
december/january 1995

G A M E D E V E L O P E R M A G A Z I N E

I
n the end, I didn’t even have a
chance to light my pickle. In my
best shot yet at Andy Warhol’s
promised 15 minutes of fame, I
blew it, but it all might have been
different had they just given me the
chance to demonstrate to the world
the miracle of the electric pickle.
I’m often the target of joke e-mails

purporting to be from various people,
but I couldn’t dismiss the one purport-
edly from Danny!, the daytime talk
show. Danny! (exclamation point
mandatory), of course, is a vehicle for
Danny Bonaduce, who, if you’re a cer-
tain age, you’ll remember as the red-
haired and mysteriously edgy moppet
from The Partridge Family.

Danny Who?
Yes, The Partridge Family, a show that
has been strangely unwelcome in the
current “rediscovery” of the 70s. Unlike
the Brady Bunch, there’s been no Par-
tridge Family movie, no stage produc-
tions, not even a regular slot on Nick at
Night. Why? Because the Bradys
played to the status quo, then and
now—sprawling suburban house, ser-
vants, an affluent and secure whitebread
home in which sons and daughters hap-
pily embrace the bourgeois.

The Partridges, on the other hand,
were darker. In the cluttered, claustro-
phobic garage in which they practiced,
they gave birth to songs, not about
“Sunshine-y Days,” but about doubts
and fears. “Stop! I Think I Love You”?
Why couldn’t he be sure? What was
David Cassidy saying? That corporate
America, by co-opting the language of
romance, had stolen the emotional
compass to the point where none of us,
in fact, could go forward with confi-
dence. The Bradys on the other hand,
told us that, “When it’s time to change,
you have to rearrange who you are and

what you want to be.” Sha-la-la,
indeed.

The Bradys had station wagons
and convertibles, symbols of consump-
tion and status. In contrast, the Par-
tridges had that most poignant of all
symbols of freedom from the status
quo—a schoolbus with birds painted on
the side.

Where the Bradys had an emo-
tionally stunted servant woman in Alice
(why did she need Sam the Oh-So-
Blue-Collar Butcher to validate her
worth?), the Partridges portrayed a
much more complicated world, in
which one has to dance with the capi-
tal ist devil even as one decries its
excesses. This complex enigma was
embodied in the work of one actor—
the young Danny Bonaduce.

So, of course, I returned the call.

A Genius and
A SCUBA Master?
There was to be a show on brains vs.
brawn, and my pro-nerd work over the
years had not gone unnoticed. “What
makes you think you’re so smart?” they
asked me. “I don’t think I’m smart,” I
answered, “I just edit a magazine for
smart people.” “It’ll have to do,” decid-
ed Producers Julie Knapp and Rita
Whack. “What can you do for the tal-
ent competition?”

My immediate answer: “Program a
computer faster than anyone who’s bet-
ter, and better than anyone who’s
faster,” drew a stony silence. I tried
sports: “Throw a Frisbee-brand flying
disc 120 yards fairly accurately?” Not in
a studio. “Hold my breath while wear-
ing diving gear?” Not exactly riveting
television. “Ride a mountain bike over a
moderately sized stick?” Stony silence.
“I can juggle a little. Just three balls,
though.” There was a long sigh and I
could hear the sound of a hand rubbing

The Dark of
the Electric Pickle

G A M E P L A N

2 GAME DEVELOPER • DECEMBER/JANUARY 1995

MGA EGAME

Editor Larry O’Brien
gdmag@mfi.com

Senior Editor Nicole Freeman
76702.706@compuserve.com

Managing Editor Nicole Claro
nclaro@mfi.com

Editorial Assistant Deborah Sommers
dsommers@mfi.com

Contributing Editors Alex Dunne
75010.2665@compuserve.com

Barbara Hanscome
bhanscome@mfi.com

Chris Hecker
checker@bix.com

David Sieks
dsieks@arnarb.harvard.edu

Editor-at-Large Alexander Antoniades
sander@mfi.com

Cover Photography Charles Ingram Photography

Publisher Veronica Costanza
Group Director Regina Starr Ridley

Advertising Sales Staff

Western Regional Sales Manager

Steve Nikkola (415) 905-2256
snikkola@mfi.com

Promotions Manager/Eastern Regional Sales Manager

Holly Meintzer (212) 615-2275
hmeintzer@mfi.com

Marketing Manager Susan McDonald
Advertising Production Coordinator Denise Temple
Director of Production Andrew A. Mickus
Vice President/Circulation Jerry M. Okabe
Group Circulation Director Gina Oh
Group Circulation Manager Kathy Henry
Circulation Manager Mike Poplardo
Newsstand Manager Debra Caris
Reprints Stella Valdez (916) 729-3633

Chairman of the Board Graham J.S. Wilson
President/CEO Marshall W. Freeman
Executive Vice President/COO Thomas L. Kemp
Senior Vice President/CFO Warren “Andy” Ambrose
Senior Vice Presidents David Nussbaum, H. Verne
Packer, Donald A. Pazour, Wini D. Ragus
Vice President/Production Andrew A. Mickus
Vice President/Circulation Jerry Okabe
Vice President/Software Development Division Regina
Starr Ridley

Miller Freeman
A United News & Media publication

a forehead. “Bring your SCUBA gear.
We’ll figure it out.”

Breaking deadlines left and right
(sorely testing the good humor of manag-
ing editor Nicole Claro and, over at Soft-
ware Development, Barbara Hanscome),
my wife Tina and I flew out to Chicago
Thursday night, the night before the tap-
ing. Impressive as it was to be picked up
at the airport by a limousine, it was less
impressive that the driver had lost the car
in the parking structure, missed the exit
from the airport, and got lost again on the
way to the hotel. I mean, I don’t know
Chicago, but does it normally take two
hours to get from O’Hare to Evanston
with no traffic?

Three-and-a-half hours of sleep
later, it was time to get up and get to
the studio. Finally, I would know if
green rooms were really green and if
television sets had as much good food
as movie sets. Tina and I debated
whether I should drink two or three
cappucinos to give me a little bounce or
whether the resulting quaver in my
voice would come across bad on televi-
sion. I didn’t have the choice. By the
time I got to the (not) green room, I
couldn’t even find real cream for the
dregs of a pot of Maxwell House coffee.

Show Us Your Pickle
I was introduced to my fellow “brain”
team members, and it was here that
things started falling apart fast. After
meeting Alan, the systems analyst, and
Charles, the biochemistry graduate stu-
dent, I was introduced to Quentin and
Gary, two stand-up comedians who
were planted in our panel apparently
because the producers weren’t sure we’d
be amusing enough. Quentin would
eventually “win” as the most interesting
of our team, despite the fact that his
“talent” was telling an offensive joke
that was stupid when Eddie Murphy
first told it 10 years ago. With his
chunk-gold jewelry and mock inner-
city speaking cadences, this guy was
popped straight from the Play-Doh
Create-A-Comic kit. When he finally
got on TV, the first words out of his
mouth were, I swear to God, “Hey,
how y’all doin’? Some fine-looking

women in the audience here!” Then, to
put the audience in stitches, he acted
effeminate and waggled his tongue sug-
gestively. Quentin had appeared on
several talk shows, which is apparently
what young comics do nowadays rather
than actually develop a witty routine.

Still, the stand-up comics at least
knew the talk-show drill, which gave
them a distinct advantage over me. I’d
brought some skin diving gear but had

no idea what to do in it. I gave some
thought to duct-taping my mouth and
nose shut and doing push-ups to show
that one could be fit without being
bulky, but I didn’t even know if the pro-
duction staff could find duct tape in the
few remaining minutes before taping
time. It was then that I was saved by the
electric pickle.

One of the guys replaced by the
idiot comics was willing to lend me his
pickle and a lamp cord. As I’m sure you
know, when 110 volts of alternating cur-
rent flows through a pickle, the result is a
coronal discharge that dances like green
neon, what the Romans would have
called an aurora cucumeralis if only they’d
spent a little less time building aqueducts
and a little more time installing cheap,
universal electrical service.

So I reported to the backstage area
newly charged with confidence. There
are few things that one can know with
metaphysical certainty, but one is that
electrifying a pickle on national televi-
sion would be a “grabber.” It’s got all
the elements of great drama: surprise,
danger (electrocution and explosion
being distant, but real, possibilities),
and visual appeal that can’t be beat.

Then, sad to say, it all came apart.
Intimidated by the jeers of the crowd,
tongue-tied by the insistence of the
staff that I “know what you’re going to
say before you go out,” tired and cranky
from lack of sleep, I went on and, in a
word, bombed. I was asked to step
aside, to support my team, to be seen,
perhaps, but not heard. And then it
was over. The judges decided that Jose,
one of the “Macho Maniacs,” was the
most interesting of us all, a decision I
couldn’t disagree with, based on what
made it onto television.

But I can’t help but think what
might have been. I can’t help but
dream of the electric pickle. ■

Larry O’Brien
Editor

When Larry O’Brien is not singing
Brady Bunch and Partridge Family tunes,
he can be found at Game Developer mag-
azine or attempting to electrically charge
various vegetables.

G A M E P L A N

4 GAME DEVELOPER • DECEMBER/JANUARY 1995

The Partridges

were darker than

the Bradys and

sang songs about

doubts and fear.

“Stop! I Think I

Love You”? Why

wasn‘t he sure?

What was David

Cassidy saying?

Gaming for
The Fun of It??

S E Z U !

Dear Editor:

I
just have to say I really enjoy your maga-
zine. I’ve made a living doing defense and
commercial product design for many years

and have only now gathered the resources to
do what the majority of your readers are
already doing—creating games! I’ve tested
the waters by doing game-testing, consult-
ing, manual design, editing and much play-
ing. Now I’m ready to see if my hare-brained
ideas will sell!

I enjoyed Barbara Hanscome’s “Gamin’ for
Grrrrls” (Chopping Block, Oct./Nov. 1995).
Despite the fact that boys and girls do have
differing tastes, we are after all, both human
and have that much in common. We like to be
entertained, challenged, amused, thrilled,
and teased. Boys don’t necessarily need
blood and violence, and girls can live without
cute, fuzzy animals. My sons not only like the
background sound in games, they thrive on
it! In addition, my 8-year-old plays all four of
the characters in Street Fighter 2, including
the girl (she has “neat powers”)!

I believe we can most easily find common
ground by examining games of the past, in
addition to perennial favorites. I have noticed
that both sexes really get into games that let
them insert their own personalities. Role-
playing games let players of either sex use
their unique strengths. Hey, men like a good
game of chess, yahtzee, cards, and so on–no
real violence there. My point is that I honestly
think these big game companies are trying
too hard and maybe they should consult with

some adults who have enjoyed gaming for the
fun of it.

Randall G. Arnold
Coppell, Texas

WAIT A MINUTE, MR. POSTMANWAIT A MINUTE, MR. POSTMAN
Dear Editor:

P
lease stop calling the postal service’s uni-
versal access, low technology, information
transfer media snailmail! Remember, only

10% of the U.S. population is on the Internet at
this time. The rest of them still need to move
physical objects around at the universal cost of
32 cents per ounce.

Jason Feinman
Via e-mail

Dear Editor:

H
ow come you don’t put articles online,
thereby saving trees and many post offi-
cers’ backs? I know money is a concern,

but can’t you just stick the advertisers’ ad in
the articles? I promise to be subliminally
affected by their ads.

Andrew Shebanow
Via e-mail

Editor Larry O’Brien responds:
After receiving the preceding disturbingly
angry letter from a postal carrier in response to
our referring to ground mail as “snailmail,”
we’re not about to become even more of a tar-
get by throwing hundreds, maybe even thou-
sands, of carriers out of work.

6 GAME DEVELOPER • DECEMBER/JANUARY 1995

SAY IT !SAY IT !
The shady staff of Game Developer would love to hear your comments, questions, and suggestions! Please send them to: Game
Developer magazine, Sez U!, 600 Harrison St., San Francisco, Calif., 94107. For those of you who do have access to the Inter-
net, send e-mail to 71743.452@compuserve.com or go to the Game Developer web site at http://www.mfi.com/gdmag. Thanks!

GIMME MORE!GIMME MORE!

Dear Editor:

I
’m a big fan of your magazine, and I’m glad
to see you’ve lowered the price. I thought the
October/November 1995 issue was your best

yet. Mike Michaels’s “Organizing User Input,
Part I: The Input Queue Manager and Keyboard
Events” was very well written and informative.
I do have a suggestion, though: I’d really like
to see more information about game industry
sales figures and other market data. Unlike
other PC application categories, game sales
information is very hard to come by. I’d like to
know how well games sell, what the total mar-
ket size is, what typical budgets for games are,
and how game developers make their money.
After all, being a game developer isn’t simply a
matter of hacking out code–you’ve got to sell
those games too. Thanks.

Andy Shebanow
Via e-mail

LITTLE NIKKILITTLE NIKKI
Dear Editor:

I
was walking down the street the other day

just minding my own business when this
woman ran into me and knocked me into

moving traffic. Now, I was quite upset until
she said she worked on this game maker mag-
azine or something, and gee didn’t that sound
interesting, and, well I guess I could forget the
whole incident if she would send me a copy of
what sounded like a great read, but I never
heard from her again. I thought she said her
name was Nakita Freeman or something, so I
looked up game stuff on my groovy web brows-
er and there’s someone on your staff named
Nicole. I thought she might be working there
under an assumed name or something. I don’t
care so much about the magazine anymore,

but I just wanted to warn you that there’s a
woman on your staff who doesn’t look where
she’s going on the busy sidewalks of San Fran-
cisco.

Enrique Hombrelibre
Via e-mail

Contributing editor Alex Dunne responds:
Thanks for the note. We’ve taken care of Nicole
Freeman, a.k.a. “little Nikita.” She travels under
a variety of assumed names, especially when
involved in covert pedestrian-bumping opera-
tions. Rest assured that everyone on our staff
was alerted to her slip-up and that she will be
severely reprimanded! It’s slip-ups like this that
can devastate a little magazine like ours.

This month, our

readers have much

to say about gender

differences, the

postal service,

and suspicious

encounters with

the staff of

Game Developer

magazine.

Our Readers

GAME DEVELOPER • DECEMBER/JANUARY 1995 7

E R R AE R R A TT AA

Q
uality is job one here at Game
Developer magazine. We strive to
correct any mistakes we’ve made

to provide you with best product we
can. That said, we lower our heads
and admit to the following two mis-
takes.

•In Mike Michaels’s Oct./Nov. 1995
feature article “Organizing User
Input, Part I: The Input Queue
Manager and Keyboard Events,” we
left out Listing 3, HEAPMGR.C.

•In “Getting Started with VESA” by
Matt Pritchard (June/July 1995) part
of the code in Listing 2, VESADE-
MO.C, was omitted.

You can access each of these listings
in its entirety (as well as all refer-
enced code from previous issues) on
the fabulous carousel that is the
Game Developer ftp site.

A Hardware
Spec for
Games

The standards specifi-

cation under discus-

sion at the Game PC

Consortium is a hot

topic these days. So

hot, in fact, that we‘ve

got the results of the

vote in this month‘s Bit

Blasts (we are so on

top of things).

Alex Dunne

C R O S S F I R E

GAME DEVELOPER • DECEMBER/JANUARY 1995 9

L
ast issue, I examined the
GamePC Consortium’s
(GPCC) efforts to put
together a benchmark for
three-dimensional graphics
performance. The GPCC is a
young organization compris-
ing hardware and software

vendors in the PC game industry. The
consortium was formed to target the
vacuum in PC game standards through
the creation of the GamePC
specification—an all-encompassing
GamePC standard similar to the Mul-
timedia PC (MPC) specification. This
standard is a tough nut to crack, not
merely because of the technical hurdles
that have to be cleared, but because of

inter- and intracompany politics that
can hold back rapid adoption of a stan-
dard. The three-dimensional graphics
benchmark I described last issue is
merely one component of this proposed
specification.

Standardizing
Game Hardware
Like the MPC certification, which is
controlled by the Software Publishers
Association’s Interactive Multimedia
section, the GamePC certification will
provide a way for consumers to deter-
mine the minimum hardware they
need to enjoy their software purchas-
es. It will also help the game develop-
ment community develop and market

The GamePC Consortium’s specification for gaming hardware will be implemented as a
seal of approval, indicating the type of hardware recommended for game play. These
logos are still in the design stages.

games because a common level of game
performance will be expected from the
hardware.

Why not simply use the MPC
standard for games? It doesn’t go far
enough. For instance, a graphically
undemanding and processor-friendly
game of the Myst variety would do fine
using the MPC3 specification. A game
that required a bit more horsepower
under the hood—perhaps Dark Forces
or Wing Commander 3—would need a
specification that provided for a faster
processor, graphics, and perhaps better
audio as well. Further down the road, as
games demand more sophisticated
hardware, the specification can be
updated or higher levels of the specifi-
cation can be created.

The MPC Spec
To see how the GamePC specification
will be used, look no further than the
MPC certification as a model. The
MPC specifications (there are three lev-
els—the higher the number the more
current the specification) dictate the
minimum processor, RAM, hard drive,
floppy drive, CD-ROM drive, audio,
graphics performance, video playback,
user input, I/O, and system software
present on a PC. In addition, the MPC
Working Group provides a test suite on
CD-ROM, written by the National
Software Testing Laboratories, for
establishing whether a computer is
delivering MPC3 compliance in the key
areas of processing speed, video play-
back, graphics performance and audio.
Hardware vendors are required to
pass the test suite in order to
display the MPC mark on
their products. In 1994,
the MPC1 MPC2
certification marks
were extended to indi-
vidual CD-ROM dri-
ves and sound cards,
and in 1995, the MPC3
mark was extended to
video playback boards and
speakers.

Because the MPC standard was
developed years ago, it has already
staked out much of the territory that

the GamePC Consortium roams. Cre-
ating another specification that dictates
similar—but not identical—require-
ments as the MPC specification will
only confuse consumers. To avoid
duplicity or conflicts between the certi-
fications, the GPCC has decided to
base the GamePC specification on
either the MPC2 or MPC3 specifica-
tion and build on those requirements in
areas specific to game play. (You can
find a thorough description of the vari-
ous MPC requirements on the World
Wide Web, at http://www.spa.org/-
mpc/default.htm.)

As a result, the GamePC specifica-
tion will rely to a large degree upon one
of these two MPC levels as a baseline.
In theory it’s an excellent plan—con-
sumers won’t have to worry about con-
flicting requirements in the two specifi-
cations. With a little collaboration, the
two standards organizations should be
able to effectively update their specifi-
cations on a regular basis without step-
ping on each others’ toes. However,
there are some parts of the GamePC
ballot that risk conflict with the MPC
specification.

Turning Suggestions
into a Ballot
The following items present in the
GamePC specification were bandied
about among GPCC members. Some

items made it onto the ballot for
members to vote for or against

the specification, while others
were shelved for future ver-

sions of the specification.
Some of the suggested

items were pretty cutting
edge, but given that the

logo won’t take effect
until sometime well
into 1996, the recom-
mendations were ap-
propriate. Here’s a quick
rundown of items that
were suggested for
GamePC-compatibility:

Three-Dimensional
Graphics. The three-dimensional graph-
ics benchmark that I profiled in my last
column was probably the part of the

specification that generated the most
debate. In fact, it wound up being such
a complicated topic that it didn’t make

it into the
o f f i c i a l
G a m e P C
ballot. The
group is
still work-
ing on it
as we go
to press,
and it
will be

voted on inde-
pendently from the rest of the hardware
requirements. When completed, it will
likely take shape as a test suite that
computers will have to pass, similar to
the MPC test suite.

Three-dimensional User Input. A
requirement for three-dimensional
input (such as a joystick-generated
command) was recommended for game
machines, as the MPC specification
calls only for a standard 101 keyboard
and a mouse. The keyboard is fine for
Doom and the mouse is great for Myst,
but a Descent-type game or a flight
simulator allowing six degrees of free-
dom should require a flight stick to
keep players from auguring in. Howev-
er, the ballot sent out by the GamePC
Consortium only queried for the pres-
ence of a universal serial bus (USB) dig-
ital joystick interface and a front-
mounted joystick port—there was no
mention of the computer actually hav-
ing a joystick hooked up. Specifying
that a person have a joystick port, but
not requiring the joystick itself is some-
what like requiring that the computer
have a port for a keyboard, but not
requiring the presence of a keyboard
(the big difference being that every
computer comes with a keyboard, and
no computer that I know of automati-
cally comes with a joystick).

A consumer without a joystick is
apt to look at a flight simulator box, see
the GamePC logo, figure he or she-
meets the specification (“Hey—I’ve got
the joystick port”), bring the game
home, and find out that the darned
thing doesn’t work too well with a

C R O S S F I R E

10 GAME DEVELOPER • DECEMBER/JANUARY 1995

12 GAME DEVELOPER • DECEMBER/JANUARY 1995

mouse and keyboard. I may be nitpick-
ing, but I feel that if the specification is
going to ask for something as nifty as a
front-mounted USB, you might want to
require the control that plugs into it.

T h r e e -
d i m e n s i o n a l
Sight and
Sound . Vari-
ous GPCC
m e m b e r s
p r o p o s e d
that infor-
mation per-
taining to three-di-
mensional sound be included in
the specification, and others favor sup-
port for stereoscopic devices in the
GamePC mark. My feeling when I first
saw those suggestions was, yes, those
high-end goodies should be in future
versions of a specification, but coming
off the blocks with a specification that
calls for hardware that a miniscule por-
tion of the gamers own (and not many
games will support anyway) will dis-

courage consumers from taking the
specification seriously. This is one of
those cases where the special interests
of certain companies can cause political
problems in specification creation. For-
tunately, neither of those items made it
onto the ballot.

CD-ROM. This was an item that I
saw in potential conflict with the MPC

specification. The GPCC proposed a
data transfer rate from a CD-ROM

at 450KB per second—in other
words, a triple speed drive. This

raises two questions: why stan-
dardize on this rare model of

drive (why not just base it on
a 4X speed?), and won’t this

conflict with the MPC3 specification if
that gets ratified as the basis for the
GamePC specification? To attain the
MPC3 rating, a computer must have a
quad-speed CD-ROM drive, so ap-
proval of a triple-speed drive will cause
the GamePC rating to dip below an
already approved base standard. Some
kind of amendment to the standard

might have to be
made to correct this
apparent conflict.

Audio. The
GamePC specifica-
tion seems to be
fairly similar to the
MPC specification.
Game PCs will
likely be required to
support the current
standard sampling
rates between 8 and
44.1KHZ and sup-
port wavetable syn-
thesis for MIDI
playback.

C o m m u n i c a -
tion. With the
head-to-head capa-
bilities of many
games on the mar-
ket these days, the
GPCC suggested
requiring a 14.4KB
modem in a Game-
P C - c o m p a t i b l e
machine. Excel-
lent—although a

28.8KB modem might have been better
(oh well). I wonder if specifying access
to one of the major commercial online
services shouldn’t be a requirement of a
future GamePC specification. By all
accounts, CompuServe, America
Online, Prodigy, and the Microsoft
Network are hot and heavy to promote
a new generation of graphical games
using their online services as a back-
bone. Another idea for future GamePC
specifications is a network card— noth-
ing beats the speed of head-to-head
play when you’re connected to your
roommate’s computer with some coax!

System Software. No mention of
system software is made because all
MPC specifications specify DOS and
16-bit Windows. However, the
GamePC ballot queries support for
AutoPlay (or similar functionality),
which implies support for Windows 95.
The question of which operating system
to standardize on could confuse the
specification if it is not cleared up.
Additionally, GPCC members such as
IBM have made it clear that they’d like
the GPCC to come up with a specifica-
tion that’s operating system neutral.
This means that either the AutoPlay
requirement will have to be ditched,
IBM will have to enable its own version
of AutoPlay in OS/2, or IBM is out of
luck.

The results of the balloting will be
available by the time you read this.
However, it’s still not clear when the
GamePC specification will begin to
appear on game boxes or hardware.
Realistically, I wouldn’t expect it until
the spring or summer of 1996. Yes,
there are issues to be resolved regarding
the GamePC specification, but there’s
no question that it’s a step forward for
everyone—developers and consumers
alike. If you’d like to keep up to date
with what’s going on with the specifica-
tion, or you’re interested in becoming a
member of the GPCC, check out their
web site at http://www.mmwire.com/
gamepc/gpchome.html. ■

Alex Dunne is contributing editor to
Game Developer magazine.

C R O S S F I R E

Let’s Hear
It for the Boy

Nicole Claro

B I T B L A S T S

O
.J.’s over, the World Series
actually happened this year
(with the Cleveland Indians,
no less!), and my editor got to
rub shoulders with our
favorite bottom-tattooed, for-
mer child star. Judgment Day
happens in less than a week,

but after that, things could start to get
dull around here. Hey, Christmas, a big
season for the game industry, is just
around the corner! Many of our readers
have probably recently shipped projects
they’d worked on diligently for months
and are ready to spend some time
exploring each others work (not to
mention the tools they each used on
that work). Enter hardware for the
Christmas season—Virtual Boy from
Nintendo.

Nintendo recently launched Virtual
Boy to the tune of a $25-million mar-
keting campaign. The VR headset is a
RISC-based, 32-bit system using two
high-resolution, mirror-scanning LED
displays, which immerses the player in a
fantastic world. The player controls the
action inside the lightweight headset
(fitted with stereo sound) using the dou-
ble-grip controller with six buttons and
two plus-keys. Nintendo was responsible
for the three-dimensional image immer-
sion technology used in Virtual Boy,
while the company has licensed the pro-
prietary display technology from Reflec-
tion Technology Inc., based in
Waltham, Mass. Nintendo is currently
working with several companies on
third-party games designed specifically
for the Virtual Boy headset, which will
retail for $179.95. Gameboy, Virtual
Boy, where does the boy go from here?

■ For more information contact:
Nintendo of America
4820 150th Avenue N.E.
Redmond, Wash. 98052
Tel: (206) 882-2040
Fax: (206) 882-3585

Diamond on the Edge
Virtual Fighter, “Ready, Go!” Windows
95-integrated video and audio has
reached new heights. Diamond Multi-
media Systems Inc. has announced a
line of integrated three-dimensional
multimedia accelerators that lets users
play a variety of high-powered games
under Windows 95.

The company believes its Dia-
mond Edge 3D is the only single-board
accelerator that features a digital game-
port for precise joystick control and two
video gameports that let you play spe-
cialized, multiplayer titles. Several
game companies are developing prod-
ucts specifically to take advantage of
the capabilities offered by Diamond’s
new product. Papyrus’s Nascar Racing
and Interplay’s Descent: Destination
Saturn are two games slotted to be
bundled with the upcoming release of
Diamond Edge 3D. Retail price for
Diamond Edge 3D will range from
$249 to $299.
■ For more information contact:

Diamond Multimedia
Systems Inc.
2880 Junction Ave.
San Jose, Calif. 95134-1922
Tel: (408) 325-7000
Fax: (408) 325-7070

Crash, Bang, Boom!
Positron Publishing has released the
Dynamic Motion Module, the first

14 GAME DEVELOPER • DECEMBER/JANUARY 1995

Christmas is here,

and there are new

tools, new books,

new virtual headsets

for everyone! We‘ve

also got the scoop on

the results of the

GamePC

Consortium‘s vote on

specifications!

physics-based collision detection pro-
gram for the PC. Designed as a plug-in
for Autodesk 3D Studio, the Dynamic
Motion Module uses physics to create
series of keyframes more precisely than
you could by hand. It lets animators
combine objects that have been
assigned dynamic motion with other
objects that rely upon key frame motion
and detects the collision of objects
(with a collision detection resolution of
up to 1/480th of a second), calculating
the resulting motion response of the
objects. The module uses quaternions
(complex algebraic structures) to
improve rotation and lets you apply fac-
tors such as gravity, wind, acceleration,
velocity, and drag to your objects. Fully
compatible with 3D Studio’s internal
splines, the Dynamic Motion Module
also provides smooth-shaded preview
images as frames are generated.
■ For more information contact:

Positron Publishing
1915 N. 121st St.
Ste. D
Omaha, Neb. 68154
Tel: (402) 493-6280
Fax: (402) 493-6254

VB Underground
The Waite Group Press has released
another in its series of “Black Arts”
books for programmers. Black Art of
Visual Basic Game Programming, by
Mark Pruett, is a guide to every aspect
of building Windows games from the
ground up. Step-by-step tutorials clear-
ly explain essentials like drawing the
boundaries of the game playing field,
using the Windows API to its fullest to
create sprites and bitmap masks, and

GAME DEVELOPER • DECEMBER/JANUARY 1995 15

I
t’s the moment we’ve all been waiting for...Just days ago (remember, it’s December
in Magazineland, but October everywhere else) the GamePC Consortium (GPCC)
announced the results of its vote on standards for game specifications. For back-
ground information on the debate, see Alex Dunne’s Crossfire column, on page 9 of
this issue. Following are the standards the GPCC agreed on for the GamePC Level 1

Compatible System Specification. The specification covers five areas, systems, CD-ROMs,
graphics, sound, and video. The GPCC also agreed on a Recommended System Specifica-
tion, but due to its length, we couldn’t provide that data here. Go to our soon-to-be web
site (http://www.mfi.com/gdmag), though, and you can view it.

SYSTEM
• Must Meet MPC level 2 minimum specifications
• Base system must contain at least 8MB RAM
• Must Support AutoPlay (or similar functionality)
• Must be able to read 10MB data file from hard disk in 17 seconds (more than

600Kb per second).

CD-ROM
• Must be able to read 10MB data file from CD in 30 seconds (300K/sec).

GRAPHICS:
• Must run “Fox and Bear” benchmark (640x480x8) at a rate of 30 fps
• Must implement local bus (VLB or PCI) graphics with total video RAM greater

than or equal to 2MB
• Minimum total RAM (base system RAM+ video RAM) must be 9MB
• Display and monitor must support the following display modes:

320 x 200 256 Colors (Mode 13 and Mode X)
640 x 400 256 Colors (Mode 100h)
640 x 480 256 Colors (Mode 101h)
640 x 480 32K Colors (5:5:5) (Mode 110h)
640 x 480 64K Colors (5:6:5) (Mode 111h)
640 x 480 16.8M Colors (8:8:8) (Mode 112h)
800 x 600 256 Colors (Mode 103h)

SOUND:
• Must be able to play 4, 22KHz 16-bit wave buffers mixed, concurrently
• Must support all sample rates between 8KHz and 44.1KHz, mono and stereo
• Must support General MIDI compatible wave table synthesis.

VIDEO
• Must be able to play a sample MPEG movie file from CD-ROM (accurate sound

synchronization with no audio breaks)
• 352 x 240 window in display mode 640 x 480 x 8 must run at a rate of 15 fps
• Must be OM-1 MPEG compliant.

Systems that the GamePC Consortium tests and verifies to conform to the above specifi-
cations can earn the GamePC Level 1 Compatible certification mark.

H O T O F F T H E P R E S S !

monitoring object collisions. Every facet
of game creation is covered here,
including graphics, animation, sound-
tracks, and increasingly difficult game
levels.

The 600-page book comes with a
CD-ROM with sample games that
demonstrate smooth-scrolling back-
grounds, using bitmap tiles to create a
maze, and adding ray-traced graphics to
your gamescape. The CD-ROM also
includes 16- and 32-bit reusable Visual
Basic code to plug into your own games
and all the examples, graphics, and
sound effects covered in the book. Black
Art of Visual Basic Game Programming:
The Newest and Easiest Way to Create
Games with Visual Basic retails for
$34.95.
■ For more information contact:

Waite Group Press
200 Tamal Plaza
Corte Madera, Calif. 94925
Tel: (415) 924-2575
Fax: (415) 924-2576

Intel for Everyone
Intel has introduced Indeo Video
Interactive, a new wavelet-based codec
that enables real-time interaction and
control of video and graphics imagery
in multimedia and game application for
the PC. It ups the ante on image quali-
ty, offereing far better quality at lower
rates than possible before with Indeo
Video.

Indeo Video Interactive includes
features such as transparency support
for interactive digital effect, which lets
you overlay arbitrarily shaped video or
graphics onto other video and graphics,
for run-time interactive control; local
window decode, with which you can
create an indepentent video playback
window within a larger video playback
display or graphics scene; random
keyframe access; and a scalable quality
feature that scales quality between sev-
eral different quality levels, depending
on the PC’s CPU capability. Indeo
Video Interactive for Windows 95 and
Windows 3.1 will initially be available
within an Intel SDK, with drivers for
Apple’s QuickTime 2.01 and 2.1 to

come in early 1996 (just about the time
this hits the stands).
■ For more information contact:

Intel Corp.
2200 Mission College Blvd.
Santa Clara, Calif. 95954-1537
Tel: (503) 264-6277

Nicole Claro is managing editor of
Game Developer magazine. Contact her
at nclaro@mfi.com.

Stick it to Them...Microsoft began
shipping the Game Software Develop-
ment Kit to developers at the beginning of
October. Some of us got betas at the Com-
puter Game Developers’ Conference last
April. The Gossip Lady has looked in
vain in her mailbox but perhaps a lucky
reader will tell us what video cards are sup-
ported. Since Microsoft’s standard answer
to anyone with problems running games
under Win95 is, “Talk to your [video,
sound, joystick, mouse] vendor” this is a
crucial question. Oddly enough, Win95 has
problems with some Logitech mice. Does
Microsoft’s entry into the joystick market
mean that other joystick manufacturers are
going to experience these unfortunate bugs
also?

A Learning Experience...Broderbund,
always strong in edutainment, is going after
that segment of the market in a big way.
Not only did it purchase The Learning
Company but Broderbund has also start-
ed a new line of curriculum-based games
under the Active Mind label.

Sony-Sega Title Bout...Someone at
Sony needs to give those PR people a
raise! Sega, probably after seeing the
tremendous amount of ink that the Sony
Playstation is getting, lowered the price
on its Saturn in an attempt to stay competi-
tive. Talk is that Sony’s only possible weak
spot in its attempt to wrest the set-top mar-
ket away from Nintendo and Sega is its
lack of game design experience. With the
hiring of Kelly Flock to head up the newly
renamed Sony Computer Entertain-
ment, this last is no longer a problem.
Flock has the guts and the smarts to say
what all of us developers have been mutter-
ing ever since Hollywood mistook the
“play” in “game play” as something that
you go watch—not something you do.
Flock says, “Anyone who talks about inter-
active movies doesn’t know the first thing
about either.” Meanwhile, Sega announced
it will begin shipping titles for the PC.

Publishers Repel Pirates...Wonder why
your royalty checks are low? Maybe it has
something to do with all the pirate CD-
ROMs. The Software Publishers
Assoc. (SPA) just won injunctions
against E.V. International, M&S
Assoc., Mr. CD-ROM, Softshoppe and
Stylin Multimedia, mostly for game pirat-
ing. On another front, shareware authors
have involved the FBI and the Royal
Canadian Mounted Police in shutting
down pirate shareware CD publishers.
Rumor is that the shareware authors may
join up with SPA.

Talk to The Gossip Lady at
71501.3553@compuserve.com.S
c
h

m
o

o
z
e

n

e
w

s
..

.
S

c
h

m
o

o
z
e

n

e
w

s
..

.

16 GAME DEVELOPER • DECEMBER/JANUARY 1995

B I T B L A S T S

!U P G R A D E

YOURS!
• RAD Software has released

version 2.0 of Smacker,
which has over 100 new fea-
tures. Smacker 2.0 has utili-
ties up to 400% faster than
previous versions and is
available on CD-ROM. The
upgrade is $95 for current
Smacker users.

• Autodesk is at it again (they
put those upgrades out too
fast for us to keep track!)
with the recent release of
Animator Studio 1.1. This
Windows 95-compatible ver-
sion of the two-dimensional
paint and animation software
features many new plug-ins
and a digital clip library on
CD-ROM. Current Animator
Pro users can migrate to the
newest version for $149; the
migration will cost $199 for
Animator and Multimedia
Explorer users. For new
users, Animator Studio 1.1
will retail at around $295.

• Kai’s Power Tools 3 (KPT3)
is the latest version of the
imaging software available
from MetaTools (formerly
HSC Software). KPT3 is opti-
mized for Power Macintosh
and Windows NT and Win-
dows 95 and features sever-
al new tools and precise
controls over imaging spe-
cial effects. KPT3 will retail
for around $199, and regis-
tered users of KPT2.1 can
upgrade for $79.

K
nowing, understanding, and
following through on your
goals are key parts of soft-
ware development. Often, I’ll
go into a project with a per-
fectly valid set of goals, only
to get distracted along the
way and produce something

that meets an entirely different set of
goals, but completely misses my origi-
nal ones. This phenomenon seems to
be pretty common in the game industry
as well, where companies go into a pro-
ject with the goal of creating a great
game, but end up creating a nice piece
of technology with no game play.

Similarly, our goal during this
series is not to produce a perspective
texture mapper. Surprise! Our goal is
actually to draw perspective-texture-
mapped triangles on the screen quickly.
A subtle but important difference exists
between these two goals. As with most
things in real-time PC graphics, the
result on the screen is the only thing
that matters, not how you got it there.
We can exploit the difference between
what looks right and what is right and
get big speedups in our code.

In other words, if a beautifully
written, mathematically perfect texture
mapper and a total hacked piece of junk
produce the exact same results on the
screen (including avoiding jitter and all
the other things we’ve been learning),
and the hack is 10 times faster, then the
choice is clear if you’re interested in
speed. It’s important to note that this
does not mean we’ve been wasting our
time learning about “correct” perspec-
tive texture mapping. In fact, it’s just
the opposite. Now that we intimately

understand how the math works, we’re
in a much better position to throw it all
out and cut corners.

In Our Last Episode...
Let’s quickly summarize and tie up loose
ends from my last column in this series,
“Perspective Texture Mapping, Part III:
Endpoints and Mapping” (Behind the
Screen, Aug./Sept. 1995). The summary
is pretty short: we’ve developed a com-
plete, high-quality sub-pixel-accurate
perspective texture mapper.

The only loose end we’ve got left
(besides performance, which is the
main subject of this article) concerns
the real-to-integer texture coordinate
mapping. When we left off, we had a
bug in this mapping and we needed to
choose a rounding rule to get the cor-
rect mapping. I hinted that we already
had the information available to make
the decision on which rounding rule to
use, but I didn’t give the answer. As
many of you probably guessed, the gra-
dients are the key to making this deci-
sion (which implies you must switch
between rounding rules at runtime—
and this is indeed the case). Unfortu-
nately, limited space keeps me from
going into the derivation of the solu-
tion. If you’re interested, you can pick
up the sample code I mention at the
end of this column on the Game Devel-
oper ftp site. You’ll find a big comment
block explaining things there.

Divided We Fall
Finally I’m ready to make good on the
second half of my two-part promise:
the first part of which was to develop
an easy-to-understand perspective cor-

Texture
Mapping Part IV:
Approximations

So you thought we

were done with per-

spective texture map-

ping. Didn‘t you feel

something was miss-

ing? The penultimate

article in this series

helps shed some light

on the ins and outs of

approximations.

Chris Hecker

B E H I N D T H E S C R E E N

GAME DEVELOPER • DECEMBER/JANUARY 1995 19

rect texture mapper, and the second to
speed it up to interactive performance.

In our efforts to speed up the
mapper the obvious question is ,
“Where is the code currently spending
its time?” I ran a profiler on it and
ended up with what I like to call the
perfect profile—almost all our time
(96%) is spent in one function,
DrawScanLine. The nice thing about a
profile like this is that your optimiza-
tion work in that function, sometimes
called the hotspot, is very highly lever-
aged. In other words, every little bit
you speed up the hotspot increases the
overall performance by a lot. It’s not
surprising that DrawScanLine is the cul-
prit because it contains the pixel loop,
but it ’s always good to check our
assumptions and gather some real data.

Listing 1 gives us a closer look at
DrawScanLine inner loop. In it, we see
that the function is doing a divide and
two multiplies per pixel to figure out
the texture coordinates, a multiply to
calculate the texture offset, and a few
adds. The divide is probably the major
sink here. Divides are much slower than
multiplies on most processors, and mul-

tiplies are generally slower than adds. If
we comment out the divide per pixel
and do a linear interpolation between
the left and right edge, the mapper per-
forms seven times faster in my test (and
of course looks totally wrong because
there’s no perspective correction).
Obviously, getting rid of the divide
helps a lot. However, to get rid of the
divide and keep the same visual quality
we need to know exactly what the
divide is doing there in the first place.

The divide is the crux of the per-
spective texture mapper. It takes the
linear interpolations of 1/z, u/z, and v/z
and turns them into the nonlinear curve

that samples pixels close together when
the polygon is near the eyepoint and
samples farther apart when the polygon
is distant. If the polygon is slanted so
that it’s close on one end and distant on
the other, the divide smoothly moves
from close to separated samples. Figure
1 shows a plot of screen x versus sam-
pled u for a typical perspective mapped
scanline. As x increases, u starts
increasing slowly and then grows much
quicker. Obviously, this data is from a

polygon that’s close at low values of x
and distant at larger values.

This curve (it’s different for each
polygon and scanline, in general) is
what makes perspective mapping look
correct, so the trick is to approximate
the curve without using a divide and
without adversely affecting our visual
quality.

The Big Three
When I say we want to approximate the
perspective curve, I mean we want to
use alternate equations that will pro-
duce the same—or very close to the
same—output (the u value shown in
Figure 1) for the same input (x, as
shown in Figure 1), but hopefully will
be more efficient than our algorithm
with its divides.

Three approximations to the per-
spective texture mapping equations are
commonly used: subdividing affine,
quadratic, and lines-of-constant-z.

I’m going to talk about lines-of-
constant-z first because it’s very differ-
ent from the other two. First, “lines-of-
constant-z” is an awkward name. Some
people choose to call it “free-direction
texture mapping,” which is a bit easier
to say but not quite as precise. Basically,
a lines-of-constant-z rasterizer tries to
take advantage of the neat fact that
there are straight and parallel lines that
have a constant z through any planar
polygon. Imagine you’re sliding a plane
that’s perpendicular to the z-axis back
through your polygon. The plane will
slice the polygon in a series of parallel
lines as it moves through the depth
range occupied by the polygon. All the
pixels along one of these lines will have
the z value of the plane, so the line has
a “constant z.”

Now, if you look at the math
behind our projection, when z is con-
stant, our equation turns into a linear
interpolation (the perspective curve
from one point on this line to the next
is a line itself), which is quick and easy
to compute and has no divides in the
pixel loop. The down side is that in
general you’ll be interpolating along a
diagonal line in the destination instead
of across a nice horizontal scanline

B E H I N D T H E S C R E E N

20 GAME DEVELOPER • DECEMBER/JANUARY 1995

Figure 1. The Perspective Curve

u

x

while(Width— > 0) {
float Z = 1/OneOverZ;
int U = UOverZ * Z + 0.5;
int V = VOverZ * Z + 0.5;

*(pDestBits++) = *(pTextureBits + U + (V * TextureDeltaScan));

OneOverZ += Gradients.dOneOverZdX;
UOverZ += Gradients.dUOverZdX;
VOverZ += Gradients.dVOverZdX;

}

Listing 1. The Inner Loop

(walls and floors are special cases where
the lines-of-constant-z are vertical and
horizontal, respectively).

This diagonal (or free-direction)
interpolation causes three major prob-
lems. First, if your diagonal lines don’t
abut properly you’ll get dropouts and
overwrites inside your polygon. This is
solvable if you’re careful.

Second, unless you obey a strict fill
convention, you’ll get the same kind of
dropouts and overwrites between poly-
gons. This is much harder to fix than
the intra-polygon problems, but it’s still
solvable.

Finally, and this one is the kiss of
death as far as I’m concerned, it is total-
ly impossible to achieve subpixel accu-
racy with a lines-of-constant-z texture
mapper. To achieve subpixel accuracy
we must always sample the texture from
the pixel centers of the destination but
our arbitrary line-of-constant-z doesn’t
hit the pixel center in the destination.
However, you can’t step off the line-of-
constant-z to the pixel center or you’ll
need to divide to take the nonconstant-
z step into account. Damned if you do,
damned if you don’t.

If you don’t care about subpixel
accuracy (insert flame about jittering
and sloppy textures here), the lines-of-
constant-z technique might be for you.
As an added bonus, you get depth cuing
effects like fog almost for free—you
already know the depth of the current
line, and the depth, by definition, is
going to stay constant. So you can com-
pute your fog value at the start and use
it along the entire line instead of at
every pixel.

The next two techniques, subdivid-
ing affine and quadratic, are based on a
more straightforward approximation of
the perspective curve. Both try to fit
easy-to-interpolate curves to the more
complex perspective curve. Subdividing
affine does a piecewise linear approxima-
tion, fitting a number of line segments to
the curve, and quadratic fits a quadratic
curve to the perspective curve.

We’re going to use a subdividing
affine curve for our approximation, so
before going into detail on it I’ll go over
the quadratic technique.

Quadratics
Most people remember quadratic equa-
tions as parabolas from algebra. A qua-
dratic in x is:

This equation will graph a parabo-
la or a line on the x and f(x) axes. The
coefficients a, b, and c determine the

shape and position of the parabola on
the graph, and we use these three
“degrees of freedom” to attempt to fit a
parabola to the perspective curve. We
use the normal perspective mapper to
interpolate down the edges of the poly-
gon so they’ll be precise, and use the
quadratic to interpolate across the scan-
line (where we’re spending our time in
DrawScanLine). At each pixel on the
scanline, we want to be able to feed in
our screen position, x, and the quadratic
equation should produce our texture
coordinate as its value (f(x) in Equation

1). We need two quadratics—one to
produce the u texture coordinate from
x, and the other to produce the v coor-
dinate from x.

Because we have three degrees of
freedom, we can choose to match exact-
ly any three characteristics of the per-
spective curve, and approximate the
other characteristics. For example, we
might choose to exactly interpolate the
two endpoints, and spend our last
degree of freedom on exactly matching
the first derivative, or slope, of the per-
spective curve as it enters or leaves one
of the endpoints—we can’t match both
derivatives because that would cost us
two degrees of freedom, one more than
we have left if we’re going to hit the
endpoints exactly. We could even inter-
polate one endpoint and exactly match
the first and second derivative exactly at
that point. Or we might spend all three
degrees of freedom interpolating three
points on the curve exactly, like the two
endpoints and the middle point. We’ll
do the derivation for the latter approxi-
mation to show how it’s done.

To figure out the quadratic curve
that interpolates the two endpoints and
the midpoint and produces the u texture
coordinate given x, we start by writing
down the equations we know. We
assume x goes from 0 to 1 for simplicity.
We need to solve for u at x = 0, 0.5, and
1 using the perspective divide to give us
three known values, u0, u1, and u2,
respectively, so we can solve for a, b, and
c, the three unknowns. We plug these
values into Equation 1 to give us three
equations in three unknowns:

and:

f u a b c

a b c

1 1 12
2() = = + +

= + +

f u a b c

a b
c

1

2

1

2

1

2

4 2

1

2Ê

Ë
Á

ˆ

¯
˜ = =

Ê

Ë
Á

ˆ

¯
˜ + + =

+ +

 f u a b c c0 0 00
2() = = + + =

 f x ax bx c() ()= + +2 1

GAME DEVELOPER • DECEMBER/JANUARY 1995 21

If you don‘t care

about subpixel

accuracy, the

lines-of-con-

stant-z tech-

nique might be

for you.

We then solve the simultaneous
equations for a, b, and c in terms of u0,
u1, and u2, and after a bit of algebra we
get:

and:

Now, if we wanted to, we could use
these coefficients and solve the quadratic
directly at each point on the scanline
(we’d actually do the math using x = 0, at
x = width/2, and x = width so we
wouldn’t have to scale our x values
between 0 and 1), but that means we’d
be doing a bunch of multiplies per
pixel—probably better than the divide
we’re currently doing, but not great.
However, we can use forward differences
to solve the quadratic using only addi-
tion and the solution for the previous
pixel. Forward differences are covered in
any good graphics or math textbook,
but, simply stated, you take f(x+1)-f(x) to
calculate the function’s step based on its
previous value. In the case of our qua-

 c u= 0

 b u u u= - + -3 40 1 2

 a u u u= - +2 4 20 1 2

B E H I N D T H E S C R E E N

22 GAME DEVELOPER • DECEMBER/JANUARY 1995

void DrawScanLine_suba(dib_info const &Dest,
gradients_fx_fl_a const &Gradients,
edge_fx_fl_a *pLeft, edge_fx_fl_a *pRight,
dib_info const &Texture)

{
int XStart = pLeft->X;
int Width = pRight->X - XStart;

char unsigned *pDestBits = Dest.pBits;
char unsigned * const pTextureBits = Texture.pBits;
pDestBits += pLeft->Y * Dest.DeltaScan + XStart;
long TextureDeltaScan = Texture.DeltaScan;

int const AffineLength = 8;

float OneOverZLeft = pLeft->OneOverZ;
float UOverZLeft = pLeft->UOverZ;
float VOverZLeft = pLeft->VOverZ;

float dOneOverZdXAff = Gradients.dOneOverZdX * AffineLength;
float dUOverZdXAff = Gradients.dUOverZdX * AffineLength;
float dVOverZdXAff = Gradients.dVOverZdX * AffineLength;

float OneOverZRight = OneOverZLeft + dOneOverZdXAff;
float UOverZRight = UOverZLeft + dUOverZdXAff;
float VOverZRight = VOverZLeft + dVOverZdXAff;

float ZLeft = 1/OneOverZLeft;
float ULeft = ZLeft * UOverZLeft;
float VLeft = ZLeft * VOverZLeft;

float ZRight, URight, VRight;
fixed16_16 U, V, DeltaU, DeltaV;

if(Width > 0) {
int Subdivisions = Width / AffineLength;
int WidthModLength = Width % AffineLength;

if(!WidthModLength) {
Subdivisions—;
WidthModLength = AffineLength;

}

while(Subdivisions— > 0) {
ZRight = 1/OneOverZRight;
URight = ZRight * UOverZRight;
VRight = ZRight * VOverZRight;

U = FloatToFixed16_16(ULeft) + Gradients.dUdXModifier;
V = FloatToFixed16_16(VLeft) + Gradients.dVdXModifier;
DeltaU =

FloatToFixed16_16(URight - ULeft)/AffineLength;
DeltaV =

FloatToFixed16_16(VRight - VLeft)/AffineLength;

for(int Counter = 0;Counter < AffineLength;Counter++){
int UInt = U>>16;
int VInt = V>>16;

*(pDestBits++) = *(pTextureBits + UInt +
(VInt * TextureDeltaScan));

U += DeltaU;
V += DeltaV;

}

ZLeft = ZRight;
ULeft = URight;
VLeft = VRight;

Listing 2. The Subdividing Affine DrawScanLine (Continued on p. 24)

Figure 2. The Quadratic Curve

u

x

dratic, we need to do “second forward
differences,” where we calculate the for-
ward difference of the function step. In
other words, we calculate the forward
difference of the forward difference.

How does it look? Well, in Figure
2, the blue curve is again the perspective
curve, and the red curve is the quadratic
interpolating the start, middle, and end.
This is a pretty bad case for the quadratic
because the perspective warp is quite
high. On less distorted views the single
quadratic would match up better. You
can also subdivide into multiple quadrat-
ics to better match the curve if you want
to spend the extra setup time. However, I
chose this view because it illustrates a
very significant side effect of the quadrat-
ic approximation—undershoot. If you
look very closely, you’ll see the red line
actually dips below u = 0, which means

we’d read off our texture map and possi-
bly crash. You can figure out when this
will happen and prevent it by subdivid-
ing, but that means even more setup in
addition to setting up the quadratic equa-
tion for both u and v for each scanline.

Overall, the quadratic approximation
is very elegant conceptually, but the prob-
lems of under- and overshoot and the
setup overhead of calculating the coeffi-
cients seem to make it not worth the
trouble. You can also use higher order
curves, like cubics, and the math we’ve
looked at extends easily. Perhaps we’ll
return to quadratics in a later column and
see what we can do with them, but for
now, we’ll move on to subdividing affine.

It’s Affine Day
It happens that the method we’ve cho-
sen is also the simplest. You’ve probably

already guessed exactly how subdividing
affine texture mappers work from what
I’ve been describing.

Basically, you solve the real per-
spective equation at a bunch of points
along the scanline, and do a linear
interpolation between those correct
points (affine and linear are virtually
interchangeable in this context). Linear
interpolations are what we’ve been
doing all along with 1/z, u/z, and v/z,
so I won’t go into detail here. Linear
interpolations are very fast, and the
setup isn’t too bad for each affine span.
The only trick is to determine how
often to subdivide; the more you subdi-
vide, the closer your piecewise linear
curve will match the real curve—but the
more overhead you’ll have from divides
and per-span setup.

One simple way to subdivide is to
just break up the scanline into equisized
spans. You can also adaptively subdivide
based on the amount of perspective warp
on each span. This issue’s texture map-
per will always subdivide to eight pixel
spans, but we’ll look into adaptive subdi-
vision next time. Figure 3 shows a subdi-
viding affine approximation to our

B E H I N D T H E S C R E E N

24 GAME DEVELOPER • DECEMBER/JANUARY 1995

Figure 3. The Subdivided Affine Curve

u

x

OneOverZRight += dOneOverZdXAff;
UOverZRight += dUOverZdXAff;
VOverZRight += dVOverZdXAff;

}

if(WidthModLength) {
ZRight = 1/(pRight->OneOverZ - Gradients.dOneOverZdX);
URight = ZRight *

(pRight->UOverZ - Gradients.dUOverZdX);
VRight = ZRight *

(pRight->VOverZ - Gradients.dVOverZdX);

U = FloatToFixed16_16(ULeft) + Gradients.dUdXModifier;
V = FloatToFixed16_16(VLeft) + Gradients.dVdXModifier;

if(—WidthModLength) {
// guard against div-by-0 for 1 pixel lines
DeltaU =

FloatToFixed16_16(URight - Uleft)
/ WidthModLength;

DeltaV =
FloatToFixed16_16(VRight - Vleft)
/ WidthModLength;

}

for(int Counter = 0;
Counter <= WidthModLength;Counter++) {
int UInt = U>>16;
int VInt = V>>16;

*(pDestBits++) = *(pTextureBits + UInt +
(VInt * TextureDeltaScan));

U += DeltaU;
V += DeltaV;

}
}

}
}

Listing 2. The Subdividing Affine DrawScanLine (Continued from p. 22)

favorite perspective curve, subdividing
every eight pixels in x.

There are a few nice things about
subdividing affine texture mappers.
First, you can tune the performance
and quality by setting the subdivision
level. This lets you adjust your perfor-
mance on demand (which you might
need to do at runtime, depending on
scene complexity).

Second, you can pretty easily fit all
your interpolants in registers for the
affine spans (a subject I’ll cover in more
depth in my next column).

Finally, unlike quadratic approxi-
mation, you’ll never under- or over-
shoot with subdividing affine because
like the real perspective curve, the affine
spans are monotonically increasing or
decreasing with the curve. In other
words, depending on your subdivision
granularity and the perspective warp,
you’ll sometimes draw the wrong pixels,
but you’ll never fetch outside the texture
map or even outside the extents of the
original correct span in texture space.

Sample Code
Listing 2 shows the DrawScanLine func-
tion modified to do subdividing affine
texture mapping. We’ll max this out
next time, but even unoptimized it out-
performs the divide-per-pixel routine by
two to four times. We must treat the
last span with care to ensure we interpo-
late the rightmost pixel correctly. You’ll
remember from previous articles that
our right edge is actually the left edge of
the next polygon over, so we need to
subtract one pixel from the right edge to
figure out the last pixel in our polygon
and use it in the interpolation.

I’ve also finally written a texture
mapping test bed so you can simply
compile and run the listings. You can
find it on ftp://ftp.mfi.com/gdmag.
The test has all the texture mappers
we’ve written so far, so you can see the
jitter from the integer mapper, the
mapping bug from the one we dis-
cussed in the last installment, and so
on. It’s a Windows program, but the
code for the texture mappers is

portable, and you’l l be able to see
exactly how they’re called. The test bed
is easy to modify—see the readme.txt
file in the archive.

In parting, I want to mention a
few tidbits. First, you might think you
should do an approximation down the
edges as well, which is certainly possi-
ble. However, your error can build up
pretty quickly if you’re not careful.
Also, Digital Image Warping by George
Wolberg (IEEE Computer Society,
1990) is a pretty good reference for this
sort of thing (including forward differ-
ences). Finally, I’d like to thank Chris
Green from Leaping Lizard Software
for opening my eyes up to the fact that
a, b, and c really are three totally arbi-
trary degrees of freedom. ■

By the time you read this, Chris
Hecker will have quit working for the man
and will be out on his own, finally paying
for his own beverages. You can recommend
your favorite drink at checker@bix.com.

GAME DEVELOPER • DECEMBER/JANUARY 1995 25

XSplat
Breaks Out

X S P L A T B R E A K S O U T

I
n Writing Down the Bones, author
Natalie Goldberg describes how, at a
local fair, she set up a booth where she
wrote and gave away five-minute
poems. Each poem represented a
momentary thought, a unique idea
recorded on paper and passed along on
the wind without a backwards glance.
In a similar vein, John Carmack and

John Romero wrote games for Softdisk
Publishing, a service that sent new games
to its subscribers every month, before start-
ing id Software. Every 30 days, the pro-
grammers had to come up with a complete
and innovative concept, make it happen,
release it, and move on.

I envy the experiences of Goldberg
and the team at id, who learned to move
on, to avoid dwelling on mistakes. I’ve
always found project ends to be painful,
whether I’m finishing a chunk of code, a
piece of writing, or a baked lasagna. The

moment you sign off and pass along some-
thing personal, when you freeze it in time
and drop it into the hands of its con-
sumers, you find yourself standing naked
in front of the world, wishing you could
take it all back and do it right.

This is a roundabout way of saying
that even as I introduced XSplat last
month and used it to create a simple cross-
platform paint program, I knew it con-
tained major mistakes. Unfortunately, I
haven’t mastered the Zen of letting go, and
this is after all a series of articles. So we’re
going to make four quick evolutionary
swipes at XSplat before jumping into some
real game code.

You’ll find all the code included or
referred to in this article on the Game
Developer ftp site, ftp.mfi.com, in the
/gdmag/src/ directory.

Darwinism 101
Previously, I briefly mentioned virtualizing
the CXSplatWindow member functions so we
could use polymorphism in C++ to provide
multiple window types in a single applica-
tion using a single mechanism. The base
CXSplatWindow class can provide a generic
implementation from which we can derive
any number of subclasses that can live
together comfortably at run time. That’s
change number one: virtualization of CXS-
platWindow.

Change number two involves sneak-
ing around the much-touted event-based
nature of our target operating systems. As
it stands, XSplat also provides a strictly
event-based system, meaning that it reacts
to user input. However, a game must be
proactive—the game should continue even
when the user does nothing. So let’s add a
function CXSplatWindow::Idle, which the

26 GAME DEVELOPER • DECEMBER/JANUARY 1995

An XSplat Breakout game in progress on Windows 95. The same source code works equally
well on the Macintosh.

system calls on every iteration of the main
message loop, that we can use to process
game logic. Hence, change number two:
Idle Events.

Windows 95 came, and there was
much rejoicing. The function provided by
WinG under Windows 3.1 is now provid-
ed by the CreateDIBSection API. Chris
Hecker went out of his way to make the
WinG API identical to the CreateDIBSec-
tion API, so the two are nearly inter-
changeable. If you want to require Win-
dows 95 or NT 3.5 and do away with
WinG installation, you can use CreateDIB-
Section. That’s change number three:
Enable CreateDIBSection. We may revisit
this later to detect the appropriate imple-
mentation at run time.

Finally, XSplat as we have it now
lacks a useful keyboard interface, which we
need to create keyboard-based games.
Sending KeyDown messages alone doesn’t
quite cut it, so let’s refine CXSplatWin-
dow::KeyDown to notify us only when a key
goes down (and not when a key auto-
repeats) and add CXSplatWindow::

KeyUp to inform us when a key is released.
That’s change Number Four: Better Key-
board Events.

These quick tweaks prepare to move
the XSplat base beyond a novelty item and
towards a fully featured foundation for
games. This excludes the KeyDown and KeyUp
events, which require some explanation.

Tuning the Keyboard
With WM_KEYDOWN and WM_KEYUP messages,
Windows passes a virtual key code indicat-
ing the key that has been affected. We
really want some more useful platform-
independent key code, such as the ASCII
value produced by the key in question, so

we have to negotiate with Windows
through a sequence of calls involving
GetKeyboardState and ToAscii. If we suc-
ceed in getting a single ASCII code for the
key, we can pass it on to the CXSplatWindow
object. This precludes the use of special
keys such as Control or Shift in XSplat
games, but we’ll make do.

The new WM_KEYDOWN handler, which
replaces the old WM_CHAR handler, is shown
in Listing 1. The WM_KEYUP handler is
almost identical.

We also have to add some handling
to the Macintosh message loop to process
keyUp events. That’s very straightforward,
except for a little trick that caught me. The
system engineers at Apple decided that
most Macintosh applications don’t listen
to keyUp events and that they could cut
some corners by not sending them, so you
have to tell the Macintosh operating sys-
tem explicitly to send keyUp events before it
will pass along a single one. Be a good citi-
zen and turn off keyUp notification when
your application exits, too. The following
code will enable this:

// Tell the OS to give us keyUp events

short OldEventMask = LMGetSysEvtMask();

LMSetSysEvtMask(OldEventMask |

keyUpMask);

// Play the game!

XSplatMain();

// Restore the old system event mask

LMSetSysEvtMask(OldEventMask);

Palettes and Static Cling
Another essential issue still remains
untouched by XSplat: palettes and color
management. In a multitasking, multiwin-
dow environment, your application lives in
harmony with many other applications

Before making XSplat

faster, the cross-

platform graphics

library needs a little

patching...

Jon Blossom provides

it in Part II of his

five-part series.

Jon Blossom

GAME DEVELOPER • DECEMBER/JANUARY 1995 27

that require specific colors from the hard-
ware, so both Macintosh and Windows
include resident Palette Managers to arbi-
trate color requests. Understanding the
Palette Managers will allow your XSplat
applications to share this color sandbox
with the other kids while still hoarding the
resources you need.

On the Macintosh, you are entitled
to explicitly program 254 of the 256 colors
available in 8-bit video modes, the only
modes with which XSplat deals. In the
early days, all Macintosh systems had
black-and-white monitors, so the original
Macintosh operating system used only
black and white for its user interface ele-
ments, and now the operating system is
hard coded to program color 0 to White
and color 255 to Black.

Giving two colors to the Macintosh
system doesn’t seem too painful, especially
when most applications include black and
white in their palettes anyway, so we won’t
worry much about the Macintosh Palette
Manager. Windows, however, abides by
much stricter rules. Read Ron Gery’s very
thorough online article “The Palette Man-
ager: How and Why” (available on
MSDN or through Microsoft Developer
Relations group) for the full scoop. I’m
going to give you the abridged version.

Back when VGA cards came onto
the scene, Windows made the switch to
color. At 640-by-480 pixels, the standard

VGA allowed for 16 colors, which the
Windows VGA driver programmed with
16 specific colors. Then along came video
cards with a 256-color palette, but much of
Windows had been coded assuming the 16
VGA colors of Windows 3.0. If Windows
allowed programmers to tromp all over all
the hardware colors, the colors used for
window borders, captions, and other user
interface elements could be replaced, and

Windows’s colorful user interface could be
destroyed.

Windows programmers made a pro-
vision that would (under normal condi-
tions) guarantee the availability of certain
colors to draw the user interface. They
took the 16 standard VGA colors, threw in
a few new ones to spice things up, and

came up with the “static colors” or the
“cosmic colors,” as one friend of mine calls
them. The static colors are split between
the first and last 10 entries in the palette so
that a bitwise XOR of palette indices will also
provide an XOR of the colors. In Windows
3.1, the values and number of static colors
reserved depended on the video driver, but
Windows 95 has standardized on 20 spe-
cific colors, listed in Table 1.

After the system claims its static col-
ors, you usually have 246 left with which to
work. You can tell the system to give up
the static colors, leaving it only color 0 as
black and color 255 as white, but I really
recommend that only for full-screen appli-
cations that use none of the standard Win-
dows user interface elements. In XSplat,
we’ll leave the static colors intact.

In fact, we’ll go a step further. We’ll
actually include the Windows static colors
in our Macintosh palettes to ensure that
the colors available to XSplat applications
won’t depend on platform. The first and
last 10 colors passed to the CXSplatWindow
constructor will be always ignored, over-
written by the static colors.

Color 0 on the Macintosh is always
white, while on Windows it’s always black,
no matter what we do. This “color zero
problem” often shows up when artists

hard-code an image to the palette on one
system, expecting to be able to display the
same image with the same 256-color
palette on another system. When they
bring the image from Macintosh to Win-
dows, they find that all their whites have
become black! Beware. An XSplat applica-
tion should never use color 0 or color 255.

X S P L A T B R E A K S O U T

28 GAME DEVELOPER • DECEMBER/JANUARY 1995

case WM_KEYDOWN:
// Only send KeyDown if the key is just going down
// (no auto repeat)
if (!(lParam & 0x40000000))
{

// We want the ASCII code of the key that’s going down
// Begin with the key scan code, part of the virtual key
UINT ScanCode = (lParam & 0x00FF0000) >> 16;

// Wish we didn’t have to get all 256 entries, but...
BYTE KeyState[256];
GetKeyboardState(KeyState);

// Convert the scan code to 1 or 2 ASCII characters
char unsigned Key[2];
int KeyCount =

ToAscii(wParam, ScanCode, KeyState, (LPWORD)&Key, 0);

// Only send the key if it translates to one ASCII char
if (KeyCount == 1)

pXSplatWindow->KeyDown((char unsigned)Key[0]);
}

Listing 1. Translating a WM_KEYDOWN Message

Index R-G-B Color Index R-G-B Color
0 0x00 - 0x00 - 0x00 246 0XFF - 0xFB - 0xF0
1 0X80 - 0x00 - 0x00 247 0xA0 - 0xA0 - 0xA4
2 0x00 - 0x80 - 0x00 248 0x80 - 0x80 - 0x80
3 0x80 - 0x80 - 0x00 249 0xFF - 0x00 - 0x00
4 0x00 - 0x00 - 0x80 250 0x00 - 0xFF - 0x00
5 0x80 - 0x00 - 0x80 251 0xFF - 0xFF - 0x00
6 0x00 - 0x80 - 0x80 252 0x00 - 0x00 - 0xFF
7 0xC0 - 0xC0 - 0xC0 253 0xFF - 0X00 - 0xFF
8 0xC0 - 0xDC - 0xC0 254 0x00 - 0xFF - 0xFF
9 0xA6 - 0xCA - 0xF0 255 0xFF - 0xFF - 0xFF

Table 1. The Windows Static Colors

Identity Palettes
Our palette troubles aren’t over yet. We
may have figured out what colors we
need in the palette, but there’s still no
guarantee that they’ll appear in the sys-
tem palette in the order we request
them. Both operating systems go
through complicated (read time-con-
suming) mapping algorithms to ensure
that appropriate colors appear when you
transfer an image from memory to the
screen. If we manipulate the colors in the
palette so that they exactly match the
colors in the color tables of our offscreen
images, the system will skip that map-
ping step, and copying an image to the
screen will become a direct transfer from
main memory to video memory, limited
almost exclusively by the bandwidth of
the bus between the two. We need to
understand a few things before we can
do this.

The Windows Palette Manager
maintains a single system palette that holds
all the colors actually available in the hard-
ware, and every palletized application
keeps a logical palette that represents the
colors it has requested. The Palette Man-
ager handles the mappings between the
two. Basically, it uses three techniques to
give you the colors you request, a process
called “realization” of the palette.

The first technique is to prevent
duplicate palette entries. If you request a
color N that’s already in the system palette
at entry M, Windows will “collapse” your
entry. When you request logical color N, it
will actually use system color M. If you
mark one of your entries PC_NOCOLLAPSE and
the system palette isn’t full, you can avoid
this translation.

The second technique just serves your
request by entering a new entry in the sys-
tem palette, as long as the system palette
isn’t full. If there are M entries in the sys-
tem palette, a new entry M will be created,
and when you request logical entry N,
you’ll get system entry M.

The third technique is to map to the
available colors. If you request a color N
that’s not in the system palette and all
available system palette entries have been
used, Windows will look for the color M
in the system palette that best matches the
requested color. If you mark a palette

GAME DEVELOPER • DECEMBER/JANUARY 1995 29

// A dummy LOGPALETTE structure
struct
{

WORD Version;
WORD NumberOfEntries;
PALETTEENTRY aEntries[256];

} LogPalette = { 0x300, 256 };

// Grab the current palette for the display and count the
// number of static colors it’s using
HDC hdcScreen = GetDC(0);
int StaticColorCount = 20;
if (hdcScreen)
{

StaticColorCount = GetDeviceCaps(hdcScreen, NUMCOLORS);
GetSystemPaletteEntries(hdcScreen, 0, 256, LogPalette.aEntries);
ReleaseDC(hdcScreen, 0);

}

// We’ll create our palette from the static colors,
// filling in whatever gaps are left with colors from
// the requested colors, or a gray wash as before if
// there are none.
int i;
for (i=0; i<StaticColorCount/2; ++i)
{

// Fill in the peFlags of the first static entries
LogPalette.aEntries[i].peFlags = 0;

}

if (Colors)
{

// Fill in the middle entries with the requested colors
// Count tells us where to find the appropriate RGB
// triplet in the requested color array
int Count = i * 3;

for (; i<256 - StaticColorCount/2; ++i)
{

LogPalette.aEntries[i].peRed = Colors[Count++];
LogPalette.aEntries[i].peGreen = Colors[Count++];
LogPalette.aEntries[i].peBlue = Colors[Count++];

// Mark as PC_RESERVED to guarantee identity palette
LogPalette.aEntries[i].peFlags = PC_RESERVED;

}
}
else
{

// Fill in the middle entries with a grey wash
for (; i<256 - StaticColorCount/2; ++i)
{

LogPalette.aEntries[i].peRed =
LogPalette.aEntries[i].peGreen =
LogPalette.aEntries[i].peBlue = i;

LogPalette.aEntries[i].peFlags = PC_RESERVED;
}

}

for (; i<256; ++i)
{

// Fill in the peFlags of the remaining static entries
LogPalette.aEntries[i].peFlags = 0;

}

// Finally, create the palette!
Palette = CreatePalette((LOGPALETTE*)&LogPalette);

Listing 2. Windows Palette Creation

request PC_RESERVED, Windows will not
map subsequent color requests to that
entry.

We want to trick the Palette Manag-
er into providing a one-to-one match
between the colors we request and the col-
ors in the system palette. In other words,
we don’t want our colors to be collapsed
using the first technique, and we don’t
want any subsequent color requests to col-
lapse into ours. Because PC_RESERVED is a
superset of PC_NOCOLLAPSE, marking every
one of our entries PC_RESERVED will do this
for us.

So as long as we include the static
colors and mark the rest PC_RESERVED, we
can guarantee a one-to-one match of col-
ors, but we may not yet match indices
exactly. We’re forcing the Palette Manager
to use the second mapping technique,
which means creating a new entry for every
color we request, but it won’t necessarily
start creating new entries at color zero. If
another application has requested palette
entries before ours, our palette will be real-
ized beginning where the last application
left off, so M and N in the second tech-
nique may not be equal.

To remedy this, the WinG SDK
included a sample function called ClearSys-
temPalette that forces the Palette Manager
to realize a full palette of 256 PC_RESERVED
colors, filling up the system palette so that
subsequent palette mapping begins again
at entry 0. Calling ClearSystemPalette in
our XSplat WinMain and marking our logical
palette entries PC_RESERVED will get us the
pure identity mapping we want.

The Macintosh Palette Manager
works almost the same way, collapsing
entries when it is able to serve color
requests as best it can. The Windows
PC_NOCOLLAPSE corresponds loosely to the
Macintosh pmExplicit flag, and the Win-
dows PC_RESERVED corresponds to the Mac-
intosh pmAnimated flag. To achieve an iden-
tity palette on the Macintosh, then, we’ll
put white at color 0 and black at color 255,
and mark all other entries as pmExplicit |
pmAnimated. There’s no need for a ClearSys-
temPalette equivalent.

Listing 2 shows the code snippet that
builds an identity palette as part of the
Windows CXSplatWindow constructor. List-
ing 3 shows the equivalent code for the

X S P L A T B R E A K S O U T

30 GAME DEVELOPER • DECEMBER/JANUARY 1995

// Set up the palette from the given Colors
WinPalette = NewPalette(256, 0, pmExplicit | pmAnimated, 0);
if (WinPalette)
{

// To maintain compatibility with our Windows cousin, we’ll include the Windows static colors
// in the palette. Of course, color 0 must be white and color 255 black
char unsigned const WindowsColorsLow[] =

{ 0xFF,0xFF,0xFF,
0x80,0x00,0x00, 0x00,0x80,0x00, 0x80,0x80,0x00,
0x00,0x00,0x80, 0x80,0x00,0x80, 0x00,0x80,0x80,
0xC0,0xC0,0xC0, 0xC0,0xDC,0xC0, 0xA6,0xCA,0xF0 };

char unsigned const WindowsColorsHigh[] =
{ 0xFF,0xFB,0xF0, 0xA0,0xA0,0xA4, 0x80,0x80,0x80,

0xFF,0x00,0x00, 0x00,0xFF,0x00, 0xFF,0xFF,0x00,
0x00,0x00,0xFF, 0xFF,0x00,0xFF, 0x00,0xFF,0xFF,
0x00,0x00,0x00 };

// We’ll create our palette from these “static” colors, filling in whatever gaps are left
// with colors from the requested colors, or a gray wash as before if there are none
// Count tells us where to find the appropriate RGB triplet in the requested color array
int Count = 0;
RGBColor rgb;
int i;
for (i=0; i<10; ++i)
{

// Fill in the first ten entries
rgb.red = (long)WindowsColorsLow[Count++] << 8;
rgb.green = (long)WindowsColorsLow[Count++] << 8;
rgb.blue = (long)WindowsColorsLow[Count++] << 8;

SetEntryColor(WinPalette, i, &rgb);
}

if (Colors)
{

// Fill in the middle entries with the requested colors
for (; i<246; ++i)
{

rgb.red = (long)Colors[Count++] << 8;
rgb.green = (long)Colors[Count++] << 8;
rgb.blue = (long)Colors[Count++] << 8;

SetEntryColor(WinPalette, i, &rgb);
}

}
else
{

// Fill in the middle entries with a grey wash
for (; i<246; ++i)
{

rgb.red = rgb.green = rgb.blue = (long)i << 8;

SetEntryColor(WinPalette, i, &rgb);
}

}

Count = 0;
for (; i<256; ++i)
{

// Fill in the remaining static entries
rgb.red = (long)WindowsColorsHigh[Count++] << 8;
rgb.green = (long)WindowsColorsHigh[Count++] << 8;
rgb.blue = (long)WindowsColorsHigh[Count++] << 8;

SetEntryColor(WinPalette, i, &rgb);
}
SetPalette(Window, WinPalette, FALSE);

}

Listing 3. Macintosh Palette Creation

Macintosh. The 20 static colors are hard
coded for the Macintosh, but they’re pulled
out of the system palette under Windows.
Also note the striking similarities between
the code for the two platforms...

Breaking Out
Enough of that system stuff, let’s get to the
real point: building games. We’re going to
begin programming a cross-platform ver-
sion of an old classic, Breakout. You all
know the game. A wall of bricks fills the
upper half of the screen, and the player
moves a paddle back and forth at the bot-
tom of the screen to keep a ball bouncing
into the bricks. Whenever the ball hits a
brick, that brick goes away. The game ends
when all the bricks have been destroyed.

XSplat now has everything we need
to implement this game in full color: a
place to create and display 256-color
graphics (palletized CXSplatWindow and
COffscreenBuffer), time to process the flow
of the game (Idle), and user input to con-
trol the paddle (KeyDown and KeyUp). We can
derive our game window, CBreakoutWindow,
from the virtualized CXSplatWindow base and
override the pieces we need to make the
game work.

A CBreakoutWindow also keeps track of
one complete game state. It stores the
brick wall as an array of bytes, correspond-
ing to the wall of bricks on the screen, and
any nonzero value in the array indicates a
brick in that location. When the edge of
the ball crosses a brick boundary, the cor-
responding array entry is decremented. For
now, CBreakoutWindow::Initialize initial-
izes all entries with the value 1, so one hit
of the ball will destroy a brick.

The ball and paddle both have posi-
tion and velocities, also stored in the
CBreakoutWindow object. The paddle is lim-
ited to motion along the X-axis while the
ball can move along X and Y. On KeyDown
and KeyUp events, we’ll adjust the speed of
the paddle, moving it left as long as the
player holds down the < key, and right as
long as the player holds down the > key.
On Idle messages, the game logic kicks in,
moving the ball and checking if it has hit
anything important. Then Idle redraws the
game, using simple rectangle drawing code
I’ve described previously (see “XSplat: A
Foundation for Cross-Platform Develop-

ment,” Oct./Nov. 1995), and copies it to
the screen.

Listing 4 shows the declaration of
CBreakoutWindow, and Listing 5 shows the

GAME DEVELOPER • DECEMBER/JANUARY 1995 31

// Breakout Game Window
// The Breakout window is a regular XSplat window with
// most functions overridden. The game is played entirely
// within this window, so the Breakout window includes
// all state information necessary for the game.

class CBreakoutWindow : public CXSplatWindow
{
public:

// Game setup occurs during construction and on
// InitGame calls
CBreakoutWindow(unsigned char const *Colors=0);
void InitGame(void);

// The destructor will clean up the game
virtual ~CBreakoutWindow(void);

// All of the game logic takes place on Idle
virtual void Idle(void);

// This game cares about key states
virtual void KeyDown(char unsigned Key);
virtual void KeyUp(char unsigned Key);

protected:
// This function will completely redraw the game state
void DrawCompleteGameState(void);

// We’ll provide a ‘demo mode’ for the game to play itself
int IsDemoMode;

// Game Data
// Game element position and speed
int BallX, BallY;
int BallXSpeed, BallYSpeed;
int PaddleX;
int PaddleXSpeed;

// Game field
char unsigned GameField[kWallWidthBricks * kWallHeightBricks];

inline char unsigned GetBrickState(int X, int Y)
{ return GameField[Y * kWallWidthBricks + X]; };

inline void SetBrickState(int X, int Y, char unsigned State)
{ GameField[Y * kWallWidthBricks + X] = State; };

inline char unsigned HitBrick(int X, int Y);
};

inline char unsigned CBreakoutWindow::HitBrick(int X, int Y)
{

char unsigned ReturnState = 0;

if (X >= 0 && Y >= 0 &&
X < kWallWidthBricks &&
Y < kWallHeightBricks)

{
int Index = Y * kWallWidthBricks + X;
ReturnState = GameField[Index];
if (ReturnState)

GameField[Index]—;
}
return ReturnState;

}

Listing 4. Breakout Declarations

X S P L A T B R E A K S O U T

32 GAME DEVELOPER • DECEMBER/JANUARY 1995

int BounceX = 0;
int BounceY = 0;

BallX += BallXSpeed;
BallY += BallYSpeed;

if (BallX < kPlayAreaLeft)
{

BallX = kPlayAreaLeft + (kPlayAreaLeft - BallX);
BounceX = 1;

}
else if (BallX >= kPlayAreaRight - kBallSize)
{

BallX = 2*kPlayAreaRight - 2*kBallSize - BallX;
BounceX = 1;

}

if (BallY < kPlayAreaTop)
{

BallY = kPlayAreaTop + (kPlayAreaTop - BallY);
BounceY = 1;

}

//———————————————
// Follow the ball with the paddle center when in demo mode,
// allow the user to control the paddle in play mode

if (IsDemoMode)
{

if (PaddleX < BallX + kBallSize/2) ++PaddleX;
else if (PaddleX > BallX + kBallSize/2) —PaddleX;

}
else
{

PaddleX += PaddleXSpeed;
}

// Make sure the paddle doesn’t move out of the play area!
if (PaddleX < kPlayAreaLeft + kPaddleWidth/2)

PaddleX = kPlayAreaLeft + kPaddleWidth/2;
else if (PaddleX > kPlayAreaRight - kPaddleWidth/2)

PaddleX = kPlayAreaRight - kPaddleWidth/2;

//———————————————
// Bounce the ball

if (BallY + kBallSize >= kWallTop && BallY < kWallBottom)
{

// Ball is within the brick field.
// Calculate ball bounces off bricks
int BrickLeft = (BallX - kWallLeft) / kBrickWidth;
int BrickTop = (BallY - kWallTop) / kBrickHeight;
int BrickRight = (BallX + kBallSize - kWallLeft) / kBrickWidth;
int BrickBottom = (BallY + kBallSize - kWallTop) / kBrickHeight;

// Look to the sides of the ball
if (BallXSpeed > 0 &&

((BallX + kBallSize - kWallLeft) % kBrickWidth) == 0)
{

if (HitBrick(BrickRight, BrickTop))
BounceX = 1;

if (BrickTop != BrickBottom &&
HitBrick(BrickRight, BrickBottom))
BounceX = 1;

}
else if (BallXSpeed < 0 &&

((BallX - kWallLeft) % kBrickWidth) == kBrickWidth-1)

void CBreakoutWindow::KeyDown(char unsigned Key)
{

if (!IsDemoMode)
{

// Get the paddle moving
switch (Key)
{

case ‘,’:
case ‘<’:

PaddleXSpeed -= 2;
break;

case ‘.’:
case ‘>’:

PaddleXSpeed += 2;
break;

case ‘d’:
case ‘D’:

// Switch to demo mode
IsDemoMode = 1;
break;

default:
break;

}
}
else if (Key == ‘P’ || Key == ‘p’)
{

// Switch to player control
IsDemoMode = 0;

}
}

void CBreakoutWindow::KeyUp(char unsigned Key)
{

if (!IsDemoMode)
{

// Reverse the motion of the paddle
switch (Key)
{

case ‘,’:
case ‘<’:

PaddleXSpeed += 2;
break;

case ‘.’:
case ‘>’:

PaddleXSpeed -= 2;
break;

default:
break;

}
}

}

//———————————————
// Game logic is processed while the game is idle

void CBreakoutWindow::Idle(void)
{

// Don’t do anything while backgrounded
if (!IsActiveFlag)

return;

//———————————————
// Move the ball and calculate a bounce off any walls

Listing 5. Breakout Game Implementation (Continued on p. 33)

implementation of relevant CBreakoutWindow
functions. Many of these functions use
constants (beginning with a “k”) that
should be self-explanatory. Notice that
there’s absolutely nothing platform-specific
in the game code; it’s all built on XSplat
and compiles for Windows and Macintosh
without change.

Again, I encourage you to grab the
complete source code and compiled XSplat
Breakout applications from the Game
Developer ftp site.

Next Time
While the version of Breakout built in this
article works and is even fun to play for
about a minute, it certainly has a long way
to go. For one thing, it’s running flat out
all the time, and it hugs a root even on my
Pentium 90. Perhaps that has something
to do with the fact that we’re redrawing
the entire screen every frame?

In my next article, we’ll streamline
the Breakout rendering by adding a
SwapRect function to COffscreenBuffer, and

we’ll take a look some platform-indepen-
dent timing functions that will allow us to
control the final speed of the game. And,
of course, we’ll start spicing up game play
with some extra colors, increasing speed,
and increasing difficulty levels.

Until then, have fun! ■

You can reach Jon Blossom via e-mail at
blossom@mobius.net or through Game
Developer magazine.

GAME DEVELOPER • DECEMBER/JANUARY 1995 33

{
if (HitBrick(BrickLeft, BrickTop))

BounceX = 1;

if (BrickTop != BrickBottom &&
HitBrick(BrickLeft, BrickBottom))
BounceX = 1;

}

// Look to the top and bottom of the ball
if (BallYSpeed > 0 &&

((BallY + kBallSize - kWallTop) % kBrickHeight) == 0)
{

if (HitBrick(BrickLeft, BrickBottom))
BounceY = 1;

if (BrickLeft != BrickRight &&
HitBrick(BrickRight, BrickBottom))
BounceY = 1;

}
else if (BallYSpeed < 0 &&

((BallY - kWallTop) % kBrickHeight) == kBrickHeight-1)
{

if (HitBrick(BrickLeft, BrickTop))
BounceY = 1;

if (BrickLeft != BrickRight &&
HitBrick(BrickRight, BrickTop))
BounceY = 1;

}
}
else if (BallY == kPlayAreaBottom - kPaddleHeight - kBallSize)
{

// The ball is at the correct height to bounce off the paddle
if (BallX + kBallSize > PaddleX - kPaddleWidth/2 &&

BallX <= PaddleX + kPaddleWidth/2)
{

// The ball hit the paddle, so it’s going to bounce back up
BounceY = 1;

// Divide the paddle into five sections and determine which
// contains the ball
int BallXCenter = BallX + kBallSize/2;
int PaddleLeft = PaddleX - kPaddleWidth/2;
int PaddleSection = (BallXCenter - PaddleLeft)

/ (kPaddleWidth / 5);

if (BallXSpeed == 0 && PaddleSection != 2)
{

// If the ball isn’t moving in X and it hits outside of
// the paddle center, it should bounce to the side
if (PaddleSection < 2)

BallXSpeed = -1;
else

BallXSpeed = 1;
}
else if (PaddleSection == 0 && BallXSpeed > 0)
{

// The ball is striking the leftmost section of
the paddle

// from the left. Bounce it back.
BounceX = 1;

}
else if (PaddleSection == 4 && BallXSpeed < 0)
{

// The ball is striking the rightmost section of
the paddle

// from the right. Bounce it back.
BounceX = 1;

}
else if (PaddleSection == 2)
{

// When it hits in the very center section, the
ball

// bounces straight up.
BallXSpeed = 0;

}
}

}
else if (BallY == kPlayAreaBottom - kBallSize)
{

// TODO: Lose ball!
BounceY = 1;

}

//———————————————
// Perform any velocity changes due to bounces

if (BounceX) BallXSpeed = -BallXSpeed;
if (BounceY) BallYSpeed = -BallYSpeed;

//———————————————
// Display the new frame and return

COffscreenBuffer* pBuffer = GetOffscreenBuffer();
if (pBuffer)
{

pBuffer->Lock();
DrawCompleteGameState();
pBuffer->SwapBuffer();
pBuffer->Unlock();

}
}

Listing 5. Breakout Game Implementation (Continued from p. 32)

Under the
Rainbow

C O L O R Q U A N T I Z A T I O N

P
ick a color, any color. When I
was younger, my brother, who
enjoyed magic and card tricks,
would frequently use me to
beta test his sleight of hand,
and he had a wisecracking way
of saying, “Pick a card, any
card.” Of course, all cards were

not created equal, and I always tried to
guess which card would throw a monkey
wrench into his trick, as brothers are
wont to do. Now after working on
image processing products for my start-
up company, I’m faced with similar
choices in color quantization algorithms.

I can already hear some of you say-
ing, “Wait a second, didn’t we do this a
year ago?” In a word, yes we did (“A
Few Good Colors,” December 1994).

So why are we revisiting this process?
The answer’s simple: There is a newer
and better algorithm available called
variance minimization. More specifical-
ly, I want to present to you an imple-
mentation of this algorithm that is fast,
practical, and produces visibly better
results in circumstances common in
game development.

This article has two sections. First,
we are going to discuss how to manage
colors and graphics in the game devel-
opment process and look at issues in
getting artwork into your program.
Once we have examined the situations
where quantization is needed, we are
going to get down to the nuts and bolts
of variance minimization, and explain
why it gets results that are superior to
the commonly used Heckbert statistical
and popularity methods.

Color Usage in Games
First, I asked the question “Does color
quantization have a place in game devel-
opment?” I found that until about six or
seven years ago the answer was, “Not
really.” Since then, it’s quickly gone
from “Not really” to “Oh, yes.” The
advent of 256-color graphics modes on
PCs and Macintoshes spurred this
change of tone. Prior to that, colors
were so limited that game developers got
their graphics from skilled artists who
hand-drew each image. At the time, no
popular display could show more than
16 of 512 set colors, and PCs were lim-
ited to 64 possible colors at best. With
the shift from digital to analog color
monitors came video cards that could
display 256 simultaneous colors, which
was a great improvement. More impor-

Two examples of color quantization in action. On the left, the cover of a magazine you might
recognize, scanned at 16 million colors. On the right, the original scan reduced to 20 colors
with full variance minimization.

34 GAME DEVELOPER • DECEMBER/JANUARY 1995

tantly, these video cards were capable of
drawing those colors from a range of a
quarter million to 16 million colors—
and for the first time the cards could
respectably display photographic or
video images.

Color and Palette
Management Issues
Let’s talk about artwork and graphics for
a minute. The graphics for a typical
game can come from any combination
of the following (each of which raises
issues that can affect the quality of the
finished product):
• Traditional drawn images, which are

scanned.
• Images drawn with a computer paint

program.
• Computer-generated images such as

raytraced images.
• Images created with a video camera

and video capture board.
Having an artist paint or draw

images to be scanned is best suited for
larger images, such as backgrounds, or
small images with a photographic look,
such as faces of characters. Getting the
artwork into the program involves scan-
ning, resampling (resizing), quantiza-
tion, and possibly dithering. Ideally, you
want to make this a one-step process.
Whenever an intermediate image file
exists, some visual information will be
lost.

To get the best final results, follow
two steps. Scan the image at the highest
physical (not interpolated) resolution
and store it in a lossless true color (24-
bit) format such as TIFF. Check the
scanned image at this point to see if the
color and contrast closely match the

image and adjust and rescan until you
are satisfied. You now have the elec-
tronic equivalent of a photograph nega-
tive. From this file you can produce the
graphics that will actually go into your
program. If you make changes to the
number of colors used or want to make
derivative images (tinted, inverted,
brightened, and so on), going back to
the original scan file lets you maintain
the highest quality.

Drawing images with a computer
paint program has some benefits, but
provides some new wrinkles. With a
paint program, you can eliminate the
need to resize an image. If a graphic
needs to be a specific size, the artist just
sets the work area to that size and
begins drawing. Because the artist draws
with pixels instead of pen or brush, he
or she has precise control of the final
result. So the artist can draw lines per-
fectly straight, make distances between
objects precise, and make color gradi-
ents perfectly uniform. When it comes
to small images or objects, a paint pro-
gram is often the way to go.

Artists often use video capture
equipment when they want multiple
angles or positions of the same scene or
object. Video data usually uses the YUV
or HSV (Hue, Saturation and Bright-
ness) color model and is converted by
the hardware or driver software into
RGB colors.

The Palette is a Resource
Another issue in game development is
allocating your colors for each screen or
situation. Imagine that you are produc-
ing a fighting game for the PC, much
like the “Super Mortal Killer Turbo

Game graphics are

nothing without true,

vibrant color that

doesn‘t sap memory.

Try the high-speed

algorithm offered

here and you‘ll

optimize color

quantization in your

game design.

Matt Pritchard and
Rich Geldreich Jr.

GAME DEVELOPER • DECEMBER/JANUARY 1995 35

Dragon II” games you see in the
arcades. At any given time, you have
several independent images on the
screen—the background, the players,
and their weapons. As the game pro-
gresses, these images are constantly
replaced with different images. Odds are
that all those graphics started out as
some sort of true color image and were
quantized to use a small number of dis-
crete colors. Think about what is going
on with the palette in such a game.
There are two basic ways to handle the
palette.

First, the game might use a global,
fixed palette that multiple images draw
from. This lets each image use a larger
number of different colors, but because
they must be shared with all other
graphics, the quantization error—the
degree to which the displayed color dif-
fers from the original color—will tend
to be much greater.

The other approach is to use a seg-
mented palette, where each object gets
an exclusive portion of the palette for its
own use. This gives the object fewer col-
ors to use, but allows the quantization
error to be kept to a minimum. This
method allows for a much larger total
number of colors to be used.

It turns out that selecting colors
specifically for an image (quantizing for
that image alone) usually more than
makes up for the reduction in available
colors. It also turns out that the further
you reduce the number of colors, the
more impact the quantization algorithm
has. (Dithering also has a place here, but
that is a topic for a separate article.)

Two more palette management
issues often show up in game develop-
ment—palette effects and shading.
Palette effects are just that: special
effects, usually in the form of cycling,
pulsating or flashing colors. No big deal,
except that when you add palette effects,
you usually have to reserve specific por-
tions of the palette for them. Shading,
on the other hand, often involves split-
ting the palette up into sections for each
brightness level.

So where are we going with all this
talk about color, artwork, and graphics
issues? This is simply an illustration of

all the ways and situations in which you
need to quantize images to an arbitrary
number (usually a small one) of colors
before they go into your final product.

Supporting
Multiple Platforms
I want to mention one more situation:
porting your game and graphics to mul-
tiple platforms. On a PC, under DOS
you have full control of all 256 entries in
the palette. But what if you are doing a
Windows version? If you have never
programmed for Windows before, you
are in for a rude surprise. In 256-color
modes, Windows reserves 20 colors for
its own use. It is possible to get 18 of
those back, but only at the cost of
screwing up all the colors in the desk-
top. The new Microsoft Game SDK
provides support for taking over the
screen, but what if your program needs
be windowable on the desktop? You are
looking at a practical maximum of 236
colors and you have two choices.

You can let Windows manage the
colors for you, and it will translate some
of your graphics colors into other colors
at the expense of speed and image quali-
ty. If you use 256-color images for your
wallpaper, you’ve probably already seen
this in action. When a program needs
some additional colors, parts of the
wallpaper flash for an instant before
they are replaced with what Windows
considers the most similar colors that it
can spare. A better option is to redo
your 256-color program to work with
236 (or fewer) colors.

But why stop with Windows?
What about OS/2 or the Macintosh?
And if your product is a successful
game, you could wind up porting it to
dedicated game systems such as Sony,
Nintendo, Atari, or Sega, each with dif-
ferent color systems.

The Example
Program and Source
Now that I’ve built the case for quanti-
zation, it is time to deliver the goods.
Taking code directly from our PC image
viewer, PowerView, we have created a
program that takes the raw output of
PicLab, a public domain image process-

ing Program by Lee Daniel Crocker,
and quantizes it to an arbitrary number
of colors from 2 to 256. Unfortunately,
the 50K of Watcom C source code is
too cumbersome to list completely here.
However, the complete source, com-
piled program, and example files are
freely available on the Game Developer
ftp site, ftp.mfi.com, and in our Com-
puServe library (GO SDFORUM), in
the archive file Dec95.zip, subfile
VARMINCQ.zip. You can also access
the shareware version of PowerView
here, in the archive file PVIEW100.zip

The Quantization Process
From here on, we are going to assume
some familiarity with other quantization
methods that use cube splitting. Vari-
ance minimization is also a cube-split-
ting process, but it differs from the more
common Heckbert method in several
important ways.

So far, the only published informa-
tion on variance minimization is a paper
by Xiaolin Wu, (“Efficient Statistical
Computations for Optimal Color
Quantization,”Graphics Gems II, Acade-
mic Press Inc., 1991). Upon examina-
tion, we found the source code Wu pre-
sented with his paper was not practical
on a PC class system. So we threw out
his source and developed our own highly
efficient implementation, which we pre-
sent here. Wu’s paper is a very academic
read and will send average programmers
scrambling for their college calculus
books. So, we’ll focus on the actual
implementation and how it differs from
other quantization methods. If you’re
interested in the theory and math, by all
means check out Wu’s paper.

For those not familiar with how
computers process color, here’s a quick
explanation. Every dot of color that
appears on your monitor is built from
three separate component colors, red,
green, and blue. Each component has a
brightness value that can range from
none (black) to the maximum intensity
of the display device. Your computer’s
video card uses a numerical value to rep-
resent the brightness of each color com-
ponent.

The computer industry has settled

C O L O R Q U A N T I Z A T I O N

36 GAME DEVELOPER • DECEMBER/JANUARY 1995

on 8-bit (one-byte) numbers, which
allows for 256 possible settings between
black and maximum intensity for each
color component. With three compo-
nents, the number of possible colors is
256 by 256 by 256 or 16.8 million.
That’s a lot of colors! It also gives us a
way to compare colors. We can create a
three-dimensional cube, and let each
axis (X,Y, and Z) represent one of the
color components (R, G, and B). This
way, each color can be mapped to a
point inside the cube by using its RGB
values as the X,Y, and Z coordinates of
the color point. Now that we can repre-
sent each color as a point in three-
dimensional space, we can use simple
geometry to compute how close together
any two colors are. Using the
Pythagorean theorem, we define the
distance between color 1 (r1,g1,b1) and
color 2 (r2,b2,g2) as the square root of
(r1-r2)2 + (g1-g2)2 + (b1-b2)2. Figure 1
illustrates the RGB three-dimensional
color space cube and how to locate a
specific RGB color in it.

Quantization is the process of
replacing one color with another color;
usually from a smaller selection of color
points. The distance between the two
colors is called the quantization error.

Our process starts with a color his-
togram of the image to be quantized.
For those not familiar with the term, a
color histogram is a three-dimensional
array of the RGB colors used. The value
of a specific element is the number of
times the color with that element’s RGB
coordinates appears in the image. Typi-
cally, most elements in the histogram
will be unused or zero. Almost every

quantization routine I have ever seen
reduces a 24-bit color to 15 bits when
building the histogram, due to memory
considerations.

Using short integers, a 15-bit his-
togram takes 64K of memory, while a
24-bit histogram would require 32
megabytes. This reduction (typically
truncation of the low bits) is in itself a
form of quantization that is actually
noticeable. If you have ever seen an
image of a blue sky that has curved
bands as it approaches the horizon,
you’ve seen the effects of this truncation.
With the advent of 32-bit compilers, I
have found it practical to use a 6-bit
RGB histogram, which takes 512K of
memory and produces superior results
compared to the 5-bit histogram. (We
are using two bytes per entry, while
many implementations use four bytes
per entry. With two bytes, remember
you need to take precautions to keep
from overflowing the histogram count.)

Once we have this three-dimen-
sional color histogram, we put a box
around it. The box structure is shown in

Listing 1. Then, we shrink the box to
the smallest possible box that can con-
tain all of the used points within. In
fact, every time we create or split a box,
we shrink it immediately. Shrinking the
box is an important optimization used in
most quantization processes. It can cre-
ate empty regions in the histogram that
are not contained in any box and must
be accounted for when building the
inverse color map.

Now we get to the question, “What
exactly is variance?” Consider that all

the colors in a given box are going to be
represented by a color point, also known
as the “representative” color. Every used
color in that box is going to be replaced
by the representative color, and some
degree of quantization error is going to
be introduced into the image when
those pixels are replaced with the quan-
tized color. Variance in this case means
the total quantization error of all the
used points in the box, weighted by the
usage count of each point.

The goal of variance minimization
is just what the name implies; to pick a
representative color that results in the
lowest possible total variance for that
box. If you think about it, that’s the goal
of quantization as well—to make the
color change in each pixel, (that is, the
quantization error), as small as possible.
The smaller the variance, the less
change to the image. I’ve shown our
variance calculation in Listing 2.

In this algorithm, we define the
representative color as the “center of
color gravity” for the box—that is, the
(Continued on p. 40)

GAME DEVELOPER • DECEMBER/JANUARY 1995 37

static uint variance(uint tw, uint tt_sum,
uint t_ur, uint t_ug, uint t_ub)

{
double temp;

temp = (double)t_ur * (double)t_ur;
temp += (double)t_ug * (double)t_ug;
temp += (double)t_ub * (double)t_ub;
temp /= (double)tw;

return ((uint)((double)tt_sum - temp));
}

Listing 2. The Weighted Variance Calculation

typedef struct
{
uint variance; /* weighted variance */

uint total_weight; /* total weight */
uint tt_sum; /* tt_sum += r*r+g*g+b*b*weight over entire box */

uint t_ur; /* t_ur += r*weight over entire box */
uint t_ug; /* t_ug += g*weight over entire box */
uint t_ub; /* t_ub += b*weight over entire box */

int ir, ig, ib; /* upper and lower bounds */
int jr, jg, jb;

} box;

Listing 1. Structure Used for a Colorspace Box

C O L O R Q U A N T I Z A T I O N

38 GAME DEVELOPER • DECEMBER/JANUARY 1995

/*————————————————————*/
/* Splits box along the axis which will
/* minimize the two new box’s overall
/* variance. A brute force search is used
/* to locate the optimum split point. */
/*————————————————————*/
static void split_box(box *old_box)
{

int i, j;
box *new_box;

uint total_weight;
uint tt_sum, t_ur, t_ug, t_ub;
int ir, ig, ib, jr, jg, jb;

uint total_weight1;
uint tt_sum1, t_ur1, t_ug1, t_ub1;
int ir1, ig1, ib1, jr1, jg1, jb1;

uint total_weight2;
uint tt_sum2, t_ur2, t_ug2, t_ub2;
int ir2, ig2, ib2, jr2, jg2, jb2;

uint total_weight3;
uint tt_sum3, t_ur3, t_ug3, t_ub3;

uint lowest_variance, variance_r, variance_g, variance_b;
int pick_r, pick_g, pick_b;

new_box = boxes + num_boxes;
num_boxes++;

total_weight = old_box->total_weight;
tt_sum = old_box->tt_sum;
t_ur = old_box->t_ur;
t_ug = old_box->t_ug;
t_ub = old_box->t_ub;
ir = old_box->ir;
ig = old_box->ig;
ib = old_box->ib;
jr = old_box->jr;
jg = old_box->jg;
jb = old_box->jb;

/* left box’s initial statistics */

total_weight1 = 0;
tt_sum1 = 0;
t_ur1 = 0;
t_ug1 = 0;
t_ub1 = 0;

/* right box’s initial statistics */

total_weight2 = total_weight;
tt_sum2 = tt_sum;
t_ur2 = t_ur;
t_ug2 = t_ug;
t_ub2 = t_ub;

/* locate optimum split point on red axis */

variance_r = 0xFFFFFFFF;

for (i = ir; i < jr; i++)
{

uint total_variance;

/* calculate the statistics for the area being taken

* away from the right box and given to the left box
*/

sum(i, ig, ib, i, jg, jb,
&total_weight3, &tt_sum3, &t_ur3, &t_ug3, &t_ub3);

#ifdef DEBUGGING
if (total_weight3 > total_weight)

ASSERT(TRUE)
#endif

/* update left and right box’s statistics */

total_weight1 += total_weight3;
tt_sum1 += tt_sum3;
t_ur1 += t_ur3;
t_ug1 += t_ug3;
t_ub1 += t_ub3;

total_weight2 -= total_weight3;
tt_sum2 -= tt_sum3;
t_ur2 -= t_ur3;
t_ug2 -= t_ug3;
t_ub2 -= t_ub3;

#ifdef DEBUGGING
if ((total_weight1 + total_weight2) != total_weight)

ASSERT(TRUE)
#endif

/* calculate left and right box’s overall variance */

total_variance = variance(total_weight1, tt_sum1, t_ur1, t_ug1, t_ub1) +
variance(total_weight2, tt_sum2, t_ur2, t_ug2, t_ub2);

/* found better split point? if so, remember it */

if (total_variance < variance_r)
{

variance_r = total_variance;
pick_r = i;

}
}

/* left box’s initial statistics */

total_weight1 = 0;
tt_sum1 = 0;
t_ur1 = 0;
t_ug1 = 0;
t_ub1 = 0;

/* right box’s initial statistics */

total_weight2 = total_weight;
tt_sum2 = tt_sum;
t_ur2 = t_ur;
t_ug2 = t_ug;
t_ub2 = t_ub;

/* locate optimum split point on green axis */

variance_g = 0xFFFFFFFF;

for (i = ig; i < jg; i++)
{

uint total_variance;

/* calculate the statistics for the area being taken

Listing 3. Splitting a Colorspace Box (Continued on p. 39)

GAME DEVELOPER • DECEMBER/JANUARY 1995 39

* away from the right box and given to the left box
*/

sum(ir, i, ib, jr, i, jb,
&total_weight3, &tt_sum3, &t_ur3, &t_ug3, &t_ub3);

#ifdef DEBUGGING
if (total_weight3 > total_weight)

ASSERT(TRUE)
#endif

/* update left and right box’s statistics */

total_weight1 += total_weight3;
tt_sum1 += tt_sum3;
t_ur1 += t_ur3;
t_ug1 += t_ug3;
t_ub1 += t_ub3;

total_weight2 -= total_weight3;
tt_sum2 -= tt_sum3;
t_ur2 -= t_ur3;
t_ug2 -= t_ug3;
t_ub2 -= t_ub3;

#ifdef DEBUGGING
if ((total_weight1 + total_weight2) != total_weight)

ASSERT(TRUE)
#endif

/* calculate left and right box’s overall variance */

total_variance =
variance(total_weight1, tt_sum1,

t_ur1, t_ug1, t_ub1) +
variance(total_weight2, tt_sum2,

t_ur2, t_ug2, t_ub2);

/* found better split point? if so, remember it */

if (total_variance < variance_g)
{

variance_g = total_variance;
pick_g = i;

}
}

/* left box’s initial statistics */

total_weight1 = 0;
tt_sum1 = 0;
t_ur1 = 0;
t_ug1 = 0;
t_ub1 = 0;

/* right box’s initial statistics */

total_weight2 = total_weight;
tt_sum2 = tt_sum;
t_ur2 = t_ur;
t_ug2 = t_ug;
t_ub2 = t_ub;

variance_b = 0xFFFFFFFF;

/* locate optimum split point on blue axis */

for (i = ib; i < jb; i++)
{

uint total_variance;

/* calculate the statistics for the area being taken
* away from the right box and given to the left box
*/

sum(ir, ig, i, jr, jg, i,
&total_weight3, &tt_sum3, &t_ur3, &t_ug3, &t_ub3);

#ifdef DEBUGGING
if (total_weight3 > total_weight)

ASSERT(TRUE)
#endif

/* update left and right box’s statistics */

total_weight1 += total_weight3;
tt_sum1 += tt_sum3;
t_ur1 += t_ur3;
t_ug1 += t_ug3;
t_ub1 += t_ub3;

total_weight2 -= total_weight3;
tt_sum2 -= tt_sum3;
t_ur2 -= t_ur3;
t_ug2 -= t_ug3;
t_ub2 -= t_ub3;

#ifdef DEBUGGING
if ((total_weight1 + total_weight2) != total_weight)

ASSERT(TRUE)
#endif

/* calculate left and right box’s overall variance */

total_variance =
variance(total_weight1, tt_sum1,

t_ur1, t_ug1, t_ub1) +
variance(total_weight2, tt_sum2,

t_ur2, t_ug2, t_ub2);

/* found better split point? if so, remember it */

if (total_variance < variance_b)
{

variance_b = total_variance;
pick_b = i;

}
}

/* now find out which axis should be split */

lowest_variance = variance_r;
i = 0;

if (variance_g < lowest_variance)
{

lowest_variance = variance_g;
i = 1;

}

if (variance_b < lowest_variance)
{

lowest_variance = variance_b;
i = 2;

}

/* split the selected axis into two new boxes */

Listing 3. Splitting a Colorspace Box (Continued on p. 40)

(Continued from p. 37)
statistical center of all the points in the
box, taking their usage into account.

A Better Split
I think of Heckbert’s statistical and
median cut methods as naive. When

they split a box into two smaller boxes,
their criteria doesn’t directly result in
reduced color error in the new boxes;
sometimes it does a good job, some-
times it does a not so good job. The
Heckbert methods either split along the
largest axis (making the boxes as square

as possible) or distribute the number of
used color points evenly, without regard
to how close they are to the representa-
tive color. Other variations on the split-
ting criteria exist, but they do not
improve the overall result.

In variance minimization, the goal

C O L O R Q U A N T I Z A T I O N

40 GAME DEVELOPER • DECEMBER/JANUARY 1995

ir1 = ir; ig1 = ig; ib1 = ib;
jr2 = jr; jg2 = jg; jb2 = jb;

switch (i)
{

case 0:
{

jr1 = pick_r + 0; jg1 = jg; jb1 = jb;
ir2 = pick_r + 1; ig2 = ig; ib2 = ib;
break;

}
case 1:
{

jr1 = jr; jg1 = pick_g + 0; jb1 = jb;
ir2 = ir; ig2 = pick_g + 1; ib2 = ib;
break;

}
case 2:
{

jr1 = jr; jg1 = jg; jb1 = pick_b + 0;
ir2 = ir; ig2 = ig; ib2 = pick_b + 1;
break;

}
}

/* shrink the new boxes to their minimum possible sizes */

shrink_box(ir1, ig1, ib1, jr1, jg1, jb1,
&ir1, &ig1, &ib1, &jr1, &jg1, &jb1);

shrink_box(ir2, ig2, ib2, jr2, jg2, jb2,
&ir2, &ig2, &ib2, &jr2, &jg2, &jb2);

/* update statistics */

sum(ir1, ig1, ib1, jr1, jg1, jb1,
&total_weight1, &tt_sum1, &t_ur1, &t_ug1, &t_ub1);

total_weight2 = total_weight - total_weight1;
tt_sum2 = tt_sum - tt_sum1;
t_ur2 = t_ur - t_ur1;
t_ug2 = t_ug - t_ug1;
t_ub2 = t_ub - t_ub1;

/* create the new boxes */

old_box->variance = variance(total_weight1, tt_sum1, t_ur1,
t_ug1, t_ub1);

old_box->total_weight = total_weight1;
old_box->tt_sum = tt_sum1;
old_box->t_ur = t_ur1;
old_box->t_ug = t_ug1;
old_box->t_ub = t_ub1;
old_box->ir = ir1;
old_box->ig = ig1;
old_box->ib = ib1;
old_box->jr = jr1;
old_box->jg = jg1;
old_box->jb = jb1;

new_box->variance = variance(total_weight2, tt_sum2, t_ur2,
t_ug2, t_ub2);

new_box->total_weight = total_weight2;
new_box->tt_sum = tt_sum2;
new_box->t_ur = t_ur2;
new_box->t_ug = t_ug2;
new_box->t_ub = t_ub2;
new_box->ir = ir2;
new_box->ig = ig2;
new_box->ib = ib2;
new_box->jr = jr2;
new_box->jg = jg2;
new_box->jb = jb2;

/* enter all splittable boxes into the priory queue */

i = 0;
if ((jr1 - ir1) + (jg1 - ig1) + (jb1 - ib1)) i = 2;
if ((jr2 - ir2) + (jg2 - ig2) + (jb2 - ib2)) i++;

switch (i)
{

case 0:
{

heap[1] = heap[heap_size];

heap_size—;

if (heap_size)
down_heap();

break;
}
case 1:
{

heap[1] = new_box;

down_heap();

break;
}
case 2:
{

down_heap();

break;
}
case 3:
{

down_heap();

insert_heap(new_box);

break;
}

}
}

Listing 3. Splitting a Colorspace Box (Continued from p. 39)

is to split the boxes in such a way that if
you added up the variance of both
boxes, it would be the smallest number
possible. Wu used summed area tables,
but we simply used brute force, which
turned out to be quite fast and efficient.
This function, split_box, is shown in
Listing 3.

Starting with the box to the split, a
plane is passed through the box along
one axis and used to divide the box in
two. The variance of each box is calcu-
lated and the plane’s position is to
remember if the total variance of both
boxes is the smallest yet encountered.
As the plane makes its way through the
box, individual points are moved from
one box to the other by subtracting and
adding their values which simplifies and
optimizes the process of keeping the
variance calculations up to date. The
function we used to get statistics for
each box is shown in Listing 4.

Once done, another plane is passed
through the box along the two remain-
ing axes, resulting in the evaluation of
every possible way to split the box. The
box is then split along the plane that
resulted in the smallest total variances,
and both new boxes are placed in a pri-
ority list according to their individual
variances.

Now, we must choose another box
to split. This is where another important
difference occurs with variance mini-
mization. Heckbert’s method will select
the next box based on which box is

largest, which box has the most pixels in
it, or some combination of the two. In
variance minimization, the box with the
highest variance, that is, the one that
needs the most work to reduce quanti-

zation error, is chosen next, and in our
implementation it just happens to be the
box at the top of the priority list. The
process is repeated until the number of
boxes created equals the number of col-
ors desired.

An interesting side effect of this
algorithm is that you can easily compute
how well the image has been quantized
at any time by summing up the variance
of each box created so far. An interest-
ing variation would be to keep splitting
boxes until the total variance falls below
a set threshold. This would let you com-
pute how many colors are needed to
quantize an image and get a certain
quality level.

The Inverse Color Map
Once we have finished splitting cubes
and determining representative colors,
the new palette is built by putting each
box’s representative color into a list. To
get from the original 24-bit color to the
proper palette entry, a structure com-
monly known as an inverse color map is
created. This is a three-dimensional cube
the size of the histogram where each

point in the cube contains the palette
entry number for the color at those coor-
dinates to be transformed into. In many
implementations, the inverse color map
is built by filling in each box’s area with

GAME DEVELOPER • DECEMBER/JANUARY 1995 41

Figure 2. Filling in the Histogram Boxes

Representative color
points for each box

This point
is closer to the repre-

sentative color of a different box

Figure 1. The RGB Colorspace Cube

Cyan

Green

Color at
point
(R,G,B)

X-Axis
(Red)

Z-Axis
(Blue)

Y-Axis
(Green)

White

Magenta

Red

Yellow

Black G
R

B

that box’s representative color number.
That is not the way to do it. (I pull my
hair out every time I see that.)

Consider the situation shown in
Figure 2. You have a large box and a
small box, which are touching each other.
Both have representative colors located
approximately in the center of the boxes.
In the large box, a point exists right next
to the edge where the small box is. Even
though it is in the large box, it is much
closer in the color space to the small box’s
representative color. By just filling in the
boxes, the pixels of that color will not be
translated into the best available color.

There are ways to build the inverse
color map so that each coordinate is
mapped to the nearest representative
color, regardless of what box it is in. We
have chosen the method published by
Spencer W. Thomas (“Efficient Inverse
Color Map Computation,” Graphics
Gems II, Academic Press Inc., 1991). His
code is included in the example program
available on the Game Developer ftp site.

Performance
In terms of color quality, what is seen by
the human eye matters the most. What
appears to be a strength of this algo-
rithm is the results it produces when
quantizing to small number of colors.
For statistical results, Xiaolin Wu
reported that the mean quantization
error of variance minimization was one-
third to one-ninth that of the older
algorithms. Our own experiments yield
similar results. The difference in results
gets greater as the number of colors gets
smaller. For a game where only a por-
tion of the palette can be spared for a
graphic, this is good news indeed.

What about speed? In his paper,
Xiaolin Wu was able to quantize a 256-
by-256 image in 10 seconds on a Sun
workstation, using five bits of color. In
our PowerView program, we can quantize
an 800-by-600 Targa file in about one
second on a 486/66 in real mode. The
results get even better in protected mode,
where it is practical to use six bits of color.

The Final Curtain
Image processing is a complex subject,
and we had to leave out some issues to

avoid turning this into a book. It’s pretty
clear that a large and growing amount of
game graphics are coming from video,
scans and other true color sources. With
that, there is no reason not to use the
very best methods available to get them
into games and other programs, as long
as they are practical methods. We hope
that by presenting a programmers-eye
view, and some practical working code
we’ll speed that process up and maybe

even help some of next year’s games
look a little more vivid and stunning.
Until next time, happy hacking. ■

Matt Pritchard and Rich Geldreich Jr.
work together at Innovatix, a small soft-
ware company in Garland, Texas. You can
contact them via e-mail at matthewp@net-
com.com, inovatix@netcom.com, or through
Game Developer magazine.

C O L O R Q U A N T I Z A T I O N

42 GAME DEVELOPER • DECEMBER/JANUARY 1995

/*——————————————————————————————————————*/
/* Calculate statistics over the specified box. */
/*——————————————————————————————————————*/
static void sum(int ir, int ig, int ib,

int jr, int jg, int jb,
uint *total_weight,
uint *tt_sum, uint *t_ur, uint *t_ug, uint *t_ub)

{
int i, j, r, g, b;
uint rs, ts;
uint w, tr, tg, tb;
uint *rp, *gp, *bp;

j = 0;

tr = tg = tb = i = 0;

rp = hist + ((ir * R_STRIDE) + (ig * G_STRIDE) + ib);

for (r = ir; r <= jr; r++)
{

rs = r * r;
gp = rp;

for (g = ig; g <= jg; g++)
{

ts = rs + (g * g);
bp = gp;

for (b = ib; b <= jb; b++)
if (*bp++) /* was this cell used at all? */
{

w = *(bp - 1);
j += w;
tr += r * w;
tg += g * w;
tb += b * w;
i += (ts + b * b) * w;

}

gp += G_STRIDE;
}

rp += R_STRIDE;
}

*total_weight = j;
*tt_sum = i;
*t_ur = tr;
*t_ug = tg;
*t_ub = tb;

}

Listing 4. Gathering Statistics for a Colorspace Box

The Top 10
Design Sins

T O P 1 0 D E S I G N S I N S

T
o learn how not to make a game,
play at least part of a new one
every day. Every week, play one
all the way through. I did that
for more than 15 months for
Sega of America’s third-party
licensing department, part of
whose charter is to play, evalu-

ate, beat, and, if possible, crash every
game from every publisher for every sin-
gle Sega platform. And when a game
was technically sound, but experientially
deficient (that is, not fun), we had to
have at least 10 suggestions for improve-
ment. As they say, someone had to do it.

We saw the same mistakes being
made across game categories and plat-
forms (yes, we looked at titles for Super
NES, 3DO, Jaguar, Duo, PlayStation,
PC, and Macintosh, too) by publishers
and developers. Each title could have
been a better game, often without
requiring any more memory; usually it
would have cost only another week or
two of design time. Following are the
top 10 design sins—ones my colleagues
and I saw over and over again—that
made us shake our heads and ask, “What
were they thinking?”

1. Boring Levels
A dumbfoundingly oft-
forgotten ingredient of
game design is the very
world a player steps
into. Its particulars are

frequently assigned to the most junior
designers. “Interactive scripting” boils
down to “level layout.” For that matter,
both are direct descendants of the “mis-
sion and scenario design” that has been
done for boardgames since the 70s, when
Avalon Hill and Simulations Publica-
tions Inc. (SPI) popularized historically
accurate—yet playable—war games.
• The same enemies occur over and

over. There are no surprises.
• Games are too linear and provide only

one way through.
• Progress through the game does not

teach or require a growing repertoire
of skills.

Designer Paul O’Connor, of
Alexandria Inc., advances a push and
pull theory of level design, where players
are simultaneously pushed by enemies
and pulled by the allure of power-ups
throughout a level.

An action game without good levels
is just a bad action game. However, good
levels without action still make for a
good puzzle game.

2. The Sin of
Repetition

In theater they say
there is only one
unpardonable sin,
“Thou shalt not bore.”

Level design is only one way to commit
this offense.

For action games:

44 GAME DEVELOPER • DECEMBER/JANUARY 1995

An expert i s someone who knowsAn expert i s someone who knows

not only the r ight way to solve anot only the r ight way to solve a

problem but lo ts of wrong ways.problem but lo ts of wrong ways.

— M a r v i n M i n s k y— M a r v i n M i n s k y

Z Z

Z
Z

ZZ

• Background graphics and obstacles
are recycled from level to level with
little or no change.

• The same attacks work over and over.
No new weapons, or abilities, or sto-
ryline advances occur as player
advance through levels. Players do not
get (or are not required) to mix up
their behavior patterns.

• Mid-level “continue” markers are
scarce or missing altogether, imposing
too much time catching up to the dif-
ficult parts after every “death.”

For strategy and role-playing games:
• Menu structures are too deep. Players

find themselves playing with the cur-
sor more than the game. This most
often strikes video game ports of
computer games, when insufficient
thought (or none at all) has gone into
reworking the user interface for a joy-
pad instead of a mouse.

• The same maintenance tasks must be
repeated incessantly. In 1978, a board
game designer named Jim “Bear”
Peters coined the term “grocery
game.” It applies all too well today to
any game that forces players into
repeated back-and-forth tasks.

Designers should let the computer
do the drudgery; the player’s input
should be the spark that drives the
enterprise.

3. Not
Entertaining
(Enough)

Not boring is not
enough. Sid Meier of
MicroProse put it this

way, “Who has the most fun in a game:
the player, the computer, or the design-

er?” The designer did if the game is
tricky in a cheap way. The computer
does if too much happens offscreen.
• The game does nothing new or unseen

in other games already or fails other-
wise to stand out in its genre. Known
as the shovelware syndrome, this situa-
tion finds players asking, “Is this really
any better than the 16-bit version?”

• The range of player actions is too lim-
ited. Action games must deliver
action. If you can do only one thing,
it’s called a “reaction game,” and that
genre’s time is long past.

• “When you win, you still don’t win.”
These games have cheese screens (vic-
tory screens that appear when you’ve
won) that are disappointing or miss-
ing. Often, there is insufficient story-
line reinforcement of success.

4. Production
Value (Or
Flat Bells
And Whistles)

A pet peeve among
professional game ana-

lysts is CD-game music that could as
easily have come from a cartridge.
Another gripe is presentational
sequences that clearly outweigh the rest
of the game in budget and production
effort (which only conjures images of
The Emporer’s New Clothes). You do
not want people to say, “Great explosion
graphics, how come there’s no sound?”
or “Where’s the music?” Players don’t
care if your budget ran out before you
could address these problems.
• Sound effects are sampled at too low a

rate.
• Sound is repetitive and annoying.

You dreamed last

night you got on the

boat to heaven, and

by some chance

had your PC by

your side...

To achieve the

sanctity of a perfect

game, avoid these

sinful situations.

Jim Cooper

GAME DEVELOPER • DECEMBER/JANUARY 1995 45

Music loops are too short or the same
voice bites are cued over and over.

• Video sequences are offensive, usually
because nonprofessional actors are
used, for example, members of the
development team.

5. Conflicting
Aspects of
Production

Surprisingly, uniformi-
ty is more important
than level of quality.

No game is expected to depict reality
(yet); all a player asks is not to be jarred
out of a willing suspension of disbelief by
incongruities.
• Music is inappropriate to the mood,

action, or audience.
• Artwork does not match the target

audience.
• Sound effects do not match the

graphic quality or standard level of
quality in the game’s genre.

6. Licenses Left
Unfulfilled

Hits-driven or not, our
industry increasingly
relies on licenses—
leveraging proven or

expected consumer entertainment utility
such as sports, popular books and movies,
cartoons and comic books, even packaged
goods like brand-name soft drinks. Mak-
ing a sports game may seem like a fairly
intuitive proposition; turning movies into
games takes far greater care. It is not
enough to punctuate action sequences
with outtakes from the licensed product.
On the other hand, don’t assume that
because comics and cartoons lend them-
selves so easily to video game translation
the work is already largely done. It can be
an advantage to have to face the chal-
lenge of making a simple inanimate
object interactive.
• Signature voices and phrases are not

included.
• The design does not explore elements

of its license’s appeal.
• The game could just as easily have

had a totally different title or main
character.

This final point is the acid test of

any licensed game, and one that every
licenser should answer for itself before
authorizing any licensee’s release.

7. Counter-
Intuitive
Weapons and
Special Moves

These errors exemplify
the difference between

showing and telling, between a gloss on
design and the kind of gut gameplay
players dream about.

• Powerful attacks are too similar in
effect or gameplay.

• Such powerful attacks are too rare or
common or too hard or easy to execute.

• Special moves or weapons are illogical
in their comparative effectiveness.

Calling a magic spell a “Mega-
Bloodcurdling-Turbo-Lightning-Suck-
ing-Farfak-Zapster” only goes so far.
The spectacle onscreen and aurally when
it’s loosed must be impressive and

uniquely appropriate. The joypad or
mouse button combination to unleash it
ought to be demanding, yet intuitive.
The effect in game terms should be dev-
astating, but balanced by design ele-
ments to preserve it from trivialization,
such as scarcity of vital ingredients or
limited circumstances during which it is
possible.

8. Difficulty
Properly setting a
game’s challenge is a
thorny challenge itself.
If a game is too easy
overall, it’s boring. But

so is infinite incrementing of difficulty;
nobody plays a computerized game as a
duel to beat a machine. That’s nineteenth-
century (and early 1980s) thinking.
• Optimal strategies exist and are obvi-

ous. The AI is weak or does not
respond to player actions at all.

• Ramping is uneven or flat. The flow
of difficulty is uneven—it is too easy
and then too hard, too hard and then
disappointingly easy, or never changes
at all.

• Bosses—arch-villains to provide
final challenges at the ends of lev-
els—are missing, too easy, or too
hard. Only one or two tactics are
needed against bosses. Enemies or
bosses don’t take damage like the
player does.

Beware of creating pseudodifficulty,
however, such as “mandatory hits,” or
damage that cannot be escaped at any skill
level, even if nonfatal. Trying to lull the
player into a false sense of insecurity is a
no-no.

9. Execution
A major game design
sin is allowing the
challenge to arise more
from navigating a
game’s interface than

negotiating its story elements. Program-
mers and designers are most prone to
this mistake; they cannot help but think
learning and doing things the hard way
is fun. It is not. It’s work, the kind they
are paid to perform for the players.
• Collision detection is too loose or

T O P 1 0 D E S I G N S I N S

46 GAME DEVELOPER • DECEMBER/JANUARY 1995

12345

Making a sports

game may seem

like a fairly intu-

itive proposition.

Turning movies

into games takes

far greater care.

tight. For example, when collision
detection is too loose, players experi-
ence fighting game “hits” that should
or shouldn’t have landed. When it is
too tight, players must position a
climbing or jumping character’s sprite
at precisely the correct pixel.

• Animations of actions are poorly
timed or have insufficient frames.
Games simply lack state-of-the-art
graphics and sound.

• Basic character movement physics are
lax. These physics include jumping
range (which might be too far or too
short), hang time (anything outside a
range between apparent earth stan-
dard and moon gravity needs justifica-
tion), speed of motion, and acceler-o-
meter functionality (after a half-sec-
ond moving in the same direction, a
character or onscreen mouse arrow
should speed up.).

If you aren’t able to create the next
new technology, you should at least be
able to execute the current standard well.

10. Low
Replay Value

Games differ from
books and movies in
the number of times
they are consumed.

Games with linear levels give players no
reason (or opportunity) to revisit scenes
from new angles. The investment in the
average game’s technical development
could stand to be exploited even more.
And no matter what your graphics and
sound budget was, after players see and
hear those jewels a few times, the only
thing they want to wrestle with is what
you worked on for just two months out
of the development cycle—the game.
• Variable difficulty settings are missing.
• High scores or low times are not

recorded, robbing players of the chal-
lenge to try and beat them.

• Players don’t have a selection of
playable characters to choose from.

• Insufficient “player-override” func-
tionality. Players cannot skip cinemat-
ic scenes and special effects.

This last is a cardinal sin all its
own; by unnecessarily fatiguing players,
it mortally wounds replay value.

Always, always remember the experi-
ence you offer will be consumed itera-
tively, that is, over and over again.
Make maximum user configurability
your friend.

Dos for each Don’t
Fortunately, where I come from, you
don’t complain about problems with-
out offering solutions. Here are a
number of ways to avoid the 10 sins
I’ve outlined:

1. Boring Levels
• Make demands on players. You must

know their capabilities, which is
admittedly not always easy.

2. Repetitiveness
• Don’t stint on the preparation of a

great storyline. Treat the game more
as a novel than a short story repeated
over and over—or as a movie, not a
music video. If everyone thinks he or
she can make a video game, show
why they are wrong.

3. Entertainment
• Give good value.
• Dare.
• Lead, as opposed to manage.

4. Production Value
• Have a production concept that

somehow fits on the back of your

Everyone participating in the design process can help avoid the 10 sins of game design.
The burden should not fall on the developer alone.

Designer
• You are not just designing a game, you’re crafting game elements to survive the mael-

strom of producer, marketer, and licenser reviews. Stick to your guns and learn to cre-
atively outfox upper management. It may seem like a game unto itself, but you must
play for you and your game to succeed.

Producer
• Do your job. It’s not just spreadsheeting, or phone-mongering, or lunching. It’s oversee-

ing and delivering the game from the designer to the distribution channel.

Marketer
• A high-variance strategy is actually your best career bet when dealing with games. At

early concept meetings, champion the designer. If it pans out, you can say you pushed
for it. If it doesn’t, you tried to talk market sense into them. When the game is almost
ready to launch, you must look beyond feature lists at tactical marketing meetings. It’s
your job to figure out how to bring the game alive. Have the producer explain what’s
unique about the game. It will take more than a few screen shots to communicate that
to potential players.

CFO
• Quality sells. Much has been made of the unique marketing behind Doom and Descent.

Don’t forget—there was unprecedented quality in each game. So why not put that
incremental product development money your producer is begging for into next quar-
ter’s marketing budget, under word-of-mouth advertising expense?

President
• To get the best out of your people, give them the best of yourself. Are you duty-bound

to maximizing return on investment or increasing shareholder value? Your franchise as
a publisher depends only on a reputation for quality product. Believe it or not, Spectrum
HoloByte’s stock rose the last time it announced another delay in getting out its first
Star Trek: The Next Generation CD-ROM game. Perhaps this unexpected reaction from
the “smart money” had something to do with the lesson the entire industry learned
when another publisher’s bug-riddled graphical adventure CD, The Lion King, experi-
enced retail return rates rumored to have exceeded 50% of sales.

G O , A N D S I N N O M O R E

GAME DEVELOPER • DECEMBER/JANUARY 1995 47

business card and still serves as a yard-
stick against which every development
decision can be measured.

5. Production Coherence
• Manage the development process,

that is, its participants. All are neces-
sary, none is sufficient alone. When
appropriate, tell them so.

6. Licensing
• Build a game from the license up;

don’t just plug and ship your game (or
let your licensees do it for you).

• Know, define, and insist on making
central to gameplay the specific appeal
of your licensed property. If the
license has any value at all, playing to
its strengths is a recipe for success.

7. Special Moves
• Extend the metaphors in your game.

You cannot tell players they are having
fun. They have fun by being fully
engaged. They will only be fully
engaged if they acknowledge and
accommodate differences you define.
Make the player’s input and the result-
ing game outputs consequential while
internally consistent or the whole house
of cards comes tumbling down.

• The soul of video gaming is the
epiphany of acts of desperation that
become intention. In a fighting game,
it’s that joystick-slap or button-slam
combination—born of a split second’s
agonized frustration—that miracu-
lously looses the perfect mid-air
counter-throw. Like math, it makes
“of course” sense after you’ve done it.

8. Difficulty
• Defy passivity at every turn.
• Surprise, but play fair.

9. Execution
• Optimize the inevitable compromises

feature for feature by weighing benefit
against benefit in play value. Use mar-
keting for focus groups and user test-
ing throughout the project.

10. Replay Value
• Roll at least three games (if not five, or

17) into one. Star Trek and Star Wars

appealed to children, teens, and adults
through spectacle, action, and ethical
components. Three types of people
could enjoy them, and anyone can still
enjoy them on three or more levels.

The Eleventh Sin
The 11th sin is failing to realize these are
not design sins, but management sins. No
competent game designers willingly com-
mit them—their masters do. As Gordon

Walton says, “Everything in this business
conspires against good games.”

The platform wars among 32-bit
consoles have already spread to the PC.
It happened when Windows 95 began
promising true plug-and-play ease of use.
Race your products to market, but avoid
these simple errors. It’s worth it to take
an extra three weeks design time up front
and tack another two to three weeks onto
the end of the cycle for polishing.

Marketing myopia is the technical
term for the flip side of the “not invented
here” coin. So you have the technology.
Your game can do what has never been
done before or something wildly better
than has ever been done. That’s not why
people buy it. They will buy it—and con-
tinue buying it—because it’s fun. ■

Jim Cooper, a gamer with an MBA,
has founded software and game companies,
consulted to money managers, and taught
marketing. He is the founding editor of The
CGDA Report, and can be reached at
72147.2102@compuserve.com.

T O P 1 0 D E S I G N S I N S

GAME DEVELOPER • DECEMBER/JANUARY 1995 49

Grateful acknowledgment is made to
Steve Ackrich, group director, Sega of

America Third Party Licensing and
Acquisitions, for permission to print this
article based on materials I prepared
and delivered with him at the Sega
Developers Conference, March 1995. I’d
also like to thank him for admission to
gameplay bootcamp. And to Gary Barth,
my drill instructor, now at Sony Comput-
er Entertainment of America and the
producer of Battle Arena Toshinden.

A C K N O W L E D G E M E N T S

The Play’s
The Thing

I N T E R A C T I V E S T O R Y T E L L I N G

H
ow do you keep a game inter-
active and also weave in a
good story? This question is
becoming more important in
the gaming world. It’s possi-
ble now to make stories
somewhat variable and inter-
active and to make great

game experiences more dramatic and
character oriented. But the possibility of
truly merging the interactivity of games
and the suspension of disbelief of drama
is the carrot dangling before many mul-
timedia professionals today. Yet, is this
merger possible? “It seems like the term

‘interactive story’ is an oxymoron,” says
Jonathan Knight, a producer with Via-
com. “It seems like you can’t have one
and the other. It’s one or the other.”

Still, the possibility is too cool to
ignore, and so game developers contin-
ue to search for ways to marry the two
art forms. They’ve come up with many
approaches, some more successful than
others. “We don’t have the polish of the
thousands of years of work that has
gone into regular stories,” says
Lawrence Schick, managing director of
the interactive story and strategy group
at Magnet Interactive. “In comparison
to what a playwright or screenwriter
does, the stuff we do is awkward and
unpolished, and it isn’t as satisfying.”

People working with interactive
storytelling in any form it may take—be
it within the confines of a shoot-em-up
action game or a puzzle-oriented mys-
tery game—face many challenges as
they search for the key to a successful
interactive experience. Here are a few
things they’re wrestling with.

The Illusion
of Player’s Choice
Many interactive story games have the
ultimate goal of giving the player the
feeling that his or her decisions are
actually affecting the story. “That’s the
holy grail,” says Schick. “Obviously,
within very strict limitations, you want
the player to write the story by the deci-
sions they make.” This has been a tough
goal to reach, so far. Branching plot
stories, in which a story unfolds as the
players make various decisions, are one
approach to interactive stories, but the
story must be limited or the decision

Hounds and Jacyls: Integrating puzzles into a story adventure without disrupting the player’s
suspension of disbelief is one of the biggest challenges of interactive stories. In
Hyperquest’s new title, Archeologica, the game puzzles not only move the story forward ,
they give the player a deeper connection to a central character in the game.

50 GAME DEVELOPER • DECEMBER/JANUARY 1995

K
ri

s
 K

il
a

y
k

o

tree becomes astronomical. Graphic
adventures, where a story is revealed to
the players as they succeed in solving
puzzles or winning battles, are another
approach. This genre, which includes
the Kings Quest Series and Wing
Commander III, offers gameplay and
story together, but you have story seg-
ments followed by gameplay segments.
The two aren’t integrated.

Computer role-playing games
based on building up skill levels and
possessions, such as Sword of the
Samurai, let you model a limited set of
a character ’s personality traits—
abstracts such as a character’s aggres-
siveness, hostility toward the player,
and honor—and manipulate the num-
bers with algorithms and routines that
give the impression the characters are
reacting to events in the game.

You can also incorporate a dramati-
cally correct story into the process by
submitting plot elements to the same
quantification. You can set up algorithms
that weight a character’s options to mir-
ror another character’s (so it appears that
one character is following another), hold
back options for dramatic effect (only
after your player’s character marries the
villain’s love can the villain have the
option to send assassins after you). This
presents the illusion of an unfolding story
based on the actions the player takes—
the characters appear to react to what the
player does. But you usually have a limit-
ed number of generic and repetitive dra-
matic pieces to work with. “The problem
is creating something that apparently
stitches itself into a movie, without
repeating, and without having to be 10
CD-ROMS.” says Schick.

Player as Hero
Viacom’s Jonathan Knight looks at the
“holy grail” a little differently. To him,
the key to a successful interactive story
game is aligning the player with the
hero’s objective. It’s all about making
sure the player and the hero want the
same thing. “That’s the way modern
drama has always worked,” explains
Knight. “Stanislavsky felt that every
story ever written hinges on the objec-
tive of the hero. Whatever the hero
wants out of the story will drive that
story to its conclusion.”

It’s this element that Knight feels
makes highly interactive games like
Asteroids and Doom, and even more
puzzle-oriented games like Myst, so
successful. “Every game back to Aster-
oids is really an interactive story,” says
Knight. “In Asteroids you have a hero
(the little ship), you have antagonists
(the rocks), there’s setting (space), you
have rising action (more rocks coming
at you), and there’s climax—it always
ends tragically with the ship getting
blown up.” The objective is clear to the
player immediately, and there’s no con-
flict between what the player wants and
what the hero wants.

But Knight says this element is
lost in many interactive stories. Sure,
it’s easy to align yourself with a ship in
danger—that’s based on “sweaty palm”
emotions, fear and survival instinct. But
what about objectives that are more
complex: something like Hamlet’s
dilemma, for example, in which our
hero’s objective is to avenge his father’s
death. We might be drawn to this
objective deeply enough to observe pas-
sively at a Shakespeare festival, but are

All the rock ‘em-

sock ‘em graphics in

the world won‘t

make up for a bland

story. Today‘s

designers are rising

to the challenge and

creating meaningful

plot lines as well as

beautiful visuals.

Barbara Hanscome

GAME DEVELOPER • DECEMBER/JANUARY 1995 51

we involved enough to play “Hamlet
Interactive?” Plus, the story is already
written, how can we really affect the
outcome?

Games that are structured so that
the core objective is achieved through a
variety of sub-objectives work well to
keep the player moving along on the
right path.

For example, if you were creating
the “The Fugitive Interactive,” the hero,
Richard Kimball’s, main objective is to
prove his innocence in the murder of
his wife. But in Act 1, his mini-objec-
tive is to escape incarceration. In the
film, he achieves this objective by jump-
ing out of a bus, disguising himself as a
doctor, stealing an ambulance, hiding in
a sewer system, and jumping off the top
of a dam. “We can offer five more, or
10 more, to the player, so that they’re
not forced down the path the film fol-
lows,” explains Knight. “These different
actions could suit a whole range of per-
sonalities, and yet, sort of unknowingly
to the player, the character is stil l
achieving the objective that we have set
for him.

But that doesn’t completely solve
the problem of merging the hero’s
objective with the player’s objective.
There will always be options the player
will want to take that aren’t options
presented in the game. What Knight
suspects might be the key is simple,
Pavlovian condition/response. “Because
stories are so psychologically complex,
and the distance between what the hero
and the players want is so great, I think
we need to use animal conditioning on
our players, and basically reward and
punish them psychologically, right in
line with the objectives of the story for
certain behaviors.” He admits it sounds
kind of diabolical, but it happens all the
time in games. “If you think back to
Asteroids, if you didn’t destroy the
rocks like you were supposed to, if you
just sat there and cruised around and
didn’t go after the objective, then they
started playing this music. It makes you
really nervous and you get really scared.
And if you go after the rocks, it stops.
They’re conditioning you.”

But, how does Pavlovian condi-

tioning fit into a complex story with
characters, dialogue, and plot? “If you’re
really going to condition someone, you
can’t be too obvious about it. You don’t
want to kill them if they walk though
the wrong door, for example. That’s not
conditioning, that’s just irritating,” says
Knight. The goal is to reach the player
at a deeper level. “You don’t want to
reward and punish actions as much as
want to reward and punish emotional
responses. Emotion is what is deep
down and subtle, and that’s what the
player is not going to be conscious of.”

Making Feedback
Work for You
Knight admits he’s still working on
exactly how to create this subtle emo-
tional conditioning. He thinks feedback
from supporting characters might be
one solution. “Other characters can
work to goad the hero in certain ways.
In the Interactive Fugitive, for example,
where the goal of the hero is to prove
his innocence in the murder of his wife,
if a guy came up to Richard Kimball
and said, ‘You’re a murderer. You killed
your wife,’ and then the player decides
Richard Kimball can beat the crap out
of the guy, that behavior—even though
it’s violent—is conducive to the objec-
tive. And we want to reward the player
for that.”

Feedback is also crucial to tell the
player that his or her decision made a
difference to the story. “Feedback is
almost the hardest thing to do,” says
Schick. “Letting the player know what
difference he or she made in a story
implies a couple of things. First it
implies tipping your hand as to what
would happen if the player didn’t make
a decision, and second, it implies that
you have to somehow, in some brutal
way, tell the player what difference this
made to the other characters, which is
what matters in the story. It can feel
contrived, but you’ve got to have it. In
an interactive story the players are mak-
ing the decisions and you have to set
things up carefully so that they see the
implications and results of their own
decisions.”

Schick points to the game Johnny

Mnemonic as an example of a game
that successfully melds action and story,
however the feedback is missing. The
game is a linear movie in full-screen
MPEG until the player has the option
to interact, then the screen moves to
letterbox. “In Johnny Mnemonic you
get to make several kinds of decisions.
The hard part is knowing what kind of
decision you get to make at any given
moment. They don’t give you a cue as
to what kind of choice you’re making: Is
it a movement choice, should I go left
or right? Should I pick something up or
put it down? Is it a fighting option
where I should kick and punch or
block?” explains Schick. The players
have a limited time before the movie
goes back to full screen. “When you
make your decision matters as much as
what you decide to do.” says Schick. “If
you don’t do anything, it often goes
into a bad end, you didn’t act fast
enough and the bad guys blow you
away.”

Feedback is also necessary to avoid
one of the most basic trouble spots of
interactive stories: bottlenecks, in which
a player cannot move forward until he
or she solves a puzzle. Bottlenecks
destroy suspension of disbelief and are
just plain frustrating for the player. In
his games Castle of Dr. Brain and
Quest for Glory IV, David Cole pro-
vides a help mechanism to avoid this
problem. “I tell the player up front that
if you click on this button five times,
the first four clicks will give you a hint,
and the fifth click will solve the puzzle
for you.” To keep it challenging for the
player, the fifth click doesn’t reveal the
solution to the puzzle, but it moves the
player forward.

“They did the same thing in the
7th Guest,” explains Cole. “In each
game puzzle you can go down to the
library and there’s a hint book that tells
you a little bit about each game puzzle.
And if you consult the book several
times in a row, eventually it says, ‘oh,
okay, you solved the thing.’”

But providing help isn’t good
enough, you have to let the player know
help is available. “In 7th Guest, I didn’t
know that you could get past the puz-

I N T E R A C T I V E S T O R Y T E L L I N G

52 GAME DEVELOPER • DECEMBER/JANUARY 1995

zles by using a hint book until I did it
by accident,” says Cole. “It’s a tricky
task, because on one level you want the
player to be totally immersed in the
fantasy of the game and not thinking
about the computer. On the other
hand, if you’ve got these helpful things
built in, it’s nice to make that obvious
to the player that those things are
there.”

Integration of
Puzzles and Story
Games such as Wing Commander III
and Daedelus Encounter come close to
merging the excitement of game play
with strong characters and storylines.
However, it’s not really a mix. The
story happens, then the fighting hap-

pens, and when you’re not fighting
you’re stuck watching a very set script
that you cannot control. Integrating
puzzles and story is even more challeng-
ing for edutainment designers, who rely
on puzzles to teach subject matter and
test knowledge. How do you make
these a seamless part of the experience?

Game producer Julia Mair and her
team from HyperQuest wrestled with
this problem in their two educational
titles, Astronomica and Archeologica,
which not only mix gameplay and story,
but education as well. In Astronomica,
the player learns about astronomy by
helping a teenage heroine named Sara
save her dad from captivity in an obser-
vatory. The player navigates through a
photorealistic three-dimensional envi-

ronment, similar to Myst, and must
help Sara reset each exhibit in the
observatory to get the computer system
up and running. Each exhibit involves
an educational game or puzzle to solve.
Mair felt the game was successful for
many reasons, but the puzzle and story
mix didn’t hit the mark. “We felt that
what was happening was that we were
forcing the player to stop the action.
We wanted the player to move through
the dramatic structure and never, or
very infrequently suspend their disbelief
to play the games. Many of the games
are challenging and fun and interesting,
but you still have to stop, you have to
play the game, you have to get it, and
then you move on.”

In Archeologica, the learning
aspect is still dependent on puzzles and
games, but Mair and her team think
they integrated them more successfully.
They set up a main objective for the
player similar to the one that exists in
Astronomica: the player must help two
characters, Sara and Elija, find and res-
cue a character trapped within an envi-
ronment. In this case, the character is
Elija’s mother, an archeologist trapped
somewhere within an archeological dig
site. The games and puzzles are layered
within the experience. For example, the
players don’t just passively hear about
the Egyptian Book of the Dead after
pressing a button, they also travel
through spaces in the dig that represent
passages of the book itself. They don’t
just learn the significance of the Solar
Boat to the Egyptians, they maneuver
one through a secret passageway. Some
of the games are the same games
Egyptian children played, and certain
plot twists are revealed to the player
only by using knowledge they’ve accu-
mulated in the game, such as decipher-
ing hieroglyphs or using tools archeolo-
gists use.

Then they took it one step further.
“We didn’t want the player to feel that
he or she was pitted against how clever
the developer can be or grounded in a
twitch arcade element only,” says Mair.
To avoid this, they created another
character, an archeologist named Bur-
ton who once inhabited the dig site

I N T E R A C T I V E S T O R Y T E L L I N G

54 GAME DEVELOPER • DECEMBER/JANUARY 1995

C
ombining an interactive story with a challenging objective requires vision—liter-
ally. Here are a couple of tools that can help you visualize the twists and turns of
your game’s structure from plot line to character development. Use these tools to
diagram, outline, and brainstorm projects, and you will begin to understand the
art of telling an interactive story.

StoryVision, by the company of the same name, is an organizational tool for interactive
gaming used to visually diagram plot structure and characterization. Analogous to a
detailed blueprint of an interactive script, this tool allows you to map out the “game plan”
through the use of bubbles and lines, similar to a flow chart format. Once the scene bub-
bles are created, you can attach text to the bubbles in any word format. CD Noir’s Dave
Dengler, who has used StoryVision says, “It’s also great for brainstorming.” Used by writ-
ers, producers, and developers, this program links with any word processing program and
can organize the text in a screenplay style. Although the program does not include its own
text editor, user Chris Taylor of Interplay Productions says, “I like the program’s simplici-
ty. It is quick, easy to use, and makes changes rapidly.” For more information contact Sto-
ryVision at (310) 392-5090.

Inspiration, a diagramming and outlining tool by Inspiration Software Inc., can be used as
a brainstorming tool and a diagramming tool. With a choice of over 500 symbols including
the full ANSI flow charting symbol set, and color, shape, and size capabilities, this tool
makes it easy for you to differentiate between visually linked ideas. If you still haven’t
found the perfect symbol for your idea, Inspiration lets you import your own graphics. The
diagram view also lets you create smaller diagrams that connect to parent diagrams. Lynn
Pierson, product specialist, says, “There are hundreds of levels of diagrams. Each diagram
has the capability of connecting to a child diagram.” Each symbol in the diagram has a
linked Notes Window allowing unlimited pages of text, and the multiple zoom feature
offers a variety of perspectives to help map out your game’s intricate structure. Toggling
from the diagram to the outline allows you to view your plot structure or characterization
in a text format. Complete with its own text editor, Inspiration can revise, edit, and format
in the outline view. For more information contact call Inspiration Software Inc. at (503)
245-9011.

—Deborah Sommers

T O O L B O X

where the game is set. He has set up the
puzzles and traps to protect the trea-
sures he’s discovered throughout his
life. The player discovers various aspects
of Burton’s personality through the
intricate, Rube Goldberg-like games
and puzzles he has created, and falls
into a sort of love-hate relationship
with him. Instead of interrupting the
story with a puzzle, and frustrating the
player with a game created by someone
else, the puzzles take the player deeper
into another layer of the story.

Of course, veterans of role-playing
games, mystery games, and adventure
games are old hands at this. This is
what their games are all about. “There’s
a misconception in the adventure game
field that the puzzles are arbitrarily
pasted in. A lot of our puzzles are about
relationships,” explains Corey Cole.
“Figuring out how to interact with dif-
ferent people, how to interact with the
bartender, how to meet someone, how
to get them to join your party, basically
how to help them so they will help you.
That makes the game world feel a lot
more real. Look at movies, they’re all
about character relationships, and that
hasn’t been done very much in games
thus far. We’re trying to bring much
more of that in.”

Living, Breathing
Characters
But how do you make those characters
interesting enough for your player to
want to interact with them? How do
you telegraph a character’s personality
and motives and communicate these
traits clearly and quickly to the player?
HyperQuest’s Mair says it comes down
to trading off when stereotypes will
work for you and when they will not.

In Astronomica, Mair and her team
really wanted to create a strong female
heroine, but one that was also a regular
kid. “In the first scene, we wanted it to
be clear to the player that Sara was a
leader, we wanted to show a young girl
with a problem who is strong enough to
tackle it.” In the first scene, Sara makes a
decision that will guide the entire game
(she must reset each exhibit in the labo-
ratory to bring the computer system back

online). This is the main objective that
drives the game, so the player needs to
trust that her decision is right. The
HyperQuest team worked hard on the
finer details of the character, choreo-
graphing her movements, her tone of
voice, and her physical posture so that
her personality and situation would
come across loud and clear.

When it came to supporting char-
acters, such as Sara’s father, an eccentric
scientist with less time on screen, they
let stereotypes work to their advantage.
“We wanted to telegraph his passion,
that he’s committed to what he does,
and that he’s more than capable of

putting his shoes in the refrigerator.
We tried to choose where stereotyping
worked for us, because we wanted to
cue into a whole set of basic cultural
IDs.”

In games and film you can still
leave out a lot of information because
the player will fill it in. “It doesn’t take
much to create a relationship between

the player and a character in a story,”
says Lori Cole, who wrote the Quest
for Glory series with husband Corey
Cole. “The player will put the imagina-
tion into the character if the game has a
base for them to build upon.” Her
favorite anecdote to support this theory
has to do with the game Wing Com-
mander I. When players got to the
scene in the game where one of the
supporting characters died, BBSes were
filled with posts from people lamenting
the character’s death. “People posted
things like ‘She was my love! We had a
relationship!’ They really didn’t have a
lot of interaction with this character,
but that didn’t matter.”

Chris Thompson, an interactive
script writer agrees. In his article “Inter-
active Drama, the Rules of Storytelling”
(Morph’s Outpost, May 1995), he writes,
“Developers shouldn’t be afraid to with-
hold information. If a user is interested
in a character or situation, there’s
almost no limit to the amount of
‘unknowns’ that he or she will tolerate.
In fact, unknowns generate intrigue,
suspense and mystery.”

What’s Next?
Where is the industry going with inter-
active storytelling? Some say multime-
dia is waiting for someone like Stephen
Spielberg (or Einstein) to come solve all
the problems. Some are waiting for the
“film/game genre” to die so they can get
back to true game experiences. Some
say it’s going to depend on motion cap-
ture technology and artificial intelli-
gence before we’ll be able to realize the
true integration of interactivity and
story. “We’re really wrestling with stuff
no one has wrestled with before, and for
fairly high stakes,” says Schick. “So
people get either desperate about it, or
they basically want to fall back on what
they know will work. The only reason
why any of it works at all is because the
concept of actually experiencing a story
rather than watching it is so compelling
that people are engaged, despite the
embryonic form of the art.” ■

Barbara Hanscome is managing edi-
tor of Software Development magazine.

GAME DEVELOPER • DECEMBER/JANUARY 1995 55

Astronomica and

Archeologica, two

titles from Hyper-

Quest, not

only mix gameplay

and story, but

education as well.

A
rtist’s View remains pretty
much confined to graphics
issues. However, as digital
entertainment has matured—
has begun to mature—it
sometimes happens that the
borders separating visual con-
siderations from other game

elements become blurred. When, you
might reasonably ask, are game graphics
anything more than just that? The
answer: when they are an integral part of
the design process of the game as a
whole, interwoven from the earliest con-

ceptual considerations with the overall
fabric of the game, inseparable from any
discussion of the title’s creation or its
effectiveness. Such is the case with
Buried in Time, sequel to the Journey-
man Project, labored on for two years by
Presto Studios and released this summer
by Sanctuary Woods.

Many companies pay lip service to
an integrated approach to design, yet,
while ever-greater importance is certain-
ly being placed on quality graphical con-
tent, in most instances game visuals still
occupy a largely decorative role. With

Creation
of a Fantastic
World

Nothing brings a game

to life so much as

realistically rendered

detail, no matter how

minute. This month,

David Sieks turns an

artist‘s eye to Buried

in Time, the new time

travel game from

Sanctuary Woods.

David Sieks

A R T I S T ‘ S V I E W

GAME DEVELOPER • DECEMBER/JANUARY 1995 59

Though a picturesque ruin is all that remains today of Richard the Lionheart's 13th century
castle, Presto artists turned to contemporary sources to recreate it in stunning detail for
Buried In Time.

Buried in Time, graphics do not serve as
mere adornment, however. Nor for that
matter is another important creative ele-
ment—story—just a weak scarecrow
frame on which to hang gameplay.
While Presto’s ultimate objective was a
fun, playable computer game, there was
also a desire to create a deeper and richer
experience than the typical adventure
title. Presto’s president and Buried in
Time producer Michel Kripilani, writer
Dave Flanagan, and creative director
Phil Saunders spent more than five
months assembling the skeleton of a
game to realize that ambition, all before
even going into preproduction. From the

very start, visuals, gameplay, and story
went hand-in-hand, and that integrated
approach is apparent in the way the
game works so successfully to draw the
player into its world—or rather, worlds.

Setting the Scene
In Buried in Time, the player assumes
the role of a time-travel agent wrongly
accused of tampering with the past. To
vindicate yourself, you must escape
house arrest and journey through time
and space to the several zones in ques-
tion in search of clues to the identity of
the true culprit (solid adventure game
stuff, but still a welcome change from
the onus of saving the universe yet
again). During the early design process,
the team at Presto considered many
time-travel destinations. One chief crite-
rion was visual appeal; Saunders wanted
periods and places that would lend
themselves to the lush three-dimensional
graphics he had in mind. Freshness was
also a factor (Egyptian pyramids failed

that cut), and of course each destination
had to offer gameplay potential.

The Presto game design team fur-
ther complicated their task by opting for
historical accuracy, despite the fantastical
plot. This meant exhaustive research, not
only for visual and descriptive references
on which to base designs, but also for
convenient gaps in known history that
provided opportunity for embellishment.
Eventually, along with several futuristic
environments, three historical settings
were chosen: the medieval castle of
Richard the Lionheart, a Renaissance era
workshop of Leonardo da Vinci, and a
Mayan ziggurat.

The first two proved especially fer-
tile subjects for Saunders and supporting
conceptual designer Victor Navone to
build upon. Little remains today of
Richard’s Normandy castle, Chatteau
Gaillard, which fell in the early 13th
century, but Saunders used contempo-
rary sketches and descriptions to fill in
many of the gaps, and was able to
extrapolate the rest to recreate a wholly
convincing environment. On the other
hand, despite its impressive architectural
detail, the da Vinci workshop is pure
invention, hypothesizing the great man’s
whereabouts and activities during a
shadowy period in his history. Again,
due to meticulous attention to known
details—and equally meticulous fudging
of the rest—the setting attains an eerie
degree of authenticity.

Throughout the two years it took to
complete Buried in Time, environment
design, story, and gameplay elements
advanced apace. From the early plot and
environment decisions, Saunders moved
on to conceptual sketches, Flanagan

continued to flesh out the story, and
Kripilani began to assemble the produc-
tion team. Much back and forth was
involved, and many changes were made
along the way, but the basic framework
that had resulted from those first months
of brainstorming remained in place to
hold the project together through its
growth. Though time-consuming, such
an integrated approach helped to create a
cohesive and balanced game, with a story
that carries you along while the detailed
environments draw you in.

Designing for Immersion
The game’s graphics feature rendered,
point-of-view interaction spots linked by
full motion sequences. The level of visual
detail in Buried in Time is astonishing
and, combined with excellent sound
effects and an atmospheric score, con-
tributes to an environment that
envelopes the player like a warm bath.
Drawing the player deep into the game
world was the goal, and no effort was
spared to accomplish this end. At times,
this was a grueling commitment to stand
behind, as so much of the detail is extra-
neous to actual gameplay. But the Presto
philosophy is that detail is what con-
vinces the player to suspend disbelief and
enter the illusion, and when it comes to
illusion there’s no such thing as being
too convincing. Its 40 minutely detailed
environments contain roughly 10,000
three-dimensional objects. By the end of
the project, Presto artists had more than
40GB of visual data online.

One reason all these details achieve
such a convincing effect is likely Saun-
ders’ background as an industrial design-
er (he’s still one of the lead car designers

A R T I S T ‘ S V I E W

60 GAME DEVELOPER • DECEMBER/JANUARY 1995

Presto designers did their homework to ensure the several historical settings were accurate and
convincing in their detail, even for places that never existed, like this cloistered garden path for
a palatial workshop Leonardo DaVinci might have had in Milan— but didn't.

All the painstaking research and careful
design is brought to life by artistic use of
textures and lighting.

at Nissan). Even fantastic science-fic-
tional settings are grounded by his prac-
tical form-follows-function approach.
He also has an obvious flair for the dra-
matic (before automobiles, he designed
theme park rides) and these strengths
provided the guiding vision for the
Presto art team, a vision Saunders com-
municated by multitudinous sketches,
marker comps, and lots of arm waving.

Though their creative director knew
what he wanted to see and provided a
strong conceptual starting point, the
team delegated completion of the art-
work to various departments, where the
visual guidelines were fleshed out and

further details added. Conceptual
sketches were turned into three-dimen-
sional models using Form-Z, from
Autodessys Inc. Three-dimensional
artists Jose Albanil and Leif Einarsson
found Form-Z an excellent and very
robust program, and as one of the first to
offer Boolean operations on the Macin-
tosh, this tool allowed rapid creation of
the many complex objects in the game.
The three-dimensional models were
then passed to E.J. Dixon III and Frank

Vitale for texture mapping. Rather than
simple nontiling textures, materials and
relief maps were created in Photoshop
(Adobe) that exactly fit each object.

Finally, the completed three-
dimensional environments were lit, ani-
mated and rendered with Electric Image
(Electric Image Inc.), which Kripilani
unreservedly describes as “hands-down
the best 3D animation package available
for the Macintosh. Nothing else even
comes close.” An optimized Phong ren-
derer obviated the need for time-con-
suming ray tracing, allowing animators
Shadi Almassizadeh, Eric Hook, and
Eric Fernandes to complete renders in a

fraction of the time while maintaining a
high level of quality.

Though a different department
handled each stage of the production,
there was much communication
between the various artists involved.
Often, pieces had to be sent back up the
chain when a texture didn’t work quite
right or an animation required an object
to be articulated differently. The guid-
ing dictum was that it wasn’t done until
it was right. Shepherding it all along

was project manager and vice president
Farshid Almassizadeh (yes, they’re
brothers), whose job it was to see that
both schedule and high standards were
maintained.

All the graphics for Buried in Time
were generated on Macintosh comput-
ers, mostly PowerMacs, with PowerMac
8100/100 systems sporting 140 MB
RAM and 2GB hard drive space as ren-
der servers. As Kripilani explains, the
best graphic creation tools are available
first for the Macintosh platform. “When
you are on the bleeding edge, like we are,
you need the best tools as soon as they
are available.”

The Well-
Dressed Time Traveler
With such photorealistic detail going into
the environments, the team decided to
use live action for the occasional human
presence. Even the best attempt at a vir-
tual actor would not be realistic enough,
they felt, and would fracture the illusion
Saunders and the Presto artists had
worked so hard to create. But incorporat-
ing live action presented its own problems
and proved a complicated process.

A R T I S T ‘ S V I E W

62 GAME DEVELOPER • DECEMBER/JANUARY 1995

The decision to incorporate live action video rather than graphically rendered computer 'actors' drove the design of the time-travelling biosuit, which
was transformed into an actual costume by a Hollywood special effects company.

The first step was finding an actual
video camera lens that would match the
perspective of the rendered environ-
ments. This done, Saunders was able to
design ahead of time the environments
in which the digitized actors would
appear. On the set, marks were placed to
guide the actors through the virtual ter-
rain, and lights were situated to replicate
the lighting effects that would appear in
the rendered environment. For example,
a yellow light connected to a flicker box
created the effect of torchlight for the
castle scenes. Composited into the ren-
dered scene (with Aldus/Adobe After
Effects), the digitized actor looks more
convincingly a part of the picture than
previous experience of composited video
and computer graphics might have led
you to expect.

The decision to use live action gen-
erated another issue: creation of the “bio-
suit,” a bulky, armored personal time-
machine worn by the hero and his fellow
temporal agents. Further, the fact that
this item would have to be a real object,
worn by a live actor, forced certain design
considerations. The original plan had
been for a suit composed of large, highly
reflective metal plates. First, the large
plates had to be segmented to allow
movement. Then the reflective surfaces

had to be changed to a very matted metal
to avoid picking up reflections of the blue
screen in front of which the video was to
be shot. In its final state, the design for
the biosuit looked like a cross between an
old-fashioned deep-sea suit and the robot
from Lost In Space.

The actual suit was constructed by
All Effects Company in Hollywood,
Calif., using a complicated process in
which each section of the suit was carved
from foam, following Saunders’s design
specifications. A mold was then pulled
from the foam carving, a plaster cast
pulled from the mold, and finally a vacu-
form plastic piece pulled from the plaster
cast. The pieces were sewn onto a foam
bodyform to give the suit bulk without
undue weight (though the final product
still weighed in excess of 40 pounds).
Special removable identification markings
were used, so that during the game several

GAME DEVELOPER • DECEMBER/JANUARY 1995 63

The wealth of detail in Buried In Time called for designs running the gamut from a sprawling
space station all the way down to this surprisingly useful handheld cheese food dispenser.

Death scenes, painted in loving detail by Gary Glover, accompany a description of the agent's
ignominious demise (in this case, lactose intolerance).

agents could be shown suited-up, though
only one costume had been built. Before
you rush to order yours for next Hal-
loween, you should know that the gang at
Presto considered this suit a deal at
$25,000. (For that price, you could buy
yourself a nice Nissan.)

Besides being a neat costume, the
biosuit also provided a logical game-

world excuse for the interface. Because
you, the time-traveling player, are con-
stantly sealed within this futuristic
Michelin Man getup, your view onto the
world is through the suit’s video display
camera, which is fed to a smallish screen
in the center of the interface, surrounded
by inventory and other controls. These
controls are simple, straightforward, and

work so well that they quickly become all
but invisible to the player, who is by
then engrossed in the beautifully ren-
dered scenes in the view window. To the
user, this interface is so deceptively sim-
ple that if you’ve never attempted to
design one yourself, you might never
credit that it was the result of three
months of teamwork.

In almost no other regard, however,
does Buried in Time appear to be a game
that was easy to make. If you can step
back from the illusion long enough to
admire the depth of detail evident at all
levels of this game, you realize that it has
gut-busting effort written all over it: “It’s
amazing how draining these projects can
be,” says Kripilani. “We are still trying to
bring our brains back from jello-land.” ■

David Sieks is a contributing editor to
Game Developer. You can contact him via
e-mail at dsieks@arnarb.harvard.edu or
through Game Developer magazine.

A R T I S T ‘ S V I E W

64 GAME DEVELOPER • DECEMBER/JANUARY 1995

The settings in Buried in Time are so rich
and compelling that you are prone to for-
get your objective and simply explore in
gape-jawed wonder.

Item Number

Design documentation and script 300 pages
Environments, rooms 40
Preproduction sketches 1,000
Individual three-dimensional objects 10,000
Total number of polygons 10,000,000
Textures 6,000
Animation, frames 30,000
Visual data in final game 25GB
All-nighters 100

Table 1. Buried in Time Statistics (Figures are Approximate)

	back:

