
december 1994

G A M E D E V E L O P E R M A G A Z I N E

“The true danger is when liberty is nibbled
away, for expedience, and by parts.”

—Edmund Burke

R
ating systems are crap. With the
entire entertainment industry
rolling over whenever Congress
calls a hearing, it’s fallen on us
to denounce these initiatives for
what they are—cynical postur-
ing and electioneering with no
substance. Rating systems,

whether for movies, television, video
games, or any other form of communica-
tion, don’t work, cost money, and impede
creativity. Everyone at those hearings,
politicians and witnesses alike, knows that.
But there’s nothing politicians love more
than “standing up for the family” and
blaming America’s cultural violence on
Hollywood. So the entertainment indus-
try submissively pisses all over itself and
proposes “voluntary” systems from the
pathetic to the laughable.

What are rating systems supposed to
do? Curb the glorification of violence and
sex. But “glorification” cannot be quanti-
fied. Which of the movies True Lies, Nat-
ural Born Killers, Schindler’s List, and Wes
Craven’s New Nightmare, glorifies violence
and which denounces it? The rating sys-
tem doesn’t make a distinction—they’re all
rated R.

In the face of the failure of the
MPAA rating system to control our
national psyche, the ratings advocates
don’t make the logical conclusion that rat-
ing systems are bogus, but instead say that
the problem is that not enough things are
rated! If our culture’s general level of sex-
ual frankness and violence has risen
despite the movie rating system, it’s only
because other forms of entertainment have
not yet been purified.

Rating systems cost money. A ratings
“board” (actually, a sizable and bureaucrat-
ic institution) and its cost will be borne by

the software companies. So much for the
garage-based entrepreneurs trying to pull
themselves up by their bootstraps with
shareware games.

Rating systems impede creativity.
They do so in a perverse way, where bru-
talities are traded off against each other. I
can personally attest to the kinds of dis-
cussions that happen all the time in Holly-
wood: “Page 48, you’ve got the forcible
injection of drugs. That’s an X, rewrite it.
Page 72—the rape scene. That’s O.K.”
This dehumanization is fine, that dehu-
manization isn’t, let’s do lunch.

But the refrain is always, “We need
ratings systems to control what our chil-
dren are exposed to.” A parent in a video
store once told me that her child might
want to see R movies, but when she says
no, the child knew not to argue. The
corollary, I imagine, is that when she says
no to a PG movie, the child argues. The
favorite argument of “but all the other kids
are watching it” is used by the child to
subvert the very point of the rating system.

And ultimately, the incident holds
the right answer to controlling what chil-
dren are exposed to. Parents should
decide. If parents don’t want their kids to
play X-Com or see Terminator 2, they
should say “No” and put up with the ensu-
ing argument. They don’t need and
shouldn’t get a ratings system to supple-
ment their authority. The government has
no right to help parents say “No” at the
video store if that governmental interfer-
ence impedes your rights to develop what-
ever content you feel appropriate.

We all have responsibilities. To cre-
ate responsibly, to control the viewing and
gaming habits of our own children, and to
call the government’s ratings initiatives
what they are. Cynical, ineffective,
oppressive, and wrong-headed. ■

Larry O’Brien
Editor

A Rant
on Ratings

G A M E P L A N

2 GAME DEVELOPER • DECEMBER 1994

Editor Larry O’Brien
76702.705@compuserve.com

Senior Editor Nicole Freeman
76702.706@compuserve.com

Production Editors Barbara Hanscome
73611.633@compuserve.com

Nicole Claro
76702.1141@compuserve.com

Editorial Assistant Diane Anderson
diane_anderson@mfi.com

Contributing Editors Alex Dunne
75010.2665@compuserve.com

David Sieks
dsieks@arnarb.harvard.edu

Wayne Sikes
70733.1562@compuserve.com

Editor-at-Large Alexander Antoniades
sander@mfi.com

Cover Photography Charles Ingram Photography

Publisher Veronica Constanza
Group Director Regina Starr Ridley

Advertising Sales Staff

West/Southwest

Yvonne Labat (415) 905-2353
ylabat@mfi.com

New England/Midwest

Kristin Morgan (212) 626-2498
kmorgan@mfi.com

Marketing Manager Susan McDonald
Art Director/Marketing Christopher H. Clarke
Advertising Production Coordinator Denise Temple
Director of Production Andrew A. Mickus
Vice President/Circulation Jerry M. Okabe
Group Circulation Director Gina Oh
Circulation Manager Philip Payton ppayton@mfi.com

Newsstand Manager Pam Santoro
Reprints Krista Hiser (415) 905-2783

Chairman of the Board Graham J.S. Wilson
President/CEO Marshall W. Freeman
Executive Vice President/COO Thomas L. Kemp
Senior Vice Presidents H. Vern Packer, Donald A.
Pazour, Wini D. Ragus
Vice President/CFO Warren (Andy) Ambrose
Vice President/Administration Charles H. Benz
Vice President/Production Andrew A. Mickus
Vice President/Circulation Jerry Okabe
Vice President/Software Development Division Regina
Starr Ridley

MGA EGAME

MillerFreeman
A MEMBER OF THE UNITED NEWSPAPERS GROUP

Dear Editor:

Iwas very excited when I saw your new
magazine. Oddly, it’s not because I
ever hope to write a game per se.

My job function is aptly described
(using someone else’s words) as a corpo-
rate cubbyhole programmer. I’ve been
using Toolbook and Multimedia Toolbook
for a couple years. I know it isn’t as
manly as C++ or even Visual Basic, but I
can pretty much do all the things, in 60
scripting seconds, that take a Dr. Dobb’s
guy six nitty-gritty pages of text and code
to describe.

Using Toolbook, calling Q+E as my
database access and Pinnacle’s Graphics
Server SDK, I can really get fast access to
CSV datafiles and plot everything from
bar charts to interactive (hot spot) bubble
charts. I create transformed reports
(transports) from my customers that give
good GUI, good drill-down, and good
graphical constructs of their data.

Using Multimedia Toolbook, I cap-
ture mainframe screens and add neat
postage-stamp video to accomplish CBT.
My fuzzy-grey cubbyhole for a better com-
pression algorithm (or a horse)!

So why am I telling this to Game
Developer editors? Well, you’ve heard of
infotainment and edutainment? Why not
busutainment? Aside from its neat name?

My son plays Math Blaster for Win-
dows. It rewards him with a spaceship
launch or trash to zap after accomplish-
ing certain goals. Adults may be more
amused if surprised by some Easter egg
they stumble across. I have been known
to make a user chase a normal looking
button that jumps away randomly on
mouseEnter. If you are very quick, you can
nail it.

Recently, a new game called Earth
Invasion for Windows came out. It proves
quite nicely that you can have arcade
action in a “slow” graphical environment
(I can spell that word because I was once
a COBOL programmer). How much I would
love to splice some of that action into my
applications! Just to keep them eager to
go on, of course.

Your article about OLE 2.0 (“Let’s Go
Embed,” Premier 1994) was right on, and
I hope someday it will allow me all sorts
of opportunities to use interesting game-
creating authoring tools. Multimedia has
caused everybody to buy faster PCs. Cer-
tainly, they run Windows fast enough for
something more than Solitaire now. Let’s
replace drag-and-drop with aim-and-fire.
Twitch spreadsheets? Dbase thumb?

The more I read about desktop virtu-
al reality, the more I see myself running
through my relational database like in
Wolfenstein 3D, past orthogonal buildings
(disguised as three-dimensional bar
charts) of my data looking for the evil odd
piece of data. Not as compelling as I
would like, but maybe Comptons has
already patented it.

I get a small taste of this in Virtus
VR, but they’re more interested in show-
ing off real buildings with real wire frame
fireplaces and are not into anthropomor-
phizing bad data (with TrueType labels)
into gun-toting Nazis—yet.

Edward Saur
Flemington, N.J.

Editor Larry O’Brien responds:
Heaven forbid that we talk about busi-
ness software development in Game
Developer. But since you did bring it up:
humans have a set of evolutionary talents

Client/Server
Gaming?

We‘ve only been

around a little while,

but we‘re already

hearing from readers.

In this, the first install-

ment of our forum for

your opinions, we‘ve

got a sampling of

queries, criticism, and

suggestions.

by Our Readers

S E Z U !

GAME DEVELOPER • DECEMBER 1994 5

that include competing, gathering, and
hunting in a visually complex environ-
ment. The computer game industry makes
billions off the fact that these are so
wired into the wetware that humans will
pay for the privilege of exercising them. A
business program that took advantage of
these evolutionary strengths would proba-
bly gain accolades for its “intuitive” and
“friendly” interface.

How Do You Get
to Carnegie Hall?
Dear, Editor:

Could you give me some pointers as
to what a college graduate should
do as far as looking for work and

what I should learn on my own to get into
the game developing field? I realize most
game developers write games in their
spare time or start their own companies,
but I thought you might have some sug-
gestions for recent grads on what kind of
work they should look for to help expand
their knowledge in the field. Do game
development companies hire recent grads,
and if so what would they look for?

Craig Tyler
via the Internet

Editor Larry O’Brien responds:
Your question is one that we get all the
time, and we always give the same
answer. There is no answer. Due to the
relatively young age of the computer game
industry, most of the game developers
who are big names in the field started
writing their own games themselves and
companies grew up around them. Ask 10
game developers how they got into the
business, and you’ll get 10 different
answers. We plan to focus on this in the
future, but there’s no simple answer that
we can give you here.

Ratings Brouhaha
Dear Editor:

In response to Alex Dunne’s editorial,
“The Ratings Game” (Bit Blasts, Sept.
1994), I am sure we will see some form

of ratings system imposed on the industry
sooner than later, and I can only hope that
the system’s creators somehow keep sim-

plicity in mind (that is, they should not
focus too heavily on it).

I object to a simplistic level rating
system (especially the one Dunne men-
tioned that was proposed by someone on
CompuServe) because it does not work.
Using the groups presented, Lemmings
would possibly qualify as a 5. While
laughing about how absurd this sounds,
press the mushroom cloud to detonate
the Lemmings on the screen and bits and
pieces of stuff fly out of the figures. Even
Super Mario Brothers would rate at least
a 2—and possibly a 4, depending on
which creature in which game you are
considering.

Rather than try to put all of the acts
in a game into one linear category, I sug-
gest that the game industry use some-
thing similar to what I see now for many
premium cable movie channels. The
movies are rated with a simple letter code
system that describes the content of the
movies. AL means adult language, MV
means mild violence, GV means graphic
violence, AS means adult situations, N
means nudity, BN means brief nudity, and
so on. Of course no system is perfect, and
certainly we need to work out what consti-
tutes mild versus graphic violence. But
the object of the rating system is to
inform the potential buyer of the content
of the product, not simply line up all of
the games in an arbitrary linear scale.

John Durbetaki
Gaston, Ore.

More Praise, Please!
Dear Editor:

Caught your second issue and I loved
it! As an aspiring game developer
and local musician I found the arti-

cles deep and informative. It’s good to
know that some people know what guys
like myself want in a magazine. I did
notice some flaws in Jim Cooper’s infor-
mative article (“Computer vs. Console,”
June 1994), though. The Sega Genesis
runs at about 7MHz and has 128K of
memory not 12MHz with 512K of RAM. I
thoroughly enjoyed Cooper’s article. All
and all, I think Game Developer gives a
unique perspective on the gaming indus-
try rarely seen in other magazines.

Also, I was hoping Game Developer
could get down and dirty on comparing
the new consoles coming out and out
already. For example, comparing the awe-
some Doom on the Jaguar vs. the Sega
32X version. I think readers would really
like this.

Ray Rivera
Norfolk, Va.

A Real Plan
Dear Editor:

The boom in interactive entertainment
is clearly reflected in the glut of new
computer entertainment periodicals,

but most developer’s magazines followed
other trends. And so it seems that the
debut of Game Developer this year was
timely and auspicious.

Although Game Developer is still
thin, and has gotten pricey, each issue is
more organized and carries the promise
that later issues will be stronger. So far,
the article topics have been appropriate,
but unfortunately, much of the program-
ming content lacks technical depth. Andre
LaMothe’s article, “The Mysterious Mode
13h” (Sept. 1994), was especially
appalling. LaMothe says, “Mode 13h is an
obscure graphics mode that few game
developers have mastered.” Whoa! If you
want to increase readership, don’t pursue
the newbies who probably won’t subscribe
anyway.

Finally, I’m glad you gave standard
names to your departments in the third
issue, instead of article titles. The six
departments do a lot to make Game
Developer a “real” magazine.

Tom Park
via the Internet

S E Z Y O U !

6 GAME DEVELOPER • DECEMBER 1994

Game Over!
We need your feedback! Send your cards,

letters, and article suggestions to:

Game Developer
600 Harrison St., 4th Floor
San Francisco, CA 94107

Attn: Larry O’Brien
E-mail is even better:

Child’s Play

B I T B L A S T S

Walt Disney, Watch Out!

H
aving recently broken my finger, I
am more than ever a slave to my
computer. I can’t write anything
with a normal implement, so I

have to skip the “pen-and-paper” step
and jump right to the keyboard. Not
only that, but I’m obsessed with the fact
that if I put my hair into a ponytail, it
will always flop to the left (it’s messing
up my karma, I think). Oh how I wish I
had a cool, new animation program to
take me away....

Autodesk’s award-winning, widely
used two-dimensional animation soft-
ware, Animator Pro, has been around for
a few years now. Recently, the company
announced the upcoming launch of Ani-
mator Studio Release 1, a Windows 3.1-
based successor to the Animator Pro
tools. The company calls Animator Stu-
dio a “powerful...2D animation produc-
tion package with direct application to
2D film, TV, and video production.”

With its new product, Autodesk
seeks to break the boundaries between
multimedia development venues and tra-
ditional graphic art studios. Animator
Studio merges the two, allowing the user
to create animation with “onion skin-
ning,” much like working on a light

table; integrating 24-bit Truecolor paint
and plug-in interfaces for Photoshop fil-
ters to be used as ink, which make the
transition from still-image editing to
animation even smoother; and providing
a digital sound studio designed specifi-
cally for animation. The sound module
lets you manipulate soundtracks in any
way you need to, squeezing or stretching
music to make it fit, recording from CDs
and tapes and then layering the sounds,
or adding special effects such as reverb or
pitch shifting to music or vocals. While
recording your sound or narration, you
can view your animation in a separate
video window simultaneously.

Autodesk Animator Studio reads
and writes in many formats, including
AVI, FLI and FLS, BMP, TGA,
TIFF, JPEG, GIF, and PCX. Suggest-
ed list price is $795.

For More Information Contact:
Autodesk Inc.
2320 Marinship Way
Sausalito, Calif. 94965
Tel: (415) 332-2344

Marriage Announcement
3DLabs and Argonaut Software are
joining forces.

3DLabs’ GLINT two-dimensional
processor is capable of 300K shaded,
depth bufffered, anti-aliased polygons
per second. It offers Gourard shading
and texture mapping, 32-bit color, two-
and three-dimensional acceleration, and
an on-chip Peripheral Component
Interconnect (PCI) local bus interface.
According to 3DLabs, the GLINT
processor is “ideal” for OpenGL or
other 3D APIs.

8 GAME DEVELOPER • DECEMBER 1994

Autodesk and

Microsoft offer

two of four new

animation options that

promise to help

you bring your

graphics to life. Also,

an update on the

current game ratings

trend.

Diane Anderson
and Nicole Claro PRODUCTS

Argonaut Software’s BRender three-
dimensional API provides scalable perfor-
mance, true z-buffering, and perspective
texture mapping across a wide range of
computer and games platforms. BRender
is intuitive and compact.

Combine GLINT and BRender and
you’ve got high-performance rendering
power. The partnership of the two com-
panies promises to be a formidable force
in the Windows and WindowsNT graph-
ics market.

For More Information Contact:
3DLabs Inc.
2010 N. First St., Ste. 403
San Jose, Calif. 95131
Tel: (408) 436-3455

Winny the Toon
WinToon is Microsoft’s latest product
announcement. Addressing the strong

demand for animated titles, Microsoft’s
new animation playback tool for Win-
dows facilitates the creation of full-
screen multimedia titles.

Its toolset includes the WinToon
run-time engine. WinToon uses the
Video for Windows architecture to
allow developers blue-screen capabilities
for superimposing images (remember
Jurassic Park?). WinToon’s scan-time
engine digitizes traditionally animated
characters, and its playback engine helps
with design review. Microsoft promises
the user “richer, more fluid, and more
realistic animation” with WinToon.

Because the new Windows operat-
ing system will have a WinG API and a
display control interface (DCI) built
in—along with 32-bit implementation
of the Video for Windows architec-
ture—multimedia soon may have set
standards.

For More Information Contact:
Microsoft Inc.
1 Microsoft Way
Redmond, Wash. 98052-6399
Tel: (800) 426-9400

One Board, One World

Matrox Graphics Inc. is now shipping
the MGA Impression Plus, a one-board,
three-dimensional graphics accelerator
that provides fast Windows, three-
dimensional, and video on the PC. The
MGA Impression Plus features a flexible
architecture that provides complex dri-
vers to optimize Windows, multimedia,
CAD, and three-dimensional applica-
tions. The 64-bit acclerator uses
Microsoft’s DCI API for smooth video
playback at resolutions up to 1,280-by-
1,024 at 30 frames per second. It’s also
the only graphics accelerator that lets
you upgrade to the VESA Media Chan-
nel (VM-Channel). The VM-Channel’s
open specification accepts up to 15 video
streams, so you can add on any VM-
based multimedia peripheral.

The MGA Impression Plus is ship-
ping for $449 and includes the MGA
three-dimensional-SuperPack, a three-
dimensional CD-Rom with three
games—Sentõ, Spectre MGA, and Ice
Hawk—three-dimensional viewing files,
and three-dimensional library demos.

For More Information Contact:
Matrox Graphics Inc.
1055 Saint-Regis
Dorval, Canada H9P 2T4
Tel: (514) 685-2630

Diane Anderson is editorial assistant
for Game Developer magazine. Nicole
Claro is production editor for Game
Developer magazine.

B I T B L A S T S

Industry News: More to Hate About Ratings

10 GAME DEVELOPER • DECEMBER 1994

F
irst we had to deal with our parents forbidding us from seeing R-rated movies, then
came that music label identification scandal, now this. Now our games and the very
digital frontier we hold sacred are being threatened. Cyberia is inherently anarchic,
chaotic, and methodic in its madness. Down with censorship! See Alex Dunne’s com-
ments (“The Ratings Game,” Bit Blasts, Sept. 1994) and Larry O’Brien’s comments in

this month’s Game Plan.

The Recreational Software Advisory Council (RSAC), a group established to “implement and
oversee a national ratings system,” recently elected Robert Roden as its president. “So
what!” you scorn. “Who’s he?” you ask. Well, as it turns out Robert Roden is not only the
president of RSAC, he’s also a member of the LucasClub. He’s the “general counsel and direc-
tor of business affairs” for LucasArts Entertainment.

Coincidence? Conflict of interests? Ironically, RSAC’s nine-member board is
designed to “ensure the ratings system will be independent of the soft-
ware industry’s control.” With a software bigwig as its president? Seems
unlikely.

The RSAC rating system assigns to a product a numerical score between zero
and four across three categories—violence, sex/nudity, and language. Any scores above zero
are posted on the product’s packaging. Developer participation is voluntary, but retailers are
wary of carrying nonrated products.

“RSAC’s system has nothing to do with censorship or with telling developers what to put in
their games,” Roden says. (But developers who get an unfavorable rating will obviously be
stigmatized; such labeling may damage or boost sales.) Roden innocently claims the organi-
zation’s “purpose is to inform consumers what’s in the box.” If parents are so concerned with
what’s in boxes they’re buying for their kids, parents should consider checking out the games
themselves instead of depending on an outside agency to babysit the floppy babysitter. What
ever happened to quality time?

And why haven’t Tom Sawyer and Catcher in the Rye been banned from all high school read-
ing lists yet?

W
hat do Friday the 13th,
Rocky, and Nightmare on
Elm Street have in common?
If you answered, “They’re all
movies that spawned a
never-ending series of
sequels,” you got it. It’s a
formula that works for the

studios: After the first movie is deemed a
success, Movie 2 or Revenge of the Bad
Guy From The Last Movie invariably
comes out the following year. At the
same time, the rest of the movie industry
latches onto the “look and feel” of the
movie and releases look-alikes.

You’ve probably seen enough of
these movies to know the formula. Per-
haps you enjoyed a few of them, too. But
how many of these sequels and look-
alikes would you describe as unforget-
table? If I saw a movie and came out of it
thinking, “That was Raiders of the Lost
Ark starring Michael Douglas,” I
wouldn’t recommend it to anyone.
Unfortunately, I’m feeling this way about
a growing number of games.

I fear that this mentality is becom-
ing prevalent within the game industry as
well. How many different football and
baseball games are on the market today?
How many air-combat simulators? If I
had to sum it up, I’d say, “a lot.” Are
there too many? At the rate that sequels
and look-alikes are hitting the market, I’d
hazard to say that most of them are
financially successful enough to justify
their development. But as a developer,
you’ve got to ask yourself, “Should I ride
the coattails of the latest game craze or
create a completely new type of game and
risk an unresponsive market?” In
response to this dilemma, let’s look at:

• Some reasons for developing a sequel
or look-alike game

• What Windows ’95 offers that will
spur developers’ imaginations

• A relationship between a hardware
vendor and game developer that
spawned a stunning new game.

O.K., There are
Compelling Reasons
Don’t get me wrong, there are sound rea-
sons for developing look-alikes and
sequels. Look-alikes tap into hot market
crazes and can turn a great profit for their
developers. The reception that Doom
received has companies like Capstone
negotiating with Id Software to use its
technology. As a result, Capstone’s Cor-
ridor 7 looks strikingly similar to
Doom—but I’ll venture that it does fairly
well in the market.

Sequels tap into name recognition
and their predecessor’s story lines and are
especially prevalent in adventure and role-
playing games. The market knows the
products already, so most of the market-
ing department’s job is done. The look
and feel of the game is established, so cre-
ative folks don’t have to sweat out many
conceptual changes. Perhaps much of the
interface code can be reused, saving the
developers’ time. With reasons like this,
who’d knock the idea of a sequel?

If it’s done right, probably nobody. I
am simply championing the idea that you
might be rewarded an order of magni-
tude more by going out on a limb with a
fresh game idea than by choosing a less
risky game concept. Develop a truly
groundbreaking game and suddenly
you’re all alone, and your competitors are
scrambling to catch up. Although it’s

Revenge of
the Sequel
Syndrome

Like many current

movies, popular

games are spawning

an explosion of

sequels, look-alikes,

and wannabes. Alex

Dunne looks at the

trend and makes his

case for originality in

concept and design.

by Alex Dunne

C R O S S F I R E

GAME DEVELOPER • DECEMBER 1994 13

been talked up to death, Myst is the per-
fect example. I find that when I try to
describe Myst to someone, I can’t use
another game as a reference. Myst, by
virtue of being so different, has been a
financial boon for both the Rand brothers
and Broderbund.

Microsoft’s New
Game Platform
Among the most talked about events in
the industry and one that has significant
potential to change the face of gaming is
Windows ’95. Now that Microsoft has
gone through two beta cycles of the oper-
ating system, developers are getting a feel
for its abilities. The capabilities Windows
’95 offers over DOS should lead to some
incredible new games.

Windows ’95 promises to be a com-
petitive platform to DOS when it comes
to game speed and adds some benefits not
found in the old 16-bit operating system.
Coupled with OLE, Microsoft envisions
the ability to drag and drop game ele-
ments, the use of standard game interfaces
that developers could use to extend a
game’s functionality, and the possibility of
embedding game sessions into mail mes-
sages that would automatically connect
you to another player over a network or
modem.

The ability to develop network mul-
tiplayer games will be greatly enhanced
with Windows ’95. Developers won’t
have to write the networking code or
work around the network’s memory
space. Using WinSockets, game develop-
ers will be able to write games for a wide
range of networks including Novell,
TCP/IP, Windows for Workgroups,
Banyan Vines, and LAN Manager.

In what looks to be a boon for the
phone companies, Windows ’95 will pro-
vide support for a new modem technology
called VoiceView, which will ship as a
standard feature of many modems begin-
ning in 1995. VoiceView will let modem
users talk on the phone and use their
modem over the same line. The technol-
ogy is suited to games where each player
takes a turn, such as chess, allowing the
computer to take over the phone line to
transmit game data and then relinquish it
back to the callers for further conversa-

tion. Simple messages (such as a chess
move) would take less than a second.

This will make modem-based games
much more popular because players will
be able to enjoy the benefits of coordinat-
ing team play (or cursing at each other) as
they play. This of course will be a tremen-
dous boon to game distributors who bun-
dle phone cradles and chiropractic
coupons with their games.

Perhaps the most significant aspect
of the new Windows ’95 system is the
much touted WinG graphic library. I
don’t have to convince anyone how pitiful
game performance is under Windows 3.1.
Microsoft claims that its come close to
matching DOS game speeds using the
WinG library under Windows ’95.

It’s unclear when Windows ’95 is
going to be released. As of late October, I
can only say (as Microsoft is) that it will
be available sometime between April and
June 1995. The acceptance rate of Win-
dows ’95 into homes is hard to project,
however, so it’s difficult to determine how
large the market for Windows ’95 games
will be. Given Solitaire’s popularity when
Windows 3.0 came out, Microsoft is
probably praying for some killer Win-
dows ’95 games to speed the system’s
adoption into family rooms. These “killer”
games, I predict, will be innovative and
make the most of Windows ’95’s
enhancements.

Hardware Advancements
Spur Innovation
Another angle developers are beginning to
pursue in their quest for breakthrough
games relates to hardware advancements.
Back when sound cards first entered the
market, card vendors courted developers
to write games that supported their hard-
ware. As a result of Creative Labs’ dili-
gence and marketing savvy, every major
game today supports the Sound Blaster,
and it has become the de facto standard.

Now, a video card manufacturer,
Matrox, has come along with the power-
ful new MGA Impression Plus accelera-
tor card that incorporates a three-dimen-
sional polygon engine. Matrox is hoping
to popularize the accelerator among game
players and, to further this aim, has estab-
lished a partnership with start-up game

developer 47-Tek. 47-Tek is creating a
battle game titled Sentõ that is optimized
for the card and features very cool real-
time animation. Sentõ’s use of the card’s
engine creates a unique visual experience
that makes other fighting games pale in
comparison.

Unfortunately, Sentõ’s performance
under other video cards doesn’t match the
optimized conditions that the Matrox
accelerator provides. It’s possible to fore-
see a game so narrowly optimized for a
particular computer configuration that a
nonoptimal setup would bring the game

to its knees. That, of course, would seri-
ously affect the size of the game’s market.
47-Tek has sidestepped this problem by
bundling Sentõ with the hot-selling
Matrox card, but of course that’s not an
option for every developer.

Perhaps the Matrox card will
become a de facto standard for three-
dimensional polygon-based games—
though I doubt it (the world can only
handle so many standards). On the other
hand, the symbiotic relationship between
Matrox and 47-Tek might become a
standard, one best suited for start-up
developers looking for a niche.

So, as you begin brainstorming your
next game, keep in mind the sequel syn-
drome. Experiment with new concepts
and ideas, rather than rehashing old ones.
Look around at new technologies the
industry is offering, and capitalize on
them. It comes down to this: Do you
want your game to be the next ground-
breaking hit or the next Romancing the
Stone? Take the road less travelled. ■

Alex Dunne is contributing editor for
Game Developer magazine.

C R O S S F I R E

14 GAME DEVELOPER • DECEMBER 1994

Other combat games pale in comparison
to Sentõ, which uses the Matrox acceler-
ator to its maximum potential.

G
raphics are one of the most
important parts of any game
today, yet the VGA standard
comes up short in providing
the features and power many
games demand. “More col-
ors!” That’s what the VGA
promised over its predeces-

sors. “Pick any 256 from a quarter mil-
lion!” it said. Unfortunately, as
designed by IBM, only one mode actu-
ally delivered this promise of rich color:
Mode 13h.

But there was a catch. Mode 13h
did not provide many features game
designers wanted—features they were
accustomed to on other platforms.
Screen resolution was limited. Hard-
ware scrolling was out. Page flipping
was a pipe dream. If you wrote a game
using mode 13h, screen flicker was a
constant enemy that l imited your
graphics and animation. Super VGA
cards came out and provided more 256-
color mode options, and some even
provided page flipping. But there were
no standards between brands and
makes of VGA cards. Developers need-
ed something that would work on any
VGA card, from the first IBM VGA
built into a PS/2 to the latest 4MB
super duper VGA card. That some-
thing turned out to be Mode X.

Back in 1989, someone got down
with the IBM VGA internals, took a
close look at the internal registers and
workings of Mode 13h, and discovered
that nothing was etched in stone. This
unsung hero determined that features
from the EGA 16-color modes could
be blended into Mode 13h to create a
hybrid video mode with more accessi-

ble video memory and more usable
hardware features. From that discovery
we have what is commonly referred to
as Mode X. Mode X gives us access to
the following features that are lacking
in Mode 13h:
• Higher screen resolutions
• Hardware screen scrolling
• Page flipping (the key for smooth

animation).

The Technical Details
Game programmers everywhere have
heard of Mode X, but for many it is
still mysterious or unclear. The biggest
reason for confusion is that Mode X is
not a hard-and-fast video mode, but a
label for any number of derived modes
that have one thing in common:
Unchained Video Memory Access. Let
me explain.

A big limitation of VGA graphic
modes is that there is only a 64K win-
dow of address space at segment A000
through which to access graphics mem-
ory. EGA 16-color modes allow access
to up to 256K of video memory by
mapping four “video planes” over each
other in the same 64K of address space.
So, 4 bytes of video memory are actual-
ly mapped into each single byte of
address space. Special control registers
let the programmer set the four video
planes which are actually mapped in at
any given time. In Mode 13h, none of
this exists. There is only one byte of
video memory for each memory
address, limiting this mode to 65,536
pixels maximum. With a screen resolu-
tion of 320-by-200, 64,000 of those
pixels are used. Tragically, 192K of a
standard VGA card’s 256K of video

Mode X
Revealed

Frustrated by the

limitations of Mode

13H? Try Mode X, the

graphics mode that

promises better

screen resolutions,

page flipping,

hardware screen

scrolling, and super

rich color.

by Matt Pritchard

M O D E X

GAME DEVELOPER • DECEMBER 1994 25

memory goes to waste here, in the only
256-color mode. The “secret” of Mode
X is that it lets the programmer use the
full 256K of VGA memory instead of a
mere 64K by borrowing the EGA’s mul-
tiple video plane system. This is accom-
plished by turning off a control register
known as Chain-4 (unchaining) in the
VGA card. Once this is done, 4 bytes of
video memory are found at every memo-
ry location in the A000 segment.

With a quarter million pixels avail-
able to work with, the first thing people
experimented with was changing the
screen’s displayed resolution. Mode 13h
has no memory to spare for a larger
screen, but Mode X has enough memo-
ry for a screen resolution of 512-by-512
pixels. However, just because there is
enough memory doesn’t mean the VGA
card can display it. Reprogramming the
registers that control the screen resolu-
tion is tricky. It is possible to play
around with the VGA’s CRT controller
registers and come up with all sorts of
strange resolutions. However, we want
to stick with known settings that will
work on any monitor and VGA card.
Two horizontal resolutions and four
vertical resolutions that follow estab-
lished VGA modes fit our needs. These
can be combined to create eight differ-
ent screen resolutions for Mode X.

The standard Mode 13h resolution
is 320-by-200 pixels and makes a good
default for Mode X. This is the Mode
X resolution used by games such as
Doom and Ultima Underworld. The
horizontal resolution can be safely
increased to 360 pixels by setting the
VGA card to use the 28MHz dot clock
(used in text modes) instead of the
25MHz dot clock used in graphics
modes. Some individuals claim that the
higher frequencies damage their moni-
tors. This is not true, and there has
never been a known case of monitor
damage because of it. Regrettably,
higher horizontal resolutions such as
640 pixels are not available in a stan-
dard VGA because of video memory
clock speed limitations.

Vertical resolution provides even
more choices; 200-line modes are actu-
ally 400-line modes in disguise. These

M O D E X

26 GAME DEVELOPER • DECEMBER 1994

#include <stdio.h>
#include “setmodex.h”

void show_X_Mode(int Mode_Num, int X_Res, int Y_Res, int Scroll_Flag);
void modex_rect (int UL_X, int UL_Y, int LR_X, int LR_Y, int Color);
void modex_hline (int Left_X, int Right_X, int Y, int Color);
void modex_vline (int Top_Y, int Bottom_Y, int X, int Color);

void main (void)
{

show_X_Mode(Mode_320x200, 320, 200, 0);
show_X_Mode(Mode_320x240, 320, 240, 0);
show_X_Mode(Mode_320x400, 320, 400, 0);
show_X_Mode(Mode_320x480, 320, 480, 0);

show_X_Mode(Mode_360x200, 360, 200, 0);
show_X_Mode(Mode_360x240, 360, 240, 0);
show_X_Mode(Mode_360x400, 360, 400, 0);
show_X_Mode(Mode_360x480, 360, 480, 0);

show_X_Mode(Mode_320x200, 512, 500, 1);

set_text_mode();
printf (“This Demo is finished\n”);

}

void show_X_Mode(int Mode_Num, int X_Res, int Y_Res, int Scroll_Flag)
{

int x, y;

set_text_mode();
if (Scroll_Flag == 0) {

printf (“\n\nPress any key to see Mode X at %d by %d resolution\n\n”,
X_Res, Y_Res);

} else {
printf (“\n\nPress any key to see a Mode X Scrolling window\n\n”);

}
printf(“(When done, press any key to end the mode X display)”);
y = scan_keyboard();

set_vga_modex(Mode_Num, X_Res, Y_Res);

for (x = 0; x < 15; x++) {
modex_rect(x*3, x*3, X_Res-x*3-1, Y_Res-x*3-1, x+1);
modex_hline(32+x*4, X_Res-96+x*4, 20+x*10, x+1);
modex_vline(32+x*4, Y_Res-96+x*4, 20+x*10, x+1);

}

if (Scroll_Flag) {
for (x = 0, y = 0; x < 100; x++, y++) set_window(x, y);
for (y = 100; y >= 0; y—) set_window(100, y);
for (x = 100; x >= 0; x—) set_window(x, 0);

}

y = scan_keyboard();
return;

}

Listing 1. Modex.C (Continued on p. 27)

modes use the MSL register in the VGA’s
CRT controller to draw each scan line
twice. Set that register to 0, and you
have 400 lines of vertical resolution. By
borrowing the vertical display settings
from Mode 12h (640-by-480, 16-color
graphics), we get 480 lines of glorious
256-color graphics, although the screen
refresh rate slows from 70Hz to 60Hz.
Finally, in this mode, setting the MSL
register back to 1 gives you 240 pixels
vertically.

Horizontal and vertical screen reso-
lutions can be combined as desired, but
one combination is worthy of special
notice: 320-by-240 pixels. On a VGA
monitor, this resolution has an aspect
ratio of 1:1, which gives it perfectly
square pixels and easily allows for true
squares and circles on the screen.

Once you set a screen resolution,
you can set a “virtual resolution.” This
lets you create a “virtual screen” larger
than the displayed resolution. The
screen display then becomes a window
into the larger virtual screen, and the
“window” can be moved and scrolled
around. In Mode X, this is accom-
plished by setting the VGA card’s Offset
Register with the width of the desired
virtual screen divided by 8. This creates
the virtual screen, which can be wider
than the 320 or 360 displayed pixels.
The Start Address registers the position
of the upper left corner of the screen
display in video memory in the VGA’s
CRT controller control. Because each
address has 4 bytes (4 pixels at 1 byte
per pixel) mapped into it, when you
change the Start Address register by 1,
the screen display will shift by 4 pixels.
To move a single pixel at a time, use the
Horizontal Pixel Planning register in the
VGA’s Attribute controller. It can only
shift the display up to 3 pixels in Mode
X, but when you use it in conjunction
with the Start Address registers,
smooth, full-screen scrolling is possible.

Setting Mode X
So far, I have avoided getting very spe-
cific about the VGA registers and
processes. At the end of this article, I
have included an assembly language
listing, Modex.asm (Listing 3), which

GAME DEVELOPER • DECEMBER 1994 27

/* ===== Simple Mode-X Line draw routines ===== */

void modex_rect (int UL_X, int UL_Y, int LR_X, int LR_Y, int Color)
{

modex_hline(UL_X, LR_X, UL_Y, Color);
modex_hline(UL_X, LR_X, LR_Y, Color);
modex_vline(UL_Y, LR_Y, UL_X, Color);
modex_vline(UL_Y, LR_Y, LR_X, Color);
return;

}

void modex_hline (int Left_X, int Right_X, int Y, int Color)
{

int x;
for (x = Left_X; x <= Right_X; x++) set_point(x, Y, Color);
return;

}

void modex_vline (int Top_Y, int Bottom_Y, int X, int Color)
{

int y;
for (y = Top_Y; y <= Bottom_Y; y++) set_point(X, y, Color);
return;

}

Listing 1. Modex.C (Continued from p. 26)

contains a routine that will set up Mode
X at any of the eight resolutions that I
described and create any sized virtual
screen to order. Additional routines,
which we will discuss, show how to plot
pixels, read pixels, and scroll a virtual
screen. I have also included two short
demo programs, Modex.C and
Modex.H, shown in Listings 1 and 2
and written in Borland C++ 3.1. They
show each Mode X screen resolution
and virtual screen scrolling. Both list-
ings use the medium memory model.

Switching the computer’s display
into Mode X involves a few basic steps.
First, you call the VGA’s BIOS to set the
display to Mode 13h. Some people have
bypassed this step and do it manually,
but I advise against it. Many super
VGA cards have extra registers and fea-
tures that are not part of the VGA stan-
dard. Calling the BIOS allows the VGA
card to set any special or unique fea-
tures it might have and ensures maxi-
mum compatibility. After Mode 13h is
set, you disable the Chain-4 register in

the VGA sequencer. Next, you will
need to invoke an asynchronous reset
on the VGA card. While the VGA is in
a reset state, you can change the hori-
zontal dot clock. After ending the reset,
you then load the CRT Controller’s regis-
ters with the values for the desired hori-
zontal and vertical resolutions. Some
registers are protected from accidental
modification so a protection register
must be turned off before starting and
turned back on when finished. Finally,
the virtual screen width must be set. At
this point, the desired version of Mode
X is set up and ready to go. Usually, the
next step is to clear all the VGA’s video
memory completely, so any leftover
garbage will not appear on the screen.
To do this, you need to know how to
write pixels in Mode X.

Drawing Mode X Pixels
In Mode 13h, drawing pixels is very
simple. You just write the desired byte
value to address (320 * Y) + X. In Mode
X, it gets a lot more complicated
because there are four pixels at each
memory address. This is where the Map
Mask register comes in. As part of the
VGA’s sequencer, it acts like a control
valve for each of the four video planes,
determining if a byte written by the
CPU will be passed through to each of
the four video planes or ignored com-
pletely. While it is a hassle to set the
Map Mask register for each pixel to plot,
doing so can be beneficial if we want to
write the same color value to more than
one video plane at a time. If all video
plane access bits in the Map Mask register
are set to 1, a single byte written by the
CPU will be simultaneously copied to
all four video planes, setting four pixels
with a single byte. Alas, this is a topic
unto itself that we must save for later.

So, how do you determine the
address of a given pixel that you want to
write to location (X,Y)? The formula is
similar to mode 13h but requires two
more steps. First, you multiply the Y
position by the virtual screen width (or
display screen width if they are the
same) and add the X position—just like
Mode 13h, except that the width does
not have to be 320. Then you take the

M O D E X

28 GAME DEVELOPER • DECEMBER 1994

#ifndef __SETMODEX_H
#define __SETMODEX_H

/* ===== SCREEN RESOLUTIONS ===== */

#define Mode_320x200 0
#define Mode_320x400 1
#define Mode_360x200 2
#define Mode_360x400 3
#define Mode_320x240 4
#define Mode_320x480 5
#define Mode_360x240 6
#define Mode_360x480 7

/* ===== MODE X SETUP ROUTINES ===== */

int far pascal set_vga_modex (int Mode, int MaxXpos, int MaxYpos);
void far pascal set_text_mode (void);
int far pascal scan_keyboard (void);

/* ===== BASIC GRAPHICS PRIMITIVES ===== */

void far pascal set_point (int Xpos, int Ypos, int Color);
int far pascal read_point (int Xpos, int Ypos);
void far pascal set_window (int XOffset, int YOffset);

#endif

Listing 2. Modex.H

Mode X is not a hard-and-fast video mode,

but a label for derived modes that have

Unchained Video Memory Access.

result and divide it by 4. The whole
number that results is the address in the
A000 segment that you need to write to,
and the remainder is the video plane
number from 0 to 3, as shown here:

Raw_Address = (Y_pos * Screen_Width)

+ X_pos

Memory_Address = Raw_Address / 4

Plane_Number = Raw_Address MOD 4

“MOD” is the modulus/remainder function.

In C/C++ this is the “%” operator.

Because the numbers involved can
exceed 65,536, most people first divide
the video width and X position by 4 to
avoid an overflow and get the plane
number from the X position, as shown
in this equation:

Memory_Address = (Y_pos * Screen_Width

/ 4) + X_Pos / 4

Plane_Number = X_pos MOD 4

In either case, you wind up with a
memory address and plane number.
The four pixels at a given memory
address will appear next to each other,
left to right starting with plane #0. The
very first pixel is at address 0, plane #0,
followed by address 0, planes #1, #2, and
#3. Then comes address 1, plane #0, and
so on.

Before you can write the color
value to the memory address, the Map
Mask register must have the bit corre-
sponding to the desired plane number
set. You do this by loading the value 01h
for plane #0, loading 02h for plane #1,
loading 04h for plane #2, or loading 08h
for plane #3 into the AH register, loading
02h into the AL register (to select the Map
Mask register), and OUTing the AX register
to port address 03C4h. Once that is
done, any data you write to A000:Memo-
ry_Address will only go to the desired
video plane. Examine the SET_POINT rou-
tine in Listing 3 for an example of
Mode X pixel plotting.

Reading Mode X Pixels
Reading a pixel in Mode X is similar to
writing one, except you can access only
one video plane at a time. You still need

GAME DEVELOPER • DECEMBER 1994 29

.MODEL Medium

.286

; Macros to OUT 8 & 16 bit values to an I/O port

OUT_16 MACRO Register, Value

IFDIFI <Register>, <DX> ; If DX not setup

MOV DX, Register ; then Select Register

ENDIF

IFDIFI <Value>, <AX> ; If AX not setup

MOV AX, Value ; then Get Data Value

ENDIF

OUT DX, AX ; Set I/O Register(s)

ENDM

OUT_8 MACRO Register, Value

IFDIFI <Register>, <DX> ; If DX not setup

MOV DX, Register ; then Select Register

ENDIF

IFDIFI <Value>, <AL> ; If AL not Setup

MOV AL, Value ; then Get Data Value

ENDIF

OUT DX, AL ; Set I/O Register

ENDM

; macros to PUSH and POP multiple registers

PUSHx MACRO R1, R2, R3, R4

IFNB <R1>

PUSH R1 ; Save Register

PUSHx R2, R3, R4

ENDIF

ENDM

POPx MACRO R1, R2, R3, R4

IFNB <R1>

POP R1 ; Restore Register

POPx R2, R3, R4

ENDIF

ENDM

; ===== VGA Register Addresses =====

ATTRIB_Ctrl EQU 03C0h ; VGA Attribute Controller

GC_Index EQU 03CEh ; VGA Graphics Controller

SC_Index EQU 03C4h ; VGA Sequencer Controller

CRTC_Index EQU 03D4h ; VGA CRT Controller

MISC_OUTPUT EQU 03C2h ; VGA Misc Register

INPUT_1 EQU 03DAh ; Input Status #1 Register

; ===== VGA Register Index Values =======

PIXEL_PAN_REG EQU 033h ; Atrb Index: Pixel Pan Reg

MAP_MASK EQU 002h ; Sequ Index: Map Mask Reg

READ_MAP EQU 004h ; GC Index: Read Map Reg

START_DISP_HI EQU 00Ch ; CRTC Index: Disp Start Hi

START_DISP_LO EQU 00Dh ; CRTC Index: Disp Start Lo

; ===== other VGA Register Values & Constants =====

ALL_PLANES_ON EQU 00F02h ; Map Register + All Planes

CHAIN4_OFF EQU 00604h ; Chain 4 mode Off

Listing 3. Modex.asm (Continued on p. 30)

to calculate the memory address and
plane number, but you will set the Read
Map register in the VGA’s Graphics con-
troller instead of the Map Mask register.
Unlike the Map Mask register, this regis-
ter just needs the plane number from 0
to 3.

Specifically, you need to load AH
with the plane number, AL with 04h (to
select the Read Map register), and OUT AX
to 03CEh. After that, you read the byte
at A000:Memory_Address and it will return
the value of the desired pixel. Examine
the READ_POINT routine in Listing 3 for
an example of Mode X pixel reading.

Scrolling the Screen
Once you know how to address pixels
in Mode X, it is easy to scroll a window
around a larger virtual screen. All you
need to know is which pixel should
appear in the upper left corner of the
screen. With that, you compute the
address and plane number of the pixel.
The 16-bit address is loaded into the
CRT controller’s Start Address registers.
You then multiply the plane number by
2 and load it into the Horizontal Pixel
Panning register of the VGA’s Attribute
controller. Occasionally, this process
may produce shearing of the display
screen. To avoid this, the Horizontal
Pixel Panning register is usually updated
during the display’s vertical blank peri-
od. Examine the SET_WINDOW routine in
Listing 3 for an example of virtual
screen scrolling.

Whew! This Mode X stuff is cer-
tainly more involved than Mode 13h,
but the results are worth it. We have
only scratched the surface of Mode X,
and in future articles I hope to cover
ways to use Mode X’s unique features
to produce fast and efficient graphics
routines such as page flipping, block
fills, and sprites. Until next time, happy
coding! ■

Matt Pritchard is a software devel-
oper for Lacerte Software in Dallas Texas,
and the author of MODEX110 a compre-
hensive freeware Mode X library. He can
be reached at matthewp@netcom.com or
through Game Developer.

M O D E X

30 GAME DEVELOPER • DECEMBER 1994

ASYNC_RESET EQU 00100h ; (A)synchronous Reset

SEQU_RESTART EQU 00300h ; Sequencer Restart

VGA_Segment EQU 0A000h ; VGA Memory Segment

VERT_RETRACE EQU 08h ; INPUT_1: Vert Retrace Bit

PLANE_BITS EQU 03h ; Bits 0-1 of X = Plane #

nil EQU 00h ; Used to mark end of list

wptr EQU WORD PTR ; Shorthand text

dptr EQU DWORD PTR ; macros for pointers

.DATA? ;==== DGROUP STORAGE NEEDED (10 BYTES) ====

CURRENT_PAGE DW 0 ; Offset of current Page

CURRENT_SEGMENT DW 0 ; Segment of VGA memory

SCREEN_WIDTH DW 0 ; Width of a line in Bytes

MAX_XOFFSET DW 0 ; Current Display X Offset

MAX_YOFFSET DW 0 ; Current Display Y Offset

; Mode X Mode list data table format...

Mode_Data_Table STRUC

M_MiscR DB ?,? ; Value of MISC_OUTPUT register

M_XSize DW ? ; X Size Displayed on screen

M_YSize DW ? ; Y Size Displayed on screen

M_XMax DW ? ; Maximum Possible X Size

M_YMax DW ? ; Maximum Possible Y Size

M_CRTC DW ? ; Table of CRTC register values

Mode_Data_Table ENDS

.CODE ; Data Tables put in CS for easy access

; CRTC Register Values for Various Configurations

MODE_Single_Line: ; CRTC Data for 400/480 Line modes

DW 04009H ; Cell Height (1 Scan Line)

DW 00014H ; Dword Mode off

DW 0E317H ; turn on Byte Mode

DW nil ; End of 400/480 line CRTC Data

MODE_Double_Line: ; CRTC Data for 200/240 Line modes

DW 04109H ; Cell Height (2 Scan Lines)

DW 00014H ; Dword Mode off

DW 0E317H ; turn on Byte Mode

DW nil ; End of 200/240 Line CRTC Data

MODE_320_Wide: ; CRTC Data for 320 Pixels

DW 05F00H ; Horz total

DW 04F01H ; Horz Displayed

DW 05002H ; Start Horz Blanking

DW 08203H ; End Horz Blanking

DW 05404H ; Start H Sync

DW 08005H ; End H Sync

DW nil ; End of 320 pixel CRTC Data

MODE_360_Wide: ; CRTC Data for 360 Pixels

DW 06B00H ; Horz total

DW 05901H ; Horz Displayed

DW 05A02H ; Start Horz Blanking

DW 08E03H ; End Horz Blanking

DW 05E04H ; Start H Sync

DW 08A05H ; End H Sync

DW nil ; End of 360 pixel CRTC Data

Listing 3. Modex.asm (Continued on p. 31)

GAME DEVELOPER • DECEMBER 1994 31

DB 0E3h, 0 ; 480 scan Lines & 25 Mhz Clock

DW 320, 240 ; Displayed Pixels X,Y

DW 1088, 818 ; Max Possible X and Y Sizes

DW offset MODE_320_Wide, offset MODE_240_Tall

DW offset MODE_Double_Line, nil

MODE_320x480: ; Data for 320 by 480 Pixels

DB 0E3h, 0 ; 480 scan Lines & 25 Mhz Clock

DW 320, 480 ; Displayed Pixels X,Y

DW 540, 818 ; Max Possible X and Y Sizes

DW offset MODE_320_WIDE, offset MODE_480_Tall

DW offset MODE_Single_Line, nil

MODE_360x200: ; Data for 360 by 200 Pixels

DB 067h, 0 ; 400 scan Lines & 28 Mhz Clock

DW 360, 200 ; Displayed Pixels (X,Y)

DW 1302, 728 ; Max Possible X and Y Sizes

DW offset MODE_360_Wide, offset MODE_200_Tall

DW offset MODE_Double_Line, nil

MODE_360x400: ; Data for 360 by 400 Pixels

DB 067h, 0 ; 400 scan Lines & 28 Mhz Clock

DW 360, 400 ; Displayed Pixels X,Y

DW 648, 816 ; Max Possible X and Y Sizes

DW offset MODE_360_Wide, offset MODE_400_Tall

DW offset MODE_Single_Line, nil

;===

; int SET_VGA_MODEX (int Mode, int Max_XPos, int Max_Ypos)

;

; Sets Up the specified version of Mode X. Allows for

; the setup of of a virtual screen which can be larger

; than the displayed screen.

;

; ENTRY: Mode_Type = Desired Screen Resolution (0-7)

; 0 = 320 x 200 4 = 320 x 240

; 1 = 320 x 400 5 = 320 x 480

; 2 = 360 x 200 6 = 360 x 240

; 3 = 360 x 400 7 = 360 x 480

;

; Max_Xpos = The Desired Virtual Screen Width

; Max_Ypos = The Desired Virtual Screen Height

;

; EXIT: AX = Success Flag: 0 = Failure, -1 = Success

SVM_STACK STRUC

SVM_Table DW ? ; Offset of Mode Info Table

DD ?,?,? ; DI, SI, DS, BP, Caller

SVM_Ysize DW ? ; Vertical Screen Size Desired

SVM_Xsize DW ? ; Horizontal Screen Size Desired

SVM_Mode DW ? ; Display Resolution Desired

SVM_STACK ENDS

PUBLIC SET_VGA_MODEX

MODE_200_Tall:

MODE_400_Tall: ; CRTC Data for 200/400 Line modes

DW 0BF06H ; Vertical Total

DW 01F07H ; Overflow

DW 09C10H ; V Sync Start

DW 08E11H ; V Sync End/Prot Cr0 Cr7

DW 08F12H ; Vertical Displayed

DW 09615H ; V Blank Start

DW 0B916H ; V Blank End

DW nil ; End of 200/400 Line CRTC Data

MODE_240_Tall:

MODE_480_Tall: ; CRTC Data for 240/480 Line modes

DW 00D06H ; Vertical Total

DW 03E07H ; Overflow

DW 0EA10H ; V Sync Start

DW 08C11H ; V Sync End/Prot Cr0 Cr7

DW 0DF12H ; Vertical Displayed

DW 0E715H ; V Blank Start

DW 00616H ; V Blank End

DW nil ; End of 240/480 Line CRTC Data

; Table of Display Mode Components & Index Table

MODE_TABLE:

DW offset MODE_320x200, offset MODE_320x400

DW offset MODE_360x200, offset MODE_360x400

DW offset MODE_320x240, offset MODE_320x480

DW offset MODE_360x240, offset MODE_360x480

MODE_320x200: ; Data for 320 by 200 Pixels

DB 063h, 0 ; 400 scan Lines & 25 Mhz Clock

DW 320, 200 ; Displayed Pixels (X,Y)

DW 1302, 816 ; Max Possible X and Y Sizes

DW offset MODE_320_Wide, offset MODE_200_Tall

DW offset MODE_Double_Line, nil

MODE_320x400: ; Data for 320 by 400 Pixels

DB 063h, 0 ; 400 scan Lines & 25 Mhz Clock

DW 320, 400 ; Displayed Pixels X,Y

DW 648, 816 ; Max Possible X and Y Sizes

DW offset MODE_320_Wide, offset MODE_400_Tall

DW offset MODE_Single_Line, nil

MODE_360x240: ; Data for 360 by 240 Pixels

DB 0E7h, 0 ; 480 scan Lines & 28 Mhz Clock

DW 360, 240 ; Displayed Pixels X,Y

DW 1092, 728 ; Max Possible X and Y Sizes

DW offset MODE_360_Wide, offset MODE_240_Tall

DW offset MODE_Double_Line , nil

MODE_360x480: ; Data for 360 by 480 Pixels

DB 0E7h, 0 ; 480 scan Lines & 28 Mhz Clock

DW 360, 480 ; Displayed Pixels X,Y

DW 544, 728 ; Max Possible X and Y Sizes

DW offset MODE_360_Wide, offset MODE_480_Tall

DW offset MODE_Single_Line , nil

MODE_320x240: ; Data for 320 by 240 Pixels

Listing 3. Modex.asm (Continued on p. 32)

M O D E X

32 GAME DEVELOPER • DECEMBER 1994

SET_VGA_MODEX PROC FAR

PUSHx BP, DS, SI, DI ; Preserve Registers

SUB SP, 2 ; Allocate workspace

MOV BP, SP ; Set up Stack Frame

; Make Sure Mode, X and Y Sizes are legal

MOV BX, [BP].SVM_Mode ; Get Requested Mode #

CMP BX, 8 ; 8 Modes max: Is it 0..7?

JAE @SVM_BadModeSetup ; If Not, Error out

SHL BX, 1 ; Scale BX to word

MOV SI, wptr MODE_TABLE[BX] ; CS:SI -> Mode Info

MOV [BP].SVM_Table, SI ; Save ptr for later

AND [BP].SVM_XSize, 0FFF8h ; X size Mod 8 Must = 0

MOV AX, [BP].SVM_XSize ; Get Logical Screen Width

CMP AX, CS:[SI].M_XSize ; Check against Displayed X

JB @SVM_BadModeSetup ; Report Error if too small

CMP AX, CS:[SI].M_XMax ; Check against Max X

JA @SVM_BadModeSetup ; Report Error if too big

MOV BX, [BP].SVM_YSize ; Get Logical Screen Height

CMP BX, CS:[SI].M_YSize ; Check against Displayed Y

JB @SVM_BadModeSetup ; Report Error if too small

CMP BX, CS:[SI].M_YMax ; Check against Max Y

JA @SVM_BadModeSetup ; Report Error if too big

; Make Sure there is Enough memory to Fit it all

SHR AX, 2 ; # of Bytes:Line = XSize/4

MUL BX ; DX:AX = Total mem needed

JNO @SVM_Continue ; Exit if Total Size > 256K

DEC DX ; Was it Exactly 256K???

OR DX, AX ; (DX = 1, AX = 0000)

JZ @SVM_Continue ; if so, it’s valid...

@SVM_BadModeSetup:

XOR AX, AX ; Return Value = False

JMP @SVM_Exit ; Normal Exit

@SVM_Continue:

MOV AX, 13H ; Start with Mode 13H

INT 10H ; Let BIOS Set the Mode

OUT_16 SC_INDEX, CHAIN4_OFF ;Disable Chain 4

OUT_16 SC_INDEX, ASYNC_RESET ;(A)sync Reset

OUT_8 MISC_OUTPUT, CS:[SI].M_MiscR ;Set New Timings

OUT_16 SC_INDEX, SEQU_RESTART ;Restart Sequencer

OUT_8 CRTC_INDEX, 11H ; Select Retrace End Reg

INC DX ; Point to Data

IN AL, DX ; Get Data, Bit 7=Protect

AND AL, 7FH ; Mask out Write Protect

OUT DX, AL ; And send it back

MOV DX, CRTC_INDEX ; Vga Crtc Registers

ADD SI, M_CRTC ; SI->CRTC Parameter Data

; Load Tables of CRTC Parameters from List of Tables

@SVM_Setup_Table:

MOV DI, CS:[SI] ; Get Ptr to CRTC Data Table

ADD SI, 2 ; Point to next Ptr Entry

OR DI, DI ; A nil Ptr means that we have

Listing 3. Modex.asm (Continued on p. 33)

JZ @SVM_Set_Data ; finished CRTC programming

@SVM_Setup_CRTC:

MOV AX, CS:[DI] ; Get CRTC Data from Table

ADD DI, 2 ; Advance Pointer

OR AX, AX ; At End of Data Table?

JZ @SVM_Setup_Table ; If so, go get next Table

OUT DX, AX ; Reprogram VGA CRTC reg

JMP short @SVM_Setup_CRTC ; Get next table entry

; Initialize Page & Scroll info, DI = 0

@SVM_Set_Data:

MOV CURRENT_PAGE, DI ; Offset into VGA memory=0

MOV AX, VGA_SEGMENT ; Segment for VGA memory

MOV CURRENT_SEGMENT, AX ; Save for Future LES’s

; Set Logical Screen Width, X Scroll and Our Data

MOV SI, [BP].SVM_Table ; Get Saved Mode Info Ptr

MOV AX, [BP].SVM_Xsize ; Get Display Width

MOV CX, AX ; CX = Logical Width

SUB CX, CS:[SI].M_XSize ; CX = Max X Scroll Value

MOV MAX_XOFFSET, CX ; Set Maximum X Scroll

SHR AX, 2 ; Bytes = Pixels / 4

MOV SCREEN_WIDTH, AX ; Save Width in Pixels

SHR AX, 1 ; Offset Value = Bytes / 2

MOV AH, 13h ; 13h=CRTC Offset Register

XCHG AL, AH ; Switch format for OUT

OUT DX, AX ; Set VGA CRTC Offset Reg

; Setup Data table, Y Scroll, Misc for Other Routines

MOV AX, [BP].SVM_Ysize ; Get Logical Screen Height

MOV CX, AX ; CX = Logical Height

SUB BX, CS:[SI].M_YSize ; CX = Max Y Scroll Value

MOV MAX_YOFFSET, CX ; Set Maximum Y Scroll

; Clear all of VGA Memory

OUT_16 SC_INDEX, ALL_PLANES_ON ; Select All Planes

LES DI, dptr CURRENT_PAGE ; ES:DI -> A000:0

XOR AX, AX ; AX = 0

CLD ; Block Xfer Forwards

MOV CX, 8000H ; 32K * 4 * 2 = 256K

REP STOSW ; Clear video memory!

MOV AX, 0FFFFh ; Return Success Code -1

@SVM_EXIT:

ADD SP, 2 ; Deallocate workspace

POPx DI, SI, DS, BP ; Restore Saved Registers

RET 6 ; Exit & Clean Up Stack

SET_VGA_MODEX ENDP

;===

; void SET_POINT (int X_pos, int Y_pos, int Color_Num)

;

; Plots a single Pixel on the active display page

;

; ENTRY: Xpos = X position to plot pixel at

; Ypos = Y position to plot pixel at

GAME DEVELOPER • DECEMBER 1994 33

; ColorNum = Color to plot pixel with

;

; EXIT: No meaningful values returned

SP_STACK STRUC

DD ?,? ; BP, DI, Caller

SETP_Color DB ?,? ; Color of Point to Plot

SETP_Ypos DW ? ; Y pos of Point to Plot

SETP_Xpos DW ? ; X pos of Point to Plot

SP_STACK ENDS

PUBLIC SET_POINT, READ_POINT

SET_POINT PROC FAR

PUSHx BP, DI ; Preserve Registers

MOV BP, SP ; Set up Stack Frame

LES DI, dptr CURRENT_PAGE ; ES:DI -> A000:0

MOV AX, [BP].SETP_Ypos ; Get Line # of Pixel

MUL SCREEN_WIDTH ; Get Offset to Line Start

MOV BX, [BP].SETP_Xpos ; Get Xpos

MOV CX, BX ; Save to get shift Plane #

SHR BX, 2 ; X offset (Bytes) = Xpos/4

ADD BX, AX ; Offset = Offset + Xpos/4

MOV AL, MAP_MASK ; Select Map Mask Register

MOV AH, 0001b ; Start w/ Plane #0 (Bit 0)

AND CL, PLANE_BITS ; Get Plane Bits

SHL AH, CL ; Get Plane Select Value

OUT_16 SC_Index, AX ; Select Plane

MOV AL,[BP].SETP_Color ; Get Pixel Color

MOV ES:[DI+BX], AL ; Draw Pixel

POPx DI, BP ; Restore Saved Registers

RET 6 ; Exit and Clean up Stack

SET_POINT ENDP

;===

; int READ_POINT (int X_pos, int Y_pos)

;

; Gets the color of a pixel at (X_Pos, Y_Pos)

;

; ENTRY: X_pos = X position of pixel to read

; Y_pos = Y position of pixel to read

;

; EXIT: AX = Color of Pixel at (X_pos, Y_pos)

RP_STACK STRUC

DD ?,? ; BP, DI, Caller

RP_Ypos DW ? ; Y pos of Point to Read

RP_Xpos DW ? ; X pos of Point to Read

RP_STACK ENDS

READ_POINT PROC FAR

PUSHx BP, DI ; Preserve Registers

MOV BP, SP ; Set up Stack Frame

LES DI, dptr CURRENT_PAGE ; ES:DI -> A000:0

MOV AX, [BP].RP_Ypos ; Get Line # of Pixel

Listing 3. Modex.asm (Continued on p. 34)

MUL SCREEN_WIDTH ; Get Offset to Line Start

MOV BX, [BP].RP_Xpos ; Get Xpos

MOV CX, BX ; Save to get shift count

SHR BX, 2 ; X offset (Bytes) = Xpos/4

ADD BX, AX ; Offset = Offset + Xpos/4

MOV AL, READ_MAP ; GC Read Mask Register

MOV AH, CL ; Get Saved Xpos

AND AH, PLANE_BITS ; mask out Plane #

OUT_16 GC_INDEX, AX ; Select Plane to read in

XOR AX, AX ; Clear Return Value

MOV AL, ES:[DI+BX] ; Get Color of Pixel

POPx DI, BP ; Restore Saved Registers

RET 4 ; Exit and Clean up Stack

READ_POINT ENDP

;===

; void SET_WINDOW (int X_pos, int Y_pos)

;

; Since a Logical Screen can be larger than the Physical

; Screen, Scrolling is possible. This routine sets the

; Upper Left Corner of the Screen to the specified Pixel.

; When called, this routine syncronizes the display to

; the vertical blank.

;

; ENTRY: X_pos = # of pixels to shift screen right

; Y_pos = # of lines to shift screen down

;

; EXIT: No meaningful values returned

SW_STACK STRUC

DW ? ; BP

DD ? ; Caller

SW_Ypos DW ? ; Y pos of UL Screen Corner

SW_Xpos DW ? ; X pos of UL Screen Corner

SW_STACK ENDS

PUBLIC SET_WINDOW

SET_WINDOW PROC FAR

PUSH BP ; Preserve Registers

MOV BP, SP ; Set up Stack Frame

; Check if our Scroll Offsets are Valid

MOV AX, [BP].SW_Ypos ; Get Desired Y Offset

CMP AX, MAX_YOFFSET ; Is it Within Limits?

JA @SW_Exit ; if not, exit

MOV CX, [BP].SW_Xpos ; Get Desired X Offset

CMP CX, MAX_XOFFSET ; Is it Within Limits?

JA @SW_Exit ; if not, exit

; Compute proper Display start address to use

MUL SCREEN_WIDTH ; AX=YOffset * Line Width

SHR CX, 2 ; CX / 4 = Bytes into Line

ADD AX, CX ; AX=Offset of UL Pixel

MOV BX, AX ; BX=Desired Display Start

MOV DX, INPUT_1 ; Input Status #1 Register

M O D E X

34 GAME DEVELOPER • DECEMBER 1994

; Wait if we are currently in a Vertical Retrace

@SW_WAIT0:

IN AL, DX ; Get VGA status

AND AL, VERT_RETRACE ; In Display mode yet?

JNZ @SW_WAIT0 ; If Not, wait for it

; Set the Start Display Address to the new window

MOV DX, CRTC_Index ; We Change the Sequencer

MOV AL, START_DISP_LO ; Display Start Low Reg

MOV AH, BL ; Low 8 Bits of Start Addr

OUT DX, AX ; Set Display Addr Low

MOV AL, START_DISP_HI ; Display Start High Reg

MOV AH, BH ; High 8 Bits of Start Addr

OUT DX, AX ; Set Display Addr High

; Wait for a Vertical Retrace to smooth out things

MOV DX, INPUT_1 ; Input Status #1 Register

@SW_WAIT1:

IN AL, DX ; Get VGA status

AND AL, VERT_RETRACE ; Vertical Retrace Start?

JZ @SW_WAIT1 ; If Not, wait for it

; Now Set the Horizontal Pixel Pan values

OUT_8 ATTRIB_Ctrl, PIXEL_PAN_REG ; Select HPP Reg

MOV AX, [BP].SW_Xpos ; Get Desired X Offset

AND AL, 03 ; Get # of Pixels to Pan

SHL AL, 1 ; Shift for 256 Color Mode

OUT DX, AL ; Fine tune the display!

@SW_Exit:

POP BP ; Restore Saved Registers

RET 4 ; Exit and Clean up Stack

SET_WINDOW ENDP

;===;

void SET_TEXT_MODE (void)

; int SCAN_KEYBOARD (void)

;

; Routines for the Demo program, MODEX.C

; SET_TEXT_MODE - Sets the VGA to MODE 3 (80 col text)

; SCAN_KEYBOARD - Gets a Key from BIOS

PUBLIC SET_TEXT_MODE, SCAN_KEYBOARD

SET_TEXT_MODE PROC FAR

MOV AH, 0 ; 0 = Set Mode Function

MOV AL, 3 ; Mode to Set = 3

INT 10h ; Call the VGA BIOS

RET ; That’s it!

SET_TEXT_MODE ENDP

SCAN_KEYBOARD PROC FAR

MOV AH, 00H ; Function #0= Read key

INT 16H ; Call Keyboard BIOS

RET ; That’s it!

SCAN_KEYBOARD ENDP

end

Listing 3. Modex.asm (Continued from p. 33)

MTV Meets
CD-ROM!

I
f you are part of the MTV gener-
ation, you are accustomed to play-
ing Nintendo or Sega and alter-
nately l istening to music or
watching music videos. It’s not
surprising, then, that many musi-
cians and game developers are
joining forces and flocking to the

CD-ROM playground—rushing to get
a corner of the market.

Old cartridge games are like new
CD-ROM games; you see the land-
scape of Marioland much like you see
the island of Myst. Likewise, popular
two-dimensional action games parallel
new interactive music games; you hear
bullets and punches much like you play
with an interactive mixing board.
Games aim for a multisensory impact;
interactive music CD-ROMs feature
puzzles and challenges for players. In
both, you feel you are a part of the arti-
ficial environment. You leave your
desktop behind and enter a world of
vivid imagination and carefully crafted
creation to envision another three-
dimensional realm.

A gaming element can bring
music to life and entice people to expe-
rience music in a new, visual way. The
music CD-ROMs available today
enable players to interact with their
favorite artists’ clips and turn the pages
of a musical memorabilia scrap book.

Interactive music CD-ROMs are
difficult to create, design, program, and
develop. Multimedia means there are a
lot of things a game maker must
address, polish, and then integrate
together—and, like most development
projects, it all comes together under
tight deadlines.

Two small production houses cre-
ated particularly successful music CD-
ROM products: Brilliant Media in San
Francisco, Calif., developers of Peter
Gabriel’s Xplora 1, and Graphix Zone
in Irvine, Calif., developers of Prince’s
(S) Interactive. Let’s take a look at
these two game-like CD-ROMs.

Gabriel’s Xplora 1
When you load Xplora 1, you hear
world music—mystical flutes in snake-
charmer tones. Then you see a suitcase
open; Peter Gabriel emerges from its
depths to give you an overview of the
landscape and explain the controls you
will need on your exploration. He gen-
erously gives you your own suitcase
with which to collect goodies along the
way. (If you fill your suitcase, you earn
icons and screen savers.)

You remember a suitcase motif
from his recent tour and realize this is
no flat, dull video. The screen seems
alive. Along the top of the screen are
pictures you recognize from his US
album—each piece of art represents
one of the songs from the album and
each is done by a different artist. You
begin to feel very at home with this
interface.

Along the side of the screen are
icons that act as verbs—you control
what happens. You can interact, watch,
resume, or quit by pointing on the
image and clicking. You click on pic-
tures which correlate to songs, and you
are transposed to another interface
with a new menu. For example, you
can access the song “Digging in the
Dirt” by clicking on the appropriate
icon—a painting of a shovel—and get

With the interface of Peter Gabriel’s Xplora 1
CD-ROM, you can interact, watch, resume, or
quit your play. The color stripe on the side is
the signature of Real World Records.

36 GAME DEVELOPER • DECEMBER 1994

a bio on the artist who created the
painting. You can watch the video,
hear from the team who worked on the
video, or watch an interview with Peter
(by this time you are on a first-name
basis with the man) who offers his
reflections on the particular song.

S’s Interactive
Imagine playing Myst. Only it’s star-
trekky. And purple. Very purple. Wel-
come to S’ s Interactive . While
Gabriel’s game is more of an “interface
game,” S’s Interactive is more of a
“place game,” in which the player has
the feeling of being placed in a futuris-
tic environment. Instead of watching
actors act, the player acts and plays.
You use the cursor to motor around.
The cursor is, of course, a symbol like
this: S. It is purple and zipple-like in
the Macintosh version, white and
rotating in the PC version.

You can turn, go forward, up,
down, and all around. Instead of being
presented with options, you are pre-
sented with a mystery, and you must
discover the solution on your own. It’s
very three-dimensional. Instead of a
static feel, Interactive has motion and a
geographical dimension—a Myst-like
environment with rich three-dimen-
sional textures. You feel like you are on
a voyage, a discovery.

Peter’s People
Despite Peter Gabriel’s acute interest
in computer technologies, he didn’t
have his own CD-ROM project until a
smart, plucky developer came along.
Meet Steve Nelson who, while at
Claris (then a division of Apple) in

Santa Clara, Calif. , developed an
object-oriented authoring tool for in-
house users called Digital Montage.
After working with Apple in 1991, he
realized the entertainment field was
ripe and ready to harvest. With his
licensing fee from Apple for Digital
Montage, Nelson founded Brilliant
Media.

His first project was a CD-ROM
demo, which combined elements from
Gabriel’s So album with available art
and text. Nelson had never met
Gabriel, but he managed to show him
the demo—and he loved it.

Gabriel, who has always been on
the proverbial cutting edge, was defi-
nitely ready for something interactive.
His concerts, his killer videos, his phil-
anthropic benefits are all major produc-
tions where lights, sound, and action
come together for an in-your-face and
blow-your-mind sensory overload.
Remember the music videos for his hits
“Sledgehammer” and “Big Time”?
(Reportedly, some unfortunate epileptic
in Boston suffered a seizure from one
of his videos. I’d call that using a medi-
um to touch your audience.)

Gabriel’s involvement gave Bril-
liant Media access to a world of
resources, such as Real World (which
films many of Gabriel’s concerts and
videos) and The Box magazine, another
British-based company closely associ-
ated with Gabriel. Such a consortium
let Bril l iant Media use much of
Gabriel’s existing media—song lyrics,
interviews, images, movies, and graph-
ics, as well as the several paintings
Gabriel had commissioned by individ-
ual artists to capture the essence of

Using multimedia

technology and game

elements, two gutsy

and innovative

development houses

wooed music‘s

biggest stars— and

gave the MTV

generation a new

medium to rock to.

by Diane
Anderson

M U L T I M E D I A D E V E L O P M E N T

GAME DEVELOPER • DECEMBER 1994 37

each song on the US album. These
paintings are what add the unique
visual element to the audio and turn
each song into a multimedia experi-
ence. James Johnson, who started as an
intern at Brilliant Media and soon
became the company’s digital produc-
tion supervisor, jokes that even if Bril-
liant Media were to have produced a
“crappy interface,” the CD-ROM still
would have been a success because of
Gabriel’s incredible material. As it
turned out, the interface received acco-
lades and awards, including the Inter-
active Media Festival’s Sparky Award.

A major part of the collective
design effort was the group of inde-
pendent artists and contractors who
were hired for a time to scan, color,
and clean up images. Troy Daniels, a
Bay Area graphic artist, was hired to
create the game screen. He remembers
his time on the project. “Gabriel was
very cool to meet and working with
him made the experience unforget-
table. He inspired me. We all wanted
to finish with a quality product.”

Gabriel not only incited enthusi-
asm and generated the music, video,
and art, he oversaw the entire project.
Nelson met often with Gabriel while
he was on tour to show him Brilliant

Media’s progress. For the most part,
Gabriel approved of Nelson’s work—
he just added creative elements to the
production. Gabriel’s unbelievable
breadth of talent and interests, includ-
ing WOMAD (World Of Music And
Dance), Amnesty International, and

Witness (a project that equips those
who suffer human rights violations
with cameras and other technology to
expose those violations) were included
in the game. Thus, Xplora 1 is not just
a rock video but a close-up of the artist
and his passions.

S’s People
The concept for Interactive was initiat-
ed by Prince—excuse me, S—but the
design, programming, and porting of
the game were the work of Graphix
Zone.

In contrast to Gabriel, S, and his
production company, Paisley Park,
were looking for developers. “Prince
got the bug to be an interactive artist
who wanted to express himself in a
product l ike this,” explains Dave
Nichols, project director. S and Pais-
ley Park put the word out that they
were looking for developers to propose
ideas and show presentations for possi-
ble approaches. Nichols and others at
Graphix Zone worked hard to show
Paisley Park what they could do. After
looking at Graphix Zone’s stuff, Pais-
ley Park decided to go with them for
the project.

M U L T I M E D I A D E V E L O P M E N T

38 GAME DEVELOPER • DECEMBER 1994

Stop! In the name of...Prince (or rather, S). In S’s Interactive, the artist formerly known
as Prince is the master of ceremonies, and players must solve puzzles to progress through
the game’s purple, interactive maze.

Welcome to Gabriel’s secret world. Each interface element in Xplora 1 is a doorway to a different
experience. The ear takes you to Gabriel’s World of Music and Dance, the eyes let you into his
personal file, the nose takes you behind the scenes to a recording studio and the Grammy’s, the
mouth lets you enter the US database, which includes music, videos, artwork, and interviews.

Nichols explains that after the ini-
tial hand-off from Paisley, Graphix
Zone took over all the design and pro-
duction of the project—they were the
creative brains and the technical mus-
cle. Of course, Graphix Zone showed
Paisley the stages of progression and
got feedback. It was a collaborative
effort. Paisley supplied information,
music tracks, and other material. Since
S is media-oriented, the “talent” in
this case was very willing to cooperate.
S recorded a song and shot a video
specifically for this project—something
many developers hope artists will con-
tinue to do in this medium, instead of
simply recycling old stuff.

Obviously, Interactive ’s design
needed to match S’s persona—and it
does. You sense S throughout the
experience. The game is seductive and
mysterious—and purple.

The design and product were fun-
damentally done at Graphix Zone,
after the initial hand-off from Paisley.
(Money makes things happen!)
Graphix Zone completed the job in six
months—just in time for S’s birthday
on June 7.

Peter’s Machines
The video “Kiss that Frog” on the Xplora
1 CD-ROM lucidly illustrates that
Gabriel and the Brilliant Media team
had the help of human and technological
resources. Mindblender Rock Motion
Theatre, a “ride” featuring quadraphonic
sound and hydraulic seats, joined forces
for the video aspect with video director
Brett Leonard (Lawnmower Man). A.E.
Bunker’s sketches were scanned into Sili-
con Graphics workstations and three-
dimensionally animated at Angel Studios
in Los Angeles. Leonard preconceived
ideas on the computer using three-
dimensional wire frames. They shot
footage with Sony’s HDTV camera.

Viewers can reinterpret and reexpe-
rience “Kiss that Frog” over and over
again. It is a powerful blending of psy-
chedelic graphics, organic textures, and
primitive emotion. The video makes
viewers feel as if they are moving. Other
videos on Xplora 1 don’t have motion,
but do contain morphs and other tricks.

M U L T I M E D I A D E V E L O P M E N T

40 GAME DEVELOPER • DECEMBER 1994

S
o, you want your game to have killer graphics. You’ve settled on something inter-
active, but aren’t sure what the best development route is. It looks like this will be
a CD-ROM project, and there is the prospect of making it an entertainment title.
Where should you begin? Well, if all were for the best in this best of all possible
worlds, you’d have the money to invest in one of the Indy systems from Silicon

Graphics (SGI) and take advantage of the UNIX multiuser operating system. Then, you’d
have a gigabyte of hard disk space and multitasking would be painless. So would porting to
Macintosh and PC platforms. However, if this is on your wish list, make sure you have at
least $5,000 to $25,000 for hardware alone and another $50,000 for necessary software:
Alias’s Eclipse ($5,995), Mentalix’s PixelFX ($1,600), Visigenic’s Creative License 1.1
($1,495), and Barco Graphics’s Creator 5.2 ($17,000) and Strike ($18,000). Granted, appli-
cations will run very quickly, but for that price they better.

Wake up, you were dreaming. Unfortunately, you don’t have the money to buy such extrav-
agant dreams. And since CD-I and 3DO are not yet the standard, you’ve decided to stick to
more traditional (and affordable) means. The PC looks like a good pick, but you remind
yourself you want graphics and good ones. You want a three-dimensional world where
sound and video combine to anesthetize the player. For your project, budget, and goals,
Macintosh is the choice.

Surprisingly, some great games were developed on the Macintosh this year. Xplora 1 and
Interactive are not isolated anomalies. They aren’t the only great Macintosh-developed
games. Myst is a perfect example. But there is stiff competition from DOS and PC game
makers. Doom has shared more wares than anyone would care to count. And Lucas’s amaz-
ingly lucrative product Rebel Assault was developed on the PC. It sold 500,000 individual
copies by the summer of 1994—not even a year after its late November 1993 release.
Myst sold 200,000 copies by April 1994—but that is way before its PC version even had
time to pick up any steam. Give Myst some time selling to both Macintosh and PC con-
sumers, and I’m sure its commercial success will be overwhelming. Despite its bugs, the
Macintosh-made Myst is a multisensory, virtual-reality envelope pusher.

However, this is not a comparison or contrast of games, but an examination of developing
on the Macintosh. And I must agree with Wayne Sikes that “the three-dimensional anima-
tion graphics in Rebel Assault are excellent” (“Breaching the Rebel Base,” Chopping Block,
Sept. 1994). However, the relatively affordable graphics capabilities of Macintoshes have
enabled creators of games to realize the aesthetic environments of their imaginations. The
pixels on a Macintosh screen are what make the difference. Even if PCs are more tenable,
the presentation on Macintosh is superior. Programming on PCs is unequivocally smoother,
but visual aspects of a game are crucial as well.

Macintoshes have simply been the best three-dimensional performers. Who else has killer
applications like QuickTime, Photoshop, Illustrator, Electric Image, and Strata? Now pro-
grams like Live Picture by HSC Software let users work with really large files with FITS
(Functional Interpolating Transformation System) technology.

Many people involved in such visual creation are artists (see David Siek’s “Artist vs. Arti-
san” in Artist’s View, p. 63), not programmers; the Macintosh is more user-friendly to such
people. Of course, many computer novices get involved in the production of such titles.
Musicians, animators, and marketers are all important players.

Since Apple infused the market with so many CD-ROM drives and Adobe first introduced its
graphics applications to the Macintosh community, it seems logical that Macintoshes
would be a natural place for CD-ROM developers to congregate. Competition from IBM with
its new Holiday ’94 multimedia computers is good for the industry.

S G I K I C K S B U T T

Although Brilliant Media didn’t
shoot the videos or write the songs, the
company assembled them to create a
cohesive and rich product. Program-
ming this material into a tapestry
required patience and skill. To put the
whole thing together and add the
interactive element, Brilliant Media
used its proprietary authoring system,
Digital Montage, a program based on
HyperCard and developed by Nelson.
Think of Digital Montage as Quark or
Pagemaker for multiple media. It lets
the user lay out various digital infor-
mation—text, images, video—into a
seamless song. It allows multiple users
to work on a file and coordinates “asset
management” for a whole project.

Because Digital Montage is based
on Hypercard, it provided extensibility.
For the trippy morphs and sleights of
hand, Hypercard let Brilliant Media
control the architecture of the game.
We all know multimedia is about com-
munication—not just between people
but between programs. Digital Mon-
tage took advantage of Hypercard’s
capabilities. Other important tools
Brilliant Media used included:
• Digital Film Board by SuperMac (to

digitize video)

• VideoFusion by VideoLake (for cre-
ating effects)

• Photoshop by Adobe (to create and
manipulate PICT, TIFF, and EPS
files)

• Premiere by Adobe (to digitize and
edit digital video)

• AfterEffects by CoSa
• QuickTime and MovieShop by

Apple
• SoundDesigner by Digidesign

• Video Vision and PLI
• A 1.07GB turbo drives.

These products helped Nelson
and his crew tackle the most Herculean
task of all—the particular challenge of
dealing with video footage. In Eng-
land, the video standard is PAL; in the
U.S., it is NTSE, which made for
some difficulty. However, James John-
son managed to be a competent liaison;
he coordinated communications

GAME DEVELOPER • DECEMBER 1994 41

Cross the bridge and enter another realm. The amazing three-dimensional rendering of Interactive lets you get inside your computer.

Choosing from diverse facial features,
players of Xplora 1 must put together
Peter Gabriel’s passport photo.

Prince represents himself with this sym-
bol—which is seen throughout his
Interactive CD-ROM.

between Real World and Brilliant
Media and managed the vast sound
files, photo PICTS, and video clips
involved. It was imperative these
resources were not damaged, destroyed,
or lost, and so archiving was vital. Not
only did Johnson get an education in
management; he learned a lot about
technology. Fortunately, Digital Mon-
tage allows for easy tracking of
changes—an important benefit for such
collaborative projects.

S’s Machines
From a creative and technical stand-
point, Nichols says the people at
Graphix Zone feel pleased with their
work on Interactive. Design and pro-
gramming aspects were nearly painless
with their authoring tool, Apple Media
Tool. They needed Apple Media Tool
to create the main part of the program
and then extend into other areas, some-
thing possible from other programs like
Hypercard. However, other script lan-
guages aren’t as powerful as C is and will
only allow you to do limited things “in
addition to y’know making a movie
player, being able to turn left or right or
whatever,” says Nichols.

The first part of the Apple Media
Tool works like Director—only simpler.
You sacrifice some control but you get
the same mapping or staging. The sec-
ond part of the tool is a variation of the
C programming language called Apple
Media Programming Language. This is
a custom language that allowed the team
to design what it wanted to as far as
navigation, graphics, and the integration
of audio and video in a real simple inter-
face. Because the designers wanted to do
custom things like adding a mixer (a DJ
booth where you can select CDs and
play them in a player), the team used
Apple Media Kit, which enabled them
to code in their own features when they
wanted to do something above and
beyond Apple Media Tool.

Other code-intensive projects
required programming—a puzzle in the
virtual video room, morphs in the
church, and so on. Morphing was done
in Elastic Reality. Nichols claims Apple
Media made it much easier on the
development team.

The Pain of Porting
Porting is perhaps the biggest chal-
lenge developers face today, and one

they must face if they want to cater to
a wide audience. Many developers use
Macromedia’s Director, which enables
developers to port their games to both
PC and Macintosh platforms.

Digital Montage enabled the
Brilliant Media team to complete the
project in nine months, but it didn’t
provide a straight PC link. Brilliant
Media released Xplora 1 for the Mac-
intosh only and went to an outside
company in England to provide the
CD-I and PC ports. At press time, a
PC version of Xplora 1 was about to be
released.

Graphix Zone’s Apple Media
Tool compiles for Macintosh and
Windows platforms, which reduced
their porting worries. Not only did
Interactive ship on time (thanks to the
tool), but it was able to run on both
platforms.

What’s Next?
Big names l ike Prince and Peter
Gabriel mean big bucks for developers
who can create great games that work.
Brilliant Media is now working on
other multimedia projects for Disney
and Warner Bros., and a CD-ROM
movie project featuring Richard Drey-
fuss. The exposure Brilliant Media
received for its pioneering work on the
collaborative Xplora 1 title couldn’t
have hurt its chances of winning such
bids.

Graphix Zone’s next project is for
Bob Dylan—quite a change from S.
Nichols says that coordinating with
talent is challenging, but his real inter-
est is getting inside the minds of stars
and figuring out their styles. Where
does Nichols see the future? “I want to
try to continue to do that same thing
—extend the use of both technology
and the ability to communicate some-
thing that represents the artist accu-
rately and in an entertaining way.”

The egomaniacal S is at it again.
This t ime he’s back with a male-
female-arrow-mirror-symbol-deal.
Graphix Zone made the new symbol
its navigating cursor. I’d call that an
accurate representation—and an enter-
taining one.

M U L T I M E D I A D E V E L O P M E N T

44 GAME DEVELOPER • DECEMBER 1994

Watch an image magically change before your very eyes. Morphs for Interactive were done
in Elastic Reality.

Break on Thru
to the Other Side
Not only have multimedia merged, but
industries have as well. Making tran-
scendent computer experiences is not
easy. The aim of games and the prospect
of virtual reality promise the possibility
of transporting a person sitting in front
of a computer into another environ-
ment. Players should forget they are
using a computer and be unaware of the
mouse or keyboard as they attempt to
grasp another dimension.

For so long, stories have helped
people enter new worlds, and music
has aided in soothing the stress of life
by connecting us with a spiritual aspect
of sound. Now interactive CD-ROMs
offer us an illusion of control. Interac-
tive multimedia is cool. A lot of things
are multimedia—meals, poetry read-
ings, concerts, movies—but the inter-
active element is what intrigues our
human nature.

Hollywood, Silicon Valley, Sili-
wood. It looks like information and
entertainment are coming together
more and more. Technology didn’t
only make the MTV generation, it is

now responsible for Kurt Cameron,
Tia Carrere, Dennis Hopper, and
Stephanie Seymour showing up in

CD-ROMs this year. Conversely,
Doom and Mortal Kombat will be
starring in movie theaters near you
soon. Television commercials are more
cyber-aware these days. Technology
(represented by the image of a laptop
screen), coupled with an icon of coun-
terculture, is used to advertise tennis
shoes of all things. Intel Inside pops up
between Letterman skits. Conversely,
one of our favorite Saturday Night
Live personalities is featured in a com-
mercial advocating the CD-I platform.
Strange, but big-name designers can be
found not only on the pages of fashion
magazines, but on the pages of our
favorite techno-savvy, slick, and oh-so-
very-90s ’zines.

This proves a very symbiotic rela-
tionship—entertainment need be tech-
nical and technology is entertaining in
and of itself. ■

Diane Anderson is the editorial
assistant at Game Developer.

GAME DEVELOPER • DECEMBER 1994 45

M
acromedia User Journal #27 gives this advice: “To distribute Director 4
movies to Windows users, you need to create a projector using the Win-
dows version of Director 4. To distribute Director 4 movies to Macintosh
users, you need to create a projector using the Macintosh version of Direc-
tor 4. In both cases, the projector file can then call the same Director 4

movie files. The only restriction on movie files is that they are named in accordance with
PC naming conventions.” Another word on Director: Since Microsoft seems to enjoy seeing
its Windy City operating system repeatedly renamed (Windows 4 or Windows 95), there
has not been OLE 2.0 support for Director’s Windows version. But Macromedia has good
news for gamers, it looks like OLE 2.0 support will happen if Microsoft ever comes
through.

Beware of differences in color—a display on Windows has lower color depth, and so col-
ors don’t look the same. Some VGAs can show 16 colors and some can show 256. Making
a movie look the same on all platforms is no easy task. Sound is also better on a Macin-
tosh. These individual aesthetic elements (mediums) are the individual parts that, when
assembled together, make the multi the operative part of multimedia.

Macromedia’s Director is a good tool to use if you are concerned with making a game that
runs on both PCs and Macintoshes. Neither platform has complete dominance (especially
with all these strange, rumored mergers and buyouts), so it seems smart to put your game
out as many ways as possible. Visibility means marketability for your company—compe-
tition is the name of this multimedia game we’re playing.

P O R T I N G

Modern Jukebox. Click on an icon, get a song. Xplora 1 pleases your eyes, your ears, and your
mind.

Bandits at
0x1200 High!

C H O P P I N G B L O C K

U
p next on the chopping block is
Pacific Strike by Origin Sys-
tems Inc. Pacific Strike is an
action-oriented aircraft simula-
tion based in the Pacific theater
during World War II and was
written using Origin’s Real-
Space Technology. Although

this review centers on Pacific Strike v.
F1.19, I included the speech pack (sold
separately) in my analysis.

Once installed, Pacific Strike uses
about 20MB of hard disk space and
requires 583K of conventional memory as
well as at least 4MB of XMS (extended)
or EMS (expanded) memory. Ideally, the
game wants expanded memory, so the
JEMM.OVL expanded memory manager,

included with Pacific Strike, will automat-
ically run whenever the user’s computer
only has XMS memory available. (Origin’s
JEMM.OVL was written by Jason
Yenawine—JEMM is probably a
mnemonic for “Jason’s Expanded Memory
Manager.”) If you have trouble running
the game, the included OSITEST.EXE
routine, a carryover from Strike Comman-
der, will diagnose your system and make
recommendations for running Pacific
Strike. (I saw no mention of this routine
in the game literature.)

How it Works
Pacific Strike’s primary executable,
PACIFIC.EXE, is about 1MB in size
and is not compressed or encrypted. It
was written using the Borland C++
Development System. This file contains
essentially all the executable code in the
game. My analysis showed the presence of
a built-in cheat mode (although I haven’t
yet figured out how to access it), plus lots
of internal diagnostics. PACIFIC.EXE
requires a minimum of a 80386 processor
and runs the game in protected mode.
Comparisons of PACIFIC.EXE and the
INSTALL.EXE file show that the devel-
opers made provisions for two add-on
mission packages. Of particular interest
was my discovery of embedded
PKWARE data compression functions. (I
later discovered that most of the graphic
terrain data was stored in ZIP format, so
the presence of a “pkunzip” function
makes sense.)

Essentially all game data is contained
in the PACIFIC.DAT file. This large file
(about 16MB in size) contains 600 data
files. I will refer to these embedded data
files as File Records. Listing 1 gives a

Pacific Strike sends the player—acting as fighter pilot—on battle missions based on real-
life occurrences (Pearl Harbor, Midway, and the like). Here, a Japanese Val plane has just
been targeted.

54 GAME DEVELOPER • DECEMBER 1994

general summary of how PACIFIC.DAT
is organized. Basically, you can break
PACIFIC.DAT into three parts:
• An 8-byte header
• A list of 74-byte File Description

Records.
• A list of File Records.

The header gives the total number
of File Records and the file offset of the
first File Record (see the PACIFICDATHEADER
example in Listing 1). Following the
header are File Description Records.
Each 74-byte File Description Record
contains information about a File Record,
such as the path name of the original data
file making up the File Record, where the
File Record is located in PACIFIC.DAT
(expressed as an offset from the top of the
file), and the size (in bytes) of the File
Record. In other words, each File
Description Record “points” to its corre-
sponding File Record—as in the
FILEDESCRIPTIONRECORD structure in Listing
1. (In this review, I will frequently refer to
File Records using their original data file
name. For example, the Corsair aircraft
data is contained in the CORSAIR.IFF
File Record.)

The File Records constitute most of
the space in PACIFIC.DAT. These
records vary in size from a few to several
hundred thousand bytes and contain the
actual “pieces” of game data. Many differ-
ent types of File Records are stored in
PACIFIC.DAT. Most File Records have
an IFF file name suffix; out of 600 File
Records, 511 are of the IFF type.

What is an IFF File Record?
The IFF file name suffix is possibly a
mnemonic for “Information Form File.”
An IFF File Record is a structured, vari-

able-length file whose design allows for
an open-ended, expandable format.
(Origin Systems has used the IFF File
Record format in several games includ-
ing Privateer and Strike Commander.
My PREDIT, PREASY, and SCEASY
“help” utilities modify various IFF File
Records in these games.) Basically, an
IFF File Record is made up of one or
more forms, with each form containing
one or more records. Following are a
few general rules for IFF File Record
construction.
• All forms have a header consisting of

the “form” text string followed by a 4-
byte number. This number is the num-
ber of data bytes in the form.

• All records have a header consisting of
a name (that can be up to 8 bytes of
text characters) followed by a 4-byte
number. This number is the number of
data bytes in the record.

• Records can be located both inside and
outside a form.

• Never change the form or record header
name, and never change the total num-
ber of data bytes in these structures.
Violation of these rules will most likely
cause a system crash. (Actually, you can
change the number of record data bytes
but be very careful when restructuring
any forms that may enclose the record.)

I extracted most mission and aircraft
data discussed in this article from IFF
File Records. The next two sections dis-
cuss how missions and aircraft are “built”
by the game engine, using the IFF File
Records.

Mission Anatomy
Essentially all mission data is stored in
IFF File Records. The name of a mission

What makes the best

games fly? Flexible

data structures.

Wayne Sikes presents

a navigation plan to

steer you through the

ins, outs, ups, and

downs of Pacific

Strike.

by Wayne Sikes

GAME DEVELOPER • DECEMBER 1994 55

File Record contains the geographic loca-
tion of the mission and the number of the
mission at that location. When the game
engine chooses a mission to play, it opens
and reads the IFF File Record corre-
sponding to the mission. The first cam-
paign mission is centered around the
Pearl Harbor area. The mission data is
located in IFF file PRLH-M1.IFF
(PRLH-M1 is a mnemonic for Pearl
Harbor Mission 1). The game engine first
scans the File Description Records in
PACIFIC.DAT until it finds a reference
to the PRLH-M1.IFF File Record. Once
the correct File Description Record is
located, the offset and size data are used
to locate and read the PRLH-M1.IFF
File Record.

The mission IFF File Record con-
tains several internal records describing
the various mission parameters. The
mission structure is somewhat complex,

so I will only describe a few of the more
interesting records.

The WRLDFILE record gives the name
of the IFF File Record containing the ter-
rain data for the player’s location. The
primary geographical areas the player will
interact with are in the AREA record. This
record contains the name and XYZ-coor-
dinate data of each important location—
for example, airfields, ships, enemy
encampments, navigation waypoints, and
the like.

The game’s three-dimensional
XYZ-coordinate system is interesting.
Pacific Strike references all world objects
using a 24-bit coordinate system. If you
imagine the world (or an area of it) dis-
played as a flat map, movement in the X-
axis direction goes east-west with positive
(+X) movement going east. Movement in
the Y direction goes north-south and pos-
itive (+Y) movement heads north. The Z-

axis goes above-below the map and can be
considered as altitude referenced to sea
level. Positive (+Z) movement means
increased altitude. Using cockpit altitude
measurements and data from Area
Records, I calculated a map scale factor of
1 XYZ unit equals 1 meter. I used this
scale factor to calculate the size of the
Pacific Strike “world.” This world mea-
sures about 10,500 miles on a side for a
total of about 110 million square miles.
The center of this world, at XYZ coordi-
nates (0, 0, 0) is the center of the terrain
map currently being used. An example C
structure for the AREA record data is given
in Listing 2.

The CAST record lists the names of
the IFF File Records containing dialog
box text and other information used by
the cast members. Each cast member has
a Cast Member Number. Rather than ref-
erencing cast members by name, the game
engine references each cast member using
a predefined Cast Member Number.

Each cast member plays a part in the
mission, and the PART record defines each
member’s role. See Listing 2 for an exam-
ple C structure for PART record data. Each
cast member has a data structure in the
PART record. The cast member structure
references the cast member by its Cast
Member Number and contains IFF File
Record names for files describing the
member and any associated weapon loads
as well as XYZ-coordinate data giving the
starting location of the cast member rela-
tive to the AREA location in which this
member belongs. Finally, this structure
contains various control bytes specifying
the actions of the member.

Aircraft Construction
Aircraft data is stored in IFF File
Records. These records generally have a
file name similar to the type of aircraft
being described, for example, the F4F3
Wildcat data is stored in the F4F3.IFF
File Record. The aircraft IFF File Record
contains records describing various air-
craft parameters. Because the overall air-
craft description is rather complex, I will
again only discuss a few of the more
interesting records.

The JETPHNME record (mnemonic for
“JET Pilot NaME”) is interesting because

C H O P P I N G B L O C K

56 GAME DEVELOPER • DECEMBER 1994

HEADER
Bytes 0-3 Number of embedded File Records.
Bytes 4-7 Offset of the first File Record.

FILE DESCRIPTION RECORDS
Bytes 8-XX File Description Records. Each record is 74

bytes long. XX = 7 + (74 * Number of File Records)

FILE RECORDS
Bytes (XX+1)-EOF File Records.

EXAMPLE HEADER AND FILE DESCRIPTION RECORD C STRUCTURES
#define BYTE unsigned char
struct PACIFICDATHEADER

{
long NumFileRecords; // offsets 0-3
long FirstRecordOffset; // offsets 4-7
};

struct FILEDESCRIPTIONRECORD
{
BYTE Unidentified1; // offset 0, always value of 1
char OriginalPathFileName[32]; // offsets 1-32
BYTE Unidentified2[33]; // offsets 33-65
long FileRecordOffset; // offsets 66-69, PACIFIC.DAT

// FILE RECORD OFFSET
long FileRecordSize; // offsets 70-73, FILE RECORD

// SIZE
};

Listing 1. The PACIFIC.DAT File Structure

it shows that much of the Pacific Strike
game engine came directly from Strike
Commander. After all, why would a
World-War-II aircraft name be in a
record referencing jet aircraft?

The flight modeling is contained in
the TOFF, LAND, DYNMDYNM, STBL, ATMO, THRS,
and JDYN records. The DYNMDYNM record (see
Listing 2 for an example C structure)
contains the approximate weight of the
aircraft in increments of 600 pounds. For
example, the weight of a 4,200-pound
aircraft would be given as 7. Obviously in
this flight model, the exact weight is not
very important. The STBL record contains
a data byte representing the overall stabil-
ity of the aircraft. These values ranged
from an unstable Helldiver (40 decimal)
to a very stable Bearcat (131 decimal). If
you reduce the value of this parameter to
less than 20, your aircraft will never be
stable enough to fly. Increase this value to
get better handling.

The ATMO record appears to contain a
measure of the overall atmospheric drag
or total air resistance of the aircraft. The
Baka (a very sleek, rocket-powered Japan-
ese aircraft) had an ATMO record data-byte
value of 51 (decimal), and the large and
heavy Japanese Betty had a value of 230
(decimal). If the ATMO record data value is
too high, your aircraft will have so much
drag that you will never get off the
ground. Conversely, very small values will
give you almost no air resistance—that is,
they will create inertia similar to flying in
space vacuum conditions. It will take you
a long time to bleed off enough speed for
landings.

The THRS record contains aircraft
thrust and propulsion data. Refer to List-

ing 2, which gives an example C structure
for THRS record data. Byte offsets 5 and 6
in this structure form a 16-bit value that
represents aircraft engine horsepower.
This horsepower value sometimes differs
from the values referenced in the game
literature (probably due to programmer
“tweaking” to make the game more
playable). Of course, changes in engine
horsepower ratings will drastically affect
aircraft performance. Drag factors are
located at byte offsets 12 and 16. The

drag factor at byte offset 12 appears to be
used in calculating the amount of lift
required for take-off, while the value at
offset 16 is a drag element used for calcu-
lation of stall speed. Increasing the value
at offset 12 results in higher takeoff
speeds, and increasing the value at offset
16 results in higher stall speeds. General-
ly, the two drag factors have almost iden-
tical values.

The WPNS record data consists of one
or more 10-byte structures. Each struc-
ture references one weapon type. Listing
2 gives an example WPNS structure. The
first two bytes in the structure contain the
weapon load (number of bullets, bombs,
and the like), and the last eight bytes give
the name of the IFF File Record that
contains detailed weapon information.
The names of the weapon File Records
correspond with the weapon type, for
example, 20MM.IFF (20-mm cannon),
50CAL.IFF (.50-caliber machine gun),
and B1000LB.IFF (1,000-pound bomb).

The HPTS record data defines where
the weapons referenced in the WPNS record

GAME DEVELOPER • DECEMBER 1994 57

Pacific Strike’s dynamic animation capabilities depicts a shot of several aircraft sitting on a
carrier. This image appears in the games opening animation sequence.

are mounted on the aircraft. See Listing 2
for an example of the HPTS data structure.
Each mount point on the aircraft is called
a “hardpoint” and is defined by a 13-byte
structure. One or more of these structures
make up the HPTS record data. The first
byte in the structure gives the hardpoint
type. Surveys found the following hard-
point types:
• Type 0: .50-caliber machine guns,

20mm cannons, and 7.7mm machine
guns

• Type 1: High-Velocity Aerial Rockets
• Type 2: 100- and 551-pound bombs
• Type 3: 500- and 1,000-pound bombs,

Napalm, MK-13 Torpedoes
• Type 4: 12.7mm machine guns

The last 12 bytes in each HPTS record

data structure give the location of the
hardpoint expressed in aircraft XYZ coor-
dinates. Aircraft coordinates are represent-
ed as 32-bit signed numbers. The X-axis
stretches from wingtip to wingtip, the Y-
axis stretches from the nose of the plane to
the tail, and the Z-axis extends from the
top to the bottom of the aircraft. Origin’s
aircraft coordinate system follows the
standard “right-hand rule” (for those of
you who remember a little bit of physics).
The 0 or center reference position (0, 0, 0)
is approximately the location of the pilot
seat in the cockpit. Using references to
aircraft dimensions given in the game lit-
erature and various HPTS record data sam-
ples, I calculated a rough XYZ-coordinate
scale factor of 12 XYZ coordinate units
equals 1 inch of distance on the aircraft or
144 XYZ coordinate units equals 1 foot.
For example, assume you are sitting in the
cockpit of a Corsair and you increase the
X-axis coordinate of a gun mount hard-
point from 400 to 544. Looking out the
right side cockpit window onto the wing,
you would notice the gun mount had
moved about one foot away from you.

Undocumented
Keyboard Features
Several useful keystrokes are not docu-
mented in Pacific Strike’s game literature.
Note that some of these are active only in
certain portions of the game. During
game startup and while onboard the carri-
er, the Alt-V keystroke reads out the game
version and the state number. The game

C H O P P I N G B L O C K

58 GAME DEVELOPER • DECEMBER 1994

#define BYTE unsigned char
#define WORD unsigned int

// Data in AREA Record
// Note there are Type C and S AREA RECORD data. The type is determined
// by the contents of AreaType. The Type C and S data are different sizes.
struct AREA_TypeC

{
BYTE AreaType; // offset 0, C char
char AreaName[33]; // off 1-33, text or 0x2E
long XAxis; // off 34-37, X pos of object
long YAxis; // off 38-41, Y pos of object
long ZAxis; // off 42-45, Z pos of object
WORD AreaWidth; // off 46-47
WORD Blank0; // off 48-49
WORD AreaHeight; // off 50-51
BYTE Blank1; // off 52
};

struct AREA_TypeS
{
BYTE AreaType; // offset 0, S char
char AreaName[33]; // off 1-33, text or 0x2E
long XAxis; // off 34-37, X pos of object
long YAxis; // off 38-41, Y pos of object
long ZAxis; // off 42-45, Z pos of object
WORD AreaWidth; // off 46-47
BYTE Blank0; // off 48
};

// Data in DYNMDYNM Record
struct DYNMDYNM

{
BYTE unknown0; // off 0
BYTE unknown1; // off 1
BYTE AirplaneWeight; // off 2, real wt in lbs/600
BYTE unknown2; // off 3
};

// Data in HPTS Record
struct HPTS

{
BYTE Type; // off 0, Hardpoint type 0-4
long XAxis; // off 1-4, X pos of hardpoint
long YAxis; // off 5-8, Y pos of hardpoint
long ZAxis; // off 9-12, Z pos of hardpoint
};

// Data in PART Record
struct PART

{
WORD MemberNumber; // off 0-1, Cast Member Number
char MemberName[16]; // 2-17, IFF File Record name
char WeaponLoad[8]; // 18-25, IFF File Record name
WORD Unknown0; // 26-27
WORD Unknown1; // 28-29
long XAxisRelative; // 30-33, X pos rel to AREA

Listing 2. Several Types of RECORD Data (Continued on p. 59)

engine references missions using prede-
fined State Numbers. When you are in
the cockpit during a mission, this same
keystroke reads out the Version and the
Mission name. The Mission name is
essentially the name of the IFF File
Record that contains the mission data.
Pearl Harbor Mission 1 has an IFF File
Record name of PRLH-M1.IFF and
would be displayed with Alt-V as
“PRLHM1.”

The game also includes some built-in
diagnostics you can activate via the Shift-
D and Shift-F keycodes. Both keycodes
are active only while the player is in the
cockpit. The Shift-D keycode toggles a
readout containing display and memory
usage parameters, including frame rate (in
frames per second). The Shift-F keycode
toggles a readout of the display frame rate
only. The Alt-F keycode displays the
game score.

Experimenting with
Pacific Strike
During the course of this analysis, I pre-
pared a “Pacific Strike Experimenter’s

Kit” to experiment with game data. The
kit includes PSDAT, an analysis and data
modification tool you can use for extract-
ing and inserting File Records into Pacific
Strike. It also includes several X-Wing
aircraft that I built using aircraft File
Records. (I refer to these aircraft as X-
Wings because I repositioned the gun
mount hardpoints on the wingtips so that
they appear to fire in an X-Wing man-
ner.) These experimental X-Wing aircraft
are much faster and have more firepower
than the original game vehicles. The
Experimenter’s Kit (PSKIT.ZIP) is in the
Flight Simulation Forum (GO FS
FORUM) on CompuServe, Historic Air
Combat Library.

Does It Fly?
One of the messages that Origin released
regarding Pacific Strike was that the
game tries “to raise the standard in terms
of technology, graphics, sound and
music—every aspect of the gaming expe-
rience.” My analysis of Pacific Strike
shows this to be the case, but as with all
evolving technology, numerous problems

exist. Overall, the RealSpace game engine
worked well but it could still use some
improvement in the graphics rendering
and updating areas.

RealSpace was also used in Strike
Commander, and I noticed a definite
carryover of old Strike Commander data
in Pacific Strike. Some Pacific Strike
File Records appeared to be littered
with data such as unused pieces of
Strike Commander missions. While
doing the analysis for my SCEASY and
SCEDIT Strike Commander utilities, I
observed that the Strike Commander
data was very cleanly organized and
grouped. Pacific Strike seems to be a
product that was hurriedly thrown
together using the Strike Commander
engine. The presence of unused Strike
Commander mission data is a good
example of the “we are behind schedule
and on a tight budget, so just make it
run” philosophy many game companies
currently operate with.

The philosophy behind the Real-
Space file formats used for data storage,
that is, IFF File Records, allows for an
open-ended, expandable gaming environ-
ment. The price for this technology is
longer time delays during game startup
and updating (while the various File
Records are being processed), and more
stringent requirements regarding comput-
er system speed and memory usage. (I
turned off all the sky and water texturing
options while doing this analysis and I
often achieved a frame rate on my
486DX2/50 of only five frames per sec-
ond.) I guess its about time for that
90MHz Pentium upgrade. ■

Wayne Sikes has been a computer
hardware and software engineer for the last
10 years. He has an extensive background in
C, C++, and assembly language program-
ming. He also has several years experience as
a computer systems intelligence analyst,
where he specialized in deciphering and dis-
assembling computer code while working on
classified government projects. He has
authored numerous computer gaming help
utilities. He can be reached via e-mail at
70733.1562@compuserve.com or through
Game Developer magazine.

GAME DEVELOPER • DECEMBER 1994 59

long YAxisRelative; // 34-37, Y pos rel to AREA
WORD ZAxisRelative; // 38-39, Z pos rel to AREA
BYTE Controls[22]; // 40-61, various control bytes
};

// Data in THRS Record
struct THRS

{
BYTE Blank0[5]; // off 0-4
WORD HorsePower; // off 5-6, Engine HP
BYTE Blank1; // off 7
BYTE Flags0; // off 8
BYTE Flags1; // off 9
BYTE Unknown0; // off 10
BYTE Blank2; // off 11
BYTE Drag1Factor; // off 12, 1st drag factor
BYTE Blank3[3] ; // off 13-15
BYTE Drag2Factor; // off 16, 2nd drag factor
BYTE Blank4[2]; // off 17-18
};

// Data in WPNS Record
struct WPNS

{
WORD WeaponLoad; // Number of bullets, bombs, etc
char WeaponName[8]; // Weapon IFF File Record name
};

Listing 2. Several Types of RECORD Data (Continued from p.58)

Reinventing
the Death Star

B Y D E S I G N

I
n an era where most movie compa-
nies are trying to get into the com-
puter game industry, one company
has been there for a while. LucasArts
Entertainment and its sister compa-
ny, Lucasfilm, both formed by Star
Wars creator George Lucas, have
been in the thick of both industries

for almost a decade. While the companies
are totally separate, they have found a cre-
ative synergy in LucasArts games based on
Lucasfilm movies.

Although both George Lucas and
LucasArts CEO Randy Komisar have
publicly criticized the digital Hollywood

movement, the close relationship between
these two companies has helped LucasArts
reap the benefits of George Lucas’s movie-
making vision.

Using the Force
The influence of Star Wars can be felt
throughout many computer and video
games—from the hyperspace button in
Asteroids to the space dogfights in Wing
Commander. The Star Wars story first
appeared in games in a series of coin-oper-
ated arcade games developed by Atari in
the early 1980s, which featured sequences
loosely based on scenes from the three Star
Wars movies: Star Wars, The Empire Strikes
Back, and Return of the Jedi. The first two
were three-dimensional space combat
games using vector-based, wire-frame
graphics to show action. The third game,
Return of the Jedi, used more convention-
al, sprite-based color graphics and featured
game play from an isometric three-dimen-
sional perspective.

To capitalize on the exploding video
game market, in 1982 Lucasfilm formed a
computer game division called Lucasfilm
Games. From 1982-1987, acting solely as
a developer, Lucasfilm Games turned out
games such as Rescue at Fractalis and Ball
Blazer. In 1987, Lucasfilm Games became
a publisher, and in a corporate restructur-
ing move eventually became what it is
today, LucasArts Entertainment.

After developing coin-operated
arcade games, LucasArts wanted to better
establish itself in the game market and dis-
tance itself from the shadow of the Lucas
empire. And so, the company began devel-
oping games for home computers that had
nothing to do with Star Wars. Its first titles
were the point-and-click adventure games

The Dark Forces game engine is capable of displaying both one-dimensional rotated bitmaps
and true three-dimensional polygon objects. In this case, the characters walking around on
the deck are two-dimensional bitmaps while the spaceship and surrounding spacestation
are polygon-based with bitmaps wrapped around them.

60 GAME DEVELOPER • DECEMBER 1994

Maniac Mansion, Zak McKracken and
the Alien Mindbenders, Loom, and the
Secret of Monkey Island, most of which
were created using its own SCUMM
(Script Creation Utility for Maniac Man-
sion) game engine.

LucasArts next entered the flight
simulator genre, with games such as Bat-
tlehawks 1942 and Secret Weapons of the
Luftwaffe. It was from this experience
making flight simulators that Star Wars
reemerged in the computer game world.

A License to Develop
LucasArts’ computer game division had
first crack at the license to create games
based on all of George Lucas’s films. This
relationship worked well on films such as
Indiana Jones and the Last Crusade, which
had multiple computer games released in
conjunction with it. This partnership even
produced Indiana Jones and the Fate of
Atlantis, a computer game-only episode of
the Indiana Jones saga. Unfortunately, by
the time this licensing arrangement was
established, the Star Wars film series had
come to an end.

But Star Wars games returned in a
big way in 1991, with the release of X-
Wing, a game featuring Star Wars charac-
ters and themes. In X-Wing, players pilot
an X-Wing fighter plane (similar to Luke
Skywalker’s in the original Star Wars) from
training missions up to destroying the
Death Star. The X-Wing design team
integrated the repair and management of
the X-Wing’s resources into the game,
which added to the game’s realism and
improved long-term playability. The com-
bination of LucasArts’ experience with
flight simulator games, a game engine
similar to Origin’s Wing Commander

series, and Star Wars iconography, made
X-Wing a smash hit.

X-Wing was so successful that one
supplemental mission disk made PC
Data’s best seller list by itself. The game
eventually spawned a sequel called Tie
Fighter.

After this success, LucasArts investi-
gated making more games with the Star
Wars license and the result was another
hit, Rebel Assault. This game was more
episodic and had more linear game play
than X-Wing, and it relied more on cap-
tured video images, including some taken
directly from the original Star Wars film.
Rebel Assault was also among the first
games to come out on CD-ROM for the
PC and became an early success story for
this product category.

Dark Forces
Continuing its trend of using the Star
Wars license to showcase cutting-edge
technology, LucasArts joined the ranks of
Doom-style games with its latest entry,
Dark Forces. In this game, the player
fights storm troopers as a secret agent for
the Rebel Alliance.

While the game’s lead programmer,
Daron Sinnett, admits his team studied
Doom’s design, he insists that the Dark
Forces game engine is 100% original. He
speculates, however, that the data struc-
tures might be close enough that a conver-
sion program could convert one file struc-
ture into the other.

A clear difference between the two
games is the design environment that the
Dark Forces design team used. While the
Doom development team used a NextStep
environment with its own tools, the Dark
Forces design team used a DOS-based

LucasArts is keeping

Darth Vader‘s name

alive around the

office by

continuously coming

up with new games

using iconography

from the Star Wars

film series.

by Alexander
Antoniades

GAME DEVELOPER • DECEMBER 1994 61

design environment with Watcom’s C
compiler 10.0 and AutoCAD release 12.

The Dark Forces team chose Auto-
CAD over other rendering packages
because most of the designers were for-
mer architects more accustomed to using
CAD software. A dedicated programmer
customized the AutoCAD interface using
extensions to add elements such as light-
ing and wall textures. In the end, devel-
opers used the base AutoCAD program
mainly for the geometry of building the
space.

For the games X-Wing and Tie
Fighter, LucasArts used a general-pur-
pose, polygon-based engine that could
render pretty much any object from the
Death Star to a space buoy. The Dark
Forces engine is more specific in design.
It combines a true three-dimensional
engine to render the objects in the game
and a flat bitmap manipulation engine to
render the characters. LucasArts is look-
ing to make the performance acceptable
on a 486/33MHz machine with a report-
ed frame rate of 30 fps on a 486/66MHz.
This game engine is called—appropriate-

ly enough—the Jedi, and LucasArts
hopes to use it again in future games.

A shift in the market toward CD-
ROM games caused LucasArts to
decide—halfway into the project—to make
Dark Forces CD-ROM based. This
allowed the game to have more elaborate
animation sequences, but the size of the
remaining game code was comparable in
size to a floppy-disk-based game. Indeed,
the overall design of the game is more sim-
ilar to the disk-based, X-Wing-style games
than the CD-based Rebel Assault.

Star Wars, according to Sinnett, is
ingrained into the culture of LucasArts.
The basic design of all Star Wars games is
open ended, to the point that designers can
do almost anything they want. No direct
link exists between the various games in
the Star Wars license, so every game can
end with Darth Vader meeting some hor-
rible new fate.

The licensing division of Lucasfilm is
involved only when a game introduces new
characters to the Star Wars pantheon. An
example is the Dark Trooper, a new class
of storm trooper introduced in Dark

Forces. This character had to be approved
by licensing and, ultimately, by George
Lucas himself.

The Future
LucasArts is looking toward the future
with a variety of projects in the computer
entertainment area, such as Commander, a
programmable interactive simulator that
can be an airplane, a submarine, or a
spaceship. Another project is a multimedia
network project with Japanese giant Fujit-
su involving a multiplayer Doom-style
game with a Star Wars theme. And,
George Lucas is rumored to have some
new Star Wars movies in the works, which
will undoubtedly spawn new games to cap-
italize on the films’ inevitable popularity.

Regardless of these projects, one
thing is certain: whatever the outcome in
the interactive entertainment boom and
the Silicon-Valley-meets-Hollywood
craze, one of George Lucas’s companies
will be right in the middle of it ■

Sander Antoniades is Game Develop-
er’s editor-at-large.

B Y D E S I G N

62 GAME DEVELOPER • DECEMBER 1994

I
had spent the morning climbing
counter-clockwise, spiraling up
through cloistered rooms and spaces
lovingly lit; altars to artistic genius.
Past the beautiful, the daring, the
exhilarating; past Miro and Picasso,
past Kandinsky and Klee. Finally, at
the very top of Manhattan’s

Guggenheim Museum—that corkscrew
through the pulpy core of Modern Art—I
arrived at Kosuth.

“Clear, Square, Glass, Leaning,” an
installation piece by Joseph Kosuth, con-
sists of four clear squares of glass, leaning
side by side against the wall at a slight
angle. As I arrived on the scene, a young
art critic in pigtails and pink stockings was
attempting to ferret some meaning from
this piece as her mother looked on.

In the center of each glass square is
lettered a word in neat, white type. Pacing
studiously the length of the installation
and pointing her small finger at each word
in turn, she read aloud, proudly, in a clear
contralto. “Clee-ur ... Squay-ur ... Glass
...um...”

Mother was there to assist. “Lean-
ing,” she offered. “Leaning,” repeated the
waif, regarding the Kosuth with delicately
furrowed brow. “Leaning, Mommy? Is
that what makes it Art?”

Art Who?
I relate that 100% Guaranteed Genuine
No B.S. anecdote to you here because I
think it crystallizes the confusion in our
society surrounding the very notion of art.
What it is and, conversely, what it isn’t.
What does any of this have to do with
game development? Read on.

Art, as a label, intends to validate
both the artist and the work. The attempt

is not always successful, because broad-
based agreement as to what qualifies as
Art is hard-won. Even once the label has
been made to stick, the question exists as
to what quality content it assures. “I don’t
know art, but I know what I like” has long
been wielded as a sharp pin to deflate such
assumptions of worth.

Many people like computer games,
though few, if any, would think to define
them as Art. Some game developers
might contend that the act of creating an
entertaining game is an art form, yet even
they would hesitate to acclaim the end
result a work of art. Games are diversion,
fun for fun’s sake. In any case, the very
word “game” carries with it a connotation
of frivolity that effectively serves to pre-
vent more serious consideration.

The visual artist involved in the pro-
duction of a game fares little better,
respectability-wise. Generally, our cre-
ations are rarely considered Art, and we
are considered more artisans than true
artists, probably ranking lower on the
totem pole than the more traditional vari-
eties of commercial artist. This is partly
because we are associated with a frivolous
product and also because of the medium
itself, which has, until recently, delivered
game graphics that are relatively crude.

A New Medium
Of course, the rapid pace of technology
has changed all the familiar rules. The
realm of possibility with computer graph-
ics becomes ever more stunning. It is no
longer uncommon to find the dazzling
products of sophisticated graphics soft-
ware gracing magazine covers, on televi-
sion, in major films, and even featured in
galleries as, you guessed it, Art.

Artist
vs. Artisan

A paradigm shift has

begun in the game

industry—arcade

action now coincides

with Art itself. So what

does that make us?

Game developers or

Arteests?

by David Sieks

A R T I S T ‘ S V I E W

GAME DEVELOPER • DECEMBER 1994 63

With the full range of multimedia
capabilities now so commonly available,
the games of today—or more to the point,
those of tomorrow—are not, in a manner
of speaking, your father’s Oldsmobile. Not
only has it become possible to make games
that are neater looking, better sounding,
and more smoothly interactive, but sud-
denly (relatively so) we have at hand tools
truly fit for the artist and a new medium
for meaningful creative expression.

Yes, I’m talking about computer
games. Why not? The art world has tradi-
tionally met encroaching technology with
resistance (ask any airbrush artist). Yet, the
computer is too powerful and flexible a
tool to be so ostracized. Witness its near
ubiquitous presence in the design field.

How’s this as a vehicle for creative
expression: graphics tools that allow live-
action video, photo-illusion, and emula-
tion of traditional drawing and painting
media with a palette of colors vastly
greater than that offered by any paint
manufacturer; quality stereo sound; an
ever-more-responsive array of interface
options that allow the audience to become
an active participant. With the list of pos-
sibilities growing almost daily, the com-
puter game can become not only an art
form, but an unprecedentedly interactive,
malleable form of art, guided by the
artist/game designer and uniquely shaped
by the audience/user.

The time is ripe for a paradigm shift,
where society acknowledges the computer
game as a veritable art form fully as expres-
sive as the novel, film, theater, ballet,
opera. Capable of instilling wonder, of

exciting the imagination, of provoking
thought, of captivating its audience. Capa-
ble of beauty. In a word, Art.

Feet Back On the Ground
What, you may be asking yourself, does
this have to do with the two-way scrolling
shooter I want to make to run on the 386?
Maybe not much at all. Using the available
technology for meaningful creative expres-
sion is a new possibility, not a new man-
date. The computer game was born out of
far simpler pleasures, and there is doubt-
less much vigor, joy, and profit left in the
familiar arcade genres.

Someone out there is probably clever
and creative enough to figure out a way to
make arcade action and art coincide in a
16-bit cartridge. The paradigm shift I
called for earlier begins within the indus-
try. There are indications that it already
has begun.

By now you might easily have heard
more than you ever wanted to hear about
Broderbund Software’s Myst (especially if
you’re the jealous type). Brodurbund’s suc-
cess is remarkable, though, because they
dispensed with elements that seemed near-
ly indispensable—fluid action, readily
identifiable goals, violence—and delivered
a hauntingly evocative, beautifully ren-
dered game. In a different way, Infogames’
Alone in the Dark defied convention as
well by incorporating a shifting “cinemat-
ic” viewpoint that introduced to computer
games new possibilities for storytelling
power and depth. A fresh use of viewpoint
also buoys System Shock, from Looking
Glass Technologies. By combining what
they call a “6-D” perspective with highwire
tension, they keep the player literally peer-
ing around each corner, attaining a level of
audience immersion any Hollywood direc-
tor would envy.

Tremendous talent exists in the field
today, and gaming horizons are constantly
being stretched—if in mostly familiar
directions. But that’s what paradigms are
all about. They’re tough to shake. The cre-
ative impulse to make something more
than “just a game” will not likely come
from a game developer looking to make a
better version of something we’ve already
seen, which is in itself a noble effort. All
games don’t need to aspire to the level of

Art, nor should they. I can hardly imagine
anything more tedious.

A New Role
At the same time, all games would profit if
artists were given a greater role throughout
a game’s development. People in the
industry tend to use “the talent” as tools—
tell them only as much as they need to
crank out their little segment and make
sure they do as they’re told—like some sort
of AI-Paint program. (I can hear pro-
grammers drooling at the very idea of
being able to realize their game concepts
without relinquishing one iota of control,
but no, such software does not yet exist.
Just last issue, though, this magazine pro-
filed software that can compose tunes
given only thematic guidance by the user. I
doubt it’s made many friends amongst liv-
ing, breathing, bill-paying musicians.)

What’s lost by such an approach is
potentially valuable creative input that
could nudge a game in directions
unthought of. What sort of game might
develop if the renderers and musicians
were sitting at the table from the earliest
brainstorming sessions? What new ways
might be conceived to interweave talent
with technology, playability with beauty,
strategy with color and sound? Fantastic
collaborations are waiting to happen. Vast
new horizons await exploration.

I’ve found myself dreaming lately of a
day when the New York Times reviews
interactive computer art with the same
highbrow intensity it devotes to cinematic
and literary efforts. Maybe, someday, I’ll
make my way to the very top of the
Guggenheim and find there a small child
staring rapt into a glowing screen that
responds to each whispered command,
that whispers back and hums and sings
and fills that topmost corner of the muse-
um with gentle swirls and eddies of sound.
The parent, smiling quietly in the back-
ground, will be visibly pleased that the
child shows such appreciation for fine art.

It may be a farfetched conceit, but
that’s my job—I’m an artist. ■

Send your thoughts on art and artists in
the game industry to Dave Sieks at Game
Developer, or e-mail him at dsieks@
arnarb.harvard.edu.

A R T I S T ‘ S V I E W

64 GAME DEVELOPER • DECEMBER 1994

Art? Dogfight was created by Designers’
CADD Co. of Cambridge, Mass., using sam-
ple 3DStudio geometry and plug-ins from
Yost Group Inc.

	back:

