Also, how a player
held a weapon could be noticed from a
distance and be an additional cue for
ordinance recognition. Well, I didn’t get
my way but I did get one extra default
position for a melee weapon (the
Gauntlet). This sort of compromise
occurs all the time when you pit tech-
nologically-constraining frugality (keep-
ing the memory requirements low
begets a faster-running game, obviously)
vs. artistic expression.

Another artistic hurdle was the fact
that my programming leader wanted to
implement the tag system in the
weapon as well. This would save even
more space and do what we hadn’t
done in Q1 or Q2: use the same model
for both the “in-use” view of the
weapon and the weapon you see in the
world. The reason the previous two

efforts didn’t share
the same geometry
for both instances
of seeing weapons
was...well, I don’t
know.

The only prob-
lem with this new
method of seeing
the weapons was
that it added yet
another shackle to
the weapon
design con-
straints. The field

of view while playing the game is at
least 90 degrees (it can be raised if
desired). While it may not quickly be
apparent why this is a problem, the dif-
ficulty lies in how much of the weapon
you actually see in your view: only the
end of the barrel. In QUAKE 2 I used
animated hands and squished, unique
geometry to make the weapons in view
look interesting and, more important-
ly, to simulate the right perspective.

So, using mostly artist/owner Adrian
Carmack’s cool designs, I went about
making weapon models that were equal-
ly appealing in both the normal view
and the in-use view. Do I make it cen-
tered, held to the right, the left, what?
In the end, I settled on a slightly-to-the-
right position that corresponded to the
animation of the characters when they
changed weapons (see Figure 5).

I solved the tag issue by first building
a weapon that I positioned in the char-
acter’s hands with a comfortably
aggressive stance, settling on a semi-
sniper position. I took this first weapon
and embedded a copy of the tag I used

for the torso and the head into the
weapon. The reason for the tag
attachment was so that I could link
the weapon to the character’s right
hand (having positioned it correct-
ly). That way, after I had complet-
ed the character’s animations and
was ready to export the file, I could
create a snapshot of the weapon,
delete all vertices except for the tri-
angle, rename it TAG_WEAPON,
assign Physique to it, link it to the
right hand, and finally delete the
original weapon (or keep it under a
garbage name for reference).

As far as the commonly held grip
dictating the design of the weapon,
I think we ended up with a pretty
varied arsenal despite the limita-

A R T I S T ’ S V I E W

G A M E D E V E L O P E R D E C E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

34

F I G U R E 5 . The final design for Q3A’s weapons

also incorporated the animation tag system.

F I G U R E 4 . QUAKE 2 shotgun (left) vs. QUAKE 3 shotgun: animated hands and field-

of-view-compensated geometry give way to no hands and more attention paid to

the weapon’s business end.

tion. Once I completed a weapon I just
placed it over the top of my archetypal
first weapon (aligning the grips so they
matched), deleted all the first weapon’s
vertices except for the tag again, and
saved the new weapon off with a tag in
the exact same position as the one in
the first weapon. Thus, when I went
through the process of animating and
exporting weapons, they all had their
tags in the right place.

And What About Style?

Enough about the mundane and
tedious assimilation/accommoda-

tion of the technology into the work-
flow, what did I actually do with it?
Now that’s a great question! I made
some pretty cool models (textured by
the incomparable Kenneth Scott) with
some pretty cool animations...and I had
to fight for them the entire time. Of
course, Carmack’s minimalist philoso-
phy towards things such as vertices,
faces, texture map size, and total frame
counts was at direct odds with my
grandiose plans to create some high-
flying, John Woo–style, highly kinetic

action. Luckily, he’s the type of guy
who, once shown something, can be
convinced to bend a little for art’s sake.

A good example of this was my hell-
bent desire to have swimming anima-
tions in the game. Why do we need
swimming? he’d ask. Because it’ll look
cool, was my reply. Sure enough,
Carmack — doubtful yet accommodat-
ing — put the swim animation in and
everyone went “Ahhh...” or “Ooooh...”
He became a believer.

Another case was the jump anima-
tions. I was given one paltry frame to
represent a recovery from jumping for-
ward or backward (two separate anima-
tions). Characters in our game jump the
equivalent of 20 feet in the air — cer-
tainly they needed to be able to recover
from that kind of air time. So I used up
five to ten frames for recovery, and it
turned out much better.

And since there were two kinds of
jumps, I decided to differentiate the
backward one by making the character
do a back flip as he jumped. Who cares
that your view doesn’t change during
the flip? This is a first-person game,
remember? Everything about your char-
acter is done for the enjoyment and

benefit of your opponents. Why not
give them a show?

The Moral of the Story

T he character animation technolo-
gy was but one of several changes

we made for the art in QUAKE 3: ARENA.
In fact, even though it’s a QUAKE prod-
uct, Q3A’s code shares similarities with
its esteemed predecessors strictly by
virtue that it’s 3D and from id Soft-
ware. Carmack was continually refin-
ing and optimizing the technology in
all aspects of the game up until the
very end of development.

As for my part in the implementation
of the animation changes, more lucid
communication with the programmer
on some issues would saved me some
time and trouble. But it took trial and
error — many, many iterations and
more than a smidgen of perseverance —
to make it work. That’s what integrating
new technology is about: sticking it out
and always trying to find a better solu-
tion to the problem at hand. That’s one
of the things that makes this type of
work so challenging and rewarding. ■

35

b y O m i d R a h m a t H A R D T A R G E T S

the amount of devotion they should
lavish on “the next great thing.” To
add to developers’ woes, there is the
current growth in low-cost PC systems,
in which graphics and audio functions
are integrated into chipsets in the
motherboard, and multimedia process-
es are passed off to more powerful
CPUs that are left idling until software
catches up. The question is, are game
developers reducing their total avail-
able market (TAM) by not targeting the
base level of performance that these
systems offer?

Putting It All Together

Intel is the big cheese of integration.
This year, the company formally

announced that it was getting out of the
discrete graphics chip business. In other
words, it wasn’t going to make separate
graphics components. Some attributed
the move to the lackluster performance
and market share of the company’s 740
graphics chip. Intel has never been shy
to abandon or change tactics, products,
and initiatives when it sees its core busi-
ness of selling CPUs threatened. An
integrated PC is one in which the graph-
ics and audio components can be
thrown into the logic chips that control
the flow of data from the CPU to memo-
ry and various controllers. The result is
fewer components required, and more
money left on the table for the CPU.

The mainstay of integration for Intel
is the 810 Whitney chipset and its latest
update, the 810e. At the heart of the
810 chipset is a memory controller with
built-in graphics technology, called the
82810 graphics memory controller hub

(GMCH). It’s a long moniker, but in
short, the graphics portion of the 810
chipset has integrated hardware motion
compensation for software DVD video,
as well as a digital video output port
enabling connections to a traditional
television or flat-panel display. There is
also an integrated Audio
Codec 97 (AC-97) con-
troller that allows software
audio and modem func-
tionality using the host
CPU. There’s a lot more
electronics than that, but
suffice it to say that there
is a measure of 2D, 3D,
and audio functionality
built into the chipset that
helps negate the need for
extra peripherals — or so
the thinking goes.

The 810e is aimed at the
market for Pentium II and
Pentium III chips, while
the original 810 is aimed at
the Celeron and Pentium
II markets. The basic differ-
ences between the various
flavors of the 810 are the
amount of cache memory
they allow, as well the way
they interface to the PCI
and IDE buses. As you go
higher up the food chain,
the graphics improve, the
PCI slots are more numer-
ous, and the bus perfor-
mance gets faster.

Integration’s Impact on the Market

Intel isn’t the only game in town, but
its roadmap and gentle guidance, if

you will, determine which way the PC
industry goes. NeoMagic, a maker of
graphics chips for laptops, has been

creating integrated parts
for some time, but in the
desktop space there are
companies such as Silicon
Integrated Systems (SiS),
Via, and a host of graphics
chip vendors who all have
the same idea for the low-
cost PC market. There are
no hard and fast rules
about what integration
means though, and the
breadth of offerings will
probably end up being a
very confusing jumble of
features. For instance, the
SiS 620 chipset doesn’t
have all the features of the
810 (such as AC-97 sup-
port) and it is primarily
appearing in very low-cost
corporate PCs. What may
be interesting down the
road is something such as
the Aladdin TNT2, a col-
laborative effort between
Acer Laboratories Inc.
(ALi) and Nvidia. Intel
used the core graphics
technologies of its 740
chipset, but Nvidia is look-

h t t p : / / w w w . g d m a g . c o m D E C E M B E R 1 9 9 9 G A M E D E V E L O P E R

37

The Integrated PC: More Consumers

with Fewer Choices

I t’s always nice to note the surge in demand that accompanies the latest 3D

graphics or audio product release. It’s a sign of the health of high-end technolo-

gies, and consumers’ insatiable appetite for a better multimedia experience.

Fashionable technologies also make it difficult for game developers to predict

Omid Rahmat is the proprietor of Doodah Marketing, a digital media consulting
firm. He also publishes research and market analysis notes on his web site at
http://www.smokezine.com. He can be reached via e-mail at omid@compuserve.com.

Intel 810e chipset

810e DC133

Intel 810e chipset

810e DC100

Intel 810L

Value PC 3

$800–999

Value PC 2

$600–799

Value PC 1

< $600

Mainstream PC 1

$1,000–1,200

Intel 810e chipset

810e DC133

F I G U R E 1 : Intel’s

overview of how its

integrated products

fit in to the PC mar-

ket, by price segment.

ing to bring an altogether different
level of performance to the low-cost PC
market. And they aren’t the only ones.

Intel’s Whitney chipset holds about
80 percent of the market, according to
Dean McCarron, principal analyst at
Mercury Research, and provides graph-
ics performance on par with a Matrox
G200, or a little better than an ATI Rage
Pro. The market for these products is
still too young to judge the impact of
integrated technologies, but Figures 1
and 2 may put things in perspective.

Obviously, the data suggest that inte-
grated systems are going to take a sig-
nificant slice of the PC market. In the
consumer space, the primary market is
for Internet-ready, low-cost PCs. The
good news is that these types of PCs are
attracting first-time PC buyers, very
similar to the way the iMac has also
drawn in a new crowd of computer
users. These newcomers are going to
want to do everything else their com-
puters offer, including play games.

There is another dynamic of the inte-
grated PC market that game developers
might find interesting. According to
McCarron, more audio add-ons are
going into the consumer market than
PCs sold. These add-ons are primarily
high-end audio upgrades and 3D posi-
tional audio products such as Creative
Labs’ SoundBlaster Live! card. How-
ever, this is not yet happening on the
graphics side, though it may still be too
early to tell. On 810 motherboards you
can’t even get a graphics upgrade, and
there is every indication that PC mak-
ers are finding it easier to upgrade their
integrated-systems buyer to better
quality audio than graphics.

So Where Does That Leave the Game
Developer?

Integrated PCs are not going away.
They are an expanding market and a

very hot growth area for the PC indus-
try. By ignoring this market, developers
are reducing their TAM, which may be a
conscious creative choice. After all,
some may not be happy compromising
the quality of their game graphics and
audio. In time, it will certainly be a sup-
port issue for game developers because
games are getting more sophisticated in
their technology, not less so.

However, there is a new demographic
entering the market as a result of these
lower-cost integrated machine sales, the
kind of user that can be lumped under
the heading of mass market. The game
industry doesn’t quite understand the
mass market yet, a fact quite evident by
the seemingly endless parade of DEER

HUNTER knockoffs. It will be a while
before the game industry figures out
how to target a user base that is highly
motivated by the Internet, and less san-
guine about traditional gaming. Further-
more, this is a demographic that is
being weaned on low-cost hardware and
budget software.

