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F
irst, it conquered the desktop.
Then it set its sights on the
Internet. Now Microsoft is tar-
geting the arcade? That’s right.
Microsoft is launching an ini-
tiative to make Windows the
operating system for the next
generation of coin-op games.

Unveiled at Microsoft’s recent Judge-
ment Day event (its second annual Win-
dows 95 games showcase), the initiative
is still in its early stages, but could turn
the coin-op industry on its ear if it gains
enough momentum.

Basically the plan goes like this: A
number of hardware companies would
produce Windows-based coin-op
machines, which would probably be
powered by Pentium Pros or equivalently
powerful processors. You, the game
developer, would ship games for the
coin-op market in the same manner that
you currently ship into the home market.
After telling the manufacturer of the
game which standard controls your game
requires, and perhaps creating the jazzy
artwork for the playfield and marquee,
the manufacturer would just slap the
proper components into place and ship
your game.

This is a big leap from today’s coin-
op games, most of which require special-
ized hardware under the hood. In many
cases, this hardware acts as a form of
copy protection so that the game can’t be
pirated. Microsoft’s plan would remove
the need for game-specific hardware and
in its place use an as-yet-unspecified
form of copy protection.

In terms of your resources as a
developer of PC games, it probably
wouldn’t involve many additional per-
son-hours of time to tweak a game for
coin-op using this model. You’d want to
simplify your game for the arcade ver-
sion, and tune it up to get as much speed
out of it as you could. You would also
want to change your levels around so that
they weren’t identical your home version

of the game. This kind of work could be
done by one or two developers familiar
with the game engine, and perhaps a spe-
cialist in coin-op development. Market-
ing doesn’t take a very big bite out of
your budget in the coin-op world, so
you’d save some money on that front. All
in all, you’re not looking at a tremendous
outlay to port a game to coin-op using
Microsoft’s model.

That begs the question: What kind
of cash could you expect from a coin-op
port of a Windows-based game? 4th
Wave, a market research firm, worked up
some numbers in an attempt to answer
that. 4th Wave assumed an installed base
of approximately 15,000 Windows-based
coin-op machines in the first year of
availability (starting in mid-1997) and
projected that each machine would run a
little over two games during that time-
span, creating a market for about 32,000
title-units. If you assume a traditional
distribution spread, then of the top 15
games, one would sell about 9,600 units;
four would sell about 3,100 units each;
and ten would sell approximately 1,000
units each. Assume conservatively that
your title is in the bottom 10—that’s
1,000 units sold at about $750 each, of
which you, the publisher, get a fair chunk
(probably around two-thirds). That’s
about a $500K return for your two or
three person porting effort. Granted,
these are extremely rough numbers, but
it’s something to chew on.

Microsoft makes no bones about
another aspect of this initiative that
benefits them greatly. A Windows-based
game in an arcade is an advertisement for
the home version of the game. That’s
great for you, because it could boost your
sell-through to consumers. It’s great for
Microsoft because people have to buy
copies of Windows 95 to play your game.
That demon seems to lurk behind every-
thing they do, doesn’t it?   ■

Alex Dunne
Editor

Spare a Quarter
for Microsoft?

G A M E  P L A N

6 GAME DEVELOPER • DECEMBER 1996/JANUARY 1997

MGA EGAME

Editor Alex Dunne
76702.1142@compuserve.com

Managing Editor Tor Berg
tberg@mfi.com

Editorial Assistant Chris Minnick
cminnick@mfi.com

Contributing Editors Larry O’Brien
lobrien@msn.com

Chris Hecker
checker@bix.com

David Sieks
103302.301@compuserve.com

Web Site Manager Phil Keppeler
phil_keppeler@mfi.com

Cover Photography Carter Dow Photography

Publisher  Veronica Costanza
Group Director  Katie Brennan
Special Projects Manager  Nicole Freeman

76702.706@compuserve.com

Advertising Sales Staff

Western Regional Sales Manager

Steve Nikkola  (415) 905-2256
snikkola@mfi.com

Western Account Manager

Barbara Wren  (415) 356-3362
bwren@mfi.com

Eastern Sales

John Travers  (212) 615-2682
jtravers@mfi.com

Marketing Manager  Susan McDonald
Marketing Graphic Designer  Azriel Hayes
Advertising Production Coordinator  Denise Temple
Director of Production  Andrew A. Mickus
Vice President/Circulation  Jerry M. Okabe
Group Circulation Manager Mike Poplardo
Assistant Circulation Manager  Jamai Deuberry
Subscription Marketing Manager  Melina Kaplanis
Newsstand Manager  Eric Alekman
Reprints  Stella Valdez (916) 729-3633

Chairman/CEO  Marshall W. Freeman
President/COO  Donald A. Pazour
Senior Vice President/CFO  Warren “Andy” Ambrose
Senior Vice Presidents  David Nussbaum, Darrell
Denny, Ted Bahr, Wini D. Ragus, Regina Ridley
Vice President/Production  Andrew A. Mickus
Vice President/Circulation  Jerry Okabe
Senior Vice President/

Software Development Division  Regina Starr Ridley

Miller Freeman
A United News & Media publication

http://www.gdmag.com/



GAME DEVELOPER • DECEMBER 1996/JANUARY 1997  9

S E Z  U !

WHICH WAY DO I GO?WHICH WAY DO I GO?
Dear Editor:

Would you recommend developing
games for DOS using Watcom C/C++
10.6 with DOS/4GW, or games that

run on Win32s using Visual C++ 4.1 and the 
DirectX 2 SDK?

Dan Mintz
Via Internet

Chris Hecker replies:
It actually doesn’t matter. The important parts
of game programming, such as mathematics,
user interface, gameplay tuning, artificial intel-
ligence, and so on, are totally platform indepen-
dent. I’d say start with whatever is easiest or
cheapest, and learn to write good code. If you
do that, you can write for whatever platform
you’d like.

DIRECTPLAY DIFFICULTYDIRECTPLAY DIFFICULTY
Dear Editor:

Ienjoyed Michael Morrison’s article “Network-
ing Your Game Using DirectPlay” (June/July
1996). I used it as a tutorial for learning

DirectPlay. I discovered a problem when running
the TicTacToe game in conjunction with the TCP
and IPX service providers. Morrison’s code was
failing in the IDirectPlay::EnumPlayers call. I
notice he calls IDirectPlay::Open prior to call-
ing EnumPlayers, which the DirectPlay docu-
mentation warns against. I modified the code to
delay calling Open until after EnumPlayers was
called, and everything worked fine (at least in
the TCP and IPX worlds). I assume Morrison’s
code worked as published when using the
modem server provider. Why is that?

Matt D’Ercole
Via Internet

Michael Morrison replies:
I double checked both the DirectX 1 and 2 docu-
mentation and they both mention calling
EnumPlayers after calling Open to connect to a
session. In fact, I’m not sure how DirectPlay
could know about other players without being
connected to a session via Open. However, it
sounds like the change you made to your code

worked. I originally tested the code in the article
on both IPX and modem servers, but I admit
that the DirectX 1.0 DirectPlay implementation
acted a little flaky at times.

BENCHMARKING COMPILERSBENCHMARKING COMPILERS
Dear Editor:

Iread Chris Hecker’s article “More Compiler
Results, and What To Do About It” in the
August/September 1996 issue and have a

question.
How were the timings measured? Did he

count clock cycles from the assembler code, or
did he run timed benchmarks? If he ran timed
benchmarks, what operating systems were used
for each test?

Also, his Macintosh bias needn’t have been
included in the article. The PowerPC 604 is not
“a pretty fair comparison” to a Pentium. Every-
one (except Hecker apparently) gives the “fair
comparison” nod to the PowerPC 604 vs. the
Pentium Pro at similar clock speeds. I would be
interested in those results.

Randy Rynkewicz
Via Internet

Chris Hecker replies:
I timed the functions by doing a bunch of loops
and using Microseconds on the Mac and
QueryPerformanceCounter on Windows 95. I
timed the non-Windows 95 compilers’ outputs
by linking in their object modules into my Win-
dows 95 timing program. Most of the compilers
output COFF objects, and I converted the others.

I’ve never been accused of having a Macin-
tosh bias before. By “a pretty fair comparison,”
I meant my 132Mhz PPC and the 133Mhz Pen-
tium were similar systems from a clock-rate
and memory standpoint. Cross-architecture
comparisons are basically impossible to get
right anyway, so it was meant as more of a side
comment than a well-researched result.

SIEKS SIZZLESSIEKS SIZZLES
Dear Editor:

David Sieks wrote an intelligent assess-
ment of 3D Studio Max in the
August/September 1996 issue of Game

Developer. He touched upon many key points
that I was pleased to read about. 

I ordered 3D Studio Max and am happier with
this investment having read such a review from
someone who clearly knows what constitutes an
outstanding program.

Anonymous
Via Internet

DELAY OF GAMEDELAY OF GAME

Dear Editor:

Iread Dan Teven and Vincent Lee’s article
“Optimizing CD-ROM Performance under
DOS/4GW” (August/September 1996). We

play all of our game’s music off of CD audio
tracks, and when I use the STOP and PLAY com-
mands, there’s a long delay (the game stops for
a period of one to two seconds). MSCDEX docu-
mentation states that these two functions
should return immediately, but that isn’t hap-
pening. Any ideas?

Pablo Testa
Via Internet

Dan Teven replies:
Although you’re working with the CD audio calls
and not using the “seek” call, this problem
sounds very similar to one Vince Lee and I men-
tioned in our article. Because the MSCDEX
interface is synchronous and some calls may
not return quickly, you need to use a multi-
threaded architecture if you want to keep these
calls from slowing down your game. Whenever
you want to stop a track or play a new one, your
program should create a new thread to issue
the MSCDEX call. Meanwhile, the rest of your
program can continue to execute.

Windows 95 features multithreading support.
If you’re developing for real-mode DOS, there
are commercial libraries available. Multithread-
ing libraries also exist for the DOS/4GW, Phar
Lap, and Causeway DOS extenders. 

The length of the delay also will depend on the
CD-ROM driver you’re using. Some drivers dis-
able interrupts for long periods of time and can
interfere with a preemptive multitasker. If this
is the case, creating another thread won’t cure
the delay.

http://www.gdmag.com



Dear Santa...

B I T  B L A S T S

X-ponents
MicroHelp Inc. has shipped its new
development package, Game+Multime-
dia X-ponents. X-ponents are program-
ming objects that encapsulate Micro-
soft’s DirectX programming interfaces,
combining object-oriented development
practices with the power and speed of
accessing hardware directly. 

X-ponents are optimized for Inter-
net download and are based on the
ActiveX framework. They are divided
into component families including:
MhDirectDraw, which encapsulates
interfaces that directly access video mem-
ory and the bit manipulation capabilities
of the hardware; MhDirectPlay, which
eases the connectivity of games over
modem links or networks; MhDirect-
Sound, which encapsulates the Direct-
Sound and DirectSoundBuffer interfaces,
enabling hardware and software sound
mixing and playback; and others.

MicroHelp Game+Multimedia X-
ponents lists for $249.
■ MicroHelp Inc.

Marietta, Ga.
(770) 516-0899
http://www.microhelp.com

Infini-D 3.5
Specular International Ltd. is set to
release a Windows 95/NT version of its
Infini-D 3.5 3D modeling and render-
ing software. Following the MacOS ver-
sion that shipped last summer, this
release will feature full support for
Apple’s QuickDraw 3D and QuickTime
on a Windows platform. 

Infini-D 3.5 offers a spline-based
modeler and photorealistic rendering.
Interesting effects include animated
Boolean rendering, with which you can
“carve” your 3D objects using any 3D
shape as a tool, and animated lens flare
effects that you can edit on the screen.
Animations are handled with an event-
based sequencer and on-screen motion

paths that are fully editable. And support
for QuickDraw 3D for Windows lets
you import and export 3DMF objects.

Infini-D 3.5 for the MacOS is
available now. The Windows 95/NT
version is scheduled to ship at the end of
November. List price is $649.
■ Specular International Ltd.

Amherst, Mass.
(413) 253-3100
http://www.specular.com

MotionStar
For more realistic character animation,
you might want to look into a magnetic
motion sensor. Ascension Technology
Corp. has just released it’s MotionStar
Wireless magnetic tracker. 

Wireless technology has really
improved this magnetic tracking system.
Although magnetic tracking is cheaper
than optical systems, the cabling was
heavy and restricted motion. The
MotionStar yields real-time results and
doesn’t require a line-of sight between
the sensors and the transmitter. 

The tracker has a range of up to 20
feet diameter, with the transmitter in
the center. Up to 14 sensors are mount-
ed at key points on the model. Motion
cues can be derived for animation soft-
ware from Alias/Wavefront, Softimage,
MediaLab, 3D Studio, and others.
■ Ascension Technology Corp.

Burlington, Vermont
(802) 860-6440
http://www.ascension-tech.com

DeBabelizer
Also on the moving-to-Windows front,
Equilibrium, maker of the DeBabelizer
automated graphics processing software
for the MacOS, has developed a Win-
dow 95/NT version of its product.

DeBabelizer automatically prepares
images, animations, and digital video
through file-format conversion, batch
processing, color-palette reduction,
image processing, and scripting. Equi-

librium has also included bandwidth
conservation tools for multimedia and
web graphics. Over 90 file formats are
supported, and the list is optimized for
the Windows 95 and NT environments.

DeBabelizer for Windows will
ship in the last quarter of 1996, and
will list at $595.
■ Equilibrium

Sausalito, Calif.
(415) 332-4343
http://www.equilibrium.com

Geppetto
QuantumWorks has made its per-
formance animation system avail-
able to the public. 

Geppetto is designed for lip sync,
facial control, and overall expressiveness.
The built-in gesture recognition system
can map any input data combination to
any set of control points on the avatar’s
geometry. Geppetto has the advantage
of being open and extensible. 3D appli-
cation developers can integrate Geppet-
to libraries into their own applications,
and the system supports input devices
from the high end (Motion Analysis’s
Face Tracker) to the low end (off-the-
shelf MIDI controllers). Geppetto also
has the ability to output sound and ani-
mation data as .AVI image files, 3D
dynamic deformation databases, 3D
function curves, MIDI sound events,
and .WAV files.

Geppetto runs on a high-end Win-
dows 95/NT box. The system is avail-
able in a range of configurations, from a
software-only product—which includes
the MIDI controller and a year of sup-
port—sold for $8,000, to a complete
turnkey package—including the Face
Tracker, road cases, a spycam system,
and rack-mounted hardware—for about
$50,000.
■ QuantumWorks Corp.

Sherman Oaks, Calif.
(818) 906-3322
http://users.aol.com/setpci/qw.htm
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I
just want to block the door with
something heavy, so the bad guy
can’t get in. Is that too much to ask?
I want to flip over his car with a
carefully placed explosion, I want to
jam the huge gears to which I’m
strapped before they crush me, and
I want to rig up a seesaw-type thing

to catapult a nice flaming present over
his castle’s protective wall. You might
think that my antagonist is the one stop-
ping me from doing these things, but the
person stopping me is actually the pro-
grammer behind the game’s physics
engine, because at the heart of each of
these tasks lies an angular effect. Few
games today try even to model angular
effects, let alone try to get them right.

The main reason for the lack of
support for angular (you might call

them rotational) effects in today’s
games is that programmers perceive
angular physics to be difficult to under-
stand and implement. High-school
physics courses (where we all learned
F=ma) usually don’t cover angular
effects, and it’s not immediately clear
how to translate a force applied to an
object into a spin for that object. While
the dynamics of angular motion are
slightly more difficult to understand
than the dynamics of linear motion,
they’re not that much more complicated.
Anybody who can implement a linear
physics engine based on the material we
covered in the last column will be able
to implement one that supports angular
effects based on the information in this
column. Hopefully, once this knowl-
edge is out there, we’ll start to see

games that take advantage of the
expressive power of angular effects, or
at the very least, let you shoot your
friend’s feet out from under her in a
deathmatch game.

Recap
Whenever I’m writing a series of
columns on a single topic, I always
reread my last column before starting the
latest one so I can figure out where I left
off. I just got finished doing that with
the first part of this series on physics,
and wow, we covered a lot of ground,
and without any code or references to
boot! Before we get started, let’s quickly
review the material from last time.

Table 1 contains the important
results for doing linear rigid body
dynamics. Eq. 1 shows that the position
vector (denoted by r), the velocity vector
(v), and the acceleration vector (a) are all
related by derivatives (and integrals in
the opposite direction). As a reminder,
we denote differentiation with respect to
time with a dotted vector, so “ ” is the
same as dr/dt, and “ ” is the same as the
second time derivative. Eq. 2 shows how
force is related to linear momentum
(mass times velocity), mass, and accelera-
tion. Eq. 3 gives the definition of the
center of mass, which is the point where
all the masses and distances balance each
other out. Eq. 4 says that the total linear
momentum for a rigid body is the sum of
all the momentums, which, luckily for us,
simply equals the momentum of the cen-
ter of mass (CM). Eq. 5 is the real gem;
it uses Eq. 4 to show that the accelera-
tion of our object’s CM is related to the
total force–the vector sum of all forces
currently acting on our object–by a sim-
ple scalar, the total mass of the object. 

 ̇ṙ
 ̇r
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Eq. 1 Relationship of
position (r), velocity (v),
and acceleration (a)

Eq. 2 Force (F) equals the
derivative of linear
momentum (p), or
mass (m) times
acceleration

Eq. 3 Center of Mass (CM)

Eq. 4 Total linear momentum
equals the momentum
of CM

Eq. 5 Total force equals the
total mass (M) times 
CM acceleration

    F
T = ṗT = Mv̇CM = MaCM

   
pT = mi v i

i
∑ = d(MrCM )

dt
= MvCM

  
Mr CM = m i r i

i
∑

    
F = ṗ = dp

dt
= d(mv)

dt
= mv̇ = ma

    

d 2r
dt 2 = ˙ṙ = dṙ

dt
= dv

dt
= v̇ = a

Table 1.  Important Equations from Part 1 of This Series



So, to summarize the results from
the last column, we first find the total
force on our CM by summing all the
forces applied to the body (including
things like gravity, the bad guy’s tractor
beam, the nearby explosion, our engine
thrust, whatever). Then, we divide this
vector sum by the total mass to get the
CM acceleration, and then integrate that
acceleration over time (using the numer-
ical integration techniques mentioned at
the end of the last column) to get our
body’s new velocity and position.

Although Eq. 5 is a nice piece of
work, you’ll notice that it contains no
concept of where the forces act on the
body, which is the key to figuring out
how those forces rotate the body. Eq. 5
isn’t wrong—it’s exactly right for calcu-
lating the linear acceleration—we’re just
missing half the story. But let’s start at
the beginning…

What’s Your Angle?
The last column ignored rotation, so we
only needed the position vector and its
derivatives to describe our rigid body’s
configuration in 2D. We now need to

add another kinematic quantity, orienta-
tion (denoted by Ω, capital omega), to
that configuration so we can support our
angular effects. To define Ω, we need to
pick a coordinate system fixed in our
rigid body and a fixed world coordinate
system, and specify Ω as the angular dif-
ference between them in radians, as
shown in Figure 1. In the figure, xw,yw

are the world axes, and xb,yb are the body
axes. Ω is positive in the counterclock-
wise direction. At this point, it should be
clear why we’re learning 2D dynamics
before moving up to 3D: The orienta-
tion in 2D is just a scalar (the angle
between the coordinate systems in radi-
ans), while specifying an orientation in
3D is much more complicated.

As our body rotates in the world,
Ω changes. This change leads us to our
next new kinematic quantity, angular
velocity (denoted by ω, lowercase
omega). In contrast with the position
and its linear velocity, we don’t usually
signify the angular velocity by “ .”
However, we sometimes signify the
velocity’s time derivative, or angular
acceleration—which is our final new
kinematic quantity—with “ ,” and
sometimes with an α (lowercase alpha).
Don’t blame me, I don’t make these
rules, and every book I read has a
sl ightly different convention. Our
angular analog to Eq. 1 is

(Eq. 6)
Much like Eq. 1, if we differentiate

ω with respect to time, we get α; and if
we integrate α over time, we get ω, and
so on. Clearly, as in our analytic integra-
tion example for linear movement in the
previous column, if we know the angular

d 2Ω
dt2 = dω

dt
= ω̇ = α

ω̇

Ω̇
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To properly model

physics in your game,

you have to

understand rotational

effects. See how

angular momentum,

torque, and other

forces can be

modeled in a game.

Chris Hecker

Figure 1.  The Definition of Ω
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acceleration α, we can integrate it twice
to find the new orientation; but the key
is we need to know α to do this.

As you might expect, our goal for
this column is to derive angular analogs
for each of the linear physics equations
in Table 1, and then link the linear and
angular equations together so we can
take a given force on our object and use
it to calculate the linear acceleration a,
and the angular acceleration α. Finally,
we can numerically integrate these accel-
erations to find our body’s new position
and orientation.

The first way we’ll link the linear
and angular quantities together is with a
neat and not-so-obvious trick using angu-
lar velocity. When we’re doing dynamics,
we often need to find the velocity of an
arbitrary point on our object. For exam-
ple, when we cover collision response,
we’ll need to know the velocity of the col-
liding points to figure out how hard they
hit each other. If our bodies aren’t rotat-
ing, the velocity of any point in the body
is the same; we can just keep track of the
velocity of the body’s CM and be done
with it. However, if our bodies are rotat-
ing, then every point in them might have
a different velocity. Obviously, we can’t
keep track of the velocity of each of the
infinity of points in our rigid body, so we
need a better way. 

A simple way to find the linear
velocity of any point inside an object
uses that object’s angular velocity. Let’s
first cover the case of a body rotating
with one point, the origin O, fixed, so
the body is rotating but not translating.
Eq. 7 shows how to calculate the velocity
for a point B on this rotating body.

(Eq. 7)

Eq. 7 introduces a bunch of new
notation, so let’s take it apart one piece
at a time. First, I’m using superscripts
to denote which parameters “belong” to
which points, so vB is the velocity of
point B in our body. Similarly, rOB

means the vector from the origin of our
body O to point B. The funny upside-
down T subscript is the “perpendicular
operator,” which takes a vector (like r in
Eq. 7) and rotates it counterclockwise
by 90 degrees. In other words, it creates
a new vector that’s perpendicular to the
old vector. In 2D, the perpendicular of
a vector (x,y) is just (-y, x), as you can
easily verify on a piece of graph paper.
I’ll say more on this operator shortly.
Finally, the perpendicular vector is
scaled by the angular velocity ω to give
the linear velocity vB. So, in English,
Eq. 7 says the velocity of a point on a
rotating body is calculated by scaling
the perpendicular vector from the origin
to the point by the angular velocity.
How in the heck did I come up with
this thing? Well, I read about it in a
book, but that’s obviously not very illu-
minating, so let’s prove for ourselves
that it works. 

We’ll prove Eq. 7 does what I say it
does in two stages. First, we’ll prove that
the magnitude of the resulting velocity
vector is correct; then, we’ll prove it’s
pointing in the right direction. To prove
the first part, we’ll use Figure 2. Figure 2
shows our point B moving Ω radians
during the body’s rotation, with the
radius vector from the origin to B as r
units long. B has moved C units of
arclength on the circle, where C=Ωr by
the definition of radians. (Radian mea-
sure is the measure of arclength scaled by
the radius of the circle. The circumfer-
ence of a circle is the well-known formu-
la 2πr, because it’s 2π [or 360 degrees]
worth of arclength.)

A point’s speed is its change in
position over time. Thus, we can find B’s
speed—which is another way of saying
the magnitude of its velocity vector—by
differentiating the equation for its move-
ment with respect to time. C=Ωr is the
equation for its movement.

(Eq. 8)
The radius drops out of the deriva-

tive because it’s constant (B is simply
rotating, not translating as well), and the
time derivative of Ω is ω by Eq. 6. Thus,
the magnitude of B’s velocity vector is ωr. 

If we look at Eq. 7, we see that it
gets the magnitude correct because the
perpendicular operator clearly does not
effect a vector’s length, and rOB is the
radius vector from the origin to B. We’re
halfway done.

To show that the direction of the
velocity in Eq. 7 is correct, we’ll start by
convincing ourselves the velocity vector’s
direction must be perpendicular to the
radius vector. This assumption makes
sense intuitively, because a point rotating
around another fixed point can only move
perpendicularly to the vector between the
points at any instant; it can’t move closer
or farther away, or the movement
wouldn’t be a simple rotation. We could
make this assumption rigorous using a
tiny bit of vector calculus, but I’m running
out of space, so we’ll consider ourselves
convinced. (If you want to prove it to
yourself, try differentiating the dot prod-
uct of a fixed length vector with itself.) 

Finally, we need to make sure the
sign of the velocity vector is correct,
since there are actually two vectors of the
same length that are perpendicular to the
radius: v and -v. Since we’re measuring
Ω in the counterclockwise direction, ω is
positive when the point is rotating coun-
terclockwise. The perpendicular operator

  

d (Ωr )
dt

= dΩ
dt

r = ωr  v
B = ωr ⊥

OB
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Figure 2.  C=Ωr

Ω r
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Figure 3.  Linear Velocity
from Angular Velocity
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points in the counterclockwise direction
relative to the radius vector. So, as Fig-
ure 3 shows, Eq. 7 checks out.

We can extend Eq. 7 to cover
simultaneously rotating and translating
bodies. We will consider any movement
of a rigid body as a simple translation of
a single point in the body and a simple
rotation of the rest of the body around
that point. This is known as Chasles’
Theorem, for those keeping score. 

Chasles’ Theorem breaks up our
motion into linear and angular compo-
nents. We consider the origin O in Eq. 7
as the single translating point, then use ω
to keep track of the rotation around O,
which gives us the general form of Eq. 7.

(Eq. 9)
Eq. 9 says we can calculate the

velocity of any point in a moving body by
taking the known linear velocity of our
body’s origin and adding to it the velocity
generated from the body’s rotation.

A Moment-us Occasion
Now we’re in a position to work on the
angular analog of Eq. 2, the force equa-
tion. We’ll start by defining the angular
momentum, LAB, of one point, B, about
another point, A, as follows:

(Eq. 10)
The angular momentum of a point

differs from the linear momentum of a
point in that the angular version is mea-
sured from a specific position in space.
That is, while linear momentum is just a
property of a given point (its mass times
its velocity), the angular momentum of
the point must be measured from anoth-
er place in the world. The superscript
notation in Eq. 10 shows this. The nota-
tion LAB says that the first superscript, A,
is the point about which the momentum
is measured, and the second superscript,
B, is the point whose angular momen-
tum is being measured. Think about an
arrow from the first superscript to the
second; A is “looking at” B’s momen-
tum. This arrow from A to B is the
radius vector between the two points,
designated by rAB. So, the angular
momentum of a point is the dot product
of the “perpendicularized” radius vector

with the point’s linear momentum. This
operation is called the “perp-dot prod-
uct.” (It’s sort of the 2D analog to the
3D cross product, but that discussion
will have to wait for another time.)

If you take Eq. 10 and draw out
what it’s doing on a piece of paper—I’ve
drawn an example in Figure 4—you’ll
see it produces a number that’s a mea-
sure of how much of B’s linear momen-
tum is “rotating around” A. That is, if
B’s linear momentum is aiming right at
A or directly away from A, Eq. 10 is 0
(since r-perpendicular will form a right
angle with p, and the dot product will be
0). As more of B’s momentum is direct-
ed perpendicular to A, Eq. 10 produces a
larger angular momentum. As you can
see in Figure 4, the dot product in Eq.
10 is measuring the cosine of θ between
rAB-perpendicular and pB, which is what
you’d expect from a dot product. How-
ever, if we look at it another way, the
perp-dot product is measuring the sine
of φ between our original unperpendicu-
larized rAB and pB (the sine is another
clue to the similarity between the perp-
dot and the 3D cross product).
Whichever way we look at it, Eq. 10 is
producing a measure of how much of B’s
linear momentum is in the “rotating-
around direction” with respect to A.

In the same way we used the linear
momentum’s derivative to define force,
we’ll use the angular momentum’s deriv-
ative to define force’s angular twin,
torque (denoted by τ, lowercase tau).

(Eq. 11)
To save space, I actually cheated a bit

in Eq. 11 and left out a couple of tricky
steps involving the product rule for deriva-
tives. Still, when all is said and done, the
torque ends up being related to the force
at a specific point by the perp-dot product.

At last, we find a dynamics equation
that uses the point where a force was
applied, which is ignored in the equa-
tions for linear movement. Eq. 11 uses
the perp-dot product to measure how
much of the force applied at point B is

“rotating around” point A; that “rotating-
around force” is called the torque. Eq. 11
lets us calculate the torque—and hence
the angular momentum, if we integrate
that torque—from an applied force and
its position of application. 

However, we still don’t have any
relationship between the torque and the
kinematic angular quantities we need to
spin our object around—such as the angu-
lar acceleration, angular velocity, or orien-
tation; so we can’t really do anything with
our newfound dynamic quantities until
we’ve derived a few more equations.

The Moment We’ve All Been
Waiting For
Before we can examine the relationship
between the dynamic and kinematic
quantities, we need to define the total
angular momentum, much as we have
defined the total linear momentum in Eq.
4. I didn’t forget the angular equivalent of
the CM in Eq. 3; it will come to us in the
total angular momentum equation.

The total angular momentum about
point A is denoted LAT and is defined by
Eq. 12.

(Eq. 12)
Eq. 12 is a summation of all the

angular momentums of all the points, as
measured from point A. On the right-
hand side, I’ve used the definition of linear
momentum to expand p into mass times
velocity (mv) because we’re going to
manipulate this term to turn Eq. 12 into
something more manageable. As it stands,

   

L

      

A A

i

A

i

T i i

i i im

= ◊

= ◊

^

^

Â

Â

r p

r v

   

t AB
AB AB B

AB B AB B

L   

         

= =
◊( )

= ◊ = ◊

^

^ ^

d
dt

d

dt
m

r

r a r F

p

   L   AB AB B= ◊^r p

  v
B = v O + ωr ⊥

OB

GAME DEVELOPER • DECEMBER 1996/JANUARY 1997  19

Figure 4.  Angular Momentum
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if we want to calculate the total angular
momentum for our object, we’d have to
sum all of the angular momentums for
each of the points. For a rigid body com-
posed of surfaces rather than separate
points, we’d have to perform an integra-
tion instead of a discrete summation. 

Luckily, we can simplify this calcu-
lation by introducing a new quantity,
called the moment of inertia, in the same
way we introduced the CM to simplify
the equations for linear movement. We
start by remembering that Eq. 7 gives us
an alternate way of writing the velocity
of a point in terms of the angular veloci-
ty. If we treat the point A in Eq. 12 as
the origin in Eq. 7, and the point index i
in Eq. 12 as the point B in Eq. 7, we can
substitute Eq. 7 into Eq. 12 and write

(Eq. 13)

I’ll describe Eq. 13 one step at a
time. First, we substitute Eq. 7 into Eq.
12 to get the first summation in Eq. 13.
This substitution lets us write the angu-
lar momentum in terms of the angular
velocity. Next, we bring the ω out of the
summation because it’s the same for all
the points (the angular velocity is
defined for the body, not the points
individually), and we write the mass for
point i on the left-hand side so we can
see that we’re really taking the dot prod-
uct of the radius vector with itself. This
dot product is just the radius vector’s
length squared. (The dot product of any
vector with itself is the length squared;
remember the perpendicular operator
doesn’t change a vector’s length.) Finally,
we write the letter IA to designate the
moment of inertia about point A. The
moment of inertia for a 2D rigid body is
a particularly nice number, because the
points that make up the body can't
change their mass or their distance from
the measurement point.  These two
properties make the summation in Eq.

13 constant for each body, so we can cal-
culate it offline before we begin. To
rephrase in English, IA is the sum of the
squared distances from point A to each
other point in the body, and each
squared distance is scaled by the mass of
each point. Much like the CM, if the
body is continuous rather than made
from discrete points, the summations
above would turn into integrals. Howev-
er, the moment of inertia would still
exist and be defined the same way.

The definition of the moment of
inertia about a point is a mouthful, but
think of IA as a measure of how hard it is
to rotate the body about point A. For
example, think about a pencil (a 2D pen-
cil). If we measure the moment of inertia
about the middle of the pencil, we get a
certain value by summing the mass-scaled
squared distances. However, if we mea-
sure the inertia about the tip of the same
pencil, we get a much larger value,
because the squared term in Eq. 13 makes
the masses that are farther away (toward
the eraser of our pencil) contribute much
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more to the value. This is saying mathe-
matically what we all know intuitively:
Turning a pencil about its center is a lot
easier (read: takes less force) than turning
it about one of its ends. 

Finally, we’re ready to provide a use-
ful link between the angular dynamics
equations and the angular kinematics
equations. If we differentiate Eq. 13, we
get the total torque on the left side, and on
the right side we get the moment of iner-
tia times the angular acceleration. (IA is
constant so it drops out of the derivative.)

(Eq. 14)

This equation is the angular equiva-
lent of Eq. 5; it’s basically F=ma for
angular dynamics. It relates the total
torque and the body’s angular accelera-
tion through the scalar moment of iner-
tia. If we know the torque on our body,
we can find its angular acceleration—and
therefore, the angular velocity and orien-

tation via integration—by dividing the
torque by the moment of inertia.

The Dynamics Algorithm
We may not recognize it through the
flurry of equations, but that’s all of it.
We’ve developed enough equations to do
great 2D dynamics with arbitrary forces
and torques moving and spinning our
objects around. How do we use all these
equations? Here’s the basic algorithm:

1. Calculate the CM and the
moment of inertia at the CM.

2. Set the body’s initial position,
orientation, and linear and angular
velocities.

3. Figure out all of the forces on
the body, including their points of
application.

4. Sum all the forces and divide by
the total mass to find the CM’s linear
acceleration (Eq. 5).

5. For each force, form the perp-
dot product from the CM to the point of
force application and add the value into
the total torque at the CM (Eq. 11).

6. Divide the total torque by the
moment of inertia at the CM to find the
angular acceleration (Eq. 14).

7. Numerically integrate the linear
acceleration and angular acceleration to
update the position, linear velocity, ori-
entation, and angular velocity (see last
issue).

8. Draw the object in the new posi-
tion, and go to Step 3.

There are only two steps in the
above algorithm that I haven’t yet
explained. First, how does one calculate
the moment of inertia in Step 1 for a
continuous object? Second, how do you
figure out the forces on an object for
Step 3? The answer to the first question
can be found in the sample program ref-
erenced at the end of this article (you
perform an integration over the surface
of the object). Most dynamics books
have the moments of inertia for common
shapes listed in the back, so you don’t
usually have to derive them from scratch.

The answer to how to compute the
forces in Step 3 depends on the applica-
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tion, but a few general guidelines apply.
First, forces like gravity that always point
in the same direction (down, in gravity’s
case) don’t induce torques on an object
since they pull on all points at the same
time and in the same direction; thus, we
just apply those forces directly to the
CM. A spring-like force applied to a
specific point on an object will induce
torques, so we handle it normally. As we
saw in the last issue, drag is just a force
directed in the opposite direction of your

velocity. You could do a simple drag
model and just apply the force to the
CM, or you could figure out which parts
of your object would have drag and apply
specific drag forces to those parts, which
might induce torque on your object. The
forces experienced during a collision are
slightly more complicated, and will have
to wait until the next column. Forces
from rocket engines would probably be
treated as forces with a point of applica-
tion. (That way, if one of your engines

fails, you’ll start to spin unless you adjust
your rudder to provide another force to
counteract the torque!) If you have
something like a tractor-beam, should it
act like gravity and be torque-free, or
should it be applied at a specific point on
the object so the object turns toward the
beam as it’s pulled? You’ll have to decide
that. The key is not to be afraid of
experimenting with different forces cal-
culated in different ways—now that
you’ve got a real 2D dynamics simulator,
you can try all sorts of forces.

I’ve placed a bunch of references
and some code on my Web site because
there’s no more room left here. The
sample app implements the 2D dynam-
ics algorithm on some objects attached
by a spring; they spin and move around,
and even collide with walls with rota-
tions, which we’ll cover next time. Check
out http://ourworld.compuserve.com/
homepages/checker for a list of refer-
ences and the sample application for
Win32 and Macintosh.  ■

Every once in a while, Chris Hecker
experiences a moment of inertia, but it usu-
ally passes pretty quickly. Forces may be
applied at checker@bix.com.
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I
got a great e-mail from Jan Vondrak
(JVON4518@barbora.mff.cuni.cz)
the other day. Jan pointed out,
much to my chagrin, that the final
assembly code for the texture-

mapping series had a big performance
flaw in it (in addition to the ones I list
at the top of the file): Very soon after
issuing the ffddiivv that ostensibly over-
laps with the rasterization loop, I issue
an iimmuull. Well, on the Pentium, iimmuull
uses the floating point unit, so it's
going to stall on the ffddiivv, and I won't
overlap. Oops! I was so rushed just
getting the code working that I didn't
notice this bug. I moved the ffddiivv
below the iimmuulls and got a speedup,
and as the comment in the file says,
that code is fertile ground for opti-
mization. Thanks to Jan for pointing
this out!

O O P S !
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3D Hardware
Acceleration
Demystified, Part 1

3 D  H A R D W A R E

W
e’ve all been hearing about
it, we’ve all been waiting for
it, and finally it’s here—the
much ballyhooed and
hyped Dawn of the Age of
Affordable 3D Hardware.
But, as with any new tech-
nology, along with all of

the claimed benefits of cheap, high-
quality, fast 3D graphics on every desk-
top, there’s a lot of confusion among
consumers and developers. This is the
first in a two-part series of articles about
3D graphics acceleration aimed specifi-
cally at you, the game developer. 

An Overview of the 3D
Accelerator
In the most general sense, a 3D acceler-
ator is some type of hardware that accel-
erates all or part of the 3D pipeline. The
majority of the current crop of low-cost
3D chips only speed up rasterization,
which is usually the most time-consum-
ing part of the 3D graphics pipeline on a
PC. How this hardware is implemented
can vary a lot—from hard-wired ASICs
to RISC engines to programmable
DSPs—but the theme is the same: Some
type of data describing a graphics primi-
tive is sent to the hardware, which in
turn draws the specified primitive (hope-
fully allowing the CPU to execute other
tasks in parallel). Most of today’s accel-
erators use the well-understood concepts
of triangles and polygons to describe
data, but some more adventurous com-
panies are experimenting with more
unconventional approaches to rendering.
It remains to be seen whether developers
and consumers will adopt these radical
architectures.

For this series of articles, I’m going
to concentrate on the standard, frame-
buffer–based, triangle and polygon 3D
graphics accelerator. A game communi-
cates with the 3D accelerator, which
hangs off the PCI bus (the few non-
PCI bus accelerators in the market have
fallen by the wayside), by writing to
memory-mapped register sets or by hav-
ing the device asynchronously bus mas-
ter command data from system memory
(sometimes referred to as DMA). The
accelerator has a frame buffer, where
images are rendered, and a place to store
“other stuff,” such as a Z-buffer or tex-
ture maps. On low-cost solutions,
everything can be stored in the frame
buffer, with a potential decrease in per-
formance because of memory bandwidth
limitations (see the Sidebar, “Why Ain’t
My Accelerator Accelerating?”). How-
ever, some of the more expensive archi-
tectures provide dedicated memory for
texture maps (3Dfx Interactive’s
Voodoo Graphics) or the Z-buffer
(3DLabs Permedia) to achieve higher
performance.

Features
The number of features a particular
accelerator will support varies, but most
modern accelerators support some type
of texture mapping and lighting, and
many support alpha blending, Z-buffer-
ing, and bilinear filtering. More exotic
features, such as per-pixel MIP map-
ping, are available on a few chipsets;
however, these features will become
more prevalent as future generations
arrive. Many 3D chip companies are
busy trying to educate developers about
high-quality 3D graphics, and thus the

web pages at these companies are a good
source of detailed information on some
of these topics.

Who Has What?
So the question is: “Who has what?”
Not all manufacturers support all, or
even most, of the prominent features of
3D accelerators. Even finding a set of
features that define a safe lowest com-
mon denominator is pretty difficult. At
this point, just about the only thing a
programmer can assume is available is
perspective-correct texture mapping (if it
isn’t, then that chip won’t be around for
very long). After that, it’s a toss up. 

Features can generally be classified
in two groups—functional and aesthetic.
Functional features are required for
proper game play; lack of a functional
feature means that some fundamental
algorithm or technique just quits work-
ing. Functional features include Z-
buffering, alpha blending, alpha testing,
chromakeying, texture mapping, fog,
and some minimal form of lighting.
Aesthetic features, on the other hand,
don’t affect game play and only make
things look better. These features
include MIP mapping, bilinear or trilin-
ear blending, antialiasing, colored lights,
and fog.

Astute readers may have noticed
that I listed fog twice. The reason is that
fog can be noncritical, such as when it’s
used for mood and ambiance, or
absolutely critical, such as when it’s used
to hide a far clipping plane or when it
unfairly shifts the balance in a multiplay-
er game (Player A doesn’t have fog and
thus, can see farther than Player B).
Thankfully, fog usually can be faked
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with alpha blending or lighting hacks; so
lack of fog may be inconvenient, but
usually isn’t a killer.

So what features should you imple-
ment? That decision is up to you, but
somewhere between what you need,
what’s out there, and what you would
like is a middle ground that will define
the minimum feature set your game will
require. If you use a Z-buffer in your
software renderer, then odds are that any
3D accelerator you use will have to have
one, too. 

Performance
Rule Number One: Don’t ever trust a
3D chip manufacturer to give you a
straight answer when it comes to perfor-
mance. Almost every 3D chip manufac-
turer around today blatantly misleads
consumers (and developers) when it
comes to performance numbers. Claim-
ing features is fairly objective—it’s there
or it isn’t (albeit often times certain fea-
tures have caveats associated with their
use). But performance numbers, well,
that’s a different story altogether. When
quoting ambiguous numbers like “trian-
gles per second” or “megapixels per sec-
ond,” various semiconductor companies
take the liberty of skewing tests a wee so
that they won’t look so bad in certain sit-
uations. Be wary of manufacturers’
claims.

The biggest complaint I have is that
we’re fed some pretty good looking per-
formance numbers along with some
pretty good looking feature lists, but
we’re never told exactly how these fea-
tures affect real world performance. And
as anyone who has been disappointed
with the performance of a 3D accelerator

will attest, enabling features can exact a
huge price on performance. If you’d like
to know what some of the performance
hurdles PC 3D accelerators have to deal
with, see the sidebar.

In an effort to make things a little
more sane, I’ve written a very trivial
benchmark that tests a combination of
throughput (the number of triangles
that can be set up and sent to the host
per second) and fill rate (the number of
pixels that can be processed per sec-
ond). Throughput is usually limited by
a combination of setup complexity,
PCI bandwidth requirements, and
hardware flow-control. Fill rate is usu-
ally limited by memory bandwidth. If
you’d like to know more about these
performance bottlenecks, I once again
refer you to the sidebar. The results of
these tests (and feature comparison
charts) will be presented in the second
part of this article published in the next
issue.

Setup complexity affects the
amount of work the host CPU has to
perform to compute a triangle’s descrip-
tion in a format suitable for the 3D
accelerator. Typically, the more features
that are enabled the longer setup will
take because more parameters must be
computed. Also, issues such as data for-
mat conversion and parameter packing
come into play during triangle setup. If
an application does everything in float-
ing point and the hardware wants every-
thing in fixed point, a significant chunk
of time is going to be spent converting
floats to fixed-point integers. And if reg-
isters are densely packed, the packing
operation performed by software is going
to exact a performance penalty also.

Exaggerations,

bribes, and lies. In

the hotly contested

3D chip market, some

companies will do

anything to get game

developers in their

corner.

Brian Hook
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PCI bandwidth requirements are
determined by the number of triangle
parameters that must travel across the
PCI bus to the accelerator—a direct cor-
relation usually exists between features
enabled and PCI bandwidth require-
ments. More features require more para-
meters, which in turn requires more
bandwidth, which results in reduced
peak performance. 

Finally, hardware flow-control can be
a big performance killer. If an application
must poll a busy bit or determine whether
or not enough FIFO slots (a FIFO is
where incoming register writes are queued
until the card is ready to process them) are
available on the accelerator before render-
ing a new primitive, then performance can
plummet dramatically.

I didn’t test buffer management, a
potentially major performance drain.
One of the most irritating bottlenecks is
waiting for a page swap to complete—
you’re displaying frame A, you’ve just
finished rendering frame B, now you’re
stuck with nowhere to render to because

both buffers are in use. Triple buffering
can help alleviate this problem, but
requires yet more memory for a third
display buffer. Most of today’s inexpen-
sive 3D accelerators have very shallow
FIFOs and probably will stall incoming
rendering commands during this little
hiccup in the rendering cycle. Stalled
rendering commands can generate PCI
bus stalls, which wreaks havoc on system
performance. Some architectures deal
with this problem a little more elegantly.
With Rendition’s Verite, you can imme-
diately begin rendering new primitives
into an unused DMA command buffer,
and 3Dfx Interactive’s FIFOs are so big
that the odds of a PCI stall are greatly
reduced.

How Do I Use It?
Programming for the various 3D accel-
erators boils down to one of three
options: hitting the hardware directly,
using some third-party API (such as
Microsoft ’s Direct3D or SGI’s
OpenGL), or interfacing to the hard-

ware through a proprietary hardware
interface library (if one is available).
Still, these methods only address the
physical aspects of coding for 3D hard-
ware. Other issues rear their heads,
such as how you structure your 3D
pipeline to deal with 3D accelerators
best and how to deal with data conver-
sion issues.

Hitting the
Hardware Directly
Sure, you can hit the hardware direct-
ly, but it’s about as fun as beating your
head with a blunt, heavy object. Don’t
do it. These aren’t the good old days of
sound hardware,  when you had a
handful of registers in I/O space, a
few commands, and voilá, you had bad
FM sound. Register-level program-
ming of 3D accelerators is difficult.
Very difficult. I’m not talking weeks,
I’m talking about months of work for
each 3D accelerator. Not only that, but
some 3D accelerator manufacturers
won’t release their register specifica-

3 D  H A R D W A R E
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tions to developers, mostly because
support  becomes a nightmare the
minute developers try and work at the
register level.

The moral is: If you think you want
to program registers directly, you’re
wrong. You can try it, but hey, I tried to
warn you.

Using a Third-Party API
The easiest way to support 3D hardware
is to use someone else’s high-level 3D
graphics library. These things have been
surfacing recently like earthworms after a
rainstorm, so you have quite a few choic-
es, including Microsoft’s Direct3D,
SGI’s OpenGL, and various other com-
mercial libraries from Criterion and
Argonaut.

The perennial favorite API among
engineers has been SGI’s OpenGL,
which is broadly available in the UNIX
market and is part of the standard
Microsoft Windows NT distribution.
Unfortunately, OpenGL hasn’t had
much luck in the games market, mostly
because of lack of features, lack of
availability, and poor software-only
performance. However,  to some
degree, most of these issues have been
resolved—whether or not it’s too late
for OpenGL in the games market
remains to be seen.

Microsoft’s Direct3D is probably
the most obvious candidate for use,
and its prospects look good. Most 3D
hardware manufacturers have or will
have Direct3D drivers, so manufactur-

er support isn’t an issue. Most major
game companies have signed up to
support it, so developer support isn’t a
problem. Is Direct3D the no-brain
solution? In a nutshell, no. Many com-
plaints about DirectX have been sur-
facing recently from developers, and
until Microsoft addresses these prob-
lems, Direct3D isn’t the shoe-in we
may have imagined.

Other commercial graphics
libraries, such as Argonaut Brender and
Criterion Renderware, have announced
their support for 3D acceleration. Still,
these libraries haven’t really caught on
in the game development community,
and the introduction of Direct3D has
made their futures look a little less than
bright.

3 D  H A R D W A R E
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T
he first comment most developers make when they start working with 3D accelerators is something like, “Boy, this isn’t near-
ly as cool as I thought it was going to be.” Because of the rather excessive hype about 3D acceleration, consumer and devel-
oper expectations were raised to unrealistic levels before any products ever shipped. So the question posed is, “Why isn’t
this $250 accelerator giving me the equivalent features and performance of a $100,000 Silicon Graphics workstation?” To an
outsider, this would seem to be a stupid question, but if you go back and look at what was promised by all the parties

involved, this was essentially the expectation set before the public.
Aside from the literal answer (“If it was that easy, Silicon Graphics would’ve done it a long time ago.”), some other reasons for the

lackluster performance of most of today’s 3D accelerators include the fact that low-cost 3D acceleration still isn’t well understood,
the bottlenecks that games encounter haven’t been well-defined, and, more importantly, some significant technological hurdles have
to be dealt with to achieve high performance in terms of fill rate and triangle throughput. Time and experience will solve the first two
problems, but right now chip designers are fighting certain unavoidable physical limitations to achieve high performance: memory
bandwidth, PCI bus bandwidth, CPU speed, and cost constraints.

Memory Bandwidth
Memory bandwidth, or the lack thereof, is probably the biggest issue facing 3D hardware designers when it comes to reaching
high fill rates. The general axiom is the more times memory is accessed to perform a task, the slower that task will be in relation
to the theoretical limit of performance. To make matters worse, display refresh eats a certain amount of bandwidth, and this
overhead goes up with color depth, screen resolution, and refresh rate. If you like running your display at 1,280 x 1,024 x 24bpp
at 75Hz, keep in mind that you need 295MB/sec of memory bandwidth just to refresh, whereas lowly VGA with its 320 x 200 x
8bpp at 60Hz resolution requires less than 4MB/sec. So merely running at high resolution with high refresh can hurt performance,
and we haven’t even started turning on features yet! Some more expensive RAM technologies, such as VRAM and WRAM, can
reduce or eliminate the effects of screen refresh on performance, but they are more expensive than the more commonplace EDO
and SDRAMs.

What Are They Doing About It?
Given that we’re not exactly starting off with a lot of memory bandwidth to begin with, semiconductor companies have employed dif-
ferent techniques to try and get over the bandwidth barrier. The most brute-force (and expensive) approach is to use multiple and/or
wider memory interfaces, which allows more data to be processed simultaneously. An example of this would be separate frame buffer
and texture memory interfaces, which allows texture memory accesses to occur in parallel with frame buffer accesses. This greatly
minimizes the effects of texture mapping on performance. The 3Dfx Interactive Voodoo Graphics chip set uses two wide memory inter-
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Using a Proprietary
Hardware Interface Library
By definition, no commercial graphics
library will match the performance of a
game-specific graphics library written by
a competent 3D programmer. This fact
shouldn’t reflect poorly on commercial
libraries; no single graphics library has the
ability to be all things to all people.

Assuming that you implement your
own graphics pipeline for performance
reasons, you won’t have the luxury of a
turnkey hardware abstraction layer
(HAL) with associated drivers. Thus, if
you want to have 3D acceleration, then
you have to support every 3D accelerator
directly. This support is handled
through a proprietary graphics library (if
one is available), such as 3Dfx Interac-
tive’s Glide Rasterization Library, Cre-
ative Labs’ CGL, or Rendition’s
Speedy3D.

Now you’re in the position of
designing and implementing your own
HAL, which is time consuming, error

prone, and requires a few attempts
before you get it right. Not only that,
you can rest assured that each hardware
library you support is going to have its
own peculiar quirks to sort out. For
example, some libraries won’t work
with a register-based calling conven-
tion, some won’t work with your DOS
extender or compiler, some have name
clashes with other libraries, and don’t
work at all because they were written
by someone who knows nothing about
3D or game programming. You just
have to deal with these problems as
they arise.

In general, if you are going to sup-
port a few accelerators with similar per-
formance and/or features, then doing
your own HAL isn’t going to drive you
to the bottle. But if you want to support
all bazillion of the existing 3D chips on
the market, and support them well,
then expect to spend a pretty good
chunk of time writing software for
them.

Porting
Pre-Hardware Software
to Support Hardware
In general, developers will have to
support 3D hardware in either a “pre-
3D hardware” pipeline or in a “post-
3D hardware” pipeline. Shoehorning
support for 3D hardware in a pre-3D
accelerator pipeline is not a trivial
task. Many software renderers have
odd quirks that work great in software
but not so great in hardware. Com-
pensating for these quirks can be time
consuming.

If a software renderer does a lot of
operations per pixel, the difficulty in
porting to 3D hardware is increased. If a
software renderer works only with the
notion of “vertex-lit, texture-mapped
polygons,” then adding 3D acceleration
should be trivial. Another big hurdle is
converting from 8-bit paletted VGA-
style rendering (with associated color
tables, artwork, and palette tricks) to
true 16-bit RGB rendering; this conver-
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faces, one for the frame buffer and the other for texture RAM, and achieves some pretty phenomenal performance as a result, even
with bilinear blending, Z-buffering, and alpha blending enabled simultaneously.

3D accelerator manufacturers also employ techniques such as small on-chip caches that hold frequently fetched data, reducing the
load on the main memory interface. These caches are very popular because of their cost effectiveness; however their performance
and flexibility generally aren’t on the same level as multiple dedicated memory buses.

How Do Features Correlate to Reduced Bandwidth?
The next logical step is to determine what features consume memory bandwidth, which in turn allows us to make assumptions
about what features are generally considered performance hogs. Features that consume memory bandwidth include: higher
color depths (fewer pixels can be read/written at a time), texture mapping (a texel has to be fetched per pixel), bilinear filtered
texture mapping (four texels fetched per pixel), trilinear filtered texture mapping (eight texels fetched per pixel), alpha blend-
ing (one frame buffer memory read per pixel), and Z-buffering (one Z-buffer memory read and potentially one Z-buffer memory
write per pixel).

PCI Bus Bandwidth
A lot of manufacturers complain that PCI bandwidth is the biggest obstacle to delivering raw triangle throughput. While this complaint
is usually true, I don’t see most developers complaining about triangle throughput—most are complaining about low fill rate. But I’ll
address this issue here anyway to be thorough.

Assume that an accelerator takes 32-bit parameter values (floating point or fixed point), and that each triangle consists of 6 + 3N
parameter writes (6 for X,Y at each vertex, and 3N being the number of extra parameters required to represent the triangle in this ren-
dering mode). This information is the minimum amount necessary to identify a single triangle. Thus, an RGB-shaded, perspective-cor-
rect texture mapped, Z-buffered triangle will usually require around 27 parameters (R, G, B, S/W, T/W, 1/W, and Z, times three ver-
tices, along with X,Y at each vertex), or 108 bytes per triangle.
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sion sometimes involves a lot of work
converting artwork and crazy palette
tricks to the Land of the Red, Green,
and Blue. 

Using Your
3D Pipeline with Hardware
How you structure your pipeline is very
important. Two basic 3D pipelines are
prevalent: the “batch–up-triangles”
pipeline and the “triangle-at-a-time”
pipeline.  The batch–up-triangles
pipeline works sort of like this.

ffoorr  aallll  vveerrttiicceess

ttrraannssffoorrmm,,  lliigghhtt,,  pprroojjeecctt

ffoorr  aallll  ttrriiaanngglleess

rreennddeerr

Whereas the triangle-at-a-time
pipeline works like this.

ffoorr  aallll  ttrriiaanngglleess

ttrraannssffoorrmm,,  lliigghhtt,,  pprroojjeecctt  aassssoocciiaatteedd

vveerrttiicceess

rreennddeerr

3D accelerators accept data in one
of two basic methods—register writes
and DMA buffers. Unfortunately, these
two methods are ideally suited to differ-
ent 3D pipelines. Register writes often
involve waiting on the 3D chip to finish
previous rendering operations, so the tri-
angle-at-a-time pipeline is ideal because
while the card is rendering the CPU can
be doing transformation, lighting, pro-
jection, and clipping operations in
parallel. Communicating via DMA
buffers, on the other hand, achieves par-
allelism at a higher scale—whole batches
of triangles are rendered while the CPU
goes off and does other stuff. In that
case, the batch–up-triangles pipeline
achieves better parallelism.

Data Conversion
This issue isn’t huge right now; most
game engines spend most of their time
doing rasterization instead of transfor-
mation and lighting. However, in the
future, when high–polygon-count games
become the norm, issues such as data

type and structure conversion will
become crucial to performance. For
now, all I’ll say on the subject is that
data type conversions (float to fixed
point, scaling float values, and so on)
and data structure copying (YYoouurrVVeerrtteexx
to TThheeiirrVVeerrtteexx) can become very expen-
sive when doing ultrahigh–polygon-
count applications.

Why Bother?
So, as a game developer, the question
you may have by now is: “Why both-
er?” A fair question to ask when you
have limited resources and now you
have to justify going off and support-
ing a bazillion different 3D chips. You,
as a game developer, should support a
3D accelerator for one of three rea-
sons: You’re being bribed; you have no
choice; or, best of all, you just think
it’s cool.

Everyone Has a Price
A fundamental fact of life is that game
developers are not supporting the cur-
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rent generation of 3D accelerators
because they think the hardware is cool.
They’re supporting this stuff because
they’re being paid. These bribes, in the
form of cash or veiled in the guise of
“bundling agreements,” can amount to
hundreds of thousands or even millions
of dollars. With many of today’s games
costing between one-half to several mil-
lion bucks, getting that extra wad of
cash for what is hopefully a few weeks
of work is a fairly big incentive to add
support for just about anything. Grant-
ed, cash isn’t the coolest reason to sup-
port some new technology, but it’s bet-
ter than being noble and going bank-
rupt because your project was six
months late. 

Market Realities Dictate
There comes a point when some new
technology reaches critical mass in the
marketplace, and you just have to sup-
port it to be competitive. Thirty–two-bit
DOS games reached critical mass when
developers finally gave up the ghost of
supporting the 286 microprocessor;
sound reached critical mass when cus-
tomers demanded support for their
AdLib and SoundBlaster cards instead
of annoying PC speaker beeps; VGA
reached critical mass when customers
wanted 256-color VGA instead of 16-
color EGA games; Microsoft’s DirectX
will reach critical mass because, well,
Microsoft said so; soon, 3D accelerators
will reach critical mass as well. At some
point, 3D hardware is going to be ubiq-
uitous enough that lack of support will
be hindrance enough to lose significant
sales. We haven’t reached that point yet,
but in a year or two we will. And even if
you don’t believe that 3D acceleration is
a major factor in sales, your publisher
probably does and will lean on you to
add support for 3D acceleration. Harsh,
but true.

Because It’s Cool
To me, the best reason to support any
new technology is that it’s amazingly
awesome and people who play your
game will think you’ve created the
neatest thing since the self-cleaning
garlic press. Unfortunately, writing a
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Modern PCI chipsets can handle around 60-80MB/sec, so in a perfect world (trian-
gle setup is free), 550-750K triangles of the above type can be sent across the PCI
bus per second. This rate is our unbreakable “speed of light,” and no manufacturer
will be able to beat those numbers with those types of triangles using today’s exist-
ing PCI bus implementations.

To make matters worse, a lot of 3D hardware requires that extra data be sent
down, such as error terms, condition flags, state variables, and area calculations; so
the parameter counts given are a best case. Some 3D architectures try packing as
much data into a register as possible, which reduces PCI bandwidth at the cost of
more time spent setting up a triangle. Whether or not this trade off is worthwhile is
debatable.

A game developer’s best solution to this problem is to reduce triangle parameter
count, which means render simpler triangles. A hardware designer’s best solution to
this problem is to support triangle strips, which reduces the amount of data that
needs to be sent across the bus—N independent triangles require 3N vertices to be
sent across the PCI bus, but N triangles in a triangle strip require only 2+N vertices
to be sent across the PCI bus. Note that triangle strips as a primitive are not very
common in most of today’s graphics libraries, but they will become more important in
the future as bus bandwidth becomes a bigger issue.

CPU Bandwidth
Another huge hindrance to achieving raw triangle throughput is host-side triangle
setup. Triangle setup consists of all the work necessary to compute the data a 3D
accelerator needs to render a triangle. Thankfully, most graphics libraries hide this
bit of ugliness from the programmer, and  you only work with an abstract DDrraawwTTrriiaann--
ggllee(()) routine of one sort or another. Within that library, however, exists a lot of con-
ditional code that sets up a triangle for you. For every parameter, N clock cycles will
be spent computing relevant information for that parameter. Here, CPU bandwidth
becomes an issue—if triangle setup requires N cycles, then at most CPU_MEGA-
HERTZ/N triangles can be set up per second, establishing a second, usually lower,
barrier to triangle performance behind PCI bus limitations.

The best way to solve the limitation of CPU bandwidth, aside from having faster
CPUs, is to move triangle setup onto the accelerator itself. Future architectures
will have triangle setup in hardware, and even some of today’s existing architec-
ture such as 3DLabs’ Delta and Rendition Verite provide this feature. From a soft-
ware perspective, the best way to reduce setup overhead is to reduce triangle
parameter count, since this reduces the number of calculations that the CPU must
perform.

Cost
When performance isn’t gated by external physical limitation, it’s probably going to
be limited by tradeoffs the chip designers had to make meet cost goals. For example,
an alpha-blending unit can double as a lighting unit, reducing cost but also resulting
in reduced performance when doing lighting and alpha blending simultaneously (or
possibly even negating this ability outright). The law is simple—the more features
you try and implement within a certain cost goal, the more compromises in quality
and performance you’re going to have to make.
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game has very little to do with coding
and a lot more to do with managing
people, budgets, and schedules; to con-
vince management that some new tech-
nology must be supported (especially if
it’s going to cost you two weeks of pro-
duction time), that technology had bet-
ter be pretty damn amazing. The
downside is that very few of today’s 3D
accelerators are awe inspiring. As a
matter of fact, far too many accelerators
are flat out underwhelming. Thus,
most support for 3D acceleration tech-
nology is the result of bribery, rather
than magnanimity on the part of the
developer.

Stay Tuned
As you can probably tell, the topic of 3D
acceleration can be overwhelming. An
entire book can be written on this topic.
In my next article, I’ll talk about perfor-
mance, show you some benchmark pro-
grams I’ve written, and then run some
3D accelerators through the wringer. ■

For Further Info
Argonaut’s BRender 
http://www.argonaut.com/brender/

Creative Labs’ CGL 
http://www.creaf.com/wwwnew/tech/

devcnr/3dbsuprt.html

Criterion’s RenderWare
http://www.canon.co.uk/csl/rw.htm

Microsoft Direct3D
http://www.microsoft.com/mediadev/

graphics/d3dback1.htm

Rendition’s Verite  
http://www.rendition.com/product.html

SGI OpenGL
http:/ / w w w . s g i . c o m / P r o d u c t s /

Dev_environ_ds.html

3Dfx Interactive’s Voodoo Graphics 
http:/ / w w w . 3 D f x . c o m / p r o d u c t s

/voodoo.html

3Dlabs’ Permedia  
http://www.3dlabs.com/pm-top.htm

3Dlabs’ Delta
http://www.3dlabs.com/delta-top.htm

Brian Hook is a 3D graphics hard-
ware  and  so f tware  consu l tant  and
author of numerous articles and a book
on 3D games programming. He can be
reached at  bwh@wksoftware . com or
http://www.wksoftware.com.
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Inspecting the
3D Pipeline,
Part 1

3 D  P I P E L I N E

R
asterization has been the hot
topic in game development for
the past few years. Image
quality has improved more as
a result of better techniques
for rendering individual poly-
gons than from anything else.
Accordingly, most game de-

velopment literature skips quickly from
the 3D geometry aspects of rendering to
the details of rasterization.

In our scramble to have the fastest,
most robust rasterization in our games,
have we neglected 3D pipeline? Al-
though information about rasterization
is plentiful, finding information on the
3D pipeline, focusing on the game
developer’s perspective, is still difficult.

A solid 3D pipeline is crucial. The
care you take in developing and design-
ing your 3D pipeline will have a pro-
found affect on the presentation of your
game. Your familiarity with the subtleties
and nuances of the 3D pipeline will dic-
tate the control you have over your 3D
objects. In this article, we’re going to run
through the 3D pipeline and give it a
thorough inspection. In each section,
we’ll tighten some loose bolts, we’ll pol-
ish up rusty joints, and, when we’re fin-
ished, we should have a better under-
standing of how everything fits together.

Dealing with Aspect Ratios
Let’s start at the mouth of the 3D pipeline
and work our way up. All of our polygons
spill out of the pipe at a specific place: the
perspective projection. This projection is
responsible for producing the perspective
foreshortening that we expect in a 3D

game. As it is presented in most 3D texts,
the projection of a point p takes the form

,
where wr and hr are the width and height
of the screen (in pixels) at the current
resolution, and d is the distance from the
viewer to the viewplane.

Given the simplicity of the projec-
tion in this form, it is all too tempting to
take the projected points that it produces
and let them spill out into the rasterizer.
But, if we were to do so, we’d be forget-
ting one underlying assumption that this
projection makes: The pixels on the
screen are square. Besides the adjustment
for centering, both p′x and p′y are com-
puted in the same way—their equations
are identical. If we were to project an
actual square, it would come out of the
projection as covering an equal number of
pixels in both x and y. But if pixels are
wider than they are high, or higher than
they are wide, the sides of the square will
not be equal in length when drawn. The
shape would leave the pipeline as a
square, but end up as a rectangle. I don’t
know how this sounds to you, but it sure
sounds to me like there’s a screw loose.

The question is, can we safely make
the assumption that pixels are always
square? Sadly, we cannot. If you think
about it, the size of a pixel on a given dis-
play is determined by two factors: the
dimensions of the display and the resolu-
tion used on that display. The relationship

between the two is clear: The width of a
single pixel is the width of the display
divided by the number of pixels trying to
fit in that width (the horizontal resolu-
tion). The height similarly follows suit.

Standard monitor and TV set dis-
plays are about four-thirds as wide as
they are high. This proportion of hori-
zontal to vertical size is called the aspect
ratio of the display. It is usually
expressed as a single number, the quo-
tient of the width to the height—for the
standard TV or monitor, this would be
4/3 = 1.33. Now, the screen resolution
also has a width and height, and thus an
aspect ratio: at 640×480, the aspect ratio
is also 1.33, and at 320×200, the aspect
ratio is 1.6. When we compare the
aspect ratio of the physical display with
the aspect ratio of the screen resolution,
we can tell if the pixels are square. For
example, 640×480 has the same aspect
ratio as the monitor, 1.33, so the pixels
will be square. On the other hand,
320×200 does not have a 4/3 aspect ratio,
so the pixels will not be square.

Fortunately, we can easily correct
this problem by compensating for higher
or wider pixels when we project. If we
consider the physical dimensions of the
screen to be wp by hp and the screen res-
olution to be wr pixels by hr pixels as
before, then all we need to do is solve
the following proportion:

.
This proportion says that the width

of a pixel is equal to the height of a pixel
multiplied by some scalar a. This scalar

  

w
w

a
h
h

r

p

t

p

=

   

¢ = +

¢ = +

p d
p
p

w

p d
p

p
h

x
x

z

r

y
y

z

r

2

2

36 GAME DEVELOPER • DECEMBER 1996/JANUARY 1997 http://www.gdmag.com



is our compensation for a possible
inequality in the aspect ratios of the
physical dimensions and the screen reso-
lution; it scales the height so that it is
always equal to the width. Solving for a,
we get

or

,
where rp is the proportion wp/hp, which,
as I mentioned previously, is the com-
mon way physical aspect ratios are given.

Now that we have a, all we need to
do is use it to scale the y values we gen-
erate. This will shrink or expand all our
heights to compensate for nonsquare
pixels. We can express it directly as part
of the projection equation.

.
That’s all there is to it. Now your

projection will work if you want your
game to run at 640×480 on a film pro-
jector (rp = 1.85), or 320×200 on a regu-
lar monitor or TV (rp = 1.33).

Using Field of View
We’ve tightened up one loose screw in
our projection, but the rest of the equa-
tion’s still a bit rusty. When I look at the
projection equation, the multiplier d
raises a lot of questions. From the equa-
tion alone, it is not clear what value d
should have, or how that value needs to
change as the other parameters of the

equation change. To clarify these ques-
tions, we need to understand what our
requirements for d are, and then derive a
good formula for computing d.

First, what does d do in our equa-
tion? Figure 1 shows two perspective pro-
jections of a cube as viewed from above.
The essential difference between the
smaller value of d and the larger value, as
you can see from the diagram, is in the
lines of projection for the cube. For the
smaller value, the lines diverge quickly,
which means that the change in projected
size between far side of the cube and near
side is great. For the larger value, the lines
diverge slowly, yielding little difference
between far and near. Since d controls the
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Figure 1. Varying values of d
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exaggeration of the perspective in this way, it makes sense that
our value of d should be specified by an intuitive measure of the
amount of perspective foreshortening we wish to have.

In  examining the same figure, the view is apparently
much narrower when the value of d is greater—thus, d also
affects the breadth of the view. The smaller values of d will
make objects appear smaller, since they’re not expanding but
the breadth of the view is. Looking back at our projection
equation, this conclusion makes sense: d scales both x and y.
The smaller d is, the less scaling x and y will undergo, and thus,
the smaller everything will appear.

Figure 2 shows the affect of keeping the same d, but vary-
ing the width in pixels, wr, of the screen. Clearly, the larger the
width of the screen, the larger the view becomes. So, d cannot
be considered in isolation—while d affects the breadth of the

view, it does not uniquely determine that breadth.
As the screen resolution changes, d must also
change to compensate. We should therefore
require that our value for d provide consistent
results across resolutions.

Given requirements we have stated, we can
derive a formula for reliably computing d. These
requirements are actually not very difficult to meet
if we pick a measure of perspective foreshortening
and breadth of the view that is not dependent on d
or wr. A convenient measure that many people use

is the field of view. If you think of the lines formed by the viewer
and the edges of the screen (which are shown as dotted lines in
Figures 1 and 2), the field of view is the measure of the angle
between these lines. It is a constant measure of the breadth of the
view. As the angle gets larger, the view becomes wider, and there
is more perspective foreshortening. As the angles becomes small-
er, the view is more narrow, and there is less foreshortening.

Through trigonometry, we can use the field of view to
derive the relationship between wr and d that we need. Figure 3
shows the field of view as θ and forms the triangle relating it to
wr and d. The simple trigonometric relation is

.
   
tan

q
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For any given screen resolution, we will know wr, or the
width in pixels. We specify the field of view θ as a measure of
the perspective foreshortening we want. So, the only unknown
is d, and we can easily solve for it.

This calculation gives us exactly what we need: an equation
for d based on an intuitive measure of perspective foreshortening,
and that produces consistent results across screen resolutions.

With a more solid understanding of the value of d, and
having already found the necessary multiplier to correct for
aspect ratio, we can rewrite our original perspective projection to
incorporate these values. The final formulation is given by

.
It is important to note that the values for wr, hr, rp, and θ

are all constant for a given screen mode. Thus, the terms I’ve
isolated in parentheses in the above equations can all be pre-
computed and stored as only two values: a multiplier for the x
projection and a multiplier for the y projection. Our new pro-
jection, while far more robust, is no more computationally
expensive than the one with which we started.

Understanding the Dot Product
A 3D pipeline, like a real pipeline, has many individual “pipes,”
or stages, that its contents move through. If you look closely at
any 3D pipeline, you’d see that, stage after stage, a single opera-
tion appears over and over again: the dot product. It’s used
everywhere—transforms, lighting, clipping, backface culling—
you name it, the dot product’s involved somewhere. Despite the
dot product’s large repertoire of services, most people don’t pay
it much attention. However, as we’re about to see, there’s a lot
more to the dot product than meets the eye.

I’m sure everyone has seen the following form of the dot
product, as it is the method we all use for dot product
computations:

.
I would also wager that quite a few of you have seen the

dot product shown as

(Eq. 1),

which is often used to compute the angle between two vectors
(the equation is easily solved for θ). Did you ever wonder why
there are two common equations for the dot product?

One answer to that question comes from a geometric for-
mulation based on the law of cosines. However, I’m not going
to prove the law of cosines here, but its derivation is straightfor-
ward and appears in most books that cover trigonometry. From
the triangle formed by the vectors u, v, and u-v, as shown in
Figure 4, the law of cosines gives us

.
Does the |u||v|cos(θ) part look familiar? It should—it’s one

of the forms for the dot product. If we solve for it, we get

.
If we substitute in the equation for Euclidean distance for

the lengths, we get Equation A. After simplifying Equation A,
we are left with the equality 

.
This progression clearly shows the equivalence of the two

forms of the dot product. But this method hides much of the
real relationship between the two equations.

Looking at it another way, the two forms of the dot product
can be thought of as representing two different things: one a defi-
nition and the other
an operation. Put
another way, we can
think of Equation 1
as the definition of
the dot product. We
can consider the other
form of the dot prod-
uct the operation we
need to perform to
meet the requirement
set by the definition.

Instead of trying to mutate one form of the dot product into
the other by means of geometry, we can simply define what we
want our dot product to do, where we want it to do this, and how
we want it to do this. The operation we want will naturally come
out of these definitions. Equation 1 is obviously the “what”; it
explains exactly what the dot product should do.

Now we need to define where we want the dot product to
work. Equation 1 has no context for its demands; it does not
specify how many components the vectors u and v must have, or
what those vectors mean. Obviously, we want them to be three-
dimensional, Euclidean vectors, so the space we’re concerned
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Equation A.
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with is the space
defined by the
x, y, and z axes.

In mathe-
matics, the con-
cept of an axis
system is more
f o r m a l i z e d .
Each three-dim-
ensional coordi-
nate must be
measured rela-

tive to a vector that defines how that coordinate is interpreted.
These vectors are called basis vectors, and, for three dimensions, they
are assigned the letters i, j, and k. They are the three unit vectors
that coincide with the x, y, and z axes with which we are familiar.

A point a is measured by its x component along the vector
i, its y component along j, and its z component along k. We can
write this symbolically as

(Eq. 2).
This equation says that the vector a is made up of ax units

of i, ay units of j, and az units of k.
The three-dimensional basis vectors we use for 3D graphics

have two important properties. First, they are mutually perpendic-
ular. Each goes in a completely different direction than either of
the other two. This property is called orthogonality, and we call the
basis orthogonal. From our definition in Equation 1, we know that
when two vectors are perpendicular, the dot product is equal to 0
(the cosine of a right angle is 0, which makes the entire expression
0). The property of orthogonality can therefore be written as

(Eq. 3).
since i, j, and k are mutually perpendicular and must have dot
products equal to 0.

The second important property is that the basis vectors i, j,
and k are all unit vectors. Looking to the definition of the dot
product in Equation 1, we can see that if the angle between two
vectors is 0 (meaning they point in the same direction), the cosine
will be equal to 1, and their dot product is equal to the product of
their lengths. Thus, the dot product of a vector with itself is the
squared length of the vector. Using this property, we can write

(Eq. 4)
since the squares of the lengths of each of the basis vectors are
all equal to 1. Because our basis vectors are all unit length, and
they are orthogonal, we say they are orthonormal.

We now have defined what the dot product is and where it
works. We still need to define how we want the dot product to
work. First, it commutes.

(Eq. 5)
Second, it distributes.

(Eq. 6)

Third, multiplication by a scalar associates.

(Eq. 7)
Finally, we are ready. Keep in mind that the real beauty

in the proof is not that it shows the two forms of the dot
product are equal, but rather that it embodies an elegant way
of doing so. Think about the seven definitions we have just
enumerated: These are the properties of our dot product and
our basis. We can think of these properties as requirements
we have laid out that must be fulfilled. Now we will see that
we can use those requirements to generate the dot product, as
some might say, “right out of thin air.”

To begin, we expand the two vectors of the dot product
into their component form, as we defined in Equation 2.

Now, because of Equation 6, we can distribute the entire
expression for u over the component vectors of v.

.
Multiplication by a scalar is associative, as we stated in

Equation 7; so, we can group the scalars.

Given that the dot product of i, j, or k with one of the
other two basis vectors is equal to 0 (Equations 3 and 5), the
majority of the terms drop, and we get

Finally, because the dot product of any basis vector with
itself is equal to 1 (Equation 4), the dot products all drop and
leave the familiar

.
So there you have it. Instead of using geometric theorems,

we simply stated the seven requirements we wanted to be true of
our system, and we produced the operator we call the dot product.

A Quick Look Ahead
We’ve come to the end of our 3D pipeline excursion for this
issue. If you’re like me, every time you re-examine the mathe-
matics of 3D graphics, you find something new you didn’t see
before. Next issue, we’ll look more closely at a higher-level con-
struct of the 3D pipeline, the transform matrix.  ■

Casey Muratori is busy trying to think up something witty to
say in his bio. Creative suggestions are welcome at cmu@netcom.com.
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Figure 4.  The dot product
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Exploiting
Surround Sound Using
DirectSound3D

D I R E C T S O U N D 3 D

Y
ou’re hiding in a dark tunnel
waiting to destroy an enemy.
Suddenly you hear heavy
breathing... coming from
behind you. Sound like fanta-
sy? Think again. Thanks to
new audio spatializing tech-
nologies, these kinds of audio

cues can help you take your games to a
new level of player immersion and excite-
ment. These technologies enable you to
create more realistic virtual environments
by going beyond the basic stereo panning
for left and right placement of sounds.
Microsoft’s DirectX version 3.0 provides
this functionality using a new API called
DirectSound3D. This article will cover
some concepts behind positional 3D
sound, how to use Microsoft’s Direct-
Sound3D API, and how to create a cool
sample application to boot.

How 3D Sound Works
Sounds can be heard in three dimen-
sions because of the effects the head and

outer ears have on sound waves arriving
at the listener. Virtual 3D sounds are
created by modeling the head and outer
ears as digital filters. By applying these
filters to a digitized sound, you can place
a sound anywhere in 3D space. Some of
the more important cues used to localize
a sound include interaural time differ-
ence, interaural intensity difference,
head-related transfer function, dimin-
ished intensity with distance, head
movement, and vision. The last two,
head movement and vision, are not tech-
nically audio cues, but they are very
important in helping a listener locate a
sound in 3D space.

Interaural time difference (ITD) is
the time delay between a sound wave
arriving first at one ear, then the other.
ITD is a primary cue for determining
the lateral position of sounds. For a
sound source directly in front of a listen-
er, the sound waves will reach the listen-
er’s left and right ears at the same time
(Figure 1, position X). For a sound
source located 45 degrees to the right of
a listener, the sound waves will reach the
listener’s right ear before the left ear
(Figure 1, position Y). Left and right
localization is the most pronounced
effect of the opposing location of ears on
a human head.

Interaural intensity difference (IID)
is also a lateral localization cue. The ear
nearest the sound source receives more
sound energy than the farther ear. The
sound source at position X (Figure 1
again) produces no IID cues. The sound
source at position Y will product an IID
cue at the left ear because the head acts
as an obstacle, or a “shadow,” causing
attenuation above higher frequencies

(above 1.5kHz). Applying IID to all fre-
quencies is the most efficient approach,
because IID doesn’t seem to effect fre-
quencies below 1.5kHz.

Head-related transfer function
(HRTF) is caused by sound reflecting
and diffracting off the complex and
asymmetrical surfaces of the outer ear,
and, to a lesser extent, the shoulder and
torso. Each ear modifies the sound dif-
ferently, producing a pair of left and
right impulse responses for determining
a specific spatial location. HRTF goes
beyond the simple left or right position-
ing of IID and ITD by producing cues
to an actual three-dimensional location
of the sound in relation to the listener’s
head. The data for HRTF is collected
from natural or artificial ears and applied
to the original sound sample using com-
plex mathematical formulas. The result-
ing linear function is used to generate
finite impulse response (FIR) filters to
create a spatial location for a sound sam-
ple. Unfortunately, these computational-
ly expensive calculations currently
require powerful DSP chips to imple-
ment in real time. 

Diminished intensity with distance
refers to distant sounds having less vol-
ume than closer sounds. For a stationary
sound source, unless the sound is a famil-
iar one, this doesn’t provide an effective
distance cue. A sound that is approach-
ing or moving away from the listener can
be easily identified since it will have a
related increasing or decreasing intensity.

The listener can also use head
movement to help place a sound by sam-
pling the sound with the ears pointed in
different directions. Although it is a sig-
nificant factor in our ability to localize a
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Figure 1. Interaural time
difference (ITD) and interaural
intensity difference (IID).

X
Y



sound source, without special hardware
to track a user’s head orientation, head-
motion data is not available in generat-
ing a localized sound.

Vision is one of the most important
cues in placing a sound. Vision helps us
quickly locate the physical location of a
sound and confirm the direction that we
aurally perceive.

DirectSound3D
DirectSound3D is an extension to stan-
dard DirectSound functionality, so a
quick recap is in order. Like most
DirectX components, DirectSound is
implemented as a COM (Component
Object Model) object and the APIs are
the interface to a DirectSound object. 

DirectSound uses two main objects,
the DDiirreeccttSSoouunndd object and the DDiirreecctt--
SSoouunnddBBuuffffeerr object. The DDiirreeccttSSoouunndd
object creates access to a particular sound
device (such as a sound card). It’s possi-
ble to enumerate through all of the avail-
able sound devices, checking the capabil-
ities of each, and create a DDiirreeccttSSoouunndd
object best suited for the purpose.

The DDiirreeccttSSoouunnddBBuuffffeerr object repre-
sents the actual single output audio
stream or sound. There are two types of
DDiirreeccttSSoouunnddBBuuffffeerr: primary and secondary.
The primary buffer contains what is being
played to the speakers. Secondary buffers
store sound data ready to be played.
When a secondary buffer is played to the
primary buffer, DirectSound automatical-
ly converts and mixes the sound data.
(For more specific information, refer to
“DirectSound Unplugged” by Jeff
Roberts, in the June/July ’96 issue.)

DirectSound3D augments Direct-
Sound with two main components, the

3D sound source buffer and the listener.
The sound source is represented by a 3D-
enhanced DirectSound buffer, appropri-
ately called a DDiirreeccttSSoouunndd33DDBBuuffffeerr. The
IIDDiirreeccttSSoouunndd33DDBBuuffffeerr is an interface on the
secondary buffer that controls the para-
meters of a particular sound source. The
listener represents the person who hears
the sound generated by sound buffer
objects in 3D space; it is depicted by an
IIDDiirreeccttSSoouunndd33DDLLiisstteenneerr. The IIDDiirreeccttSSoouunndd--
33DDLLiisstteenneerr is an interface on the primary
buffer that controls the listener’s position
and apparent velocity in 3D space. It also
controls the environmental parameters
that affect the behavior of the Direct-
Sound component, such as the amount of
doppler shift. DirectSound3D was
designed to use the same positioning
information as Direct3D, DD33DDVVEECCTTOORR (List-
ing 1). The same left-handed coordinate
system is used by DirectSound and
Direct3D (the positive x-axis points to
the right, the positive y-axis points up
and the positive z-axis points away from
the viewer).

Welcome to the world

of 3D audio. Using

audio cues that mimic

the way you

perceive sounds,

DirectSound3D

can place an object

behind, above,

or below you.

Greg Graham
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typedef struct _D3DVECTOR {
union {

D3DVALUE x;
D3DVALUE dvX;

};
union {

D3DVALUE y;
D3DVALUE dvY;

};
union {

D3DVALUE z;
D3DVALUE dvZ;

};
} D3DVECTOR, *LPD3DVECTOR;

D3DVALUE
typedef float D3DVALUE, *LPD3DVALUE;

Listing 1.  D3DVECTOR structure



Three-Trick Pony 
This first incarnation of DirectSound3D
uses three tricks to position a sound in
space: It changes the arrival offset at the
listener’s ear, alters the volume, and uses
muffling. 
• Arrival offset. Arrival offset is Direct-

Sound3D’s implementation of ITD,
the main element for displacing a
sound laterally (left or right). ITD is
the most effective cue implemented
by DirectSound3D.

• Volume. DirectSound3D manipulates
volume in two ways to localize a sound
source in 3D. The first is a simple vol-
ume offset at the listener’s ears used to
simulate IID. Although ITD and IID
are mainly lateral cues, to a smaller
degree they also help localize a sound
source in the vertical plane (elevation).
DirectSound3D calculates the volume
of a sound based on the distance
between the sound source and the lis-
tener. The closer a sound is to the lis-
tener, the louder it sounds modeling
the diminished intensity with distance
mentioned previously. DirectSound
also provides a rolloff factor that you
can use to exaggerate this effect. 

• Muffling. Muffling is the effect of a
sound traveling in a roundabout way
before it reaches the ear; it’s known as
the head shadow effect. Low frequen-
cies can wrap around, and go through,
the listener’s head and still be heard
with close to normal intensity. High
frequencies can’t wrap or travel
through the listener’s head so they get
blocked and arrive at the ears with less
intensity. Muffling is the primary
method used to distinguish sounds
coming from behind or in front of a
listener. This front or back distinction
happens because the listener’s ears are
oriented forward, so a sound coming
from behind a listener will be muffled
as compared to a sound coming from
the front. Muffling also plays a role in
lateral sound placement, because a
sound originating from the listener’s
right will be slightly muffled at the
listener’s left ear because of the mass
of the listener’s head.

These three cues are applied to a
sound source to place it in 3D space.

The sound is transformed, using the 3D
environment settings, from a single
mono sound into a stereo sound with
specific left and right channels. This
stereo sound better localizes a sound
source with headphones than with two
speakers. Because DirectSound treats the
sound source as a monoaural sound to
create the 3D stereo signal, all of your
3D sounds should be mono so Direct-
Sound doesn’t need to convert them. 

DirectSound3D Capabilities
The IIDDiirreeccttSSoouunndd::::GGeettCCaappss method
returns the capabilities of the DDiirreeccttSSoouunndd
object in the DDSSCCAAPPSS  structure. Of the six
data members relevant to 3D sound, the
first three describe the hardware 3D-
position capabilities of the device
(ddwwMMaaxxHHww33DDAAllllBBuuffffeerrss, ddwwMMaaxxHHww33DDSSttaattiicc--

BBuuffffeerrss, and ddwwMMaaxxHHww33DDSSttrreeaammiinnggBBuuffffeerrss),
and the other three describe the free, or
unallocated, hardware 3D-positional
capabilities of the device (ddwwFFrreeeeHHww33DDAAllll--
BBuuffffeerrss, ddwwFFrreeeeHHww33DDSSttaattiiccBBuuffffeerrss, and
ddwwFFrreeeeHHww33DDSSttrreeaammiinnggBBuuffffeerrss). Because this
version of DirectSound3D is imple-
mented completely in software, all of
these are zero for the first release.

To determine if a buffer is config-
ured for 3D sound, call the IIDDiirreeccttSSoouunndd--
BBuuffffeerr::::GGeettCCaappss method and check DDSSBB--
CCAAPPSS..ddwwFFllaaggss for the DDSSBBCCAAPPSS__CCTTRRLL33DD flag. 

IDirectSound3DListener
Interface
Applications can use the methods of the
IIDDiirreeccttSSoouunndd33DDLLiisstteenneerr interface to
retrieve and set parameters that describe
a listener’s position and velocity, orienta-
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D
irectSound3D supports 3D localization of audio streams. However, it’s software-
only, and will likely remain so. Faced with the classic tradeoff of quality vs. CPU
utilization, Microsoft made the only choice which would be accepted by game
developers: to sacrifice quality for speed.

The new generation of audio DSP hardware supports 3D localization as well as mixing of
audio streams. A good example of this is VLSI’s new Songbird Pro chip. It’s capable of 3D
audio and can believably place a sound behind or below the listener, especially through
headphones.
Unfortunately, DirectSound3D will not pass 3D positional information to the sound driver ;
DirectSound is capable of utilizing hardware-accelerated mixing, but not hardware-assist-
ed 3D localization. The DEV3D specification (named for DiamondWare, Echo Speech, and
VLSI Technology, the companies who developed it) is an extension to DirectSound that
enables hardware DSPs for 3D localization. The DEV3D home page, www.dw.com/dev3d,
contains the actual specification document and reference code.
DEV3D uses regular IIDDiirreeccttSSoouunnddBBuuffffeerr  objects (as opposed to IIDDiirreeccttSSoouunndd33DDBBuuffffeerr
or IIDDiirreeccttSSoouunndd33DDLLiisstteenneerr  objects). The concept is simple: Put a magic number into a
buffer and everything after that point is understood to be DEV3D information that is to be
either used by the driver or passed to the hardware.
The first step is to detect the presence of DEV3D. If the installed drivers don’t support it,
the extra data in the buffers would play as noise. Allocate a DDiirreeccttSSoouunnddBBuuffffeerr  of pre-
cisely the length of the ddeevv33dd__IINNFFOO  struct. Lock the entire buffer, copy the ddeevv33dd__QQUUEERRYY
string into the sszzMMaaggiiccSSttrriinngg  field, unlock the buffer, and lock it again. If
sszzMMaaggiiccSSttrriinngg  now holds ddeevv33dd__SSIIGGNNAATTUURREE, then DEV3D is supported. The remaining
struct members tell you how many total and current voices the hardware is capable of
localizing at high, medium, and low quality. You may perform this query at any time.
To actually localize a sound in three-dimensional space, allocate its DDiirreeccttSSoouunnddBBuuffffeerr  a
little larger than you need—the constant ddeevv33dd__EEXXTTRRAABBUUFF  is ##ddeeffiinneed to the right size.
Lock the buffer and then copy into it the ddeevv33dd__LLOOCCAALLIIZZEE  string, a priority DDWWOORRDD  (to help
DEV3D decide which voices must be done at high quality and which others can be lower-
quality or not localized at all, if necessary), a filled-in DDSS33DDBBUUFFFFEERR  struct, and finally a
filled-in DDSS33DDLLIISSTTEENNEERR  struct.
When you perform the lock operation, the structures are initialized to their current values,
so the 3D information is both readable and writeable.

-Keith Weiner
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tion, and listening environment in 3D
space. The first step in using an IIDDiirreecctt--

SSoouunndd33DDLLiisstteenneerr object is to obtain an
IIDDiirreeccttSSoouunndd33DDLLiisstteenneerr interface pointer.
An IIDDiirreeccttSSoouunndd33DDLLiisstteenneerr interface
pointer is obtained from a primary 3D
sound buffer. Listing 2 shows how to
create a primary 3D sound buffer. The
QQuueerryyIInntteerrffaaccee method is used to deter-
mine if the desired interface is available
(to make sure this version of Direct-
Sound supports 3D sound). Use the -
IIDDiirreeccttSSoouunnddBBuuffffeerr::::QQuueerryyIInntteerrffaaccee

method on the resulting buffer to obtain
a pointer to an IIDDiirreeccttSSoouunndd33DDLLiisstteenneerr
interface for that buffer. Note that
the QQuueerryyIInntteerrffaaccee call will fail if the pri-
mary buffer was not created with the
DDSSBBCCAAPPSS__CCTTRRLL33DD flag.

////  llppDDssbbPPrriimmaarryy  wwaass  ccrreeaatteedd  wwiitthh

DDSSBBCCAAPPSS__CCTTRRLL33DD..

hhrr  ==  llppDDssbbPPrriimmaarryy-->>QQuueerryyIInntteerrffaaccee

((IIIIDD__IIDDiirreeccttSSoouunndd33DDLLiisstteenneerr,,&&llppDDss33dd

LLiisstteenneerr));;

iiff((  SSUUCCCCEEEEDDEEDD((hhrr))  ))  {{

////  PPeerrffoorrmm  33DD  ooppeerraattiioonnss..
}}

The IIDDiirreeccttSSoouunndd33DDLLiisstteenneerr  object
can be manipulated in a variety of ways.
All of the modifiable listener’s parame-
ters are contained in the DDSS33DDLLiisstteenneerr
structure (Listing 3). You can set (or
get) these parameters one at a time
using the methods described later, or all
at once in a batch. To execute a batch
call you set all of the listener’s parame-
ters, or read from a filled in DDSS33DDLLiisstteenneerr
structure, with calls to the IIDDiirreecctt--

SSoouunndd33DDLLiisstteenneerr::::GGeettAAllllPPaarraammeetteerrss or
IIDDiirreeccttSSoouunndd33DDLLiisstteenneerr::::SSeettAAllllPPaarraa--

mmeetteerrss methods. 
Every change to a 3D listener para-

meter requires a recalculation of the 3D
positional filter parameters. For maxi-
mum efficiency, an application should
make parameter changes while using the
DDSS33DD__DDEEFFEERRRREEDD flag in the ddwwAAppppllyy para-
meter of the applicable method. The
application then calls IIDDiirreeccttSSoouunndd33DD--
LLiisstteenneerr::::CCoommmmiittDDeeffeerrrreeddSSeettttiinnggss when
all settings are complete. 

There are three factors you can use
to simplify using DirectSound3D or to
calibrate with your virtual environment:
the distance factor (different from mini-
mum and maximum distance settings),
the doppler factor, and the rolloff factor.

The DirectSound default distance
unit is measured in meters. You can set
the distance factor to automatically con-
vert all of your game’s units to meters. If
your base distance unit is yards, then set-
ting the distance factor to .91440018282
(the number of meters in a yard) will
convert the units appropriately. You can
manipulate this factor using the methods
IIDDiirreeccttSSoouunndd33DDLLiisstteenneerr::::SSeettDDiissttaanncceeFFaaccttoorr or
DDiirreeccttSSoouunndd33DDLLiisstteenneerr::::GGeettDDiissttaanncceeFFaaccttoorr.

Doppler shift occurs when the fre-
quency of sound waves increase as sound
source and listener approach each other
and decrease when they move apart.
This effect it typified by the high-
pitched wail of an approaching siren
seeming to drop in pitch after the siren
passes. In the 3D environment, Direct-
Sound3D applies the doppler shift to a
sound source based on the relative veloc-

ity between the listener and one or more
3D sound buffers. The amount of
doppler shift applied is scaled from zero
to ten, in whole numbers. These num-
bers represent a multiple of the doppler
effects found in the real world. No
doppler shift is applied to sound at zero,
and ten times the real world amount of
doppler shift is applied at ten. The
IIDDiirreeccttSSoouunndd33DDLLiisstteenneerr::::GGeettDDoopppplleerrFFaaccttoorr

method retrieves the doppler factor set
for a 3D listener, and the IIDDiirreecctt--
SSoouunndd33DDLLiisstteenneerr::::SSeettDDoopppplleerrFFaaccttoorr

method is used to set a new value.
Velocity information is used only in cal-
culating the effect of doppler shift. The
velocity settings have nothing to do with
the listener’s current or future position.
Modifying the listener’s velocity settings
is a convienient way to increase or
decrease the doppler shift on all buffers
heard by the listener. Velocity values,
used for global doppler shift effects, can
be set or retrieved using the IIDDiirreecctt--
SSoouunndd33DDLLiisstteenneerr::::SSeettVVeelloocciittyy and
IIDDiirreeccttSSoouunndd33DDLLiisstteenneerr::::GGeettVVeelloocciittyy

methods. When both position and
velocity settings are changing, it is a
good idea to use deferred mode to keep
them synchronized.

The amount of attenuation for a
given sound is based on the listener’s
distance from the sound source and the
rolloff factor. The rolloff factor affects
how quickly the sound gets louder as it
approaches the listener. Like the
doppler factor, the rolloff factor is a
multiple of real world sound. At zero,
there is no rolloff factor, and at ten,
DirectSound applies ten times the real
world amount of attenuation. An appli-
cation can set and retrieve the current
rolloff factor by using the IIDDiirreecctt--
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typedef struct {
DWORD      dwSize;
D3DVECTOR  vPosition;
D3DVECTOR  vVelocity;
D3DVECTOR  vOrientFront;
D3DVECTOR  vOrientTop;
D3DVALUE   flDistanceFactor;
D3DVALUE   flRolloffFactor;
D3DVALUE   flDopplerFactor;

} DS3DLISTENER;

Listing 3.  DS3DLISTENER structure

Buffer3D()
{

IDirectSoundBuffer *pDSBuffer = NULL;
DSBUFFERDESC dsBDesc = {0};

memset( &dsBDesc, 0,sizeof(DSBUFFERDESC));
dsBDesc.dwSize = sizeof(dsBDesc);
dsBDesc.dwFlags = DSBCAPS_CTRL3D | DSBCAPS_PRIMARYBUFFER;
dsBDesc.dwBufferBytes = 0; // Zero required for primary buffer

if (g_pDirectSound->CreateSoundBuffer(&dsBDesc, &pDSBuffer, NULL) != DS_OK)
pDSBuffer = NULL;

return pDSBuffer;
}

Listing 2.  Create a Primary 3D Sound Buffer.IDirectSoundBuffer *CreatePrimarySound-
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SSoouunndd33DDLLiisstteenneerr::::SSeettRRoollllooffffFFaaccttoorr and
IIDDiirreeccttSSoouunndd33DDLLiisstteenneerr::::GGeettRRoollllooffffFFaaccttoorr

methods, respectively. 
The core of the DDSS33DDLLiisstteenneerr infor-

mation is the position of the listener. An
application can set and retrieve a listen-
er’s position in 3D space by using the
IIDDiirreeccttSSoouunndd33DDLLiisstteenneerr::::SSeettPPoossiittiioonn  and
IIDDiirreeccttSSoouunndd33DDLLiisstteenneerr::::GGeettPPoossiittiioonn

methods, respectively.
The listener’s orientation plays a

strong role in 3D effects processing. Ori-
entation refers to the direction the listen-

er is facing and is defined by the relation-
ship between two vectors that share an
origin. DirectSound calls these vectors
“top” and “front.” Both vectors originate
at the center of the listener’s head, with
the top vector going straight up and the
front vector proceeding at a right angle
through the listener’s face. Figure 2 illus-
trates this concept. An application sets
the listener’s orientation by using the
IIDDiirreeccttSSoouunndd33DDLLiisstteenneerr::::SSeettOOrriieennttaattiioonn

method, and retrieves it with the IIDDiirreecctt--
SSoouunndd33DDLLiisstteenneerr::::GGeettOOrriieennttaattiioonn. By
default, the top vector is (0,1.0,0), and
the front vector is (0,0,1.0). 

IDirectSound3DBuffer
Interface
Games use the methods of the
IIDDiirreeccttSSoouunndd33DDBBuuffffeerr  interface to retrieve
and set parameters that describe the
position, orientation, and environment
of a sound buffer in 3D space. As for the
IIDDiirreeccttSSoouunndd33DDLLiisstteenneerr, the first step is to
obtain an IIDDiirreeccttSSoouunndd33DDBBuuffffeerr interface
pointer. To do this, you must first create
a secondary 3D sound buffer (Listing 4).
Use the IIDDiirreeccttSSoouunnddBBuuffffeerr::::QQuueerryyIInntteerrffaaccee
method on the resulting buffer to obtain

a pointer to an IIDDiirreeccttSSoouunndd33DDBBuuffffeerr
interface for that buffer. Note that the
QQuueerryyIInntteerrffaaccee  call will fail if the sec-
ondary buffer was not created with the
DDSSBBCCAAPPSS__CCTTRRLL33DD flag.

////  llppDDssbbSSeeccoonnddaarryy  wwaass  ccrreeaatteedd  wwiitthh

DDSSBBCCAAPPSS__CCTTRRLL33DD..

hhrr  ==  llppDDssbbSSeeccoonnddaarryy-->>QQuueerryyIInntteerrffaaccee

(( II II DD __ II DD ii rr ee cc tt SS oo uu nn dd 33 DD BB uu ff ff ee rr ,,

&&llppDDss33ddBBuuffffeerr));;

iiff((  SSUUCCCCEEEEDDEEDD((hhrr))  ))  {{

////  SSeett  33DD  ppaarraammeetteerrss  ooff  tthhiiss  ssoouunndd..

}}

Like IIDDiirreeccttSSoouunndd33DDLLiisstteenneerr, batch
parameter manipulation is available using
the IIDDiirreeccttSSoouunndd33DDBBuuffffeerr::::GGeettAAllllPPaarraammee--
tteerrss and IIDDiirreeccttSSoouunndd33DDBBuuffffeerr::::SSeett--
AAllllPPaarraammeetteerrss methods. See Listing 5 for
the DDSS33DDBBuuffffeerr structure.

There is a point near a sound source
beyond which the listener will no longer
perceive the volume increasing as it draws
closer. This point is the minimum dis-
tance for the sound source, corresponding
to the maximum logical limit for volume.
Similarly, the maximum distance for a
sound source represents the farthest point
at which the sound doesn’t get any qui-
eter. The minimum and maximum
distance methods are IIDDiirreeccttSSoouunndd--
33DDBBuuffffeerr::::SSeettMMaaxxDDiissttaannccee and IIDDiirreecctt--
SSoouunndd33DDBBuuffffeerr::::SSeettMMiinnDDiissttaannccee. These
methods are effective in normalizing dif-
ferent sound levels. A good example is the
difference between a fly and a helicopter.
You could give the fly a minimum dis-
tance of one inch and the helicopter a
minimum distance of one mile. Thus, the
fly must be two inches away to be half as
loud, but the helicopter has to fly two
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typedef struct {
DWORD     dwSize;
D3DVECTOR  vPosition;
D3DVECTOR  vVelocity;
DWORD     dwInsideConeAngle;
DWORD     dwOutsideConeAngle;
D3DVECTOR  vConeOrientation;
LONG      lConeOutsideVolume;
D3DVALUE     flMinDistance;
D3DVALUE     flMaxDistance;
DWORD     dwMode;

} DS3DBUFFER;

Listing 5.  DS3DBUFFER structure

BOOL Create3DSoundBuffer(DWORD dwBuf, DWORD dwBufSize, DWORD dwFreq, DWORD dwBitsPerSample,
DWORD dwBlkAlign)
{

PCMWAVEFORMAT pcmwf;
DSBUFFERDESC dsBDesc;

// Set up wave format structure.
memset( &pcmwf, 0, sizeof(PCMWAVEFORMAT) );
pcmwf.wf.wFormatTag         = WAVE_FORMAT_PCM;      
pcmwf.wf.nChannels          =  1; // mono format for efficiency
pcmwf.wf.nSamplesPerSec     = dwFreq;
pcmwf.wf.nBlockAlign        = (WORD)dwBlkAlign;
pcmwf.wf.nAvgBytesPerSec    = pcmwf.wf.nSamplesPerSec * pcmwf.wf.nBlockAlign;
pcmwf.wBitsPerSample        = (WORD)dwBitsPerSample;

// Set up DSBUFFERDESC structure.
memset(&dsBDesc, 0, sizeof(DSBUFFERDESC));  
dsBDesc.dwSize              = sizeof(DSBUFFERDESC);
dsBDesc.dwFlags             = DSBCAPS_CTRL3D; 
dsBDesc.dwBufferBytes       = dwBufSize; 
dsBDesc.lpwfxFormat         = (LPWAVEFORMATEX)&pcmwf;

if (DS_OK != g_lpDS->CreateSoundBuffer(&dsBDesc, &g_lpSounds[dwBuf], NULL))
return FALSE;

// Query for the 3D Sound Buffer interface.
if (DS_OK != g_lpSounds[dwBuf]->QueryInterface(IID_IDirectSound3DBuffer, 

(void**) &g_lp3dSounds[dwBuf]))
return FALSE;

return TRUE;
}

Listing 4.  Create a Secondary 3D Sound Buffer.

Figure 2. Top and Front Direct-
Sound3D orientation vectors.

Top

Front
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miles away before it is half as loud. 
The IIDDiirreeccttSSoouunndd33DDBBuuffffeerr allows

you to set one of three modes of opera-
tion. Using the IIDDiirreeccttSSoouunndd33DD--

BBuuffffeerr::::SSeettMMooddee  method, you can turn
off 3D effects with DDSS33DDMMOODDEE__DDIISSAABBLLEE,,
return to normal 3D mode with
DDSS33DDMMOODDEE__NNOORRMMAALL,,  or set a buffer to be in
head-relative mode with DDSS33DDMMOODDEE__HHEEAADD--
RREELLAATTIIVVEE..  Head-relative mode means
that the position parameters of this
buffer are relative to the listener’s posi-
tion. This mode effectively uses the lis-
tener’s position as the origin (0,0,0). For
example, if the listener’s character dis-
charges a shotgun, the sound source of
the discharge is always going the be in
the same location relative to the listener
regardless of the listener’s position. More
creative uses of this mode are left as an
exercise to the reader.

Setting the position and velocity of
the 3D sound buffer are done in the
same manner as for the listener. To set
and get the position, use IIDDiirreecctt--
SSoouunndd33DDBBuuffffeerr::::SSeettPPoossiittiioonn  and IIDDiirreecctt--
SSoouunndd33DDBBuuffffeerr::::GGeettPPoossiittiioonn  methods. To
set and get the velocity parameters
(again, only for doppler shift) use the
IIDDiirreeccttSSoouunndd33DDBBuuffffeerr::::SSeettVVeelloocciittyy  and
IIDDiirreeccttSSoouunndd33DDBBuuffffeerr::::GGeettVVeelloocciittyy. 

A 3D sound buffer has two sound
cones, an inside cone and an outside
cone. These sound cones are used to
define volume and directional bound-
ries to a sound source. In addition to
sound attenuation, a low-pass filter is
applied to muffle the sounds outside
both of the sound cones for realism. A
game can set and retrieve the cone
angles, volume attenuation, and posi-
tion and orientation of a buffer’s sound
cones using the following IIDDiirreecctt--
SSoouunndd33DDBBuuffffeerr  methods:
• To set or retrieve the angles that define

these cones, an application uses IIDDii--
rreeccttSSoouunndd33DDBBuuffffeerr::::SSeettCCoonneeAAnngglleess  and
IIDDiirreeccttSSoouunndd33DDBBuuffffeerr::::GGeettCCoonneeAAnngglleess

methods, respectively.
•To set or retrieve the orientation of

sound cones, an application can call
the IIDDiirreeccttSSoouunndd33DDBBuuffffeerr::::SSeettCCoonneeOOrrii--
eennttaattiioonn  and IIDDiirreeccttSSoouunndd33DDBBuuffffeerr::::GGeett--
CCoonneeOOrriieennttaattiioonn  respectively.

By default, cone angles are 360

degrees, so the object projects sound at
the same volume in all directions. A
smaller value means that the object pro-
jects sound at a lower volume outside of
the defined cone. The outside cone angle
must always be equal to or greater than
the inside cone angle. 

The outside cone volume repre-
sents the additional volume attenuation
(in hundredths of decibels) of the
sound when the listener is outside the
buffer’s outer sound cone. The default
outside volume is 0, meaning that the
outer sound cone will have no percepti-
ble effect on attenuation unless this
parameter is changed. An application
sets and retrieves the outside cone
volume by using the IIDDiirreeccttSSoouunndd--
33DDBBuuffffeerr::::SSeettCCoonneeOOuuttssiiddeeVVoolluummee  and
DD ii rr ee cc tt SS oo uu nn dd 33 DD BB uu ff ff ee rr :: :: GG ee tt CC oo nn ee --

OOuuttssiiddeeVVoolluummee  methods. Inside the
outer sound cone, the normal buffer
volume (returned by the IIDDiirreeccttSSoouunndd--
BBuuffffeerr::::GGeettVVoolluummee  method) is used.
Outside the outer sound cone, the out-
side cone volume will be applied as
well, making the actual volume the sum
of the two. Outside both sound cones
there is full attenuation and full muf-
fling; inside both cones there is no
effect; and between the two cones the
effect is smoothly interpolated.

Putting It All Together
To put DirectSound3D through its paces,
I created an application that is available
for download on the Game Developer web
site. The steps to creating, using, and
releasing DirectSound3D are listed below
in the sidebar, “Creating A Direct-
Sound3D Object.” My application initial-
izes DirectSound3D, loads a wave file,
and configures the positional parameters
of the sound buffer and the listener. The
sound source is placed 10 meters directly
in front of the listener. The sound source
then circles the listener, staying at the
same elevation and at a 10 meter distance.
I simplified the motions by just rotating
the listener’s orientation. When the appli-
cation is terminated, DirectSound3D is
uninitialized and released.

DirectSound3D makes it easy to
add three-dimensional sounds to your
applications. The heart-pounding excite-
ment of your games can only increase
with the dimension that DirectSound3D
adds. Your players will feel and hear a
greater level of interaction with your vir-
tual worlds.  ■

Greg Graham is a game developer
working in the Pacific Northwest. His cur-
rent project is creating a new virtual world
full of possibilities. He can be reached via
e-mail at gdmag@mfi.com.
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1.  Create a DDiirreeccttSSoouunndd  object by calling the DDiirreeccttSSoouunnddCCrreeaattee  function.
2.  Specify a cooperative level by calling the IIDDiirreeccttSSoouunndd::::SSeettCCooooppeerraattiivveeLLeevveell

method. Most applications use the lowest level, DDSSSSCCLL__NNOORRMMAALL.
3.  Call IIDDiirreeccttSSoouunndd::::CCrreeaatteeSSoouunnddBBuuffffeerr with DDSSBBCCAAPPSS__CCTTRRLL33DD and DDSSBBCCAAPPSS__PPRRIIMMAARRYY--

BBUUFFFFEERR  set in the ddwwFFllaaggss  member of the DDSSBBUUFFFFEERRDDEESSCC  structure to create a primary
buffer (Listing 2).

4.  Call IIDDiirreeccttSSoouunndd::::CCrreeaatteeSSoouunnddBBuuffffeerr  with DDSSBBCCAAPPSS__CCTTRRLL33DD  set in the ddwwFFllaaggss
member of the DDSSBBUUFFFFEERRDDEESSCC  structure to create a secondary buffer (Listing 4).

5.  Obtain the interface pointers for IIDDiirreeccttSSoouunndd33DDLLiisstteenneerr  and
IIDDiirreeccttSSoouunndd33DDBBuuffffeerr.

6.  Load the secondary buffers with data. Use the IIDDiirreeccttSSoouunnddBBuuffffeerr::::LLoocckk  method to
obtain the pointer to the data area and the IIDDiirreeccttSSoouunnddBBuuffffeerr::::UUnnlloocckk  method to
set the data to the device.

7.  Perform 3D operations.
8.  Use the IIDDiirreeccttSSoouunnddBBuuffffeerr::::PPllaayy  method to play the secondary buffers.
9.  Stop all buffers when your application has finished playing sounds by using the IIDDii--

rreeccttSSoouunnddBBuuffffeerr::::SSttoopp  method.
10.  Release the secondary buffers.
11.  Release the DDiirreeccttSSoouunndd  object.
NOTE: An application can create 3D and non-3D sound buffers from the same DDiirreeccttSSoouunndd
object. 

C R E A T I N G  A  D I R E C T S O U N D 3 D  O B J E C T
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Talisman:
Mystical Powers or
Just More F.U.D.?

T A L I S M A N

I
make my living writing high-per-
formance graphics applications. Or,
more accurately, writing graphics
applications that seem to be high
performance, but that actually use
various tricks, techniques, and
hacks to give the impression of
high speed. This revelation is really

nothing new—graphics programs will
always suck up any available bandwidth
and be wanting for more. The fact is
that we can always find a use for more
graphics capability. 

Perhaps there’s one solution on the
horizon. At the Siggraph convention
held in New Orleans this past August,
Microsoft disclosed its new Talisman
technology initiative, the result of two
years of research. Talisman is Microsoft’s
proposal for a new video board architec-
ture. What was disclosed both enthralled
and scared me. Talisman will radically
change the way that we design 2D and
3D graphics software. Why? Because
Microsoft is proposing a new architec-
ture for video boards that is designed to
provide the following: 3D audio, MIDI
support, 720×486 MPEG-2 video, a 2D
and 3D graphics engine capable of 24-bit
color with a resolution of 1,344×1,024
running at a 75Hz refresh rate, on-board
anisotropic texture filtering, antialiasing,
translucency, shadows, blur, and fog. 

The real kicker is the targeted price
of the board: between $200 and $500.
Would you believe that proof-of-con-
cept boards already exist? If you’re like
me, you’ll be both terrified and ecstatic.
Terrified because the world as you know
it is about to change radically, and ecsta-
tic because all those effects you wanted
to achieve are going to become possible.

How Things Work Now:
Traditional Graphics
Architecture
The traditional way that improvements
in graphics capabilities occur is that the
video cards end up with better and
faster hardware—a dedicated graphics
processor, faster memory access, more
on-board memory. This process of
building bigger and better yet more-of-
the-same hardware limits the improve-
ments we can expect, since these
improvements are going to be a function
of memory bandwidth. 

Updating a typical 320×240 256-
color screen at a refresh rate of 72Hz
requires 5.5MB/sec bandwidth. If we
want to produce workstation-quality
graphics at a resolution of 1,024×768
with 24-bit color and a 16-bit Z-buffer
at the same 72Hz refresh rate, we need a
staggering 283MB/sec bandwidth.
Assuming that you could find a game
that runs at a frame rate of 72Hz, you’d
need an increase of over 50 times the
memory bandwidth, which points out
the problem with this bigger-and-faster
approach. While some Silicon Graphics
workstations are capable of this rate or
better, you can’t find a similar capability
on a PC system today. 

Waiting for memory prices to come
down is only part of the solution. The
real problem lies in the sheer mass of
information that must be transmitted.
The current crop of cards all simply pass
more data at a faster rate, and while
memory prices have dramatically
decreased, the data transfer rate has not
kept up. Thus, it’s currently impossible
to achieve a high frame rate coupled with
high image quality at a commodity price.

Talisman Architecture
The goal of Talisman is to take a differ-
ent approach to graphics architecture.
Instead of simply sending massive
amounts of data to the frame buffer,
Talisman is designed to take advantage
of a number of features that are common
to graphics. These features are based on
the fact that in a typical animated scene,
not many changes occur from one frame
to the next; that if something is chang-
ing, it’s typically limited to just a part of
the screen; and that some areas of the
screen, such as a background, don’t need
to be terribly accurate when they are
updated. Thus, Talisman’s goal is to
achieve a high frame rate at the cost of
quality, rather than the traditional
approach of quality at the cost of speed.

If you think about it, however, this
is what we’re already doing. Were we
using resolutions of 320×240 because we
wanted small views? Texture maps were
originally created to give the impression
of detail at a fraction of the cost—not
because they give us the ability to dra-
matically change an object’s image at run
time or because they turn out to be a
cheap way of simulating lighting effects,
but because it’s easier and cheaper to
warp a bitmap onto a transformed poly-
gon than to transform all of the minute
details that the bitmap pictured. Given
the choice, would you rather be able to
pick any color out of 16 million, or use
one of just 256? We’ve all turned to
these simple quality hacks because
there’s no other way to achieve a usable
frame rate. In this case, usable is some-
thing less than five frames per second. 

Given a choice between working
on the aesthetic and playability aspects
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of a game and trying to reduce the over-
head associated with the graphics
pipeline, most people would rather work
on those aspects of the game that
improve it, rather than merely simplify-
ing it to gain some rendering speed.
Talisman is designed to always render at
the video frame rate. Thus, the differ-
ence between an inexpensive Talisman
system and an expensive one lies solely
on the precision of its rendering rapidly
changing scenes.

How is this supposed to work? Talis-
man has a number of different levels; it’s
not just one method, but a collection of
techniques that are combined to reduce
the bandwidth needed to update the dis-
play. Taken as a whole, Microsoft reports
that it can reduce bandwidth requirements
by a factor of 60. (Yes, that’s 60 times, not
60%!) Thus, you could essentially take
your current program, increase the infor-
mation needed to describe your image by
60 times, and still get the same perfor-
mance. Or, in other words, you could
change the resolution from 320×240 at 8-
bit color to 1,024×768 with 24-bit color
and throw in a 16-bit Z-buffer and still

come out ahead. The high-end worksta-
tion people were not too happy when they
heard this anouncement, but nothing’s
stopping them from using this architec-
ture, too. An SGI Reality Engine 2 can
crank at over 10 gigabytes per second.
Imagine what it could do at an equivalent
of a trillion bytes per second!

As I mentioned, Talisman is a col-
lection of techniques working together
to bring down the overall bandwidth
requirements. These techniques come in
four major areas.
1. Image Layers
2. Chunking
3. Image compression
4. Multi-pass rendering

Each of these techniques makes it
possible for the next one to further reduce
the memory being transmitted over the
bus. Let’s examine each technique.

Image Layers
The first thing that may surprise you is
that the Talisman architecture doesn’t
have a traditional frame buffer. Instead,
it implements the concept of multiple
image layers (Figure 1). These layers

At last fall’s SIGGRAPH

convention, amid little

fanfare, Microsoft

proposed an initiative

for a new video

board architecture.

Fosner examines

it’s potential in game

development.

Ron Fosner
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Figure 1.  Image Layering.



can be any size and shape, and generally
each noninterpenetrating object in a
scene is given its own image layer.
These layers are composited together to
generate the video output signal. The
hardware will track changes to these
layers and, if necessary, maintain the
frame rate, extrapolating layer changes
based upon past changes until an updat-
ed layer is provided. I was taken aback
when I first heard about this tech-
nique—after all, this means that part of
an image may suddenly “jump” when an
unpredicted change occurs. However,
upon further reflection, I realized that
this is probably a better alternative—
remember that the rest of the scene is
still animating smoothly—than simply
dropping frames till everything can be
calculated and rendered.

Further, layers that don’t change
much, such as background scenes, don’t
have to be redrawn every frame. The fre-
quency at which image layers are
changed depends upon the rendering
engine. If you’re designing a space game
and the background is black, then you’d
simply provide a black rectangle to the
rearmost image layer and never update
it! What about a starfield? Since affine
transformations can be performed on
each image layer, you’d simply provide a
large image that was the full 360° view
and translate or rotate it as needed
according to how the viewpoint changes.
You’d never have to redraw the stars;
you’d simply provide their locations and
then translate to the correct viewpoint.
The necessary transformations are all
done in hardware. And since you can
perform the full set of transformations,

you can provide a low-quality image for
the background and let Talisman scale it
up for you, applying built-in filtering to
clarify the image if necessary.

The current plans are for Direct-
Draw and Direct3D Immediate Mode
applications to have control over when
image layers are updated. In fact, you
can treat a Talisman board as a ordinary
double-buffer video board. Of course,
you could just as easily make it into a
triple-buffer board, as well. At this level,
you also have control over the extrapola-
tion that can occur in the image layers.
The Talisman SDK provides some code
that an application developer can use to
estimate the acceptable perceptual error
and determine the optimal transforma-
tion to apply to an image. In some future
(unspecified) implementation of Direct3D
Retained Mode (and other higher-level
APIs), you won’t have to worry about
when to update image layers; the trans-
formations will be made automatically,
and the image layer compositing will be
managed for you.

Chunking
The next step in the Talisman architec-
ture is called chunking (Figure 2).
Chunks are 32×32-pixel regions of each
image layer. Since the user (or some
API) has divided up the scene into
image layers, the Talisman hardware fur-
ther subdivides each image layer into
square pixel regions, called chunks. Since
the information provided for each image
layer is a set of geometry (essentially a
set of polygons that describe the object
specified in the image layer), the hard-
ware keeps track of the geometry associ-

ated with each chunk and where the
geometry crosses chunk boundaries.
When the scene changes, the geometry
is tracked, and its division into chunks is
dynamically modified. 

While this process may sound like
overhead, there are significant benefits.
For example, only a 32×32-pixel depth
buffer is required—rather than the entire
frame buffer—allowing the depth buffer
to be implemented directly on the
graphics chip for high-speed memory
access and automatically cleared between
chunk processing. Antialiasing is also
implemented directly on chunks, reduc-
ing the overall memory requirements
while allowing for much more sophisti-
cated algorithms to be used.

Image Compression
The next step applies an image compres-
sion technique to these small chunks
(32×32 pixels=1K) to further reduce the
amount of memory required to represent
them. The method specified by Talis-
man, called TREC (similar to JPEG),
achieves compression ratios of 10:1 or
better and allows the use of 32-bit true
color for all applications. Compression
techniques are nothing new, we’ve just
never thought about them as such. If
you’ve had to take an artist’s 24-bit color
images and generate an optimal 256-
color palette to display those images,
then you’ve been doing image compres-
sion. It’s a lot nicer when it’s all done in
hardware.

Multi-pass Rendering
The last specification of the Talisman
architecture is the support for multi-pass
rendering (Figure 3). Multi-pass render-
ing requires that a completed image
already exists before the next pass is
started. This requirement typically pre-
vents multi-pass techniques from being
used on all but off-line rendering appli-
cations. By reducing the bandwidth to
specify an image, the Talisman architec-
ture allows images created by the render-
ing process to be passed back into the
processor as data and used to create a
new image layer. Thus, techniques that
were previously possible only with off-
line image rendering are now possible

T A L I S M A N
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Figure 2.  “Chunking” an Image.
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with real time image generation. For
example, shadows from multiple light
sources or multiple reflections can now
be rendered in real-time. Multi-pass
rendering is the most significant
advancement in the Talisman architec-
ture. Microsoft has implementations that
support filtered shadows and anisotropic
texture filtering, and an antialiasing
algorithm that works simultaneously
with translucency and depth buffering.
Much of the research literature focuses
on various techniques that currently
work only off-line. With a little imagi-
nation, it’s not too hard to imagine video
boards in the near future supporting
some pretty advanced features in real
time. Think of the fun you could have
with real-time ray tracing supported by
the graphics hardware!

Multimedia Support
The Talisman architecture recognizes
that, while it has nothing to do with 3D
graphics, a reasonably high level of built-
in support for things like sound, MIDI,
communication, various input devices,
MPEG, and video conferencing is
important. The fact that these features
are all supported by current off-the-shelf
chips indicates how encompassing the
Talisman specification is.

The Talisman
Hardware Design
Figure 4 shows the reference implemen-
tation that Microsoft is currently using.

The important parts to note are the off-
the-shelf media chips to handle sound,
video, and communications, and the cus-
tom VLSI chips that make up the video
system. Geometries are passed into the
media digital signal processor (DSP),
where transformations are processed,
and then into the polygon object proces-
sor, where shading, texturing, hidden
surface removal, antialiasing, and scan
conversion take place. The image layer
compositor accesses chunk information,

performs any transformations on the
images, and then sends the results to the
compositing buffer. The final results are
displayed in 24-bit color at 1,344×1,024
resolution running at 75Hz (note the
slight aspect-ratio change, about a 1.5%
reduction in the screen width to match
the chunk size). The arrows indicate that
the transfer of information is frequently
bidirectional.

An important aspect to using a Tal-
isman-style board is understanding how
the graphics API will talk to the board.
Currently, we’re all used to placing our
objects in a 2D or 3D space and having
the computer render them. Talisman
needs more information than current
video cards about the geometry of
objects it is going to render. Using a
future version of DirectDraw and
Direct3D (it could be available as early
as early 1997, when DirectX 4 is
shipped), you would have the option to
control object geometry (such as, render
a particular image plane), or hand over
these kinds of tasks to Talisman. What’s
important to understand is that Talis-
man would know the approximate Z-
order of the basic geometries you are
using and would use that data to opti-
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Figure 4. The Talisman Hardware Design
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mize its processing. Other APIs could
also make use of this ability. 

Intel’s Accelerated
Graphics Port
About the same time that Talisman
architecture boards make their commer-
cial appearance (probably sometime in
late 1997), you should also see some
boards that support the Accelerated
Graphics Port (AGP). The AGP is an
Intel-driven effort to reduce the cost of
advanced 3D features by making avail-
able a fast, dedicated port so that the
computer’s main memory is available to
the graphics card. Currently, even PCI
bus cards are limited in the bandwidth
that they can process for video images.
Microsoft has committed to support
AGP memory directly in DirectX 5,
which will be available in the first half of
1997. What this means is that even low-
end Talisman cards that perhaps have
“only” 4MB of memory could take
advantage of the main system memory.
The higher bandwidth provided by AGP
would work synergystically with a Talis-
man-architecture board to bring band-
width values approximately 120 times
that of a non-Talisman board using sys-
tem memory for images. AGP by itself is
a traditional attempt to boost bandwidth
by making memory access faster, while
Talisman is designed to compress the
overall memory bandwidth requirements.
Combined together, they will tend to
blur the distinctions between the inex-
pensive and expensive video boards.

The Talisman architecture was
originally developed targeting PCI
boards, so the appearance of the AGP is
a great feature for Talisman (and tradi-
tional boards); if an application requires
extra memory (typically for textures),
then AGP will provide faster access to
system memory to get the memory need-
ed by the application. I expect that all
boards claiming to be good for games (or
good for 3D graphics, in general) will
come with an AGP connector. The cur-
rent reference implementation of Talis-
man has a bandwidth requirement of
about 220MB/sec, and if you add an
AGP to this implementation, you can
get all the memory required by Talisman

directly from system memory. Clearly,
AGP by itself is going to make a big
impact on games and 3D graphics appli-
cations in the near future.

What does all this mean to the
average game designer? Well, there’s
going to be a quantum leap in playability
and realism. Wouldn’t it be nice if all
PCs were equipped with high-quality,
true-color 3D hardware, 3D audio,
MIDI support, MPEG 2 video support,
and a generic network/modem and input
API? That’s what Microsoft is trying to
do with Talisman and DirectX. Even
without Talisman, I’m quite fond of
graphics standards that don’t require that
I write drivers for multiple video and
sound boards—so I’m behind the
DirectX philosophy. Assuming that the
implementation continues lurching
towards its high-performance aspira-
tions, I’m confident that most of the
DirectX APIs will become fairly popular
and perhaps even reach dominance. 

What Microsoft’s Talisman propos-
al tells me is that either that company is
really looking to confuse the 3D graphics
industry even more than it already has,
or it is dedicating some high-powered
efforts toward developing a platform for

fast graphics with excellent support for
sound, input, video, and communica-
tions. DirectX is making headway in this
area already, but no matter how much
they tune their rendering code, it’s still
going to be limited by bandwidth. Talis-
man attacks the problem from the other
end, bringing together some radical ideas
to reduce bandwidth and wrapping them
together in the form of a hardware
design. Keep your eye on Talisman—it
could radically change 3D graphics on
the personal computer.  ■

For Further Info:
Intel’s AGP 
http://www.teleport.com/~agfxport/

Microsoft’s Talisman
http://www.research.microsoft.com/

siggraph96/talisman/

Ron Fosner is the founder of Data
Visualization, a consulting group providing
companies with assistance in creating
OpenGL and DirectX applications. You can
reach him at ron@directx.com.
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• A single PCI board encompassing audio, video, and 2D and 3D graphics

• A high-resolution display of 1,344×1,024 at 75Hz

• 24-bit color at all resolutions

• 3D animation that is optimized at full refresh rates (75Hz) using a combination of
image layer animation and 3D rendering and support for scene complexity of 20,000
to 30,000 rendered polygons or higher (which is comparable to 1.5 to 2 million poly-
gons per second)

• Polygon Object Processor pixel rendering rate of 40 Mpixels/second with anisotropic
texturing and antialiasing and an Image Layer Compositor pixel compositing rate of 320
Mpixels/sec

• Very high-quality image generation incorporating anisotropic texture filtering, subpixel-
filtered antialiasing, translucent surfaces, shadows, blur, fog, and custom shading
algorithms

• A front-end geometry processor for off-loading transformations, clipping, lighting, and
so on

• Full resolution (720×486) MPEG-2 decode, as well as other video codecs, allowing video
to be used as surface texturesand combined with graphics animations

• Base system has two-channel 16-bit audio inputs and outputs with DSP based MIDI syn-
thesis (wave table and other mechanisms supported), 3D spatialization, and digital
audio mixing—other audio processing is also supported

T A L I S M A N  G O A L S

http://www.gdmag.com
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A
s computer artists, we ab-
solutely need certain tools to
get the job done. The frus-
trating thing is, as game
graphics become ever more
sophisticated and more inte-
gral to the success of the
product, that list of necessary

tools seems to grow inexorably: fancy
image editing, video editing, composit-
ing, 3D modeling and rendering, faster
processors, multiple processors, bigger
monitors, 2D acceleration, 3D accelera-
tion, particle effects, inverse kinematics,
motion capture…. Dip your toe into the
roiling waters of computer graphics and
suddenly you’re in up to your neck. You
find the tools you’ve used so productive-
ly are no longer enough.

But that’s…okay. You’re not all
wet; you’re swimming with a fast-mov-
ing current. The graphics tool you’d
never heard of or even conceived of yes-
terday becomes the life preserver that’s
helping to keep you afloat today.

With the holiday season upon us
once again, I thought I’d get into the
sharing mood and give you a peek at
some of the newer goodies in my own
toybox, er,  toolbox—a few choice
items that have kept me afloat lately.
Somehow, I got by without them
before, but now I find them as indis-
pensable as these ol’ opposable thumbs
of mine.

Painter Can
Fractal Design Painter isn’t exactly a
new tool for me; it’s been a staple for
quite some time. But the new features in
version 4, available now for Macintosh
and Windows, make this old friend even

more handy to have around. There’s a
perception that Painter is primarily an
illustration package. It’s true that
Painter’s main draw (ha, ha) is its “nat-
ural media tools”—the ability to make
marks digitally that resemble traditional
art materials such as watercolors, oils,
pastels, and many more. However, these
tools, which do lend themselves readily
to creating beautiful illustrations, also
make Painter my favorite texture cre-
ation tool. When it comes to texture
maps or bump maps for 3D models, I
rarely turn anywhere else.

Painter’s wide range of brush types
react with the 2D “surface” on which
you paint, resulting in a correspondingly
wide range of different effects that can
be used to create seamless, natural tex-
tures. Painter comes with several
libraries of “papers” on which to paint
and lets you concoct and save your own
painting surfaces, too. The great variety
afforded by the standard brush options
can be enhanced by customizing brush
attributes; these personalized brushes
can also be named and saved for repeat-
ed use. You can even swap papers from
one stroke to the next to mix and over-
lap different surface textures within a
single image.

I find the Express Texture tool
extremely useful for turning an image
into a high-contrast or grayscale bump
map. Express Texture provides different
approaches to converting the image,
based on the current paper grain or a
selected pattern, image luminance, or a
predefined mask. Sliders give fine-
grained control over how the image is
converted, and a preview window lets
you view the result before you commit.

Sweet
Addictions

The holidays are

almost here, and if

you’re wondering

what to get the artist

in your life,

consider these tools

from Fractal

Design, 4DVision, and

Spacetec IMC.

David Sieks

A R T I S T ‘ S  V I E W
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In addition to painting your own
textures, Painter lets you create different
randomized effects with blobs, marbling,
and seamless fractal patterns. As with
everything in Painter, these “random”
effects can be closely managed with vari-
ous slider controls and settings. Painter
also supports Photoshop-compatible
plug-ins, which gives you even more
effects with which to work.

One Painter feature I return to fre-
quently is the Image Hose, which sprays
the canvas with images—24-bit bitmaps
with an 8-bit alpha mask. An Image Hose
“nozzle” can consist of several images that
are sprayed together; a great feature for
when you want to avoid too uniform an
appearance in a texture. For example, sev-
eral variations of a leaf bitmap can be
sprayed together to create foliage, or an
assortment of scars, dents, and grime can
be sprayed onto a starship hull pattern to
give the look of random wear and tear.

If you’ve got a scanned image or
digitized photo you’d like to use as a tex-
ture map, Painter provides helpful tools
for turning these images into seamless
patterns. Existing seams can be moved to
the center of the view where they are eas-
ier to evaluate. Feathered selections,
cloner brushes that lay down elements of
the image with each stroke, or any
Painter media that seem appropriate can
then be employed to obscure the seams.

One new feature is that Painter now
can import (in Adobe Illustrator 5 for-
mat) and create vector-based “shapes.”

This capability allows you
to draw with precision,
repositioning anchor
points as needed and
adjusting curves with bezi-
er handles. Your shapes
can then be converted to
floating selections and
repositioned within the
image, pasted into other
images, or turned into
ammo for the Image
Hose. This feature is great
for creating decals for 3D
objects, logos, and other
slick graphics where you
want to get the line quality
and shape just right.

Painter 4 also has new capabilities
for creating Web graphics. Images can be
saved in GIF format at color resolutions
from 256 down to 4. Palettes can be
automatically dithered or quantized or
can be defined by the user. Images can be
saved as interlaced GIFs, so they appear
more quickly when a Web page is loaded.
You can also define hyperlinks to be
associated with your image to create a
clickable image map.

Small but significant changes to the
interface in version 4 make using
Painter’s tools easier. The documentation
is also much more helpful than in past
releases. Painter 4 is a favorite tool made
even better, and it still comes in a cool
paint can instead of a box. To go with it,
I recommend a pres-
sure sensitive tablet
and a good-size
monitor, so you can
keep a variety of
menus open without
cluttering up your
screen.

Paint Some
Bump
As good as Fractal
Design Painter is at
creating textures,
sometimes making
just the right 2D
map for a 3D object
is  l ike trying to
giftwrap a large cac-

tus. Many times I’ve wanted to reach
through the screen and put the details
exactly where I want them on an object.
With 4D Paint, a new 3D texturing
package from 4DVision, I’m able to do
just that (well, not the reaching through
the screen part).

Until recently, 3D texturing tools
were available only for high-end plat-
forms. Now, 4DVision has brought this
enviable power to the more accessible
PC workstation. 4D Paint is designed to
work as a plug-in for 3D Studio MAX—
where it takes geometry and mapping
information directly from your scene—or
as a standalone application that can
import .3DS files. Even when operating
as a plug-in, 4D Paint uses its own
toolset and interface, which is clean and
easy to navigate.

Basically, 4D Paint allows you to
paint directly on your geometry with a
variety of brushes, rotate the model as
needed, pan, zoom, and adjust lighting so
you can see what you’re doing while you
work. And it doesn’t just let you slap
some color on: You can also selectively
paint bump, shininess, self-illumination,
and opacity values, as well as use bitmaps
as painting elements. In addition to
rotating objects to view them, you can
toggle standard orthographic views in
which to work.

A range of brushes and paints are
ready for use, and you can easily create
your own varieties, as well. New brushes

http://www.gdmag.com

Selectively paint color, bump, self-illumination, shininess, opacity, or
bitmaps directly onto 3D objects with 4D Paint from 4DVision.

Seamless bump and texture maps can be created in minutes
with the natural media tools and surfaces in Fractal Design
Painter 4.



can be defined with settings for shape,
size, angle, and feathering; or you can
create and define a small bitmap shape
to use as a custom brush head. New
brushes and paints can be saved, and you
can even include a description of your
creation and its use in an attached note
section.

One very cool paint attribute is the
user-definable Area of Effect, which lets
you create drybrush or wash effects that
interact with bump maps on your model.
A drybrush look or highlight only paints
on areas with a sufficient bump value:
Raised areas receive paint, while depres-
sions do not. A wash works in the oppo-
site fashion by letting color pool in the
low-lying areas without covering the
high spots. The effect is much like
working on Fractal Design Painter’s
paper textures. With these paint settings
and the right bump map, you can create
extremely tactile effects.

One limitation of the first version
of 4D Paint is that it is not adept at
importing tiling textures; that bump map
you have set to 10 U/V reps in MAX is
likely to come into 4D Paint showing
only a single iteration of the pattern.
4DVision is working on an update to fix
this. You can, however, use bitmaps as a
paint  within the program, where it is
possible to scale and tile them.

One method, called Bitmap Paint,
is very similar to the Image Hose in
Fractal Design Painter. Images are
sprayed onto the surface in random or
sequential order, as you prefer. The
Bitmap Paint can combine multiple files
to serve as color, bump, self-illumina-
tion, opacity, shininess, and alpha values.
You can also define the dab spacing for
the brush you use with Bitmap Paint to
precisely control placement of the paint
elements. In this manner, a bitmap can
be placed so as to tile seamlessly as you
paint it onto your model.

Texture Paint is another method of
painting with bitmaps. In this case, you
specify a source image that is then sam-
pled to provide the paint for your current
brush. Rather than applying the entire
texture to your model, you paint it in
selectively with your brush, stroke by
stroke.

Bitmaps can also be pasted onto
your object from the clipboard, then
dragged around and repositioned.
Though they can be flipped horizontally
or vertically, they cannot be freely rotat-
ed within 4D Paint, as you might be
used to doing in 2D paint programs such
as Fractal Design Painter. Bitmaps past-
ed from the clipboard in this manner
also cannot be resized, though those
used with Bitmap Paint or Texture Paint
can. The solution, if you want the free-
dom of dragging the bitmap around the
model to place it, is to rotate and scale it
as desired in an outside paint program
before pasting it into 4D Paint.

In addition to freeform brushes,
there are tools to create straight lines or
polygons, a fill tool, text, and an eraser
tool. The eraser is especially handy: It
uses the current brush attributes and can
selectively erase color, bump, opacity,
shininess, or self-illumination values.
Thus, you can go into an area and erase
bumps, for example, without removing
color.

4D Paint works with multiple lay-
ers, which can be kept distinct from one
another. Neat effects can be achieved by
erasing areas from one layer to let a
lower layer show through. The order of
layers can be shifted, so a layer can be
moved up or down in the stack, and
layer can be named, which makes keep-
ing track of them much easier.

You can also delete an entire layer,
giving you the freedom to experiment
without fear of ruining your work. You
can create a new layer above your exist-
ing work on which to try a new effect: If
it doesn’t work, simply delete the new
layer; if it does work, the layers can be
kept separate or collapsed into one.

I’ve found 4D Paint provides a much
more natural way to add surface details to
my models, almost like holding an object
in my hand to paint it with a real brush.
In a lot of ways, though, 4D Paint works
even better than manipulating a physical
model because it gives it’s users the free-
dom to paint with bitmaps, juggle layers,
and so on. If you do much texture map-
ping, once you’ve had a chance to paint in
3D, you’ll wonder how you got along
without it.

Big Blue Ball
The SpaceController from Spacetec
IMC is a motion-control device that, at
present, is compatible only with 3D Stu-
dio MAX. At first sight, it looks like it
might be some sort of game-controller
device, and when first described, it
sounds about as necessary as a cap to
wear on top of your hat. I mean, MAX
already has a motion-control device: It’s
called a mouse.

But once you wrap your hand
around that big blue ball, you’ll find the
SpaceController brings you a giant step
closer to being able to work smoothly in
the 3D environment on the other side of
your screen. It’s used in conjunction with
the mouse, not instead of it, and while it
doesn’t supercede any of the mouse’s
functionality—the mouse still works as
normal—the SpaceController does pro-
vide a more efficient way to perform
object transforms, allowing you to move
and rotate objects in all axes fluidly and
freely without having to switch tools. If
working with 4D Paint is like being able
to reach through the screen to paint
directly on a model, using the Space-
Controller with your mouse is like being
able to reach through the screen with
both hands to freely manipulate actors,
lights, and cameras in your scene.

You use the SpaceController by
resting the palm of your hand on the
molded base and gently pushing, pulling,
and twisting the ball with your fingertips
(it wiggles slightly under the pressure,
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Get two-fisted action in 3D Studio MAX
with the SpceController and Space-
Ware AniMotion from Spacetec IMC



but doesn’t actually turn like a trackball).
Your finger pressure causes the selected
object onscreen to translate and rotate
simultaneously in any axis as directed,
without your even having to pick move
or rotate tools. Contrast this freedom
with using the mouse alone, where each
tool must be picked and each transform
effected separately. The SpaceController
represents an apparently small but, in
practice, significant improvement to how
you work in 3D space. It’s kind of like
power steering for 3D Studio MAX.

The SpaceController’s SpaceWare
AniMotion software operates as a MAX
plug-in. Onscreen controls in MAX’s
Utilities command panel allow you to
fine-tune the device’s functions. These
various settings can change certain char-
acteristics of the SpaceController to bet-
ter suit it to a particular task. The Single
Axis Filter constraint, for example, limits
movement to the dominant force exerted
on the ball: The selected object will
move or rotate only along a single axis at
a time, though by switching the quality
or direction of pressure on the controller,
you can immediately change which axis
is in effect and whether the object is to
be rotated or moved. Using this filter can
be a good way to work with the Space-
Controller until you become used to how
your finger pressure translates into an
onscreen response; the filter makes
object transforms more deliberate with-
out limiting freedom of movement.

The command panel also can be used
to restrict the type of transform and the
axes of movement. For example, you can
perform a translation without allowing the
object to rotate at all, or rotate the object
freely while moving only along the z axis.
The device’s sensitivity and responsiveness
are set with the command panel as well.

Being able to work with both hands
makes sub-object editing more interac-
tive. With the SpaceController, you can
rotate an object in place while picking
and manipulating vertices with the
mouse. This is handy for complex mod-
eling tasks where an object’s geometry
must be tweaked a bit at a time in many
places, such as when creating organic
shapes. The task of modeling flows more
naturally due to the added control.

The SpaceController is also sup-
ported in 4D Paint. This is a very nice
way to work—rotating and zooming the
view with the SpaceController in one
hand while painting with the mouse in
the other. At the time of this writing,
4D Paint only looks for the device on
COM1, which necessarily limits the
configuration of your machine. Still, this
limtiation shouls be remedied with
future updates from 4DVision.

The SpaceController also provides
a much quicker method of animating
smooth object movement, as translation
and rotation are handled simultaneously
in real time according to your input
through the device. This makes fly-
throughs and fly-bys a snap: Keyframes
are recorded automatically at intervals set
by you, and all object movement is creat-
ed at once as you literally steer the object
through the scene. Again, contrast this
with using the mouse alone, where
movement and rotation tools must be
swapped keyframe by keyframe through-
out the animation. The SpaceWare Ani-
Motion software also makes it simple to
use the SpaceController even while
recording animations in reverse, which is
the easy way to show objects flying or
falling into perfect alignment.

The SpaceController is an elegant
tool: clear in purpose and simple to use.
I’m not going to kid you: You don’t need
this thing any more than you need a
sound system in your car. But I wouldn’t
think of driving across the country with-
out a tapedeck or a CD player to keep
me sane, and I’ll be equally glad to have
the big blue ball in hand next time I
tackle a modeling or animation task of
cross-country proportions.

Again, at present the SpaceCon-
troller is only compatible with 3D Studio
MAX. If that’s not your 3D package, but
you’re interested in using the SpaceCon-
troller to improve your workflow dynam-
ics, let Spacetec IMC know about it.

Computer game animators are like
sharks: not just because we’ve got dull
gray skin and soulless eyes—that’s just
from too many long hours in front of our
monitors—but because, like sharks,
we’ve got to keep moving or we drown.
Old, familiar tools are comfortable to

work with, but often it’s the new tools
that open up new possibilities or suggest
new approaches, that allow us to meet
deadlines that would otherwise have
crushed us, or that help us keep our work
fresh and our audience looking forward
to what-in-the-world-we’ll-come-up-
with-next.  ■

David Sieks is a contributing editor to
Game Developer. You can contact him via
e-mail at gdmag@mfi.com.
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4D Paint
4D Paint
4DVision
4800 Happy Canyon, Ste. 250
Denver, CO 80237
Tel: (303) 759-1024 or (800) 252-1024
Web: http://www.4dvision.com/
Price: $995
System Requirements: 3D Studio MAX, Win-
dows NT 3.51 or later, 16–24-bit color at
800×600, 32MB RAM, CD-ROM for installation

SpaceController
Spacetec IMC Corp.
The Boott Mills, 100 Foot of John Street
Lowell, MA 01852-1126
Tel: (508) 970-0330
Web: http://www.spacetec.com/
Price: $495
System Requirements: 3D Studio MAX, 2MB
free hard disk space for installation, one
available serial (COM) port for device

Painter 4
Painter 4
Fractal Design Corp.
5550 Scotts Valley Drive
Scotts Valley, CA 95067
Tel: (408) 430-4200
Web: http://www.fractal.com/
Price: $549
System Requirements: PC - 486 with 8MB
RAM or Pentium with 12MB RAM, Windows
3.1 or Windows 95; also available for Mac

SpaceController
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