
V

DECEMBER 1998

G A M E D E V E L O P E R M A G A Z I N E

A t the conclusion of World
War II, Japan was nowhere
near the industrial power-
house that it is today. The

management of Japanese companies
was almost feudal in nature: plant man-
agers were practically overlords, and
workers were viewed as serfs. One of the
people who helped turn Japan around
in the ‘50s was American management
consultant Dr. Edwards Deming.

Deming’s lesson to managers in
Japan and America was fairly simple. In
a nutshell, he said that managers’ infat-
uation with short-term thinking, merit
systems, quotas, management by objec-
tives (MBO), and so on, was all wrong.
Instead, he said, special importance
should be placed on the process of pro-
duction, not the end product itself. If
the production process was good, quali-
ty products would naturally flow from
the company.

It worked. Take Toyota, for instance.
The company’s initial experience sell-
ing cars in America was disastrous; the
Toyota Toyopet was a stark, underpow-
ered vehicle that sold poorly. Later,
armed with production processes based
on the work of Deming, Walter
Shewhart, and others, Toyota went
back to the drawing board (literally).
Using product testing, customer feed-
back, and studying the lessons of the
then-successful Volkswagen Beetle,
Toyota came up with the Corolla. This
car sold well, and thanks to continued
use of process improvement method-
ologies, Toyota’s engineers were able to
improve the product each year.

Of course, games are not pieced
together on an assembly line. But many
of Deming’s lessons still hold true for
game developers. In this month’s cover
feature (“Bringing Engineering
Discipline to Game Development”,
page 37), Kesmai Studios Manager
Gordon Walton explains how better
development processes helped his com-
pany, and many of these experiences
jibe with Deming’s lessons. Many of
you worked your tails off to complete
projects in time for Christmas, so
you’re probably receptive to better
methods of managing projects. Wasn’t
that death march fun?

As Walton explains in his article,
Kesmai (like practically every game
development company) experienced
intense pressure to complete a number
of games in time to guarantee their
delivery to stores by Christmas. The
burnout and frustration that this used
to cause his teams prompted the com-
pany to find ways to gain better control
of projects. And while Walton stresses
that Kesmai’s developers still encounter
the occasional “crunch period,” adopt-
ing formalized development standards
and procedures for their projects has
given everyone more confidence in esti-
mating work duration, resulted in fewer
bugs in their games, and made the
process of developing a title more
rewarding for everyone. Without a
doubt, Walton’s article provides the
most detailed accounting of process
improvement by a game development
studio that I’ve seen.

“Sundance” Postscript

In the wake of my September editorial
(“Where’s Our Sundance?”), I received
quite a number of letters from readers
about various events that either already
exist, or that are in the planning stages.
First, Brooke Boynton of P.F. Magic
reminded me that New Media maga-
zine’s Invision Awards (http://www.
invisionawards.com) honor a wide
range of multimedia and web products,
including games. Second, it appears that
Milia Games (http://www.milia.com),
the French conference for interactive
entertainment, will host a “New Talent
Pavilion” at its upcoming event in
February. Finally, the Game Developers
Conference (http://www.gdconf.com) is
launching the “GDC Independent
Game Festival” at its show in San Jose,
Calif., this March. In the interest of full
disclosure, I must remind everyone that
the GDC and Game Developer magazine
are owned by the same company.
Which, of course, made it very easy for
me to twist their arms. ■

G A M E D E V E L O P E R D E C E M B E R 1 9 9 8

2

P L A NG A M E

Ditch the Death March

www.gdmag.com

600 Harrison Street, San Francisco, CA 94107
t: 415.905.2200 f: 415.905.4962 w: www.gdmag.com

Publisher
Cynthia A. Blair cblair@mfi.com

EDITORIAL

Editor-in-Chief
Alex Dunne adunne@sirius.com

Managing Editor
Tor D. Berg tdberg@sirius.com

Departments Editor
Wesley Hall whall@sirius.com

Art Director
Laura Pool lpool@mfi.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Jeff Lander jeffl@darwin3d.com
Mel Guymon mel@surreal.com
Omid Rahmat omid@compuserve.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook id Software
Susan Lee-Merrow Lucas Learning
Mark Miller Harmonix
Paul Steed id Software
Dan Teven Teven Consulting
Rob Wyatt DreamWorks Interactive

ADVERTISING SALES

Western Regional Sales Manager
Alicia Langer alanger@mfi.com t: 415.905.2156

Eastern Regional Sales Manager
Kim Love klove@mfi.com t: 415.905.2175

Sales Associate/Recruitment
Ayrien Houchin ahouchin@mfi.com t: 415.905.2788

ADVERTISING PRODUCTION

Vice President Production Andrew A. Mickus

Advertising Production Coordinator Dave Perrotti

Reprints Stella Valdez t: 916.983.6971

MILLER FREEMAN GAME GROUP MARKETING

Group Marketing Manager Gabe Zichermann

MarComm Manager Susan McDonald

Marketing Coordinator Izora Garcia de Lillard

CIRCULATION

Vice President Cirulation Jerry M. Okabe

Assistant Circulation Director Mike Poplardo

Circulation Manager Stephanie Blake

Circulation Assistant Kausha Jackson-Crain

Newsstand Analyst Joyce Gorsuch

INTERNATIONAL LICENSING INFORMATION

Robert J. Abramson and Associates Inc.
President Libby Abramson
720 Post Road, Scarsdale, New York 10583
t: 914.723.4700 f: 914.723.4722
e: abramson@prodigy.com

Chairman-Miller Freeman Inc. | Marshall W. Freeman
President/COO | Donald A. Pazour
Senior Vice President/CFO | Warren “Andy” Ambrose
Senior Vice Presidents | H. Ted Bahr, Darrell Denny
Galen A. Poss, Wini D. Ragus, Regina Starr
Ridley, Andrew A. Mickus, Jerry M. Okabe
Vice President/SD Show Group | KoAnn Vikören
Senior Vice President/Systems and Software
Division | Regina Ridley

BPA International Membership
Applied for March 1998

Miller Freeman
A United News & Media publication

h t t p : / / w w w . g d m a g . c o m D E C E M B E R 1 9 9 8 G A M E D E V E L O P E R

5

S A Y S Y O U

Solving the Orc Problem

I just read through the October 1998
issue of Game Developer (all of us

here at GameFX... err THQ... fight over
the latest issue of Game Developer every
month), including Swen Vincke’s
interesting article, “The Orc Problem.”
While the article was informative,
there are, in fact, well-known and bet-
ter ways to solve this exact
problem. This is a classic
resource allocation
problem that
can be
solved quick-
ly and easily
using a tech-
nique known as
dynamic program-
ming. This algorithm
is also sometimes known
as Viterbi decoding or Hidden Markov
model decoding. These algorithms
were developed in the 1960s to assign
nuclear missiles to targets.

You want to avoid greedy solutions
for simple fitness functions if they are
not the optimal choice. If you have a
simple fitness function that only takes
into account the two units involved,
(that is, if unit a attacks unit b you get
one score, and then if you also attack b
with another unit c, the score for
attacking b with c is not affected by
the fact that it has already been
attacked by a), then the “greedy” solu-
tion is optimal. That is, get each of
your units to attack the unit that it
gets the highest score for attacking.
Because the pairwise evaluations are
independent, you need to compare
each of your own units against each
enemy unit one time each. If you have
n of your own units and m enemy
units, this can be calculated in time
that scales as m*n. In an eight on eight
fight, this is 64 pairwise evaluations. In
a battlefield game where the units are
usually spread out and the scoring
function takes into account the dis-
tance between the units involved, this
method can work pretty well. This is
probably less expensive than a single
call to Vinke’s fitness function. But the
trade-off is that it won’t give you as
accurate an answer.

Dynamic programming is the solu-
tion for the harder fitness functions. If
you have a fitness function where the

score for attacking unit a with unit b
depends on what other units are
attacking it (or the configuration of
units as a whole) then you have to use
an algorithm that’s just a little bit
smarter. The trick here is that if I have
an algorithm,
and

if I
give it an

optimal solution for a given
set of units and then add one
more unit to my team, the

algorithm will give me a new
optimal solution. Then, given

any set of units, I just start by
finding the optimal solution given

one unit and then I keep adding units
one by one and finding a new optimal
solution, given the old optimal solu-
tion as input.

Here’s how to execute that task.
First, I make a matrix with enemy
units indexing the rows, and with my
own units indexing the columns. Then
I start with column zero, evaluating
my zero unit against each enemy unit
in turn. Next, I fill in the correspond-
ing matrix cell with that score. I might
evaluate it with Vincke’s fitness func-
tion (Fitness (S, m, n) where S is the
layout of the board, n are all of the
enemy units, and m consists of my

units, which for column zero is my
single unit zero). The highest score in
the column represents the optimal
solution given that single zero unit. It
is also trivially true that the score in
each cell of the column M(0,j) repre-
sents the optimal solution given that
single unit attacking the j enemy unit
(because there is only one such config-
uration). For each subsequent column,
I evaluate a new score for each cell in
the matrix, where the new score for
the cell M(i,j) is the maximum of

Fitness (S, m, n) given my new unit j
attacking the enemy’s unit i in combi-
nation with the configuration
described by the cells of the previous
row in turn. So for M(0,1) I would get
the maximum of Fitness (S, m, n)
where each time my unit 1 attacks the
enemy’s unit 0, and my unit 0 attacks
each of the enemy’s units in turn. I
keep a pointer in cell M(0,1) to the cell
in column 0 that I used to obtain the
maximum score. Once I have done
this for column 1, the largest score in
column 1 represents the optimal con-
figuration given those 2 units. The
score in each cell M(i,j) represents the
optimal score given my unit j attack-
ing the enemy’s unit i, and with all of
my units less than j on the board. I can
repeat the process for each new col-
umn for as many units as I want. Each
cell has a pointer to the cell in the pre-
vious column representing the rest of
the configuration of units. When I get
to the last column and have placed all
my units, I can get the optimal config-
uration of units by following the back
pointers from the cell with the best
score in the last column all the way
back to the first column.

The first column costs n evaluations
of the fitness function. Each subse-
quent column costs n^2 evaluations.
For an eight on eight battle, this is 456
evaluations to get the optimal solution
to the problem. This is far fewer than
the 16 million the article suggests. The
algorithm does scale roughly as n^3,
which can still be prohibitive for large

numbers of units. To handle this, you
can use the simple trick of threshold-
ing. For each new cell M(i, j), only
evaluate against the top k scoring con-
figurations in the previous column.
This immediately cuts the algorithm
complexity down to n^2. You can
prune it even further by not evaluating
every cell in the matrix, but say only
the cells likely to score highly. You
might evaluate each cell in a given col-
umn against a single random configu-
ration of the previous units, and chose

We’ll let you talk. E-mail us at
gdmag@mfi.com. Or write to Game
Developer, 600 Harrison Street, San

Francisco, CA 94107.

N

“This is a classic resource allocation problem
that can be solved quickly and easily using a
technique known as dynamic programming.”

-Rafael Baptista

only the top l scoring cells to fill in.
This reduces the problem down to a
time complexity of n. Glorious linear
time complexity! In a fight with 40
units on 40 units and k = 5 and l = 5 it
would cost 1,000 evaluations of the
function. The solution is not guaran-
teed to be optimal, but unless the
inputs are particularly perverse it prob-
ably will find the optimal answer.
There are further optimizations.
Fitness(S, m, n) is probably expensive.
Because each cell represents a partial
configuration of units, in each cell I
could also store a partial evalua-
tion of Fitness(S, m, n) that I use to
help me evaluate the next column
faster. With a reasonable function,
one could probably get it down to
about 1,000 pairwise evaluations of
units and a few table lookups. To
go even faster you could decode as
described above using a cheap
approximation of the fitness function.
You could chose the top q configura-
tions from a table evaluated with the
cheap function and then evaluate
those q configurations using your more
accurate and more expensive function.
Hey, that gets us down to a constant
number of evaluations of the expensive
Fitness(S, m, n) function (and a linear
number of partial evaluations of some
cheaper function). So we might decide
to evaluate Fitness(S, m, n)… oh, say
ten times. This might make it possible
to field very large numbers of units. Or
you can use all the time you save for
the real-time generation of fractal trees
or some other useless diversion. Why
does this work? If you think about it, a
stochastic algorithm like Vinke’s
spends most of its time evaluating con-
figurations that are way off. It also re-
evaluates very similar configurations
over and over again. Dynamic pro-
gramming zeroes in on the neighbor-
hood of good solutions right away.
Each time you add a unit, it considers
only configurations that are similar to
what it had determined was the opti-
mal configuration with one unit fewer.
Think about what a human would do
when solving the problem manually.
You would assign pieces to enemies
one by one. Once in awhile when
assigning a new piece you might reas-
sign one you had assigned before
because now you have that particular
enemy covered by a better piece. The
dynamic programming approach also

evaluates the situation in an orderly
and predictable way that allows you to
re-use computation in a way that is
hard to do with stochastic methods.

By day, I am the AI programmer for
THQ’s upcoming excellent 3D space
shooting game, EXCESSION. Our AI is
very fast.

R a f a e l B a p t i s t a

G a m e F X

v i a e - m a i l

V I N C K E R E S P O N D S . What the Viterbi

algorithm essentially does is find a least-

cost path, and you correctly point out that

in order for it to do this optimally its com-

plexity qualifies as m times n2, or if m=n,

as n3. Using some heuristic such as select-

ing a fixed number of alternatives as you

do, or if you have access to some knowl-

edge, a variable number of alternatives,

significantly increases the speed of the

algorithm, and indeed in most cases finds

an optimal to near optimal sequence. You

could, however, miss the global optimum.

But I agree that for this particular problem

and for real-time applications it is definite-

ly superior to genetic algorithms, and I

should’ve mentioned that in my introduc-

tion where, as it stands, I might have given

the impression that it didn’t get any better

than n^m. The point of the article, howev-

er, was to introduce the reader to genetic

algorithms, and to show how they can be

applied to a large class of problems where

the search space is complex and where

there are many local optimums. You could

say that the first example, that of the orc

problem, was a bit mischosen, given that

there are faster ways of obtaining a good

solution. Still, that, together with the TSP

example, should have driven home the

point that GAs can be very useful. The fact

that GAs spend time evaluating bad con-

figurations shouldn’t be regarded as a

weakness, however. It is actually their

great strength because it’s how they over-

come the local minima problem. You can

easily modify them not to exploit this by

configuring them to use something like

weakest chromosome replacement togeth-

er with fit-fit selection. Using that, the 40-

40 situation can be transformed into a win

situation in as little as 700 iterations with-

out using any heuristic. Together with a

good heuristic, this number can even be

decreased. Of course, the overhead is still

higher than that of the Viterbi algorithm,

which is why I’m hitting myself on the head

for not mentioning it. One other advantage

GAs have over traditional methods is that

they present several solutions, which can

be significantly different, at a given time.

This can give you some measure of ran-

domness, which can be great when you are

dealing with something like map genera-

tion, for instance. All in all, GAs aren’t the

be all and end all, but they do have signifi-

cant advantages, and because of the ease

with which you can adapt them to new

problems, they are definitely worth consid-

ering when you’re working on a tight

schedule.

Our AI is also very fast. Maybe one day

they can play with each other.

MacOS and Audio File Formats

I read Chuck Carr’s Postmortem,
“989 Sutdio’s NBA SHOOTOUT 98,” in
the September 1998 issue of Game
Developer magazine, and I noticed his
mention of the problem of Mac-
intoshes not being able to recognize
.AIF audio files generated on an Intel
PC. He mentioned that “Sound Forge
and other PC audio programs don’t
embed in their audio files the contex-
tual information that the Macintosh
needs to identify these files.” (p. 49). I
have much experience with manually
setting the file creator and type on HFS
volumes. Carr didn’t mention the cool
utility program called File Kit used for
exactly this purpose. It allows the user
to set the file type and creator, thus
solving problems such as this. Apple
should have included something like
this with their operating system in the
first place.

A n d r e w M u n k r e s

v i a e - m a i l

G A M E D E V E L O P E R D E C E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

6

Y O US A Y S

“Our AI is also very fast. Maybe one day they can
play with each other.”

Swen Vincke of Larian Studios to Rafael
Baptista of GameFX

New Products
by Wesley Hall

Virtually Human

LEARNING MACHINES TECHNOLOGY

GROUP (LMTG) recently released
Nomad/Virtual Human SDK 1.2, a
physical-simulation–based 3D anima-
tion system and database that will gen-
erate animation sequences for you.

If you’ve ever tried to incorporate
physics into a game engine, you may
have realized that modeling leg-loco-
motion is a challenge. LMTG has
attempted to solve some of these diffi-
culties with its SDK. Nomad features a
library of 3D character animations
based on the simulation of physics. The
current release includes a quadruped
class, a hexapod class, a bird class, and
a humanoid bipedal class.

But the SDK is more than a simple
library; it’s an alternative to keyframed
animation. You can specify weight,
joint elasticity, and other physical
attributes (including geometrical para-
meters) to customize the Nomad char-
acters. Built-in sensors and actuators
(virtual muscles), allow you to design
feedback controllers for Nomad charac-

ters to achieve a number of adaptive
behaviors. Each character has a built-in
locomotion controller, and the simula-
tion includes accurate foot-terrain col-
lision detection. This allows characters
to walk and run adaptively over
uneven ground (which you’re also free
to design, along with custom obstacles
and environment objects).

The SDK contains other features
such as real-time learning and adapta-
tion, and the ability to access any nec-
essary character geometry. The overall
effect, LMTG claims, is a novel tech-
nology that “injects personality into
the simulated characters.” A profes-
sional edition of the SDK includes an
AI engine for each character class so
that new animation behaviors can be
synthesized at run time. As a result,
the characters appear to learn.

Nomad/Virtual Human SDK 1.2 is
available for Windows NT, Windows
95/98, and DOS. A single developer's
license includes technical support and
a free version upgrade for $189. The
professional edition of the SDK sells
for $2,500.
■ Learning Machines Technology Group

Sunnyvale, Calif.

(408) 505-5398

http://www.lmtg.com

Easy 3D Audio

QSOUND LABS has just launched
QCreator, a 3D audio authoring tool
for consumers and professionals.

Using normal .WAV or .AIFF mono
sound files, QCreator allows you to
position sound within a three-dimen-
sional space. When you open a mono
sound file, QCreator automatically cre-
ates an Edit Window to display the con-
tents of the file as a waveform graph. A
special Pan Tool lets you decide where
the sound will appear in space — and
how the sound will move. The result is
a customized sound file delivered in 3D.

QCreator will sells for $49.95, and is
available for purchase from the
QSound web site and RealNetworks'
web site at http://www.real.com.
■ QSound Labs Inc.

Calgary, Alberta, Canada

(403) 291-2492

http://www.qsound.com

My First Tool Suite

PARADIGM ENTERTAINMENT has
announced the release of VisKit. This is
a low-budget 3D rendering tool and
API in C++ for constructing 3D appli-
cations. The kit can be used for games
and other applications including simu-
lations, visualizations, interactive web
applications, and real-time players.

Small and fast, Viskit’s minimal run-
time memory footprint and high-
speed unrolled rendering loops help
ensure improved real-time 3D applica-
tion performance. Small footprint or
no, VisKit still has more than 100
classes and provides all the tools and
features necessary to develop high-per-
formance 3D applications. Features
include scene management, hierarchi-
cal state management, extensive vec-
tor and matrix support, multiple cam-
era support, particle systems, texture
and image import in most of the pop-
ular formats, automatic MIP-map gen-
eration, and more.

Viskit is layered on OpenGL and
DirectSound, and is compatible with
accelerated graphics. It sells for $99
with no additional royalties or licens-
ing fees. The system requirements are
a Pentium 166 or greater, Windows
95/98 or Windows NT 4.0, OpenGL,
and Microsoft Visual C++ 5.0. An
accelerated 3D graphics adapter is
recommended.
■ Paradigm Entertainment Inc.

Dallas, Tex.

(972) 960-2301

http://www.viskit.com

News from the World of Game Development

9

h t t p : / / w w w. g d m a g . c o m D E C E M B E R 1 9 9 8 G A M E D E V E L O P E R

New Products: Learning Machine’s
Nomad, QSound’s QCreator, and VisKit
from Paradigm Entertainment pp. 9

Industry Watch: Fiscal results, pend-
ing lawsuits, cooperative business
arrangements, and another engine for
sale pp. 10

Product Reviews: NuMega’s
TrueTime pp. 12

The Nomad/Virtual Human SDK has

foot-terrain collision detection so

characters can run over uneven

ground.

B I T B L A S T S

Industry Watch
by Alex Dunne

PARIS-BASED PUBLISHER
INFOGRAMES reported its results for
the fiscal year ending June 30, and
things look much rosier for the compa-
ny this year. Infogrames posted rev-
enue of $271 million, compared to
$118 million last year, amounting to a
$15.5 million profit. Last year, the
company lost $6 million. The company
attributed its success to several strong-
selling titles, including V-RALLY, which
sold over two million copies world-
wide. Company president and CEO
Bruno Bonnell said that the company’s
MISSION IMPOSSIBLE title, which was
released in July 1998 for the N64, has
reached the million-units–sold mark.
DIAMOND MULTIMEDIA SYSTEMS
reported financial results for its third
quarter, which ended September 30.
The company’s net revenues were up 34
percent to $123.2 million, from $92.0
million for the third quarter of 1997.
The company incurred a net loss for
the third quarter of $22.2 million, com-
pared to a net loss of $2.5 million in
the third quarter of last year. William
Schroeder, president and CEO, said that
the net loss was partly as a result of
“price protection charges related to our
Monster3D II product, whose supply,
along with that of other Voodoo2-based
graphics subsystems, exceeded demand
during the third quarter.”
AUREAL SEMICONDUCTOR, which
builds the Vortex audio chip for
sound cards (including Diamond’s
Monster Sound MX300) received a
patent for a “Method and Apparatus
for Efficient Presentation of High-
Quality, Three-Dimensional Audio,
Including Ambient Effects.” It was the
19th patent for the company, and it
has 39 additional audio patent appli-
cations in the works. The company’s
portfolio of interactive audio patents
are related to all sorts of head-related
transfer function (HRTF) technologies,
including measurement HRTFs, ren-
dering HRTFs, and implementation
HRTFs. Creative Labs, however, hasn’t
been too thrilled with some of
Aureal’s marketing and advertising
claims, apparently. CL filed a lawsuit
against Aureal claiming “false adver-
tising” and “unfair business prac-

tices.” The Creative complaint centers
primarily on a comparison chart pre-
pared by Aureal highlighting feature
differences between their technology
and CL’s SoundBlaster Live!
AMERICA ONLINE signed a multititle
distribution agreement with online
game developer, VR-1. In the deal,
VR-1 will be providing AOL with three
new pay-to-play games in 1999. The
games included in the agreement
include VR-1 CROSSROADS, NOMADS OF

KLANTH, and THE S.A.R.A.C. PROJECT.
Each of these games was built around
the VR-1 Conductor technology plat-
form, and each supports hundreds of
players in a single arena. AOL has the
option to license up to four additional
VR-1 titles. VR-1 also developed the
first two pay-to-play games for
Microsoft’s online gaming service (now
called the MSN Gaming Zone) and has
several international distribution agree-
ments in place, including one with
BT’s WirePlay in the U.K.
HERE’S ANOTHER ENGINE for your
growing list of “technologies for sale.”
3DO announced plans to license the
engine for REQUIEM: AVENGING ANGEL,
which is slated for release in January
1999. The Requiem Engine, according
to Trip Hawkins, “has a notable pedi-
gree.” OK, Trip. Actually, this probably
isn’t just hot air. The company’s
Cyclone Studios division, which is
headed up by General Manager Helmut
Kobler, also developed last year’s
UPRISING title and does indeed have
good technical chops. We’ll find out
soon enough.
ACTIVISION AND VIACOM CONSUMER
PRODUCTS (the licensing division of
Paramount Pictures) announced a 10-
year alliance that will allow Activision
to develop and publish interactive
entertainment titles based on the Star
Trek franchise. Under the terms of the
agreement, Activision has obtained
the exclusive worldwide publishing
rights for multiple platforms to all
Star Trek properties, subject to the
expiration of existing publishing
agreements that Viacom Consumer
Products currently maintains with
respect to certain Star Trek properties.
The deal also provides Activision with
exclusive worldwide rights to any new
television series or motion picture
based on Star Trek. Activision intends
to release its first Star Trek title based
on Paramount Pictures’ holiday ’98

feature film, Star Trek: Insurrection. The
announcement represents the first
time that Viacom Consumer Products
has entered into an exclusive umbrella
deal with an independent entertain-
ment software publisher.
SILICON GRAPHICS took a 10 percent
stake in graphics chip maker Real 3D
and said that the two companies would
undertake cooperative marketing, tech-
nology, and business development.
Under the terms of the agreement, Real
3D will be a preferred provider for
future SGI workstation products. SGI
will assist in the marketing of Real 3D
products such as RealScan 3D, and the
two companies will collaborate on
future software technologies and initia-
tives. SGI’s investment is worth
between $20 million and $25 million
to the Orlando, Fla., company, accord-
ing to industry sources. Intel owns 20
percent of Real 3D, while Lockheed
Martin, which founded Real 3D in
1996, owns the remainder.

Separately, SGI and Real 3D agreed
to end litigation and entered into a
royalty-free graphics patent cross-
license. The agreement adds to licens-
ing deals Real 3D already has with
Lockheed Martin, Intel, and Sega.
Looks to be an amenable way to end a
lawsuit, don’t you think? ■

10

GDC Roadtrip: Baltimore
BALTIMORE CONVENTION CENTER

Baltimore, Md.
December 10 & 11, 1998
$225
http://www.gdconf.com/1998/
roadtrips

GDC Roadtrip: Boston
HYNES CONVENTION CENTER

Boston, Mass.
December 12 & 13, 1998
$225
http://www.gdconf.com/1998/
roadtrips

UPCOMING EVENTS

CALENDAR

G A M E D E V E L O P E R D E C E M B E R 1 9 9 8 h t t p : / / w w w. g d m a g . c o m

B I T B L A S T S

G A M E D E V E L O P E R D E C E M B E R 1 9 9 8 h t t p : / / w w w. g d m a g . c o m

12

NuMega’s
TrueTime

by Ron Fosner

A s Dan Teven mentioned last
december, Game Developer
magazine has reviewed a slew

of profiling tools recently. This is no
accident. We’ve made a very conscien-
tious effort to cover these types of
tools for a good reason. While every-
one is busy jumping on the 3D hard-
ware acceleration bandwagon, it’s easy
to forget the mantra of the game devel-
oper: quick, tight code. Just because
everybody assumes that game players
have 3D accelerators doesn’t mean that
we can code like we’re building a word
processor.

TrueTime integrates right into the
Visual C++ development environment.
This integration, combined with its
excellent user interface, makes it easy
to profile an application. The downside
is that its suggested retail price is
slightly higher than that of VTune, but
you can get a free evaluation copy first
from Compuware to determine
whether it’s worth the investment.
THE TRUETIME TRIALS. Installing
TrueTime is easy, and once completed,
the application adds a special toolbar
to your Visual C++ IDE. With this tool-
bar in place and a project loaded, you
have the option of instrumenting all or
just part of your application. Profiling
your application is as easy as selecting

the “Rebuild with TrueTime”
button. Your application
recompiles with TrueTime
instrumentation, links to
TrueTime, then executes.
Then, as your application
runs, TrueTime records its
timing information. When
your application terminates,
TrueTime brings up a win-
dow that displays various
performance statistics for
that profiling session.

I began testing TrueTime
using my favorite example, a

Direct3D Immediate Mode application
that translates an object to some dis-
crete 3D location. Along the way, I
need to create a transformation matrix,
which is generally composed of rota-
tions about the x, y, and z axes, plus a
translation. This code is part of an
example that I use in my course on
code optimization to illustrate how to
use the matrix manipulation routines
provided with Direct3D Immediate
Mode. Unfortunately, this example cre-
ates a transformation matrix that is
composed of a translation and three
rotations in a mathematically ineffi-
cient manner (four matrix multiplies
that are easily simplified), while also
being inefficient with temporary stor-
age. Straight out of the SDK, this code
exhibits numerous inefficiencies.
Because I already have an optimized
version, I wanted to see how TrueTime
would profile the original source.

I first created a test harness that sim-
ply called one particular code segment
from the Direct3D application in a
loop. With this working harness, it was
simply a matter of pushing the
TrueTime button in the IDE to recom-
pile my application with TrueTime
instrumentation. During this process,
the application’s source files get recom-
piled with invisible wrappers around
all the function entry and exit points,
which puts these into a TrueTime data-
base. TrueTime can then measure the
time spent in a function, as well as the
time spent in each function that a par-
ticular function calls — right down to
operating system calls.

When TrueTime finishes compiling
your application, you run your instru-
mented application via another
TrueTime button on the IDE, which
launches the TrueTime monitor. The
TrueTime monitor is a status window
that shows the timing information for
your application. TrueTime continues
to monitor your program until it has
terminated, at which point the initial
TrueTime interface comes up (Figure 1).

The TrueTime interface is highly
interactive, and allows you to quickly
drill down into your program to find
the areas that take the most time. The
left-most column shown in Figure 1 is
the Session Window and it simply dis-
plays information about the current
TrueTime session. The interesting
information is contained in the Filter
Pane, located in middle column. From
the highlighted bar in this column you
can see that MATRIX.EXE, the test har-
ness, takes up over 99 percent of the
time. Just below that, you can see that
“System” takes up the remainder. The
item highlighted in the Filter Pane dis-
plays relevant data in the right pane,
called the Session Data Pane. By select-
ing the executable, the Session Data
Pane displays timing data for the entire
program. The other top-level tabs in
the Filter Pane allow you to filter the
display by various function definitions.

In Figure 1, the Session Data Pane
indicates that the function takes up
the majority of time spent in the pro-
gram. The “% in Function” column
tells how much time was spent just in
a particular function. The “% with
Children” column shows how much
time was spent in a function plus all of
the other functions that were called
while we were in this function. The
last two columns describe how many
times the function was called and the
average execution time of the function.
There are many other options that can
be displayed in the Session Data Pane,
including the first, maximum, and
minimum execution times of the func-
tion, the average execution time
including children, and so on.

The Session Data Pane illustrates
TrueTime’s excellent user interface.
Double-clicking on the MMaattrriixxMMuulltt func-
tion in the Session Data Pane brings
up the Function Details window
shown in Figure 2. The two pie chart
sections give details about both the
functions that call MMaattrriixxMMuulltt and func-

Ron Fosner works on fast 3D rendering code at Data Visualization, is the author of
OpenGL Programming for Windows 95 and Windows NT from Addison-Wesley,
and has taught course on code tuning at the Game Developer’s Conference and the
Win-Dev conferences.

F I G U R E 1 . TrueTime’s initial interface.

Excellent Very Good Average
 PoorBelow Average

h t t p : / / w w w. g d m a g . c o m D E C E M B E R 1 9 9 8 G A M E D E V E L O P E R

13

tions that MMaattrriixxMMuulltt calls itself. As you
can see, only the ppaassss11 function calls
MMaattrriixxMMuulltt. More interesting informa-
tion can be gleaned by examining the
child functions that MMaattrriixxMMuulltt calls.
Additional details appear when the
cursor hovers over a particular area.
For instance, in Figure 2, my cursor is
over the yellow slice of the pie chart
and a pop-up informational window
has appeared. The green slice indicates
time spent in the function itself, the
other slices indicate time spent in
other functions called from MMaattrriixxMMuulltt.
Of particular interest are the yellow
and blue slices, which contain
DD33DDMMaattrriixx::::OOppeerraattoorr(()), and DD33DDMMaattrriixx::::OOpp--
eerraattoorr(())__2255ff00. The former is the compil-
er-generated name for the “()” opera-
tor (the parentheses operator) for the
DD33DDMMaattrriixx class from the DirectX SDK.
The latter name is a bit obscure, but
thankfully a button in the upper left
corner of the window displays the
source code of the currently selected
function. Double-clicking on the
DD33DDMMaattrriixx::::OOppeerraattoorr(())__2255ff00 line in the
Function Details window brings up
DD33DDMMaattrriixx::::OOppeerraattoorr(())__2255ff00. If we click on
the source button, the Session Data
Pane will then display the source for
DD33DDMMaattrriixx::::OOppeerraattoorr(())__2255ff00. The left
columns indicate the count and the
execution time percentage for each
line of the program. Unlike Intel’s
VTune, which disassembles source code
and displays assembly instructions and
performance information, TrueTime
stops at the source code level.

With TrueTime, it’s just as easy to
profile a retail build as a debug build.
If you do, that you’ll find that the ooppeerr--
aattoorr(()) measurements go away. However,
if you’re like me, you spend most of
your time running the debug build,
and it’s easy to get a skewed view of
your program’s performance, because
an often called utility class contains a
high overhead in debug mode.
Another nice feature of TrueTime is its
ability to display the results of more
than one timing session in multiple
windows simultaneously.

Thanks to TrueTime’s timing infor-
mation, you can make modification to
your code based on timing results, test
new these new strategies, and verify
their results. These are all features that
should be present in any good profiler.
But TrueTime make these tasks very
easy thanks to its seamless integration

with the development environment.
On the negative side, TrueTime is

an instrumenting profiler. This means
that every function call that you’re
profiling has to have a TrueTime
wrapper around it before it’s executed.
This means your program will typical-
ly run two to three times slower than
the non-instrumented version.
Additionally, TrueTime by default
won’t measure any threads that are
outside of your process. If you want a
more “system-wide” profile, NuMega
has something it calls Quantum
Technology. Basically, it’s simply a
method of including or excluding
time spent in other processes.
However, this doesn’t extend into sys-
tem calls. This means that if you’re
thrashing virtual memory, you won’t
see it. But by far I feel the biggest neg-
ative is its price: $499 for the stand-
alone version (up from $399 in
September 1998, and now more
expensive than VTune). With the cur-
rent version, it’s impossible to turn
profiling on or off — it just runs
while your application is running. I
pointed out this fact to the folks at
NuMega, and they informed me that
they’re building this feature into the
next version.

Despite some of these problems, I
feel that TrueTime is excellent for any
programmer looking to find out how
his or her application really spends its
time. And, given the fact that
TrueTime is also bundled with
NuMega’s DevPartner Studio (which
includes utilities such as Bounds-

Checker and SoftICE), it may be a bet-
ter deal to purchase it within that
suite of products if you don’t already
own them.

So, how does TrueTime compare to
VTune? Well, it’s a little easier to use
and the integration with the Visual
C++ IDE is excellent. While VTune will
force you to profile the entire system,
TrueTime will profile just your applica-
tion. Additionally, TrueTime just pro-
files source code, not the actual assem-
bly-level statements. If you need to
profile either the system or you do
occasional assembly code optimiza-
tions, then you might want to stick
with VTune. But if you just want to get
up and running quickly, and you use
Visual C++, TrueTime may be the prod-
uct for you. ■

Company:
Compuware (NuMega)
Nashua, N.H.
(603) 578-8400
http://www.numega.com

Price:
$499 (DevPartner Studio
is $1,199).

System Requirements:
Windows 95/98,
Windows NT 4. Requires
Visual C++ 4.2 or higher,
Visual J++ 6.0 or Visual
Basic 5.0. Requires a
Pentium processor, 32MB
RAM, and approximately
17MB of disk space.

Pros:
1. TrueTime features an
easy-to-use interface for
viewing timing informa-
tion.

2. It integrates well with-
in Visual C++

3. TrueTime makes it
easy to profile release
builds

Cons:
1. TrueTime only works
with Microsoft develop-
ment tools.

2. It slows down the
speed of your application
while it’s testing it.

3.It’s slightly (about $70)
more expensive than
Intel’s VTune. (These
tools are getting a bit
pricey.)

4. TrueTime doesn’t drill
down into assembly like
VTune can.

TrueTime 1.0 for Visual C++:

F I G U R E 2 . TrueTime’s Function

Details window.

b y J e f f L a n d e r G R A P H I C C O N T E N T

Now, think about the fun you could
have morphing between a 3D model of
your brother and the monkey — that
could make your week. Most 3D ani-
mation packages will allow you to do
this, but what you might really be
looking for is a real-time 3D demo fea-
turing your brother in some sort of
failed lab experiment that you could
mercilessly blow away. Or something
like that…

To engage in this advanced level of
fun, you need a method for morphing
between two 3D shapes. This tech-
nique is not only amusing, but also
quite useful. 3D morphing can help
create organic animation that would
otherwise be difficult to develop.

Morphing and
Real-Time 3D Animation

A nother use for 3D morphing is
smoothing between keyframes.

In games such as QUAKE 2, you may
read that the animation in-betweens
are interpolated. I have discussed
before how in QUAKE (and many 3D
action games) each frame of anima-
tion is actually represented by an indi-
vidual mesh. By sequencing through
those meshes, the illusion of anima-
tion is created. However, the original
object frames are created at a set frame
rate, say 10 frames per second (FPS).
This means that the smoothest those
animations can play back is at that
original 10 FPS. If, for example, the
engine is actually displaying at 60 FPS,
each frame of character animation is
held for six frames. That’s quite a
wasted opportunity. Smoother anima-
tion could be achieved by morphing
from one frame to the next over those
six frames. That is exactly what the
“feature hypers” (you know, the fea-

ture-happy marketing dudes) are talk-
ing about when they talk about inter-
polated in-betweens. But what exactly
is being interpolated?

LERP = Morph

T his is an important equation in the
game programmer’s arsenal. Many

programmers who have been working
in 3D for some time take this for grant-
ed as widely known information. But
judging by the mail I get and the com-
ments I see in the public forums, there
are many individuals who aren’t up-to-
speed on how morphing works. The
secret to object morphing is that the
only thing that changes between the
two models is the vertex positions in
the object (a little white lie — I’ll get to
the truth later). When you morph
between 3D objects, you are doing a
“linear interpolation,” or LERP,

between the vertex positions in the
two objects. For this technique to
work, the two models you are morph-
ing between must have identical vertex
counts, and the vertices must corre-
spond to each other. This means that
vertex 1 on the first model should end
up in the position of vertex 1 in the
second model. The easiest way to make
sure that the models are created cor-
rectly is to actually create the second
model by moving the vertices in the
first model into the shape you want.
That way, the models will interpolate
exactly the way you created them. By
now you have the models and want to
morph between them. The formula for
a LERP between two values is

IInnBBeettwweeeenn == VVaalluuee11 ++ ((((VVaalluuee22 -- VVaalluuee11)) **

lleerrppVVaalluuee));;

WWhheerree lleerrppVVaalluuee iiss aa ffllooaatt bbeettwweeeenn 00 aanndd 11..

Now, this formula needs to be applied

h t t p : / / w w w . g d m a g . c o m D E C E M B E R 1 9 9 8 G A M E D E V E L O P E R

15

Mighty Morphing Mesh Machine

Most game people have played around with those programs that will

morph between two graphic images. They allow you to take a picture

of your brother and a picture of a freckle-faced baboon, play with the

sliders, and enjoy hours of endless amusement.

Morphing between a lounging postion on the beach and a slave position at his desk,
Jeff can be found at Darwin 3D working on real-time game technology. Email him at
jeffl@darwin3d.com with suggestions for the next keyframe.

F I G U R E 1 A . Your model at rest, for

the first frame of animation.

F I G U R E 1 B . The same model, frame

two. You’ll get smoother animation

by morphing between frames.

to every parameter that will vary during
the morph. For a 3D vertex coordinate,
those parameters would be the x, y, and
z values for that point. This is where I
explain the truth behind that little
white lie. There may be more parame-
ters than just the coordinates which you
wish to interpolate for an individual
vertex. If your game engine supports
real-time lighting and your model data
contains vertex-normal information, for
example, you may want to interpolate
the normal values as well. Also, if your
model contains vertex color informa-
tion, an interesting effect may be creat-
ed by interpolating the color.

What about textures? If your 3D
model contains texture coordinates,
you may want those coordinates to
change over time as well. However,
there are many possible pitfalls associ-
ated with morphing textures. Small
changes in UV coordinates can cause a
major shift in the appearance of a
model that may not be desired.
Likewise, it may be more interesting to
change the texture completely for the
second position. This complicates
things a bit. However, if the UV coordi-
nates stay constant throughout the
morph and only the texture changes,
image processing techniques can help.
By using a 2D dissolve to create a blend-
ed image between both textures, this
will smoothly change along with the
model. These blended textures could
either be prebuilt as a texture anima-
tion or actually created on-the-fly, if

possible. Multitexture hardware can
provide a hardware-accelerated method
for blending between two textures via
methods such as the DD33DDTTOOPP__BBLLEENNDDFFAACCTTOORRAALL--

PPHHAA and DD33DDTTOOPP__BBLLEENNDDDDIIFFFFUUSSEEAALLPPHHAA in
DirectX 6 (See “Multitexturing in
DirectX 6,” Game Developer, September
1998). With multitexture hardware

G R A P H I C C O N T E N T

G A M E D E V E L O P E R D E C E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

16

##ddeeffiinnee LLEERRPP((aa,,bb,,cc)) ((aa ++ ((((bb -- aa)) ** cc))))
//
//// PPrroocceedduurree:: mmoorrpphhMMooddeell
//// PPuurrppoossee:: DDooeess tthhee MMoorrpphh ffoorr tthhee MMooddeell
//// AArrgguummeennttss:: PPooiinntteerr ttoo mmaaiinn bboonnee
//
GGLLvvooiidd CCOOGGLLVViieeww::::mmoorrpphhMMooddeell((tt__BBoonnee **ccuurrBBoonnee))
{{
////// LLooccaall VVaarriiaabblleess //

iinntt lloooopp,,ppooiinnttlloooopp;;
ffllooaatt **ddeesstt,,**ssrrcc11,,**ssrrcc22,,rraattiioo;;

//
iiff ((ccuurrBBoonnee-->>vviissuuaallCCnntt >> mm__ccuurrVViissuuaall))
{{

ssrrcc11 == ccuurrBBoonnee-->>vviissuuaallss[[00]]..vveerrtteexxDDaattaa;; //// FFRRAAMMEE 11
ssrrcc22 == ccuurrBBoonnee-->>vviissuuaallss[[11]]..vveerrtteexxDDaattaa;; //// FFRRAAMMEE 22
ddeesstt == ccuurrBBoonnee-->>vviissuuaallss[[22]]..vveerrtteexxDDaattaa;; //// DDEESSTTIINNAATTIIOONN FFOORR MMOORRPPHHEEDD FFRRAAMMEE
rraattiioo == mm__SSlliiddeerr-->>GGeettSSeettttiinngg(());; //// GGEETT MMOORRPPHH VVAALLUUEE ((00 -- 11))
//// LLOOOOPP TTHHRROOUUGGHH TTHHEE VVEERRTTIICCEESS
ffoorr ((lloooopp == 00;; lloooopp << ccuurrBBoonnee-->>vviissuuaallss[[00]]..ttrriiCCnntt ** 33;; lloooopp++++))
{{

//// GGOO TTHHRROOUUGGHH EEAACCHH EELLEEMMEENNTT IINN TTHHEE VVEERRTTEEXX SSTTRRUUCCTTUURREE
ffoorr ((ppooiinnttlloooopp == 00;; ppooiinnttlloooopp << ccuurrBBoonnee-->>vviissuuaallss[[00]]..vvSSiizzee;; ppooiinnttlloooopp++++))
{{

//// TTHHEE NNEEWW PPOOSSIITTIIOONN IISS AA LLEERRPP BBEETTWWEEEENN TTHHEE TTWWOO PPOOIINNTTSS
ddeesstt[[((lloooopp ** ccuurrBBoonnee-->>vviissuuaallss[[00]]..vvSSiizzee)) ++ ppooiinnttlloooopp]] ==

LLEERRPP((ssrrcc11[[((lloooopp ** ccuurrBBoonnee-->>vviissuuaallss[[00]]..vvSSiizzee)) ++ ppooiinnttlloooopp]],,
ssrrcc22[[((lloooopp ** ccuurrBBoonnee-->>vviissuuaallss[[00]]..vvSSiizzee)) ++ ppooiinnttlloooopp]],,rraattiioo));;

}}
}}

}}
}}
//// mmoorrpphhMMooddeell

L I S T I N G 1 . The morph code.

FFoorrmmaatt UUsseedd EExxppoorrtteedd IImmppoorrtteedd NNoorrmmaallss PPoollyy VVeerrtteexx UUVV CCoooorrddss AAnniimmaattiioonn HHiieerraarrcchhiieess AAssccIIII EEaassee ooff UUssee

BByy BByy BByy CCoolloorr CCoolloorr ((1100 == EEaassyy))

..33DDSS 33DDSS RR44 11,,22,,88 11,,22,,88 XX XX XX XX XX XX 66 ((ww// KKTTXX lliibb))

..33DDSS AAssccIIII 33DDSS RR44 11 11 XX XX XX XX XX XX XX 66

..DDXXFF AAuuttooccaadd 11,,22,,33,,44,,66,,77,,88 11,,33,,55,,66,,77,,88 XX XX XX 77

LLWWOOBB LLiigghhttwwaavvee 55 55 XX XX XX 55

..OOBBJJ WWaavveeffrroonntt 22,,33,,66,,77,,88 22,,33,,66,,77,,88 XX XX XX XX XX 1100

GGaammee EExxcchhaannggee NNiicchhiimmeenn 77 77 XX XX XX XX XX XX XX 99

..HHRRCC SSooffttiimmaaggee 88 88 XX XX XX XX XX XX 11

MMAAXX 33DDSS MMAAXX 22 22 XX XX XX XX XX XX 00 ((MMaaxx oonnllyy))

MMaayyaa AASSCCIIII MMaayyaa 66 66 XX XX XX XX XX XX XX 88

VVRRMMLL VVRRMMLL 22,,77,,88 22,,77,,88 XX XX XX XX XX XX XX 66

..XX DDiirreecctt XX 22,,77,,88 22,,77,,88 XX XX XX XX XX XX 77

PPrrooggrraamm NNaammeess:: 11 ..33DDSS RR44

22 ..33DDSS MMAAXX

33 AAlliiaass

44 HHaasshh

55 LLiigghhttwwaavvee

66 MMaayyaa

77 NNiicchhiimmeenn

88 SSooffttiimmaaggee

TA B L E 1 . A comparison of different formats.

becoming more common, this could
be an area to add value to your hard-
ware-accelerated application.

This algorithm is actually very easy
to get up and running. You can see the
code for a 3D morph in Listing 1. One
easy optimization to make would be to
precalculate the deltas between each
parameter to remove a subtraction
operation. In the case of an animation
system, predividing the deltas by the
number of desired in-betweens would
turn it into a pure addition operation.

That’s all there is to 3D morphing.
Given how easy a 3D morph actually is
to implement, I wonder why we don’t
see it more in real-time 3D games.
There are many uses for this technolo-
gy. Beyond creating in-betweens for
character animation, morphing is an
excellent way to change the shape of
characters. It can also be used to create
facial animation and other special
effects. Hopefully, we will start to see
more in the next generation of real-
time projects.

Getting Your Model Data

S o, you’re ready to start morphing
every object you can get in your

hands. That brings up an important
question. How do you get your hands
on model data? When it comes to game
companies with staff artists and tool
programmers, many rely on high-end
animation packages with SDKs. These
toolkits allow the programmers to write
plug-ins that allow them to get to the
data directly. This is not always possi-
ble. Some programmers do not have the
money, time, or experience to get mod-
els this way. The other option is to use
a public 3D file format. The ideal file

format contains all the information
that the application requires and is easy
to use. The ideal format is also public,
meaning that information is publicly
available describing the format. Code
samples are even more desirable.

So, which file format is the best one
for you? Table 1 (see page 16) contains
a list of several file formats along with
some information about them. This is
by no means comprehensive, but the
list offers a glimpse of what’s out there.
Ease-of-use is an opinion gathered from
my own experience and from dis-
cussing it with other programmers.

The key to finding a format to sup-
port in a custom tool is to pick a for-
mat that contains all the information
that is critical to your application. If
your game engine uses vertex coloring,
make sure the format supports that
feature. It’s also helpful to pick a for-
mat that is supported by your or your
artist’s favorite art tool. There are com-
mercial 3D file converters available,
but they add cost and an additional
step to the production process. Also,
using an ASCII format makes checking
your data and debugging the process
much easier.

I have found that one of the easiest
to use and most widely supported for-
mats is the Wavefront .OBJ format. It
contains support for UV coordinates as
well as for vertex normals. The format
is so easy that you really don’t even
need a spec to write a file loader. Listing
2 shows a simple cube in .OBJ format.
Lines that begin with the pound sign ##
are comments and can be ignored. The
initial oo ccuubbee11 defines the name of the
object. That is followed by the mmttlllliibb
ccuubbee..mmttll.. This line describes a file that
contains material information about
the object. But more on that later.

The next block of information actu-
ally describes the vertices. Each line
starts with a vv and is followed by the x,
y, and z coordinate values. The com-
ment at the end actually tells you the
number of vertices. But, that doesn’t
seem to be a standard feature of this
format, so you shouldn’t count on it.

The vvnn block gives the x, y, z, values
for the normals in the model and the
vvtt block describes the texture coordi-
nates. The texture coordinates can be
either two coordinates (u and v) or
three (u, v, and w). For most real-time
applications, however, the ww value
could be ignored. A 3D model may
have normals or texture coordinates,
or both, or neither, but it obviously

G R A P H I C C O N T E N T

G A M E D E V E L O P E R D E C E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

18

oo ccuubbee11

mmttlllliibb ccuubbee..mmttll

vv --55..000000000000 --55..000000000000 --55..000000000000
vv --55..000000000000 --55..000000000000 55..000000000000
vv --55..000000000000 55..000000000000 --55..000000000000
vv --55..000000000000 55..000000000000 55..000000000000
vv 55..000000000000 --55..000000000000 --55..000000000000
vv 55..000000000000 --55..000000000000 55..000000000000
vv 55..000000000000 55..000000000000 --55..000000000000
vv 55..000000000000 55..000000000000 55..000000000000
88 vveerrttiicceess

vvnn --11..000000000000 00..000000000000 00..000000000000
vvnn 00..000000000000 00..000000000000 11..000000000000
vvnn 11..000000000000 00..000000000000 00..000000000000
vvnn 00..000000000000 00..000000000000 --11..000000000000
vvnn 00..000000000000 --11..000000000000 00..000000000000
vvnn 00..000000000000 11..000000000000 00..000000000000
66 nnoorrmmaallss

vvtt 00..000000000000 00..000000000000
vvtt 00..000000000000 11..000000000000
vvtt 11..000000000000 00..000000000000
vvtt 11..000000000000 11..000000000000
44 tteexxttuurree vveerrttiicceess

uusseemmttll mmaatt11__FFAACCEE
ff 11//22//11 22//44//11 44//33//11
ff 11//22//11 44//33//11 33//11//11
ff 22//22//22 66//44//22 88//33//22
ff 22//22//22 88//33//22 44//11//22
ff 66//22//33 55//44//33 77//33//33
ff 66//22//33 77//33//33 88//11//33
ff 55//22//44 11//44//44 33//33//44
ff 55//22//44 33//33//44 77//11//44
ff 55//22//55 66//44//55 22//33//55
ff 55//22//55 22//33//55 11//11//55
ff 33//22//66 44//44//66 88//33//66
ff 33//22//66 88//33//66 77//11//66
1122 eelleemmeennttss

L I S T I N G 2 . An OBJ Cube.

F I G U R E 2 A . Your “brother” mapped

onto a 3D model.

F I G U R E 2 B . The original figure mor-

phed into a baboon.

must have the vertex values.
The final block in the file begins with

the uusseemmttll mmaatt11__FFAACCEE. This says to the
loader, from now on all faces defined
should use the mmaatt11__FFAACCEE material. This
material is defined in the ccuubbee..mmttll file.
All lines that begin with an ff describe a
face in the model. Each face can be
composed of multiple vertices. Each
face is not required to have the same
number of vertices. However, because it
is more efficient for 3D hardware if all
faces have the same number of vertices,
I make sure this is the case. I could tes-
sellate the face to triangles at run time,
but this is really easy to do in the mod-
eling program. Therefore, I just make it
a requirement that all models are trian-
gulated before exporting. A pop-up box
in the loader can warn users that a face
is not triangulated.

In the face statement each vertex is
defined by three elements separated by
forward slashes that describe the ver-
tex, texture coordinate, and normal for
that face. The values are indices into
the list of elements already defined.
It’s important to notice that these
indices are one-based instead of zero-
based. In a file that only has vertex
coordinates (and not normals or tex-
ture vertices), the vertex index will be
followed by two slashes as in ff 11//// 22////

33////.. Likewise, if there is a vertex and a
normal, the format is ff 11////11 22////22 33////33

and so on. Each vertex in the line is
separated by a space.

You can see a material file in Listing
3. The file can describe multiple materi-
als. Each one begins with nneewwmmttll and the
name of the material in this case
mmaatt11__FFAACCEE.. The next lines KKaa, KKdd, and KKss
respectively describe the ambient, dif-
fuse, and specular color for the materi-
al. The NNss term describes the specular
highlight. I have never had a need for
theNNii and iilllluumm term, though they are
there if you want them. Finally, the
mmaapp__KKdd describes the diffuse map applied
to the object. In other words, this is the
texture map that should be applied to
the surface. I use this name as the name
of the file loaded by the application. I
just convert the image to a .TGA or
.BMP file to make use of existing file
loading code.

See there, I said it was an easy format.
Actually there are other blocks that may
be useful in a real-time simulation that
are not in my sample file. The gg com-
mand allows faces to be grouped

together so the file can contain multi-
ple objects even in a hierarchy. This is
definitely handy when working with
hierarchical characters.

Writing a .OBJ File Loader

T he MFC CCSSttrriinngg class makes string
manipulation much easier than in

basic C. For custom tools, this means
loading ASCII file formats is easier than
ever. My strategy is to load a line of
text from the file and then break it up
into a string of words in a CCSSttrriinnggAArrrraayy
structure. If you haven’t used the
CCSSttrriinngg class, it will bring back fond
memories of BASIC string handling.

I don’t want to go through the entire
.OBJ loader here. You can just grab it
off the web site (http://www.
gdmag.com). However, my strategy for
loading an .OBJ file is to pass through
the file once, determining how many
vertices, normals, and texture coordi-

nates for which I need to allocate
space. Then, all the actual coordinate
values are simple to load in. The only
tricky part comes in when I want to
load in the face indices. You can see
how I approached that in Listing 4.

The point of this loader is not for me
to show highly optimized, well formu-
lated code samples for loading these
files. My code here certainly is not fine-
tuned in any sense of the word. The
great thing about creating production
tools is that, unlike almost all other

G R A P H I C C O N T E N T

G A M E D E V E L O P E R D E C E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

20

//
//// PPrroocceedduurree:: HHaannddlleeFFaaccee
//// PPuurrppoossee:: HHaannddlleess tthhee FFaaccee LLiinnee iinn aann OOBBJJ ffiillee.. EExxttrraaccttss iinnddeexx iinnffoo ttoo
//// aa ffaaccee SSttrruuccttuurree
//// AArrgguummeennttss:: AArrrraayy ooff wwoorrddss ffrroomm tthhee ffaaccee lliinnee,, ppllaaccee ttoo ppuutt tthhee ddaattaa
//// NNootteess:: NNoott aann OOffffiicciiaall OOBBJJ llooaaddeerr aass iitt ddooeessnn''tt hhaannddllee mmoorree tthheenn
//// 33 vveerrtteexx ppoollyyggoonnss.. TThhiiss oonnllyy hhaannddlleess TTrriiaanngglleess
//
vvooiidd HHaannddlleeFFaaccee((CCSSttrriinnggAArrrraayy **wwoorrddss,,tt__ffaacceeIInnddeexx **ffaaccee))
{{
////// LLooccaall VVaarriiaabblleess //

iinntt lloooopp;;
CCSSttrriinngg tteemmpp;;
CCSSttrriinngg vvSSttrr,,nnSSttrr,,ttSSttrr;; //// HHOOLLDD PPOOIINNTTEERRSS TTOO EELLEEMMEENNTT PPOOIINNTTEERRSS
iinntt nnPPooss,,ttPPooss;;

//
//// LLOOOOPP TTHHRROOUUGGHH TTHHEE 33 WWOORRDDSS OOFF TTHHEE FFAACCEELLIISSTT LLIINNEE,, WWOORRDD 00 HHAASS ''ff''
ffoorr ((lloooopp == 11;; lloooopp << 44;; lloooopp++++))
{{

tteemmpp == wwoorrddss-->>GGeettAAtt((lloooopp));; //// GGRRAABB TTHHEE NNEEXXTT WWOORRDD
//// FFAACCEE DDAATTAA IISS IINN TTHHEE FFOORRMMAATT vveerrtteexx//tteexxttuurree//nnoorrmmaall
ttPPooss == tteemmpp..FFiinndd((''//''));; //// FFIINNDD TTHHEE ''//'' SSEEPPAARRAATTIINNGG VVEERRTTEEXX AANNDD TTEEXXTTUURREE
vvSSttrr == tteemmpp..LLeefftt((ttPPooss));; //// GGEETT TTHHEE VVEERRTTEEXX NNUUMMBBEERR
tteemmpp..SSeettAAtt((ttPPooss,,'' ''));; //// CCHHAANNGGEE TTHHEE ''//'' TTOO AA SSPPAACCEE SSOO II CCAANN TTRRYY AAGGAAIINN
nnPPooss == tteemmpp..FFiinndd((''//''));; //// FFIINNDD TTHHEE ''//'' SSEEPPAARRAATTIINNGG TTEEXXTTUURREE AANNDD NNOORRMMAALL
ttSSttrr == tteemmpp..MMiidd((ttPPooss ++ 11,, nnPPooss -- ttPPooss -- 11));; //// GGEETT TTHHEE TTEEXXTTUURREE NNUUMMBBEERR
nnSSttrr == tteemmpp..RRiigghhtt((tteemmpp..GGeettLLeennggtthh(()) -- nnPPooss -- 11));; //// GGEETT TTHHEE NNOORRMMAALL NNUUMMBBEERR
ffaaccee-->>vv[[lloooopp -- 11]] == aattooii((vvSSttrr));; //// SSTTOORREE OOFFFF TTHHEE IINNDDEEXX FFOORR TTHHEE VVEERRTTEEXX
ffaaccee-->>tt[[lloooopp -- 11]] == aattooii((ttSSttrr));; //// SSTTOORREE OOFFFF TTHHEE IINNDDEEXX FFOORR TTHHEE TTEEXXTTUURREE
ffaaccee-->>nn[[lloooopp -- 11]] == aattooii((nnSSttrr));; //// SSTTOORREE OOFFFF TTHHEE IINNDDEEXX FFOORR TTHHEE NNOORRMMAALL

}}
}}
////////// HHaannddlleeFFaaccee //

L I S T I N G 4 . Handling a face line in an .OBJ.

nneewwmmttll mmaatt11__FFAACCEE
KKaa 00..55000000 00..55000000 00..55000000
KKdd 00..77000000 00..77000000 00..77000000
KKss 11..00000000 11..00000000 11..00000000
NNss 5500..00000000
NNii 11..00000000
iilllluumm 22
mmaapp__KKdd FFAACCEE..ppiicc

L I S T I N G 3 . MTL file for the Cube.

coding in the game industry, the focus
is not directly on the speed of the rou-
tine. It doesn’t have to be very fast. In
fact, when working on tools, it is often
better to sacrifice speed for clarity.
Often, a tool that you create now and
will have a long life and pass through
many hands after you. This is not usu-
ally true of the actual game code (no
matter what your producer may want
to think) as most core game routines
are rewritten for each project. Tools
tend to linger.

The point of showing these types of
file loading routines is to demonstrate
how easily it can be done. I talk to pro-
grammers who say they understand the
algorithms but have no models with
which to work. They are not comfort-
able writing a 3D Studio MAX plug-in
to get models. I hope that this shows
that very commonly used 3D file for-
mats can be easily integrated into your
own production tools. Once you build
up a library of routines like this, you
can easily get models to work within
your game applications. If you create a
loader for a commonly used format,
there are models everywhere that you
can use. For actual production applica-
tions, I tend to create custom binary
formats because they are compact and
exactly tuned to the application. But by
loading a general format, you can easily
make a file converter.

This month, I have provided an appli-
cation that allows you to load two .OBJ
files that have identical vertex arrange-
ments. You then can use the slider to
morph between the two. The program
can handle objects with and without
texture mapping. Grab it at the Game
Developer web site at http://www.-
gdmag.com. Special Thanks to Bennie
Terry for providing the model, and to
Eddie Smith for providing the texture
map for the LAG14 character from their
real-time action title, ARIES PROJECT. ■

h t t p : / / w w w . g d m a g . c o m D E C E M B E R 1 9 9 8 G A M E D E V E L O P E R

21

You can find a list of 3D file formats and

their specs at:

http://www.cica.indiana.edu/graph-

ics/3D.objects.html

Rule, Keith. 3D Graphics File Formats : A

Programmer's Reference. Addison-

Wesley, 1996.

Covers the .OBJ, .3DS, and VRML file

formats, among others.

FF OO RR FF UU RR TT HH EE RR II NN FF OO

b y M e l G u y m o nA R T I S T ’ S V I E W

of hardware compatibility issues, and a
thriving rental industry are leading
more and more PC developers to
release console versions of their most
popular titles.

This month, we’re going to switch
gears and examine some of the aspects
of developing content for the two con-
sole powerhouses, the Sony PlayStation,
and Nintendo’s N64. With the help of
two local developers, Crave
Entertainment and Snowblind Studios,
we’ll look at the problem from the
standpoint of “How They Did It” and
try to pre-emptively address some of the
technical dos and don’ts you’re likely to
come across. For those console veterans
out there, consider this a refresher
course and a discussion of what some of
your peers in the industry are doing.

Sony’s PlayStation

T o start off, we’ll look at the aging-
but-still-popular Sony PlayStation.

With more than 30 million units on the
worldwide market (as of February 1998),
the PlayStation user base is staggering.
And with games such as FINAL FANTASY

VII, GRAN TURISMO, and the Resident
Evil franchise, the platform shows no
sign of slowing down. To round out the
PlayStation perspective, we’ve inter-
viewed the SHADOW MADNESS team over
at Crave Entertainment.
THE GAME. SHADOW MADNESS (due out in
Spring 1999) is Crave’s attempt to break
into the lucrative RPG franchise busi-
ness. The game play follows the format
perfected by Squaresoft’s FINAL FANTASY

VII with real-time 3D (RT3D) characters
exploring static backgrounds, the everp-

resent story-telling FMVs, and fully
immersive RT3D combat arenas.

Production on the title started back in
mid-1997, when, after an initial design
phase, the art team was assembled and
work began on the FMVs and the more
than 800 interactive backgrounds for
the game. The engineering team was
assembled some months later, when the
art path and toolset for actually getting
data into a 3D engine was created.
THE SONY APPROVAL PROCESS. Every PSX
game that you see on the shelf has
Sony’s stamp of approval on it. This
means it has met the rigorous standards
of content and quality that Sony uses to
judge games released on it’s platform.
How does this work? Well, first of all,
there are a limited number of slots given
out each year to developers. Some of the
major players, such as Eidos and Square
for example, are allotted slots carte-
blanche, based on past performance.
But most developers must first go
through an initial design and planning
phase to get Sony to buy-off on their
game concept. During the development
lifecycle, Sony keeps tabs on the prod-
uct’s content and quality, and in most
cases, has the authority at any time to

reject the product based on it’s failure to
meet their company standards.

Sound strange? Well, imagine if,
when the time came to get your alpha
milestone approved for your PC title ,
that you had to submit a version to Intel
or 3Dfx along with the one you send up
to your publisher. In essence , that’s
what it comes down to.
DEVELOPMENT STRATEGY. Early on, the
developers at Crave chose the PSX as the
target platform. One of the many rea-
sons for going this route was the PSX’s
ability to seamlessly display full-length
prerendered FMVs, a tool the developers
planned to exploit fully as part of the
story-telling process in the RPG. With
this exceptional functionality came a
slew of technical challenges, which had
to be addressed before the game went
into full production.

The most challenging aspect of devel-
oping on the PSX was the limited
amount of storage space (2MB of RAM)
available to the artists — texture maps,

G A M E D E V E L O P E R D E C E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

22

So, You Want to

Make a Console Game?

Y ou’re not alone. When you compare the $900 million in revenue generated

by the PC gaming industry to the $25 billion brought in by the console mar-

ket, it’s not hard to see why. High volume sell through, a virtual absence

Mel has worked in the games industry for several years, with past experience
at EIDOS and Zombie. Currently, he is working as the art lead on DRAKAN

(http://www.surreal.com). Mel can be reached via e-mail at mel@surreal.com.

F I G U R E 1 . SHADOW MADNESS.

SHADOW MADNESS

Category: RPG

Format: PlayStation

Developer: Crave Entertainment

Publisher: Crave Entertainment

Release Date: Q1 1999

color look-up tables, animations, geom-
etry, and static backgrounds all have to
fit in this window of memory. To create
an immersive gaming experience then,
the folks at Crave opted for two differ-
ent modes of play.

Weeble mode (Figure 2), is used by the
player when navigating the environ-
ment. This mode is characterized by low-
resolution character models animated
on a scrolling or static background. Most
of the memory is taken up by high-reso-
lution background images and overlays.

The hurdles in weeble mode dealt
mainly with cinematic feel and camera
control, because this is where most of
the non-FMV storytelling takes place.
Each static background, then, became
equivalent to a stage on a film set. By
taking advantage of overlays for creating
parallax, the team was able to create
seemingly 3D environments using only
static backgrounds. To do this, the team
incorporated knowledge gained from the
film industry — camera control and
field-of-view manipulation became key,
with each artist responsible for creating
the correct mood in his or her area.

In weeble mode, the characters take
up a relativley small percentage of the
viewing area. Consequently, they can be
lower-resolution (around 100 to 140
polygons) and use fewer textures, there-
by allowing more characters on screen.
Additionally, their animations can be of
lower complexity. Finally, the savings in
texture space, polygon storage, and char-
acter animation translates directly into
additional space for background images
and overlays. Determining the right bal-
ance of textures, geometry, and anima-
tions early on proved crucial to complet-
ing the project in a timely manner.

Battle mode, as illustrated in Figure 3,
is used for close encounters with NPCs
or enemy characters. Battle mode uses

fully interactive 3D environments with
higher-resolution character models.

Battle mode is closer to what players
have come to expect in RT3D. Here, the
focus shifts from telling the story to
dynamic real-time action. Fully immer-
sive, interactive environments, with an
active camera that can swivel and pan
around the battle arena, characterize this
phase of the game. In battle mode, the
characters are higher-resolution, and the
environments are composed mainly of
textured 3D objects, with only cursory
background images for environmental
texture mapping. Because the characters
take up much more screen space in bat-
tle mode, they need to have a propor-
tional amount of complexity associated
with them. Here, the characters have
roughly twice the number of polygons
(300 to 400 polygons each) and a much
smoother set of animations. (Crave’s
engine took advantage of the new .HMD
format for PSX, which allows real-time
interpolation between keyframes, giving
a much smoother feel with a lot fewer
stored keyframes.)

TECHNICAL TRICKS AND CHALLENGES. Overall,
the problem that the artists kept run-
ning into was how to efficiently use the
2 MB of RAM they had in their budget.
Because the background images
couldn’t really be optimized, the bulk
of tweaking time was spent on the 3D
characters and geometry.

The characters in the game were
expensive mainly because of the tex-
tures and animations associated with
them. Consequently, this is where most
of the effort was put to try to streamline
the already expensive process.
VERTEX COLORS INSTEAD OF TEXTURES. Vertex
colors were used in addition to, and in
place of, textures for each character (for
more on vertex coloring, see “Painting
With Vertex Colors” Game Developer,
November 1998). Colors were applied
directly in 3D Studio MAX with the ver-
tex coloring tool. Figure 3 shows an
example of characters in the game that
were painted almost entirely using ver-
tex coloring.
.HMD AND KEYFRAME INTERPOLATION. When
it came to determining a format in
which to store and access the 3D geom-
etry and animation information, the
developers had three options: MIME,
.TOD/.TMD, and the new .HMD for-
mat. Each had its respective advantages
and disadvantages, but .HMD was the
only unproven format because it was
new and there was relatively little docu-
mentation on it. The one big advantage
that .HMD had was the freedom it pro-
vided for the programmers to access the
keyframe data. This allowed them to
generate algorithms for real-time inter-
polation, so that an animation that

h t t p : / / w w w . g d m a g . c o m D E C E M B E R 1 9 9 8 G A M E D E V E L O P E R

23

F I G U R E 2 . Weeble mode. F I G U R E 3 . Battle Mode

Memory Usage (2MB)

Weeble Mode Battle Mode

Backgrounds &

Overlays

Textures

Animation

RT3D Geometry

Fonts

Backgrounds

Textures

Animation

RT3D Geometry

Fonts

F I G U R E 4 . What fits into 2MB ?

PlayStation Art Path

Power-

Animator 8.5

Prerendered

Backgrounds

Game Engine

Game Engine

RT3D Characters

and Environments

Photoshop .DXF Format

3D Studio

MAX 2.0

.HMD

Export Tool

Power-

Animator 8.5

3D Studio

MAX 2.0

.HMD

Export Tool

F I G U R E 5 . The PlayStation art path.

classically would have used 30 frames
could be created with 7 keyframes.
Having an engine that provides for real-
time interpolation between keyframes
means that each animation sequence
can be made up of very few actual data-
points, with the engine providing the
smooth transition between keyframes
and poses. Overall, this meant a much
smaller allocation of expensive memory
space for any given animation, and a
larger total number of animations
allowed for each character. According
to Crave, the game could not have been
finished without using the new .HMD
format, which to date has not been
used on any published title.
TOOLS. Once the technical hurdles were
addressed, the team had to choose tools.
Two main goals needed to be achieved:
rapid generation of high-quality preren-
dered PowerAnimator content, and
fully-textured and animated RT3D char-
acters. For this task, the developers
chose PowerAnimator 8.5 and 3D
Studio MAX 2.0. The proven high-quali-
ty rendering capabilities of Power-
Animator were augmented by interfac-
ing with Renderman.

Figure 5 shows the art path Crave used
to create content for their title. Most
RT3D modeling was done within 3D
Studio MAX, with the bulk of cinematics
and static backgrounds done with
NURBS in PowerAnimator 8.5. The
developers wrote a plug-in to export
geometry, texture information, and ani-
mation from 3D Studio MAX to the
.HMD format, consequently, all the
RT3D data had to pass through MAX.

In addition to the off-the-shelf tech-
nology, there were several in-house
tools developed, including one which
allowed the artists to physically place
each texture in memory. This allowed
for the most efficient use of space
when storing differently sized textures
with variable bit depths, a process that
is hard to automate effectively.

At the time of the interview, the
product was well on it’s way to comple-
tion. SHADOW MADNESS had just
reached alpha, and was on track for a
Q1 1999 release date.

The Nintendo 64

A lthough it arrived relatively late in
the game, many developers think

the polished look and feel of the N64’s
technology were worth the wait.
Boasting a user base of over 7 million
units (as of September 1998), the latest
version of Nintendo’s console line has a
lucrative market ready to be exploited
by the savvy developer. To examine the
N64 platform development process,
we’ll look at a game that is just finishing
production over at Snowblind Studios,
TOP GEAR OVERDRIVE.
THE GAME. TOP GEAR OVERDRIVE (TGOD)
is Snowblind’s first title, and is based
on the Top Gear franchise created by
Kemco of Japan. The self-proclaimed
goal at Snowblind was to create a rac-
ing game with a more “arcade-like”
feel. The game boasts over 30 tracks,
myriad driving conditions, and over 20
cars to choose from, including the new
VW Beetle. The fact that the game is
near completion and has only been in
production for about nine months is a
testament to the efficiency and techni-
cal know-how of the six-man develop-
ment team working at Snowblind.
DEVELOPMENT STRATEGY. With some experi-
ence on the platform prior to starting
work on TGOD, Snowblind wasn’t
going into the situation well, er, with

blinders on (sorry, couldn’t resist that
one). As with the PSX, the sheltered N64
market promised to be extremely lucra-
tive to the developers. The relative
dearth of racing games on the N64 was
an added bonus. The N64’s rendering
features included several that were not
available on PSX, such as perspective
correction, tri-linear filtering, and Z-
buffering, to name a few. And the lack
of a need for any cinematics meant
there was no real need to go with a CD-
based system.

Obviously, getting the artists off to
an early start on a development cycle
this short was crucial. In order to famil-
iarize the art team with the limitations
of the system, their strategy, says Raoul
Said, a programmer at Snowblind, was

A R T I S T ’ S V I E W

G A M E D E V E L O P E R D E C E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

24

F I G U R E 6 . TGOD for the N64.

F I G U R E 7. PC-compatible version of TOP GEAR OVERDRIVE.

TOP GEAR OVERDRIVE

Category: Racing Game

Format: N64

Developer: Snowblind Studios

Publisher: Kemco

Release Date: Q4 1998

to “… have one programmer jump
ahead on the game framework and car
physics code (on OpenGL/PC) while
another programmer brought our N64-
specific code up to speed, while the
third programmer helped out on tools.
The game ran on N64 dev stations from
very early on.” Figure 7 shows the PC
compatible version of the game.

This gave the art team access to the
nuances of N64 development prior to
entering full production, which allowed
them to streamline their art path to
what was necessary and efficient.
TECHNOLOGY TRICKS AND CHALLENGES. As with
the PSX, the development challenges
were somewhat offset by myriad tech-
nical features aimed at making produc-
tion easier. Additionally, the rendering
and texturing features found on the
N64 give the games a softer, more pol-
ished look.

The two biggest potential pitfalls
faced by the art team were the total on-
screen polygon count (total rendered
polygons limited to between 1,500 to
2,500 polygons), and the limitation on
memory storage (4MB of general pur-
pose ram, of which 1.1MB were set aside
for tracks, textures, and cars).

The challenge of managing scene
complexity is not unique to consoles,
but is instead faced by almost all devel-
opers working with RT3D content. The
solution was found through the tried-
and-true method of iterative testing.
Tracks were generated using the custom
lofting tool the team developed (dis-
cussed hereafter), then tested out with
terrain and geometry added.
Adjustments were made over the course
of testing to get the approximate poly-
gon count as close to the target as possi-

ble. This, of course, grew easier with
practice, until the artists got to the
point that they could create a track from
start to finish in under three months
(for one artist working on one track).