There is also a unique bundling
opportunity for the game industry. The
low-cost PC is going out with fewer
new software titles in some cases, but
often with a greater number of older
titles. As such, it may be an ideal mar-
ket for resurrecting the overall OEM
market for games. In the past, I have
addressed the OEM opportunities asso-
ciated with the high end of the PC
market, where games eat up the most

CPU cycles and are sometimes the only
justification for a powerful new system.
The low-end users in the PC market, on
the other hand, are more likely to be
attracted by a bundle’s value because of
their price sensitivity. PC makers are
beginning to realize that they need to
sell their systems on more than just
MIPS and hardware configurations. In
short, there is a growing opportunity
offered by integrated systems, but it
comes at the price of a step back, cer-
tainly in graphics technology, and to
some extent in audio technology, too.
There is an opportunity for the game
industry to increase its TAM, develop
new OEM relationships, and bring new
consumers into its fold. What remains
to be done is to acquire a clear under-
standing of this demographic. That
may not come for some time.

I am reminded of early days of the
multimedia PC business, when hard-
ware and software vendors misunder-
stood the needs of a market in which
consumers were grabbing CD-ROM
upgrade kits at $500 a pop, and bring-
ing home $2,000 PCs by the cartload.
The result was a mountain of useless
multimedia CDs, and a crash in the
price of some multimedia peripherals.
The hardware and software industries
need to do a better job with this new
batch of consumers, and it all starts
online. AOL is using Compuserve
memberships and $400 rebates on con-
sumer PCs to attract new users, and it
seems to be working. The game indus-
try needs to come up with new busi-
ness models to deal with the mass mar-
ket, or it may just end up being a
passing fancy as well. ■

H A R D T A R G E T S

G A M E D E V E L O P E R D E C E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

38

0

10

20

30

40

50

60

70

80

1998 1999 2000 2001 2002

un
it

 s
hi

pm
en

t i
n

m
ill

io
ns

6.8

18.5

43.5

60.7

73.6

F I G U R E 2 . Shipments of integrated parts in desktop PCs in millions of units

(source: Mercury Research).

Notebook

15%

Business

50% Consumer

35%

F I G U R E 3 . Breakdown of integrated

systems deployed by market seg-

ment (source: Mercury Research).

hile HALF-LIFE has seen

resounding critical and financial

success (winning over 50 Game of

the Year awards and selling more than a million copies world-

wide), few people realize that it didn’t start out a winner — in

fact, Valve’s first attempt at the game had to be scrapped. It

was mediocre at best,

and suffered from the

typical problems that

plague far too many

games. This article is

about the teamwork –

or “Cabal process” —

that turned our initial,

less than impressive

version of HALF-LIFE

into a groundbreaking

success.

Paving the Way with Good Intentions

Our initial target release date was November 1997 — a

year before the game actually shipped. This date

would have given Valve a year to develop what was in essence

a fancy QUAKE TC (Total Conversion — all new artwork, all

new levels). By late September 1997, nearing the end of our

original schedule, a whole lot of work had been done, but

there was one major problem — the game wasn’t any fun.

Yes, we had some cool monsters, but if you didn’t fight

them exactly the way we had planned they did really stupid

things. We had some cool levels, but they didn’t fit together

well. We had some cool technology, but for the most part it

only showed up in one or two spots. So you couldn’t play the

game all the way through, none of the levels tied together

well, and there were

serious technical prob-

lems with most of the

game. There were some

really wonderful indi-

vidual pieces, but as a

whole the game just

wasn’t working.

The obvious answer

was to work a few more

months, gloss over the

worst of the problems

and ship what we had.

For companies who live and die at the whim of their pub-

lishers, this is usually the route taken — with predictable

results. Since Valve is fairly independent, and since none of

us believed that we were getting any closer to making a

game we could all like, we couldn’t see how a month or two

would make any significant difference. At this point we had

to make a very painful decision — we decided to start over

and rework every stage of the game.

h t t p : / / w w w . g d m a g . c o m D E C E M B E R 1 9 9 9 G A M E D E V E L O P E R

41

Ken is senior developer at Valve and has contributed to a wide range of projects in the last 15 years, most recently on animation and AI for
HALF-LIFE. Previous projects include satellite networking, cryptography, 3D prosthetic design tools, 3D surface reconstruction, and in-circuit
emulators. Oddly enough, Ken dropped out of studying EE to pursue a fine arts degree at The Evergreen State College, which he considers far
more relevant to creative thinking than any silly differential equations class. You can reach him at kenb@valvesoftware.com.

THE CABAL
Valve’s Design Process
For Creating HALF-LIFE

B y K e n B i r d w e l l

Fortunately, the game had some
things in it we liked. We set up a small
group of people to take every silly idea,
every cool trick, everything interesting
that existed in any kind of working
state somewhere in the game and put
them into a single prototype level.
When the level started to get fun, they
added more variations of the fun
things. If an idea wasn’t fun, they cut

it. When they needed a software fea-
ture, they simplified it until it was
something that could be written in a
few days. They all worked together on
this one small level for a month while
the rest of us basically did nothing.
When they were done, we all played it.
It was great. It was Die Hard meets Evil
Dead. It was the vision. It was going to
be our game. It was huge and scary and
going to take a lot of work, but after
seeing it we weren’t
going to be satisfied
with anything less.
All that we needed to
do was to create
about 100 more lev-
els that
were just as fun. No
problem.

So, Tell Me About
Your Childhood

The second step in
the pre-cabal

process was to ana-
lyze what was fun
about our prototype
level. The first theory
we came up with was
the theory of “experi-
ential density” — the amount of
“things” that happen to and are done
by the player per unit of time and area
of a map. Our goal was that, once
active, the player never had to wait too
long before the next stimulus, be it
monster, special effect, plot point,
action sequence, and so on. Since we
couldn’t really bring all these experi-
ences to the player (a relentless series
of them would just get tedious), all
content is distance based, not time
based, and no activities are started out-

side the player’s control. If the players
are in the mood for more action, all
they need to do is move forward and
within a few seconds something will
happen.

The second theory we came up
with is the theory of player
acknowledgment. This means
that the game world must
acknowledge players every time

they perform an action. For exam-
ple, if they shoot their gun, the
world needs to acknowledge it
with something more permanent
than just a sound — there should
be some visual evidence that
they’ve just fired their gun. We
would have liked to put a hole
through the wall, but for techni-
cal and game flow reasons we
really couldn’t do it. Instead we

decided on “decals” — bullet nicks and
explosion marks on all the surfaces,
which serve as permanent records of
the action. This also means that if the
player pushes on something that
should be pushable, the object
shouldn’t ignore them, it should move.
If they whack on something with their
crowbar that looks like it should break,
it had better break. If they walk into a
room with other characters, those char-
acters should acknowledge them by at
least looking at them, if not calling out

their name. Our basic theory was that if
the world ignores the player, the player
won’t care about the world.

A final theory was that the players
should always blame themselves for

failure. If the
game kills
them off with
no warning,
then players
blame the
game and
start to dislike
it. But if the
game hints
that danger is
imminent,
show players a
way out and
they die any-
way, then
they’ll consid-
er it a failure
on their part;
they’ve let the
game down

and they need to try a little harder.
When they succeed, and the game
rewards them with a little treat —
scripted sequence, special effect, and so
on — they’ll feel good about them-
selves and about the game.

Secret Societies

Throughout the first 11 months of
the project we searched for an offi-

cial “game designer,” — someone who
could show up and make it all come
together. We looked at hundreds of
resumes and interviewed a lot of
promising applicants, but no one we
looked at had enough of the qualities
we wanted for us to seriously consider
them the overall godlike “game design-
er” that we were told we needed. In the
end, we came to the conclusion that
this ideal person didn’t actually exist.
Instead, we would create our own ideal
by combining the strengths of a cross
section of the company, putting them
together in a group we called the
“Cabal.”

The goal of this group was to create
a complete document that detailed all
the levels and described major mon-
ster interactions, special effects, plot
devices, and design standards. The
Cabal was to work out when and how
every monster, weapon, and NPC was

G A M E D E V E L O P E R D E C E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

42

H A L F - L I F E L E S S O N S

Conceptual artwork for a

ceiling-mounted monster

that was dangerous to both

the player and the player’s

enemies.

Many of our scripted sequences were designed to give the

player game-play clues as well as provide moments of

sheer terror.

cabal \ka-’bal\ :to unite in a small party; to promote

private views and interests by intrigue; to intrigue; to plot.

to be introduced, what skills we
expected the player to have, and how
we were going to teach them those
skills. As daunting as that sounds, this
is exactly what we did. We consider
the Cabal process to have been wildly
successful, and one of the key reasons
for HALF-LIFE’s success.

Cabal meetings were semi-structured
brainstorming sessions usually dedicat-
ed to a specific area of the game. During
each session, one person was assigned
the job of recording and writing up the
design, and another was assigned to
draw pictures explaining the layout and
other details. A Cabal session would typ-
ically consist of a few days coming up
with a mix of high level concepts for the
given area, as well as specific events that
sounded fun.

Once enough ideas were generated,
they would be reorganized into a rough
storyline and chronology. Once this
was all worked out, a description and
rough sketch of the geometry would be
created and labeled with all the key
events and where they should take
place. We knew what we wanted for
some areas of the game from the very
start, but other areas stayed as “out-
doors” or “something with a big mon-

ster” for quite some time. Other areas
were created without a specific spot in
the game. These designs would sit in
limbo for a few weeks until either it
became clear that they weren’t going to
fit, or that perhaps they would make a
good segue between two other areas.
Other portions were created to high-
light a specific technology feature, or
simply to give the game a reason to
include a cool piece of geometry that
had been created during a pre-cabal
experiment. Oddly enough, when try-
ing to match these artificial constants,
we would often create our best work.
We eventually got into the habit of
placing a number of unrelated require-
ments into each area then doing our
best to come up with a rational way to
fit them together. Often, by the end of
the session we would find that the ini-
tial idea wasn’t nearly as interesting as
all the pieces we built around it, and
the structure we had designed to
explain it actually worked better with-
out that initial idea.

During Cabal sessions, everyone con-
tributed but we found that not every-
one contributed everyday. The meet-
ings were grueling, and we came to
almost expect that about half of the

group would find themselves sitting
through two or three meetings with no
ideas at all, then suddenly see a direc-
tion that no one else saw and be the
main contributor for the remainder of
the week. Why this happened was
unclear, but it became important to
have at least five or six people in each
meeting so that the meetings wouldn’t
stall out from lack of input.

The Cabal met four days a week, six
hours a day for five months straight,
and then on and off until the end of
the project. The meetings were only six
hours a day, because after six hours
everyone was emotionally and physi-
cally drained. The people involved
weren’t really able to do any other
work during that time, other than read
e-mail and write up their daily notes.

The initial Cabal group consisted of
three engineers, a level designer, a
writer, and an animator. This repre-
sented all the major groups at Valve
and all aspects of the project and was
initially weighted towards people with
the most product experience (though
not necessarily game experience). The
Cabal consisted only of people that
had actual shipping components in the
game; there were no dedicated design-
ers. Every member of the Cabal was
someone with the responsibility of
actually doing the work that their
design specified, or at least had the
ability to do it if need be.

The first few months of the Cabal
process were somewhat nerve wracking
for those outside the process. It wasn’t
clear that egos could be suppressed
enough to get anything done, or that a
vision of the game filtered through a
large number of people would be any-
thing other than bland. As it turned
out, the opposite was true; the people
involved were tired of working in isola-
tion and were energized by the collabo-
rative process, and the resulting
designs had a consistent level of polish
and depth that hadn’t been seen
before.

Internally, once the success of the
Cabal process was obvious, mini-Cabals
were formed to come up with answers
to a variety of design problems. These
mini-Cabals would typically include
people most effected by the decision,
as well as try to include people com-
pletely outside the problem being
addressed in order to keep a fresh per-
spective on things. We also kept mem-

G A M E D E V E L O P E R D E C E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

44

H A L F - L I F E L E S S O N S

• Include an expert from every func-

tional area (programming, art, and so on).

Arguing over an issue that no one at the

meeting actually understands is a sure

way to waste everyone’s time.

• Write down everything.

Brainstorming is fine during the meet-

ings, but unless it’s all written down, your

best ideas will be forgotten within days.

The goal is to end up with a document

that captures as much as is reasonable

about your game, and more importantly

answers questions about what people

need to work on.

• Not all ideas are good. These include

yours. If you have a “great idea” that

everyone thinks is stupid, don’t push it.

The others will also have stupid ideas. If

you’re pushy about yours, they’ll be pushy

about theirs and you’re just going to get

into an impasse. If the idea is really good,

maybe it’s just in the wrong place. Bring it

up later. You’re going to be designing

about 30 hours of game play; if you really

want it in it’ll probably fit somewhere else.

Maybe they’ll like it next month.

• Only plan for technical things that

either already work, or that you’re sure

will work within a reasonable time before

play testing. Don’t count on anything that

won’t be ready until just before you ship.

Yes, it’s fun to dream about cool technol-

ogy, but there’s no point in designing the

game around elements that may never be

finished, or not polished enough to ship.

If it’s not going to happen, get rid of it,

the earlier the better.

• Avoid all one-shot technical ele-

ments. Anything that requires engineer-

ing work must be used in more than one

spot in the game. Engineers are really

slow. It takes them months to get any-

thing done. If what they do is only used

once, it’s a waste of a limited resource.

Their main goal should always be to cre-

ate tools and features that can be used

everywhere. If they can spend a month

and make everyone more productive,

then it’s a win. If they spend a week for

ten seconds of game play, it’s a waste.

Tips For a Successful Cabal

bership in the initial Cabal somewhat
flexible and we quickly started to rotate
people through the process every
month or so, always including a few
people from the last time, and always
making sure we had a cross section of
the company. This helped to prevent
burn out, and ensured that everyone
involved in the process had experience
using the results of Cabal decisions.

The final result was a document of
more than 200 pages detailing every-
thing in the game from how high but-
tons should be to what time of the day
it was in any given level. It included
rough drawings of all the levels, as well
as work items listing any new technol-
ogy, sounds, or animations that those
levels would require.

We also ended up assigning one per-
son to follow the entire story line and
to maintain the entire document. With
a design as large as a 30-hour movie,
we ended up creating more detail than
could be dealt with on a casual or part-
time basis. We found that having a
professional writer on staff was key to
this process. Besides being able to add
personality to all our characters, his
ability to keep track of thematic struc-
tures, plot twists, pacing, and consis-
tency was invaluable.

Pearls Before Swine

By the second month of the Cabal,
we (the “swine”) had enough of

the game design to begin development
on several areas. By the third month,
we had enough put together to begin
play testing.

A play-test session consists of one out-
side volunteer (Sierra, our publisher,
pulled play-testers from local people
who had sent in product registration

h t t p : / / w w w . g d m a g . c o m D E C E M B E R 1 9 9 9 G A M E D E V E L O P E R

45

The team explored a variety of visual

metaphors that resulted in some very

unique and effective opponents.

It’s important to include information on the intended path through the level, as

well as rough geometry and character placement.

• Watch your play-testers and let them

do what they want. If they keep trying to

do something silly, don’t get upset — fig-

ure out why they want to do it and how to

accommodate them. We originally added

breakable crates to the game simply as a

technological feature that we wanted to

show off. There was nothing in them, the

crates just broke. We thought games with

secrets hidden in crates were lame. After

the tenth play-tester in a row went through

and painstakingly broke every single crate

in the entire game and never got any

reward but just kept doing it (because they

just knew if they just tried long enough

they’d get the hidden reward) we caved.

We went back and redesigned levels to

have crates with goodies in them, and a

reason to need those goodies. It was a lot

of work, but the remaining play-testers

were a lot happier.

• Your game is too hard. It just is.

You’re most likely an expert player at the

game you’re developing and it’s doubtful

that there are more than a handful of

players in the world who are better than

you. You don’t need to care about them,

you need to care about the 99.9 percent

of the players who aren’t as good as you.

Some of those players will be really, real-

ly bad. Tough — they’ve paid their $50

and they deserve to be entertained. Make

the difficult level something you can play

without too much trouble. Make the easy

level so easy that you can’t imagine any-

one not being able to win on it. Then,

make it a bit easier. If you get lucky, half

your players will be able to finish.

Play-Testing Tips

This creature was initially designed

as a friendly character, but play-test-

ing revealed players’ tendencies to

shoot first and ask questions later.

cards for other games) play-
ing the game for two hours.
Sitting immediately behind
them would be one person
from the Cabal session that
worked on that area of the
game, as well as the level
designer who was currently
the “primary” on the level
being tested. Occasion-
ally, this would also include
an engineer if new AI need-
ed to be tested.

Other than starting the
game for them and reset-
ting it if it crashed, the
observers from Valve were
not allowed to say any-
thing. They had to sit there
quietly taking notes, and
were not allowed to give
any hints or suggestions.
Nothing is quite so hum-
bling as being forced to watch in
silence as some poor play-tester stum-
bles around your level for 20 minutes,
unable to figure out the “obvious”
answer that you now realize is com-
pletely arbitrary and impossible to fig-
ure out.

This was also a sure way to settle any
design arguments. It became obvious
that any personal opinion you had
given really didn’t mean anything, at
least not until the next play-test ses-
sion. Just because you were sure some-
thing was going to be fun didn’t make
it so; the play-
testers could
still show up
and demon-
strate just how wrong you really were.

A typical two-hour play-test session
would result in 100 or so “action
items” — things that needed to be
fixed, changed, added, or deleted from
the game. The first 20 or 30 play-test
sessions were absolutely critical for
teaching us as a company what ele-
ments were fun and what elements
were not. Over the course of the pro-
ject we ended up doing more than 200
play-test sessions, about half of them
with repeat players. The feedback from
the sessions was worked back into the
Cabal process, allowing us to preemp-
tively remove designs that didn’t work
well, as well as elaborate on designs
that did.

Toward the middle of the project,
once the major elements were in place

and the game could be played most of
the way through, it became mostly a
matter of fine-tuning. To do this, we
added basic instrumentation to the
game, automatically recording the
player’s position, health, weapons,
time, and any major activities such as
saving the game, dying, being hurt,
solving a puzzle, fighting a monster,
and so on. We then took the results
from a number of sessions and graphed
them together to find any areas where
there were problems. These included
areas where the player spent

too
long
without
any encoun-
ters (boring),
too long with
too much
health (too easy),
too long with too
little health (too
hard), all of which
gave us a good idea as to where they
were likely to die and which positions
would be best for adding goodies.

Another thing that helped with
debugging was making the “save
game” format compatible between the
different versions of the engine. Since

we automatically saved the
game at regular intervals, if
the play-testers crashed the
game we would usually
have something not too far
from where they encoun-
tered the bug. Since these
files would even work if the
code base they were testing
was several versions old, it
made normally rare and
hard to duplicate bugs rela-
tively easy to find and fix.
Our save game format
allowed us to add data,
delete data, add and delete
code (we even supported
function pointers) at will,
without breaking anything.
This also allowed us to
make some fairly major
changes after we shipped
the game without interfer-

ing with any of our players’ hard-won
saved games.

No Good Deed Goes Unpunished

Until the Cabal process got under-
way, technology was added to

HALF-LIFE freely. It was assumed that “if
we build it, they will come,” meaning
that any new technology would just
naturally find a creative use by the con-
tent creation folks. A prime example of
this fallacy was our “beam” effect, basi-
cally a technique for doing highly tun-
able squiggly glowing lines between two

points; stuff like lightning, lasers, and
mysterious glowing beams of ener-

gy. It was added to the
engine, the parameters
were exposed, and an
e-mail was sent out
explaining it. The result
was … nothing. After two
months only one level
designer had put it in a

map. Engineering was
baffled.

During the Cabal process, we real-
ized that although the level designers
knew of the feature, they really had no
clear idea of what it was for. The para-
meters were all very cryptic, and the
wrong combinations would cause the
beams to have very ugly-looking
effects. There were no decent textures
to apply to them, and setting them up
was a bit of a mystery. It became very

G A M E D E V E L O P E R D E C E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

46

H A L F - L I F E L E S S O N S

Letting players see other characters make mistakes that they’ll

need to avoid is an effective way to explain your puzzles and

add tension and entertainment value.

clear the technology itself was only a
small part of the work and integration,
training, and follow-through were
absolutely necessary to make the tech-
nology useful to the game. Writing the
code was typically less than half the
problem.

Square Pegs

P ractically speaking, not everyone
is suited for the kind of group

design activity we performed in the
Cabal, at least not initially. People with
strong personalities, people with poor
verbal skills, or people who just don’t
like creating in a group setting should-
n’t be forced into it. We weighted our

groups heavily toward people with a
lot of group design experience, well
ahead of game design experience. Even
so, in the end almost everyone was in a
Cabal of one sort or another, and as we
got more comfortable with this process
and started getting really good results it
was easier to integrate the more reluc-
tant members. For current projects,
such as TEAM FORTRESS 2, the Cabal
groups are made up of 12 or more peo-
ple, and rarely fewer than eight. The
meetings ended up being shorter, and
they also ended up spreading ideas
around a lot quicker, but I’m not sure
I’d recommend that size of group
initially.

Just about everything in HALF-LIFE

was designed by a Cabal. This at first

seemed to add a bit of overhead to
everything, but it had the important
characteristic of getting everyone
involved in the creation process who
were personally invested in the design.
Once everyone becomes invested in
the design as a whole, it stops being
separate pieces owned by a single per-
son and instead the entire game design
becomes “ours.”

This “ours” idea extended to all lev-
els. Almost every level in the game
ended up being edited by at least three
different level designers at some point
in its development and some levels
were touched by everyone. Though all
the level designers were good at
almost everything, each found they
enjoyed some aspect of level design
more than other aspects. One would
do the geometry, one would do
monster and AI placement, our tex-
ture artist would step in and do a tex-
turing pass, and then one would fin-
ish up with a lighting pass, often
switching roles when needed due to
scheduling conflicts. This became crit-
ical toward the end of the project
when people finished at different
times. If a play-test session revealed
something that needed to be changed,
any available level designer could
make the changes without the game
getting bottlenecked by needing any
specific individual.

This idea also extended to all code,
textures, models, animations, sounds,
and so on. All were under source control
and any individual was able to synch up
to the sources and make whatever
changes were necessary. With a little bit
of self–control, this isn’t as random as it
sounds. It had the added benefit in that
it was fairly easy to get a daily record of
exactly what was changed and by
whom. We would then feed this infor-
mation back into the play-test cycles,
only testing what had changed, as well
as helping project scheduling by being
able to monitor the changes and get a
pretty good estimate of the stability and
completeness of any one component.
This also allowed us to systematically
add features throughout the process
with minimal impact. Once the techni-
cal portion was completed, the engineer
assigned to the feature was able to
synch to all the source artwork and
rebuild any and all files (models, tex-
tures, levels, and so on) affected by the
change.

G A M E D E V E L O P E R D E C E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

48

H A L F - L I F E L E S S O N S

E arly in the development of

HALF-LIFE, skeletal animation

was added solely for compres-

sion reasons; we needed to be

able to store a lot more frames of anima-

tion in fewer bytes than were required by

vertex animation. The DSP effects and the

reworking of the sound system, were

added solely for the ability to add echo

and other single-processing effects.

Adding a mouth to the various humanoid

models was solely for the humor value of

having the scientists scream while play-

ing specific scripted sequences. Each by

itself was considered complete.

Then the animator who added the

mouths asked the programmer who wrote

the DSP code if there was any way to

make the mouth move when the character

talked. He was told it would be easy to

know when the character was talking but

that there wasn’t any way to automatical-

ly move the jaw. He then asked the pro-

grammer who wrote the skeletal anima-

tion code if there was any way to make

the mouth move when the character

talked. He was told it would be easy to

move the jaw, but that there wasn’t really

any way to tell when they were talking.

Independently, both programmers told

him that it was impossible to do and to

quit bugging them about it. It wasn’t until

several weeks later when the program-

mers were sitting around commenting on

what new impossible feature the artists

wanted that they realized that the part

neither one of them understood was in

fact trivial. About an hour later, the char-

acters in the game could talk.

Of course, that wasn’t the end of it.

Since the Cabal had just started, and

since we now had a solution to the prob-

lem of how to explain to the player what

was going on — now other characters

could tell them — it was time to rework

our existing designs. With the ability to

talk to the player, we now needed some

character in the game that the player

would actually want to talk to instead of

just killing right away. We decided that

the trigger-happy security guard mon-

ster — originally designed as an easy

version of the soldiers — should instead

be a supporting character. The scientists

also went from being fairly ambiguous

— good or evil, we had them both ways

— to being definitely on the player’s

side. It also meant that instead of claim-

ing we had a story because we included

a bunch of prose in a README.TXT file

somewhere, we could have a real author

do real dialog with real (within technical

limits) characters and use real story-

telling techniques.

We’ve come to the conclusion that

major ideas can come from anyone, and

that most technologies have hidden fea-

tures in them that will be discovered only

after the initial technology is in place. For

this reason, it’s critical to include every-

one in the design process and create a

mechanism to feed these second-order

effects back into the development

process.

Second-Order Effects

The Workers Control the Means of
Production

Even with all emphasis on group
activity, most of the major features

of HALF-LIFE still only happened
through individual initiative. Everyone
had different ideas as to what exactly
the game should look like, or at least
what features we just had to do. The
Cabal process gave these ideas a place
to be heard, and since it was accepted
that design ideas can come from any-
one, it gave people as much authority
as they wanted to take. If the idea
required someone other than the
inventor to actually do the work, or if
the idea had impact on other areas of

the game, they would need to start a
Cabal and try to convince the other
key people involved that their idea was
worth the effort. At the start of the pro-
ject, this was pretty easy as most every-
one wildly underestimated the total
amount of work that needed to be
done, but toward the middle and end
of the project the more disruptive deci-
sions tended to get harder and harder
to push through. It also helped filter
out all design changes except for the
ones with the most player impact for
the least development work.

Through constant cycle of play-test-
ing, feedback, review, and editing, the
Cabal process was also key in remov-
ing portions of the game that didn’t

meet the quality standards we wanted,
regardless of the level of emotional
attachment the specific creator may
have had to the work. This was one of
the more initially contentious aspects
of the Cabal process, but perhaps one
of the more important. By its very
nature, the Cabal process avoided
most of the personal conflicts inher-
ent in other more hierarchical organi-
zations. Since problems were identi-
fied in a relatively objective manner
of play-testing, and since their solu-
tions were arrived at by consensus or
at least by an individual peer, then an
authority that everyone could rebel
against just didn’t exist.

On a day-to-day basis, the level of
detail supplied in even a 200-page
design document is vague at best. It
doesn’t answer the 1,001 specific
details that each area requires, or the
countless creative details that are part
of everyday development. Any design
document is really nothing more than
a framework to work from and some-
thing to improve the likelihood that
work from multiple people will fit
together in a seamless fashion. It’s the
Cabal process that helped spread
around all the big picture ideas that
didn’t make it into any document —
things that are critical to the feel of
the game, but too nebulous to put
into words. It also helps maximize
individual strengths and minimize
individual weaknesses and sets up a
framework that allows individuals to
influence as much of the game as pos-
sible. In HALF-LIFE, it was the rare area

h t t p : / / w w w . g d m a g . c o m D E C E M B E R 1 9 9 9 G A M E D E V E L O P E R

49

By placing traditional combat action in more challenging

environments we were able to intensify the feeling of ten-

sion and suspense.

The skeletal system allowed the team to change its monster

appearance throughout the development process with mini-

mal impact on existing animations and AI.

• Work directly with the artists —

level designers, animators, and so on—

for however long it takes to get the tech-

nology into a sample portion of the

game. Sit in their office. Hang out.

Watch what they do. Watch what they

try. At this point, you will probably need

to simplify, enhance, and/or document

the interface better.

• Have the artist demo the technology

to the rest of their group. When it comes

from outside, it’ll be viewed with a certain

amount of skepticism. When it comes

from within, it’ll be viewed as a new tool.

• Reintegrate the technology into the

world. You’ve spent the time adding the

new technology, but if the player never

sees it, then all your work will be wasted.

Make sure it gets into the game design

document. Maybe it should be used

instead of other effects. Maybe it can be

used to enhance an existing portion.

Make sure it gets into as much of the

game as possible.

• Keep track of how the technology is

used. After a few months you will proba-

bly notice that the technology is being

used to do things you never considered.

Analyze how it’s being used and look for

improvements or new tools that can make

it even better. You’ll need to keep this up

for the entire project.

Technology Integration Tips

of the game that did-
n’t include the direct
work of more than ten
different people, usu-
ally all within the
same frame.

In order for highly
hierarchical organiza-
tions to be effective,
they require one per-
son who understands
everyone else’s work
at least as well as the
individuals doing the
work, and other peo-
ple who are willing to
be subordinates yet
are still good enough
to actually implement
the design. Given the complexity of
most top game titles, this just isn’t
practical — if you were good enough
to do the job, why would you want to
be a flunky? On the other hand, com-
pletely unstructured organizations
suffer from lack of information and
control — if everyone just does their
own thing, the odds that it’ll all fit
together in the end are somewhere
around zero.

At Valve, we’re very happy with the
results of our Cabal process. Of course,
we still suffer from being overly ambi-
tious and having, at times, wildly
unrealistic expectations, but these
eventually get straightened out and
the Cabal process is very good about
coming up with the optimal compro-
mise. Given how badly we failed ini-
tially, and how much the final game
exceeded our individual expectations,

even our most initially reluctant per-
son is now a staunch supporter of the
process. ■

50

H A L F - L I F E L E S S O N S

The first incarnation of the game’s main character, now

known affectionately as “Ivan the Space Biker.”

Placing the player in a soldier-vs.-

alien conflict helped reinforce the

illusion of an active environment, and

let Valve show off its combat AI with

minimal risk to the player.

a certain level of discipline in your
team’s coding style.

Game development offers a unique
challenge to programmers because of
its combination of cutting-edge tech-
nology and traditional software devel-
opment challenges. Often, traditional
solutions to program design tend to
fall short because of the rapid evolu-
tion of game development technolo-
gies. For instance, Microsoft’s DirectX
libraries constantly evolve, and each
new version has new features and
takes advantage of new hardware and
technologies. But trying to ensure that
your programs will be able to use the
newest versions of DirectX without
having to rewrite lots of code is made

more difficult in the process. The
ability to design upgradability into
your software libraries without sacri-
ficing stability is a rare art today, but
it doesn’t have to be so. To combat
fragile code, this article examines
some traditional approaches and dis-
cusses the benefits and limitations of
these methods.

Ever-Increasing Complexity

The day of the free-coding, seat-of-
your-pants, I-don’t-believe-in-

designing-code-before-I-write-it pro-
grammer is fast drawing to an end.
Today’s top games have become as

sophisticated as mainstream commer-
cial applications, and many compa-
nies feel the pressures that inspired
more efficient design methodologies
such as object-oriented programming
and the concepts of design patterns.
As programs get larger and more
complex, the number of interdepen-
dencies between code modules tends
to increase at an exponential rate,
making code reuse or redesign more
difficult. Companies that do not
feel compelled to design their
software effectively will eventually
be surpassed in the marketplace by
those who do, producing more bug-
free code with a shorter turnaround
time.

G A M E D E V E L O P E R D E C E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

56

D E S I G NC O D E

Making a Break from
Fragile Code Design

b y J a m e s B o e r

s maintaining your game libraries becoming more and more

of a challenge? Is your game’s code base becoming increasingly

fragile? This isn’t an uncommon phenomenon. We’ve all

heard about projects that were cancelled due to unmaintain-

able code and runaway bug counts. Perhaps you’ve even

been part of such a project. The key to avoiding this kind of

catastrophe lies in good code design and a willingness to set

James Boer is the designer and one of the programmers who brought you DEER HUNTER and DEER HUNTER II (and he still has never
gone hunting). Other game credits include ROCKY MOUNTAIN TROPHY HUNTER, PRO BASS FISHING, MICROSOFT BASEBALL 2000, and
MICROSOFT INTERNET HEARTS. He currently is working at WizBang! Software in Seattle, Wash., on a yet unannounced product, and
can be reached for comments, questions, or general advice about virtual deer hunting at jbsys@compuserve.com.

II

The Pitfalls of Procedural
Programming

In procedural programming, data is a
distinctly separate entity from the

code that operates on that data (Figure
1). This creates a situation in which

numerous modules of code might be
looking at a single chunk of data. As
the number of code and data modules
increases, you tend to see data and
code modules become more dependent
on each other. This web of dependen-
cies, often called “code cohesion,”

makes it increas-
ingly difficult
to alter any one
component with-
out adversely
affecting the
others.

When game
code becomes too
cohesive, the
entire system
must either be
redesigned or dis-
carded due to its
inherent lack of
flexibility. This
process is known
as refactoring,
and it is an
inevitable part of
any software
development
cycle. The prob-
lem is not how to
avoid the need to

refactor your software. This is an unre-
alistic goal, as no developer can antici-
pate changing future requirements to
the degree that it will never need to be
redesigned at a fundamental level.
However, you can strive to maximize
the effective lifespan of code. This goal,
achieved through the use of reusable
components which encapsulate both
code and data, was what object-orient-
ed programming (OOP) promised to
deliver. Unfortunately, OOP can’t pro-
vide all the answers on its own. (See
sidebar, “Code Cohesion,” p. 58)

Shortcomings of OOP

OOP encapsulates code and data
into a single module, which in

essence, gives the data a code interface.
This means that the underlying data
can be changed without modifying the
interface to access that data, which
provides an additional level of protec-
tion when requirements change. How-
ever, just as dependencies between
code and data modules can escalate to
an unmanageable level, dependencies
among different code modules can also
create an unmanageable level of cohe-
sion (Figure 2).

Using OOP techniques has simply
delayed the progression of the cohe-
sion by combining code and data mod-
ules. As programs grow in complexity,
however, the code dependencies still
increase to an undesirable level. To
move away from the abstract a bit, let’s
take a look at a real problem and see
how a real solution was implemented.

Real-Life Problem: A DirectX Upgrade

The issue of using DirectX libraries
effectively is something most PC

game developers have had to face.
Although these libraries attempt to
remain backward-compatible with the
interfaces of previous versions, there are
times when compatibility must be bro-
ken in order to introduce new features.
It is at this point that your existing code
becomes incompatible with the new
libraries. The typical OOP solution to an
evolving interface is the creation of a
thin wrapper class for the library, which
uses inline functions to shield the game
programmer from the more mundane
tasks involved in using the library.

h t t p : / / w w w . g d m a g . c o m D E C E M B E R 1 9 9 9 G A M E D E V E L O P E R

57

Data

Data

Data

Data Code

Code

Code

Code

F I G U R E 1 . Cohesion between code and data.

Class

Class

Class

Class

Class

Class

F I G U R E 2 . In OOP, different code modules can become too

dependent upon each other.

For example, blitting from surface to
surface in DirectDraw requires the pro-
grammer to fill out a number of para-
meters in the IDirectDrawSurface4::Blt()
method, including source and destina-

tion rectangles, a source surface, flags,
and a blit structure. The Component
Object Model (COM) structure, on
which DirectX is based, provides much
in the way of standardization, but

unfortunately it has no concept of
default parameters and function over-
loading. So you might consider writing
wrapper Blt() functions which are easi-
er to use. You also might have several
overloaded Blt() functions for different
situations. Class wrapping like this
makes an API easier to work with and
also helps shield the application from
changes in (for this case) the
DirectDraw interface. If function para-
meters within Blt() change, a program-
mer must only make changes inside
the wrapper functions instead of
throughout the game.

Unfortunately, this doesn’t provide
protection from major changes in an
API’s functionality. For instance, in
DirectX 6.0, Microsoft introduced
Direct3D vertex buffers as an alterna-
tive to execute buffers. This type of
change typically has more far-reaching
effects in an application than a simple
change in a function’s parameters. So
some solution must be found to pro-
tect code subsystems from major
changes in one or more basic compo-
nents of another system.

The Facade Pattern: Half a Solution

The facade pattern provides a solu-
tion to the seemingly inevitable

cohesion between different modules of
code in a program. The basic premise
of the facade pattern is this: all code
must be logically divided into discreet
modules, and these modules should,
whenever possible, communicate to
each other through the use of an inter-
face known as a facade. The facade is a
high-level interface to the functionality
of a complete subsystem of objects
which work together to perform some
related task. There will be times when
lower-level functionality of a system
must be accessed directly, but often the
facade can take care of higher-level
functions more easily than another
solution.

These are not radical or even new
concepts. Most programmers have
seen the benefits of some sort of man-
ager class that is used as the interface
to the rest of the program. Using a
system such as this helps to insulate
the remainder of a program when the
implementation of a subsystem
radically changes under the hood
(Figure 3).

G A M E D E V E L O P E R D E C E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

58

C O D E D E S I G N

W hat is code cohesion,

what causes it, and

exactly why is it such

a bad thing? Cohesion

is the result of too many parts of a pro-

gram becoming dependent on each other.

Of course, some cohesion happens by

necessity in any program written, but the

degree of cohesion is what’s important. If

the amount of cohesion remains low, it is

easier to replace any particular subsys-

tem of code because the impact on other

portions of the code will be minimal. If,

on the other hand, the code is highly

dependent upon specific interfaces and

data structures from many other parts of

the program, it becomes impossible to

change without affecting a vast number

of other systems.

Cohesion is caused by a number of

things, but there are some more obvious

coding practices to watch out for. Here

are some programming practices which,

unless used cautiously, can lead to highly

cohesive code:

1. USING GLOBAL VARIABLES AND DATA

STRUCTURES. There are some instances

where globals might be necessary, but

think long and hard before using them.

More often than not, these types of items

can be encapsulated in a class with little

ill effect. Structs, unless used exclusively

inside a particular class, should be used

with caution. Wrapping data and func-

tionality into a single class is usually a

safer approach. The biggest problem with

using a struct to store common data is

that it’s difficult to manage and track who

is actually accessing the data and when

they are doing it.

2. INCORRECT SCALING OF CLASSES AT

DESIGN TIME. It’s a common mistake for

programmers to design their classes too

small and specific, resulting in many

smaller interdependent objects, or too

large, resulting in complex, monolithic

objects that attempt to do far too much.

It’s important to design and use classes

at both ends of the size scale, both to

keep code modules small and readable,

yet also to keep the overall design rela-

tively understandable.

3. ALLOWING MANY SMALL OBJECTS IN DIF-
FERENT SUBSECTIONS OF THE CODE TO COMMU-
NICATE DIRECTLY WITH EACH OTHER. Although

this is sometimes unavoidable, you

should always try to make use of a high-

level interface to communicate between

subsections of code. Inline function can

alleviate most concerns about addition

overhead imposed by the additional

interface layer. If direct communication

between smaller objects absolutely must

occur, try to utilize some communication

abstraction if possible as a go-between,

such as a message object.

Alternatively, here’s three techniques

you can use to ensure you’re code doesn’t

become too highly cohesive.

1. MAKE GOOD USE OF LIBRARIES. If you

can separate your code from the applica-

tion and place it into a library, you’ve

established a natural separation that can-

not easily be breached. Objects in the

library have to remain relatively indepen-

dent of the code in the application.

2. FOCUS ON THE “BLACK BOX” INTERFACE OF

YOUR OBJECTS. Your objects should be per-

forming tasks under the hood, without

other programmers having to worry about

exactly how the tasks are being imple-

mented. This means that you should keep

the public function available for use, make

sure that it’s easily implemented, and doc-

ument it well (including good comments

within the code). Keep your helper func-

tions private or protected. If you find the

number of functions growing extremely

large, perhaps it’s time for a higher-level

object to take over the task, or to consoli-

date a number of the smaller functions

into larger, simpler-to-use function.

3. HAVE A SOLID DESIGN STRATEGY BEFORE

CODING STARTS. This sounds a bit too sim-

plistic to be a practical rule, but it’s an

important one nonetheless. Don’t resign

yourself to the illusion that you’ll go back

later and “do it right.” In my experience,

there’s rarely the time or inclination to do

that. Once code is written and “working,”

it’s hard to convince someone that you

need to go back and spend more time to

rewrite code that essentially does exactly

the same thing.

Code Cohesion

The Virtual Manager Alternative

A lthough the facade works well, it
does present some serious limita-

tions. Let’s assume we wish to build a
facade over every one of our major
subsystems, which we’ve split into
separate libraries. This means that
each major library has a facade to
handle communication to and man-
agement of the subsystem, creating a
cleaner interface between each subsys-
tem and with the application. How-
ever, most applications require some
customization of their libraries to one
degree or another as the requirements
of the application evolve over time
and new features are added. If more
than one application uses the same set
of libraries, then the customizations
must occur at the application level,
instead of the library level. The prob-
lem then boils down to: How can we
customize the libraries at the applica-
tion level and still allow other
libraries to use those customizations?

A while back, we discovered a prob-
lem when working on specific library
modules that needed to access code in
other libraries we had written. The UI
library, for example, required the use of
our Graphics and Input libraries. How
can we ensure that the UI library can
access those other libraries’ functionali-
ty, even though an application may
wish to extend the Graphics or Input
libraries by deriving new classes from
them at the application level?

The answer lies in the clever use of a
static pointer. By instantiating a class
at the application level and passing
the pointer of that object back to the

class to store as a static member, we
give every piece of code, whether at
the library or application level, the
ability to access the object that the
application has created. This object
may be an instance of the class which
resides in the library, or it may actual-
ly be an instance of a class derived
from it. From the other library mod-
ule's point of view, it makes no differ-
ence. The solution is simple and ele-
gant, and provides a good deal of

flexibility. Here's what the code looks
like:
// sample code showing a generic manager

// class

class ManagerBase

{

public:

ManagerBase();

virtual ~ManagerBase();

ManagerBase* GetBase()

{ return m_pBaseObj; }

void SetBase(ManagerBase* pObj)

{ m_pBaseObj = pObj; }

protected:

static ManagerBase* m_pBaseObj;

};

We see a simple mechanism for stor-
ing a single object in its own static
member. Access to the object is
achieved through the GetBase() func-
tion. However, in order to avoid hav-
ing to type in:
ManagerBase::GetBase()->DoSomeFunction();

every time we want to call a function,
we can simplify the call through the
strategic use of an inline function.
inline ManagerBase* Manager()

{ return ManagerBase::GetBase(); }

59

Class Class

Class

Class

Class

Class

Facade Facade

F I G U R E 3 . Visual representation of communication between subsystems using

facades.

This function is placed just below the
class definition in the header file, and
should be used to access the object.
Code calling the manager then looks
like this:
Manager()->DoSomeFunction();

This looks quite a bit more friendly,
and because the function is inline,
requires no additional overhead.

You’ll notice that the class was named
ManagerBase instead of Manager. This was
done with the foresight of knowing that
the inline accessor function, not the
object, should have the name most
closely associated with the actual func-
tionality of the object. For instance,
with a sound manager, you should
name the object SoundManagerBase, which
leaves you free to name the accessor
function SoundManager().

The application is responsible for cre-
ating the manager object and passing
back to the class for storage, like this:
// application initialization code

ManagerBase* pBase = new ManagerBase;

if(!pBase)

return Error;

ManagerBase::SetBase(pBase)

// now we’re ready to call the manager

// functions

Manager()->DoSomeFunction();

Because the application is responsible
for creating and setting the object, it’s
possible to try to access the manager
without having initialized it. This will
result in an access violation, so it is
important to guard against this. Ideal-
ly, the object should be created at the
beginning of the application and
destroyed at the end, which will guard
against this type of error. If for any rea-
son parts of your code might try to
access a manager before it has been cre-
ated, it is your responsibility to wrap
that code in an if statement which
checks to see that a valid object exists
before accessing it. This is the biggest
drawback to this system, but with care-
ful planning it doesn’t have to be a
problem.

A Real-Life Solution

For an example of a practical solu-
tion, let’s look at a sound manager,

as it’s a relatively simple subsystem.
Most sound managers consist of code
that manages a list of sounds, and can
load, unload, play, stop, or set proper-
ties of any of these sounds on demand.
Most applications should be able to use
this set of functions without much
alteration.

At the application level, however,
the benefits of overriding the manager
class become quickly apparent. For
instance, you may wish to add the
capabilities of associating some other
types of data with some sounds. For a
technology demo of an upcoming
product we were showing to publish-
ers, we associated a lip-synch data file
with voice-over recordings. After the
voice-over sounds were loaded, we
could retrieve the associated data file as
well.

A class, which we’ll call
AppSoundManagerObj, is derived from
SoundManagerBase. In addition to deriving
the class from the base class, we’ll also
create a new accessor function, like
this:
inline AppSoundManagerObj * AppSoundManager()

{ return ((AppSoundManagerObj

*)SoundManager()); }

This new accessor gives us a pointer
to the new AppSoundManagerObj interface,
which of course also includes the inter-
face to the original base manager class.

In addition to adding new members
to the derived class, the ability to
derive means that we also gain the abil-
ity to change default behavior of the
manager classes by overriding virtual
functions. This effectively lets us
change the behavior of the manager
even when it is called from other
libraries.

Migrating Library Code

A n advantage of the virtual manag-
er system is that most new code

can first be introduced at the applica-
tion level without modifying the exist-
ing libraries. If you want to use those
features later in other applications
sharing the same libraries, then it’s
simple to migrate the code from the
application level to the library level
(Figure 4). It’s important to note that
when NewFunc(), as shown in the dia-
gram, moved from App 1 to the
Library, no changes to the interface
were apparent to the rest of the pro-
gram. The beauty of this system is that
migrating code in a virtual manager
class doesn’t affect the interface as seen
by the rest of the program.

In addition to the ease with which
you can migrate code from application
to library, the virtual manager also cre-
ates, to a limited extent, a primitive

G A M E D E V E L O P E R D E C E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

60

C O D E D E S I G N

T here’s been a lot of talk about

design patterns in the world

of object-oriented program-

ming (OOP). In a nutshell, a

design pattern is a simply way of

describing the general object-oriented

form of a solution to a specific type of

programming problem. If this sounds a

little vague or abstract to you, it should.

Patterns only give you a blueprint of

object interaction to model your own

classes on. After that, it’s up to you to

build the specific classes that solve

whatever problem you’re facing. What

the pattern gives you is a strategy when

deciding which objects to use, and how

they should work together.

Effective object-oriented design is one

of the more elusive skills a programmer

can master. C++ is really not all that

hard to learn at the basic language level.

After all, one doesn’t necessarily have to

use templates, exceptions, and other

fancy language features. However, it has

a reputation of being a difficult language

to master due in part to the complex art

of designing classes that are clean, effi-

cient, and expandable. Patterns can help

shorten this learning curve by describing

common programming problems, then

showing how a class or hierarchy of

classes can be used to solve the problem

with proven, time-honored class

designs.

In addition to allowing programmers to

see practical object-oriented solutions to

programming tasks that they may

encounter, patterns also give program-

mers a common frame of reference when

talking about programming solutions by

naming the patterns. If I describe a class

utilizing a Factory pattern (a Factory is

responsible for creating objects and

returning interfaces to them), anyone

who understands what a Factory pattern

is automatically can relate to the general

nature and purpose of the class that I’m

attempting to describe.

Design Patterns

versioning scheme. You can see how,
by creating several layers of derived
classes, you could easily choose at the
application level which version of a
library you wished to use.

While there certainly is no magic for-
mula to eliminate bugs from a software
product, a well-planned and solidly-
developed library can certainly go a
long way in stabilizing your code. By
utilizing well-established object-orient-
ed programming principles and solid
code management techniques, you’ll
find that perhaps you’ll be able to
focus more energy and spend more
time writing new code instead of track-
ing down bugs and rewriting old
libraries. ■

61

NewFunc()

Library

NewFunc()

Library

App 1 App 2 App 3

App 1 App 2 App 3

F I G U R E 4 . Migration of code from application-level facade to library-level

facade.

Gamma, Erich; Helm, Richard; Johnson,

Ralph; and Vlissides, John

Design Patterns: Elements of Reusable

Object-Oriented Software

(Addison-Wesley, 1995)

FF OO RR FF UU RR TT HH EE RR II NN FF OO

fter a long series of successful titles such as MECHWARRIOR

2: GHOST BEAR’S LEGACY and MECHWARRIOR 2: MERCEN-

ARIES, Activision held a dominant position in the

giant-robot genre. Due to the commercial success

of this series, though, a tidal wave of similar

products developed by worthy competitors

began to flood the market. Fortunately, Activision found a new and

exciting universe in Dream Pod 9’s Heavy Gear pen-and-paper-based

game, and in the fall of 1997, Activision Studios began production on

the futuristic giant-robot simulator HEAVY GEAR II. HEAVY GEAR II allows

game players to suit up in a giant, high-octane, humanesque battle tank

called a “Gear.” The player is then required to outfit a wily band of AI

Gears (called “squadmates”) and arm them to the teeth. Their small but

G A M E D E V E L O P E R D E C E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

62

b y C l a n c y I m i s l u n d

ActivisionÕs
HEAVY GEAR II

P O S T M O R T E M

Beyond the role of volcanic guitarist and avid jai alai analyst, Clancy enjoys all aspects of engine
design including 3D graphics, AI, tools, and multiplayer integration. For HEAVY GEAR II, he
was responsible for the AI, scripting system, and tools development. Contact him at
cimislund@activision.com.

AA

63

h t t p : / / w w w . g d m a g . c o m D E C E M B E R 1 9 9 9 G A M E D E V E L O P E R

heavily armed reconnaissance force must infiltrate and over-
come a rich variety of environments including swamps, icy
wastes, angry red planets, and the weightless reaches of
outer space. The action in HEAVY GEAR II is much faster than
in other giant robot simulators, as Gears are substantially
smaller than Mechs and much more fragile. This requires
squads to rely primarily on stealth and cunning rather than
brute force and wanton destruction. Players are forced to
pick their battles wisely or face annihilation from the superi-
or enemy legions that infest the various worlds they tra-
verse. When pilots are tired of playing against computer
opponents, they can pit themselves against human enemies
in multiplayer mode with a number of game types to choose
from including “steal the beacon,” “king of the hill,” and
good old-fashioned deathmatch.

To create such an experience, Activision assembled a new
team of its best and brightest in the areas of programming,
art, design, and management. A very aggressive schedule was
adopted targeting a fall 1998 release date (a 13-month devel-
opment schedule). Our original staff consisted of a lead,
graphics, AI and tools, multiplayer and shell programmer.
We had a lead artist, two 3D modelers, a 3D animator, and
two 2D artists creating texture maps for the models and ter-
rain. We also had a lead designer who managed a group of
three game designers, all of whom transformed the storyline
from paper into a computer game. Our management group
consisted of a director, a producer, and an associate produc-
er, who controlled the schedule and the development and
direction of the game and saw to the many needs of the
other production staff.

We programmers were chartered to create a new game
engine and I took on the role of AI, scripting system, and
tools programmer. At the heart of this engine was a rock-
solid memory management and leak-tracking class. Yes,
that’s right. Before anyone ever dreamed of fancy graphics or
stunning game play, we had to deal with this mundane task.
Every C++ class and structure used by the Darkside engine
had roots within this base class. This architecture allowed to
us to detect memory leaks and overwrites as soon as they
appeared in a given day’s build, which allowed us to address
problems immediately rather than during a grueling cycle at
the end of the project. I cannot stress the importance of this
type of planning and execution enough for teams who want
to craft a state-of-the-art game engine. Focusing on the relia-
bility of the application will also greatly increase the immer-
sion factor of any game that’s created with it. After all, what
destroys immersion more than a hard system crash? Hats off
to our lead who took us down this path.

The decision was made to target the game only for
machines outfitted with 3D-accelerated video cards. This
issue was hotly disputed within our team for a while, but
when our management group realized that in order to pull
off realistic 3D graphics, software emulation was a dead deal.
This had profound effects on the schedule, as it freed our
artists and programmers from dealing with the time-
consuming and tiresome work of generating alternate LODs
for such a purpose. This decision also eliminated a huge
chunk of our QA test plan, which could have pushed back
the release date of the title significantly further. We had to
choose between putting out the highest quality game we
could and targeting a consumer market that barely existed at

that point, or publishing a game that had a greater current
market base and little or no novelty by the time it was
released. I suppose it is something all of us developers must
deal with in these days of rampant technological change.

The AI system was another great challenge, as it would
dictate much of the feel of the game. It would also be a key
tool for our design team as they implemented the complex
storyline. We decided at the high level to go with a pure
“autopilot” approach, in which enemy and friendly AI alike
were able to function intelligently without any script at all
for individual units. We wanted to be able to put a unit into
the world and have it go do whatever it thought it needed to
do. Internal to this was a high-level strategic system, a team-
based tactical system that employed a knowledge base, and a
low-level, unit-specific order execution system. The goal was
to take much of the burden off of the design staff, and give
the game a consistent and distinctive feel across all missions.

Nonetheless, our scripting system was very effective and
had some nice features such as an in-game debugger com-
plete with break points, single-step execution, and variable
watch windows. It was based on LEXX/YACC-based C gram-
mar, which hooked into a powerful and easily extensible vir-
tual machine that resided in the Darkside engine. Our script-
ing system was hooked in to our custom game API, which in
turn was coupled to prototypes defined in a file called
STDHG2.H, which ostensibly replaces STDIO.H (a file well
known to all of you C programmers out there). Amazingly
enough, STDHG2.H was used not only to compile the

Artist’s concept for the “Asteroid Shipyards.”

Activision
Santa Monica, Calif.
(310) 255-2000
http://www.activision.com

Release date: July 1999
Intended platform: Windows 95/98
Project length: 19 months
Team size: 20
Critical development hardware: 3D-accelerated 200MHz PC
Critical development software: Softimage 3.7, Photoshop,

Visual C++ 5.0, Visual SourceSafe, and numerous in-house
tools

HEAVY GEAR II

scripts, it was also used in the compila-
tion of the Darkside engine itself. This
convenient relationship between the
scripting language and the engine
source code, plus the fact that the C
language is widely documented, easily
justified our decision use a scripting
language based on C. Scripts were used
mainly to monitor mission progress
and objectives, special behaviors (con-
voys and patrols, for instance), and
interactive control of the action. Our
goal was to keep these scripts as simple

as possible. The autopilot handled all
strategic, tactical, and low-level opera-
tions of unit behavior, yielding control
only at the request of a script. The
autopilot was the default AI handler in
the engine. Scripts could override this
system by posting event callback
requests as shown in Listing 1.

Our multiplayer system was crafted
using a proven proprietary networking
SDK developed at Activision. This
reliance on preexisting technology
allowed us to get multiplayer function-
ality in the engine and working very
early on in the development cycle.
Designing and integrating multiplayer
functionality is often left until the end
of a project, and that can create all
manner of problems. Getting this level
of complexity into our development
schedule early probably saved the
HEAVY GEAR II team an additional six
months of work.

What Went Right

1.EFFECTIVE PROTOTYPES. When I
began working with Activision’s

HEAVY GEAR II production team, it was
composed of a lead programmer, a top-
of-the-line 3D graphics programmer, a
director, a producer, a lead designer,
and a lead artist. At that point, the
team had just been given marching
orders to produce a second prototype
of the game for approval by the corpo-
rate brass. I was hired because this pro-
totype required functional AI to give a
feel of the intended game play. At this
early stage, the game already looked
super and a user-friendly 3D layout
tool for the level designers was up and
running. I couldn’t believe the amount

of work that these people put into pro-
ducing the first prototype. Even more
amazing was the fact that most, if not
all, of this work was of the “keeper”
variety — nearly all the code used in
the green-light prototypes exists in the
Darkside engine today. Our design
tools were augmented in functionality,
but the basic underlying technology
driving these applications remained
virtually unchanged through the
entire development cycle.

2.THE DARKSIDE ENGINE. The
Darkside engine created specifi-

cally for HEAVY GEAR II was an engi-
neering gem. Although game players
get a solid dose of its extraordinary
graphics and animation capabilities, at
its core it is nothing but a simple mem-
ory manager and leak tracker. This
property of the engine allowed the pro-
grammers to track down and remedy
most of the nastier bugs in the game
long before it hit the QA floor. Beyond
its concrete foundation, its modular
design and expert use of C++ made it a
snap to add or delete the different sys-
tems we wished to experiment with.
Most of the foundation code and
graphics subsystem was shared with
our 3D layout tool, saving us a ton of
extra work. This extensibility and prop-
er use of the C++ language was invalu-
able as we faced a deluge of changing
design requirements and additional
game features. Our 3D math library
was easily modified for Intel’s Katmai
Instruction Set, and this enabled our
OEM group to strike up some valuable
partnerships with external vendors.
Although some HEAVY GEAR II–specific
code may still lurk in the recesses of
the Darkside, the engine’s debug ability
and modularity make it a novel choice

G A M E D E V E L O P E R D E C E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

64

P O S T M O R T E M

Early concept for the destruction at “Peace River.”Mining installation on the wastes of Caprice.

// A Script.C

void

Initialized()

{

// Tell AutoPilot that we want control

// back when the unit is killed or

// shot at

AutoBreak(HitPointsExhausted);

AutoBreak(ShotAt);

// Turn over control to the autopilot

// when this function returns

AutoPilot();

}

void

ShotAt()

{

RegisterString("Ha ha, ya missed");

// Resume auto mode

AutoPilot();

}

void

HitPointsExhausted()

{

RegisterString("Damn! I died!");

}

L I S T I N G 1 . Event callback requests.

for any 3D simulator Activision may
wish to develop in the future.

3.THEY LET US DO OUR JOBS. Those of
you who have had the experi-

ence of a tough supervisor or manage-
ment group breathing down your neck
as you tiptoed down your critical path
will appreciate this: our front-line gov-
erning body of director and producer
did a superb job of trusting the profes-
sionals who worked under them. They
made our team aware of upcoming
milestones and the expectations of
Activision’s corporate group without
succumbing to the temptations of
micro-management and general mega-
lomania. This held true even when the
team hit roadblocks or missed mile-
stones. They maintained their trust in
us. This contributed to a fertile envi-
ronment for new ideas and creative
solutions from the team.

Activision’s upper-level management
also contributed to the game’s success
by letting the team decide when the
game was finished. Management could
have released the game early and
announced a patch shortly thereafter, a
practice that is becoming common
with many publishers nowadays.
Instead, Activision gave game players a
break and released a quality, bug-scarce
title with a lot of replayability and
immersion. This is an admirable goal
in this era of market-driven develop-
ment and patch-laden gaming web
sites.

4.GREAT QA
WORK.

With Activision’s
business plan, its
development
teams enjoy the
luxury of a high-
ly organized QA
department. On
the front lines we
have a smaller group
known as “produc-
tion testers.” These
folks deal directly
with the develop-
ment team on a
daily basis and
intercept a
high percentage
of the bugs before
they ever make it out to external test
groups and Activision’s QA team prop-
er. Production testers become very inti-
mate with the inner workings of the

game and are actually solicited
for new ideas to improve the
design. When the develop-
ment team and production test
team feel that the title has
reached beta, Activision’s main
QA test group takes over for a
formalized certification
process. Concise reports are
painstakingly generated to
ensure that only genuine,
replicable bugs ever make it
back to the development
teams. It is this group that is
ultimately responsible for the
release of the title, so they take
their work very seriously.

Beyond Activision’s in-house
QA department, we were aided
by an eager external group
called “Visioneers” who avidly
played any build we furnished
for them. They reported all
manner of problems, from
hardware compatibility issues
to boring game play. The size and diver-
sity of this group made them an ideal
QA avenue, as they represented a more
accurate cross-section of the gaming
community. Activision also invited
people from different age groups to
come into our office and play HEAVY

GEAR II in an observational setting.
Testers’ responses were noted and given
to the development team via written
surveys. All these channels of software

evaluation greatly streamlined
the development process

and contributed
heavily to the

quality of the fin-
ished product.

5.GOOD GAME PACING. If
you sit down and

play HEAVY GEAR II,
you will notice a com-

pletely different feel
from other games in the
genre. The pace is faster
and the action is much

more compelling. This
was a desired feature
documented in the
original specification
of the game, but writ-
ing down that require-
ment in a document
doesn’t necessarily
mean you will pull it
off. At about the same
time that HEAVY GEAR II

was kicking off its production cycle, a
series of first-person action shooters hit
the streets. Most if not all of the team
members were avid deathmatch play-
ers, and fierce competitions were held
to decide which of us was the top dog.
Subconsciously, much of the game-
play feel we experienced while partak-
ing of these frag-fests found its way
into our title. A fun enemy AI unit was
one that somehow evoked the same
emotional response as the poor slob I
had just fragged at lunchtime.

This held true for the HEAVY GEAR II
multiplayer experience as well. We
tried to translate what we thought was
fun and exciting in our lunchtime
deathmatches into experience of fight-
ing against hulking Gears. I’m not say-
ing that if you want to create a great
title with lots of excitement that you
should play first-person shooters, but I
do think that it is important for all
game developers to be avid players as
well. It is the game player that has the
upper hand at identifying the abstract
notion of “fun” and, isn’t it the job of
the developer to create that?

What Went Wrong

1.TO DEMO OR NOT TO DEMO. I love to
play the demo version of any

game before I buy it. In fact, as a gamer
I purchase games based on how good

h t t p : / / w w w . g d m a g . c o m D E C E M B E R 1 9 9 9 G A M E D E V E L O P E R

65

Early sketches of CEF Heavy Battle Frame.

the demo is. As a developer, however, a
demo version of a game is a tricky
thing to pull off. In our case, most of
the game’s critical systems were not
functioning on all cylinders and many
game assets didn’t exist yet. We had to
dedicate most of our time and
resources to this Cimmerian task,
although all our schedule called for
was a small tiger-team consisting of a
designer, programmer, and artist who
worked on it a small percentage of
their day for about two weeks.

When the smoke cleared and the
demo was finally posted, the team gave
a sigh of relief and basked in the
warmth of a job well done. Unfortun-
ately, this feeling quickly evaporated
when we realized that we had taken
almost a three-month departure from
our original development schedule and
totally exhausted ourselves in the
process. I still believe a demo
is important to the success of
a game, but such a task
should be closely correlated
to the production of
the main SKU.
Attempting to factor
the demo development
time and resources into a
schedule significantly
different from the game
itself can profoundly
affect both the prod-
uct’s quality and
timeliness.

2.UNDOCUMENTED

TURNOVER. This is a very com-
mon yet unpredictable aspect of game
development. New and better jobs or
personal issues always seem to snatch
away even the most loyal and dedicat-
ed teammates. As a result, someone
inherits the workload of the fallen
comrade, putting the team and the
schedule in a precarious situation.

When turnover occurred on the
HEAVY GEAR II team, we and our
schedule encountered a nasty surprise.
Many of the systems we inherited
were only partially implemented and
virtually undocumented. To make
things worse, much of the code was
written to implement advanced ani-
mation and mathematical methods
used all over the game engine, and we
didn’t have a technical design docu-
ment that we could refer to in order to
determine the intended solution for
these systems. Working around the

bugs and limitations in these systems
cost the team even more time and
generated bushels of frustration. This
aspect of the turnover phenomenon is
the least respected by developers and
has the most profound and variable
effect on scheduling. A periodic and
thorough code review process is an
effective way to defeat this problem.

3.SCHEDULE TOO AGGRESSIVE. HEAVY

GEAR II was built completely
from the battleground up, so every
aspect of the game required significant
development time. Unfortunately, the
development schedule was too opti-
mistic about how long it would take to
create the title.

Here’s an idea of the scope of the
game, as specified by our design docu-
ment. HEAVY GEAR II required a brand
new game engine and an accompany-
ing suite of design, development, and
debugging
tools.

The game had
more than 40 single-
player missions, as well as
numerous historical and instant-action
missions. Additionally, multiplayer
functionality (including cooperative
play with multiplayer AI) was required
for deathmatch, king of the hill, steal
the beacon, and historical settings. We
were also required to construct three
different modes for each and all of
these missions: terrestrial, space, and
“Gomorrah” (combat in an enclosed,
multi-level, near-future megacity) gam-
ing modes.

The schedule called for a polished
demo version of the game to be posted
on all of the top gaming web sites. I
joined Activision on November 10,
1997, after HEAVY GEAR II’s first proto-
type, and the final product was initially
slated for release for Christmas of the
following year. This period included a
protracted QA run-through, effectively
yielding a nine-month development
cycle. Unfortunately, it was far too

aggressive. Although we implemented
all of the required features as defined in
the original design specification (and
many not included), we missed our
final ship date of October 1998 by nine
months.

4.ELEVENTH-HOUR SOLUTIONS. During
the production of HEAVY GEAR

II, many of our game designers and
external testers began to notice a dis-
tinct absence of thrilling game play,
which were attributed to several fac-
tors: the AI was too vicious, the AI-con-
trolled squadmates were disobedient
and difficult to deal with, and there
was no noticeable ramp-up in difficulty
and emotion — some missions were
frightfully easy and others absolutely
impossible to complete. (The average
life expectancy of the player in some of
our combat scenarios was about four
seconds.)

Our design team felt that they didn’t
have proper tools and enough control

over the AI and the environ-
ment to adequate-

ly tune
their mis-

sions and make
the game fun.
Most of this

was due to the
fact that we

arrogant
program-

mers designed and implemented most
of the game logic without enough con-
sultation and input from our able
game design staff. To address these
issues, our team had to depart totally
from the design document and do a
whole bunch of wild and creative
thinking. Only after some ad hoc
brainstorming sessions and grueling
mission-by-mission playability tests
did the pieces come together. Much of
the kudos we received from the gam-
ing community is directly related to
these solutions.

However, a situation like this could
have had far worse results. The next
time around we will put much more
thought and detail into our game
design documents and provide a much
more efficient education for our game
design staff concerning game play
manipulation and control via scripts.
We will also give them a more promi-
nent role in the initial design of these
systems to enhance their understand-
ing of the underlying technology.

G A M E D E V E L O P E R D E C E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

66

P O S T M O R T E M

5.MARKETING ISSUES.
After experienc-

ing the high quality of
our second prototype,
people at Activision
began to get very excited
about the future of
HEAVY GEAR II. We were
given a highly favorable
reception at E3 in 1998,
where we finally revealed
the game. We subse-
quently released a
playable demo that met
with similar acceptance.
Our marketing staff,
which had been pushing
this title from the start, finally had the
leverage it needed to differentiate
HEAVY GEAR II from its competitors.
Magazine articles began to run, OEM
deals were made, and shelf displays
were created as everyone anticipated
the forthcoming release.

Only the development team knew
how alarmingly behind schedule the
game actually was, however. This was
due in part because of some unfortu-
nate turnover in our staff, but the main

factor was the amount of time and
effort we had allocated to creating the
demo. We had hit roadblocks in the
past and always rebounded in sterling
fashion, so nobody on our team
allowed themselves to believe that the
demo would cause us to miss our target
ship date.

Then we slipped. Suddenly we were
plunged into a nearly interminable
crunch mode. Our slip meant that the
game wouldn’t ship in time for the

Christmas season, so we
decided to shoot for a
more realistic March
release. Our marketing
group did their best to
respond to the blow and
attempted to keep interest
in HEAVY GEAR II alive.
March came and went,
and the release date
became a dancing phan-
tom beyond our reach. We
developers knew we were
close to completing the
game, but nobody could
give our marketing team a
definite date so that they

could keep the buzz up. Marketing did
what it could to keep whetting the
public’s appetite as the weeks rolled by.

Missing the targeted ship date is a
serious risk to teams that rely on new
and unproven technologies — and it’s
especially perilous for teams working
under compressed development sched-
ules. Even the most innocuous develop-
ment tasks, if underestimated or mis-
handled, can send your schedule flitting
away beyond your control.

67

Conceptual art for gateship “Celestrus” orbiting barren Caprice.

We Almost Got It Right…

W e received great reviews from
top gaming publications and

web sites. Our marketing group
piqued the interest of the gaming
community and our development
team produced a superior title. And

since our development team had the
luxury of starting this project from
scratch, we had the opportunity to
learn a wide range of new methods
and techniques that would otherwise
have remained beyond our reach.

Alas, our aggressive schedule and
risk taking proved to be our Achilles’

heel. Shipping a quality title is impor-
tant, but so is strict adherence to
budget and schedule. The HEAVY GEAR

II team learned a great deal from this
experience; we’ll keep that with us for
a long time. At least we left a solid
and reusable game engine in our
wake. ■

68

P O S T M O R T E M

U.S. Postal Service Statement Of Ownership, Management And Circulation (Required by 39 U.S.C. 3685) (1.) Publication Title: Game Developer (2.) Publication No.: 1073-922X (3.) Date of Filing 1-Oct-99
(4.) Issue Frequency: Monthly (5.) No. of Issues Published Annually: 12 (6.) Annual Subscription Price: $49.95 (7.) Complete Mailing Address of Known Office of Publication: Miller Freeman Inc., 600
Harrison Street, San Francisco, CA 94107 (8.) Complete Mailing Address of the Headquarters of General Business Office of the Publisher: Miller Freeman Inc., 600 Harrison Street, San Francisco, CA
94107 (9.) Full Names and Complete Mailing Addresses of Publisher, Editor, and Managing Editor. Publisher: Cynthia Blair, Miller Freeman Inc., 600 Harrison Street, San Francisco, CA 94107. Editor: Alex
Dunne, Miller Freeman Inc., 600 Harrison Street, San Francisco, CA 94107. Managing Editor: Kimberley Van Hooser, Miller Freeman Inc., 600 Harrison Street, San Francisco, CA 94107 (10.) Owner: Miller
Freeman Inc., 600 Harrison Street, San Francisco, CA 94107, a wholly owned subsidiary of United News & Media plc, Ludgate House, 245 Blackfriars Road, London SE1 9UY, England (11.) There are no
Known Bondholders, Mortgages, or Other Security Holders Owning or Holding 1 percent or More of Total Amount of Bonds, Mortgages, or Other Securities (12.) Does not apply (13.) Publication Name:
Game Developer. (14.) Issue Date for Circulation Data Below: October 1999. (15.) Extent and Nature of Circulation / Average No. Copies Each Issue During Preceding 12 Months: A. Total No. Copies (Net
Press Run): 44,947 B. Paid and/or Requested Circulation (1.) Sales Through Dealers and Carriers, Street Vendors, and Counter Sales: 2,732 (2.) Paid or Requested Mail Subscriptions: 31,553 C. Total
Paid and/or Requested Circulation (Sum of 15B1 and 15B2): 34,284 D. Free Distribution by Mail (Samples, Complimentary, and Other Free): 1,439 E. Free Distribution Outside the Mail (Carriers and Other
Means): 1,283 F. Total Free Distribution (Sum of 15C and 15F): 37,007 H. Copies Not Distributed (1.) Office Use, Leftovers, Spoiled: 1,555 (2.) Return from News Agents: 6,385 I. TOTAL (Sum of 15G, 15H(1)
and 15H(2): 44,948. Percent Paid and/or Requested Circulation: 92.64%. Actual No. Copies of Single Issue Published Nearest to Filing Date. A. Total No. Copies (Net Press Run): 43,366 B. Paid and/or
Requested Circulation (1.) Sales Through Dealers and Carriers, Street Vendors, and Counter Sales: 2,460. Paid or Requested Mail Subscriptions: 32,167 C. Total Paid and/or Requested Circulation (Sum
of 15B1 and 15B2: 34,627 D. Free Distribution by Mail (Samples, Complimentary, and Other Free): 1,569 E. Free Distribution Outside the Mail (Carriers and Other Means): 0 F. Total Free Distribution (Sum
of 15d and 15e): 1,569 G. Total Distribution (Sum of 15c and 15f): 36,196 H. Copies Not Distributed (1.) Office Use, Leftovers, Spoiled: 1,695 (2.) Return from News Agents: 5,475 I. TOTAL (Sum of 15g,
15h(1) and 15h(2): 43,366. Percent Paid and/or Requested Circulation: 95.67%. I certify that the statements made by me above are true and complete (signed) Kimberley Van Hooser, Managing Editor.

Alias|Wavefront C3
Apple Computer C2,1
Atomic Games 71
BDDP Corporate 35
Biomorph 70
Black Ops Entertainment Inc. 71
Busybox.com Inc. 6,7
Cinram 69
Conitec Datensysteme GmbH 68
The Coriolis Group 67
Credo Interactive 70
Criterion Software Ltd. 5
Diamond Multimedia 39
Digimation 17
Evans & Sutherland 15
Global Majic Software 29
Intel 13
Lips Inc. 33

MathEngine 27
Maxi Cassette CD Production 70
Metrowerks Inc. 30
Morfit 22
Multigen 25
Musicandsfx.com 70
NewTek Inc. 36
Numerical Design 2
NxN Digital Entertainment 11
Okino Computer Graphics 67
Rad Game Tools Inc. C4
Rainbow Studios 59
Savannah College of Art and Design 69
SN Systems 20,21
Spatial Technology 19
Template Graphics Software 61
Vancouver Film School 69
VR 1 50

N A M E P A G E N A M E P A G E

A D V E R T I S E R I N D E X

the one they titled “Game Gods,” lead-
ing to no end of entirely justified rib-
bing around Ion Storm’s Austin
offices....

Ribbing aside, such an honor repre-
sents an almost unmatchable expres-
sion of respect from journalists, peers
and gamers — the sort of thing one
works a lifetime to achieve. It may sur-
prise you, then, that I almost turned
the opportunity down.

Why?
Well, the crux of the biscuit is that it

seems unseemly and, more important,
inappropriate to single people out for
“star treatment” in a business as
intensely collaborative as game devel-
opment. Before getting into gaming, I
always figured I’d end up making
movies and spent a lot of time studying
that business — you know, “film, the
collaborative art....” Well, I’m here to
tell you that there is no more collabora-
tive medium than gaming. The movies
got nothin’ on us, friends. There are so
few renaissance game creators it’s hard-
ly worth the effort of identifying and
listing them.

In fact, honoring individuals repre-
sents an almost criminal denial of the
critical contributions of the dozens of
team members who are, if anything,
more responsible for the success of the
games you know and love than the
individuals typically credited with the
creation of those games. And the eleva-
tion of individuals to star status, while
understandable in this increasingly
marketing-driven age, symbolizes

much of what I dislike about the game
business as we approach the millenni-
um. But let me be more specific.

I’ve been credited with the creation of
UNDERWORLD and SYSTEM SHOCK, hon-
ored as “The Man” behind ULTIMA VII,
PART 2: SERPENT ISLE, cited as the creative
force behind the “underappreciated”
WINGS OF

GLORY.

As anyone who knows me will tell you,
I’m intensely proud of those titles and
my contributions to them. All of them
appear on my résumé, points of pride
and high-water marks in a career that
also includes some real clinkers.
(Thankfully, no one much talks about
the bad ones anymore but buy me a
drink sometime, and I’ll tell you hor-
ror stories....) Frankly, I find being

credited with those titles — the good
and the bad — vaguely embarrassing.
It would certainly be the height of
arrogance for me to take sole or even
majority credit for them.

UNDERWORLD and SYSTEM SHOCK

would have amounted to nothing —
wouldn’t have happened at all — with-
out the initial impetus provided by
Blue Sky Productions’ founder Paul
Neurath. UW and SHOCK would never
have been as cool or memorable as
they were without the inspirational
leadership of project director Doug
Church (the Most Talented Individual
I’ve worked with in this team-oriented
business, if you must know). And let’s
not forget the contributions of pro-
grammers like Marc LeBlanc, Rob
Fermier, Art Min, Jon Maiara, Dan
Schmidt, and James Fleming, or
designers like Tim Stellmach and
Dorian Hart, or audio guys like Greg
LoPiccolo and Eric Brosius, or testers
like Harvey Smith. UNDERWORLD and
SYSTEM SHOCK are their creations,
not mine. More accurately, they are

our creations, all of us applying our
unique, individual talents to the
accomplishment of mutually agreed-
upon goals.

Similarly, SERPENT ISLE is the product
of more than 30 hearts, minds, and
souls. I came up with a tone and “feel” I
wanted to achieve and a story concept. I
set some parameters on the world and
characters. But the minute-to-minute
details of the storyline were fleshed out
by some amazingly talented designers
— Steve Powers, Dave Beyer, Bill
Armintrout, and others. And I watched,
usually with jaw on ground, as lead
artist Denis Loubet and the rest of the
art team brought to life the world and
characters of SERPENT ISLE. And without
testers like Marshall Andrews, the game
wouldn’t have been half what it ended
up being. I built not one inch of the
map, wrote not one line of dialogue,
implemented not one game function.
So whose game is it?

G A M E D E V E L O P E R D E C E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

72

b y W a r r e n S p e c t o rS O A P B O X

Go, Team!

Human nature being what it is, I was hugely

flattered to be asked to participate in the

September 1999 PC Gamer article about

the 25 most talented people in gaming —

Warren Spector runs Ion Storm’s Austin, Texas, office. He is currently working on a
new role-playing game, DEUS EX. In the past, he has produced games for Origin and
Looking Glass Technologies. You can reach him at wspector@ionstorm.com.

Continued on page 71.

illustration by Jackie Urbanovic

WINGS OF GLORY was largely the same
thing. I came up with an idea, a feeling
I wanted to evoke during play. I worked
with a design team ultimately led by
Dave Beyer to craft a story and basically
nodded my head a lot in stunned agree-
ment as lead artist Whitney Ayres craft-
ed the perfect look for the game. I
watched, often dumbstruck, as pro-
grammers Bill Baldwin, Tony Bratton,
and John Talley brought to near perfect
life the vision I had in my head when
we started. Who deserves credit for
WINGS OF GLORY?

When “Warren Spector’s DEUS EX”
comes out, will people acknowledge
the incredible contributions of lead
programmer Chris Norden, lead
designer Harvey Smith, lead artist Jay
Lee, and the rest of the team? Odds
are, they won’t and I’ll end up writing
more articles and posting more Usenet
messages and talking to more journal-
ists to convince gamers that individu-
als don’t make great games — great
teams do.

Now, maybe there are a couple of
guys in the list of “Game Gods” who
are one-man shows. I certainly find
myself in awe of John Carmack, Peter

Molyneux, Sid Meier, and some others
in the PC Gamer group. (And, man, did
I geek out and have a great time hang-
ing with them!) Maybe I’m the anom-
aly. I doubt it, though. I’m willing to
bet we’re all team-oriented guys.

I suspect the impetus to single out
one person for credit (or blame) is
some kind of human need for short-
hand, a way to separate wheat (good
games) from chaff (bad games) with
some simple formula based on past
successes. Or maybe the spotlight
turned on individual game developers,
making some of us “brand names,” is
just an easy way for marketing guys to
earn their salaries. I don’t know.

What I do know is that I’d be
nowhere without the teams that have
backed me up and often dragged me,
kicking and screaming, toward success.
And before anyone starts assuming I’m
being falsely modest, let me assure you I
have quite enough ego for several ordi-
nary mortals. I know I’m a good design-
er, a good process manager, a good peo-
ple manager, a good business guy, and
I’m even O.K. at the PR end of things.
There are certainly others who are better
than I am at any one of those things,

but put them all together and you’ve
got a package I’ve come to see as pretty
rare over the years, one that allows me
to play to the strengths and help over-
come the weaknesses of almost any
team. I’m not being modest. But “Game
God”? Hmm?

Anyway, if you’re a producer, project
director, or Game God, reflect for a
moment as you talk to the press, pub-
lishers, and PR people on all the unsung
heroes whose names are never men-
tioned. Think of their contributions to
“your” success and to the “individual”
successes of the other lucky folks lauded
on gaming web sites and in the pages of
game magazines. Give credit where
credit is due. I know it’s hard. I know
the press doesn’t want to hear this. But
do it anyway because it’s the right thing
to do.

And if you’re one of the unsung,
well, all I can say is hang in there. We
may live in a PR world nowadays, but
your contributions are appreciated by
people who “get it.” And maybe —
just maybe — if we all start talking
about this, someone will start listen-
ing and you’ll get your well-earned
day in the sun. ■

S O A P B O X

h t t p : / / w w w . g d m a g . c o m D E C E M B E R 1 9 9 9 G A M E D E V E L O P E R

71

Continued from page 72.

	back:

