
T H E L E A D I N G G A M E I N D U S T R Y
M A G A Z I N E

V O L 1 9 N O 8 A U G U S T 2 0 1 2
I N S I D E :

S P A T I A L A N A L Y T I C S :
G O B E Y O N D T H E H E A T M A P

METROMTSOP

A U G U S T 2 0 1 2

Join the World's

Largest Mobile Social

Gaming Network

Get the SDK at

developer.gree.net

Come Play on GREE Platform:

http://developer.gree.net/en/?utm_source=gamasutra&utm_medium=gdmag_banner&utm_campaign=july_ad_buy

p o s t m o r t e m

22 DEAR ESTHER
DEAR ESTHER started as a narrative-driven Source Engine mod made as part of a research project,
and turned into a standalone cult hit that made back its Indie Fund investment within six hours of its
release. In this postmortem from thechineseroom, writer and project lead Dan Pinchbeck explains how
the team created a powerful game that took the “S” out of “FPS.”
 By Dan Pinchbeck

f e a t u r e s

7 AI ARCHITECTURES: WHAT’S ON THE MENU?
How do you choose the right artifi cial intelligence architecture for your game? Even if you do your
homework, it’s not always easy to know which architecture best fi ts your game genre, design, and
development workfl ow until you dive in. AI consultant Dave Mark walks you through the most prevalent
AI structures to help fi nd the one that best complements your game.

 By Dave Mark

15 BEYOND THE HEAT MAP
Get better game analytics, and you’ll be better able to understand what makes your players tick. Heat
maps are only the tip of the iceberg, though. You can use telemetry data, geographic information
systems, and trajectory analyses to fi ne-tune your game even further, and with greater control.

 By Anders Drachen

d e p a r t m e n t s

2 GAMEPLAN By Brandon Sheffi eld [E D I T O R I A L]

The Aftermarket

4 HEADS UP DISPLAY By Staff [N E W S]

Quick looks at a new interactive fi ction development tool, updates to Commodore and Amiga
preservation packages, and the Seven-Day FPS Game Jam

31 TOOLBOX By Alexander Brandon [R E V I E W]

RAD Game Tools’s Miles Sound System

35 THE INNER PRODUCT By John Szczepaniak [P R O G R A M M I N G]

A Basic History of BASIC

41 AURAL FIXATION By Alexander Brandon [S O U N D]

Audio in Unity 101

44 DESIGN OF THE TIMES By Soren Johnson [D E S I G N]

When Digital Meets Physical

47 BUSINESS By Paul Taylor [B U S I N E S S]

In Defense of Paying Once

48 PIXEL PUSHER By Steve Theodore [A R T]

Tread Lightly

50 GDC NEWS By Staff [N E W S]

DC Europe adds Journey, Goldeneye 007 postmortems

51 GOOD JOB By Patrick Miller [C A R E E R]

Q&A with Taiyoung Ryu, new studios, and who went where

53 EDUCATED PLAY By Patrick Miller [E D U C A T I O N]

LOVE PUNKS

56 ARRESTED DEVELOPMENT By Matthew Wasteland [H U M O R]

Vox Populi

WWW.GDMAG.COM 1

7

15

CONTENTS.0812
VOLUME 19 NUMBER 8

http://WWW.GDMAG.COM

GAME PLAN // BRANDON SHEFFIELD

game developer | august 20122

game plaN // BraNdoN sHeFFIeld

I recently watched a trailer for a
game by Diego Garcia and Emmett
Butler called Heads Up! Hot dogs.
It’s an amusing iOS game about
dropping hot dogs on people’s
heads as they walk by at various
speeds. Some of them bounce up
and down, making it tougher for
the dog to settle. Cops try to shoot
your hot dog out of the sky. The
game has a nice art style, good
music, and seems like quirky
fun, if a bit light. As soon as the
trailer finished playing, I thought “I
reckon that’s about 99 cents. I’ll go
buy it.” I went to the App Store and
found...nothing.

Turns out the game isn’t due
out until fall 2012. The trailer got
coverage on a few major blogs,
and for a game of this size, that’s
about all it’s going to get. By fall,
who will remember the little game
about dropping hot dogs? Even if
I do remember it, will I still want
it then? Will Kotaku want to write
about a game of this size a second
time, no matter how quirky? With
the press, your first shot is when
you convey the excitement of a
New Thing. After that, the thrill
is gone, and at best you’ll get a
“remember that game? It’s out
now,” if that.

The pace of the game world
is speeding up, and the window
of opportunity for promotion is
changing accordingly. I think
that for indie games on PC, iOS,
and Android, the bulk of your
marketing should thus be after the
game is already on the market.

A SmAll CASe Study
» My friend Tim Rogers of Action
Button Entertainment released
a game called ZiggURat on iOS
about four months ago. Before the
game’s release, he kept putting
out hints about it—releasing
trailers, images, and the like—and
he would always have people
asking where the game was. After
all, he had been talking about it,
so clearly it must be out, but the
people looking for it couldn’t find

it, so there must be some mistake.
99-cent App Store games have

become the impulse purchase of
the game market. I don’t want a
Reese’s Peanut Butter Cup right
now, but when I’m in the checkout
line waiting for the pink-haired old
lady in front of me to take out her
checkbook, it starts to look pretty
compelling. When I’m avoiding
work for five minutes to look at
a video of a new game, that’s my
checkout line. I want to buy it right
away, and I don’t want to be told to
come back later.

ZiggURat had two spikes in
sales, which were related to two
favorable reviews from larger
publications, and a postrelease
YouTube mock infomercial Tim
created. The most important
lesson is that while Tim did a
good job promoting the game
before its release, the major
sales came when promotions
hit postrelease—not when the
game first went on sale. In his
case, releasing too much good
information to the press before
the game was out might actually
have hurt sales.

It’s been well established that
any barrier between the game
and the player is a significant
loss of revenue. In the case of
Heads Up! Hot dogs, I thought it
was interesting enough to buy.
But how will I remember to check
when it’s released? If industry
blogs never talk about it again,
or nobody links it to me once
it’s out, I won’t know. What if
the developers used up all their
goodwill with that first trailer
push? Will potential players even
remember the name?

A NotAble exCeptioN
» sUpeRbRotHeRs: swoRd &
swoRceRy ep is an exception in
a lot of ways, but we’ll just talk
about the trailer here. The team
released a teaser trailer well
before the game came out, and it
got people excited. The difference
is that s:s&s ep has a very defined

visual and sonic style, and the
video was all about tone, not
gameplay (in fact, it barely even
told you what the game was).
Unlike the Heads Up! trailer, the
S:S&S EP trailer had a voice and a
direction, but no detail.

Here, then, are my ideas for
the modern world of iOS and PC
indie game marketing.

If your game is high-concept:
Tease it with video. Establish a tone
and authorial voice for your game,
and present developer diaries in
that voice. Don’t be too specific, and
keep all communication with the
outside world in the game’s voice.
After the game is out, promote
further in this manner, but also
discuss your game frankly in your
own voice as well. When you’re
releasing game updates, return to
the “game voice.”

If your game is anything else:
Do not release an expository
trailer before your game’s release.
Tease it with images and sounds,
but don’t show a trailer. Keep
your public info to just your loyal
followers, fans, or friends. Do
accept feedback, and discuss
your game publicly and answer
questions if asked—it’s always
good to let people feel involved
in your work—but don’t release a
trailer or do a real press push until
the game is out. After that, go wild.

In the world of triple-A games,
building buzz is still the name
of the game, but that’s because
you have to have a big brick-and-
mortar launch, and you need to be
at the front of players’ minds when
they enter that GameStop. But for
smartphone, PC indie, and other
smaller-scale platforms, you won’t
have the budget to get tons of
trailers into their brains. For most
games, you’ve got one shot to get
people excited. Make sure your
game is out when it comes.

—Brandon Sheffield
twitter: @necrosofty

the AftermArket UBM LLC.
303 Second Street, Suite 900, South Tower
San Francisco, CA 94107
t: 415.947.6000 f: 415.947.6090

W W W . u b m . C o m

SubSCriptioN SerViCeS

for iNformAtioN, order QueStioNS, ANd
AddreSS ChANGeS
t: 800.250.2429 f: 847.763.9606
e: gamedeveloper@halldata.com
www.gdmag.com/contactus

editoriAl

publiSher
Simon Carless e: scarless@gdmag.com
editor-iN-Chief
Brandon Sheffield e: bsheffield@gdmag.com
editor
Patrick Miller e: pmiller@gdmag.com
mANAGer, produCtioN
Dan Mallory e: dmallory@gdmag.com
Art direCtor
Joseph Mitch e: jmitch@gdmag.com
CoNtributiNG WriterS
Anders Drachen, Dan Pinchbeck, Alexander Brandon,
John Szczepaniak, Steve Theodore, Soren Johnson,
Paul Taylor, Matthew Wasteland, Mike Rose, Leigh
Alexander
AdViSory boArd
Mick West Independent
Brad Bulkley Microsoft
Clinton Keith Independent
Brenda Brathwaite Loot Drop
Bijan Forutanpour Sony Online Entertainment
Mark DeLoura THQ
Carey Chico Globex Studios
Mike Acton Insomniac

AdVertiSiNG SAleS

GlobAl SAleS direCtor
Aaron Murawski e: amurawski@ubm.com
t: 415.947.6227
mediA ACCouNt mANAGer
Jennifer Sulik e: jennifer.sulik@ubm.com
t: 415.947.6227
GlobAl ACCouNt mANAGer, reCruitmeNt
Gina Gross e: gina.gross@ubm.com
t: 415.947.6241
GlobAl ACCouNt mANAGer, eduCAtioN
Rafael Vallin e: rafael.vallin@ubm.com
t: 415.947.6223

AdVertiSiNG produCtioN

produCtioN mANAGer
Pete C. Scibilia e: peter.scibilia@ubm.com
t: 516-562-5134

repriNtS

WRIGHT’S MEDIA
Jason Pampell e: jpampell@wrightsmedia.com
t: 877-652-5295

AudieNCe deVelopmeNt

AudieNCe deVelopmeNt mANAGer
Nancy Grant e: nancy.grant@ubm.com
liSt reNtAl
Peter Candito
Specialist Marketing Services
t: 631-787-3008 x 3020
e: petercan@SMS-Inc.com
ubm.sms-inc.com

game developer
magazINe
www.gdmag.com

FOR SMALLER TITLES, YOU CAN NO LONGER PLAY THE WAITING GAME

http://WWW.GDMAG.COM
mailto:gamedeveloper@halldata.com
http://www.gdmag.com/contactus
mailto:scarless@gdmag.com
mailto:bsheffield@gdmag.com
mailto:pmiller@gdmag.com
mailto:dmallory@gdmag.com
mailto:jmitch@gdmag.com
mailto:amurawski@ubm.com
mailto:jennifer.sulik@ubm.com
mailto:gina.gross@ubm.com
mailto:rafael.vallin@ubm.com
mailto:peter.scibilia@ubm.com
mailto:jpampell@wrightsmedia.com
mailto:nancy.grant@ubm.com
mailto:petercan@SMS-Inc.com
http://ubm.sms-inc.com
http://WWW.UBM.COM

http://twofour54.com/gaming

HEADS-UP DISPLAY

GAME DEVELOPER | AUGUST 20124

The age of accessible platforms
coupled with a hunger for deeper
stories have set the stage for
interactive fi ction games to
fl ourish, but longtime IF writer and
game industry veteran Jon Ingold
(FAIL-SAFE, ALL ROADS) believes the
tools to create storytelling games
have to be accessible, too.

That’s why he and his
colleagues at Cambridge, U.K.’s
Inkle Studios, a software company
founded by game developers,
created Inklewriter (www.
inklestudios.com/inklewriter), a

new tool for making interactive
stories. It’s free and designed for
anyone to use.

“I spent a long time in the
full-on parser-based hobbyist
niche, and a lot of that was spent
doing experiments trying to make
things more accessible,” Ingold told
Game Developer sister publication
Gamasutra. “You know, less puzzle-y
and more story-y, and then trying to
do things to make the parser clever.”

Interactive text games have
long depended on the parser
interface, which relies on players
typing simple commands that the
game can understand. But the more
complex games in the genre get,
the more likely it is that players,

especially those unaccustomed to
text adventures, might be frustrated
in their attempts to get the game
to understand what they’re
trying to do. It’s a challenge for
designers, too, who might fi nd
themselves limited by the steep
challenge of creating affordances
for every option a player might
want to execute.

Ingold believes it’s the steep
barrier to entry posed by the
parser interface that has kept text
games confi ned to their niche
status. A year and a half ago, he

showed one of his games to a
colleague he describes as “really
keen” to explore the genre, and
the colleague couldn’t get into
it. “That was when we started
thinking, ‘Okay, this isn’t about
the content—it’s about the
interface,’” he said. “The minute
you type something wrong or
can’t work out how to phrase it,
[the narrative momentum] is
pretty quickly shattered.”

The team aimed to avoid that
with FRANKENSTEIN, a new mobile
app written by Dave Morris that
offers an alternate take on Mary
Shelley’s classic tale of a doctor
creating nightmarish new life.
“What we fi nally did with the

FRANKENSTEIN app was go full
circle back to something that puts
choices in front of you, but with
the idea we give you no undo, no
stats, so everything is risk... It’s a
pretty extreme take, though, and
we’re looking at playing with that
a little in the next thing we make,”
Ingold said.

The biggest difference between
this approach to interactive
story and the “choose your
own adventure” books loved by
children is that “CYOA books can’t
remember much, and can’t refl ow

the text,” Ingold explained. “Our
engine has a lot of power geared
toward altering the text within
paragraphs depending on what
you’ve done and seen, so while it’s
not auto-generating any prose, it’s
certainly customizing right down
to the level of the individual words.
When that works, you get this
seamless fl ow that’s a little bit like
the writer is there inside the app,
like some kind of goblin making up
the story on the fl y.”

That can be an extremely
appealing feeling for game
designers, and it’s also an approach
that should allow interactive stories
to be accessible to more players
who might not even know how

much they’d enjoy it. That’s where
the Inklewriter tool comes in.

With the hope of encouraging
loads of people to experiment
with Inklewriter, the studio has
just announced its Future Voices
Competition, where the 10 best
stories made with the tool will be
published worldwide as part of
an anthology.

“We’re hoping we’ll get a few
great stories out of Inklewriter, and
that’ll get other writers inspired
enough, or annoyed enough, to
come along and try to one-up them
and do better,” Ingold said. “Then
if people start talking about what
they’re writing, then I think we
could see some really good stuff.”

“One day I would like to
come back to the parser thing
and really fi x it, somehow,” he
added. “I’d love to make a version
that was playable on a tablet
or a phone, without typing, and
without presenting the user with
huge menus of verbs, but that
somehow captured that same
freedom...but I’m not sure how
popular it would be. It might just
annoy the purists and confuse the
more casual players!”

For now, Ingold’s dream is
just to see people having fun
making easy-to-read interactive
stories through Inklewriter.
Already he’s seen someone
make a birthday adventure as a
present for a friend, and someone
else developed a story about
George Osborne’s appearance at
the Levinson enquiry in the U.K.
“We’ve also been seeing it used by
schools for doing creative writing
with kids, and that’s really nice,
too,” he said. Its facility for easily
managing narrative branches may
lend Inklewriter to good use by
other kinds of game developers
doing story plotting ahead of
development. “That’s the kind of
thing I want it to be—a sort of
‘WordPad for interactive fi ction,”
Ingold said. “Simple, but useful.”

–Leigh Alexander

INTERACTIVE FICTION FOR ALL
INKLEWRITER PUSHES INTERACTIVE FICTION PAST THE PARSER

http://www.inklestudios.com/inklewriter
http://www.inklestudios.com/inklewriter

HEADS-UP DISPLAY

WWW.GDMAG.COM 5

SEVEN-DAY SHOOTER JAM
HOW A GAME JAM TRIED TO CHANGE THE FPS GENRE IN SEVEN DAYS
“FPSes are a horribly oversaturated
genre, indies can easily do
amazing new stuff. Who’s up for
it?” tweeted Vlambeer co-founder
Jan Willem Nijman in April. What
started out as a random thought
quickly snowballed into one
of the most interesting recent
game jams: The 7 Day First
Person Shooter Challenge (7dfps.
org), which took place in early
June. The goal was to create
weird and wonderful fi rst-person
shooter concepts—a genre that
independent developers tend to
avoid—in just a week. 7DFPS went
on to see hundreds of entries, with
the likes of Wolfi re Games (LUGARU)
and Cryptic Sea (GISH) taking part.

The issue with the FPS space,
Nijman said, is that players have
no idea of the potential innovation
that can occur, and instead choose
to throw money at publishers who
churn out the same dreary titles
over and over again. “Most players

don’t know what they want, so we
have to give it to them!” he said. “I
wish people would look at shooters
from the start, where it all started,
and work from there instead of
iterating on the stuff from two
years ago.”

Wolfi re Games’s David
Rosen was excited for the
chance to experiment. “The
7DFPS challenge seems like
a great event for creating this
kind of experimental game
prototype,” he said. “If any large

company divided into teams and
participated in it, they would
end up with more design ideas
than they know what to do with,
along with immediate evidence
of which ones work and which
ones don’t.”

Wolfi re ended up releasing its
jam entry, RECEIVER (http://www.
wolfi re.com/receiver), as a paid
game after the jam had ended.
RECEIVER explores gun-handling
mechanics, randomized levels,
and unordered storytelling as
the player attempts to uncover a
variety of secrets in a dangerous
building complex.

“I’ve always found guns to be
fascinating in their simplicity, in
contrast to their world-changing
power, so a key design motif of
RECEIVER is a focus on machines
that are simple but deadly,”
Rosen said. “We expressed
this by exposing every single
component of each machine to

the player. For example, there’s a
key for every possible function
of the gun, from the safety to
the slide lock, and players can
independently disable every
component of the enemy robots.”

Cryptic Sea’s Alex Austin took
a different approach to his 7DFPS
entry; SUB ROSA (http://7dfps.
org/?projects=sub-rosa) has two
teams of players try to swap cash
for important documents, while a
third team, armed with guns and
cars, wants to roll in and cause a
stir, taking both the documents
and cash in the process. “What
needs to happen is gamers
need to support games that try
something new. DAYZ’S popularity
and increase in ARMA II sales
show that players are looking for
new experiences. Even though it’s
a mod for a fairly obtuse game,
it’s been the best selling game on
Steam,” Austin said.

–Mike Rose

Classic computing enthusiasts will
be glad to hear that longtime Amiga/
Commodore software developer Cloanto
has updated its C64 Forever and Amiga Forever
2012 “preservation packages” for the Commodore 64 and
Amiga computers.

Both packages now support the RP9 format, a special kind of
ZIP archive that lets you package multiple disk image fi les together
and open them with the emulators so you can more easily
distribute games and demoscene productions in one simple fi le.
Other new features include social networking functionality, faster
loading times, and Unicode support, as well as the new inclusion of
GEOS, the 8-bit desktop suite, for C64 Forever.

R2 updates are free for existing users, and prices for the
two packages range from free for a feature-limited version up
to $50 for special editions that include DVDs with fi ve hours
of interviews with “Father of the Amiga” Jay Milner and others.
Check it out yourself at amigaforever.com and c64forever.com.

–Patrick Miller

RETRO FOREVER
EMULATION PACKAGES FOR AMIGA,
C64 UPDATED

has updated its C64 Forever and Amiga Forever
2012 “preservation packages” for the Commodore 64 and

http://WWW.GDMAG.COM
http://7dfps.org/?projects=sub-rosa
http://7dfps.org/?projects=sub-rosa
http://www.wolfire.com/receiver
http://www.wolfire.com/receiver
http://amigaforever.com
http://c64forever.com
http://7dfps.org
http://7dfps.org

AAddvanceed GGrapphiccal

UUseer Intterrfface DDesiggneer ((m/f)

We have a clear goal: by 2020, we want to become the most successful premium car manufacturer in the world with our

emotional and innovative cars. We would therefore like to strengthen our workforce by recruiting competent new employees.

Stimulating and varied – your working environment:

Vehicle interiors are increasingly characterised by graphical user interfaces. Audi enjoys a leading position when it comes to visual

quality and aesthetics. The interfaces designed by Audi Design for series production vehicles and show cars impress with their intuitive

and emotional interaction and displays.

Challenging and diverse – your tasks:

As an Advanced Graphical User Interface Designer, your job will be to devise and design the Audi MMI and driver information systems

of the future and the applications for mobile devices. Working closely with other interior design departments and with the technical

disciplines “Operating Concept” and “Ergonomics”, the Audi Design GUI team designs sophisticatedly progressive interfaces for future

vehicle generations.

Technical and personal – your qualifi cations:

• Degree in Design

• Ideally, several years of professional experience in the fi eld of GUI design

• Design expertise in the fi eld of 2D and 3D visualisation

• Advanced competence in working with commonly used tools for visualisation, modelling and animation

• Ability to present complex interaction structures in a self-explanatory and appealing manner

• Technical understanding

• Good knowledge of German and English essential

• Curiosity and fascination beyond the core fi eld of activity, e.g. gaming, fi lms, new media

• Team spirit and good communication skills

Where and when – your position:

This post is to be fi lled from 1 September 2012 at AUDI AG in Ingolstadt.

Take advantage of excellent future prospects, experience unforgettable moments:

fi nd out more at www.audi.com/career and www.facebook.com/audikarriere

Apply now:

www.audi.de/meine-bewerbung

Reference code: I-D-4533

Should you have any questions about this vacancy,

please contact Ms Ulrike Krist on telephone number +49 (0)841 893 4877

Careers at Audi

http://www.audi.com/career
http://www.facebook.com/audikarriere
http://www.audi.de/meine-bewerbung

WWW.GDMAG.COM 7

B Y D A V E M A R K

/////////////////// Asking “What artifi cial intelligence architecture
should I use for my game?” is like asking a waiter “What should I
have for dinner?” The answer is always “It depends.”

As a former waiter-turned-AI-consultant, I know the way
out of both situations is to ask return questions. “Well, how
hungry are you? Are you in a hurry? What are you in the mood
for? Steak? Chicken? Allergic to peanuts? Oh... you’re vegan?
And you need gluten-free, eh?” Ask the right questions, and
eventually the customer will discover what it is he really wants.
Likewise, designers need to fi gure out their goals, technical
and expertise limitations, time frame, and necessary degree of
authorial control before I can point them toward an AI framework
that works for their game.

There are plenty of books and articles out there on AI
architectures, but most of them just tell you how the different
architectures work, not the pros and cons to each approach—
which leads many people to try building an amazing AI with a
less-than-ideal tool for the job. In this article, we’ll walk through
a high-level overview of the dominant AI approaches out there to
help you fi nd the one that’s right for you.

SAME STUFF, DIFFERENT SHAPES
» Selecting an AI architecture is a bit like selecting American Mexican food:
It’s a lot of the same stuff (tomato, cheese, beans, lettuce, onions, meat) in
different delivery formats (tacos, burritos, tostadas, and so on). But why do
we think in terms of the outside form when it is the stuff that is on the inside
that is pretty much the point of the order in the fi rst place?

The answer lies in the fact that the outside—the shell or wrapper—is
merely a content delivery mechanism that exists mostly to keep those
internals together long enough for consumption. In this way, these “delivery
mechanisms” compare to AI architectures. They serve to package and deliver

HOW TO CHOOSE

THE RIGHT
ARTIFICIAL

INTELLIGENCE
FOR YOUR

GAME!

WHAT’S ON THE MENU?

http://WWW.GDMAG.COM

the tasty behavioral content that we want our players to experience, so when
we talk about our AI systems we often speak in terms of the mechanism
rather than the content. We are writing a finite state machine, a behavior tree,
or a planner, just like we are filling a taco, a burrito, or an enchilada. Once we
have decided on that packaging, we can put any (or all!) of the tasty stuff
into it that we want to.

The No-ArchiTecTure TosTAdA
» If you’re trying to build behavioral content for your game without a proper
AI architecture, you’re going to end up with something messy—like a tostada.
The tostada is, quite literally, about as simple a delivery platform that you

can use for Mexican food—
everything just sits on top
of it right where you can see
it. You can add and remove
ingredients with ease, though
if you add too much it’ll fall
off the sides. If you pick it up
correctly, everything stays
put, but it’s not terribly stable;
tip it in the slightest, and you

run the risk of sending things tumbling. What’s more, as soon as you start
biting into it, you run the risk of having the whole thing break in unpredictable
ways, at which point your entire pile of content falls apart.

When you’re simply adding rules here or there around your code, it’ll
change the direction of things in a fairly haphazard manner. Like the tostada,
you can only get so much content before things become unstable, and every
time you take a bite of your content, you never know when the entire platform
is going to simply fall apart. For example, perhaps you have just triggered a
rule in this event that seems to make perfect sense unless, of course, you
were already responding to a rule that was triggered in some other event.
If there is no structure to the AI, those rules may not have any “awareness”
of each other; each was doing what it was told. The resulting conflicts can be
amusing—or even disastrous depending on your frame of mind.

AddiNg sTrucTure wiTh The sTATe MAchiNe TAco
» Our tostada suffered from not having enough structure to hold the content
stable before it started to fall off—or fall apart entirely. However, by just being
a little more organized about how we arrange things, we can make sure our
content is a lot more self-contained, which lets us hold a lot more and makes
it easier to manipulate it. Take your AI tostada and bend the shell, and you’ll
have a delicious finite-state machine taco.

The finite-state machine (FSM) essentially adds a little bit of structure to
a bunch of otherwise disjointed rules maps. The most basic part of a FSM is
a state—that is, an AI agent is doing or being something at a given point in
time. Theoretically, an agent can be in only one state at a time. (This is only
partially correct because more advanced agents can run multiple FSMs in
parallel...never mind that for now.)

Finite state machines organize AI agent behavior better because
everything the agent needs to know about what it is doing is contained in
the code for the state that it is in. The animations it needs to play to act out
a certain state, for example, are listed in the body of that state. The other
part of the state machine is the logic for what to do next. This may involve
switching to another state or simply continuing to stay in the current one.

The transition logic in any given state may be as simple or as complex
as you need. You could use a countdown timer that switches the agent
to a new state after a certain amount of time, or a random chance for the
agent to enter a new state. For example, State A might say that, every
time we check, there is a 10% chance of transitioning to State B. We could
even elect to make the new state that we will transition to a result of a
random selection as well—say a 1/3 chance of State B and a 2/3 chance
of State C.

More commonly, state machines employ elaborate trigger mechanisms
that involve the game logic and situation. For instance our “guard” state may
have the logic “If [the player enters the room] and [is holding the Taco of
Power] and [I have the Salsa of Smiting], then attack the player,” at which
point my state changes from “guard” to “attack.” Note the three individual
criteria in the statement. We could certainly have a different statement that
says, “If [the player enters the room] and [is holding the Taco of Power] and
[I DO NOT have the Salsa of Smiting], then flee,” which would send the agent
out of the “guard” state.

So each state has the code for what to do while in that state and, more
notably, when, if, and what to do next. While some of the criteria can access
some of the same external checks, in the end each state has its own set of
transition logic that is used solely for that state. Unfortunately, this comes
with some drawbacks.

First, as the number of states increases, the number of potential
transitions increases at an alarming rate: If any given state could potentially
transition to any of the other states, the number of transitions increases
fairly quickly. Specifically, the number of transitions would be the [number
of states] × ([number of states] – 1). In Figure 1, there are four states,
each of which can transition to three others for a total of 12 transitions. If
we were to add a fifth state, this would increase to 20 transitions. Six states
would merit 30, and so on. When you consider that games could potentially
have dozens of states transitioning back and forth, you begin to appreciate
the complexity.

Figure 1: As we Add stAtes to A Finite stAte mAchine, the
number oF trAnsitions incre Ases rApidly.

You’ll feel this complexity when you try to add a new state to the mix: In order
to have that state accessible, you have to go and touch every single other
state that could potentially transition to it. Looking back at Figure 1, if we
were to add a State E, we would have to edit states A-D to add the transitions
to E. Editing a state’s logic invokes the same problem, since you have to
remember what other states may be involved and revisit each one.

Additionally, any logic that would be involved in that transition must also be
interworked into the other state-specific logic that may already be there. With
the sheer numbers of states in which to put the transition logic and the possible
complexity of the integration into each one, we realize that our FSM taco suffers
from some of the same fragility of the ad hoc tostada we mentioned earlier.
Sure, because of its shape, we can pile a little more on and even handle it a little
better. One bite, however, could shatter the shell and drop everything into our
lap. And the bigger it gets, the more opportunity for disaster.

Another advantage over the ad hoc tostada is that the agent is only
concerned with (and therefore only checks) the transition rules that are in the
current state. If you are in a state you know that those rules—and only those
rules—are going to be processed. From a processing standpoint, it’s far more
streamlined than the “here a rule, there a rule, everywhere a rule rule” approach.

game developer | august 20128

www.gdmag.com 9

The Behavior Tree: a SofT (Taco) approach
» Our state machine taco shell can hold more content than the tostada, but
it’s still a bit brittle due to its hard shell. Fortunately, we’ve got a soft taco that
can hold the same content without being prone to shattering under pressure:

the behavior tree.
At this point, it is useful

to point out the difference
between an action and a
decision. In the FSM above,
our agents were in one state
at a time—that is, they
were “doing something” at
any given moment (even if
that something was “doing

nothing”). Inside each state was decision logic that told them whether they
should change states, and which state to change to. That logic often has very
little to do with the state that it is contained in and more to do with what is
going on outside the state or even outside the agent itself. For example, if I
hear a gunshot, it really doesn’t matter what I’m doing at the time—I’m going
to flinch, duck for cover, wet myself, or any number of other appropriate
responses. Therefore, why would I need to have the decision logic for “react
to gunshot” in each and every other state I could have been in at the time?

The behavior tree separates the states from the decision logic. Both still
exist in the AI code, but they are not arranged so that the decision logic is in
the actual state code. Instead, the decision logic is removed to a stand-alone
architecture (see Figure 2). This allows it to run by itself (either continuously
or as needed) where it selects what state the agent should be in. The state code
itself is only responsible for doing things that are specific to that state such as
animating, changing values in the world, and so on.

Figure 2: in a behavior tree, the decision logic is separate
From the actual state code.

The main advantage to this is that all the decision logic is in a single place. We
can make it as complicated as we need without worrying about how to keep
it all synchronized between different states. If we add a new behavior, we add
the code to call it in one place rather than having to revisit all of the existing
states. If we need to edit the transition logic for a particular behavior, we can
edit it in one place rather than many.

Another advantage of behavior trees is that they are a far more formal
method of building behaviors. Through a collection of tools, templates, and
structures, very expressive behaviors can be written—you can even sequence
behaviors together that are meant to go together (see Figure 3). This is one of the
reasons that behavior trees have become one of the more “go-to” AI architectures
in games, including major triple-A titles ranging from Halo 2 and 3 to Spore.

A detailed explanation of what makes behavior trees work, how they are
organized, and how the code is written is beyond the scope of this article.

Suffice it to say that they are far less prone to breaking their shell and
spilling their contents all over your lap. Because the risk of breaking is far
less, and the structure is so much more organized, you can also pack in a
lot more behavioral content. For an excellent primer on behavior trees, check
out Bjoern Knafla’s “Introduction to Behavior Trees” (listed in the Resources
section at the end of this article).

a hyBrid Taco—The hierarchical finiTe-STaTe Machine
» A brief note before we leave the land of tacos behind: One of the advantages
of the behavior tree—namely the treelike structure—is sometimes applied
to the finite-state machine. In the hierarchical finite-state machine (HFSM),
there are multiple levels of states (see Figure 4). Higher-level states will
only be concerned with transitioning to other states on the same level. On
the other hand, lower-level states inside the parent state can only transition
to each other. This tiered separation of responsibility helps to provide a little
structural organization to a flat FSM and helps to keep some of the complexity
under control.

If we were to place the HFSM into our Mexican metaphor, it would be
similar to one of those nifty hard tacos wrapped in a soft taco shell. There’s
still only so much you can pile into it before it gets unwieldy, but at least it
doesn’t tend to shatter and make as big of a mess.

Figure 4: in a hierarchical Finite-state machine,
some states contain other related states making the

organiz ation more manage able.

a la carTe ai: The planner fajiTa
» My wife wants to choose exactly what is in her Mexican dish, right down to
every single bite. That’s why she orders fajitas. While the fajita looks and acts
like a soft taco, you build it by taking the tortillas and a few piles of content,

Figure 3: a simple behavior tree. at the moment the
agent has decided to do a ranged at tack.

http://www.gdmag.com

and constructing your own on the spot. You can choose what you want to
put in the first fajita and change it up for each subsequent one, depending on
what you want in any given moment. The AI equivalent of this is the planner.
While the end result of a planner is a state (just like the FSM and behavior tree
above), how it gets to that state is significantly different.

Like a behavior tree, the reasoning architecture behind a planner is
separate from the code that “does stuff.” A planner compares its situation
(the state of the world at the moment) and compares it to a collection of
individual atomic actions that it could do, then assembles one or more of
these tasks into a sequence (the “plan”) so that its current goal is met.

Unlike other architectures that start at its current state and look forward,
a planner actually works backward from its goal (see Figure 5). For example,
if the goal is “kill player,” a planner might discover that one method of
satisfying that goal is to “shoot player.” Of course, this requires having a gun.
If the agent doesn’t have a gun, it would have to pick one up. If one is not
nearby, it would have to move to one it knows exists. If it doesn’t know where
one is, it may have to search for one. If another method of satisfying the “kill
player” goal is to throw a Taco of Power at it, and the agent already has one in
hand, it would likely elect to take the shorter plan and just hurl said taco. The
result of searching backward is a plan that can be executed forward.

The planner diverges from the FSM and BT in that it isn’t specifically hand-
authored; agents actually solve situations based on what is available to do
and how those available actions can be chained together. One of the benefits
of this sort of structure is that it can often come up with solutions to novel
situations that the designer or programmer didn’t necessarily account for
and handle directly in code.

From an implementation standpoint, a major plus of the planner is that
a new action can be dropped into the game and the planner architecture will
know how to use it. This speeds up development time markedly. All the author
says is, “Here are the potential things you could do...go forth and do things.”

Of course, a drawback of this is that authorial control is diminished. In a
FSM or BT, creative “outside the box” solutions were the exception from the
predictable, hand-authored systems. In a planner, the scripted, predictable

moments are the exception; you must specifically override or trick the planning
system to say, “No...I really want you to do this exact thing at this moment.”

While planner-based architectures are less common than behavior trees,
there are notable titles that used some form of planners. Most famously, Jeff
Orkin used them in Monolith’s creepy shooter, F.E.A.R. His variant was referred
to as Goal-Oriented Action Planning or “GOAP.” A more recent flavor of planner
is the hierarchical task network (or HTN) planner such as was used to great
effect in Guerilla’s KillzonE 2. (Check the Resources section for more on GOAP
and HTN.)

game developer | august 201210

Figure 5: The planner has Found T wo diFFerenT meThods oF
achie ving “kill player” and selecTed The shorTer one.

www.gdmag.com 11

Putting it All in A Bowl—A utility-BAsed sAlAd
» Another architecture that is less structured than the FSM or behavior tree
is called the “utility-based” method. Much like the planner, a utility-based
system doesn’t have a predetermined arrangement of what to do when.

Instead, potential actions
are considered by weighing
a variety of factors (what is
good and bad about this?)
and selecting the most
appropriate thing to do. Like
the planner, a utility-based
approach lets the AI choose
what’s best at the time.

Instead of assembling a
plan like the fajita-style planner, the utility-based system simply selects the
next bite. This is why it is more comparable to a taco salad in a huge bowl. All
the ingredients are in the mix and available at all times. You simply select
what it is that would like to poke at and eat. Do you want that piece of chicken
in there? A tomato, perhaps? An olive? A big wad of lettuce? You can select it
based on what you have a taste for or what is most accessible at the moment.

The AI system in The SimS is an excellent example of a utility-based
approach—in fact, the considerations are largely shown in the interface itself.
The progression of AI architectures throughout The SimS franchise is well
documented, and I recommend reading up on it. Essentially, each potential
action in the game is scored based on a combination of an agent’s current
needs and the ability of that action or item to satisfy that need. The agent
then constructs a weighted sum of the considerations to determine which
action is “the best” at that moment. The action with the highest score wins
(see Figure 6).

Figure 6: A utilit y-bAsed system rAtes All the potentiAl
Actions on A vAriet y oF criteriA And selects the best.

While utility-based systems can be used in many types of games, they are
more appropriate in situations where there are a large number of potentially
competing actions the AI can take and no obvious “right answer.” In those times,
the mathematical approach that utility-based systems employ is necessary
to ferret out the ideal action. Aside from The SimS, utility-based systems are
appropriate in role-playing games, real-time strategy games, and simulations.

Like behavior trees and planners, the utility-based AI code is a reasoner.
Once an action is decided upon, the agent still must transition to a state. The
utility system is simply selecting what state to go to next, and the reasoning
code is all in a single place. This makes building, editing, tuning, and tweaking
the system much more compartmentalized. Also, like a planner, adding actions

to the system is fairly straightforward; add the action with the appropriate
weights, and the AI will automatically take it into account and use it in relevant
situations. This is one of the reasons that games such as The SimS were as
expandable as they were—the agents simply included any new object into their
decision system without any changes to the underlying code.

On the other hand, one drawback of a utility system is that there isn’t
always a good way to intuit what will happen in a given situation. With a
behavior tree, it’s easy to find the branches and nodes that would be active
in a particular situation, but since a utility system is inherently more fuzzy
than binary, determining how the actions stack up is often more opaque.
That’s not to say a utility-based AI is not controllable or configurable—quite
to the contrary. The difference is that rather than telling the system exactly
what to do in a situation, the system is providing suggestions as to what
might be a good idea. In that respect, a utility system shares some of the
adaptable aspects of planners—the AI simply looks at its available options
and then decides what is most appropriate.

For more reading on utility-based systems, please check out my book,
Behavioral Mathematics for Game AI, as well as my lectures with Kevin Dill
on the GDC Vault, available for free (see Resources), titled “Improving AI
Decision Modeling through Utility Theory” and “Embracing the Dark Art of
Mathematical Modeling.”

wrAP it uP with A neurAl network Burrito
» The last entry in my metaphorical cornucopia is the neural network burrito.
In the other examples, all the content was open and easily inspected. In the
case of the fajita, you (the AI agent) were able to assemble what you wanted
in each iteration. In the taco salad, the hard and soft tacos, and even the

tostada you could add cheese
or tomatoes as you liked, and
even if you didn’t change the
content of your dish, you
could still see what you were
about to eat before you took
a bite.

The burrito is different in
this respect: The details are
hidden. It is a riddle, wrapped

in a mystery, inside a soft flour shell. While the burrito (and for that matter,
the neural network) is extremely flexible, you have absolutely no idea what
is inside or what you are going to get in the next bite. Don’t like sour cream?
Olives? Tough. If it’s in there, you won’t know until you take that bite. At that
point, it is too late. There is no editing without completely unwrapping the
package and starting from scratch.

This is the caveat emptor of the neural network–based AI solution.
As a type of “learning” AI, neural nets need to be trained with test or live
performance data. At some point you have to wrap up the training and say,
“This is what I have.” If a designer wanders in, looks over your shoulder and
says, “It looks pretty cool, but in Situation A I would like it to do Action B a
little a little more often,” there’s really nothing you can do to change it. You’ve
already closed your burrito up, and all you can do is try to retrain the neural
network and hope for the best.

So while the neural network offers some advantages in being able to
pile a lot of things into a huge concoction of possibilities, you don’t have
much designer control at the end of the process. Unfortunately, this tends to
disqualify NNs and other machine-learning solutions from consideration in the
game AI environment where that level of control is not only valuable but often
a requirement. That said, there have been a few successful implementations of
NNs in games—for example, Michael Robbins used NNs to improve the tactical
AI of Supreme Commander 2 from Gas Powered Games (see Resources).

In the case of Supreme Commander 2 and other similar implementations,
the AI was trained in the studio until it was acting in a reasonable way
and then that data was inserted into the game and shipped. However,

http://www.gdmag.com

one additional use for neural nets is to allow the game to change, “learn,”
and adapt to the player after it has been shipped. This is a somewhat
controversial practice that sounds a lot cooler than it often turns out to be.
Again, a fair treatment of the hows and whys of this is beyond the scope of
this article and is well documented elsewhere. Just remember that even
uttering the phrase “an AI that learns from the player!” is a siren’s song. And
there’s some pretty big ol’ rocks waiting for you!

Browsing the Buffet
» Now we’ve covered a variety of architectures (and their corresponding
Mexican delights). This has by no means been an exhaustive treatment of
AI architectures, but should identify their major differences. Now let’s see if
we can find the right AI architecture for your game. Let’s look at the table in
Figure 7 to recap.

You can certainly just throw the occasional rule into your code that
controls behavior—but that’s not really an “architecture.” By organizing
your AI into logical chunks, you can create a finite-state machine, which is
relatively easy to construct and easy for nonprogrammers to understand.
FSMs are good for simple agents with a limited number of behaviors, but
they get unwieldy as the number of states increases. By organizing the
states into the logical tiers of a hierarchical finite state machine (HFSM),
you can mitigate some of this complexity.

If you need something flexible, you can remove the reasoning code
from the states themselves and instead organize behaviors into logically similar
branches—a behavior tree. BTs are also fairly easy for designers and other
nonprogrammers to understand, but their main advantage is that they scale very
well without needing a lot of extra programming. Once the BT structure is in place,
you can easily add new branches and nodes. That said, even the most robust BT
implementation is still a form of hand-authored of scripting—”when X, do Y.”

Like the behavior tree, a planner allows for very extensible creation.
However, where the BT is more hand-authored by designers, a planner simply
“solves” situations using whatever it feels is best for the situation. This can
be powerful, but also leads to a very scary lack of control for designers.

Similarly, utility-based systems depart from the specific script approach
and allow the characters to decide freely what to do, which might unsettle
some designers. They are incredibly expandable to large numbers of complex
factors and possible decisions, but they are slightly more difficult to intuit at
times unless you’re capable of building tools to aid that process.

The ultimate hands-off black box is the neural network. Even the
programmers don’t know what’s going on inside their little neurons at times.
The good news is that they can often be trained to “do what human players
would do.” That aspect itself holds a lot of appeal in some genres. They are
also a little easier to build since you only have to construct the training
mechanism and then...well...train it.

There is no “one size fits all” solution to AI architectures. (You also don’t
have to limit yourself to a single architecture in a game.) Depending on your
needs, your team, and your prior experience, any of the above may be the
right way for you to organize your AI. As with any technical decision, the
secret is to research what you can, even try a few things out, and decide
what you like. If I am your waiter AI consultant, I can help you out… but the
decision is ultimately going to be what you have a hankerin’ for.

Now let’s eat!

Dave Mark is the president and lead designer of Intrinsic Algorithm, an independent game

development studio and AI consulting company in Omaha, Nebraska. He is the author of the

book “Behavioral Mathematics for Game AI” and a GDC AI Summit advisor.

The author would like to dedicate this article to all the GDC, Gamasutra, and Game Developer

staff who are still lamenting the departure of Maya, the beloved Mexican restaurant that used

to be located in their building. I mourn with you, my friends.

game developer | august 201212

architecture

aD-hoc rules

Finite state Machine (FsM)

hierarchical FsM

behavior tree (bt)

planner

utility-baseD systeM

neural network

pros

> minimal set-up

> easy to understand, build

> hierarchy helps cluster behaviors
> easy to understand, build

> separates decision logic from state code
> easy to understand, build, edit

> ai “discovers” solutions on the fly
> handles unique situations better
> easily accommodates new action

> ai constantly weighs all actions
> handles unique situations gracefully
> allows for variation in behavior

> able to “learn” how to play
> can be set up relatively quickly

cons

> gets unwieldy past the most basic behaviors

> transition between states get hard to manage with
more behaviors

> transitions still can get difficult to manage

> hard-coded priorities of behaviors

> some loss of designer control
> “re-planning” can be processor-intensive

> some loss of designer control
> harder to design, edit, and tune

> complete loss of designer control
> nearly impossible to edit or tune

Figure 7: the t ype oF architecture you select neeDs to be baseD on your neeDs.

r e s ou rc e s
“Introduction to Behavior Trees:” Bjoern Knafla: www.altdevblogaday.
com/2011/02/24/introduction-to-behavior-trees

“Goal-Oriented Action Planning:” Jeff Orkin: http://web.media.mit.
edu/~jorkin/goap.html

“HTN planning in Killzone 2:” http://aigamedev.com/open/coverage/htn-
planning-discussion

“Improving AI Decision Modeling through Utility Theory:” http://gdcvault.com/
play/1012410/Improving-AI-Decision-Modeling-Through and “Embracing the
Dark Art of Mathematical Modeling:” http://gdcvault.com/play/1015683/
Embracing-the-Dark-Art-of and “Off the Beaten Path: Non-Traditional Uses of
AI:” http://gdcvault.com/play/1015667/Off-the-Beaten-Path-Non

http://www.altdevblogaday.com/2011/02/24/introduction-to-behavior-trees
http://web.media.mit.edu/~jorkin/goap.html
http://aigamedev.com/open/coverage/htn-planning-discussion
http://gdcvault.com/play/1012410/Improving-AI-Decision-Modeling-Through
http://gdcvault.com/play/1015683/Embracing-the-Dark-Art-of
http://gdcvault.com/play/1015667/Off-the-Beaten-Path-Non
http://www.altdevblogaday.com/2011/02/24/introduction-to-behavior-trees
http://web.media.mit.edu/~jorkin/goap.html
http://aigamedev.com/open/coverage/htn-planning-discussion
http://gdcvault.com/play/1012410/Improving-AI-Decision-Modeling-Through
http://gdcvault.com/play/1015683/Embracing-the-Dark-Art-of

UPCOMING EPIC ATTENDED EVENTS

Please email licensing@epicgames.com for appointments

GDC Europe
Cologne, Germany
August 13-15, 2012

gamescom
Cologne, Germany
August 15-19, 2012

MIGS
Montreal, Canada
November 1-2, 2012

There’s never been a better time to check out
the Unreal Development Kit (UDK), the free
edition of Unreal Engine 3 (UE3), available at
www.udk.com.

It’s always been free to use until you’re ready
to deploy a commercial product, and even af-
ter the one-time $99 studio fee, Epic doesn’t
take a royalty until you pocket $50,000. We
also regularly update UDK and never charge
for upgrades.

Here is one example of how the commercial
UDK back-end royalty structure works. Say
you sell 15,000 copies of a $4.99 (USD) app,
and your digital distribution platform takes
30 percent of total retail sales to $74,580,
leaving you with $52,395. Epic takes 25
percent of the net amount over $50,000, or
$598.75. That means you keep $51,796.25
or 69 percent of the total retail sales. Epic’s
total cut at this point is $697.75 or 1 percent
of gross revenue.

In a second example (see chart), sales
double and 30,000 copies at $4.99 generates
$149,700. You have $104,790 after digital
distribution fees. At this point, 61 percent
of retail sales or $90,933.50 stays with you,
the developer, and the total UDK investment
comes to $13,796.50 or 9 percent of net
revenue.

WHY INDEPENDENT
DEVELOPERS TURN TO UDK

Every day, developers release UDK projects
without needing full source UE3 access.
Some studios, such as Hawken developer
Adhesive Games and Dungeon Defenders
creator Trendy Entertainment, start out using
UDK and then transition to a more traditional
UE3 deal.

“By using UDK we were able to not only
quickly create a prototype for Hawken, but
also implement the majority of our gameplay
and other game features,” said Jon Kreuzer,
technical director at Adhesive Games. “When
the time was right we were able to easily
transition to the full Unreal Engine license.
Epic has been very helpful to us in our quest
to achieve our creative vision for Hawken.”

If your needs require full source code access,
contact us at licensing@epicgames.com.
We’ll help you get started and � nd business
terms that are right for your team.

UDK provides access to the full UE3 feature
set, including the Unreal Editor and its robust
suite of tools, such as the Unreal Kismet
visual scripting system, Unreal Matinee
cinematic toolset, Unreal Cascade particle
e� ects, Unreal Landscape terrain editor and
Unreal Lightmass global illumination.

Also included are UE3’s navigation mesh
AI system, the Unreal skeletal animation
system and other tools that would normally
cost money to license or require signi� cant
internal resources to build.

UDK also ships with hundreds of thou-
sands of dollars’ worth of industry-leading
middleware technologies, including the
full Autodesk Scaleform GFx user interface
software package, NVIDIA PhysX and APEX
support, SpeedTree foliage editing, FaceFX
facial animation, Bink Video, RealD stereo 3D
features and more. All of this is available in
the base licensing fee. Epic absorbs technol-
ogy integration costs to ensure developers
only gain from our work with great partners.

UDK scales from lightweight mobile experi-
ences to high-end PC gaming. After Epic
demonstrated its next-gen “Samaritan”
demo last year, UDK began shipping with
DirectX 11 support, so anyone can use UE3
for high-end rendering, tessellation and
beautiful post-processing e� ects.

61%

30%
9%

w
w
w
.u
nr
ea
le
ng

in
e.
co
m

Epic doesn’t take a royalty

until you pocket $50,000. We

also regularly update UDK and

never charge for upgrades.% Breakdown on Total Sales of $149,700 (USD)

http://www.unrealengine.com
http://www.udk.com
mailto:licensing@epicgames.com
mailto:licensing@epicgames.com

http://perforce.com/try20

B y A n d e r s d r A c h e n

Designers love their heat maps, and with good reason, since they present clear and
intuitive feedback about players’ spatial behavior. But heat maps are simply the tip

of a very deep iceberg that is spatial game analytics—there’s a lot more to offer a
designer who wants to understand players better.

www.gdmag.com 15

http://WWW.GDMAG.COM

what, where, and when
.....
First, let’s explain the basic
properties of spatial data.

For any given game, most
of the variables you can log
about a play session can
be attached to spatial and
temporal information one
way or another. …very time a
player throws a punch, fires a
gun, runs for cover, or starts
a quest, she’ll be doing so
from a particular location in
2D or 3D space.

Whenever a player does something
(or something happens to that
player), we can log three types of

information: what is happening
(and to whom it’s happening to),
where it’s happening, and when it’s
happening. We can refer to these
three components of player-derived
telemetry data as Event, Space, and
Time information.

Of course, how we record spatial
information depends in part on
the nature of the game; in some
games it may not make sense to
use geographic coordinates (X, Y, Z),
but rather use vector-based logging
(with games featuring point-and-
drag operations, for example), or
even just registering the zone or
area a player is in. For some mobile
games, logging the geographic
coordinates of player positions in
the real world can be useful. In any

case, these are all examples of
spatial information that are attached
to specific player behaviors.

Spatial information generally
comes in three types: points
(coordinates), lines, and areas
(polygons). Point-based data sets are
typically defined using coordinate
sets (X,Y, and possibly Z); the location
of a player when shooting and killing
an opponent in Team ForTress 2,
for example. Lines are spanned
by multiple points, but like points
have no areal extent, unless they
encompass an area and thus become
polygons. All these types of spatial
information come with associated
features—a set of coordinates is
associated with a feature class
providing the player name. Spatial

data is stored in spatial databases,
which are essentially similar to any
other game asset database that
includes spatial information.

Lines can integrate
information about direction. Take,
for example, the line describing
the path a player takes through a
level in Gears oF War 3, composed
of many small lines connecting
the position of the player, which
are logged once per second. Area
data has a spatial distribution,
such as a building or area with
a particular type of vegetation.
Note how the spatial measures
never stand alone—we measure
the spatial component in relation
to some meaningful variable:
the path of a particular player,

game developer | august 201216

what is spatial game analytics?
......
In recent years the term “analytics” has entered into the broad vocabulary of game development, bringing
with it a shiny, sparkly new source of data on players and systems: telemetry. Telemetry refers to behavioral logs
of players or systems that can offer incredible granularity and an unobtrusive way of tracking what people are
actually doing when playing games.

Game analytics, the analysis of games and gameplay, has been around for a while. Strictly speaking, everything related
to user testing and research is analytics, but we’re interested in the analysis of telemetry data, similar to what web analytics
does for web sites. In most respects, game analytics is in its infancy; most current work doesn’t dig much deeper than key
performance indicators (KPI) like average revenue per user (ARPU) calculations. But looking at the influence of analytics in
productivity software development, geographical information systems, and web analytics, game analytics has far greater
potential than calculating KPIs.

Spatial game analytics integrates the spatial dimension of player behavior to give you information that comes from the space
that players experience games in (namely, the space inside the game itself), which gives you clear links between the game’s
design and corresponding player behavior. This is relevant everywhere; even the simplest word game contains movement
mechanics, and thus the potential for spatial analytics. You might know that your players took longer than expected to complete
a game level, but with actual spatial information from your players, you can pinpoint exactly where your players get held up. In
short, it is all about where things happen (or stubbornly refuse to happen!).

WWW.GDMAG.COM 17

the position of players using
particular weapons, the areas
where specifi c environmental
situations are in effect, and so on.
In other words, Space is always
measured on conjunction with
Event (and usually also Time);
we log positional information in
conjunction with sets of actions
performed by the player, and a
time stamp.

Note that telemetry data
logging does not need to be
triggered by a player doing
something. There is equal value in
tracking and logging Event, Space,
and Time information from the
computer-controlled agents of the
environments and virtual objects.
For example, logging the spatial
behavior of AI-controlled enemies
lets you evaluate whether their
pathing routines are performing
as expected or if any bugs are
occurring (dynamic object
tracking). Currently, the majority
of spatial analytics performed in
games is done using player-derived
telemetry data, but it is important
to note that play experience is
shaped by the interaction between
player and game—the system
side should also be analyzed. We
can refer to these two different
sources of data as player and
system telemetry.

spatial analysis tools
.....
Once you have your telemetry
data, you can use many different
techniques to analyze it, depending
on what you want to learn. If you
don’t want to build your own
in-house analysis tool, you can
adopt an existing toolset that fi ts
your needs, even down to small
packages focusing on specifi c
analyses to systems that handle
any kind of spatial data or task,
known as geographic information
systems (GIS).

A GIS is conceptually similar
to the data management systems
already used in games, which
control objects and entities with
specifi c attributes and behaviors
inside the game environment.
The difference is that a GIS is
specifi cally designed for the
management and analysis of
spatial and spatio-temporal data.

FIGURE 1A: A faction control map
from the MMORPG EVE ONLINE.
FIGURE 1B: A visualization of death
positions from HALO 3 (below),
color coded according to the cause
of death, from Microsoft Game User
Research.

http://WWW.GDMAG.COM

GAME DEVELOPER | AUGUST 201218

FIGURE 2: A heat map of player
death events from HALO 3. The map
illustrates where players have a
large (red), a medium (yellow), or
a small (blue) tendency to die.

In a GIS, map features are
linked with attribute information.
For example, a level map is linked
with locations of quest providers,
different types of environments,
player trajectories, or other
spatially distributed features.
When you map spatial game
metrics onto maps that themselves
can contain detailed feature
information, you can be much
more fl exible with your analyses;
for example, you can calculate the
number of kills occurring “inside”
a specifi c type of environment vs.
“outside” a type of environment—
as well as specifi c numbers for
each environment type.

Recently a minor swarm of
start-ups have begun offering
technologies for the tracking,
logging, and storage of game
telemetry data. They are mainly

focused on nonspatial metrics,
so we still need to look outside
game-specifi c solutions, such as
the open-source tool Quantum GIS
(www.qgis.org).

visualizing game
metrics
.....
Game metrics can be visualized
without there being any operations
on the data. These visualizations
are among the most common, and
are relatively easy to generate
and interpret. Almost all metrics
visualizations to date have been
generated based on point-based
data, with line and area features
more or less unused, but in principle
these types of spatial features
are equally applicable. You can
use these visualizations internally
to evaluate your game and level

FIGURE 3: A heat map of extraction
events in JUST CAUSE 2 (>22.3
million events). Color ramp is
scaled to the cell with the largest
value always shown in white.

http://www.qgis.org

www.gdmag.com 19

design: For example, you can see if
any mobs wander outside the area
they are supposed to stay within, or
where players pick up items, and so
forth (see Figure 1A and Figure 1B
for examples).

more than
just a heat map
.....
Heat maps began as 2D displays
of the values in a data matrix,
but have since been adapted to
a variety of contexts, from heat
mapping of eye gaze on web sites
to mapping of environmental
factors, among other uses. A
common way to generate a heat
map is to divide the game area
under scrutiny into a grid of cells
(bins), sum up the number of
events that occur within the area
covered by each cell, and add
a color ramp (green to red, for
example) to make the data easy
to interpret. Other approaches
employ density kernel functions
or interpolation in order to attempt
simple prediction in areas with no
registered events.

Heat maps are commonly
used in games to aggregate and
visualize death events (see Figure
2). They show designers exactly
where players and bots die. Add
information about the different
causes of death to a heat map, and
you’ve made your heat map more
useful, because you can evaluate
the impact of different enemies
or weapons in different regions of
a space.

Of course, you can use heat
maps for more than just mapping
death events (or any other point-
based data, for that matter). You
could just as easily use player
trajectory data (line data) to
show how often players choose a
particular movement path. Similarly,
area data (polygon data) can be
aggregated. Any spatial variable

can form the basis for heat maps;
Figure 3 uses extraction events
from Just Cause 2.

Most game heat maps I’ve
seen have been in 2D using
point data (X,Y); but there are
applications for generating 3D heat
maps (X,Y,Z), which let you more
accurately interpret your level
design, especially when you’re
dealing with data from multiple
Z-axis levels (for example, data
points coming from players inside
a building with two floors). In that
case data points are layered on top
of each other.

Combining heat map
visualizations with the temporal
dimension of telemetry data
adds a dynamic quality and
allows for a better understanding
of game flow. Essentially, heat
maps combined with temporal
information allow designers to
follow how the mapped events
occur over time; for example, you
can track what players do in the
first 30 seconds on a map, instead
of simply logging an aggregate
sum of their activities.

analyzing multiple
spatial variables
.....
Now that we’ve addressed the
basic concepts behind heat maps
and spatial analytics, let’s take a
look at how you can combine and
visualize multiple variables to see
how those variables interact. For
example, you can combine heat
maps with trajectory data from

player movement or projectile
paths to give you a highly
detailed analysis of the dynamics
of a playfield. You could also take
heat maps from two different
builds of a specific level to
easily determine what kind of
impact the design changes had
on the gameplay. Or you could
take two heat maps generated

Figure 4: Various examples of visualization of multiple features: (top left)
Analysis of the density of causes of death in the Valaskajlf map unit from Tomb
RaideR: UndeRwoRld, used for evaluating whether areas are too challenging (the
higher the number of threats, the more challenging the gameplay); (right) Overlay
analysis of the Subway map from FRagile alliance, combining a point-based layer
(locations of player death) and polygon layer (describing key areas of the Subway
level) from a series of playtests, used for evaluating progress of the two player
teams; (bottom left) A combined visualization of the locations of players when
they kill an opponent, the location of the opponent, range of the shot and the
weapon used (indicated by the line color), from a playtest of Kane & lynch 2.

Figure 5: A balance heat map from the Molten map of the game TRansFoRmeRs:
waR FoR cybeRTRon, generated using an overlay function, where a death heat
map is subtracted from a kill heat map. Areas with negative values (red)
indicate dangerous areas; areas with positive values (blue) indicate areas that
are safer. An interesting conclusion is that wall areas appear to be dangerous,
possibly due to restricted movement.

 Currently, the majority of spatial analytics
performed in games is done using player-
derived telemetry data, but it is important to
note that play experience is shaped by the
interaction between player and game—the
system side should also be analyzed.

http://WWW.GDMAG.COM

from different variables, such as
kills and deaths, to see whether
players kill and die in the same
spots, or if there are areas in
which players more commonly
kill and die—from, say, a sniping
alcove that provides a player
with a convenient kill zone. (See
Figure 4.)

In order to map multiple variables,
you’ll need to perform a spatial
operation called overlapping, where
you take two or more maps or layers
registered to a common coordinate
system and superimpose them on
top of each other in order to create a
composite map. This way, you can
visualize and analyze the relationship
between variables occupying the
same space; for example, in a
given map of a game level, you can
combine player trajectories logged
for that level and death events (see
Figure 5). The overlay function can be
based on simple operations such as
summing, subtraction, multiplication,
averages, or co-occurrences.

As mentioned above, spatial
data can be points, lines, or
polygons (areas). In turn, these
can be displayed in two basic
formats: raster or vector models.
Raster models are grids, and each
grid cell contains information
about one or more variables
(usually one); vector models are
composed of points and lines.
Heat maps are based on raster
models. Raster and vector models
differ signifi cantly in the way
overlay operations are performed,
and generally overlay operations
are performed most effectively
in raster-based models. A GIS is
usually able to convert raster
models to vector models and vice
versa, so you can convert vector
models to raster models, perform
an overlay operation, and then
convert the result back into a
vector model.

You can use overlay operations
to perform a variety of analyses.
For example, fl ow maps are

GAME DEVELOPER | AUGUST 201220

FIGURE 6: (Top) 980 player trajectories from the
Arathi Basin battleground of World of Warcraft. Red
circles indicate strategic points. (Middle) Map of the
Arathi Basin battleground showing main pathways.
(Bottom) Placement of observers in Arathi Basin.

middleware for game
analytics
......
There exist a variety of middleware solutions for logging and
transforming game telemetry, mostly formed by relatively new
start-ups such as Game Analytics (Disclaimer: Game Analytics is my
employer), Playtomic, and Turiya Media. Some business intelligence
providers like Plateau are also moving into this area, as are engine
developers. The specifi cs of the solutions offered by each company
vary, but they generally provide a system for adding hooks into
the game code, which ensures that relevant telemetry data are
transmitted to a server-side database, which communicates with a
web-based front end through which the user interacts with the data.
Telemetry data is then transformed into game metrics; generating
an average completion time metric by combining session time and
player ID data, for example. When it comes to spatial analytics, the
tools offered by these companies remain in their infancy compared
to the commercially available packages available in other sectors
(geographic information systems). In-house systems for game
analytics appear to exist in most major publishers and developers,
such as the TRUE system at Microsoft Game User Research and
Skynet at BioWare. In the public research a few tools have also been
developed: Check out Ben Medler’s Data Cracker, Andre Gagne’s
Pathway and Pedersen/Canossa’s G-player.

www.gdmag.com 21

visualizations of direction that you
can use to show the main vectors
of player navigation through a
playfield (whether 2D or 3D).
Take note when you’re projecting
3D data to a 2D plane, however:
Most 3D games have variations
in the Z-plane, leading to different
opportunities for players (such as
elevated positions). Levels may
even have multiple planes on top
of each other (floors in a building,
for example). Projecting multiple
layers of data on top of each other
provides bias, and should ideally be
kept separate.

Similarly, some visualized
patterns may not be clear unless
you take the 3D nature of the
playfield into account. You can
solve this with a 3D visualization
of the data, which is still rare in
games, but could be a powerful
tool for designers for evaluating
player behavior in the actual space
in which players experience your
games—namely, the game engine
itself—once you add the temporal
player data. Georg Zoeller from
BioWare presented some great
examples at GDC last year (you can
download the slides from http://
gdmag.com/resources/code.php)
In summary, multivariate synthesis
and analysis provide a good
starting point for understanding
how people play a map—and to a
certain degree, why they play it the
way they do, giving you one more
source for design feedback.

off the deep end
.....
All gameplay occurs over time, and
including time in game analytics
allows us to work with much more
complex events. For the purposes of
this article, we’ll stick to introducing
trajectory analysis.

A trajectory is a description
of an object’s movement in space
over a specific period of time,
such as a player’s navigation
through a game level. Along the
way, various events occur—fights,
item pick-ups, item uses, and
so on. Analyzing trajectories is
currently used to locate illegal
bot programs in online games,
examine group behavior, study
player tactics, and more (see
Figure 6).

Trajectories are essentially
approximations. There are various
ways to record spatial movement;
as a series of point positions, for
example, ordered according to time
played, with lines drawn to connect
them. Depending on the frequency
of waypoint logging, it can be a
good idea to measure the relative
speed of the player together with
the position, in order to estimate
which sections a player is running
through and which sections said
player is walking through. You could
also describe trajectories in terms
of the change in relative movement,
movement stored as a sequence of
commands such as “go straight,”
“turn right,” and “stop.” This form
of trajectory pattern logging is
currently used in research to
distinguish between bots and
players. Trajectories are among
the more bandwidth-heavy player
behavior variables, so it’s worth
testing to see what kind of data you
can filter out to avoid any issues
related to transferring and storing
that telemetry data.

One of the important forms
of trajectory analysis in games
is clustering: classifying data
based on the degree of similarity
and dissimilarity. Clustering can
be based on just trajectories, or
trajectories and event data (where
players use specific abilities, pick
up items, and interact with other
players). Combining trajectories
with event data is useful because
paths alone do not necessarily
tell us why players navigated in a
particular way, or whether a group
of players traveled together—
something important for any
game involving team strategy,
such as first-person shooters and
MMORPGs. Usually cooperative
behavior is limited to a specific
period of time, which is why
spatiotemporal data analysis is so
useful for these game elements.

 By analyzing player
trajectories, we can isolate
certain patterns that are
indicative of specific trajectory
behaviors—tracks, flocks, and
leadership patterns, for example.
A track describes a player having
a constant movement in a given
spatial range; a set of players
moving on a straight line within

a certain area of the map form
a track. A flock describes a set
of players traveling together in a
way that all members are within a
certain diameter or spatial range at
each point of time. In a leadership
pattern, players might join the
movement of a leading player at
some point in time. This kind of
analysis is useful to evaluate player
behavior in team-based games like
Team ForTress 2 or player tactics in
MMORPG instances, and to debug
bot behavior.

Applying data mining techniques
for trajectory data has been already
employed for various use cases in
game analysis; [Figure 6] shows
trajectory data from the World oF
WarcraFT Battlegrounds, where
the distribution of the players in
time and space can reveal design
problems in the environment or
successful strategies.

Spatial game analytics—and
game analytics in general—
have the potential to transform

game development in much the
same way it has transformed
marketing, web applications, and
environmental modeling, but
games are unique beasts and it
remains to be seen how big an
influence analytics will have.

Currently, the reliance on
analytics tools from sectors
outside of game development
means that the barrier of entry for
nonexperts can be relatively high
for some types of spatial work, but
the current innovation in game
analytics is probably going to
change this in the coming years
as more and more tools become
available. Also, gaining insights
from spatial analytics does not
require complex modeling—try
plotting some data on a game map
and see where it takes you.

Anders drAchen is an assistant

professor at Aalborg University and lead

game analyst for Game Analytics. Follow

him on Twitter @andersdrachen.

f u r ther r ead i ng
1. Thompson, C. “Halo 3: How Microsoft Labs Invented a New Science of
Play.” URL: http://www.wired.com/gaming/virtualworlds/magazine/15-09/
ff_halo

2. Drachen, A.; Canossa, A. “Evaluating Motion: Spatial User Behaviour
in Virtual Environments.” URL: http://andersdrachen.files.wordpress.
com/2011/01/05_drachen_ijart.pdf

3. Hoobler, N., Humphreys, G., and Agrawala, M. “Visualizing Competitive
Behaviors in Multi-User Virtual Environments.” URL: http://www.cs.virginia.
edu/~gfx/pubs/lithium/

4. Demers, N. Fundamentals of Geographical Information Systems. URL:
http://www.amazon.com/Fundamentals-Geographical-Information-
Systems-Michael/dp/0470129069

5. Houghton, S. “Balance and Flow Maps.” URL: http://altdevblogaday.
com/2011/06/01/balance-and-flow-maps-2/

6. Kennerly, K. “Better Game Design Through Data Mining.” URL: http://www.
gamasutra.com/view/feature/2816/better_game_design_through_data_.php

s ou rc e s
Figure 1: eVe online diagram from http://wiki.eveonline.com/wikiEN/
images/d/d0/Territorial_maps.png, Halo 3 diagram from Ramon Romero’s
2008 GDC presentation, “Successful Instrumentation: Tracking Attitudes
and Behavior”
Figure 2: www.bungie.net/online/heat maps.aspx
Figure 3: http://jimblackhurst.com/wp
Figure 4: Visualizations from analytics work at Square Enix, Crystal
Dynamics, and IO Interactive.
Figure 5: http://altdevblogaday.com/2011/06/01/balance-and-flow-maps-2
Figure 6: http://research.microsoft.com/pubs/140998/
WowGroupMovement.pdf

http://gdmag.com/resources/code.php
http://WWW.GDMAG.COM
http://www.wired.com/gaming/virtualworlds/magazine/15-09/ff_halo
http://www.wired.com/gaming/virtualworlds/magazine/15-09/ff_halo
http://andersdrachen.files.wordpress.com/2011/01/05_drachen_ijart.pdf
http://andersdrachen.files.wordpress.com/2011/01/05_drachen_ijart.pdf
http://www.cs.virginia.edu/~gfx/pubs/lithium/
http://www.cs.virginia.edu/~gfx/pubs/lithium/
http://www.amazon.com/Fundamentals-Geographical-Information-Systems-Michael/dp/0470129069
http://www.amazon.com/Fundamentals-Geographical-Information-Systems-Michael/dp/0470129069
http://altdevblogaday.com/2011/06/01/balance-and-flow-maps-2/
http://altdevblogaday.com/2011/06/01/balance-and-flow-maps-2/
http://www.gamasutra.com/view/feature/2816/better_game_design_through_data_.php
http://www.gamasutra.com/view/feature/2816/better_game_design_through_data_.php
http://gdmag.com/resources/code.php
http://wiki.eveonline.com/wikiEN/images/d/d0/Territorial_maps.png
http://wiki.eveonline.com/wikiEN/images/d/d0/Territorial_maps.png
http://www.bungie.net/online/heatmaps.aspx
http://jimblackhurst.com/wp
http://altdevblogaday.com/2011/06/01/balance-and-flow-maps-2
http://research.microsoft.com/pubs/140998/WowGroupMovement.pdf
http://research.microsoft.com/pubs/140998/WowGroupMovement.pdf

»

B y D a n P i n c h B e c k

Dear esther started out in 2007 as a university research project exploring different ideas about story and gameplay in a first-person
shooter. The central question was pretty simple: Could you strip everything resembling traditional FPS gameplay out of the traditional
first-person universe, leaving just a story and a world, and still build an engaging, rich experience?

The mod was something of a cult hit, and in 2009, in collaboration with Rob Briscoe from Littlelostpoly, we started developing a
commercial remake that was released on February 14, 2012. It sold over 50,000 units in the first week, paying back the game’s investor,
Indie Fund, in just under six hours. To date, Dear esther has sold more than 125,000 copies—not bad for a project that started life in a
bleak cupboard in an equally bleak university building!

Dear esther was simply an experiment that we never expected to do more with than generate some data for an academic study. We
formed thechineseroom around the game, so we’ve been on a pretty steep learning curve in terms of both development and running a
studio, but I think the fact that we came at Dear esther completely blinkered by idealism turned out to be crucial to the things we got
right with the title.

game developer | august 201222

www.gdmag.com 23

http://www.gdmag.com

what went r i g h t

1 . s t a r t i n g f r o m a m o d
c a n b e a g o o d t h i n g

We launched the original Dear esther onto
ModDB in 2007. Jessica Curry made an amazing
soundtrack, and Nigel Carrington’s voice-over
was brilliant, but I kept my expectations low;
Dear esther was short, slow, and about as far
away from most FPS mods as you could get.
Around the same time, Tale of Tales had released
the Path, and although I hadn’t played it, I was
aware of some of the friction it had caused, and
was expecting at best a few hundred hits and
maybe enough public response to justify the
grant by yielding some data we could use.

I was completely wrong.
The mod racked up thousands of downloads

in a matter of weeks, and got picked up by a
couple of critics who just loved it. We owe both
the critics and the community a lot, because
without that support, there would never have
been a remake. We knew when we went into the
remake that there was already a fan base, that
the concept worked, and we had some really
dedicated people out there spreading the word.
The mod ended up functioning like an open beta,
which was really powerful for us.

Another benefit of having a mod out there
for a couple of years was the community had

come up with some amazing interpretations of
the story that I hadn’t thought of when writing
it. When we recorded new voice-overs for the
remake, we added a few things to encourage
those interpretations, in part to add to the
story, but also to give a nod of thanks to the
mod community. Those new cues we added
have in turn yielded a completely different
interpretation of the story. I love that the game
has continued to evolve.

2 . s o u n d i s p o w e r f u l

Dear esther wouldn’t be the game it is without
its amazing soundtrack and voice acting.
Composer Jessica Curry and I had worked
together before on a few multimedia art projects
going back to 2003, so I knew her work really
well and how the tone of her music would
contribute to the game. We imported previous
music by Jessica into the engine early on, and
listened to it a lot while we were writing the
story and building the game, which I think was
instrumental in setting the emotional tone.
Music is an investment that can’t fail to pay
off—give your composer a lot of space and
freedom and it will make all the difference.

The actual story was written very late in the
development cycle; I’d estimate the world was
75% complete before I started writing. When
Jessica and I were casting, we heard Nigel
Carrington’s voice, looked at each other, and

said, “That’s him.” It was an instant decision.
When we went into the studio, we did three

takes of each cue. For the first, I would let Nigel
find the emotional tone and intensity that he
felt was natural to the words, then in the second
and third takes I’d have Nigel push the intensity
up and down a notch from there. We ended up
using the first take on most of the cues. Get a
good voice actor, and you can trust his instincts.

3 . a r t d i r e c t i o n i s c r i t i c a l

The world’s relative lack of detail in the original mod
made the players pay more attention to the voice-
overs. With the remake, we aimed for something
deeper and subtler, using the environment
as a means of steering not just the players’
movements, but their emotional journey. Rob
calls this “subliminal signposting,” manipulating
mood and interpretation through the world.

The remake of Dear esther brought the island
to the center, making it a living space that followed
the principles of ambiguity and abstraction in the
narrative. We did this by using randomized objects
that operated against the narrative as much as
with it, and by focusing heavily on lighting and the
actual shapes of the geometry to influence the
players’ mood. In the final level, for example, the
shape of the distant mountain is a torso and head
of a sleeping figure. It’s subtle, and it’s difficult to
determine whether it has an explicit, identifiable
impact on all players, but the game uses many

game developer | august 201224

instances like this to suggest the island has a
more complex relationship to the narrator than
simply being a realistic space.

A key location in the game that makes this
more explicit is the caves level. The caves were
originally designed to provide a break in tone
and space from the open levels in the beginning,
though they also served as a device that let us
move the time of day radically from afternoon to
night. Once the player enters the caves, the game
breaks away from reality in a very obvious way,
synchronizing with the voice-over’s shift in tone
to something more fragmented and confused.
Rob created areas in the caves that were highly
suggestive and deeply unreal, such as a heart-
shaped cave lit orange and pink, in order to evoke
an emotional response from the player.

Later, a chimney stretches up toward
the sky to create a sense of being deep
underground, tying in with the old cliché of
the light at the end of the tunnel—or the view
toward light sometimes mentioned in near-
death experiences. The chimney was clearly not
just a natural feature; it represented something
more psychological, possibly even spiritual. At
the foot of the chimney is a clear pool, scattered
with coins—a wishing well—which is followed
by a crawl through a tight, claustrophobic
tunnel covered with strange symbols and
scrawled references to the Bible. Then the
player drops into a dreamlike representation

of an underwater motorway. The overall effect
is to constantly shift the player away from just
seeing the environment as a backdrop, however
beautiful, into something that tells its own
version of the story. Rob’s excellent art direction
was able to maintain and communicate Dear
esther’s story even without the voice-over.

4 . I n v e s t I n g I n s p a c e
a n d t I m e a s d e s I g n
t o o l s

The thing that makes Dear esther work more
than anything else is that the player has very
little to actually do, which creates a space
for the player to think and feel. If you set up
powerful images and ideas, then the player will
naturally want to consider them, so we made
sure to leave opportunities for that to happen.
When I said at GDC 2012 (See References) that
overstimulation can kill atmosphere, what I
meant was that if you expect your players to
respond to the system all the time, you don’t
leave space for them to respond to the stuff in
their own heads.

This isn’t a new thing—shaDow of the
Colossus relies heavily on those long periods of
reflection—but I think Dear esther was different
in that we were loading the player up with these
symbols and ideas and making those reflective
periods directly tied to trying to square away all
the ambiguous and conflicting things they were

seeing and hearing. One of my favorite quotes
is from the literary theorist Frank Kermode, who
said, “Why does it take a more strenuous effort
to believe that a narrative lacks coherence than
to believe that somehow, if one could only find
it, it doesn’t?” That idea lies at the center of Dear
esther, but it requires space and time to work.

Also, different emotions run at different
speeds. Joy and anger are very fast emotions,
they arrive quickly and can be felt in a short
time-frame. Sadness or loss are much slower
and easily disrupted. If you want a player to feel
lonely or sad, you need to time and space for
that to happen. In a game like s.t.a.l.K.e.r., the
environment is desolate and empty, which gives
players time to trudge around, submerged in
their response to that emptiness.

As players, we’re so used to stuff happening
in games all the time that when nothing is
happening we start feeling on edge. This is a
cornerstone of horror games. So underpinning
Dear esther is the tension of waiting for
something to happen, and this desolation and
isolation, and these weird images that just
ache to be formed into proper understanding,
and then lots and lots of time and space to be
introspective about that mix.

5 . t r u s t y o u r p l a y e r s

It always makes me smile when we get accused
of being hipsters, or intellectual snobs, which

www.gdmag.com 25

http://WWW.GDMAG.COM

was always going to be a response from some
gamers. Aside from the fact I’m a massive kill-
junky who’d take PrototyPe over Heavy rain any
day of the week, I think what’s going on with Dear
estHer is the opposite.

We trusted gamers to be adaptable, open
to a slightly different experience, able to think
and feel for themselves. They don’t need their
hands held, or things always spelled out.
They are sophisticated, media-literate, smart
people. It’s okay for things not to make sense.
Players will cope with that, and it’s often a more
rewarding experience. Like most things we do,
this is inspired by games. I love the fact that
after dealing with the biomass in D6 in Metro
2033, the nearest you get to an explanation
is Miller saying, “If only you’d seen what lives
down there!”

I think it’s a strength of a narrative to not
have to join all the dots. The best books throw
away ideas left right and center that you never
find out more about. It creates a sense of scale
and mystery. That’s not going to work for all
games—lots of games rely on delivering explicit
history and mythos, like Mass effect or skyriM—
but there’s more space for the unknown in
games. I think it’s a really powerful device, but
you have to trust the community.

The other analogy I often use is that you
don’t look at a Jackson Pollock painting and
obsess over which order the paint was applied

in. It’s an overall effect—you feel it, and that’s
enough. We trusted that players would get that.
We believed that they would take the experience
as it was and immerse themselves in it, and that
belief paid off. That’s the biggest lesson of all for
me from making Dear estHer.

what went w r o n g

1 . U n i v e r s i t y c o l l a b o r a t i o n
i s c o m p l i c a t e d

This needs a caveat: We began life as a University
of Portsmouth research project, funded by the
Arts & Humanities Research Council (U.K.), and
they’ve both been good to us, but we had a few
problems as well. Universities have pretty strict
policies about everything from employment to IP,
and we faced an uphill battle to gain their respect
and trust. The last two are inevitable.

One of the things I love about the game
industry is that it is product-driven. Everyone
has an idea about a game, or an opinion about
what makes a good game, and the problem is
that academia exists to be critical about these
things, which means it generates a lot of opinions
and no product. This doesn’t sit easily with the
game industry, where you earn your stripes by
making a game and having it assessed by the
community and the market. Once we’d actually
made something and put it out there, not as a

protected academic experiment, but a game to
be played and assessed as any other, suddenly
people started talking to us. I’d have built it
sooner if I’d been less idealistic about academia’s
relationship with industry, and I’m much more
careful now about respecting just how damn hard
it is to make games.

On a practical level, we discovered that
commercialization is a very hard thing for
universities to pull off. There are standard clauses
in distribution agreements, like who takes liability
and to what value, that are almost impossible to
square with a university’s insurance protection.
We were lucky to survive running into this one—
the university was happy to release the IP, and
we were lucky to find Indie Fund. But for about six
weeks I thought the project was dead and I was
out of a job. It was hellish, stressful, gutting.

If I’d known going in what we’d face, I’d have set
things up a long way in advance. That’s not to
say that working with universities is impossible—
they can be amazing partners—but you need
to wrap your head around a very different way
of working and set of priorities. They work on a
timescale that can be extraordinarily slow, so
you need lots of lead-in time. The decision-making
process can be very distributed, which makes
it hard to get financial agreements, NDAs, and
other contracts signed compared to your average
small business. Also, a university has a direct
responsibility to its students, so they’re constantly

game developer | august 201226

searching for teaching and research opportunities.
If you can figure out what kind of opportunities
you can offer a university in advance, you can
speak in the right language—learning, generating
publicly available information, and so on. You
are also dealing essentially with public money,
which changes what you can do politically.

Finally, if your funding is running from a
grant, like we were, then studio processes like
staffing have to be done very openly; you have
to make a case for why you’d want a specific
individual (from knowing them, or reputation, or
recommendation) without going through an open
recruitment process. On top of that, you have
a responsibility to get changes in the budget
cleared, which can slow you down quite a bit.

Overall, they are slow. Really slow. As a small
independent studio, one of your biggest advantages
is how responsive and fast you are. Trying to
operate as an indie in the context of a slow moving
monolith like academia can be very frustrating.
I’m not sure I’d do it again. There’s got to be a better
model, and we’re going to keep looking for it.

2 . D e c i D i n g t o p o r t t o a
n e w e n g i n e v e r s i o n c a n
b e a w o r l D o f h u r t

This is how the conversation started: “Hey, Rob,
you know we ought to ask Valve if we can migrate
from The Orange BOx to the POrTal 2 version of the
Source Engine. That’d be straightforward, right?”

Dear esTher was due out in early summer
2011, but it didn’t come out until Spring 2012—
because of the port.

If it’s your own engine, fine. If you know an
update is coming, great. If you research what
changes are going to happen when you move
to a new version, brilliant. Spur of the moment
decisions without really casing out what is
going on under the bonnet of a new version? I’d
advise against it. We went in unprepared and a
little naive and paid the price. That’s not to say it
wasn’t worth it—we couldn’t have done certain
things with Dear esTher without the migrate. It
made the Mac port easier and has benefits for
potential console ports further down the line, and
gave us improved shaders, particles, and visuals
(as well as being a more optimized, stable engine
and toolset) but I wish we been a little more
prepared for how complex it was going to be. All
credit is due to Rob and our programmer, Jack
Morgan, for making it work. But it was tricky.

3 . v o i c e - o v e r s s o u n D
D i f f e r e n t i n t h e s t u D i o
t h a n i n t h e g a m e

This didn’t impact on the final build, and is more
about the mod version, but it’s an interesting
one: When we first made Dear esTher, we
brought in a local actor to record a script I’d
written over a three-day period as a kind of
stream-of-consciousness thing, and this was

really useful. What I hadn’t figured was that what
sounded great in the studio, as a radio play, was
completely emotionally overcooked when we put
it in the game. I’ve still got the original recordings,
and as pure audio they work really well. In the
game, they just felt slightly melodramatic.

I still don’t know what it is exactly about this
“amping-up” effect on voice-overs with games,
but you see it all the time even in high-budget
games, where a voice-over you think would
probably work fine on its own ends up overblown.
Emotional tones seem to get inflated in-engine,
and when you are working with voice-overs
it’s really important to keep the drama nailed
down tightly. Nigel is incredibly subdued in the
final takes of Dear esTher—I think there’s only
one or two instances where he even raises his
voice—and despite that, it’s a really emotional
performance with quite a wide range to it.

I’ve just finished Mass effecT 3 and I noticed
that BioWare did a similar thing with its voice-
overs—quieter moments and a toned-down
delivery often achieve the best emotional results.
We had this problem again with the KOrsaKOvia
mod we made in 2009—what sounded great in
the studio didn’t work in the game, and since
recording sessions can be time-consuming to
organize, you want to get it right first time. Now
we always take a copy of the game into the
studio with us and get a few rough cuts into the
engine before we commit to a take.

www.gdmag.com 27

http://WWW.GDMAG.COM

game developer | august 201228

4 . T h e g a m e i n d u s T r y
w o r k s i n u . s . d o l l a r s

This is really short and only applies to non-
American developers: If you are making a game
for digital distribution on PC, your major source
of income is going to be Steam. That means
getting paid in dollars, which means you have to
deal with exchange rates. Now imagine that your
investors are U.S.-based, and you have to pay
them back. That’s going to be in dollars too. Not
only are you then dealing with exchange rates in
two directions, but the bank will apply different
rates for conversions backward and forward, so if
you don’t have a bank account set up to deal with
USD, you could lose a lot of money. We didn’t have
a dollar account set up by the time we had to pay
back Indie Fund and it hurt us financially.

It’s a bit gutting to see your hard-earned
cash vanish into a banker’s pocket (particularly
at the moment). Get a dollar account attached

to your business account, and if your bank
doesn’t have the facility to do this, switch. We
only found out about this from Toxic Games
when they hit it a couple of weeks before us
(they were also distributing on Steam and
supported by Indie Fund), but it was too late for
us. Given that you make most of your money in
the first couple of weeks, I wish all of us could
have found out sooner.

5 . P o s T - r e l e a s e
a d m i n i s T r a T i o n T a k e s T i m e

In other words: Don’t dive headlong into two new
games on top of releasing your first. (You could
file this in the “Nice Problem to Have” category.)
If your game is a surprise hit, people will want to
talk to you. Fans are critically important to a small
company; they are your ambassadors, and you
have to respond to them, write back to them, and

reply to them on forums. Other distributors will
want to talk to you and sign you up, so you have
to go through contracts, manage all of that. Game
sites you’ve never heard of want free copies to give
away to their readers. Freelance journalists want
review copies and you need to assess how serious
they are. Your accountant wants to know how
U.S. VAT works and you have no idea. You’re trying
to maintain a PR campaign without repeating
yourself constantly, you’re trying to manage
incoming bugs, get community-driven localization
dealt with, and look ahead to porting opportunities.

I was pretty naive about just how much
time it would all take. We didn’t exactly have
much of an option in terms of managing our
workload around the time Dear esther released,
and we didn’t have the cash in the bank to hire
someone to help manage all that stuff when it
hit, but if I had known how important all that
post-release work was, I would have blocked out

more time in our development schedule for it.
Your highest point of exposure and currency

as a studio is the time immediately after you
release a game. We already had two games in
the works, but next time around, I’ll be ready to
suspend everything for a week or two and clear
the backlog faster.

what we learned from
dear esther
First, like Capy Games’s Nathan Vella said in his
GDC 2012 talk, sometimes taking risks is less
risky than not taking them. Dear esther stands
out from the crowd—it looks and sounds like
a triple-A title, but plays like nothing else from
that sector. It’s a difficult game to categorize,
and this kicked off a lot of online discussions

(around the whole “is it a game?” question).
This isn’t something we were ever particularly
interested in, and Dear esther absolutely is not
any kind of critique of games, but there’s no
doubt it helped exposure. I wouldn’t ever court
controversy, but I can’t deny it helped.

Second, I think that pushing the production
values was massively important. Because of the
gameplay, which tends to be very mechanic-
oriented in play and retro in feel, Dear esther
doesn’t sit easily within the indie sector. Beautiful
visuals made the game attractive to a wider
audience, and that level of quality was critical in
captivating players while the slower burn of the
emotional experience had a chance to hook them.
I genuinely believe that without the emphasis on
presentational quality, the game wouldn’t have
succeeded in the same way.

Third, there’s an attention to detail in terms
of the player experience that isn’t just about a
different, new, neat idea, but about the minute-
by-minute play. Rob’s focus on always having
some form of reward at any given point in the
game, the way that the soundtrack repeats
motifs in different ways to constantly keep this
kind of tide of emotions going, and perhaps
most importantly, creating an emotional
architecture for the player and then standing
back, not overloading them with things to see,
hear, do, just giving them time to think and feel.
A game may rest on a great idea, but making
that great idea ever-present and always-
optimized is the difference between a good
game and a bad one.

For all its experimental beginnings, Dear
esther grew out of a love for FPS games, and I’ve
always said I see it as a logical extension of the
design history of that genre. Underneath all of
those things I still maintain there’s a pretty simple
reason why Dear esther worked and succeeded.
It’s a love letter to FPS games, shot through with
our passion for the genre and what it can do. I
think players see that, and I think it’s another case
study of how that combination of passion and hard
work pays off—and lets us build the most exciting
medium on the planet.

Dan Pinchbeck is creative director of thechineseroom,

which basically means he writes, designs and produces

their games. He’s got a PhD in first-person shooters, has just

written a book about DOOM (due out Spring 2013) and is

leading the studio on two new games. AMnesiA: A MAchine fOr

Pigs is the sequel to Frictional Games’ 2010 cult horror (due

Q1 2013) and everybODy’s gOne TO The rAPTure, an openworld

purestory game (release date tbd). He is also a reader in

Computer Games at the University of Portsmouth, UK.

r efer en c e
dear esTher Talk aT gdc 2012

http://gdcvault.com/play/1015529/Dear-Esther-

Making-an-Indie

http://gdcvault.com/play/1015529/Dear-Esther-Making-an-Indie
http://gdcvault.com/play/1015529/Dear-Esther-Making-an-Indie

www.gdmag.com 29

We trusted gamers to
be adaptable, open to a

slightly different experience,
able to think and feel for
themselves. They don’t

need their hands held, or
things always spelled out.

They are sophisticated,
media-literate, smart

people. It’s okay for things
not to make sense. Players
will cope with that, and it’s

often a more rewarding
experience. Like most

things we do, this is inspired
by games. I love the fact

that after dealing with the
biomass in D6 in Metro

2033, the nearest you get
to an explanation is Miller
saying, ‘If only you’d seen
what lives down there!’

http://WWW.GDMAG.COM

SENIOR SERVER ENGINEER | SENIOR RELIABILITY ENGINEER | SENIOR TOOLS ENGINEER
SENIOR CONSOLE ENGINEER | LEAD 3D ENVIRONMENT ARTIST

SENIOR 3D ENVIRONMENT ARTIST | SENIOR 3D CHARACTER ARTIST | FX ARTIST
LEAD BATTLE.NET DESIGNER | LEAD CAMPAIGN DESIGNER | SENIOR LEVEL DESIGNER

PRODUCTION DIRECTOR | BUSINESS OPERATIONS DIRECTOR

©2012 Blizzard Entertainment, Inc. All rights reserved. World of Warcaft, Diablo, StarCraft and Blizzard Entertainment are trademarks
or registered trademarks of Blizzard Entertainment, Inc., in the US and/or other countries.

We are actively recruiting for the following key positions across our game and online technology teams:

® ® ®

Follow us on Twitter: @blizzardcareers

jobs.blizzard.com

http://BATTLE.NET
http://jobs.blizzard.com

toolbox

by AlexAnder brAndon

rad game tools

Miles Sound System 9

The Miles Sound System
is the longest-running
commercially available
sound middleware for
games. Miles was developed
by John Miles in the early
1990s, and acquired by
rAd Game Tools in 1995.
Version 9 brings a new
feature called Timeline,
which brings Miles into the
modern era.

Miles’s compression includes
support for bink audio encoding
(of course), a clean-room ogg
implementation, and MP3 rights.
Channel control and surround
support, and the means to create

as much high-level functionality as
you want (such as custom effects,
the ability to control channel count
for things like rapid-fire weapons,
metrics reporting, and profile for
memory) are also included. When
compared with its competitors,
Miles holds its own—it’s fast, cross-
platform, and easy to integrate into
your game’s codebase, but it was
mostly limited to managing your
sound bank rather than giving you
direct control in the game runtime.

I did some high-level
functionality creation alongside
some obsidian programmers
around 2007, using Miles and a
proprietary engine. but over the
years, Miles has started to show

its age. For some time, Miles
was little more than a robust
and reliable low-level system,
providing the core functionality
most game engineering teams
needed to play back just about
any audio they wanted. It was
(and still is) built like a tank, with
hardly any crashes or bugs, and
most senior engineers know it
won’t give them any surprises.
Since then, though, higher-level
graphical user interfaces, real-time
controls, and advanced bank
management across all platforms
were being exploited by Miles’s
main competitors—AudioKinetic’s
Wwise and Firelight Studios’s FMod.
Wwise and FMod became the Sony

PrICe

› $6,000 per game per platform

sYstem reQUIremeNts

› Windows Vista and higher

Pros

1. Timeline editor
2. Robust code base
3. Wide platform support

CoNs

1. No Android support yet
2. Lacks control surface connectivity
3. Lacks effect plug-in capability

rad game tools
miles sound system 9
550 Kirkland Way - Suite 406
Kirkland, WA 98033
425.893.4300

www.gdmag.com 31

http://WWW.GDMAG.COM

toolbox

PlayStation 2 and Microsoft Xbox to
Miles’s Sega Dreamcast. I believe
that’s about to change.

At this year’s GDC, RAD
showcased the newest version of
Miles, including Miles Sound Studio
9. Its Timeline feature might change
the way we handle game audio.

Up until the last few years,
designing and manipulating
game audio within a game build
was a time-consuming challenge
for audio designers—often far
more frustrating than, say, audio
postproduction work on a film. With
Miles’s Timeline tool, you can play
a build of the game and see the
audio events reproduced visually
in the order they play during your
gameplay session. For the first
time, you can click on any event
and change either the individual
attributes of that event, or employ
a sweeping change that affects all
events of that type.

I gave this a whirl using the
included Breakout-clone sample
game. You have a Start button
that captures events when Miles
Studio is open, even if no sounds
are assigned to them. You can then
click on the events and assign
sounds and properties as you
see fit. In other audio engines you
can’t just rewind a play session
and examine the audio except in
profiling tools.

Timeline is particularly useful
when the engineer is integrating
the audio into the game build itself.
During this process, the engineer
needs to edit files in a bank

manager and continually restart
builds, which can take as little as
two minutes if he’s swapping out
a file, or as long as five minutes
with a lot of parameter changes not
handled in real time. With Timeline,
you get instantaneous feedback;
two minutes per change could take
up hours of that engineer’s time,
but Timeline brings that down to
mere minutes.

 This is where you say “That
sounds great, but where do
events get assigned in the first
place?” Miles’s lead developer Dan
Thompson also has a few tricks up
his sleeve to make Miles easy to
work with—specifically, the team
has built in easy ways to integrate
Miles with existing widespread
middleware such as Unity and
Unreal Development Kit.

For example, once you’ve
integrated Miles into your UDK
project, you’d go into Kismet and
use Event objects from Miles rather
than Sound Cues, connect them
to whatever game event you see
fit, and see the results show up
in the Miles Timeline. For Unity,
Miles’s well-documented set of
hooks into Unity’s scripting system
allows a sound designer to enter
the hooks at the appropriate points
in the script. It’s worth noting that
Unity integration is a bit more
complicated than UDK integration,
because the audio designer needs
to be familiar with whatever
scripting language the team is
using (JavaScript, Boo, or C#) in
order to insert the appropriate

Miles hooks, whereas with UDK the
designer can simply use Kismet
once the low-level code is in place.

The rest of Miles’s designer
tool is fairly straightforward and
follows the same logic as Wwise
and FMOD. The sound files,
related characteristics, and the
events that trigger the sounds are
represented as a nested hierarchy
similar to a file and folder directory
tree. Latency is pleasantly low
when playing back files on both PC
and 360 (my testing platforms).
The designer tool has the usual box
of tricks, including randomization
of pitch and volume across a
preset range, fade and crossfade
control, and simple envelope
control and basic effects, such
as reverb for environments. In
addition, there is support across
the board for almost every game
platform. The most notable missing
platform at present is Android.
Also new to Miles 9 is “asset
hotloading,” which keeps track of

all your edits to assets through
the Network tab and lets you send
out those edits to the rest of your
team.

Miles still lags behind in a
few key areas, though—chief of
which is its lack of support for
pro audio tools and effects plug-
ins. Audio engineers are slowly
adopting pro audio tools, such
as the Mackie Pro Control, which
have faders and knobs that you
can assign to GUI representations
onscreen. A Pro Control (or an SSL
Nucleus, another popular pro audio
manufactured control surface)
can be to an audio designer what
a Wacom tablet is to a game artist:
It gives the audio designer a much
faster way to manipulate audio
properties. Also, Miles doesn’t yet
have any plug-in architecture for
pro effects such as iZotope and
Waves. Pro effects such as these
are used in hit albums and film
soundtracks as well, and both
Wwise and FMOD have used them
for several years now.

Overall, I believe Miles is
ready to jump back into the
fray of competitive mainstream
audio engines, as Timeline
combined with its optimized
low-level code will be an excellent
choice for engineers and audio
designers alike—but some audio
professionals might find that
Miles is simply missing a few key
features that its competitors have
offered for years.

AlexAnder BrAndon is a composer, sound

designer, voice actor, producer, and director

for games with 18 years of experience in

the video game industry. He is currently

president of Funky Rustic, an audio

outsourcing group in Georgetown, Texas.

game developer | august 201232

An example of Miles Sound Studio’s
Timeline in the background

showing game events during a
gameplay session.

33W W W . G D M A G . C O M

http://WWW.GDMAG.COM
http://www.xsolla.com
mailto:bizdev@xsolla.com
http://vfs.com/enemies

http://GDCONLINE.COM

www.gdmag.com 35

INNER PRodUcT // aUTHoR

a basic history of basic

INNER PRodUcT // JoHN SZcZEPaNIaK

////////// at 48 years old , the basic programming language is older than most
working game developers . we asked its creators and early advocates about
its inception and history , and how it influenced the modern game industry .

Caption

t
he BASIC programming language, or Beginner’s All-purpose
Symbolic Instruction Code, turned 48 this year. That’s an
extraordinarily long life for tech—even longer than the
commercial video game industry has been around. Since

its inception, BASIC has proliferated from a single source to include now
over 280 variants and growing. Just about every single model of computer
(including a few game consoles) has had at least one variant. Many veteran
game developers got started working with BASIC out of their bedrooms on
early personal computers, and BASIC remains popular with hobbyist coders.

The fathers of the original Dartmouth BASIC are Dr. Thomas Kurtz and
the late Dr. John Kemeny, who died in 1992. Kurtz, who turned 84 this
year, spoke with absolute clarity as he recounted BASIC’s launch: “That
first BASIC saw the light of day on May 1, 1964, at 4 a.m. We were a team,
but [Kemeny] was always the team leader. He did the politicking and the
money-raising that was always necessary while I attended to the details.
But he was always careful to give me full credit for my share of the project,
whatever the project. I had already used the word BASIC for a statistics text
I wrote several years earlier [Basic Statistics, 1963]. John Kemeny liked
acronyms, and so we settled on BASIC, for which he devised the expansion
‘Basic All-purpose Symbolic Instruction Code.’ By the way, it has always
been ‘Symbolic’ and never ‘Simplified.’”

BASIC BegInnIngS
» Kurtz was first introduced to computers in 1951, when he spent the
summer at the Institute for Numerical Analysis at UCLA, which was in the
process of building the Standards Western Automatic Computer (SWAC), a
clunky contraption that used both vacuum tubes and Williams tubes for

Top left: An early publicity photo for True BASIC with Dr Thomas Kurtz, left, alongside Dr
John Kemeny. Photo courtesy of Dartmouth College Library. Bottom: Chip elliott, John
Kemeny, Tom Kurtz, Chris Walker, and Dave Pearson soon after commercial operations of
True BASIC began. Photo courtesy of John Lutz.

The Black Onyx

http://WWW.GDMAG.COM

INNER PRODUCT // JOHN SZCZEPANIAK

internal memory. He created a
program that used SWAC to deal
with tail probabilities for statistical
distributions.

Five years later he met Kemeny.
“Although John Kemeny had been at
Princeton while I was a grad student
there, I didn’t meet him until he was
recruiting for Dartmouth in 1956,”
Kurtz said. “I was recruited to teach
statistics, among other things, and
it turned out that IBM, MIT, and UCLA
were establishing regional computer
centers in the East and the West.
To earn extra money I was made a
‘research associate’ to this effort and,
even before I showed up at Dartmouth
for my first class, I attended a
course at MIT on Share Assembly
Language (SAP) for the IBM-704.”

But SAP was complicated,
and Kemeny wanted to make
programming accessible for students
without a science background,
because those students often
became future decision-makers

in business and government. “In
some of my talks in those early days,
I called programming in BASIC a
‘learning machine,’” Kurtz said. “I’ve
always felt that being able to program
meant that one had to develop the
ability to abstract, to construct
‘mental models’ of something or
other. I feel that this ability leads to
being able to make contributions in
fields other than the sciences.”

So they needed a programming
language that was more accessible
than Assembly. “To make SAP more
palatable to nonprogrammers at
Dartmouth, John Kemeny devised
DARSIMCO, Dartmouth Simplified
Code, by presenting SAP in terms of
three-instruction sequences,” Kurtz
explained.

For example, to perform A + B =
C, you would write:

LDA A

FAD B

STO C

DARSIMCO and SAP were both
abandoned in 1957, when FORTRAN
arrived at Dartmouth. Although
higher-level languages were
generally believed to be inefficient
compared to assembly language,
Kurtz discovered that coding in
higher-level languages saved both
computer usage time—which was a
valuable and limited commodity—
as well as his personal time. So he
continued to work with higher-level
languages that would inform
BASIC’s development later on.

In 1959, an undergraduate
student without a computer
background, influenced by
FORTRAN, prepared a higher-level
language and compiler he called
DART for the LGP-30 computer (a
rotating-drum machine), which
caught Kurtz’s attention. Around
1961, Kurtz and several students
worked on an ALGOL compiler for the
LGP-30, which was later modified
to be self-contained and named

SCALP. This new language was
subsequently taught to hundreds of
students until BASIC replaced it.

Meanwhile, Kemeny worked
on one more important language
in 1962 before BASIC, again for the
LGP-30. As Kurtz explained:

“John Kemeny devised a
simplified language for that
environment he called DOPE,
‘Dartmouth Oversimplified
Programming Environment,’ which
anticipated BASIC in having one
instruction per line and having
instructions such as:

5 + A B C to indicate ‘Add A + B
and put the result in C’

This naturally led to the BASIC form
5 LET C = A + B ."

DARSIMCO, DART, ALGOL 30, SCALP,
and DOPE didn’t last long and weren’t
massively successful, but they
all influenced Kemeny and Kurtz

gAmE DEvElOPER | AUgUST 2012 36

Top left: The first Ultima on the Apple II was programmed in BASIC—due to their slower nature, RPGs and adventure games were the perfect fit for BASIC. Top right: akalabeth was the
predecessor to Ultima, containing many elements which would later feature in the series. akalabeth was written entirely in BASIC, and comes bundled with QB64 as example code
(pictured). Bottom left: hUnt the WUmpUs was a text-based game from the early 1970s. So popular, the creature made cameo appearances in other games, such as M.U.L.E. Bottom right:
RebelstaR RaideRs on the ZX Spectrum, circa 1984, was an early BASIC title by veteran strategy developer Julian Gollop. It featured single-screen maps and tactical gameplay.

www.gdmag.com 37

INNER PRodUcT // JoHN SZcZEPaNIaK

with regard to BASIC’s fundamental
principles, which he explained as:

A) We made no distinction
between floating-point
arithmetic; we used only
double precision floating-point
internally and adopted several
strategies to make loop
termination come out right.

B) No format-control on INPUT and
default format for printed output.

C) One line, one statement.
D) Since we needed line numbers

to facilitate editing (this
was before WYSIWYG screen
editors), we used these line
numbers as GOTO targets.

…) The word L…T came from our
mathematics background,
because we are always saying
things like: “Let G be an Abelian
Group.” Furthermore, L…T
was required for assignment
statements so that all statements
started with a keyword. This made
understanding things like X = Y + Z
easier for nonscientists. For logical
expressions, we used IF X = Y +
Z TH…N... while for assignments
we used L…T X = Y + Z.

F) No nonobvious punctuation,
like the ALGOL semicolon to
terminate statements, or the
mysterious FORTRAN IF (A) 100,
200, 300. There is no comma
allowed after the (A). Along the
same line; we used ordinary-
sounding …nglish words for the
commands to the time-sharing
system. H…LLO rather than
LOGON, GOODBY… rather than
LOGOFF, N…W to create a new
program, OLD to retrieve an
existing program, and so on.

Interestingly enough, BASIC didn’t
support the INPUT statement until
its third version, meaning that for
the first two years it wasn’t actually
an interactive language—obviously
making game creation rather difficult!

BASIC TIme ShArIng
» The other major factor in BASIC’s
widespread adoption was the
development of time sharing. With
a batch computing system, it could
take hours, or even days, for a
program’s results to arrive. Less-
intuitive languages were easier to
make mistakes with, and those

mistakes would waste precious
computer access. Time sharing
allowed several people to work
on one computer simultaneously,
maximizing computer time.

Kurtz described the first
time-sharing operating system at
Dartmouth:

 Two Dartmouth
students, Mike Busch
and John McGeachie,
developed a time-sharing
operating system for
the combination General
Electric GE-235 computer
and the GE Datanet-30
front-end communications
controller. This was done
simultaneously with the
development of BASIC and,
in many ways, was more
fundamental to our goals
at Dartmouth than BASIC
itself. GE immediately took
what we had done and
developed a nationwide
time-sharing network. They
used regionally located
centers, as the cost of long-
distance communication
at that time was too
expensive. It was in one
of these centers in Seattle
that Bill Gates was first
introduced to computing
and BASIC. My best guess
is that he was about 13
years old at the time.

Kurtz and the Dartmouth team
continued to refine BASIC, adding
INPUT, RANDOMIZE, and ON-GOTO
statements among many other
revisions, until it hit its sixth
edition in 1971, which remained
largely unchanged for several
years. Since BASIC was included
with General Electric’s time-sharing
systems, it continued to spread
until it became the most widely
used programming language in
the world. According to Kurtz, “At
one point, around 1974, when
ANSI initiated a standards effort
for BASIC, it was used on more
time-sharing networks, of which
there were over a hundred at the
time, than any other language—my
recollection is more than 80.”

It was around the time of the
sixth edition that David Ahl, author
of the influential book 101 BASIC
Computer Games, was introduced
to BASIC. “I accepted a position at
Digital Equipment Corporation in
late 1969 in the PDP-8 Group and
soon got involved in marketing
minicomputers to schools and
colleges,” he said. “At the time,
the only high-level language on
DEC’s smallest computers was
FOCAL. However, because of the
pioneering work at Dartmouth
by John Kemeny and Tom Kurtz
in developing BASIC and related
educational applications, most
colleges and high schools wanted a
computer that spoke BASIC.”

Unlike other programming
languages, BASIC was completely
unregulated, which Kurtz believes
was crucial to its success.
“Dartmouth always took the
point of view that what we did
was public, and thus we never
made any attempt to control or
direct the results of our research,”
he said. Ahl agreed, adding,
“DEC’s FOCAL language was
equal to BASIC in most aspects
and even better in some, but it
had one huge drawback: DEC
was unwilling to license it to
other computer manufacturers.
FOCAL was fighting an uphill
battle against BASIC, which was
available on GE, Honeywell, HP,
and other computers.”

gAmeS: BASIC’S kIller App
» The early 1970s saw BASIC
move away from mainframes and
time-sharing systems and to the
burgeoning microcomputers of
the day. Ahl recalled how quickly
they sprang up: “DEC took the
unusual step of contracting with
outside vendors to develop four
versions of BASIC, one for a 4K
stand-alone PDP-8 (EduSystem
10), one for a small multiuser 8K
PDP-8 (EduSystem 20), one for the
Timeshared-8 (EduSystem 50), and
one for a batch processing PDP-8
with a card reader (EduSystem
30). The most limited version was
that for the 4K PDP-8 as the BASIC

Jumpman, a homebrew game for the Atari 2600 created using Batari
BASIC. Slightly dodgy physics aside, it’s an impressive feat.

http://WWW.GDMAG.COM

INNER PRODUCT // JOHN SZCZEPANIAK

interpreter used 3.5K of memory,
so programs had to fit in the
remaining 500 12-bit bytes.”

To Ahl, games were critical
to BASIC’s spread. “We needed to
demonstrate that such a limited
configuration could run real
programs, so I started converting
FOCAL demo programs to this
low-end BASIC,” he explained. “We
also encouraged users who wrote
programs, especially games, to
submit them. In 1972 I collected
together a bunch of games that
I had written from scratch or
converted from FOCAL along with
submissions from users and
published it as 101 BASIC Computer
Games. The book was later revised
and, in 1983, total sales topped
1 million, and it became the first
million-selling computer book.”

As the book included type-in
listings for BASIC games, it was
likely a major catalyst in BASIC’s
proliferation. A large base of
games would appeal to anyone
considering incorporating a
language into a new piece of
hardware—like Gates and Altair
BASIC, for example. Ahl recalls
meeting Gates: “When I left DEC
in July 1974 and started Creative
Computing magazine...I used all my
vacation time to attend computer
shows and conferences in order
to promote Creative Computing.
One fascinating show was the
Altair Conference in Albuquerque
in 1975 where I met Bill Gates
and learned of his intention to
write a BASIC language for the
Altair.” Sure enough, in 1975,
MITS released Altair BASIC, which
was developed by Gates and
Paul Allen as the newly founded
“Micro-Soft.” It was an interpreter,
as opposed to Dartmouth and
GE’s implementation of a BASIC
compiler, but it suited the
limitations of the Altair hardware.

Despite his influence, Ahl is
reluctant to take credit for BASIC’s
hobbyist popularity: “Did my book
popularize the spread of BASIC?
Maybe, but the great libraries of
BASIC programs at Dartmouth, the

Minnesota Educational Computer
Consortium, and Huntington Computer
Project along with books like Bob
Albrecht’s What To Do After You Hit
Return were equally influential.
BASIC was the only widely available
interactive language. Smalltalk?
Lisp? Logo? MUMPS? They didn’t
stand a chance against BASIC.”

BASIC continued to spread as
Microsoft ported its version to new
microcomputer platforms and other
people developed their own BASIC
variant. Apple cofounder Steve
Wozniak recalls writing Integer
BASIC for the first Apple computers:

 I didn’t program in

BASIC, but I sniffed the wind.
There was a book out, 101
BASIC Computer Games,
and Bill Gates had written
a BASIC. So I said: You’ve
got to have these games,
it’s going to be the heart
of a computer that’s worth
anything to people.... The
microprocessor I used only
had machine language.
I’d never had any training
in writing a computer
language, so I pulled out a
manual at work, which was
Hewlett-Packard, and read
through making notes of
all the commands. I didn’t
realize their BASIC was very
different [from] Digital
Equipment’s BASIC, which
the 101 Games had been
written for. They were very
different regarding
strings.

Technically, Wozniak was probably
the only one to hand write a new
version of BASIC, explaining:

 I could not afford
a time-share assembler.
That’s where you take a
terminal, call a local phone
number, connect to some
faraway computer, and
type your programs in
using machine language.
So I wrote my programs

gAmE DEvElOPER | AUgUST 201238

Top: Family BASIC for Nintendo’s Famicom isn’t well documented in English, but you can
have fun drawing custom backgrounds! Middle: Catrap on the Game Boy started life as a
BASIC type-in listing for the Sharp MZ-700 computer in 1985. The source code is online.
Bottom: Quinty came about after Satoshi Tajiri tinkered with Family BASIC to understand
how the Famicom functioned.

www.gdmag.com 39

INNER PRodUcT // JoHN SZcZEPaNIaK

in machine language on
paper, and then I looked
at little charts to figure
out what ones and zeroes
would be created by them.
I would write the ones and
zeros down in base-16,
or hexadecimal, and type
that into the computer I
had built. It would take me
40 minutes to type my
entire BASIC in. If you go
back to Bill Gates, he used
a computer to type the
program in. I’m sure I must
be the only one who wrote
a language completely in
my own handwriting.

BASIC And the nASCent
gAme InduStry
» After that first breakaway in
the mid-1970s, BASIC variants
continued to propagate across all
hardware formats, and as BASIC
spread internationally, it would
be localized for each new country
it spread to. This formed a few
distinct microcosms.

In the United Kingdom,
microcomputers became wildly
popular. Machines such as the
ZX Spectrum, Amstrad CPC, and
Commodore 64 all had one or more
variants of BASIC interpreter. With one
of these affordable, comparatively
easy-to-learn machines, a teenager
in the United Kingdom could write a
game in his spare time using BASIC,
have a parent sign a publishing
contract, and have the game be
distributed on audio cassette across
the country. Two examples are Ghost
town and ZiGGurat by John Pickford,
both made while he was still at school
(the first netting him £500). From
this humble start on the ZX Spectrum,
he would go on to develop NES games
for Rare under contract. And thanks to
the BBC’s Computer Literacy Project,
almost every British classroom had
a BBC Micro—complete with BASIC.

Japan adopted BASIC dialects
on various home computers,
often ported by Microsoft. These
computers included NEC models
such as the PC-6001 and PC-88,
as well as the MSX and X68000
formats. Some of Japan’s most
prominent developers learned
to program using these BASIC
variants, including DraGon

Quest creator Yuji Horii. He first
encountered BASIC on his PC-6001,
reading books on the language
and modifying the games he had.
Using BASIC he would program
Japan’s first adventure game,
the astoundingly successful and
genre-defining PortoPia renZoku
satsujin jiken, which subsequently
influenced an entire generation of
Japanese players and developers.

Even Nintendo created a
Famicom BASIC variant (called
Family Basic) in June 1984,
which Pokémon creator Satoshi
Tajiri of Game Freak used to
develop his understanding of the
Famicom. In an interview with
the Tokyo Metropolitan Museum
of Photography, he described the
creation of his first Famicom/NES
title, Quinty (aka Mendel Palace):

 It became possible
to see what was actually
going on inside the
Famicom, when software
for beginners called “Family
Basic” was released. When
I completely understood
its mechanism, I went
to Akihabara to buy a
multiuse circuit board,
added the terminals from
my Famicom, and ran my
programs over it. That was
our first step. Then I made
a long-lasting battery, to
save the memory on the
circuit board. It was all
a handmade developing
environment.

But how important were games to
the BASIC founders? Very important,
as it turns out. Kurtz explains:

 The early personal
computers were primarily
game machines for
hobbyists. So, their
versions of BASIC had
instructions for dealing
with joysticks, and so on.
Remember, at the time that
Gates [and others] did their
things, BASIC was the most
widely used programming
language in the world.
The microcomputer folks
adopted it for their teeny
machines, which at first

were good only for game
playing. It was ideal for
hobbyists who could not
afford to pay for time-
sharing services. Serious
business users couldn’t
imagine giving up their
big machine computers
to put their applications
on these “toys.” It’s clear
that Microsoft did see the
potential and managed to
benefit from it, but most of
the other small personal
computer companies did
not.

Even now, you’ll find the roots
of BASIC in a lot of popular or
significant games. Richard Garriott
would use Applesoft BASIC when
programming akalabeth, and again
when developing the first ultima.
wiZarDry was started (though not
completed) in BASIC. Henk Rogers’
the black onyx, a major influence
on early Japanese designers, was
partially programmed in BASIC.
Pitman, also in Japan, started off as
a magazine type-in before it was
ported to the Game Boy as catraP.
Julian Gollop, famous for the x-com
series of strategy games, started
out programming in BASIC on the
ZX81 and then ZX Spectrum micros.
One of his earliest BASIC games
was rebelstar raiDers on the ZX
Spectrum, which itself spawned
several sequels right up to 2005.

IS BASIC StIll relevAnt?
» BASIC’s significance is fading as it
nears its 50th anniversary. Anyone
interested in game development can
use utilities like Game Maker, which
don’t require any programming
knowledge, while more ambitious
developers these days target popular
platforms with better earning
potential, such as iOS. Even if you
want to use BASIC, where do you
start? Microsoft no longer includes
QBasic with Windows, and the older
DOS-based versions are incompatible
with modern Windows versions.

BASIC isn’t popular in academia
anymore, either. “Two things
happened over the years,” Kurtz said.
“First, many of the applications used
to demonstrate the use of simple
BASIC programs could be handled, for
example, by spreadsheets. Second,

the computer science profession
insisted on introducing ridiculously
complicated languages, including
those that went with the secondary
school computer science curriculum.”

Wozniak feels it’s still useful
for beginners. “It was really a great
language with a great purpose,”
he said. “People have to start
somewhere, and I think that’s the
best starting language you could
ever have. ...Newcomers learn things
a lot better when they understand
what every statement does. It’s a
much better starting point.”

Ahl feels optimistic, saying,
“Will BASIC go on? Yes, but there’s
a danger in saying that it will last
forever like the alphabet or wheel
or pliers. Nevertheless, the BASIC
language has had a profound
influence for 50 years, and Kemeny
and Kurtz deserve a great round
of applause from all of us...for the
last five decades, it’s been one
of the towering achievements in
technology and education.”

Where does BASIC go from
here? Maybe only BASIC itself can
answer that:

GOTO 10

RUN

John SzCzepAnIAk is a freelance journalist

and novelist, with a penchant for yachting

and obscure video games. He writes for

Hardcore Gaming 101, GamesTM, Retro

Gamer, and several other publications.

yuji horii’s BASIC source code for PortoPia
renzoku SatSujin jiken, Japan’s first

adventure game from 1983. It would later
influence hideo kojima’s Snatcher.

http://WWW.GDMAG.COM

http://tgs.cesa.or.jp/english/

www.gdmag.com 41

Welcome to Unity soUnd design and scripting
audio in unity 101

aURaL FIXaTIoN // aLeXaNdeR bRaNdoN

Starting with the unity gui
» Unity has limited audio capabilities out of the
box when compared to seasoned engines (such
as Unreal) or audio-specific middleware such as
AudioKinetic’s Wwise, Firelight Technologies’s
FMOD, or RAD Game Tools’s Miles Sound System.
Those audio-specific tools have been around
for years, and they offer far more GUI-based
integration than Unity, which mostly limits you
to placing sounds in the world and assigning
sounds to animations. Let’s take a look at the
basics of what the engine can do.

Your Unity work will start in the Scene Editor,
where you can create Audio Clips (the sounds
themselves, such as .wav files), Audio Sources
(audio objects with properties such as 2D or 3D, and
any additional functionality you may wish to script,
such as randomization and arrays of Audio Clips),
reverb zones, distance attenuation curves, low-
pass filter curves and spread curves for your Audio
Sources, and ambient sounds. You can also specify
a Listener, which is where the sound gets picked

up in the game (usually where the player’s view
is, attached to a first-person camera controller).

You can also attach an Audio Clip to an animation
frame within Unity’s Animation window; just hit
Control + 6 to bring up the Animation window,
then click on a character with animations. This
will allow you to select the animations and play
them. From here, just click on the vertical line
icon to add an Event and map it to play a sound.

These are all basic methods of inserting your
audio into a 2D or 3D game scene, but it’s enough to
let you create a full and rich environment of ambient
sounds, and have the sounds that play within that
environment behave realistically, with appropriate
reverb. (Got a bathroom in your world? Yep, there’s
a Bathroom reverb setting.) But to dig much deeper
with Unity audio, you’ll need to start scripting.

Better living through Scripting
» All advanced audio tasks in Unity are scripted,
usually in JavaScript or C#, and it can be
complex, confusing, and time consuming to

an audio professional without at least a year of
coding or scripting training. Scripting lets you
be very flexible, but it also doesn’t give you one
standard way to integrate your audio into the game,
meaning each project may need a unique approach.

With Unity and a decent scripting background,
you can sort of brew your own “do-it-yourself”
graphical user interface approach. Unity translates
script concepts such as variables and arrays
into GUI elements instantly—which is the first
time we’ve seen this in a commercial game
development tool. Previously, there was an entire
code layer that stood between scripting and the
ability to create GUI elements such as buttons or
drop-down menus, but most creative types aren’t
also programmers, and prefer a simpler interface.

This system opens up a world of options
for audio designers who don’t want to wait for
a programmer. If you take the time to learn the
script (which is detailed in Unity’s reference
documentation), you can learn how to create
your own audio functionality and reuse it by

Game audio designers want control. In the film industry, you can easily drop audio into a film and see exactly how it will
play out, but in games it’s not so easy. But things have been getting better (we don’t have to integrate with text files any
more), thanks in part to better audio tools in commercial game engines like Unity. Unity is getting increasingly popular
among game developers across all ranges of expertise, so I’m going to walk through a few of Unity’s basic audio concepts,
both in the GUI and on the scripting side, with tips you can’t get from reading the manual.

unity Scene view with audio Source
indicating inner and outer radii, with
inner representing full volume and
outer representing zero. curves can
be edited when the audio Source
is selected as shown below in the
inspector window.

http://WWW.GDMAG.COM

AURAL FIXATION // ALeXANdeR bRANdON

dragging scripts into your scene editor for
functionality that controls anything you need
(volume, hooking sounds to particles, footsteps,
and so on). It’s pretty handy!

Fortunately, Unity’s scripting languages are
less complex than full-on native code like C++,
and eventually someone could even create a set
of ready-to-go audio scripts with instructions
for the not-so-technically-inclined audio pros to
instantly hear their results. Right now, though,

there’s no way around some programming
without plug-ins. You’ll need to plug in somehow
to the prefabs, functions, and variables of the
rest of the game, similar to how UnrealEd’s
Kismet script editor uses Remote Events to
stub audio connectivity to its game scripts and
controllers. Note that Unity does have a few
Kismet-style plug-ins, such as Antares VIZIO and
Detox Studios uScript, which let designers work
with a visual flowchart type of scripting rather

than code. But it’s best to understand scripting
basics before jumping into these plug-ins, since
you will know how nodes work together already.

Each Unity game may be set up differently,
which means you need to be well prepared for
what might come your way. For example, the
code and GUI that control player footsteps may
be in JavaScript or in C#. Therefore, as an audio
engineer approaching a project for the first time
with no audio scripts yet, you should be prepared
for either one. Angry Bots, the demo game that is
included with Unity, is a good example of JavaScript
implementation. The only issue is that its audio
scripts are all over the place, embedded within each
game rather than clearly delineated from other
game elements (footstep sound code is often in the
same script file as the entire footstep code routine).
This creates a workflow issue where backtracking
through the project to find connectivity becomes
problematic and time consuming, since you don’t
know what the audio scripts are, or where they are
within the Project Window.

You can make sure this doesn’t happen by
keeping all your audio functionality and scripts
inside an easy-to-find folder. The Project window
contains all of your project-based materials, and
when they get dragged into a level they show up in
the Hierarchy Window. You can organize your Project
window to include as many folders and subfolders
as you want; I like to have an Audio folder for my
.wav/.mp3/.ogg files, a Prefabs folder containing
Audio Sources and the raw audio files, and a Scripts
folder containing my audio functions, since it’s
easy to add them to game components from there.

One more note before we start the scripting:
If you’re just starting to learn scripting, try to
focus on C#. JavaScript isn’t as optimized or fast
as C#, and it has a few debugging issues. Also, if
you learn C# well enough, it’s not too difficult to
switch to JavaScript if you need to. Now on to the
meat and potatoes.

Scripting footStepS and fading
» Before we jump into the sound scripting, you
should know about two key concepts: objects
and prefabs. Objects are anything from an audio
file to an animation. Prefabs are groupings of
objects such as a character (mesh, animation,
texture, scripts) all wrapped up in one package.
A typical project, viewed from the Project window
in the Scene Editor, will consist of a Scene folder
(can be the entire game or a single level), a
Source folder with code and script, a Content
folder with all necessary objects, and a Prefab
folder where game-specific object groupings are
kept and dragged into your scene file.

Now, let’s take a look at the JavaScript code
that handles footsteps for Angry Bots
(see listing 1). Note that footsteps (metal)
outside are inaudible. Each character has a
footstep handler attached to it. You specify the
FootType (character) and Audio Source.

gAme deveLOpeR | AUgUsT 201242

l i S t i n g 1

#pragma strict

class MaterialImpact { #PhysicMaterial is like a texture with properties, and within the Material there
will be the means to detect footsteps and bullet impacts, each represented as a variable. When “var” is
used, it generates an editable GUI object in Unity, with values that can change outside the script.
 var physicMaterial : PhysicMaterial;
 var playerFootstepSounds : AudioClip[];
 var mechFootstepSounds : AudioClip[];
 var spiderFootstepSounds : AudioClip[];
 var bulletHitSounds : AudioClip[];
}

class MaterialImpactManager extends MonoBehaviour {
 var materials : MaterialImpact[];

 private static var dict : System.Collections.Generic.Dictionary.<PhysicMaterial, MaterialImpact>;
 private static var defaultMat : MaterialImpact;

 function Awake () {
 defaultMat = materials[0];

 dict = new System.Collections.Generic.Dictionary.<PhysicMaterial, MaterialImpact> ();
 for (var i : int = 0; i < materials.Length; i++) {
 dict.Add (materials[i].physicMaterial, materials[i]);
 }
 }

 static function GetPlayerFootstepSound (mat : PhysicMaterial) : AudioClip {
 var imp : MaterialImpact = GetMaterialImpact (mat);
 return GetRandomSoundFromArray(imp.playerFootstepSounds);
 }

 static function GetMechFootstepSound (mat : PhysicMaterial) : AudioClip {
 var imp : MaterialImpact = GetMaterialImpact (mat);
 return GetRandomSoundFromArray(imp.mechFootstepSounds);
 }

 static function GetSpiderFootstepSound (mat : PhysicMaterial) : AudioClip {
 var imp : MaterialImpact = GetMaterialImpact (mat);
 return GetRandomSoundFromArray(imp.spiderFootstepSounds);
 }

 static function GetBulletHitSound (mat : PhysicMaterial) : AudioClip {
 var imp : MaterialImpact = GetMaterialImpact (mat);
 return GetRandomSoundFromArray(imp.bulletHitSounds);
 }

 static function GetMaterialImpact (mat : PhysicMaterial) : MaterialImpact {
 if (mat && dict.ContainsKey (mat))
 return dict[mat];
 return defaultMat;
 }

 static function GetRandomSoundFromArray (audioClipArray : AudioClip[]) : AudioClip {
 if (audioClipArray.Length > 0)
 return audioClipArray[Random.Range (0, audioClipArray.Length)];
 return null;
 }
}

www.gdmag.com 43

aURaL FIXaTIoN // aLeXaNdeR bRaNdoN

As you can see, this footsteps script is
complex enough to support varied materials.

Bear in mind there are numerous ways to hook
up footsteps. Unity features a splatmap feature for
textures (also known as Terrain Textures) that lets
you assign properties to textures, so they may be
treated in a similar way to Materials in the Unreal
Engine. In a demo created for GDC 2012 called
“Initium,” I collaborated with dotBunny (a Canadian
game development studio run by Matthew Davey)
and went a simpler but more work-intensive route
by setting up zones that triggered footstep sets
when the player would cross them.

Let’s try another example. With a default
Unity installation, you can’t fade in and out from
zero to max volume when using a 2D sound. For
example, let’s say we want a music track to fade
out when we’ve triggered another piece of music.
With Wwise and FMOD, you can do this natively,
but in the meantime if you need to fade you can
use this simple C# script (see Listing 2) that
enables a piece of music to fade in or out at a
specific time of day. Just plug it into an Audio
Source, and it should provide GUI functionality to
enter the time of day and length of fade from 0-1.

Audio designers, unite!
» That’s all we’re going to cover in this article, but
don’t let that stop you from learning more. Unity
has a huge online presence and support system
that is somewhat fragmented between official
and community channels, so here are some sites
that should help you figure out how to solve your
Unity audio problems and find more assets and
scripts you can use in your games.

ALexAnder BrAndon is a composer, sound designer,

voice actor, producer, and director for games with 18 years

of experience in the video game industry. He is currently

president of Funky Rustic, an audio outsourcing group in

Georgetown, Texas.

L i s t i n g 2

using UnityEngine;

using System.Collections;

public class AudioSourceTimeBased: TimeBased {

 public float fadeInRate = 1f;

 public float fadeOutRate = 1f;

 private AudioSource _target;

 private float _originalVolume;

 private float _volumeTarget;

 private bool _shouldPlay = false;

 public bool introOff = false;

 public void Awake()

 {

 _target = GetComponent<AudioSource>();

 _originalVolume = _target.volume;

 _volumeTarget = 0f;

 _target.volume = 0f;

 }

 public void Update()

 {

 if (LevelInfo.Instance.CameraSettings.intro.playing && introOff) return;

 if (_shouldPlay)

 {

 if (LevelInfo.Environment.time > timeOn)

 {

 _target.volume = Mathf.Lerp(_target.volume, _volumeTarget, Time.deltaTime *

fadeInRate);

 }

 else if (LevelInfo.Environment.time > timeOff && LevelInfo.Environment.time < timeOn)

 {

 _target.volume = Mathf.Lerp(_target.volume, _volumeTarget, Time.deltaTime *

fadeOutRate);

 }

 if (_target.volume <= 0.0001f)

 {

 _target.Stop();

 _shouldPlay = false;

 }

 }

 }

 public void FixedUpdate()

 {

 if (LevelInfo.Environment.time > timeOn && !_shouldPlay)

 {

 _shouldPlay = true;

 _target.enabled = true;

 _volumeTarget = _originalVolume;

 _target.Play();

 }

 else if (LevelInfo.Environment.time > timeOff && LevelInfo.Environment.time < timeOn &&

_shouldPlay)

 {

 _volumeTarget = 0f;

 }

 }

}

r e s ou rc e s
Unity tUtorials
http://unity3d.com/support/resources/tutorials
The official Unity tutorials give you a step-by-step
explanation of how a few Unity games are made from
beginning to end.

Unity asset store
From within the Unity Scene Editor, go to the Window
menu and choose Asset Store, and you’ll find a whole
bunch of music and sound assets, editor extensions,
and custom scripts, all of which you can easily add to
your game.

Unity script reference
http://unity3d.com/support/documentation/
ScriptReference/index.htmlUnity has an official script
reference that will tell you everything, but it is incredibly
confusing unless you’re already an advanced scripter.

Unity answers
http://answers.unity3d.com/index.html
Unity Answers lets you ask fellow Unity devs questions
and get fairly quick answers (usually within 24 hours).

http://unity3d.com/support/resources/tutorials
http://answers.unity3d.com/index.html
http://WWW.GDMAG.COM
http://unity3d.com/support/documentation

design of the times // soren johnson

HeadlineWHen digital
Meets PHysical

game developer | august 201244

But the connection between board
games and video games is not a
one-way street; board games are
changing, too. More specifically,
the iPad is revolutionizing the board
game industry as digital translations
of physical games are finally
viable. The iPad’s features—a large,
high-resolution screen, a touch-
based interface, and (perhaps most
importantly) a robust infrastructure
for selling digital apps—are the
perfect combination for digital board
games. Eric Hautemont, the founder
and CEO of the board game publisher

Days of Wonder (TickeT To Ride, Small
WoRld), expressed his enthusiasm for
the device:

“The beauty of the iPad is that
you could forget about it. Meaning
that when you put an iPad between
two players, the screen is so well
done that you almost forget there are
electronics behind that. When you
sit down to play Small WoRld on the
iPad, you stop thinking about it as an
iPad game and just think of it as Small
WoRld. In the future, the question of
whether something is a ‘board game’
or an ‘iPad app’ or whatever it will be

in the future becomes a meaningless
question.”

Days of Wonder’s business
experienced a significant bump from
mobile. Since the release of TickeT To
Ride PockeT on the iPhone, the boxed
version of the game began selling
more copies, by a sustained increase
of 70 percent. Meanwhile, the iPad
version is consistently a top-100
app, selling for a healthy $6.99. (One
sign of the healthy iOS market for
board games is how well they have
maintained a high price point in a
sea of 99-cent games; caTan and

SamuRai both sell for $4.99, while
caRcaSSonne still costs a whopping
$9.99 two years after release!)
Indeed, since release, the digital
versions of TickeT To Ride have
outsold the physical one by 3-to-
1—perhaps we ought to call Days
of Wonder a video game company
instead of a board game one.

transParent gaMes
» As board games become
increasingly digital, we are
discovering that the essence of board
games might not be their physical
nature, but instead a set of shared
design elements, foremost of which
is their absolute transparency: the
idea that all a game’s rules should be
visible. You can’t make a board game
mechanic or process ambiguous, nor
can you hide them from the players,
because you need the players to
actually execute those mechanics
(instead of just showing them the
output of a CPU’s calculations).
Designers should understand the role
it plays in making board games fun—
and how they can be integrated into a
video game as well.

For example, the civilizaTion
series is essentially a giant board
game that can be played only
with a computer to handle all the
calculations and record-keeping.
The majority of game mechanics
are clearly transparent to the
player, from how much food a city
produces during each turn to how
much time is needed to discover
the next technology. The combat
system, however, was originally
not quite so transparent, so earlier
civilizaTion players worried that
a tank could lose to a spearman
under the wrong circumstances.
civilizaTion iv took steps to fix this
problem by providing players with
the exact probability of success for

Board games and video games: Better together

The line between video games and board games is blurring. Consider the recent mobile
games cabalS and HeRo academy; both contain the trappings of board games (turn-based
play, a shuffled deck of game pieces, a visible board divided into tiles, and transparent rules
with no hidden modifiers), even though these games exist only in digital form. Mainstream
video games are also starting to include select board game elements, such as the “Rage
Frenzy” collectible card mechanic in Rage. Essentially, designers are discovering that
familiar board game conventions (cards and dice, for example) can be just as useful as any
video game convention when helping players feel comfortable with the design.

recent Civilization games
have made the combat
mechanics more visible.

design of the times // soren johnson

www.gdmag.com 45

each possible battle. Civilization v
went even further, with a detailed
graphical widget to show the
estimated damage.

The combat systems of these
games were still opaque to the
average player (the hardcore players
ended up reverse-engineering the
formulas, of course), but these
features still honored the ideal of
transparency by making the results
of combat clear; the designers
understood that transparency was
an important virtue for the series,
and the changes were well received
by the fans.

When Digital Beats Physical
» One of the most exciting aspects
of the digital-physical union is that
some board games are greatly
improved in the transition to video
game. First, digital board games
require no set-up time or record-
keeping, which means that games
can be played much faster and in
new environments; suddenly, you
can play MeMoir ’44 in a coffee
shop without worrying about
whether your little army men are
scaring away the other customers.

Being able to play a digital
board game tens (or even
hundreds) of times transforms
the experience. One person will
probably play a heavy, card-driven
historical simulation game like
1960 only a handful of times in
person, since a typical session
takes at least four hours to finish—
but with the web version you can
finish a game in an hour. Making
games that last a shorter duration
means people can play them more
frequently, which means losses
sting less and players are more free
to experiment with new strategies
without fearing they are blowing
their one chance to play the game
that month.

However, the challenge of such
frequent play is that imbalances
are found much quicker than ever
before. a Few aCres oF snow, Martin
Wallace’s 2011 war game on the
French-Indian War, gained some
notoriety for needing a quick patch
to deal with a dominant strategy for
the English. This strategy, known as
the Halifax Hammer, emerged soon
after release because the game was
playable for free on the web; water

found a crack that much sooner.
Another advantage of digital

board games is asynchronous
play; it’s hard to find a long,
uninterrupted block of time where
you and your fellow board gamers
can get together and play in the
same place. Asynchronous play
circumvents this issue by letting
people run games at their own
pace; the program simply waits for
the next player to make her move.

One iOS game, asCension, owes
much of its success to getting
this format right. As a card game,
asCension is merely a competent
variant to the seminal deck-
building card game DoMinion. On
iOS, however, asCension was very
successful because the developers
focused on asynchronous play as a
core feature of the game, enabling
players to easily manage multiple
concurrent games. Not every board
game is ideal for asynchronous
play (each turn needs to feature a
significant number of decisions),
but ones that are should find new
life on mobile devices.

analytical Fun
» Whether played asynchronously
or in single-player, digital

translations can eliminate the
waiting time associated with meaty
board games. Certain types of
Eurogames with little randomness
and no hidden information (Caylus
and Puerto riCo, for example) are
painful to play with “optimizers”—
people who are unafraid to slow
the game down to a crawl to ensure
they make just the right decision.
As people wait for the “optimizers”
to take their turns, they often
conclude that optimizing itself is
not fun, but this is mitigated when
you’re playing asynchronously.
Optimization while under social
pressure to finish faster may not
be fun, but finding just the right
move to handle a tricky situation
is exactly why these types of
games are so rewarding. For a
multiplayer game, we’d call this
phenomenon “analysis paralysis,”
but for a single-player game we’d
call that “intense engagement!” The
problem with playing in person is
not wanting to slow down the game,
while also fearing that rushing will
lead to the wrong move.

Both asynchronous and
single-player versions of board
games solve this problem by giving
the player all the time he needs

to perfect his plan. Indeed, Puerto
riCo comes alive on the iPad, shining
as a tight, elegant game that can
move at a comfortable speed when
a single person gets to make all the
decisions at her own speed. Indeed,
the popularity of cooperative board
games in recent years, such as
PanDeMiC and Ghost stories, suggests
a healthy market for solitaire video
games with a board game soul.

This revelation underscores the
value of decoupling the physical
characteristics of board games from
their defining feature—absolute
transparency. The lesson for all
designers is that transparency can
be a virtue in almost any genre or
format. Consider the natural tile-
matching patterns in triPle town,
or the predictable enemy behaviors
in Plants vs. zoMbies, or the simple
physical elements in Cut the roPe.
These games don’t appear to be
board games, but they all share the
virtue of transparency.

soren johnson was the co-designer

of Civilization III and the lead designer of

Civilization IV. He is a member of the GDC

Advisory Board, and his thoughts on game

design can be found at www.designer-

notes.com.

TickeT To Ride.

http://www.designer-notes.com
http://www.designer-notes.com
http://WWW.GDMAG.COM

http://WWW.GDCCHINA.COM

www.gdmag.com 47

the business // kim pallister

Why rising indies can’t be ignored
in defense of Paying once

the business // paul taylor

www.gdmag.com 47

In an era where free-to-play
is rapidly establishing itself
as the dominant business
model, is “pay-once”
an ungainly lumbering
dinosaur best thought of
as an amusing historical
footnote?

The data is there for all to see.
Industry commentator Nicholas
Lovell of Gamesbrief says, for
example, “On a 10-year view, I don’t
believe it will be possible to charge
for basic access to content at all.”

I’m certainly not a free-to-play
naysayer: It’s clear that F2P offers
many significant advantages,
such as access to a much wider
player-base, the opportunity for
essentially uncapped spending
within your game, and the ability
to reward players for positive
behavior. These are all things
that any game developer should
care about. Recent successes
like Tribes: Ascend and LeAgue of
Legends have shown that F2P can
work for a core audience as well as
a casual one.

I personally believe that
we’ll see many more traditional
mainstream triple-A IPs switching
to free-to-play within the next
two years. The bottom line—both
literal and metaphorical—is that
an F2P game is capable of making
significantly more money than a
pay-once title.

However, as large developers
and smaller indies alike rush into
the bright free-to-play future, it’s
worth remembering that traditional
pay-once games can still turn a
healthy profit.

a different Kind of freedom
Pay-once offers one clear,
unambiguous advantage: There are
no design constraints.

While F2P is certainly
expanding its repertoire in terms of
genre, pay-once knows no bounds.
Some of the most innovative games
being created right now require
only one payment: Who would have
thought that an experimental title
like thechineseroom’s deAr esTher
would be profitable for its creators
within the first five hours of sales?

When you’re free from the
requirement to constantly direct
players to their wallets, you can allow
them to relax and enjoy the scenery.
This is an experience that will never
go out of fashion. People will always
be willing to pay for escapism.

Similarly, the F2P business
model generally presumes that a

game is inherently modular: items,
character slots, aesthetic options,
and all kinds of other features can
be plugged into the core game at
will. While this is great for some
titles, it’s impossible for others
(think about simple-yet-beautiful
experiences such as Limbo), and
not all players are interested.

A high number of continuous
active users is vital for an F2P title.
Player retention is all-important,
so skill curves and progression
have to be meticulously designed
and metricated. However, there
is nothing to say that a game has
to constantly retain players to be
considered a creative success—
there are many highly regarded
games that players enjoy for a
few weeks, leave, and then pick
up again later. It is doubtful that
those designs would be suitable for
F2P monetization.

the aesthetic debate
What about F2P games where
payments have no effect on
gameplay? Traditionally, purely
aesthetic items have always
performed much worse than their
gameplay-modifying counterparts.
David Edery recently acknowledged
this when he indicated that
cosmetic items in reALm of The
mAd god comprise only 17% of the
game’s total revenue.

This has implications for
certain types of competitive
games where paid “crossgrades”
(as in Tribes) are not an option.
Valve’s forthcoming doTA2 will be
monetized entirely with aesthetic
items and will prove to be a deeply
interesting test case. To my mind,
this is an area where F2P has yet
to fully prove itself to a broadly
Western, “hardcore” audience.

the future is free
Does the inevitable dominance of
F2P mean the death of pay-once?
Given the rapid increase in the
rate of smaller indie games being
produced in the last three years,
and the very recent emergence of
a variety of new price points for
such games, such a proposition
seems ludicrous.

F2P proponents are often
keen to write off titles with what
they see as insignificantly low
revenues, but this means that

they also write off an emerging
horde of new indie developers.
With many talented people leaving
the mainstream industry, and
many younger developers taking
advantage of the vast resources
which have only recently become
available, this sector of the
industry is booming.

Valve in particular is brilliantly
placed to take advantage of
this situation, thanks to the
market share of Steam, and the
company’s willingness to include
indie titles that don’t earn so much.
While the promise of a living wage
(or much better) awaits many
independent creators who manage
to acquire Steam distribution for
a pay-once game, the model will
continue to thrive.

Our tactical game frozen
synApse transformed Mode 7 from
a struggling start-up to a fully
fledged microstudio. Its gameplay,
aesthetic, and feature-set all
pointed toward pay-once for us,
and we’re very happy with our
choice. We wanted to make a game
where units had no health bars and
no “equipment”—like chess pieces.
Once we were happy with the core
gameplay, we didn’t see much
room for expansion in terms of unit
types (even coming up with one
for our DLC was a challenge!) and
our pared-down aesthetic doesn’t
really leave room for hats or other
visual flourishes.

I have a soft spot for pay-
once as a consumer, but I also
acknowledge the power and
benefits of free-to-play and
fully intend to make use of it in
the future. Pay-once isn’t going
anywhere, so as developers we
need to take the time to understand
when it’s the right choice.

It is far from an evolutionary
dead-end.

Paul taylor is the co-founder of Mode

7 Games. You can follow him on Twitter:

@mode7games.

Frozen SynapSe.

http://www.gdmag.com

pixel pusher // steve theodore

game developer | august 201248

Tread
LighTLy

 SuStainable StewardShip for our fileS

as artists, we pride ourselves on
our unique creative abilities—on
being able to see things in ways that
nobody else can.

unfortunately, we tend to take the whole road-
less-traveled a bit too far, as anybody who ever
has to work with other people’s files on a regular
basis knows. ever opened up “armchair.max” and
found not just a chair, but a fully rigged, textured
character because somebody needed scale
reference? how about trying to pop in and tweak
some collision geometry only to confront 57
missing file dialogs pointing at textures in a temp
directory on somebody’s laptop? if you’re lucky,
you may even have experienced the perennial
classic “file name says ‘run’ but the actual
animation is ‘stop running’” because a contractor
used the run file to generate a transition and
saved it under the wrong name. annoying sure,
but proof of our brilliance—only truly creative
geniuses could find so many different ways to
make each other miserable. this, my friends, is art.

Collaboration is a fact of life in the modern
game business. the artist who gets to own a file
exclusively for its entire life span is a rare bird

these days. the increasing technical complexity
of our assets means that few of us can model,
rig, animate, and provide physics or gameplay
markup to a file at every stage of development.
even if you’re a generalist who could do every
one of the dozens of tasks needed to bring a
model to life, there’s always the chance that
somebody else will have to take over your
precious asset in the hectic weeks before
shipping to cut down on polys, replace textures,
or fix bugs. no asset is an island.

even if you’re perfectly happy with your
own personal level of chaos, someday you will
have to pick up where somebody else has left
off. the odds are good that you’ll spend half a
day just poking around—hiding and unhiding
meshes, resetting display layers, hunting for
lost references, or simply marveling at the
quirky leavings of your predecessors instead of,
you know, actually working. we can all roll our
eyes about it, but it’s an entirely avoidable—and
unprofessional—occupational hazard.

Since it’s a fact of life, let’s devote a few
minutes to the ethics of shared work. it’s a
simple application of the Golden rule—do unto
your files as you would have done unto the files

you have to work with. before your next check-in,
take a few seconds and ask yourself if the file is
really in a fit state to be seen or used by others.
to help you along as you ponder, here’s a little
guide to how to tread lightly in shared files.

OrganizaTiOn
» when you’re busting out polygons in a creative
frenzy, it matters little that every object in
the scene is named “pCubeXXXX,” or that your
character’s arms are called “r_leg” because they
started out as duplicates, or that the shader
for your floor is called “ceilingtemp.” as long
as you’re actively modeling, your short-term
memory and context cues—like where things
live in outline view, or the fact that you can select
them all with a particular swipe in one viewport—
should provide enough information to keep the
creative process going. few artists are willing to
step out of the flow of a good work session just
to make sure that everything is neatly named
and properly grouped.

unfortunately, when things slow down, that
context information is all too easy to forget.
Coming back to a complex file after a long
weekend is disorienting enough; opening up

iL
LU

ST
ra

Ti
On

 B
y

jU
an

 r
am

ir
ez

pixel pusher // steve theodore

www.gdmag.com 49

 SuStainable StewardShip for our fileS

somebody else’s unholy rat’s nest of a file with
no prior knowledge at all is usually an appalling
process. So it’s important to take advantage of
creative downtime to tidy things up while your
creative faculties take a break. it’s a kindness
both to your teammates and to your future self.
never underestimate how quickly you’ll forget
exactly what “fix_2_final” is supposed to be, or how
to tell the difference between shaders named
“concrete,” “concreet,” and “Concrete_copy.”

descriptive names and a logical hierarchy
don’t take a lot of work to maintain, and they
repay that minimal effort many times over the
life of a file. You don’t need to go overboard—it’s
probably okay to group the 10 futuristic forms
that make up your starship’s command pod
together as “command_pod” rather than trying
to cook up individual names for every sci-fi
doodad. Just ask yourself these three questions
before you close your file and hand it off to your
colleague:

* if i had to get to some part of this
model quickly, could i?

* if somebody hits “unhide all,” will
the file still be usable?

* is the file exportable in the state
i’ve left it?

if the answer to all three questions is “Yes!” then
your organization is probably sufficient. More
elaborate schemes with color-coded wireframes,
layers, references, or asset containers can be
useful (especially in very complex files, like big
environments or complex rigged characters)
but they can also become a source of conflict
with your co-workers. not everybody uses
(or even knows how to use) the full gamut of
organizational tools, so a minimalist approach
is probably the best. when in doubt, revert to
defaults—you may be comfortable working
with triple-thick borders, visible face normals,
and X-ray mode on everything, but most people
aren’t. obviously, if your studio develops and
sticks to a more elaborate approach, that’s great
(and very, very rare), but otherwise just stick
with simple naming and default view settings.

DepenDencies
» another important aspect of being a
good citizen is making sure to manage your
dependencies. our art programs aren’t really
designed from the ground up for collaboration
and sharing; they’re oriented around a single
artist working off a local hard drive. but our
models, characters, and animations are never
a self-contained unit. every texture, every
referenced model, every shader file or reference
image used in your file is supposed to be on the
local disk—and woe betide the poor joker who

opens your file while it still references dozens of
textures from your local system.

obviously, proper file etiquette means
making sure you check in all the relevant
dependencies along with your files. before you
check a file in, prune out matters that the file
doesn’t really need—like photo image plates,
or other models referenced in to provide scale
comparisons, or textures that were considered
and then discarded. Maya’s optimize Scene
Size function is handy for cleaning out things
like unneeded materials, but in Max you’ll
have to make sure that your scene materials
and material library are in sync by hand. don’t
forget to check for file references too, including
dormant or unloaded references that don’t show
up in the viewport.

naturally, the necessary stuff should be
checked in—not only does that ensure that
other people can see it, but it also will force you
to trim out any references to quick-and-dirty
stuff like files on your desktop or your thumb
drive, since these aren’t likely to be included in
your source control setup. this process is purely
mechanical, so it’s also a great candidate for
automation—talk to your friendly neighborhood
tech artist about a tool that makes sure you
check in textures, referenced models, and other
dependencies together with your files.

exportability
» art files exist only to export the assets that will
end up in the game. for that reason, leaving your
file in an exportable state is a key part of good
file-handling manners.

files frequently contain lots of extraneous
material, for reasons ranging from the eminently
practical to the entirely ridiculous. Scale
reference or style comparisons may include
extra models alongside the asset you’re
actually working on. Some artists like to keep
visual variants on hand as they grope for a
style. Sometimes, it’s easiest steal an existing
shader from another model. and, occasionally,
things just get weird. over the years i’ve found
everything from a collection of severed arms, to
not-safe-for-work .waV files, to a lovingly modeled
40,000-polygon dinosaur stashed away inside of
seemingly innocent asset files.

all that is fine as long as you’re iterating on
the file locally. if it helps your creative process to
have the complete fully modeled eiffel tower on
hand when modeling café tables, then à chacun
son goût. but when you’re getting ready to check
in, you need to clean up the souvenirs of your
artistic journey. at the very least, make sure that
non-game material is clearly segregated from
the main content of the file. the intern who is
working through a spreadsheet of files adding
sound markup may not know or care enough to
hide that eiffel tower before re-exporting, and the
consequences will be très comique.

ideally, you should just get rid of reference,
construction kit pieces, and inspirational architecture
when you’re done with them. never forget that
the next person to open your file will probably hit
“unhide all” at some point. if you think the pieces
are still needed, group them together in a single
place for easy hiding—a nice clear group name
like “dont_eXport” or “hide_Me” is a good idea.

along the same lines, you should also
delete your construction history or collapse
your modeling stack once you’re done iterating.
although construction history can be very
powerful (see “the history Channel” in the
december 2006 issue of Game Developer), it’s
also going to bulk up your file and slow down
the loading process. including your construction
history also makes it possible for a new user to
inadvertently mess up a model by touching an
upstream node or deleting what looks like an
empty transform. Checking in a file is a great
opportunity to simplify and streamline it.

the most important element of a good file,
though, is that it exports correctly. always
make sure the files you check in correspond
to the exported assets in the game. animators,
for example, frequently create variants using
existing files—a crouched run based off of
an ordinary upright run, say, or a transition
starting from an existing cycle. that’s all well
and good unless the altered data gets checked
in to the original file, so that the run.Ma now
exports only a crouching run. this kind of thing
is unprofessional and dangerous—not only does
it mean there is content in the game that can’t
be reproduced, it will cause all sorts of chaos if
some poor tech artist has to do a batch re-export.
So please, make sure your files contain what
they say they do—no more, and no less.

take only pictures, leave only
footprints
» one of the toughest things about life as a game
artist is that the old-fashioned stereotypes of
art as a lonely, individualistic, and very inward
process simply don’t match up with the extremely
collectivist nature of our work. it’s hard enough
just to make pretty pictures; add in the need to
reconcile varying styles and clashing egos and it
all gets pretty touchy. observing the Golden rule
of art files helps to ease the inevitable stresses
of working closely together—and if it catches on,
we’ll all spend less time tabbing through those
blankety-blank missing texture dialogs. So pay it
forward, tread lightly, and do the right thing—until
next month, anyway.

steve theoDore has been pushing pixels for more than

a dozen years. His credits include Mech coMMander,

half-life, TeaM forTress, counTer-sTrike, and halo 3. He’s

been a modeler, animator, and technical artist, as well as

a frequent speaker at industry conferences. He’s currently

the technical art director at Seattle’s Undead Labs.

http://WWW.GDMAG.COM

Ne w s aNd iNformatioN about the Game de velopers CoNfereNCe® serie s of e veNts www.GdCoNf.Com

GDC EuropE aDDs JournEy anD GolDEnEyE 007 postmortEms, maJor publishEr panEl

gdc europe 2012

game developer | august 201250

In the latest update for
gdc europe 2012, show
organizers have unveiled
several new talks,
including a postmortem
of thatgamecompany’s
Journey, a postmortem of
rare’s Goldeneye 007, a
panel on how publishers
need to react to the latest
industry trends, and a
look at Soe’s approach to
social media.

These talks all fall
within gdc europe’s Main
conference, which takes
place Monday through
Wednesday, August 13-15,
2012, at the congress-
centrum ost Koelnmesse
in cologne, germany.

As part of the game
design track, former
thatgamecompany
producer robin Hunicke
(now of Tiny Speck), will
look back at one of the
most highly regarded
downloadable titles of
this generation in “The
lonG Journey.” during
this postmortem, Hunicke
will outline how the
pSN-exclusive Journey
embraced the unknown to
create meaningful social
gameplay without relying
on traditional video game
tropes. The game took three
full years to make—double
thatgamecompany’s
original goal—and Hunicke

will reflect on its production
to determine whether the
title lived up to its initial
vision, while sharing some
key lessons learned along
the way.

Also in the game
design track, former rare
game director Martin
Hollis (now of independent
studio Zoonami) will
debut the first-ever
gdc europe classic
postmortem, chronicling
the development of seminal
Nintendo 64 title Goldeneye
007. Hollis led the creation
of this hit movie tie-in game,
and during this session he
will tell how the game came
to be, detailing its roots as

a VirTua Cop-influenced on-
rails project all the way to
its eventual release in 1997.
It’ll be a rare chance to get
an inside look at the much-
loved 8-million-unit-selling
title that paved the way for
the future of console-based
first-person shooters.

Another new session
in the game design track
is developer don daglow’s
“5 Things About American
online gamers that Surprise
european developers,” in
which he will explain why
european online game
developers need to prepare
for some unique challenges
when creating a title for
players across the Atlantic.
daglow helped create the
original neVerwinTer niGhTs
(the AoL graphic MMo),
and has been working on
online games for more than
25 years. In this session
he’ll detail some of the
counterintuitive behavior
patterns he’s observed
in North American game
players to help european
studios prepare for their
own overseas launches.

over in the
Business, Marketing and
Management track, a
handful of major publishing
executives will discuss
their thoughts on the
biggest trends facing game
development in “Ask the
publishers: Adapting and
Succeeding in a changing
games Industry.” In this
panel, speakers from
major companies including
Microsoft, Konami, and
capcom, moderated by
remedy (alan wake)
head Matias Myllyrinne,
will discuss the latest
digital-distribution models,
new funding options like
Kickstarter, and much
more. The panelists will
examine these trends,
offering their take on
how they will impact
the industry and what
developers and publishers
need to do to survive in the
years ahead.

Also in the Business,
Marketing and
Management track, Sony
online entertainment’s
Linda carlson will host

“Surviving Social Media:
experimentation Leads
to Innovation,” detailing
how companies can
improve their online
community outreach and
better take advantage
of the latest online
developments. carlson
will share Soe’s own
social media efforts,
noting that the best way
to find success with
these initiatives is to
experiment, abandon
unsuccessful tactics,
and constantly seek out
new ideas. Attendees
will walk away with a
better understanding of
how to leverage online
media, regardless of their
studio’s size, structure,
or ambition.

Keep an eye out
for even more exciting
keynotes and sessions;
gdc europe organizers
have plenty more in store
before the event opens
its doors this August.
For more details, see the
gdc europe web site at
www.gdceurope.com.

Goldeneye 007.

http://WWW.GDCONF.COM
http://www.gdceurope.com

www.gdmag.com 51

good job
hiring news and interviews

Hired someone interesting? Let us know at editors@gdmag.com!

whowentwhere

new studios

Sure Ryu Can!
Taiyoung Ryu leaves online games foR console games—in KoRea

SeemS like eveRy day we heaR about anotheR longtime ConSole developeR leaving foR gReeneR paStuReS—
Something SoCial/mobile/indie/fRee-to-play. taiyoung Ryu did the oppoSite; afteR woRking in online game
development in koRea, he deCided to StaRt hiS own ConSole game development Studio Called kuno inteRaCtive.

Catharina mallet has left her position as
executive producer at ea social studio
playfish to head up a newly formed
development team in london for european
publisher king.com. mallet had been working
on an undisclosed project for ea when
she left, and had previously worked as a
producer on The SimS Social.

Sony Corporation president and Ceo kazuo
hirai has stepped down from his role as
representative director and chairman of
Sony Computer entertainment to focus
on his leadership role in the company’s
consumer electronics division. hirai will
continue to serve as a member of the SCe
board in a part-time role.

Capcom uSa strategic marketing director
and fighting game specialist Seth killian has
taken a role as lead game designer at Sony
Santa monica. he will be primarily working
with third-party studios, and his first project
will be PlaySTaTion all-STarS BaTTle royale by
Superbot entertainment.

yoshiro kimura, director or designer of
experimental games like chuliP, lack of
love, and liTTle king STory, has started
a new game studio called onion games,
through which he hopes to make simpler,
smaller experiences, inspired by the
powerful indie game developers he saw at
2012’s independent games festival.

electronic arts, the institute of play, and the
entertainment Software association have
formed a new nonprofit studio called glass
lab, meant to focus on making games for
students across the united States. glass lab
is located alongside ea’s headquarters in
Redwood City, California, and has received
$10.3 million from the bill and melinda gates
foundation and the John d. and Catherine t.
macarthur foundation.

former irrational games and harmonix devs
bryn bennett, Steven kimura, arthur inasi,
aaron demuth, and mallika Sundaramurthy
have started eerie Canal, a new
independent studio to focus specifically on
“creative and inspired games that are too
risky [for] large studios.” eerie Canal’s first
project is called DreaDline, a hybrid action
Rpg/RtS due out in early 2013.

Patrick Miller: Where were you
working before you started
Kuno Interactive?
Taiyoung Ryu: i was working
at a small online game
company called kama digital
entertainment in korea, where
i made two online games
and a number of mobile
games for the korean game
market, and did research on
microtransaction business
models. now i’m working at
a console game company
called kuno interactive, which
i started with my friends.
Currently, we’re making three
console downloadable titles.
i’ve been working as a game
designer for 10 years, but
right now i’m our creative
director and Cmo.

PM: Why did you decide
to switch jobs? Was there
something about developing
for consoles that made you
want to take the new job?
TR: after i quit my previous
game design job, i went to
america to study. i went
to uSC’s interactive media
division and studied there
for three years. that was my
turning point, i think. when
i was working in an online
game company in korea, i
had a vague perspective on
console game development. i
had grown up playing console
games, such as the SuPer
mario BroS. series and many
Japanese Rpgs. making
console games was one of
my childhood dreams, but it
seemed impossible to make
console games in korea
because i thought console
game developers should be
huge like ea, nintendo, and
activision. none of the big
game developers in korea
were interested in developing
for consoles. when i studied

in the u.S., i saw many small
teams making console games
for downloadable platforms
in school. thatgamecompany
was one of them. their games
were very inspirational. So,
after coming back to korea,
i decided to make console
games with my friends.

PM: Are there many other
Korean console game
developers?
TR: as far as i know, there is
no console game developer
except for my company
right now. there were some
console game companies
in korea some years ago,
but they don’t make console
games anymore. for example,
phantagram, the developer of
kingDom unDer fire, is making
the sequel of kingDom unDer
fire as an online game.

PM: How are you adjusting
to the difference between
console development and
online development?
TR: Recently, console
games are getting similar to
online games. increasingly
console games sell virtual
items using in-game shops
and update game content
over time. what i miss
about working on online
games is the open-ended
development. when making
online games, i was able
to easily change various
features in those games

according to user feedback
at any time, even after
launch. it was fun. Console
game development is like
making an art piece—your
game should be completely
finished before you launch.
overall, i prefer console game
development because online
game development feels more
like making a web service
than a game. it’s too business-
oriented. many online game
developers care more about
selling items than designing
good games.

PM: With online games,
you were developing for
a big Korean and Chinese
audience, but your new
console audience is mostly in
America, the U.S., and Japan.
Is the transition difficult?
TR: everything is different.
there is a very small console
market in korea and China,
but the online game market
in korea and China is as
huge as america’s console
market. those players
prefer free-to-play games,
so it’s very important to
design monetization models
to make users spend
money—more important, in
fact, than having different
gameplay or a creative game
mechanic. with the console
game market, i think it’s
more important to give your
players a new experience.

american/european
console game users usually
play a game for less than one
or two months, while Chinese/
korean online players often
stick to a game for more
than a year. with online
games, you need to focus
on communicating with your
players, but for console games,
it’s more important to read the
latest trends in the market.

whowentwhere

mailto:editors@gdmag.com
http://king.com
http://WWW.GDMAG.COM

http://WWW.GDCVAULT.COM

www.gdmag.com 53

STUDENT gamE PROFILES

educated play!

www.lovepunks.com

W h at h a p p e ns W h e n you mi x g a m e de v e lop e r s s t u C a m p be ll a n d du nC a n g at e s , a bu nC h of a borigin a l a us tr a li a n k ids ,
a n d le f to v e r Cos t u m e s f rom a n in die zom bie mo v ie ? t h e a ns W e r is lo v e p u n k s , a f u n f l a s h g a m e t h at ta k e s you t h rou gh
a tou r of t h e roe bou r n e (W e s t e r n aus tr a li a) l a n ds C a p e — a n d a li t t le bi t of t h e k ids ’ p e r s on a li t y a n d C u lt u r e .

love punks
Patrick Miller: What is the Yijala
Yala project about, and how did
Love Punks fit into it?
Stu Campbell: the yijala yala
project is run by big hart—a
social arts company that
has worked with remote and
disadvantaged communities for
20 years. the project is supported
by Woodside, a liquid natural gas
company that has a conservation
agreement with the federal
government to conserve aboriginal
culture and heritage in the area.
big hart came on board to engage
the indigenous community of
roebourne in creative projects
to teach them new skills, so
that in the future they will be
well equipped to conserve and
transmit their own culture.

i arrived on the project a
year ago to assist filmmaker
telen rodwell and indigenous
actor trevor Jamieson to make

a zombie film titled Love Sweet
Love. for the film, i created the
kids’ costumes and designed their
face paint, and together we slowly
established their overall identity,
which became known as the
love punks. once we screened
the film in the community, every
kid in town wanted to be a love
punk. so when thinking about
what project to do next, i knew
it had to be another incarnation
of the love punks and it had to
include everyone!

PM: Why did you decide to make
a game?
SC: i went into the local school with
ideas of creating an interactive
comic, but when i arrived in the
classroom i realized very quickly
that all the kids were game mad,
so i benched the comic idea and
decided we had to make a game. i
wanted to make a game that would
reflect the kids’ personalities and
the environment that helps to
shape them. the kids are hilarious,
cheeky, and full of energy. the
geography surrounding roebourne
is beautiful, diverse, and bloody
hot all year round. it reached 52°C
(125°f) last year! the aboriginal
kids from the community will
happily spend the days inside
playing games, but as soon as
that sun goes down they’ll be
outside in a second. so with that
in mind i knew i had to make an
“outdoor” game.

PM: How were the kids involved?
SC: We started off by filming the
kids in front of a green screen,
imported the film into final Cut
pro, and exported it as a Jpeg
sequence, then we imported the
frames into photoshop as a layer
animation. from there, i taught the
kids how to cut themselves out of
the background. they also learned
a load of shortcuts: command + s
quickly became the class mantra.

the kids and i would have
regular meetings and discuss

what areas of roebourne should
be in the game and how they’d
interact with those environments.
they had so many ideas that the
only way to deal with them was to
create one big crazy montage: the
mudflats blend into the junkyard,
which blends into the river, then
the sand dune, then the burrup,
and finally the desert.

PM: Were the kids involved in the
game design, as well?
SC: yes! they worked with our good
old flash programmer, duncan
gates. eleven-year-old brodie (who
holds the highest score in the
game) had a big long list of fixes
and improvements. he introduced
the life meter, and came up with
most of the ideas of how you score
points, lose points, and get bonus
points. he was also persistent about
cheats. he kept saying “the game
has to have cheats or it sucks!”

meanwhile, 12 year-old
maverick came up with ideas like
“the peacock gives you life.” the
peacock came into the game
when a real peacock walked past
our office window. We chased that
peacock with the camera, filmed
him and imported the frames into
photoshop for clipping. We also
added the frogs we found in our
office toilet and a bearded dragon
we found snooping around our
pond. one of the kids grabbed him
by the tail and held him in front of
the green screen while i filmed. i’m

pretty sure catching that lizard was
the kids’ favorite part of the process.
Duncan Gates: one of the
interesting things about the
development of this game was
the organic, evolving nature of the
creative process. the kids were
coming up with ideas and we were
adding them into the game on the
fly. this presented a few challenges
on the coding side of things as it
goes against the usual software
development process cycle, but
ultimately it felt more creative and
rewarding to do it that way!

PM: How’d you come up with the
costume design?
SC: everything we do up here is
diy and limited by what we can
find locally. the costumes we
designed with the kids. We tore
clothes apart, spray-painted them,
removed sleeves, tied sleeves
around ankles. one of the kids
hung a steering wheel from his
and neck and another kid has a
car light strapped to his shoulder.
When brodie was recruited to
the gang, 11-year-old nathanial
helped him design a costume
and sketched his face paint in
photoshop using his Wacom pen.

PM: What was your goal for Love
Punks?
SC: my personal goal for the game
was to make roebourne look like
the coolest place on the planet—
which it is!

publisher/Developer:
n/a
Release Date: may 10, 2012
Development time: 4 months
Development budget: $20–25k
(this is a rough guess as my time
is divided between making games,
comics, and films. it also includes the
cost for employing a sound engineer
and programmer)
of lines of code in the game: 5,900
A fun fact: We met the miner zombie
at a pub. he was an indigenous fella
too, and was keen to be in the game.

http://WWW.LOVEPUNKS.COM
http://WWW.GDMAG.COM

>>
GE

T
ED

UC
AT

ED

54 A U G U S T 2 0 1 2 | G A M E D E V E L O P E R

http://gamasutra.com
http://designlafilm.com
http://www.lafilm.edu/disclosures

AUDI SG 6

BLIZZARD ENTERTAINMENT 30

EPIC GAMES 13

GREE INTERNATIONAL C2

HAVOK C3

LOS ANGELES FILM SCHOOL 54

PERFORCE SOFTWARE 14

RAD GAME TOOLS C4

TOKYO GAME SHOW 40

TWOFOUR54 3

VANCOUVER FILM SCHOOL 33

XSOLLA 33

COMPANY NAME PAGE COMPANY NAME PAGE

ADVERTISER INDEX

gd Game Developer (ISSN 1073-922X) is published monthly by UBM LLC, 303 Second Street, Suite 900 South, South Tower, San Francisco,
CA 94107, (415) 947-6000. Please direct advertising and editorial inquiries to this address. Canadian Registered for GST as UBM LLC, GST No.
R13288078, Customer No. 2116057, Agreement No. 40011901. SUBSCRIPTION RATES: Subscription rate for the U.S. is $49.95 for twelve issues. Coun-
tries outside the U.S. must be prepaid in U.S. funds drawn on a U.S. bank or via credit card. Canada/Mexico: $59.95; all other countries: $69.95
(issues shipped via air delivery). Periodical postage paid at San Francisco, CA and additional mailing offices. POSTMASTER: Send address changes
to Game Developer, P.O. Box 1274, Skokie, IL 60076-8274. CUSTOMER SERVICE: For subscription orders and changes of address, call toll-free in
the U.S. (800) 250-2429 or fax (847) 647-5972. All other countries call (1) (847) 647-5928 or fax (1) (847) 647-5972. Send payments to gd Game
Developer, P.O. Box 1274, Skokie, IL 60076-8274. Call toll-free in the U.S./Canada (800) 444-4881 or fax (785) 838-7566. All other countries call (1)
(785) 841-1631 or fax (1) (785) 841-2624. Please remember to indicate gd Game Developer on any correspondence. All content, copyright gd Game
Developer magazine/UBM LLC, unless otherwise indicated. Don’t steal any of it.

>> GET EDUCATED

55W W W . G D M A G . C O M

http://WWW.GDMAG.COM
http://GDMAG.COM/SUBSCRIBE

game developer | august 201256

Most FaMous GaMe
DesiGners aren’t
that Great
by A Not Famous Game Designer

» I think this “famous game
designer” thing is totally out of
hand. Look at Peter Molyneux, for
example. What all has he done,
anyway? If you look at him and
all his big awards, and going on
TV, and being in magazines, and
so on, and then you look at a
guy like me—it’s like, hey, I’ve
worked hard and done some pretty
amazing work, too. My student
game, Colored dots, only shipped
because I crunched for close to
a week on it to get it done. I even

rewrote the whole dot-coloring
algorithm in a single day. And now,
thanks to that effort, I’m rocking it
in the big leagues—staying up all
night getting free food and booze
to work on a scripted artillery
shell sequence for the next big
triple-A game! So have fun with
your airy thought experiments,
Mr. Molyneux—I’ve got a game to
ship here.

swaG these Days
Just ain’t the saMe
by Grizzled Industry Veteran

» You kids all comin’ back from
E3 with your bags fulla trinkets

and [garbled], well that’s neat I
suppose, if a fella likes junk, I say.
Time was, when you’d go to E3 and
you’d get giveaway stuff so great
we’d be hootin’ and hollerin’ all the
way back to the Figueroa. It was
so high quality it’d go for a bundle
of cash on the old eBay, which
we’d turn around and use to buy
[unintelligible] and some of those
anime pencil boards.

I remember in particular I had
one of those purple foam Nintendo
GameCubes from—2002? 2001?
People were waiting in line to
play the GameCube and it was
just taking so darn long. I almost
left, but my friend wanted to see
rogue squalid, or whatever it was
called. The Nintendo man came
around asking, “You get your foam
GameCube?” and fwip!—he’d hand
you one, right there. They just don’t
do that anymore.

[sighs] I really liked that old
foam GameCube, but you know how
it is. We used to horse around at
the office some during all the late
hours, and it got dirty and a little
tore up. Then one day it got dropped
it into a vat of sour cream when we
had the taco bar for crunch food.
Yeah, I think that was the end of the
line for that little guy.

this neoGaF threaD
Proves i’M riGht
by Design Lead

» Pretty sure I just successfully
blocked some bad influences from
the marketing team a moment
ago. There’s been this ongoing
thing where they want to make our
game more accessible to a larger
audience by having it be more
about “simple fun” and so on. You
know, Kinect and all that.

Thankfully, I think I was able
to sway their opinion when,
during a meeting, I quickly called
up a random NeoGAF thread and
showed it to the marketing people.
“Look—this is what gamers think,”
I told them. They looked at the
screen for a long time. I think the
message sunk in, because they
pushed the laptop away and ended
the meeting right then and there.
So I’m real happy about that; I’m

going to tell everyone on NeoGAF
about it tomorrow.

this Jaunty Main
Menu Music LooP
has Been stuck in
My heaD Forever
anD it won’t stoP
by Timmy the Night-Shift Tester

1. Boot game
2. Scream, tear hair out
aggggakalkal

i’M Just an artist,
Man
by A. Artist

» I’m just an artist, man, I don’t turn
on my computer, hey I came in and
my computer was off, what do I do?
I’m just an artist, I just draw things,
I don’t know about all this machine
language, binary logic stuff, I don’t
get the polygons and megabytes
and all that stuff, man, I just do art,
you know what I mean? Hey, I need
some of those propeller heads to
come help me, I need help with this
crazy system you guys have here,
I made something I wanna use but
I just get this error that says, file
not found, what does that even
mean, man! I’m just an artist! Can
you come over here and press the
export button on the exporter for
me? I never really got into pressing
buttons, ’cause it’s like, it just feels
so corporate and button-down, you
know, pressing buttons to do things,
it’s like this dystopian society just
totally became real. Like, oh, here,
press this button to do your job, it’s
so corporate, man. Why don’t you
guys get out of the way and just
let me work, anyway? I’d have all
the art for the game done in like,
two, two and a half hours if I could
just like concentrate on doing art,
instead of answering emails or being
in meetings or whatever, that’s not
even like my job at all because I’m
just an artist, man!

matthew wasteland writes about

games and game development on

his blog, Magical Wasteland (www.

magicalwasteland.com). email him at

mwasteland@gdmag.com.Il
lU

st
Ra

tI
On

 B
Y

jU
an

 R
am

IR
ez

arrested developmeNt // mattHeW WastelaNd

vOx pOpUlI
Game developers speak out

Ever wonder what game developers really think? Well, we
asked them! Check out these exclusive, unedited opinions
from game developers of all stripes that give us the
straight talk on the issues that concern them most.

http://www.magicalwasteland.com
mailto:mwasteland@gdmag.com
http://www.magicalwasteland.com

The Havok Strike Program
For Small Projects and Mobile Development

The Havok Strike Program offers teams who are working on small projects and/or

mobile games to have access to the same award-winning tools and technology as the

ELJJHVW©WLWOHV©LQ©WKH©LQGXVWU\©DW©D©FRVW©WKDW©½WV©WKHLU©EXGJHW�

Havok technology is fully supported on all major consoles, mobile devices such as

$QGURLG�©L26�©DQG©:LQGRZV©��©DQG©KDQGKHOG©FRQVROHV©VXFK©DV©3OD\6WDWLRQ©9LWD��

�©Platform optimized runtime technology

�©Project budget-based licensing model*

�©Industry leading support

�©Cross-platform compatibility

The industry’s best technology

in your pocket

Havok™ Technologies Include:
+DYRN©9LVLRQ©(QJLQH©�©+DYRN©3K\VLFV©�©+DYRN©$,©�©+DYRN©$QLPDWLRQ©�©+DYRN©%HKDYLRU©�©+DYRN©&ORWK©�©+DYRN©'HVWUXFWLRQ©�©+DYRN©6FULSW

Learn More: ZZZ�KDYRN�FRP�VWULNH

*Some licensing and support restrictions apply

http://www.havok.com/strike

http://www.radgametools.com/telemetry

	Contents
	postmortem
	DEAR ESTHER

	features
	AI ARCHITECTURES: WHAT'S ON THE MENU?
	BEYOND THE HEAT MAP

	departments
	EDITORIAL - GAMEPLAN
	NEWS - HEADS UP DISPLAY
	REVIEW - TOOLBOX
	PROGRAMMING - THE INNER PRODUCT
	SOUND - AURAL FIXATION
	DESIGN - DESIGN OF THE TIMES
	BUSINESS - BUSINESS
	ART - PIXEL PUSHER
	NEWS - GDC NEWS
	CAREER - GOOD JOB
	EDUCATION - EDUCATED PLAY
	HUMOR - ARRESTED DEVELOPMENT