The second challenge, that of total
memory storage, was tackled by setting
a limit on the total number of polygons
in a track (around 10K polygons, includ-
ing physics barriers), thereby setting a
limit on the actually size of the geome-
try in memory. Surprisingly, those inno-
cent little polygons turned out to be
gluttons for space. In addition to the
raw geometry, additional data tied into
radiosity information (for soft shadows)
and visibility set information had to fit
into the same block of memory. Figure 8
maps out the memory usage.

Finally, the team needed to take
advantage of N64’s ultra-fast texture
cache. Aside from the 4MB of general
purpose RAM, the N64 comes equipped
with a super-fast texture cache, capable
of extremely high transfer speeds. The
downside is that the pipeline is relatively
small. To use the cache to full capacity,
texture maps had to be small; equivalent
to 32×32×16-bit, or an equivalent size on
disk (textures could have large dimen-
sion, with a correspondingly lower pixel
depth, 64×64×4-bit, for example). So,
large areas of complex terrain required
detailed texture work, and the large

background images had to be cut up into
smaller individual pieces in order to
meet the size requirements. Figure 9
shows an example of an environment
map used for one of the sky domes. This
texture map, a tiling sky piece, had to be
cut up into 36 smaller textures and
mapped onto a 170 polygon dome.
THE INTENSITY ALPHA TEXTURE. IA4 for short,
the intensity alpha texture is a feature
found only on the N64 Platform. Used
extensively by the artists at Snowblind,
the IA4 texture provides a space-effi-
cient way to create texture maps.
Here’s how it works. You create a tex-
ture using a grayscale palette, and then
choose two bounding colors to use as
your color wash. The bounding colors
act like a gradient tool, in that they
match up to the texture map corre-
spondingly to the lightest and darkest
areas of the texture. For example, let’s
say I created a grayscale texture map
with shades ranging from black to
white, and then picked my bounding
colors to be blue and red. The result
would be a colorized texture map, with
the black areas receiving a blue tint,
the white areas receiving a red tint, and
the gray areas receiving a purple tint.
You basically create a texture that takes
up the space of a grayscale texture, yet
is fully colored.
TEXTURE MIRRORING. The artists at

A R T I S T ’ S V I E W

G A M E D E V E L O P E R D E C E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

26

Memory Usage (1.1MB)

Visibility Set

Information

Car Geometry

and Textures

Track

Geometry

Track

Textures

Raw Geometry

Radiosity Data

(soft shadows)

} 1MB

}100K

F I G U R E 8 . Memory Usage. F I G U R E 9 . An environment map used for one of TOP GEAR OVERDRIVE’s sky domes.

Snowblind also used the mirrored tex-
ture, another feature unique to the N64.
This feature allows the artist to flip a
texture along one or both axes of a quad
polygon, a method that would other-
wise require additional tesselation to
produce the requisite polygon edges at
the mirror boundaries.
THE TOOLS. In its most basic form, the
task for the art team boiled down to
one thing: create texture-mapped poly-
gons. To accomplish this, the group set-
tled on 3D Studio MAX 2.0 as its single
off-the-shelf technology. The open
plug-in architecture allowed for rapid
toolset generation, and within only a
few weeks of going into full production,
the engineering team at Snowblind had
come up with a suite of plug-ins to aug-
ment the already powerful modeling
tools in 3D Studio MAX. The primary
tool was the track lofting plug-in,
which allowed the artists to create and
test initial track layouts at the rate of
one per day. This rapid turnaround was
crucial to tweaking the playability of
the tracks, and the entire process of get-
ting a track into the engine was accom-
plished with only a few button clicks.

Other plug-ins included lofting and
sculpting tools, a texturing tool for
dealing with huge numbers of texture
maps on a single mesh (a must for
large, multi-material geometries).

The folks over at Snowblind may
well have a hit on their hands. The
game had that clean, polished feeling
characteristic of the N64, and it was

fun to play. And considering this six-
man crew will have created the game
from start to finish in just under ten
months, their achievement becomes
even greater. This group will be one to
watch in the future.

Wrap-Up

T he hazards and limitations associ-
ated with console development

pale in comparison to the benefits. The
stable technology base, though limit-
ing at first glance, inevitably allows
developers to focus on ways to get the
job done, instead of trying to figure out
exactly what their target platform can
do. This is a subtle yet critical distinc-
tion, and is leading more and more
developers down the path of console
development. ■

h t t p : / / w w w . g d m a g . c o m D E C E M B E R 1 9 9 8 G A M E D E V E L O P E R

27

N64 Art Path

Car Modeling

and Texturing

(3D Studio MAX)

Game Engine

Track Modeling

and Texturing

(3D Studio MAX)

ASCII Export Radiosity

Rendering

Visibility Set

Calculation

ASCII Export

Game Engine

F I G U R E 1 0 . N64 art path.

Brian Sostrom, Ryan Geithman, Raoul

Said, Ezra Dreisbach, Brian Johnson,

Jason Wiggin, Louise Smith, Annabella

Serra, Kieth Wymetalek, Joseph

Laurino, and Anna Farr.

Special Thanks To:

H A R D T A R G E T S

G A M E D E V E L O P E R D E C E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

28

This is the job of the board maker.
Only in the case of ATI and Matrox,
where the chip maker and the board
maker are one and the same, is there a
direct connection between the technol-
ogy at the silicon level and its market-
ing to the consumer. Companies such
as Diamond Multimedia, Creative Labs,
and STB Systems are chip agnostic, and
in this month’s column we’re going to
explore primarily the chip-agnostic
graphics board industry to determine
how these companies will fare in the
coming year. The 3D graphics hard-
ware business is getting merciless. The
board vendor is on the front line, and
is going to feel the pain more acutely
than anyone else in the industry. The
consumer, on the other hand, is going
to be getting even more 3D power for
even less money.

Love and Hate Relationships

T he relationship between chip- and
board-makers is one that they both

resent. Why it even exists is our first
port of call, followed by why both par-
ties wish that it didn’t have to exist.
Before I go any further, I should proba-
bly put a proviso in here about 3Dfx,
the most visible 3D graphics company
in the game industry. 3Dfx is unique in
having been successful at building its
brand and influencing the end user of
its products directly through its mar-
keting efforts. Thus, 3Dfx has achieved
a unique position in the industry, but I
see the company’s success in this
regard as an exception rather than the
norm. Companies such as Nvidia, S3,
and 3Dlabs do market their brand, but
their influence with end users doesn’t
rise to same level. As a result, these
chip companies, including 3Dfx, put
their energies into supporting the

board vendor brands of Diamond,
Creative Labs, or STB and others. The
reason for this deference to board ven-
dors is distribution and support.

Board vendors control the distribu-
tion channels. This gives them the con-
nection to the customer, and invariably,
they have to create a support structure
to serve that customer. By contrast, chip
vendors’ customers are their board and
system OEMs. The value of board ven-
dors is their experience supporting end
users, and their realization that there is
more to delivering a graphics product
than producing a working piece of sili-
con. That something more is software
drivers. Chip vendors have enough on
their plate dealing with the every rising
complexity of chip design and manufac-
ture. They may not be as savvy as board
vendors when it comes to writing soft-
ware drivers. From the time a finished
chip is ready to go, to the time it is
ready to be shipped to a customer may
take weeks or months, depending on
the quality of the drivers. This lag in
time between when a chip vendor
thinks a product is ready to go, and
when a board vendor thinks it is ready
to go is one reason why the two entities
don’t always see eye to eye.

In addition, chip-agnostic board ven-
dors are usually vying with each other
to differentiate products based on the
chipset using software features and dri-
ver performance. The exception to the
rule was 3Dfx, which reduced the
board vendors’ value-add by delivering
a finished board and driver product
that didn’t leave much room for differ-
entiation. If you read the round-ups
and reviews of 3Dfx boards, you may

have found that they were quite amus-
ing — reviewers desperately tried to
justify their preferred choices, but there
was hardly any difference from one
Voodoo2 board to the next. The
Voodoo2 reduced board vendors to dis-
tributors and support staff for what was
essentially a purely 3Dfx product.

So, the question arises, how much
value-add do board vendors actually
provide? Taking a cue from Voodoo2,
it would seem not to be very much, but
Voodoo2 was a 3D-only product target-
ed at a very specific hardcore gamer
demographic. Go into the realm of 2D,
and games aren’t the only problem.
Every piece of software that runs on a
PC could be a nightmare support prob-
lem. Maybe chip makers, who all make
2D/3D chips, could deliver a finished
board product themselves, but they
realize that it might involve supporting
OS/2 or Linux, or someone’s ten-year-
old DOS application. So, although the
board vendor is really a tier of distribu-
tion for the chip vendor, it’s also a
buffer against consumer support.

Yet, forces beyond the control of
chip and board vendors threaten this
delicate graphics ecosystem. The
biggest impact in 1998 on the board
business was to be the entry of Intel
into the market. Intel has managed to
successfully devalue the graphics chip
business to such an extent that the
effects are going to be felt in the indus-
try for some time to come. John Latta
of the market research firm, 4th Wave
(http://www.fourthwave.com), was the
first person to publicly decry the pric-
ing policies of Intel with regard to its
Intel740 graphics chip ($7 a chip).

Trends in the Graphics Board Market

G ame developers have been targeted extensively over the past four years

by chip makers trying to convince them that their feature set, or partic-

ular approach to 3D hardware, is ideally suited to their applications.

Ironically, chip makers rarely ever get to connect with the end user.

Omid Rahmat works for Doodah Marketing as a copywriter, consultant, tea boy, and
sole employee. He also writes regularly on the computer graphics and entertainment
markets for online and print publications. Contact him at omid@compuserve.com.

h t t p : / / w w w . g d m a g . c o m D E C E M B E R 1 9 9 8 G A M E D E V E L O P E R

29

Brave man, Mr. Latta. A devalued
graphics chip market drives prices
down on all components and board
products associated with it. As we go
into 1999, we can expect much more
aggressive pricing on board products,
some very shaky board vendor finan-
cials, but healthy volumes for the per-
formance leaders based on the pricing.
It’s good news for the consumer. It’s
good news for Intel, which just wants
to sell more CPUs. But at what cost to
the graphics board industry?

The Market

The cost for the industry, on the sur-
face of it, doesn’t look bad. “The

1998 add-in board market is expected
to grow 65 percent over 1997, and then
will slow down to an average growth of
18 percent per year up through the end
of 2001,” says Bob MacQuillan, senior
research editor at Jon Peddie Associates
(http://www.jpa.com). “The overall
add-in board market will enjoy good
growth. However, the entry/value and
mid-range categories in the mainstream
segment will be virtually eliminated as
the market moves toward sub-$1,000
PCs that utilize embedded designs of
graphics controllers and core logic.”

Mr. MacQuillan’s comments point
out the real effect of Intel’s entry into
the market in 1998, and its plans to put
3D graphics in core logic in 1999, and
come out with a lower-cost Intel740
follow-up, too. Competition in the
entry-level and mid-range is only for
the brave with deep pockets, or a
strong constitution.

The expansion of the market for
higher-performance 3D parts is the
bright spot for the graphics board ven-
dors. I think it might turn out that 1999
brings in enough volume in the perfor-
mance sector to offset the entry-level
and mid-range business woes. It may
not, however, bring with it a compara-
ble increase in revenues and profits. The
battle between Nvidia, S3, Matrox, ATI,
3Dlabs, and 3Dfx for performance and
brand leadership is just as likely to drive
prices down as anything Intel could, or
would do. Without exception, in 1999
the chip companies are going to move
0.25 micron chip designs, which means
cheaper and faster designs. Further, the
multitexture engine is here to stay, so
the interest in new 3D technology will

still be there, although market drivers
remain stagnant. So all this competition
is strictly for games — no other software
needs the power. Having everyone chas-
ing the game enthusiast may be good
for game developers, but it’s not neces-
sarily good for an industry that may be
crowding too many competitors into
too small a space.

Figure 1 shows how important these
high-performance parts are to the mar-
ket. Jon Peddie Associates defines the
category of performance as typically
characterized as having either hardware
floating point triangle set-up (such as
ATI Rage Pro, Nvidia Riva 128, and so
on) and/or high fill-rates (such as 3Dfx
Voodoo Graphics, NEC PowerVR, and
others). The Tiburon, Calif., firm defines
mainstream as controllers containing
2D plus minimal 3D capabilities (“free-
D”). Examples include the S3 Virge
series and the Trident 3DImage 975.

Performance parts are the only value

parts of the board vendor’s product line.
It used to be that a board vendor could
look forward to selling a mature product
into mid-range and entry-level markets,
but that opportunity is dwindling.
Board vendors make their money from
creating awareness among consumers of
cutting-edge products. They make their
money from selling premium products.
It seems as if a sterling year awaits the
board business in 1999, but again, it’s a
question of how board vendors will
make money if the graphics market is
being devalued by the presence of Intel,
and by the strength of the sub-$1,000
PC. It’s all up to the players.

The Players

I n Table 1, I have designated Tier 1–3
board vendors. The classification is

partly based on channels, partly on
exposure to brand name PC OEMs, and

b y O m i d R a h m a t

20

40

60

80

100

1997 1998 1999

Mainstream

Performance

m
il

li
o

n
s

 o
f

u
n

it
s

 s
h

ip
p

e
d

 w
o

rl
d

w
id

e

F I G U R E 1 . 3D controllers by segment: 1997 to 2000. (Source: Jon Peddie

Associates)

TIER 1 VENDORS TIER 2 VENDORS TIER 3 VENDORS

ATI Technologies California Graphics ASUStek

Creative Labs Canopus Leadtek

Diamond Multimedia E4 Jaton

ELSA/Hercules iXMicro Expert Color

Intel Number Nine Techworks

Matrox Radius

STB Systems VideoLogic

Wicked3D

TA B L E 1 . A list of the most recognized board names by category.

partly on volumes. It’s something that
hasn’t been done for graphics board
companies, but is done for PC OEMs. It
is not a definitive list of the Tier 3 ven-
dors, but it does give you the graphics
board landscape as it is today. I have
given Intel a Tier 1 position, rather
reluctantly, but they do have a strong
brand. Also, I am being generous to
ELSA/Hercules because of ELSA’s
strengths in Germany. In fact, I believe
that in reality there should only be five
Tier 1 companies: ATI, Creative,
Diamond, Matrox, and STB. That’s five
companies serving ten Tier 1 PC OEMs.
These Tier 1 vendors are under the
greatest pressure in the coming year.
They face squeezed margins, compet-
ing product lines from their chip sup-
pliers (Nvidia’s TNT versus the 3Dfx
Banshee is one good example), and ris-
ing costs as they struggle to differenti-
ate their brands. ATI seems to be the
strongest company, having a healthy
OEM presence, and some sound design
wins for its Rage chipset. Creative is by
far the best retail company in the Tier 1
arena. However, when it comes to
branding graphics boards for a games
audience, Diamond has done a very
good job in North America. The weak-
est brand in the Tier 1 group is STB,
which tends to be much more focused
on supporting the Tier 1 PC OEMs
using its manufacturing skills.

The Tier 2 vendors are, in some
ways, more interesting than the Tier 1
board vendors. They have to work
harder at differentiating their products.
Canopus innovates in the hardware
design by adding features and
enhancements that the other board

vendors may overlook. Wicked3D, the
Metabyte board company, has pio-
neered stereo graphics by delivering
drivers that support the widest ranges
of stereo-enabled games. E4 has exten-
sive support for DVD, and so forth. It’s
tough for the Tier 2 vendors because
they are at the mercy of allocation by
the chip vendors, more eager to get
their three months of shelf space fame
with Diamond and Creative, or to sup-
port STB supplies to Compaq, Dell, and
Gateway. So, Tier 2 board vendors may
innovate and target a game-playing
audience better than the Tier 1 player,
but they have to battle for channel
recognition, and they don’t get the
best support from the chip vendors
who look to their volume customers.

At the tail end are the Tier 3 vendors,
which happen to be the biggest volume
takers too. They take mature products,
they make low-priced solutions, and
they can ship hundreds of thousands
of units a month, in excess of the Tier
1 brand names. As a game developer,
you may never have to support a Jaton
board, for example, but within the
board industry, Jaton and its like play
an important role delivering boards to
all those resellers and PC-makers who
don’t want to pay a premium for a
brand name, but do want to get their
hands on good graphics boards, or the
products of a recognized chip vendor.
The non-branded board vendors supply
in excess of the branded board vendors
by a factor of 2:1. It used to be that Tier
3 vendors were seen as adding little
value, and in bringing product prices
down. They were the volume supplier
of mature products. However, as com-

petition among chip vendors heats up
in the performance sector, the Tier 3
vendors will get to compete head to
head with Tier 1 and Tier 2 players by
getting product before it matures.
Unfortunately, the Tier 3 vendors
rarely have the resources, or the com-
mitment, to raise awareness of their
brands, so although they may end up
shipping more product than the brand
companies, no one outside the indus-
try gets to hear much about it.

One mustn’t forget that the PC
graphics business is bigger than the
sum of these vendors — over 80 mil-
lion units in 1999 alone. There’s room
for a lot of players, but whether there is
value for the players to stay in the busi-
ness is debatable. For example, I have
relegated Number Nine to a Tier 2 posi-
tion because, despite having some
excellent technology, the company has
failed to deliver a Tier 1 position in any
of its markets. Number Nine doesn’t
sell the cheapest boards, and it certain-
ly doesn’t make the worst products.
Yet, the company finds it hard to mine
its niche of the high-end business desk-
top, and it cannot generate the money
it needs to move its development in a
direction that would make it competi-
tive. VideoLogic may also seem con-
tentious for a Tier 2 position, but the
company has never done anything of
any significance in the board market,
and the fact that NEC breathed life
into the company through PowerVR is
not influencing their board business.
With technology, both these compa-
nies are good acquisitions: Number
Nine is very close to Silicon Graphics
and, of course, VideoLogic is very close
to NEC and Sega.

With such premier names showing
signs of strain in the board business, it
makes you wonder which is the next
brand name to feel the pinch. The
answer may lie in the dynamics of the
channel.

The Graphics Channel

I f you look at the distribution pie
chart supplied by Jon Peddie

Associates (Figure 2), the distribution
and OEM channels take an even bite of
the sales pie, and interestingly enough,
direct sales are showing some strength
as well, specifically as a result of the
Web-savvy game enthusiasts. With dis-

H A R D T A R G E T S

G A M E D E V E L O P E R D E C E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

30

OEM

42%

Direct

18%

Distribution

40%

F I G U R E 2 . Branded 3D add-in board market by channel. (Source: Jon Peddie

Associates)

tribution and OEM channels practical-
ly eating up whatever profit margin
potential there is, the only real prof-
itable outlets for board vendors are
direct sales. Yet, the brand name board
companies are very cautious not to be
seen in competition with their distribu-
tion channels. There’s a little pull and
push there.

It seems that the direct channel may
afford an opportunity for the Tier 2
vendors to establish themselves. Tier 3
vendors are primarily OEM and distrib-
ution bound, with little in the way of
retail. Therefore, the channel may have
already decided how the board busi-
ness shapes up.

Looking at the channels in more
detail, we can see some patterns emerg-
ing. Diamond is very strong in the
North American retail market, but is
under increasing pressure from
Creative. ATI and Matrox fare better in
Europe and international markets than
they do in North America, but in gen-
eral, have strengths in the PC OEM and
reseller channels. ATI’s retail presence
is the stronger of the two. STB has yet

to make any breakthroughs in retail,
and is 80 percent PC OEM business. It
faces pressure from ATI, Matrox, and
Diamond, but it always has.

Jaton, Leadtek, and Expert Color sell
through distributors serving resellers and
systems integrators. You may find the
odd low-cost controller from the Tier 3
vendor in a retail store, but it won’t be
sitting on the shelf at CompUSA or
Electronic Boutique. They could break
out with product, but none of the Tier 3
vendors are inclined to package their
products for the consumer.

So, the status quo is pretty much set,
but there is hope in the Tier 2 section.
Companies such as Canopus,
Wicked3D, California Graphics, and E4
want to be consumer friendly. They
have the hunger, and they have to dif-
ferentiate their products much more
than any Tier 1 or Tier 3 vendor would
have to do. They are relatively free to
make new channels, or to go into areas
that the big companies are precluded
from, such as having a more aggressive
direct sales strategy. However, Tier 2
vendors need volumes to get better

chip pricing and support from the
semiconductor companies, and that’s
where they face the biggest challenge.
To get volumes, Tier 2 vendors need
OEMs. To get OEMs, they need strong
retail, or branding, or manufacturing
capability. It all costs money. To get
money in a price-squeezed market,
they need volume.

However, I believe that board compa-
nies have to change. They need to
become leaner, and they need to change
the way they do business to take into
account the new business dynamics.
This may be the best chance for a Tier 2
or Tier 3 vendor to break into the Tier 1
category, but it doesn’t look like the big
five are going anywhere for now, profits
or no profits. In the middle of all of this,
the consumer is going to get a smorgas-
bord of very good 3D products, in differ-
ent flavors of chips, and from a diverse
group of board vendors. Cheap, too. A
16MB, Banshee board from Creative
Labs retails for about $99, having gone
down from $149 in the space of six
weeks, or less. Brutal business, but some-
one’s got to do it. ■

h t t p : / / w w w . g d m a g . c o m D E C E M B E R 1 9 9 8 G A M E D E V E L O P E R

31

32

D E V E L O P M E N T

E N G I N E E R I N G

D I S C I P L I N E T O

B R I N G I N G

A s the manager of Kesmai Studios,

I oversee the internal develop-

ment division of Kesmai

Corporation, the oldest and largest maker

of massively multiplayer games. The

games we develop (such as AIR WARRIOR,

MULTIPLAYER BAT-

TLETECH, ALIENS

ONLINE and

LEGENDS OF

KESMAI)

sup-

port hundreds to thousands of simultane-

ous players via the major online service

providers (America Online, Compuserve

and others) and over the Internet (at

http://www.gamestorm.com). Our games

are played much longer than most stand-

alone boxed games. For example, two of

our current games are over ten years old,

and several were released more than five

years ago. All of these games have been

updated many times as the underlying

computer technology has evolved.

Gordon Walton has been authoring games and managing game development since 1977. He is currently senior vice president of Kesmai
Corporation and general manager of Kesmai Studios, the leading developer and distributor of multiplayer online games. He has been a
speaker at every CGDC since its inception, is a founder and current officer of the IGDN and speaks at other industry gatherings. He can
be reached at gordon@kesmai.com.

B Y G O R D O N W A L T O N

G A M E

A year ago, we decided to change
radically our methods of developing
games. We were dissatisfied with our
maintenance costs, the effort required
to achieve our desired level of quality,
and our inability to predict production
schedules. This article is a description
of what we did to achieve this change,
although you should view what you’re
about to read as an “after-action
report” — our development processes
are continuously evolving to meet our
objectives.

What Is This
“Engineering Discipline” Thing?

A re you sick of not being able to
predict when the development of

your game will be complete? Are you
tired of creating bug patches for a game
that shipped months ago? Are you hav-
ing trouble adding a feature that the
new vice president of marketing
demanded halfway through develop-
ment? If any of these scenarios sound
familiar, let me offer you a way of deal-
ing with them.

Engineering discipline, as I define it,
is determining and applying processes
to the development of game software
with the goal of improving the quality,
maintainability, extensibility, and
schedule visibility of the software.
Being able to deliver these particular
elements consistently in game software
is unprecedented, in my experience.

What Is the Reality of Current
Game Software Development?

W hile both the team and man-
agement share a desire for the

elements of quality, maintainability,
extensibility, and schedule visibility in
their software products, the primary
mission of most game developers is to
ship a fun game by Christmas. The
desirable ship dates for most products
are dictated by the realities of the retail
market. With the majority of all soft-
ware sales occurring between the
months of September and January, the
pressure to ship before Christmas is
incredible. The final ship date for
Christmas is about two weeks before
Thanksgiving, given the normal retail
distribution delays and processes. Some
products succeed when shipping out-

side of this narrow window, but typi-
cally this success is limited to about ten
highly promoted and anticipated titles.
Odds are that you are not working on
one of these titles.

Almost everyone with experience in
game development has had to work on
someone’s legacy code. Most experi-
enced programmers have had to fix an
incompatibility or bug for a product
developed by someone else, or have
had to start a sequel from a previous
product code base. In general, game
software isn’t written to be maintain-
able. Rather, the primary goal is getting
the code “finished enough” to ship it
as a commercial product. As such,
many game developers believe that any
documentation and coding standards
come at the expense of getting the
game done sooner. This lack of docu-
mentation and standards worked for
most game developers for a time, as
teams used to be relatively small and
time to market was the most important
issue. But times have changed.

Why Consider An
Engineering Discipline?

T he main reason that we at Kesmai
considered a new way to develop

software was that the methods com-
monly used in the game development
business weren’t working well. Our
products’ life cycles were
longer than those of most
game companies, and
our maintenance costs
were prohibitive. We
also noticed that most
products in the games
business aren’t
financially suc-
cessful, most
miss their
intended
ship dates,
and
most

have significant bugs and require a
patch (or three). Within a viciously
competitive environment, as an indus-
try we must find a way to lower some
of the risks involved with building
game software.

Not all risks are controllable while
developing game software. You can
never be sure if consumers will like
what you offer (though there are
methodologies for reducing this risk,
too). You never know when Microsoft
might change the operating system
components. Sometimes, a competitive
product is unexpectedly introduced,
and you must react to it. Management
often will dictate large numbers of
unexpected changes.

Given this chaotic environment, it’s
important to acknowledge and manage
the risks that are under your control.
For risks that you don’t control, but are
within your sphere of influence, you
must make agreements with all parties
so that no surprises occur without
renegotiation. This gives you a man-
ageable baseline with which to start, so
that you can react with more clarity
and confidence to the truly uncontrol-
lable risks.

How We Approached an
Engineering Discipline

B ecause our company is in a busi-
ness where products must be

maintained for several years, we felt
we had to make a radical change to
compete successfully. We first exam-
ined the various training opportunities
available. We looked at several soft-
ware development methodologies used
by other industries, including the SEI

Capability Maturity Model (CMM),
ISO 9000, SPICE (Software Process

Improvement Capability and
dEtermination), and others. We

found that all these method-
ologies contained elements

useful to our goal of insti-
tuting engineering disci-

pline. They also con-
tained elements
that could stifle
creativity and
ignored the im-
portance of hav-

ing fun software in
favor of schedule

predictability.

G A M E D E V E L O P E R D E C E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

34

E N G I N E E R I N G D I S C I P L I N E

Because no current methodology
that we investigated suited our needs
completely, we decided to invest in
training our personnel in the SEI’s
CMM methodology, with the proviso
that we didn’t want to follow their
developmental model exactly. We sent
80 percent of our development and QA
personnel to this training. We also
investigated several project-manage-
ment training programs. After one
course given by the Learning Tree
Company, two of our producers came
back very excited and charged up. They
really liked the particular instructor, so
we contracted that instructor to give a
one week class on project management
to our entire development staff.

At this point, we had most of our
personnel “speaking the same lan-
guage” and interested in improving our
software development methodologies.
This was a key step. This kind of

change in mindset cannot be mandat-
ed from management; it must be a
joint effort between developers and
management to work. We started our
process of instituting an engineering
discipline with three initiatives: pro-
gramming standards, the peer review
process, and the software process work-
ing group.
PROGRAMMING STANDARDS. We quickly
devised a good set of programming
standards that the entire development
staff could buy into, although there
was some debate as to how these stan-
dards would be instituted. These stan-
dards were created in reaction to the
difficulty we experienced in maintain-
ing our legacy code. While these new
standards didn’t help us maintain our
old code, they made sure we wouldn’t
perpetuate poor coding practices in our
new games. Thus, our payoff will come
when we hire new people to maintain

games in the future. The products that
our developers will maintain in the
future will have a defined coding style
and methods. The table of contents for
our programming standards, which
illustrates the elements that we
believed were important to standard-
ize, are shown in Figure 1.
PEER REVIEW PROCESS. The definition of
the term “peer review” is encapsulated
in this quote from the SEI Capability
Maturity Model: “The purpose of peer
reviews is to remove defects from the
software work products early and effi-
ciently. An important corollary effect is
to develop a better understanding of
the software work products and of
defects that might be prevented.” Peer
reviews, in this context, have no
impact on personnel evaluation at all;
they’re simply a method of process
improvement — never a methodology
for placing blame. This peer review

h t t p : / / w w w . g d m a g . c o m D E C E M B E R 1 9 9 8 G A M E D E V E L O P E R

35

NAMING CONVENTIONS

CONSTANTS .

HUNGARIAN NOTATION .

Basic Types .

Modifiers .

Examples .

VARIABLES .

Global Variables .

Static Variables .

Local Variables .

C++ Specific Rules .

TYPES .

Structures .

Unions .

Other Types .

FUNCTIONS .

Public .

Private .

FILE LAYOUT AND ORGANIZATION

COPYRIGHT NOTICE .

COMMENTS .

Prototype Comment Rules .

Function Comment Block .

Variable Comment Rules .

Type Comment Rules .

Constant Comment Rules .

HEADERS .

Template Header File for C .

Template Header File for C++ .

SOURCE FILES .

Template Source File for C .

Template Source File for C++ .

CODING RULES

VARIABLES AND CONSTANTS .

No Magic Numbers .

Declare Local Variables at Top of Scope

POINTERS .

Initialization .

Dynamic Allocation/Deallocation of Memory

FUNCTIONS .

Prototypes .

Return Values .

LIBRARIES .

Version Function .

Communicating with the End User .

MISCELLANEOUS .

C++ Classes – Use protected: Instead of private:

Switch statements – Always Have a Default Case

Division – Don’t Divide by Zero .

Kesmai Studios Programming Standards
Table of Contents Version 1.0 (April 23, 1997)

F I G U R E 1 . Kesmai’s programming standards table of contents.

process only took a few weeks to ham-
mer out, and is now embraced by our
developers. Reviews go on almost every
week in our studio. The primary value
of peer reviews is in finding problems
and potential problems long before
they would normally be found in the
testing stage. A less obvious but equally
powerful benefit is that all participants
in the peer review process learn to
avoid both common and subtle errors
in their own work. We encountered
some resistance to peer reviews,
because there was concern that man-
agement would use these reviews to
rate our developers. Once it was clear
that this was not the case though, our
developers embraced the process.

Our first peer reviews found signifi-
cant problems that had defied other
debugging methods, and every peer
review we’ve conducted so far has
found and corrected problems. As our
people gain more experience with peer
reviews, they’re uncovering problems
earlier in the development process —
bugs might otherwise have taken weeks
of debugging had they still existed
when the game was in beta testing.

When used effectively, peer reviews
are a powerful tool to improve both the
quality and the effectiveness of your
development staff. The relative cost of
finding and correcting errors early in
the development of a title is incredibly
low compared to trying to correct bugs
when you’re about to ship. If you don’t
already conduct peer reviews, I recom-

G A M E D E V E L O P E R D E C E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

36

E N G I N E E R I N G D I S C I P L I N E

High Concept: The overall game concept .

Game Play: The core game mechanics.

Conflict: What creates the tension that motivates players?

Multiplayer Aspects: What makes this a massively multi-

player game?

Spend your 1500 words however you wish to cover those

four core issues. In many cases, Conflict and Multiplayer

Aspects will be evident in the description of Game Play. If the

game itself is evident, as well as its qualities as a multiplayer

game and its ability to motivate folks to play, your proposal

will have met the requirement, and done so in able fashion.

For further details regarding Game Play, Conflict, and

Multiplayer Aspects, read CONCEPT_GUIDE.DOC.

Submission “Help Desk”
Help is available from the Editorial Committee for all sub-

mitters who wish it, prior to their proposal submissions. This

way, you can get feedback prior to sending it in. If you want

someone on the committee to go over your proposal with

you, just send a request via internal e-mail to Jonathan. He

will, in turn, match you up with someone suited to the type of

game you wish to create.

Deadline and Delivery
All submissions are due by 5:00PM on Friday, _________.

F I G U R E 2 . Concept document guideline.

T he Requirements Baseline (RB)

is a comprehensive list of specif-

ic requirements that apply to the

software project. It draws from

documents, correspondence, and interviews

from all relevant sources to ensure a bal-

anced depiction of project requirements.

Essentially, it is a solicitation, then formal-

ization, of the requirements of each depart-

ment as they relate to your game. Its pur-

pose is to document all known requirements

in a clear and unambiguous manner, suffi-

cient to be used as the basis for the game

design process. The RB is the first document

in the project life cycle that is owned and

developed by the project team.

Why do we need it?
The RB is an agreement between the pro-

ject team, management, and other depart-

ments over what constitutes the require-

ments that bear upon the task. By

documenting the agreement, all require-

ments become visible and tangible. By

mandating approval of the agreement by all

parties, each becomes responsible for the

accuracy and completeness of their stated

requirements. Finally, by putting the agree-

ment under revision control, changes can

be identified and schedule impacts

accounted for.

What’s in it?
To accomplish the purposes described

above, the Requirements Baseline contains

the following elements:

Overview: A one- or two-page description of

the game, sufficient to give the reader a

sense of its game play and scope. This

would be very similar in format to the Initial

Concept Document, except for the omission

of any features removed through the Initial

Concept approval process.

Key Requirements Summary: A one-page

condensation of the most important

requirements drawn from the total known

set. This is intended to provide a high-

level, balanced perspective on the most

important goals to be achieved by the pro-

ject, uncluttered by the detail necessary in

the departmental breakdowns.

Requirements Breakdown: A department-

by-department itemization of all known and

accepted requirements. This should contain

documented, institutionalized requirements

as well as project-specific requirements, as

identified and submitted by the depart-

ment’s representative. Sources include, but

are not limited to, published documents, e-

mails, meeting minutes, and phone calls.

Change Log: Once the RB has been placed

under revision control, any changes to the

document should be noted in the change

log. Each entry should contain (at a mini-

mum) a description, date, and reason for

the change.

The Requirements Baseline

This is a 1,500 word product covering only the following issues:

mend starting today.
SOFTWARE PROCESS WORKING GROUP. The
Software Process Working Group was
responsible for creating and delivering
a number of items, which are consoli-
dated into a document called the
Kesmai Studios Software Process Guide.
The Kesmai Studios life cycle has five
phases:
1. Concept
2. Requirements Definition
3. Design
4. Implementation
5. Maintenance

This list is just one of many ways to
define a product life cycle. Your com-
pany may have different phases and
terminology. There is no one true way,
as each company must define its life

cycle to match its business and market
requirements. We picked some new
projects to test these processes as we
created them. I will use a fictional
product called BAZOOKA BUNNY to illus-
trate some of these phases.
CONCEPT. We created a document to
describe what made up a valid game
concept for our product life cycle. It’s
used to select what products are built
in our studio. Because our develop-
ment focus is massively multiplayer
games, this quality is heavily empha-
sized within the concept document
guideline, shown in Figure 2.

For the purposes of our development
life cycle and internal selection
processes, we wanted our concepts to
be very compact; other companies

might want much more volume and
detail. A committee made up of mem-
bers of the studio approves concepts
for further development.
REQUIREMENTS DEFINITION. The require-
ments definition phase is embodied by
two documents, the Requirements
Baseline and The Plan (see the sidebar,
“The Requirements Baseline”). Our
Requirements Baseline initiation and
revision process is shown in Figure 3.
Notice that there is a defined process
for creating a Requirements Baseline, as
well as for modifying the process of
creating the Requirements Baseline (in
the event that we decide that the
process isn’t optimal). All processes
used must have feedback mechanisms
so that they can continuously improve

h t t p : / / w w w . g d m a g . c o m D E C E M B E R 1 9 9 8 G A M E D E V E L O P E R

37

F I G U R E 3 . Requirements Baseline initiation and revision process.

Process Feedback Loop

Requirements

Baseline

Phase Outputs

Requirements

Baseline

Phase Inputs

Initial

Planning

Institutional

Requirements

Approved?

Proposed Changes

to RB Process

"The Plan"

Requirements

Baseline

Previous

Requirements

Baseline (if any)

Software

Process

New

Requirements

Concept Document

(normal or

management

sponsored

Lessons

Learned

Requirements

Definition

Approved?

Sign off?

On

Schedule?

Change

Rejected

Before any real work may begin on a
project, some planning is necessary.
This includes some overall idea of
the scope and duration of the
project. It also includes a first draft
of "The Plan."

Once the Requirements
Baseline (RB) is created,
it must be approved by all
involved departments
before development may
proceed.

Here, the RB document is created.
This may involve many iterative
versions of the doument, and will
also require meetings with other
Kesmai departments to define the
requirements of those departments.

Yes

Yes

Yes

Yes

No

No

No

No

G A M E D E V E L O P E R D E C E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

38

E N G I N E E R I N G D I S C I P L I N E

Overview
BAZOOKA BUNNY is multiplayer action

game in which poor, defenseless, and

slow-witted computer programmers (the

players), armed only with a handful of

light, armor-piercing rocket launchers (and

a few miniguns) venture forth into the

cruel, harsh meadow to do battle with

fiendishly clever rabbits. Terror ensues

when the players’ repeated saturation fire

into the underbrush fails to produce the

anticipated scurrying about, and fratricide

levels begin to reach… (snipped for brevity)

…and in a furious frenzy smash the albino

queen into red and white pulpy bits with

their shovels, thus ending the hideous

threat.

Summary of Key Requirements
• Supports up to 3,000 players competing

in separate arenas (meadows) of up to

100 players each.

• Plays on a Windows 95 machine with

DirectX 5.0 or greater.

• Plays on a Pentium 200MHz or better

with 3D accelerator required.

• Requires 100MB hard drive space and at

least 32MB of RAM.

• Plays with keyboard only, mouse/key-

board, and joystick/keyboard.

• Uses an isometric, third-person view.

• Uses real 3D, not prerendered sprites,

voxels, or raycasting.

• Uses Visual C/C++ for FE development.

Requirements Breakdown

Project

• Supports up to 3,000 players competing

in separate arenas (meadows) of up to

100 players each.

• Uses an isometric, third-person view.

• Uses real 3D, not prerendered sprites,

voxels, or raycasting.

• Plays with keyboard only, mouse/key-

board, and joystick/keyboard.

• Each character has 24 distinct anima-

tions, 4 unique to each class.

• Each meadow is approximately 10 kilo-

meters square.

Kesmai Studios

• Plays on a Windows 95 machine with

DirectX 5.0 or greater.

• Plays on a Pentium 200MHz or better

with 3D accelerator required.

• Requires 100MB hard drive space and at

least 32MB of RAM.

• Uses Creator to produce objects

and terrain.

• Uses Visual C/C++ for FE development.

• Uses a revision control system.

• Host development environment is HP/UX

on HP hardware.

Creative Services

• Need to negotiate a staged production

schedule for art, sound, and editorial,

taking into account the software sched-

ule, the interdependency of each piece,

and the quantity to be produced.

• Need to be informed of the various tech-

nologies that will be used within the pro-

ject to ensure that CS personnel are ade-

quately trained and necessary tools are

available by the work start date.

Marketing

• Need sample art and sounds for web

pages three months prior to scheduled

release.

• Need character class descriptions and

updated feature list three months prior

to scheduled release.

• Need .AVI of game play one month prior

to scheduled release.

Product Support

• A list of error messages that might be

conveyed to the user in the course of

game operation and what actions to take

to alleviate the problem. Need to have a

way to enter the game when it’s full.

• Need to have a way to find out player

info using the player’s in-game handle

as a key.

• Need to be able to eject a player who is

violating TOS agreement while playing.

Operations/Tools

• Need to have a list of all game processes,

with sample configuration files, an expla-

nation of what they do, and any special

requirements they may have.

• Need to have detailed installation

instructions for the host processes.

• Need a coordination meeting to deter-

mine the ARIES implications and feature

schedule.

Product Acceptance

• Need a software test plan at least two

weeks prior to the scheduled start of

acceptance testing.

• Need to have FE install at least two days

before the scheduled start of acceptance

testing for every release.

• Need to have a beta test host delivered at

least three days prior to the scheduled

start of acceptance testing for every

release.

Executive Committee

• The product must run on AOL and

GameStorm.

• The product must be available by Q1,

1999.

Third-Party Support

• The game should avoid liberal use of the

word “rabbit,” because one of our other

games already supports a familiar theme

of blasting rabbits with bazookas.

Referring to the critters as “bunnies” or

“fuzzies” should deflect from any simi-

larity.

Community Support

• The game must emit a player scoreboard

in a negotiated format for display on the

Web.

• The game must support a control query

returning player information in the game

context for display on the Web.

• The game must support a “news ticker”

giving descriptions of what’s happening

in the game to be displayed in real-time

on the Web.

Help Desk

• A list of error messages that might be

conveyed to the user in the course of

game operation and what actions to take

to alleviate the problem.

Publishing

• The project must deliver installation

packages in the format required by the

GameStorm client.

Change Log
11/3/97: Added rabbit to bunny word

replacement throughout the design doc-

umentation at the request of third-party

support.

11/25/97: Changed number of animations

from 12 to 24 after some hashing out of

the initial paper design with the project

team.

F I G U R E 4 . Sample Requirements Baseline

BAZOOKA BUNNY—SAMPLE REQUIREMENTS
Baseline Revision 1.4, September 20, 1997

Prepared by: John Robinson, Will Robinson, Doctor Smith

based on the input from the teams that
use the process. A simplified example
of a Requirements Baseline for our fic-
tional BAZOOKA BUNNY product is
shown in Figure 4.

You may have noticed the large
number of departments that are refer-
enced in the Requirements Baseline.
Involving so many people at this step
is initially time consuming, but it gets
all the key departments involved and
gives them the ability to give
their input about the prod-
uct. It also secures their
agreement that these are
their requirements for the
product. Any future
changes result in the cre-
ation of a new agreement, and all the
parties must re-approve the changes.
While this applies friction to the
process of making changes to the pro-
ject, it does discourage people from
suggesting frivolous changes.
Additionally, important changes are
allowed to move forward with a con-
sensus from the key parties involved.
Once these requirements are formal-
ized for the first product, most of
these requirements are reused for fol-
low-on products.

The Plan document, alluded to in
Figure 3, outlines the general path
that development will follow and
describes additional elements beyond
the key requirements listed in the
Requirements Baseline. It also outlines
all project deliverables, such as a ter-
rain editor, mission editor, manuals,
and so on. The Plan is a living docu-
ment that changes as the product
moves from the requirements phase
through the design and implementa-
tion phases. The Plan demonstrates to
management that the team knows
what they are doing and how they
will go about getting it done.
Specifically, The Plan includes the fol-
lowing items :
• The vision and goal of the project

(approximately one or two para-
graphs).

• The list of reference materials.
• Project organization (management,

responsibilities, work products, pro-
cess model).

• Risk management.
• Project plan (deliverables, major mile-

stones, staffing, and organization).
Every project develops a large num-

ber of work products during the course

of the project. Some of these work
products are deliverables that are given
to people outside of the project team,
such as the software itself, user manu-
al(s), and test plans. Other work prod-
ucts are mostly for internal use, such as
analysis and design documents, source
code, and build procedures. The Plan
document outlines all of the work
products that will be created and gives
a rough timetable and order of deliv-
ery. The intended target audience for
each deliverable is also defined.

In order to prevent changes from
completely derailing a project
during development, an effective
change control plan must be

established early in the project
cycle. This process is written into The
Plan so that change control procedures
are established from the very begin-
ning and are used on every baselined
work product.

We define high-level project mile-
stones in The Plan and leave the
detailed scheduling information in a
separate document. Milestone target
dates are initially estimated based on
the project scope and budget. As the
development progresses and the sched-
ule becomes more accurate, these mile-
stone dates are changed within The
Plan. As such, we always keep The Plan
up to date.
DESIGN. The design of the product
flows from the requirements defini-
tion. The design is made up of a series
of stages that are contained in four
main documents under our definition
of this phase (Figure 5). These docu-
ments are the Software Design Speci-
fication, the Software Project Plan, the
External Resource Specification, and
an initial Software Testing Plan. The
Software Design Specification, in turn,
is composed of three subphases: cre-
ative design, technical design, and
resource analysis.

The creative design subphase is
made up of a series of four documents,
titled Overview, Thematic Content,
Interface Storyboards and Prototypes,
and Game Mechanics. The combina-
tion of these documents describes
how the game will look, feel, and
play. In addition, the initial External
Resource Specification is created dur-
ing the creative design phase, which
lists all the art, sounds, and other
externally created elements necessary
for the product.

The technical design subphase is
made up of a series of three documents:
Requirements Analysis, System
Architecture, and Module Specification.

Finally, the resource analysis sub-
phase is where The Schedule, the final
External Resource Specification, and
the initial Software Test Plan are all
created. The Software Project Plan is
simply our schedule for the game’s
design and implementation, and it’s a
fairly common document to most pro-
jects. The Schedule is based upon the
detail provided by the combination of
the Software Design Specification and
the External Resource Specification.
The Software Testing Plan, which is
initially created in this phase, is a
roadmap for our product testing group
to use to validate the functionality of
the product.
IMPLEMENTATION. Once the design phase
is complete and approved, the project
moves into the implementation phase.
The implementation phase is divided
into the construction subphase and
the release-and-refine subphase. Most
of our larger products use a staged
delivery process, so we construct mul-
tiple stages and then move the final
stage into a release-and-refine sub-
phase. The Software Testing Plan,
which began in the Design phase, is
completed during the construction
subphase. This is a complete testing
plan for the product describing the
methodology and elements of a proper
test of the product.

The majority of the construction
subphase is spent doing the traditional
programming, integrating, and testing
of the product’s modules as it moves
towards completion. In each stage of
the construction subphase, the
Software Testing Plan is being incre-
mentally completed.

Once a project has reached the
alpha release milestone, it moves into
the release-and-refine subphase
(Figure 6). In this subphase, the focus
is not on developing new features, but
on testing, fixing bugs, and complet-
ing the product for the production
release to players. During the alpha
release stage, it’s inevitable that fea-
tures will be changed or added, but
the focus in the release-and-refine
subphase is on stability and fine tun-
ing. This is the last development
phase of a project, and it consists of
four key stages:

h t t p : / / w w w . g d m a g . c o m D E C E M B E R 1 9 9 8 G A M E D E V E L O P E R

39

1. Alpha Release
2. Closed Beta Release
3. Open Beta Release
4. Production Release
MAINTENANCE. Once a game achieves
good stability and it’s at the gold-mas-
ter stage, it moves out of development
and into maintenance and enhance-

ment. The project has been complet-
ed, and although work will likely con-
tinue throughout the life of our mas-
sively multiplayer games, it will be at
a maintenance level. Most likely,
maintenance will be handled by dif-
ferent personnel than the original
development team.

Problems Faced at Kesmai

L ack of management buy-in was not
a problem we had, but it might be

one that you will encounter. Without
the commitment of upper manage-
ment to instituting engineering disci-
pline through process improvement,

G A M E D E V E L O P E R D E C E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

40

E N G I N E E R I N G D I S C I P L I N E

Process Feedback Loop

Design

Phase Inputs

Creative

Design

Schedule

"The Plan"

Accepted?

Proposed Changes

to Design Process

Design

Phase Outputs

External Resource

Specification

Preliminary

Software Test

Plan (STP)

"The Plan"

(updated)

"The Schedule"

Sell Sheet

Software Design

Specification

Previous

Requirements

Baseline (if any)

Software

Process

Other Software

Design Documents

Requirements

Baseline

Lessons

Learned

Creative

Design

Approved?

Complete?

On

Schedule?

Change

Rejected

Creative Design is composed of four activities: Overview, Thematic
Content, Interface Description, and Game Mechnaics. Each of these

progresses more or less in parallel during this phase.

NOTE: It is expected that some amount of technical work, such as technology

assessments and prototyping, will occur during the Creative Design phase.

NOTE: Its is also expected that the list portion of the ERS will be completed

during this phase, although the final estimation is not required until the

Resource Analysis phase.

"Complete" in all
decision boxes indicates
that it is done and has
been reviewed and
approved per the
Software Process Guide

Technical Design is composed of four activities. These are:
Requirements Analysis, System Overview (Architecture), Module

Identification, and Module Specification. These activities are
performed iteratively throughout the phase.

Yes

Yes

Yes

Yes

No

No

No

Reschedule

Complete?

Technical

Design

Schedule

Accepted?
Technical

Design
Complete?

On

Schedule?

Yes

Yes

No

No

Reschedule

No

No

No

Resource

Analysis
Yes

Yes

Create "The Schedule,"
final ERS, and
Preliminary STP. Update
"The Plan" as necessary.

F I G U R E 5 . Design process flow.

it’s almost impossible to accomplish
any real changes. The process of mak-
ing significant changes to production
methods takes the commitment of
everyone involved, and if management
changes directions in mid-stream, all
benefits can be lost. Our management
and our developers devoted the time
and effort that it required.

Our first significant problem was
coming up with a vocabulary for every-

one to use. Common terms meant dif-
ferent things to different people. This
problem was primarily a training prob-
lem, and sending the majority of our
people to SEI CMM training, combined
with in-house project management
training, largely overcame this prob-
lem. However, due to the complexity
of the processes involved with develop-
ing games, and the number of depart-
ments involved outside of develop-

ment who don’t share our special
vocabulary, we still find the vocabulary
of disciplined engineering problematic.

The next large problem that we
encountered was the team’s impatience
to start working (programming) on a
new project. Planning a new game
down to the final details before writing
a line of code (other than necessary
“proof of concept” prototyping) is very
counterintuitive to most game pro-

h t t p : / / w w w . g d m a g . c o m D E C E M B E R 1 9 9 8 G A M E D E V E L O P E R

41

F I G U R E 6 . Implementation flow.

Process Feedback Loop

Implementation

Phase Inputs

Stage Planning

(Staged

Delivery Only)

Software Design

Specification

(SDS)

Proposed Changes

to Design Process

Implementation

Phase Outputs

Operations

Manual(s),

Support

Manual(s)

User Manual(s)

Service

Documentation

(ReadMe files, etc.)

Software

Test Plan (STP)

(updated)

"The Plan"

(updated)

"The Schedule"

(updated)

Software

"The Schedule"

Software Process

"The Plan"

Preliminary

Software

Test Plan (STP)

External Resource

Specification

(ERS)

Lessons

Learned

Technical

Design

Approved?
Change

Rejected

In a project using Staged

Delivery, every stage

begins with a "stage plan,"

which details the activities

of that particular stage.

Using Staged Delivery,
a project is able to
reassess its progress
after the completion of
each stage and replan
as necessary for the
remaining stage(s).

Yes

No

Implementation

Preparations

Stage WrapUp

(Staged

Delivery Only)

System

Testing

Construction Release

Once the entire implementation is complete, the project can
conclude. Typically, this is when the software would be
transitioned into the "Maintenance and Enhancement

Phase" of the software process.

Project

Conclusion

Next Stage

Finished

Each release of the software is a planned (scheduled) event,
even if the software is not released to the public at this point.

The "Release and Refine Phase" details the actual release
procedures and requirements.

grammers. Discipline came into play
here, as both management and the
development staff kept focused on the
new processes even when tempted to
follow old patterns of development.

Getting all other departments —
such as our publishing, product testing,
marketing, and operations depart-
ments — to cooperate with our new
processes was also a challenge. We
overcame many of these problems by
including these departments in the cre-
ation of our processes. A grassroots,
organization-wide commitment to
process improvement really made a dif-
ference for us in this area, but there are
always holdouts who prefer the tradi-
tional methods despite potential bene-
fits. You need to have the key people in
the departments you work with educat-
ed and on-board with your planned
improvements.

The sheer amount of paperwork and
process involved is daunting, particu-
larly for groups used to a seat-of-the-
pants development process. I’m sure
many people reading this article won-
der how any “real” work gets done
with all the paperwork involved. We
discovered that all this paperwork
inevitably gets done, either by a prede-
fined plan or as an emergency later in
the project. In our experience, most
slippage in schedules is driven by ele-
ments that weren’t explicitly defined at
the beginning of a project. Our process
improvement effort simply acknowl-
edged all the known requirements at
the beginning of a project rather than
in the midst of development when it
adds to both schedule and cost.

Benefits Accrued to Date

T he biggest benefit that we’ve real-
ized so far has been improved

morale. Our development staff is
excited to be involved in a process
that is progressive and has the oppor-
tunity to take our group to a high
level of effectiveness. There has been
unanimous participation in the cre-
ation of and compliance with the
new processes. The
process changes are
showing results, and
developers feel more
in control of the pro-
ject. Mid-stream
changes in projects still

occur, but because projects are now
less chaotic, dealing with these
changes is much more manageable.

Getting the project baseline
requirements written down
and agreed to by all
departments was a
major benefit. When
requirements change
(as they often do), it puts
you in a position to document
the change and inform all parties of
the effect it will have on the schedule.
It allows cost and schedule trade-offs
to be done rationally and reduces
needless feature creep. Thinking about
and documenting these requirements
has headed off innumerable future
problems.

Having a full design, a technical
design, prototyping technology, and
solid estimates of programming tasks at
our disposal allows us to plan the cre-
ation of the art, sound, and editorial
resources better. This has helped
reduce the false starts and rework of
these elements, in comparison to previ-
ous projects.

Management has a much higher
confidence in the schedules of the
products, and a much better idea of
where the product is relative to the
projected completion date. The actual
schedule exists only after the technical
design is completed and approved. We
only use broad ranges of time prior to
the completion of this phase, which
requires a high degree of trust between
management and development teams.

Future Expectations

W e expect that as our personnel
gain more familiarity with the

processes, we will see further improve-
ments in productivity. We also believe
that we’ll reap benefits in our mainte-
nance efforts once our products move
to that stage. Our standards will dra-
matically reduce the time that it takes

to train new programmers to
maintain legacy products.
The time that it takes to find
bugs and make additions to

these legacy games will be sig-
nificantly reduced. As we move

our current set of products into pro-
duction, we expect the quantity and

severity of found bugs to be much
lower than was previously the case.

The combination of completely plan-
ning the product prior to implementa-

tion, peer reviews of key soft-
ware modules, and test
plans created by the team

should continue to raise the
quality of our software.

Finally, our time-to-market
should decrease as our software

development process improves
and our teams become accustomed to
the new procedures.

It has been exciting to move
towards building game software under
our new model. Our new procedures
allow our developers to be more effec-
tive in a normal workday, and
although the occasional crunch still
occurs, we no longer face grueling,
continuous 16-hour days during a pro-
ject death march. We have already
seen a difference in our shop, with
people rising to new levels of contri-
bution and productivity simply
because the environment allows it.
The standard sweatshop atmosphere
of game development only allowed
the “coding cowboys” to be heroes.
Now, we have teams entirely staffed
with heroes, doing great work without
having to resort to heroics. Being
involved with fostering this move to
engineering discipline is the most sig-
nificant effort that I’ve been involved
with in my 20 years of creating games.
I believe it has the potential to take
much of the chaos and uncertainty
out of development and let us focus
on creating great game play in our
future titles. ■

G A M E D E V E L O P E R D E C E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

42

E N G I N E E R I N G D I S C I P L I N E

• Bennatan, E.M. On Time, Within

Budget: Software Project Management

Practices and Techniques, 2nd ed. (John

Wiley & Sons, 1995.)

• Caputo, Kim. CMM Implementation

Guide: Choreographing Software

Process Improvement. (Addison

Wesley, 1998.)

• McConnell, Steve. Rapid

Development: Taming Wild Software

Schedules. (Microsoft Press, 1996.)

• Yourdon, Edward. Death March: The

Complete Software Developer’s Guide

to Surviving “Mission Impossible”

Projects. (PTR Prentice Hall, 1997).

• The Software Engineering Institute’s

web site (http://www.sei.cmu.edu)

FF OO RR FF UU RR TT HH EE RR II NN FF OO

While most hardcore game players stick up their noses at
such value-priced games, the truth is that there’s still a huge
untapped market of computer users who do little with their
PCs but write letters, send e-mail, and play solitaire. Death
rays and world conquest hold very little interest for them,
and they’re still waiting for a game they’ll enjoy playing.

Although I’m not inclined to debate the merits of games
such as DEER HUNTER, let me at least point out a few facts
regarding the game that might help to tip the balance of
opinion in its favor.
• DEER HUNTER was the first game to attempt seriously to

simulate the strategies involved in deer hunting. If you’re
snidely thinking that there is no strategy to swigging down
a beer and storming through the woods after a buck while
blasting away with your shotgun, then you have no real
knowledge of hunting on which to base a valid opinion.
Before I sound too sanctimonious, I should point out that
before I worked on DEER HUNTER, I had little knowledge of
hunting myself, and shared many of the same prejudices.

• DEER HUNTER is a value-priced game. It costs only $20 and
includes $20 worth of value. Many people tend to compare
this product against games costing two to three times as
much, with budgets often 10 times or more what we had
to work with. DEER HUNTER’s total development cost was
around $75,000. Remember to compare apples to apples.

• DEER HUNTER was targeted specifically at non-enthusiast
game players. This meant that both controls and game play
were kept as simple as possible. This wasn’t only expedient;
it was a requirement determined at the outset of the project.

• DEER HUNTER was developed from the ground up by three
programmers (one was a college intern) and a part-time
artist in less than three months.
It’s this last point that I really want to focus on, because it

is one of the more interesting aspects of the game, the

G A M E D E V E L O P E R D E C E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

46

D E V E L O P M E N TR A P I D

DEER HUNTERÕs
Three-Month
Development
Cycle

arlier this year, a small hunting simula-

tion called DEER HUNTER shocked the

industry by rocketing to the top of the

sales charts for three months. Presently,

it’s still selling well and shows every

indication of continued good sales. EE
b y J a m e s B o e r

James Boer is a programmer, game designer, and musician.
During the development of DEER HUNTER, ROCKY MOUNTAIN

TROPHY HUNTER, and PRO BASS FISHING, he acted as designer,
programmer, art coordinator, sound designer, and voice-talent.
He currently resides in Seattle, Wash., and is working at
WizBang Software Productions. He can be reached at
jbsys@csi.com.

remarkable sales notwithstanding. How the game sold after
it shipped was a shock to everyone, including us, but the
development cycle was something that was controllable.

At this point you may be saying to yourself, “So what if a
small game such as this was written quickly? The product
I’m working on is much more complex, has many more fea-
tures, yada, yada.”

This could very well be true. However, many of the lessons
learned in a compact development cycle can be applied to
any sort of game development project. I’ve had the opportu-
nity to analyze and fine-tune our development process
through five games in one year. Even if a project is expected
to require a year and a half to complete, the same strategies
can be applied to individual milestones within the project,
or even to project components over a much longer period.
The techniques don’t necessarily have to be used to speed up
development, either. They can just as well be used to get
more from your existing timelines.

In this article, I outline some of the salient aspects of our
development cycle. Some of the points are undoubtedly
common sense, but all too often common sense gets ignored
in the face of tradition or other external pressures. Other
points, however, fly in the face of conventional design
approaches. While it’s true that not every project could or
should attempt to utilize some of these principles, the fact
remains that, using these techniques, Sunstorm rapidly pro-
duced hit after hit in quick succession.

Lesson 1: Don’t Over-Design

I t’s better to keep the game plan simple and understand-
able. You don’t necessarily have to code the entire game

on paper. I’ve found that the most important aspect of the
initial design lies in clearly delegating responsibilities for the
project components. Instead of delving into the inner work-
ings of how individual components are going to work, focus
on how the major components are going to work together.
Again, these don’t necessarily have to be completely set in
stone. Rather, let the programmers who are dealing with
those components work with each other to figure out how
their components should communicate. Because they are
the only ones the problem affects, it makes sense that they
should facilitate the solution, both in design and in code. As
long as their solution is solid and well documented, there’s
no reason to involve other members of the team in the deci-
sion process. Planning by committee in cases such as this is
both unnecessary and inefficient.

There’s one caveat to this technique. One instance in

which it does not pay to skimp on design is interface design.
Over the course of three projects, I’ve learned that time
spent carefully mocking up all the game screens helps
tremendously as a reference for both the programmers and
the artists during all phases of development.

Note that I’m not talking about a complete graphical mock-
up. I’m referring to a functional mock-up. I use CorelDraw to
roughly position all elements on the various screens. I print
each screen on a separate page. I label all buttons and explain
their functions. I make no attempt to create an aesthetically
pleasing screen. The artist’s job is to arrange and beautify the
various controls except where noted on the document.

A solid interface design not only helps to solidify the flow
of the game, it also frees those responsible for its implemen-
tation to begin coding and illustrating while the finer points
of game play continue to be debated. As the game evolves,
this document is updated to reflect the latest changes.

Lesson 2: Don’t Be Afraid to
Design Dynamically and in Parallel

T he original idea for DEER HUNTER was actually simpler
than what ended up on store shelves. I joined Sunstorm

in May of 1997 with a rough idea of what I’d be working on,
but no real knowledge of hunting. My first assignment was
to design a deer hunting game. You might imagine how
thrilled I was at the prospect of designing a game based on a
“sport” that consists mostly of sitting and walking around in
the woods for hours on end, waiting for a passive animal to
show up so you can shoot it.

The initial game idea wasn’t much more than many of the
other hunting titles seen previously — that is, blasting a deer
when it happened to meander across your path. As develop-
ment progressed and I became more knowledgeable of the
intricacies of hunting and stalking deer, I realized that we
could, with a slight change of focus, turn the game from an
arcade gallery into a simulation with the addition of an over-
head map view and a dynamic scene generator. The biggest
reason for DEER HUNTER’s success was that we were the first
company to make a serious attempt at creating a realistic sim-
ulation. Our dynamic development process allowed us to shift
focus enough in mid-development to capture this market.

Although some projects have failed due to the lack of a
strong design, we found that taking a flexible approach to
game design worked in our case, and it might be worth con-
sidering on your next project. I’m not advocating that you
turn your 3D shooter into a real-time strategy game halfway
through development. Rather, try prioritizing design elements

h t t p : / / w w w . g d m a g . c o m D E C E M B E R 1 9 9 8 G A M E D E V E L O P E R

47

by their expected completion date and
finishing designing these elements first.

For instance, if the user interface is
rather straightforward but the game
play still needs some work, let a pro-
grammer and an artist start moving
forward on this aspect of the project
while others hammer out the details of
game play. This is an example of
designing in parallel with the project.
Because the components have a logical
separation from other aspects of the
design, this process makes perfect sense
and avoids down time.

Likewise, in-house development
tools can often be started long before
other portions of a game are complet-
ed. It may even be a requirement. (For
more on this point, see Game
Developer’s October 1998 Postmortem
of Monolith’s SHOGO to see what can
happen if custom tools aren’t given
enough attention early in the develop-
ment process.) If design issues are still
up in the air, make sure the tool pro-
grammer makes allowances for addi-
tional functionality that might be
added. The time wasted in having to
change a file format is more than made
up for by the fact that the programmer
didn’t have to wait another month for
the design specifications to be finished.

Dynamic design — altering the
design during development — might
also bear consideration. Again, use
some common sense — I’m not talking
about changing the entire course of a
project. We found that it doesn’t pay to
try to anticipate every problem that
may come up during the course of
development. Instead, we set goals to
attain and expected both the artists and
programmers to be creative enough to
reach those goals on their own. Many
times during the course of a project, we
thought of a better way to achieve the
goal that we’d set out to reach. One of

the more interesting effects in the game
is the zoom lens on the rifle scope and
binoculars. Although the design of this
effect was originally intended to be a
simple pixel doubling, I realized that we
could make the effect much more con-
vincing if we could preserve the sprites’
highest level of detail by using a tech-
nique we hadn’t thought of earlier. By
focusing on the goal instead of the
process or the details, those of us work-
ing on the project could enhance the
game significantly while still maintain-
ing the original schedule.

Lesson 3: Smart Scheduling

I brought up the issue of scheduling
when discussing parallel design, but

it warrants more attention. Intelligent
scheduling means planning to com-
plete components so that you minimize
your reliance upon incomplete code;
this was one aspect of our development
process that allowed us to get DEER

HUNTER out the door fairly rapidly.
For instance, Figure 1 shows the task

schedule from early in the DEER HUNTER

project. Mike Root, our project leader
and lead programmer, was responsible
for creating and maintaining the gener-
al framework of the game, as well as
other items such as creating the
weapons and building the sound
libraries. He also built a resource editor
that helped us manage all the game art-
work. Nate Terpstra, our trusty intern,
worked on the DirectDraw graphics
libraries and user interface controls. My
responsibilities included game design,
artificial intelligence and deer behavior,
map creation, and scene generation.

You can see in Figure 1 how both my
game design and AI research were
scheduled for a time when it would
have been difficult for me to do much

else in the way of high-level coding.
Much of the game design was still in
flux when Mike and Nate were develop-
ing the DirectDraw libraries, resource
builder, and basic program framework.

None of this concerned us, however,
as we knew what was required of those
components regardless of game design.
This freed me to continue tweaking the
design and continue research even
while other team members were busy
coding. Note that when I was finally
ready to begin coding the deer AI, the
elements for allowing me to visualize
the deer on screen were nearly in place.

Lesson 4: Code
Around Scheduling Delays

In some instances, scheduling cannot
be fudged enough to minimize

dependencies and still give enough time
for everyone to complete their tasks. Or,
there may not be enough alternate work
with which to fill up that person’s
schedule. In this case, the best thing to
do is simply to code around the prob-
lem. This was somewhat of a problem in
DEER HUNTER’s development.

I was responsible for the deer’s AI
and behavior. A problem arose when
the map view took slightly longer than
anticipated to get functional (with as
tight a schedule as we had, even a week
could make a huge difference).
Without a graphical view into the
deer’s world, it was difficult for me to
maintain my schedule.

In future projects, I would learn from
this mistake and create a separate appli-
cation exclusively for creating and test-
ing animal movement and reactions.
The next generation of hunting games
were expected to have more advanced
behavior, so I needed far more time to
program the AI in our later projects. I
used a third-party graphics library, Fast-
graph for Windows, to create this test
bed, because it had native support for a
flexible floating-point coordinate sys-
tem. The animals all used floating-point
vectors for movement in a realistically
scaled world, so this worked well for me.

Your particular choice of libraries and
tools doesn’t really matter, as long as
you maintain a clear separation
between the test bed and the game code
that you’re writing. This distinction
also has another positive side effect: it
forces programmers to maintain a clean

G A M E D E V E L O P E R D E C E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

48

R A P I D D E V E L O P M E N T

Mike

Jim

Nate

Create Framework Resource Builder Interface Implementation

Game Design/Game Layout AI Research Map Editor Deer AI Programming

DirectDraw Libraries/Interface Libraries Overhead Map View

Ready to begin AI Coding

Weapons

F I G U R E 1 . DEER HUNTER’s task schedule.

and intuitive programming interface to
the code modules that they’re writing,
because the code must be moved from
the test bed to the main project. At
some point, the actual project may
become incompatible with the test bed
due to increasing complexities in the
game itself. Don’t try to maintain the
two separate projects unless you’re
absolutely forced to do so. Simply move
the code to the main project and con-
tinue working there. Keep in mind that
the test bed is simply a means to an
end, and once its usefulness has ceased,
it should be discarded. Don’t make it
too pretty by wasting time on irrelevant
features. Quick and dirty is the key.

Lesson 5: Create
Meaningful Milestones

I t’s too easy for those who can’t see
under the hood of a project to want

visual milestones. Oftentimes, howev-
er, when a game looks only half done,
the work is actually 90 percent com-
plete, or vice versa. It’s important for
project managers to understand this.

The easiest solution is to involve the
designers, artists, and programmers in
the task of creating milestones. Because
they’re the ones doing the work, they
should have a more instinctive feel for
how to balance out the workload
among equally separated project mile-
stones. This also helps to clarify every
individual’s responsibilities right from
the beginning.

I’ve seen examples of both approach-
es. When management alone tries to
dictate the milestones, the results are
often a huge, unbalanced mix of goals,
which fall mostly into the “too easy”
or “nearly impossible to achieve” cate-
gories. When someone who appreciates
the technical aspects of the design is
involved, the balance between mile-
stones tends to be much more realistic.

You’ll notice that all of these sugges-
tions relate to design or other similar
aspects of the project. Truth be known,
that was really the only remarkable
aspect of DEER HUNTER’s development
cycle. The other parts were pretty
plain: solid object-oriented design prin-
ciples (or solid structured programming
techniques for you C programmers),

careful programming, and hard work.
The question of code reusability and

robustness might come up, and it is
indeed a valid point. Minimizing
design time doesn’t necessarily mean
sacrificing these elements. I would offer
proof of this by mentioning that the
same basic code set was used to create
two derivative products, a big-game
hunting simulation and a duck/goose
hunting game. The success of DEER

HUNTER was completely unexpected,
yet we were able to use the existing
code as an engine with which to create
these other games, both of which made
substantial improvements to the origi-
nal game. DEER HUNTER has now even
been ported to the Macintosh. There’s
no question that the code was well-
designed and quite robust. Individual
programmers sticking to time-honored
object-oriented programming tech-
niques achieved the robustness of the
code, not a fancy design document.

Remember that design time is essen-
tially overhead. The faster you can get
your team up and working, the more
time they’ll have to do what’s really
important: produce the game. ■

h t t p : / / w w w . g d m a g . c o m D E C E M B E R 1 9 9 8 G A M E D E V E L O P E R

49

dates a lot of people. University courses
in DSP come with thick textbooks, and
many programmers have heard of this
thing called the “Fourier Transform”
that consumes terrifying amounts of
CPU time. Recently, I was shocked to
learn just how simple the concepts
underlying DSP are, and how sophisti-
cated effects are easily done using small
amounts of CPU time.

Motivation

A goal of most (if not all) game
developers is to use interactive,

realistic sounds in their titles. Many
game programmers are familiar with
the concept of “spatialization,” which
is the practice of manipulating sounds
to fool listeners into thinking those
sounds are coming from somewhere
other than the speakers. Vendors of
spatialization products would like you

to believe that these products will
make your game stunningly realistic;
the fact is that, though currently avail-
able spatialization is a welcome feature,
it’s only one of many steps that you
must take to achieve realistic sound.

Sound reverberates in closed spaces.
In wide-open spaces, sound loses ener-
gy as it travels; high frequencies fall
away faster than low frequencies,
changing the character of the sound.
In fact, this change is affected by the
weather conditions between the source
and the listener. When a sound
bounces off a sheer rock face, different
frequencies are deflected in different
ways. When you’re strutting down a
bilinearly-filtered hallway cradling
your BFG-31337, and you see a nice
scripted sequence of a monster disem-
boweling a scientist on the other side
of a thick polymer window, the crack-
ing-bone effects should sound as
though they’re vibrating their way

through a solid barrier — very different
than the same event unfolding beside
you in the open air.

Some game-oriented 3D sound sys-
tems, such as QSound or Aureal’s A3D,
contain some features for distance
attenuation, reverberation, and the
like; but those features usually aren’t
very sophisticated, nor do they give
the developer enough control. Because
I’ve never heard a sound API that let
me say, “This cannon blast is happen-
ing on the other side of an echoey
ravine, and it’s passing through a
damp fog bank on the way here, and
the weather is very windy, and by the
way I’m listening to the sound under-
water,” I believe that more game devel-
opers should learn to do this stuff
themselves. (Some of the very latest
games do use sophisticated filtering
effects. UNREAL uses a filter to create a
reverberation effect inside caves, and
HALF-LIFE uses a filter to simulate sonic
resonance when the player is crawling
through air ducts.)

In this article, we’ll cover the basic
ideas behind achieving environmental
effects through the manipulation of

G A M E D E V E L O P E R D E C E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

50

F I L T E R I N GS O U N D

An Introduction
to Sound Filtering

b y J o n a t h a n B l o w

e’re going to talk about the basics of

sound filtering — playing with the var-

ious frequencies that compose a sound

effect — in real time. In the process, we’ll

take a small step into the world of digital sig-

nal processing (DSP). DSP is a topic that intimi-WW
And when we were all fallen to the earth, I heard a voice speaking unto me, and say-
ing in the Hebrew tongue, jon@bolt-action.com, why persecutest thou me? It is hard
for thee to kick against the pricks.

frequencies within a sound. This tutori-
al will be easier if we first accept a cou-
ple of ideas about sine waves, without
proof. These ideas aren’t too hard to
swallow; ample references to explain
them are given at the end of the article.

Sine Wave Review

B ecause we’re going to talk about
sine waves, let’s review some of

their properties. Sine waves are little
curved beasties made by the equation
f(t) = sin(t). The argument t is given in
radians; sine waves repeat themselves
every 2π radians. We say that this 2π
radians is the wave’s period of repeti-
tion, and we may think of period in
the temporal sense: it is the amount of
time the wave takes to repeat itself. The
sine function can produce values from
–1 to 1, so we say that the wave has an
amplitude of 1 (Figure 1A).

To amplify a wave, we multiply it by
a constant A, so the equation becomes
f(t) = A sin(t). If A is 2, then every point
on the wave becomes twice as far away
from the 0 line, and now the wave
ranges from –2 to 2 (Figure 1B). To shift
a sine wave to the side by an amount x,
we add x to the time parameter: f(t) = A
sin(t + x). We can change the frequency
of the sine wave by accelerating the
flow of time as the sine function sees it;
to do this we multiply t by a constant:
f(t) = A sin(kt + x) (Figure 1C). When we
add sine waves together, the positive
and negative values can cancel each
other out, just like any other function
(Figure 1D).

The first remarkable fact that we’ll
accept on faith is this: whenever we
add two sine waves of the same fre-
quency, the result is a sine wave of that
frequency. This is easy to see if the
waves are not shifted: A sin(kt) + B
sin(kt) = (A + B) sin(kt), a wave with
amplitude (A + B). However, the sum is
still a sine wave even when the source
waves are shifted: A sin(kt + α) + B sin
(kt + β) = C sin(kt + γ) for some C and γ.

Sine waves of differing frequencies,
however, do not sum to produce a sim-
ple sine wave. A sin(k1t) + B sin(k2t) =
Something_More_Complex(t) in gener-
al. But this is a good thing, because
sine waves themselves don’t make for
very interesting sounds. It is by throw-
ing them together and making a mess
that we develop true character.

Sound Wave Review

T hese days, we usually represent
sounds as arrays of signed 16-bit

integers. Each number in the array rep-
resents a sample of a sound wave at an
instant in time (Figure 2). The sound
card converts our samples back into a
continuous waveform so that they can
be played. We will call this waveform
— which is essentially just a function
that varies over time — a signal.

The second remarkable fact we’ll
take on faith is that every signal (over a
finite interval) can be represented as a
sum of sine waves of differing frequen-
cies. This brilliant realization is called
the Fourier Theorem, named after Jean
Baptiste Joseph Fourier, who came up
with the idea early in the nineteenth
century. (There is nothing too magical
about sine waves that gives them this
capability; the study of wavelets is all
about how to decompose signals into
varying wave shapes.)

What This Means

N ow we are armed with two impor-
tant facts: all sounds are composi-

tions of sine waves, and two sine waves
of the same frequency, added together,

produce a new wave of the same fre-
quency. These facts give us the ability
to look at sound in an enlightening
new way.

Suppose we want to mix two sounds
together by adding them; the sounds
are represented by functions f(t) and
g(t), and we want to add them to pro-
duce a new sound h(t): h(t) = f(t) + g(t).
The old way of thinking about this is
that, for each t, we evaluate f(t) and
g(t), add those together, and the result
is the value of h at t. According to the
DSP way of thinking, we take all the
sine waves that make up f, and all
those that make up g, then we add
them all together to get h.

What happens if we add a sound f(t)
to itself? f(t) consists of a bunch of sine
waves, An sin(knt + αn). Working in the
DSP way, we add all these sine waves to
duplicates of themselves, then put
them back together to get the result.
f(t) + f(t) equals, for each n, An sin(knt +
αn) + An sin(knt + αn) = 2 An sin(knt + αn).
Every sine wave has twice the ampli-
tude as before. When we put the waves
together, it should come as no surprise
that the result has twice the magnitude
of the original f(t) at every point. f(t) +
f(t) = 2f(t), after all. We’ve made the
sound louder. The DSP way of thinking
about sounds hasn’t bought us any-

h t t p : / / w w w . g d m a g . c o m D E C E M B E R 1 9 9 8 G A M E D E V E L O P E R

51

A.

B.

C.

D.

F I G U R E 1 . A. Sine wave y=sin(t). B. A sine wave with amplitude 2: y=2sin(t). C. A

sine wave with a period of half of wave A.: y=sin(2t). D. When the two purple

waves combine, destructive interference produces the green wave.

F I G U R E 2 . We represent a continuous sound wave with an array of samples.

thing extra yet — but that was just a
way of getting used to this way of
thinking and convincing ourselves that
it produces consistent results.

Now, here’s a revealing thought
experiment: what happens when we
add the sound f to itself, but before
adding, we shift one version of f by a
small amount d? That is, if h(t) = f(t) +
f(t + d), what does h(t) look like?

Let’s look at the individual sine
waves in Figure 3. If d is very small
compared to the period of a sine wave
A sin(kt), then the wave isn’t displaced
much with respect to itself. So when
we add A sin(kt) + A sin(kt + d), the
result is very close to 2 A sin(kt), as in
our last example (Figure 3A).

But what happens when d is longer
than the small displacement we just
discussed; say, half a period long? We
see the result in Figure 3B: A sin(kt) and
A sin(kt + d) cancel each other out, pro-
ducing zero.

These cases represent two extremes.
The lower the frequency of the wave
(the longer its period), the better it
will survive the summation process,
approaching the ideal of doubling its
original value. The higher the fre-
quency (the shorter the period, down
to 2d), the better it will be eliminated
by the offset.

It turns out that if d is the width of
one sample, the highest frequency con-
tained in the input sound has period
2d (so says the Nyquist Theorem,
which tells us how much signal infor-
mation can be stored in a series of sam-
ples); this is precisely the frequency
that is completely eliminated by the fil-
tering operation. A graph of frequency
attenuation is given in Figure 4.

If we take an array of integer sound
samples, shift it by one sample, and
add it to itself, we are performing a
low-pass filter of the sound. If we’re
representing a sound with 16-bit inte-
gers, we want to add the samples
using a larger number representation
(say, 32-bit integers), then divide
them by 2 to ensure that they don’t
overflow when we pack them back
into 16 bits (an issue familiar to any-
one who’s ever mixed sound). Listing
1 shows code for the low-pass filter
that we’ve just described.

With a simple reversal, we can use
this same method to preserve high fre-
quencies and eliminate low frequen-
cies, a process called high-pass filter-
ing. Rather than adding f(t) to itself,
what if we subtract it from itself? That
is, h(t) = f(t) – f(t + d). This equation is
the same as h(t) = f(t) + (-f(t + d)); we
are negating one of the functions
before we add. This has the effect of
flipping one of the sine waves about
the axis f(t) = 0. Now, the low frequen-
cies, because they are hardly shifted at
all, negate to cancel themselves out;
the high frequencies negate to rein-
force themselves (Figure 5).

You can imagine that, by specifying
a d that is wider than one sample, one
could mute frequencies in the mid-
range. For example, if d is three sam-
ples wide, we cancel all waves with
periods of six samples. But a d of this

G A M E D E V E L O P E R D E C E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

52

S O U N D F I L T E R I N G

A.

d

B.

F I G U R E 3 . A. A sine wave, added to a shifted version of itself, where the shift is

small relative to the period of the wave. The wave mostly reinforces itself. B. A

sine wave with a shorter period, shifted by the same amount. It ends up destruc-

tively interfering with itself, producing zero.

2.0

0.0

0 max

amplitude

scaled by

frequency

F I G U R E 4 . A graph of the frequency response of the low-pass filter in Listing 1.

Frequencies are along the x axis; the y axis shows the scale by which each fre-

quency’s amplitude will be multiplied.

vvooiidd lloowwppaassss__ffiilltteerr((sshhoorrtt **ssaammpplleess,, iinntt nnssaammpplleess)) {{

ssttaattiicc lloonngg llaasstt__ssaammppllee == 00;;

iinntt ii;;

ffoorr ((ii == 00;; ii << nnssaammpplleess;; ii++++)) {{

lloonngg ccuurrrreenntt__ssaammppllee == ssaammpplleess[[ii]];;

lloonngg rreessuulltt == ((ccuurrrreenntt__ssaammppllee ++ llaasstt__ssaammppllee)) // 22;;

llaasstt__ssaammppllee == ccuurrrreenntt__ssaammppllee;;

ssaammpplleess[[ii]] == rreessuulltt;;

}}

}}

L I S T I N G 1 . A subroutine that applies a simple low-pass filter to some samples.

value will also filter waves with a peri-
od of two samples (because those
waves are shifted by 1.5 times their
period, which is the same as shifting
them by .5 times their period). This
behavior would seem to place some
heavy restrictions on the frequencies
we’d be able to filter. It turns out,
though, that by doing some geometry
in the complex plane, we can obtain
good control of our frequency response
curve, including frequencies that can-
not be represented by integer multiples
of d. See the References section for
more information about this. This type
of filter is called a feedforward filter
because, in producing output, it only
uses past values of its input.

Resonance and Feedback

A nyone who’s been to an early-90s
grunge concert knows what feed-

back is. This goateed guy holds his gui-
tar too close to the loudspeakers. The
guitar pickups (essentially little micro-
phones) catch the loud noise coming
out of the speaker and transmit that
noise back to the speaker, which tries
to make it even louder. Soon, the audio
system overloads and we’re left with an
angry screech.

We can apply this same idea to our
audio filter, but in a more restrained
and generally soothing way. What hap-
pens if we generate our sound h(t) by
combining f(t) with previous values of
the output, h(t)? For example, h(t) = f(t)
+ h(t – d)? For simplicity’s sake, we’ll
measure t in samples, and d will be 1
sample: h(t) = f(t) + h(t – 1).

We can evaluate the first few terms
directly: h(0) = f(0) + h(-1). We’ll
assume that all negative values of h are
zero, so h(0) = f(0). That’s simple
enough. Also, h(1) = f(1) + h(0) = f(1) +
f(0). So at the second sample, we’re
adding f to an offset version of itself,
just as before. Now, h(2) = f(2) + h(1) =
f(2) + f(1) + f(0). As we repeat this
process, we see that the pattern con-
tinues forever. We’re adding together
versions of f that are shifted by succes-
sive amounts.

What does this process do? Figure 6
shows the result for waves whose peri-
ods are much longer than two sam-
ples. As we saw before, adding the
wave to a shifted version of itself will
cause the wave nearly to double in

amplitude. But now, to output the
next sample, our feedback loop shifts
that result wave again and adds it back
to the original. Now, the result is even
greater in amplitude — though
because it’s shifted further, it doesn’t
reinforce itself quite so strongly. After
enough repetitions, the wave will
become out of phase with the original
version of itself, and the feedback will

serve to reduce its amplitude rather
than increase it.

We have to be careful with this kind
of situation. Figure 6B shows what hap-
pens when we feed back a wave with a
delay time that is a multiple of its peri-
od. The amplitude of the wave climbs
toward infinity, which leads to total
chaos. For this reason, we must multi-
ply feedback signals by a constant of

h t t p : / / w w w . g d m a g . c o m D E C E M B E R 1 9 9 8 G A M E D E V E L O P E R

53

a.

b.

d

F I G U R E 5 . A. We perform the kinds of summations that took place in Figure 4,

but first we negate the orange waves. The dashed light blue curves represent the

position of the waves before negation. Now, the low frequencies, as in A, are

killed; the high frequencies, as in B, are doubled.

d

d

A.

1 step

2 steps

3 steps

B.

1 step

2 steps

3 steps

4 steps

+

d

+

d

+

d

d d

d d d

+

+ +

F I G U R E 6 . A. The effect of feedback on a wave where d is misaligned with the

wave’s period. As we add it to shifted versions of itself, the result will wax and

wane in amplitude, never growing beyond a certain point. B. If d is aligned with

the wave’s period, the wave will continue to grow with each round of feedback.

magnitude less than 1, to damp them.
Thus, h(t) = f(t) + k h(t – 1), -1 < k < 1.
Then the feedback filter is stable.

Listing 2 shows code for a simple
feedback filter. The frequency response
of this filter is shown in Figure 7. Note
the relative sharpness of the peak —
feedback filters allow us to alter frequen-
cy response more dramatically than the
feedforward filters we talked about earli-
er. Note also that it amplifies some fre-
quencies by large amounts. To keep our
number representation from overflow-
ing, we compute the maximum amplifi-
cation when we build the filter; later, as
we output samples from the filter, we
divide them by that factor to normalize
the sound, thus preventing overflow.

As Figure 7 shows, feedback allows us
to pick out certain frequencies and
amplify them much more than others.
It is said that the filter resonates at
those frequencies. Interestingly, this is
the same effect that occurs with sounds
made in enclosed spaces. They resonate
according to the shape and dimensions
of the cavity, whether it’s a yawning
cave or a Stradivarius violin. Many
physics books describe the reflection of
waves between two surfaces, and in
such descriptions, one can easily see
the mathematical equivalence.

Implementation

I n our feedback filter, we ended up
multiplying samples by floating-

point values to damp them. For most
feedforward filters, we want to use

floating-point math as well.
Generally, we’ll convert our 16-bit
source samples to floating point and
operate on the floating-point samples.
For cases in which we’re algorithmi-
cally generating a sound, instead of
reading that sound from a file, our
original samples will probably be in
floating point.

Interestingly enough, new instruc-
tion sets such as AMD’s 3DNow and
Intel’s new Katmai instructions con-
tain stuff that’s great for processing
sound in floating point. Unfor-
tunately, almost every sound API (3D
or not) wants samples fed to it as inte-
gers. Therefore, we must convert our
floats back to integers, consuming a
little extra CPU time and reducing
accuracy. These extra calculations are
especially irritating because the sound
library usually will convert the sam-
ples right back to floating point (for
example, to scale the volume of the
sounds so that they can be mixed into
a single channel). Let me offer this
plea to the makers of sound APIs: give
us an interface that takes samples in
floating point!

The example code that accompanies
this article will demonstrate the effects
discussed here, along with some oth-
ers, such as pitch shifting and rever-
beration. (Reverberation works just
like the filtering examples we’ve dis-
cussed already; the main difference is
that the filter delay d is much longer,
to the point where the delay is audi-
ble.) The code is available on the Game
Developer web site.

Now You Try It

W e’ve seen some low-level ways
to manipulate the frequency

content of sound. We haven’t said
much about how to put sounds togeth-
er, though. If an explosion happens
inside a sealed vault, you probably
want to low-pass filter that sound for
listeners on the outside; but exactly
what frequency response to use, and
how to make a filter to give you that
response, could be the subject of an
entire book.

We’ve tried to present sound filtering
in an introductory way that is different
from the approach taken by most text-
books. That way, upon further reading,
you’ll be exposed to ideas from a differ-
ent direction, which can provide fresh
insight. We certainly have not been
rigorous here. In fact, we’ve tried to use
as few mathematical ideas as possible;
some of the References present filters
in an elegant way that requires more
background. In any case, further read-
ing is required to accomplish a sophis-
ticated understanding of filters. ■

G A M E D E V E L O P E R D E C E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

54

S O U N D F I L T E R I N G

• Everybody in the world should read A

Digital Signal Processing Primer, with

Applications to Digital Audio and

Computer Music (Addison-Wesley, 1996)

by Ken Steiglitz. Starting with some sim-

ple mathematical exposition, it charges

straight through DSP theory in the most

accessible way I’ve seen to date.

• After that, read section 14.10 of

Computer Graphics: Principles and

Practice (Addison-Wesley, 1990) by

Foley, van Dam, et al. This section of the

book talks about signal processing with

respect to graphics, and provides some

good visualizations of what it means to

filter a complex signal.

• The Science of Sound (Addison-

Wesley, 1990) by Thomas D. Rossing is

a great book that discusses all aspects

of sound emission and reflection, with a

focus on musical instruments and the

human voice.

• Principles of Digital Audio, 3rd ed.,

(McGraw-Hill, 1995) by Ken C. Pohlmann,

contains some good chapters about the

Nyquist Theorem, signal-to-noise ratios,

and signal dithering (a topic that will be

of interest to those who wish to generate

sounds algorithmically).

RR EE FF EE RR EE NN CC EE SS

37.28

0.0

0 max

amplitude

scaled by

frequency

F I G U R E 7. The frequency response from Listing 2.

G A M E D E V E L O P E R D E C E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

58
EAD RECKONING is Goldtree’s latest title and is a new

chapter in first-person vehicle-based games. As a

player in the, game you’ve been abducted by

the Master Race to engage in gladiatorial com-

bat against the best warriors of every know alien

race in the universe. If you loose, Earth and all of

mankind is destroyed. Before you begin, you choose your wingmen

from among many characters — each with

his or her own personality; personality

traits include loyalty, obedience, aggres-

siveness, and more. And you choose your

ship. Each has varying rates of firepower,

shield strength, and speed. Most important

b y L u k e A h e a r n

DD
GoldtreeÕs
DEAD RECKONING

P O S T M O R T E M

Luke Ahearn has been Lead Designer and Producer at Goldtree for five titles, including DEAD RECKONING.
He is currently developing Goldtree’s next title. Before games, Luke wrote novels, worked in the film indus-
try, and did every dreadfully boring, menial job you can think of while going through college. He can be
reached at luke@goldtree.com.

59

h t t p : / / w w w . g d m a g . c o m D E C E M B E R 1 9 9 8 G A M E D E V E L O P E R

are the special weapons; chameleon powers, mines, traitor
bombs, holographic decoys, and the Death Blossom are a few.

Combat takes place in huge cylindrical arenas, each varied
in environment. There are arctic wastelands, the tombs of
Egyptian kings, and asteroid belts. You can fight in a lake of
lava or the innards of a giant creature. Goldtree wanted to take
players off of the floor in QUAKE and out of the confining tun-
nels of DESCENT. You are in arenas where you have room to
maneuver, but the firefights are quick and intense. The game
demands more than simple twitch reflexes. You must select
the right ships for you and your wingmen, give your wingmen
orders, and monitor your resources. You must tag pylons to
increase your weapon’s strength, hover over the energy field to
recharge your shields, and above all, kill your enemy.

As the game’s designer and producer, I will focus this
Postmortem on DEAD RECKONING’s design. In some ways,
DEAD RECKONING is a remake of our previous title
CYLINDRIX; in other ways, the two games are worlds apart.
CYLINDRIX was greatly admired by many game players and
received great exposure online for its game play. But it
lacked certain mass-market features such as textures and
solid net play, and we were plagued by many problems
while trying to publish CYLINDRIX.

After we finished CYLINDRIX, Goldtree was ready to pro-
duce the A+ title that we knew we were capable of produc-
ing. We were discussing what that title would be when
Piranha Interactive expressed interest in a sequel to
CYLINDRIX. Eventually, Goldtree and Piranha decided that we
shouldn’t make a sequel to a game that the world-at-large
hadn’t heard of, so we made DEAD RECKONING a game of its
own. We felt this decision was legitimate, as the differences
between the two games are vast in most areas.

The completion date for DEAD RECKONING was pushed off
for almost a year, but the big delay was primarily due to the
fact that Piranha believed that DEAD RECKONING would be an
A+ title and didn’t want to squander its resources on a half-
baked launch. The company saw opportunities to improve
vastly the game’s value in the marketplace. Piranha seemed
immune to the popular attitude that a publisher can dump
anything into a box and then rely on sales and marketing to
make the game successful. Developers see things from the
opposite point of view. A great game will sell by word of
mouth as the demo works its way rapidly across the Internet.

Piranha’s long-term thinking and support allowed
Goldtree to redevelop some critical areas of DEAD

RECKONING, including support for online gaming services,
Microsoft’s force-feedback joystick, and the ability to sup-
port user-created levels. Supporting custom levels included a
great deal of reworking of the game code and the level editor
that we used during development. For the level editor, we
hired Rosetta Game Development.

The level editor was never intended to be used by the end
user, and as a result was undocumented and pretty hard to
use. While I was writing the user manual for the level editor,
Rosetta started improving the editor itself. With very little
time to work on the editor, they couldn’t make it perfect,
but were able to fix some bugs, make usability improve-
ments, and add significant functionality.

The level editor has an object-oriented design based on
“entity” classes for each kind of game object, and it shares
these classes with the game itself. The editor is a placement

tool only, so new object shapes must be created in an appli-
cation such as 3D Studio MAX and then imported into the
level. The editor allows users to manipulate all of the game-
play properties of an entity, such as the recharge rates of an
energy field, the explosion file that’s played when a certain
entity is destroyed, and the start points for players.

The usability improvements to the editor included single-
level undo; keyboard shortcuts for commonly used opera-
tions; arrow-key nudges for fine motion; browse buttons
everywhere a filename must be specified; and consistent dia-
log naming, layout, and keyboard operation.

DEAD RECKONING’s development team — Goldtree: (from left

to right, top row) Luke Ahearn, Designer/Producer; Anthony

Thibault, Lead Programmer; Nicholas Marks, Art Director;

(bottom row) John McCawley, AI Programmer; Michael

Freimanis, Menu Programmer; Josh Eustis, Musical Director

and Engineer; (not shown) Ted Baldwin, cut scene anima-

tion; TJ Bordelon, consulting programmer; Dan Farrell,

Menu Prototype. RA Studios: (from left to right, back row)

Richard Laquale, Brian Kennedy, Daniel Venditelli, (front

row) Stephen Capasso, Matthew Zanni. Rosetta: (not

shown) Scott K. Warren.

Goldtree Game Developers
Metairie, La.
(504) 837-0080
http://www.goldtree.com

Team Size: Eight in-house. RA Studios completed the game and
demo, adding support for many features and fixing bugs.
Rosetta updated the level editor for users in the contest.

Release Date: September 1998
Title Budget: $350,000 (ballpark)
Time in development: 24 months
Intended game platform: Windows 95/98 with DirectX 5 (will

run solid under DirectX 6). We are in the process of recompil-
ing for DirectX 6 and expect a significant improvement in per-
formance.

Critical hardware: A network of eight Pentium 200s that
allowed the rapid compiling and testing of the game. Audio
setup with several large drives, CardD and digital daughter
card, DAT recorder, ROM burner, and a ton of really cool musi-
cal stuff the musician brought in.

Critical software: Direct X 5.2a, Photoshop 4, trueSpace 2, 3D
Studio MAX, Sound Forge, Cakewalk, Visual C++.

DEAD RECKONING

Some of the primary new features
that Rosetta implemented were the
Turret Property Sheet, the Find Object
dialog, the Level Summary dialog, and
the ability to automatically import
assets. Turrets are the most complicated
entity in the game, yet our original edi-
tor provided no support for altering
their properties, which were specified by
an external text file. We had Rosetta add
a fancy tabbed dialog so all properties
could be seen, edited, and checked for
validity within the editor. The Find
Object dialog displays a scrolling list of

all the entities in the level. Users can fil-
ter the list by entity type and can select
any listed entity for editing. The most
interesting feature of this dialog is the
Look At Object button, which reposi-
tions the camera to bring the selected
entity into view. Heuristics are used to
pick a suitable camera pose and distance
from the object, with the camera com-
ing in closer for smaller objects.
Unfortunately, we didn’t have time for
Rosetta to make these heuristics fool-
proof, so it’s possible that the looked-at
object will be obscured by something in
the camera’s way. In practice, I’ve found
this to be rare. The Level Summary dia-
log not only lists statistics about the
objects in the level, but also offers a
Verify button, which checks whether
every asset mentioned by the level has
actually been imported into the level.

While Piranha was investing the
additional time and resources in the
marketing of DEAD RECKONING, bring-
ing on Epicentric to help, they also
cosponsored a level-design contest.
This contest was the reason we rebuilt
the level editor. Piranha also retained
some serious marketing talent internal-
ly to help push DEAD RECKONING.

And, of course, Goldtree took this
opportunity to optimize the code and
fix many bugs. For this effort, we
brought in RA Studios. By the time RA
Studios received the code for DEAD

RECKONING, the game was almost com-
plete. Once again, time was short; the

game needed to be ready to go gold
within two months, so the program-
mers at RA needed to get acquainted
with the code very quickly. We tasked
them, primarily, with getting a better
frame rate out of the engine, which
was running at about 9-15 FPS on a
Pentium 200 MMX. Better, in this case,
meant 200 percent better, so trying to
find the culprit for this performance
problem was paramount. Because the
engine was already complete, as was
most of the game around it, it proved
difficult for them to fix the speed issue
without breaking the game. However,
in the end, with tweaks to the collision
routines and some rendering routines,
RA achieved a comfortable 30 FPS.

Design, Design, Design

L ooking back over the last two
years, I can say that for all of the

challenges that besieged us during the
development of DEAD RECKONING, good
up-front design is what guaranteed the
delivery of a high-quality finished
product. I believe that in a game com-
pany, design issues are the most impor-
tant aspects of a project, even above
business issues. Although written 15
years ago, The Art of Computer Game
Design by Chris Crawford still holds
some great advice and observation
about game design. He says, “There is
no easy way to produce good computer

G A M E D E V E L O P E R D E C E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

60

P O S T M O R T E M

In its review of DEAD RECKONING, the Adrenalin Vault compared the game’s cast of characters to the bar scene in Star Wars.

The original storyboard and the ren-

dered version of the final victory cut

scene.

games. You must start with a good
game designer, an individual with
artistic flair and a feel for people.” I
believe the best approach to designing
a game consists of working in the fol-
lowing three areas.

Obviously your primary area of
absorption should be in gaming, espe-
cially within your genre (first-person,
strategy, and so on). This effort should
include not only playing games, but
reading all the magazines, surfing the
Net and browsing through news
groups. From a design standpoint, I
find that it’s easy to lose touch with
what a good game is by simply taking
your eye off of the moving target (the
game market as a whole) for even a
brief period of time.

I also find it very helpful to read
books, watch movies, and pursue other
creative fields. There’s much to learn
from how a movie is scripted and story-
boarded that applies to game develop-
ment. Understanding how a novel or
short story is written and constructed
(and what actually makes a good story)

helps a great deal when detailing your
game on paper. I find that most of what
I do is reading and writing. Writing
skills are used in business reports, game
treatments, product submissions,
anonymous flames… the list is endless.

Finally, I turn to traditional project
management a great deal for the tools
that are critical in developing any seri-
ous undertaking. You simply must
take the time to develop the work
breakdown structure, master schedule,
project budget, and other necessary
documents in order to maintain con-
trol of your development. As W.
Edwards Deming points out, “Fire pre-
vention is far better than fire fight-
ing.” And there is no better way to
instill the publisher with the confi-
dence that you understand the job
that must be done and can do it.

The initial stages of open discussions
on DEAD RECKONING went well. We had
time to think long and hard about
what we liked and didn’t like about
CYLINDRIX and what we would do dif-
ferently in the design and development
of our next title. Like most developers,
we wanted to improve on the concept
and technology we understood best,
and not start from ground zero again.
We decided to stick with the approach
that we developed for CYLINDRIX: a
hardcore game that required that play-
ers be seriously good at gaming, well

rounded, and not just fast. We felt that
enough people had become so well
acclimated to 3D games such as QUAKE

or DESCENT, that they were ready for
something harder. No cheat codes or
camping, but not just toe-to-toe com-
bat either. Slower players on the con-
trols should still be able to defeat frag-
masters by being more strategic and
managing their wingmen, weapons,
and overall battle plans better.

Originally, we had no intention of
allowing difficulty levels to exist other
than nightmare, and we even made the
enemy AI better than your computer
teammates later in the game. After
some initial play-testing by the pub-
lisher and reviewers, we realized that
this intense gauntlet actually made
some people really tense; we made
some concessions (although they were
few). We allowed an automatic save
game option that starts you at the
beginning of the level where you died.
We also toned down the AI a little.
Games are supposed to be fun.

On the other hand, as game enthusi-
asts, our proficiency in games was
deceiving to us and caused a bit of
design drift. After countless hours of
QUAKE, DUKE NUKEM, DESCENT,
WARCRAFT, and all the other really
great games out there, we got really
good. We felt as though we had a han-
dle on the design issues early on that
could prevent last minute work,

h t t p : / / w w w . g d m a g . c o m D E C E M B E R 1 9 9 8 G A M E D E V E L O P E R

61

A rogue’s gallery of characters from DEAD RECKONING.

We built the menu as a 3D model in

3D Studio MAX. The background for the main menu.

A concept sketch of our original menu

idea. After mocking it up we deter-

mined that it was too unwieldy and

inflexible. The time was not wasted.

rework, and confusion. But we also got
so good at gaming that we lost touch
with our audience. So we had to tone
the game down a bit.

In addition to all the game play
issues, we tackled several important
technical decisions early on in the
design process. We choose to support
DirectX and Windows 95 because it
looked as though the industry was
moving that way, and we liked the idea
of not having to write for specific hard-
ware. One of our frustrations during
the development of CYLINDRIX was that
a great deal of our programming time
was spent writing for hardware and not
for the game. We took one look at 3D
hardware performance and knew we
had to support it.

Another benefit to having your game
designed early and in terms a publisher
will understand is that it gives you a
firm footing when approaching and
dealing with a publisher. While we
positioned DEAD RECKONING as a game
enthusiasts’ game, we also had that
“first-person, 3D, textured polygon,
hardware-accelerated, multiplayer,
super dooper thingy” buzzword stuff
going for us. Initially, an unnamed
individual at Piranha was pushing us to
make the game “like DESCENT” (he
doesn’t work there anymore), which
would have doomed DEAD RECKONING

to “me too” status. I was prepared with
a well thought out game design that
addressed our publisher’s desire for

uniqueness and familiarity. Piranha lis-
tened, bought into it, and backed us all
the way.

The “different but same” problem (as
first brought to the American con-
sciousness by the Karate Kid) is similar
to that which faces writers. Aristotle
defined the major plot situations that
exist in drama and as far as I know, no
one has added to them. But think of all
the unique and great literature (not to
mention films, radio, computer games)
that has sprung up since the classical
Greek period. Our genres are defined
for the near future, and it is our job to
be creative, unique, resourceful.

Design work is not all talking and
sketching. We actually made proto-
types and designed as much as possible
using various software tools. Even with
limited time and budgets, we used flow
charts, storyboards, and fleshed out the
look and feel of the menus and game
flow as much as possible. We made a
prototype of the entire menu system in
Director and saved a great deal of work
in the end, having been able to try out
several versions of the menu first. We
also became aware of how much illus-
tration, fiction, and graphics had to
done before we began working in other
areas. DirectX allowed us to work in
retained mode, which isn’t good
enough for a real-time 3D game, but
did enable rapid prototyping.

What Went Right

1.PLAYING GAMES AS MUCH AS POSSIBLE

AND BEING SERIOUSLY TAPPED INTO THE

GAME MARKET. Of course, this fact is obvi-
ous to developers and need not be
mentioned to a true game enthusiast.
But for all you suits out there, you have
to play games to make them. You have
to go on the newsgroups, read the mag-
azines, and surf the Net incessantly.
I’ve actually heard that some compa-
nies (game companies) have instituted
a “no games” policy. What is the world
coming to?

Without a deep and intimate
knowledge of games and the market-
place, we cannot design good games.
And, in actuality, we aren’t designing
games for today, but for the market-
place two years in the future. We all
know how rapidly this market
changes. In other areas, even in other
areas of application development, one

doesn’t need to be as tapped into the
market and core audience as we do.
We have to anticipate the desires of a
group of people (game players) that
will invest heavily in upgrades and
new technology when it arrives and
change the game development land-
scape dramatically in a short time.

In defense of the suits, you do have
to make games to sell them. During
DEAD RECKONING’s development, we
erred on the side of too much play
while trying to keep stress levels down.
I feel that the title still benefited more
than if we had taken the opposite
approach. We were aware of what play-
ers wanted and could more easily guess
at what they would want in the future.

2.3D HARDWARE SUPPORT. If there was
ever one thing I knew for sure, it

was that 3D hardware would take off. I
knew that just like the sound card, 3D
acceleration would become a standard,
something that you just had to have if
a game was to even make it.
Unfortunately, I didn’t buy stock —
but I knew. We decided to support soft-
ware rendering as well, because we
thought the game would be out a little
earlier and we wanted to reach the
largest possible user base. Had we not
supported 3D hardware, especially after
the delay in completion, we would
have been sunk or delayed even fur-
ther. DEAD was designed to run well on
any 3D card, and run extraordinarily
well on a 3Dfx-based card. DEAD uses
MMX as well.

3.CHOOSING THE RIGHT PEOPLE TO WORK

WITH. Finding the right publisher is
something I spent a lot of time on as
well. I ended up with Piranha
Interactive and have not regretted it for
one second. I specifically targeted a
mid-sized publisher with the main pur-
pose of protecting the game itself. I
wasn’t ready to tangle with the monster
companies, although as a matter of
education, I approached and spoke
with many. I ended up with a handful
of smaller but promising publishers.
The benefits for a freshman developer
are more attention and collaboration —
your design ideas are treated more seri-
ously. With a larger publisher, you run
the risk of getting lost in the shuffle
and being told, “Do it this way, or else.”

In the process of educating myself
as a developer over the past several
years, I read a lot, spoke to everyone I
could, and attended all the major con-

G A M E D E V E L O P E R D E C E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

62

P O S T M O R T E M

ventions (E3, CGDC, Comdex, and so
on). I heard all the horror stories
about developer-publisher relation-
ships and have a few of my own. I’ve
come to see how many of these situa-
tions crop up, and rarely is it blatant
malevolence on either party’s part.
Mostly, I fear it’s the vast difference
between how a guy in a suit thinks
and how the developer thinks. There
is much room for misunderstanding.

And when putting together the team
for DEAD RECKONING, I looked for pas-
sion and attitude. There is nothing
more valuable. Attitude is what keeps a
person working through such a long
and trying project as a computer game
when there seems to be no end in sight.
Passion is what makes one’s work stand
out. We had plenty of passion and atti-
tude in all our team members. I’m still
amazed that we did what we did with
so few people and so few resources.

4.DIRECTX. This decision was made
early on mostly because it

seemed as though it would cut out a
good portion of work for us, and it did.
It allowed us to focus a great deal more
of our energies on the game. The
DirectX beta team was responsive and
helpful. DirectPlay was particularly
helpful, as was Direct3D Retained
Mode for creating the level editor. We
actually looked at other APIs, but not
for long. We felt that DirectX would
become the standard and be the best-
supported API. I likened this decision
to choosing the operating system for
your game. You’re going to want the
largest market possible.

5.WORKING WITHIN OUR LIMITS WHILE SET-
TING HIGH GOALS. This is good design

practice, especially for a small team.
Working within one’s limits is a con-
scious, not constrictive, process.
Designing a really great game means
leaving out features that you simply
cannot accomplish. It prevents you
from setting out on a journey you

could never complete.
We started by listing what we all felt

we could do well and what we felt we
couldn’t do well. For example, we con-
cluded that implementing really good
character animation would be more
work than we could handle, and I
believe we were right. We focused on
the physics and behavior of the ships.
We wanted time to make each arena
unique, even down to the sounds and
projectiles of the turrets and obstacles
in each game level.

We also went from trying to create
character art in 3D Studio MAX and by
hand illustration to photographing
models and photo-manipulating them
with Power Goo, Photoshop, and a little
3D augmentation. This turned out to be
a better route all around. It was cheaper,
quicker, and much nicer looking.

What Went Wrong

1.DESIGN DRIFT. Design drift can be
very subtle or blatant. It can be

individuals tearing out on their own
paths during development or an
unconscious drift by the whole team,
much like the example that I gave ear-
lier: we became too good at our own
game and made it a bit too hard. We
had to redo many aspects of the levels,
AI, and game play.

Be mindful of design drift. Publishers
are more likely to be too rigid when
allotting more time or money for a
neat feature, but developers tend to
want to make the perfect game and go
overboard. In the case of DEAD

RECKONING the publisher wanted more
time and money spent on the title and
supported Goldtree’s decision to make
a major shove at redeveloping portions
of the game at the end — giving us
more time, money, and support to
make DEAD RECKONING a better game.
But this was a conscious decision by
both parties and not a drift.

Drifting is when you’re unwittingly
off course. One thing that’s useful is to
keep the vision in the hands of the pro-
ducer, project manger, or one person
designated to filter all changes through
the entire team.

We faced many drifts that were usu-
ally the result of talented and perfec-
tionist individuals trying to make the
game as good as possible. It’s a hard
judgment call to make when dealing

with talent trying to perfect some
aspect of their craft. Do you stop their
creative process to make the milestone,
knowing that you may impact the qual-
ity of the game, lower morale, and/or
cause the passionate individual uncon-
sciously to adopt a new lower standard?

Sometimes, decisions were made by
individuals that affected the rest of the
development and these decisions were

h t t p : / / w w w . g d m a g . c o m D E C E M B E R 1 9 9 8 G A M E D E V E L O P E R

63

The concept sketch and an in-game

screen shot of the Energy Square in

the Sentry arena.

The more human-like characters

(“Panther” is on the right) were cre-

ated from photographs. In addition to

Photoshop work, you can see where

the artist used Goo to reshape the

head for a more feline appearance.

not communicated to the rest of the
team. For instance, the decision to take
the animated sequences down from
640×480 to 320×200 upset the anima-
tor. His work was deteriorated and he
wasn’t told that he didn’t need to ren-
der scenes out in 640×480. This wasted
his time.

We also faced some small drifts that
were caused by the relative meanings
of plain old words in the English lan-
guage. A programmer may say “large
file” meaning a 100K and the artist
may think 100MB.

Also, 3D game modelers are often
different animals than the commercial
3D modeler. A game modeler knows
what low polygon count means and is
adept at building objects face by face. A
commercial or animation-grade model-
er often builds everything using multi-
ple primitives and very few texture
maps. Usually, after explaining that the
gorgeous 30,000-face demon has to be
optimized to, say, three hundred faces
in order to run in the game, the learn-
ing curve that the latter modeler has to

overcome will take
several extra weeks
at a minimum.

Any aspect that’s overlooked,
whether out of ignorance or inexperi-
ence, will cause a drift. This is the rea-
son for proper planning and continued
monitoring of the project.

2.MORE INPUT EARLIER IN THE DEVELOP-
MENT OF THE GAME. I’m not just talk-

ing about compatibility testing and
input from the publisher. I wish we
had had more comprehensive testing
and feedback from game players
throughout the entire development of
the game. I think many of the best
ideas for a game, indeed what makes a
game a success, are the users’ exten-
sions of that game; MODs, add-on lev-
els, and so on. We should have
planned the level design contest earli-
er, anticipated add-on levels earlier in
the coding and started work on the
level editor and its documentation
much sooner.

I believe this would have also helped
us more accurately anticipate what the
market would want and deliver it, or at
least be prepared to explain why
weren’t able to deliver it.

3.A BETTER LEVEL EDITOR. We should
have spent a lot more time

designing and developing the level edi-
tor up front. I think we all felt pres-
sured and excited to dive into the game
and simply forged ahead. I’m sure the
editor was low on the programmers’
priority list at the beginning of devel-
opment as they were faced with a
mountain of problems to solve for the
game itself: physics, AI, networking,
learning new technologies, and playing
DIABLO until sunrise.

Since the level editor was never
intended for use beyond the comple-
tion of the game, this list of priorities
wasn’t something that felt wrong at
the time. But we should have anticipat-
ed this discrepancy. A better level edi-
tor would have made it easier on the
artist and easier for others to work on
level-design–related tasks. The level
editor was difficult and ended up being
reworked and overhauled for the level
design contest. Had we made the level
editor easier to use up front, I’m sure
the game would have had more and
better levels.

4.IMPROPER CODE VERIFICATION, PROGRAM

DOCUMENTATION, AND ARCHIVED ASSETS.

G A M E D E V E L O P E R D E C E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

64

P O S T M O R T E M

The armor for the Biomechanoid character was built in 3D

Studio MAX. The artist took a snapshot of the finished

model, which was then composited with the rest of the char-

acter’s image using Photoshop.

The DEAD RECKONING level editor.

Never put all your eggs in one basket,
always verify code independently, keep
redundant back-ups, and document
everything. At least one other third-
party programmer should be familiar
with your code for numerous reasons,
and all creative assets should be
archived — and not just the final ver-
sions of the files. A flattened Photo-
shop image is impossible to manipu-
late, undocumented code is hard to
work with, and applications with no
file sizes, standards, or parameters are
almost useless. When any member of
the team moves on or dies, their work
will be hard to alter or modify if disor-
ganized, undocumented, and improp-
erly backed up.

During DEAD RECKONING’s develop-
ment, I laid out the schedule for back-
ing up and archiving assets, but never
enforced it. When the time came to
retrieve and utilize these assets, they
weren’t easy for me to use. In the end, I
had to spend more time digging
through files with which I should have
already been familiar.

For me personally, the most frustrat-
ing instance of this was having to go
back and work with flattened, low-reso-
lution images. I waited until too late to
try to get these files, as I assumed they
were being saved. During development,
the artist created Photoshop files of the
characters in the game; some of these
images were as large as 25MB. As he
needed more hard-drive space, he delet-
ed these large images. It was months
before the publisher began requesting
these images for the ads, boxes, and
other layouts. Needless to say, I felt
foolish for not having them available.

The level editor was also totally
undocumented. When we decided to
host the level design contest, we had to
document the level editor — thorough-
ly. With all that was happening in the
last few months of development, this
was a great burden.

5.MISUSED “PROFESSIONALS.”
Technically, this “wrong” hap-

pened during the development of
CYLINDRIX, but the effect was so pro-
found that it had a direct impact on
DEAD RECKONING. Also, during the
development of DEAD RECKONING, I was
able to fix the mistakes made during
CYLINDRIX (not that I didn’t make all
new mistakes during DEAD). But
because couldn’t fix this problem, I
have to mention it here.

As developers, many of us may feel
we lack the acumen needed to deal
with publishers, employees, and other
business situations, apart from the
technical and creative. Many years
ago, I attempted to balance this (per-
ceived) weakness of mine and hired a
consultant. There were bad decisions
set in motion during the very begin-
ning of CYLINDRIX that affected the
development of DEAD RECKONING

many years later. This was due mainly
to the restricted cash flow caused by
the debt incurred during the develop-
ment of CYLINDRIX.

In hindsight, I realize that all I
lacked at the time was the self-confi-
dence to handle these decisions and
situations that initially frightened me.
When all this well-meaning advice was
being enacted, I was deeply conflicted.
My instincts screamed that things
weren’t right, but I didn’t follow my
conscience. Of course, when all the
bad effects of those decisions started
surfacing towards the end of develop-
ment, I was forced to handle ten times
what I would have had before hiring
the professional.

The problem is that most business-
men don’t understand the computer
games marketplace, and fewer under-
stand the game developer. Having a
“suit” show up in my office and do the
back-slapping, hand-shaking, and
other customary behaviors that seem
so insincere (to most people) served
only to make the team very uncom-
fortable. I found out later it made
them all downright suspicious and I
don’t blame them.

I was also advised to maintain a
“proper” office with a receptionist and
several management functions. They
were expensive and unneeded in a
game development environment, and
overkill that only served to sap devel-
opment resources. What is defined as a
proper office in one profession is all
wrong in another.

The end of my consultant phase was
when I was pushed to self-publish
CYLINDRIX. This desire was based on
the greed factor and not the facts. To
make a long story short, six figures of
advertising alone will not get your
game anywhere near a retail shelf. You
need a publisher.

But when I did decide to get a pub-
lisher, we overestimated drastically the
title’s worth. Because the price was so

far off base, we obviously didn’t get a
deal. Finally, I went solo and turned
my efforts to trying to find a publisher
for CYLINDRIX at reasonable terms and
cut my losses. By this time, CYLINDRIX

was very dated and all the ads that had
run turned off potential publishers.
They wanted to launch it themselves
and didn’t want to try to compete with
all the marketing and publicity already
generated. The publisher I finally went
with turned around and sublicensed
the game into obscurity.

But CYLINDRIX was not a failure,
because it didn’t end there. We took all
that we learned and used it to create
DEAD RECKONING. The fact that
CYLINDRIX was a great game and was
well-known for that period of time also
allowed us to get the publishing deal
with Piranha.

In the End…

D uring the development of DEAD

RECKONING, I’ve had some lofty
highs and dismal lows, and the design
document kept me focused. Drift got
bad for awhile; then I dusted off the
design document and got back on
track. And despite the effectiveness of
the design document, there are a thou-
sand things I’m doing differently this
time around. It is most exhilarating to
see a vision fulfilled and know the next
one will be even grander. ■

h t t p : / / w w w . g d m a g . c o m D E C E M B E R 1 9 9 8 G A M E D E V E L O P E R

65

It should be open to everyone, administered by a neutral
party, such as the Computer Game Developer’s Association
(CGDA), and be supported by the community as a whole.

About nine years ago, I got involved as a playtester at a
then-small developer startup, Lucasfilm Games. We had what
every developer dreams of: a famous benefactor with unimag-
inable financial resources, two of the best licensing properties
in history, and an interest in making the absolute best games.
We had five testers with good access to the appropriate equip-
ment needed for good compatibility.

Hardware companies started contacting us. It began with
Creative Labs. They were trying to establish a new standard
for audio called Soundblaster. They sent their reps in to teach
our programmers how to use their API, and gave us hardware
and as much technical support as they could. Soundblaster
was an improvement over existing technology, moderately
easy to use, and made our products better, so we used it. The
same thing happened for any number of products and initia-
tives over the next two years. Technology changes started
coming at a faster rate and the test group grew in response. By
1991, the test group had grown to 35, and a full-blown com-
patibility lab was in the works. We were Lucasfilm and the
world of new technology beat a path to our door. But this
wasn’t the case for everyone.

I had been to a couple of Computer Game Developer’s
Conferences by this time, and had seen what a struggle it was
for smaller developers to keep up with the latest technologies
and APIs. This seemed to be diametrically opposed to the the-
ory that to grow an industry or promote a better technology,
input from as many sources as possible was best. The word
would spread faster if there was a centralized point of contact
for people interested in using a given technology. The game
industry would grow faster if some of the advantages that
Lucasfilm had were made available to everyone. The rich

Continued on page 71.

G A M E D E V E L O P E R D E C E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

72

b y T e r r y B r a t c h e rS O A P B O X
The Game Developer’s

Resource Center

Ihave been tortured for the last seven years by a harebrained idea that just won’t

go away. The gaming community needs a Developer’s Resource Center — a per-

manent location where new technologies can be explored and developers can

access all kinds of services.

In the last six years, Terry Bratcher has directed technical out-
reach groups that helped bring 3D graphics, MPEG and DVD
video, positional audio, and online technologies to the com-
puter game industry. He is currently Director of developer ser-
vices at Business Development International, and is serving
on the Board of Directors of the CGDA. Your comments are
welcome at terry46@bigplanet.com.

Illu
s

tra
tio

n
 b

y
 P

a
m

e
la

 H
o

b
b

s

Continued from page 72.

networking environment that the
CGDC offered only came once a year.
That wasn’t enough. I became con-
vinced that for the benefit of the game
community as a whole, we needed a
Developer’s Resource Center.

The heart of the Developer’s Resource
Center is a Hardware Compatibility Lab.
It is also the heart of the funding plan.
Unlike small developers, hardware com-
panies have money to spend. More than
one-hundred fifty hardware companies,
peripheral manufacturers, and tool
developers spend between $250,000 and
$3,000,000 each, annually, in an effort
to get their products in front of game
developers. In doing so, they manage to
effectively supply less than half of all
developers. The test labs at Electronic
Arts, Activision, Lucas, GT Interactive,
Interplay, Hasbro, and Cendant, among
others, are inundated with every new
technology. So much so, that much of
this new technology never finds its way
into use unless someone from OEM
sales proposes a bundle deal. The small-
to-midsize shop has one-tenth the
attention and no way to afford enough
different hardware to do a proper com-
patibility test.

In the last seven years, the business
environment has changed as radically as
the technologies. Developers have fallen
victim to the instability of the fiscal
environment as well as the lack of a sta-
ble development platform. Consoles,
sub-$1,000 PCs, location-based enter-
tainment projects, the Internet, and set-
top boxes using a variety of new tech-
nologies, not to mention new and in
some cases proprietary operating sys-
tems, promise to expand the market for
our products. We are experiencing an
unprecedented consolidation on the
publishing side. There are hundreds of
developers out there with great games
that never see the light of day because
they lack access to an artist, a musician,
programming support, an experienced
game designer, a test group, or in some
cases, a publisher.

Community support has to be key for
the Center, for purposes of funding,
compatability, and developer outreach.
The CGDA is the non-profit, neutral
entity that is necessary to the success of
the endeavor, to bring all the widely dis-
persed elements together. No other
organization has done more for the ben-
efit of the game community. The

CGDA’s Board of Directors sees the cre-
ation of a center of this kind as a signifi-
cant benefit to all its members. A cen-
tralized database of available talent,
equipment, and actual workspace pro-
vided at discounted rates to CGDA
Members could stimulate the produc-
tion of new games. Freelancers could
support themselves more easily on a
project basis — an incubator, if you will,

run by our own community.
Until recently, there have been a scant

few places where people interested in
learning about our industry could take
classes. Schools such as Full Sail in
Florida have begun to offer classes in all
aspects of game design, production, mar-
keting, and so on. The Developer’s
Resource Center could provide experi-
enced teachers with a location for their
classes as well. As for the location itself,
traditionally the San Francisco Bay Area
has been the focus of both hardware and
software development in the game
industry. This makes it a natural location
choice. It has been suggested that a local
university might be willing to host the
Center. I might add that if successful,
plans are in place to locate two smaller
centers in the U.S. within three years,
and two more internationally within
five. In the meantime, there are plans to
create a Developer’s Roadshow to help
bring the benefits of The Center to the
community in general. The Center can
provide outsiders quick interaction with
top developers. Our industry needs to
develop a positive business model; stim-
ulate the development of stable, usable
technology; and grow quickly to meet
the demands of the future.

Over the last seven years, I have spo-
ken about and gotten ideas from a num-
ber of people regarding the Developer’s
Resource Center. I’ve run ISV programs
for more than five years. I would instant-
ly give one tenth of my budget to have a
place where my hardware was properly
displayed — where I could, by appoint-
ment, help developers test their own
products for compatibility and answer
programming questions face-to-face,
where I could have space for
Developer’s Conferences or brainstorm-

ing sessions with anyone interested in
advancing technology. Would I donate
hardware? You bet your life! And I’m
willing to bet that other people in the
game community feel the same way
that I do. In fact, I know they do.

The Center will be a unique entity,
and I’ve seen support from businesses
and organizations across the industry.
The Developer’s Resource Center will

not pose a competitive threat to any lab,
business, or event currently in exis-
tence. Hardware labs, for example, are
willing to test for you, for a fee. Several
have volunteered to act as extensions of
the Center in exchange for access to
more cutting-edge hardware. I have spo-
ken to members of both Microsoft and
Intel’s ISV teams, and they support the
idea as well. Intel currently sponsors
such a center for the Film Industry.

The Developer’s Resource Center is
also no competition for Plugfest or
Meltdown events. (The Center could act
as a permanent home for both events.)
These events happen on given dates,
and are restricted to those who can
afford the time and money to attend
then. The Center is intended for those
whose schedules or budgets don’t corre-
spond with a given event. Furthermore,
the Center takes nothing away from the
number one event for everyone in the
development community, the Game
Developer’s Conference. The
Conference lasts just four or five days,
whereas the Center is a year round
home for anything that anyone wants
to expose to the community, that when
utilized, gives back to the community
immediately. The Game Developer’s
Conference has expressed interest in
helping with the project. Several pub-
lishers have asked about Sponsorship.

The idea is just to do a better job,
more efficiently, for everyone. The
CGDA is currently forming an advisory
board to help with planning for the
Center. Volunteers are needed. The final
step is to open the idea up to the reader-
ship of this publication for criticism,
and hopefully, support. If you are inter-
ested in contributing, please contact me
at terry46@bigplanet.com. ■

S O A P B O X

h t t p : / / w w w . g d m a g . c o m D E C E M B E R 1 9 9 8 G A M E D E V E L O P E R

71

The heart of the Developer’s Resource Center
is a Hardware Compatibility Lab. It is also the
heart of the funding plan.

	back:

