
AUGUST 2003

G A M E  D E V E L O P E R  M A G A Z I N E



L E T T E R  F R O M  T H E  E D I T O R

Publisher
Jennifer Pahlka  jpahlka@cmp.com 

EDITORIAL
Editor-In-Chief

Jennifer Olsen  jolsen@cmp.com
Managing Editor

Everard Strong  estrong@cmp.com
Product Review Editor

Peter Sheerin psheerin@cmp.com
Art Director

Audrey Welch  awelch@cmp.com
Editor-At-Large

Chris Hecker  checker@d6.com
Contributing Editors

Jonathan Blow  jon@number-none.com
Hayden Duvall  haydend@3drealms.com
Noah Falstein  noah@theinspiracy.com

Advisory Board
Hal Barwood  LucasArts
Ellen Guon Beeman  Monolith
Andy Gavin  Naughty Dog
Joby Otero  Luxoflux
Dave Pottinger  Ensemble Studios
George Sanger  Big Fat Inc.
Harvey Smith  Ion Storm
Paul Steed  Microsoft

ADVERTISING SALES
Director of Sales/Associate Publisher

Michele Sweeney  e: msweeney@cmp.com t: 415.947.6217

Senior Account Manager, Eastern Region & Europe
Afton Thatcher  e: athatcher@cmp.com  t: 828.350.9392

Account Manager, Northern California & Southeast
Susan Kirby e: skirby@cmp.com  t: 415.947.6226

Account Manager, Recruitment
Raelene Maiben  e: rmaiben@cmp.com  t: 415.947.6225

Account Manager, Western Region & Asia
Craig Perreault  e: cperreault@cmp.com  t: 415.947.6223

Account Representative
Aaron Murawski  e: amurawski@cmp.com  t: 415.947.6227

ADVERTISING PRODUCTION
Advertising Production Coordinator Kevin Chanel

Reprints Terry Wilmot  t: 516.562.7081

GAMA NETWORK MARKETING
Senior MarCom Manager Jennifer McLean 

Marketing Coordinator   Scott Lyon

CIRCULATION

Group Circulation Director Catherine Flynn

Circulation Manager Ron Escobar

Circulation Assistant Ian Hay

Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes

t: 800.250.2429 or 847.647.5928  f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas

t: 650.513.4234  f: 650.513.4482  e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall

Executive Vice President & CFO  John Day

Executive Vice President & COO Steve Weitzner

Executive Vice President, Corporate Sales & Marketing Jeff Patterson

Chief Information Officer  Mike Mikos

President, Technology Solutions  Robert Faletra

President, Healthcare Media Vicki Masseria

Senior Vice President, HR & Communications  Leah Landro

Vice President & General Counsel  Sandra Grayson

Vice President, Applied Technologies Philip Chapnick

Vice President, Electronics Paul Miller

Vice President, Software Development Peter Westerman

Vice President, Information Technologies Michael Friedenberg

Corporate Director, Audience Development Shannon Aronson

Corporate Director, Audience Development Michael Zane

W W W . G A M A N E T W O R K . C O M

✎

“...A collection of 25 youngish men
who have made the major leagues and
discovered that in spite of it, life remains
distressingly short of ideal.”

S o renowned baseball author

Roger Kahn once defined a

major league baseball team,

but I couldn’t help thinking

about how equally well he

could have been describing a professional

game development team. In particular

the number 25, rather arbitrary in Kahn’s

original context, caught my attention.

Why has this number remained game

development’s project management glass

ceiling for the past few years?

It’s trite to describe any particular

moment in the history of game develop-

ment as “transitional”; the dynamic

nature of the technology allows a nascent

form of creativity to pour into an ever-

expanding, seemingly insatiable vessel.

Growing from teams of eight to 15 that

characterized the previous generation to

teams of 20 to 25 that characterize

today’s did not prove as chaotic as origi-

nally feared. Loose, informal organiza-

tional structures, planning, and feedback

stretched the project management spider-

web, but it did not snap.

Now, in the middle of the current

hardware cycle, is an unusual time to see

a cleft widening between the under 25-

to-30-person teams and those that are

becoming larger. This magic number 25

emerges as a boundary between the via-

bility of ad hoc, heuristic decision-mak-

ing that characterized the first 25 years

of game development, and the need for

more deliberate and concerted software

risk evaluation and management.

This tension has left many small, inde-

pendent game developers straddling an

uncomfortable fence. Many smaller

developers lead a perilously hand-to-

mouth existence, making organic growth

difficult to impossible. To add a second

project team en masse is to require a

completely new (and hence locally

untested) methodology for all involved.

In game development particularly,

experience acts as both ally and enemy

when experimenting with new software

management schemes. Processes may be

outmoded or inherently flawed, yet the

sensibility of throwing them out the win-

dow is betrayed by the strange comfort of

old habits. So I became interested when I

caught wind of how San Diego–area

Sammy Studios was trying to manage

their technological development different-

ly (in the sense of “correctly”) from day

one, which is the crux of this month’s

cover feature by Sammy’s Clinton Keith

(beginning on page 28).

I was already keenly aware of the quiet

deftness with which Sammy had been

attracting a rich array of talented names

across technology, design, and visual

development, and I wanted to find out

what happens when a group of successful

veterans comes together to try to build a

better mousetrap. Talk is cheap, and for

those who could benefit from a rigorous

reengineering of their own development

management, I hope the decision of

Sammy Studios’ parent Sammy Corp. to

invest substantially in a centralized tech-

nology group will serve as a model for

other multi-project companies. They’ve

rationalized the relationship between con-

sumer expectations and development risks

in order to maximize the former and min-

imize the latter. 

Rather than being strictly tied to hard-

ware, it is in balancing this equation

favorably that the next wave of game

development’s growing pains lies. The

ability to amortize risk across several

projects with larger teams and core assets

is already heralding a new age of haves

and have nots, surprisingly in advance of

the next hardware cycle. How well the

small-team development management

approach will survive remains to be seen;

right now, applying Kahn’s observation, it

seems it may fall farther short of ideal

with ever-increasing distress.

600 Harrison Street, San Francisco, CA 94107  t: 415.947.6000   f: 415.947.6090 

2

Game Developer
is BPA approved

G A M E  P L A N

Jennifer Olsen

Editor-In-Chief

www.gdmag.com

Life in the Majors



Double-digit growth for games. Pricewater-

houseCoopers’ annual “Entertainment

and Media Outlook” report predicts

that global spending on the entertain-

ment and media industry will surpass

$1.1 trillion in 2003, rising by 3.7 per-

cent from its 2002 level. In particular,

the firm forecasts that growth for televi-

sion distribution, videogames, Internet

access, and home video will be spurred

by a 30 percent compound annual

growth rate (CAGR) in broadband. This

could translate into more than 153 mil-

lion broadband-enabled homes world-

wide by 2007. The report also forecasts

double-digit CAGR increases for

videogames between 2003 and 2007,

and singled out the game industry as the

fastest growing entertainment/media

segment, outpacing Internet advertising

and access spending. The report identi-

fies two areas that will drive spending;

online videogames and mobile phone

games. Growing at an 11 percent com-

pound annual rate, next-generation con-

soles will drive the industry’s worldwide

market to $35.8 billion in 2007, the

report predicted.

DMA, Psygnosis founders launch new studio.
Three game industry veterans in the U.K.

have officially unveiled their new devel-

opment studio in Dundee, Scotland,

called Real Time Worlds. The three

launching the 28-person studio consists of

David Jones, who founded DMA Design

in the 1980s, the company that launched

the Lemmings and Grand Theft Auto
franchises; Ian Hetherington, former

managing director of Sony Computer

Entertainment Europe and founder of

Psygnosis; and Tony Harman, the for-

mer director of development and acqui-

sition at Nintendo of America and the

executive producer of Donkey Kong
Country franchise for Nintendo.

Over 1 million sold. Nintendo announced

that their Game Boy Advance SP has

sold over 1.1 million units since its May

2003 introduction.

3DO bankrupt, delisted from Nasdaq. 3DO

filed for Chapter 11 bankruptcy protec-

tion in the United States Bankruptcy

Court for the Northern District of

California, and will sell off the company

and/or its assets. In a public statement,

CEO Trip Hawkins said that the compa-

ny is expected to continue to operate as

it works through the bankruptcy

process. Hawkins was keeping the com-

pany afloat with his own funds as com-

pany cash reserves grew low. Nasdaq

had delisted 3DO’s common stock as of

June 9. q

Send all industry and product
release news to news@gdmag.com.

a u g u s t  2 0 0 3 | g a m e  d e v e l o p e r4

TTHHEE  TTOOOOLLBBOOXX
D E V E L O P M E N T S O F T W A R E ,  H A R D W A R E ,  
A N D O T H E R S T U F F

Discreet Particle Flow tools released.
Discreet announced the availability of

its new Particle Flow extension soft-

ware for 3DS Max customers. The

Particle Flow extension integrates into

3DS Max for the creation of effects

such as fountains, fog, snow, splashes,

contrails, explosions, and other envi-

ronmental effects. www.discreet.com

Synergenix announces Mophun 3D.
Synergenix has launched the Mophun

3D engine, featuring low memory

footprint and low processing power

requirements for its suite of 3D APIs.

The engine is designed for develop-

mentof 3D mobile games that are

compact and downloadable over-the-

air. Also included are features such as

enhanced audio, multiplayer, and

more. The engine still maintains full

binary backward compatibility with

all currently existing Mophun games.

www.synergenix.se

Singular Inversions unveils FaceGen
Modeller 3.0. Singular Inversions has

released the latest version of its 3D

face-generator software, which includes

such new features as click-and-drag

free-form deformations, a genetic face-

creation interface, more file export

options, and user interface improve-

ments. www.facegen.com

I N D U S T R Y W A T C H; K E E P I N G  A N  E Y E  O N  T H E G A M E  B I Z  | e v e r a r d  s t r o n g

P

B U P C O M I N G E V E N T S

CCAALLEENNDDAARR

Industry veterans from DMA and Psygnosis,
creators of classics such as LEMMINGS, have
joined to found new studio Real Time Worlds.

E D I N B U R G H  I N T E R N AT I O N A L
G A M E S  F E S T I VA L
EDINBURGH INTERNATIONAL CONFERENCE

CENTRE

Edinburgh, U.K.
August 18–19, 2003
Cost: £89 (+VAT)
www.eigf.co.uk

G A M E  D E V E L O P E R S
C O N F E R E N C E  E U R O P E / E C T S
EARL’S COURT CONFERENCE CENTRE

London, U.K.
August 26–29, 2003
Cost: £89–£388 (+VAT)
www.gdc-europe.com
www.ects.com

A I  D E V E L O P M E N T  W O R K S H O P
UNIVERSITY OF TEXAS AT AUSTIN

Austin, Tex.
August 21–23, 2003
Cost: $95–$445
dmc.ic2.org



a u g u s t  2 0 0 3 | g a m e  d e v e l o p e r6

A fter 16 years of designing

and developing artificial

intelligence solutions for

many different genres of

computer games, I was

admittedly skeptical that any AI middle-

ware product could help the computer

game AI development process in any sig-

nificant way. After all, I thought, the AI

for every game is game-specific, perform-

ance-sensitive, and thus requires an expe-

rienced computer game AI craftsman

such as me to design and develop good

AI solutions. Then I began researching

the various AI middleware products for

this review. 

Could I be wrong? Computer game AI

middleware is software that provides

services to game engines for performing

the AI function in computer games.

Computer game AI middleware will

often find itself outside the game engine

and the process of producing the actual

behavior of agents or non-player char-

acters (NPCs) or decision-making

objects found in a computer game

(Figure 1).

Often developed by companies that

specialize in AI solutions, AI middle-

ware has reached a noteworthy level of

maturity.

This review will summarize four char-

acter-oriented AI middleware products,

all of which are being used in game

development projects as of this writing.

You will also find advice on how an

interested game developer should evalu-

ate AI middleware. Since this review pro-

vides only a summary of the features of

these products, I encourage the interested

reader to read the expanded, more

detailed reviews of these products that

can be found online at Game Developer’s
sister publication, Gamasutra.com.

Why use AI middleware? One reason

game developers may choose to use AI

middleware in their games is that the

internal staff may not possess the AI

expertise to develop the desired AI algo-

rithms and processes for the game. Or

perhaps there is a specific (or rare) AI

technology that the game designer desires

to be a part of the game’s AI. Another

reason might be that the remaining game

development time available before ship-

ping may be insufficient to internally

develop the desired level of AI for the

game, whereas an AI middleware prod-

uct selected contains the algorithms or

processes that may achieve the level of AI

desired by the game developer.

Why not use AI middleware? The most

common reason for not using AI middle-

ware is probably the issue of the “not

invented here” syndrome and the game

developer’s fear of not having complete

control over all game processes. Also of

concern is a perceived performance hit

that may result from having to rely on

the AI middleware “engine” or library

routines for some processing but then not

being able to optimize the code to the

performance level desired by the game

developer or AI programmer. The learn-

ing curve of an AI middleware product

may also prove to be too significant. And

there is the possibility that the AI middle-

ware may not do exactly what the game

developer wants to have done, hence

forcing modification of externally devel-

oped software at a critical time in the

game development process.

AI Implant: An
Animation Control AI

A I Implant, the sophisticated anima-

tion control engine developed by

Biographic Technologies, introduces AI

to the character development process.

The AI Implant production pipeline fea-

XX
P R O D U C T  R E V I E W S

T H E  S K I N N Y  O N  N E W  T O O L S

E R I C  D Y B S A N D  | Eric has been involved with computer game AI since 1987, doing
game design, programming, and testing for a variety of genres of computer games. He has
been a speaker on computer game AI at the GDC for the last seven years and is a con-
tributing author on AI to the Game Programming Gems and AI Wisdom series of books. 

AI Middleware: Getting
Into Character 

by eric dybsand

FIGURE 1. Typically, character and game state status flow from the game engine to the AI middle-
ware, and then character control requests flow from the AI middleware to the game engine, and
are acted out by the characters.

Game
Engine

Character
Behavior

AI
Middleware



tures Maya and 3DS Max plug-ins that

allow AI to be created for a character

after the modeling process. Once a char-

acter has been created in Maya or Max,

the AI Implant plug-in can be used to set

animation control for the character, add

behavior-related attributes to the charac-

ter, set default and initial state values,

add sensors to the character, assign

behaviors to the character, and create

decision trees to be assigned to the char-

acter to manage its behavior. 

Characters can be grouped and coor-

dinated using AI Implant. Default

behaviors can be assigned to characters

to execute in lieu of complex decision

making. Decisions are achieved using

decision trees, which can be assigned to

characters via the plug-in interface,

allowing for rather complex and rule-

based decision processing. These can

also be used as finite state machines

(FSMs) for state-driven AI. AI Implant

also offers waypoint editing (through

the plug-ins) and automatic waypoint

network generation for the virtual game

world (using existing geometry/physics

markup) that can be used by the run-

time pathfinding algorithm.

The most exciting aspect of AI

Implant for me is the Maya and 3DS

Max plug-ins. Creating the AI was basi-

cally “create and play,” so experiment-

ing with different behaviors was easy.

However, I felt constrained in the types

of decision-making techniques I could

use within AI Implant, which seemed

limited to the decision trees. 

AI Implant is unique among AI mid-

dleware products and could be useful to

a number of game developers, especially

those using Maya or 3DS Max for mod-

eling and animation who wish to offload

some of the AI development to a design-

er working with the art department.

DirectIA: An Adaptive
Behavior SDK

D irectIA (Direct Intelligent Adapta-

tion) is a generic SDK for game AI

developed by the MASA Group. It relies

on several built-in engines for process-

ing. There is a motivation engine to

model the emotions and needs of the

agents, a behavior engine to model the

agents’ decision processes, an action

engine to enable the agent to interact

with the game world, and a knowledge

engine to organize the agent’s under-

standing of the game world.

DirectIA offers real-time decision and

action behavior modeling tools. Within

the high-level tools there is support for

complex agents and reactive agents that

is driven by the engines mentioned

above. The low-level tools offer path-

building, hierarchical pathfinding, and

steering tools (in beta at this time).

As a tool, DirectIA is very agent-cen-

tric. What impressed me the most about

DirectIA was the scope of its sophisti-

cated behavior engine. However, using

the DirectIA behavior engine was

restrictive; the engine relied on its own

built-in functionality tuned via script

files, instead of my coded alternatives,

to meet the agent decision-making needs

of the game developer. Communication

and perception for the agents can be

integrated via user-defined callback rou-

tines accessed from the scripts. The deci-

sion-making processes of DirectIA sug-

gest that it is also very state-oriented.

Since many games rely on FSMs to help

make decisions for characters, DirectIA

could fit right into most genres.

Renderware AI: An
Architecture of C++
Classes

R enderware AI (RWAI), developed by

Kynogon, a French company spe-

cializing in game AI (the Kynogon

Artificial Intelligence Modules, or KAIM),

is packaged as part of Criterion Software’s

Renderware Platform suite of game devel-

opment products and tools. Discussion

about the entire suite of Renderware

products, which also includes graphics,

audio, and physics tools, is beyond the

scope of this review.

The RWAI SDK primarily focuses on

helping the game developer design and

implement character behavior in a game.

RWAI views the objects in the world as

entities in two basic forms: thinking enti-

ties (NPCs) which have brain objects, and

passive entities (objects that exist in the

world and interact with thinking entities).

RWAI provides several layers of services:

• Decisions support the brain objects

of thinking entities.

• Agents support behavior carried out

by entities.

• Services provide specialized manager

objects.

• Architecture provides interface to the

game and configuration services.

The entire Renderware suite of tools

a u g u s t  2 0 0 3 | g a m e  d e v e l o p e r8

TABLE 1. Summary of common features of reviewed AI middleware products.

AI Implant      DirectIA Renderware AI Simbionic

User Decision Support
Decision trees,

finite state machines
Motivated decision 

graphs
Finite state machines,

neural networks
Hierarchical polymorphic

finite state machines

AI Middleware Products

Behavior Support

Other Services

Automatic waypoint 
network generation,

pathfinding, AI animation
control, LOD

Pathfinding
Graphics, physics, 

auto path generation,
pathfinding

Built-in communication
between agents

Prepackaged behaviors Template behavior
scripts Prepackaged behaviors User-developed 

behaviors

Engine Source Code
Availability

Some No Yes With license

Extensibility

User-developed 
behaviors, sensors,

space partitions, world
and object geometry

User-developed scripts,
callback functions

User-developed 
behaviors, callback

functions, Lua, 
brain-scripting

User-developed 
behaviors, callback

functions

Production Tools Maya/3DS Max plug-ins Script templates, 
tuning GUI

AI skeleton code, 
XML configuration

Visual Editor, 
Visual Debugger

XP R O D U C T  R E V I E W S



offers a game developer a complete devel-

opment environment, thus the compatibil-

ity of these components places RWAI in a

unique situation among other AI middle-

ware offerings. It is the KAIM, which

provides the core AI power to RWAI yet

constrains the user’s options a bit for my

taste, that caught my attention. Despite

the minor limitation, RWAI offers a pow-

erful AI middleware SDK to the game

developer, and the use of RWAI in combi-

nation with the other Renderware Plat-

form components provides a complete

solution to game developers. Even in a

stand-alone configuration without the

other Renderware Platform components,

RWAI is a sophisticated solution that is

worth examining in detail.

Simbionic: Authoring
Tool for Complex
Behaviors

D eveloped by Stottler Henke, Simbi-

onic is a visually oriented AI middle-

ware product for character definition and

control, decision making, and behavior

assignment. It is also very state-oriented;

the control flow is influenced by the state

or condition of some object or process,

the same way finite state machines oper-

ate. The Simbionic state systems have

many components that can be classified as

descriptors and declarations:

• Descriptors help to describe objects

and attributes.

• Declarations create symbolic associa-

tions to use in definitions.

• Entities define NPCs, agents, and

objects in the world. 

• Actions declare behaviors that enti-

ties can perform.

• Behaviors dynamically determine deci-

sions and actions performed by entities.

• Predicates provide built-in and user-

defined access functions.

Simbionic provides a sophisticated

framework for creating and debugging

state systems. The Visual Editor makes

the development of these state systems

easy and “designer-accessible,” because

after the initial construction of the ele-

ments, little additional coding is involved

in order to assemble the AI. This visual-

editing feature was my favorite user

interface out of all the AI middleware

products evaluated. Dragging and drop-

ping behaviors seemed very easy for any

user to grasp. That drag-and-drop func-

tionality relies on the development of

user-defined actions, and predicates as

code modules, which means that the ease

of use for the visual editing must also be

supported by the programmer developing

appropriate code.

A Simbionic user I contacted was

amazed that once he started working with

the program, it was so easy to create and

modify the AI portion of his program.

With Simbionic being so state-centric and

FSMs so widely used by game developers,

Simbionic products could be an alterna-

tive to the custom-code FSM development

that goes on in game development today.

Wrap Up

I n his article “Effective Middleware

Evaluation” (May 2003), Alex Macris

made many valid points about the process

of evaluating middleware products for

game development. I concur with his con-

clusions, and further suggest that his

advice applies to AI middleware as well.

While a review like this one can pro-

vide some insight into the capabilities of

a particular AI middleware product,

nothing compares to the developer taking

the time to evaluate the product of inter-

est. All of these vendors offer an evalua-

tion version of their products that the

interested game developer should

explore. Likewise, candidate vendors

should be examined for the level of sup-

port that they offer. All the vendors pre-

sented in this review were available for

questions by e-mail and phone, however

their level of documentation did vary in

quantity and quality.

To make sure the AI middleware is the

right tool for the job, developers must

fully define and understand the AI needs

of their game. Such a self-evaluation

makes the difference in choosing which

vendor may provide the best solution.

For example, if the developer needs

pathfinding support, then the developer

would require additional in-house sup-

port to use an AI middleware product

that lacked this feature.

As more games begin to market higher-

quality AI to customers, be it in the form

of a player assistant or companion, mon-

sters to fight, or a programmed opponent,

AI will become more of an important

consideration to the game development

community. AI middleware offers some

potential solutions.  q
Visit Gamasutra.com to read expand-

ed reviews of each of these products, as
well as more AI middleware products
available to game developers.

XP R O D U C T  R E V I E W S

a u g u s t  2 0 0 3 | g a m e  d e v e l o p e r10

VENDOR SHEET

AI Implant
Biographic Technologies
Montreal, Quebec, Canada
(514) 844-5255 x250
www.ai-implant.com/games

DirectIA
MASA Group
Paris, France
U.S.: (212) 343-8838
www.directia.com

Renderware AI
Criterion Software
Austin, Tex.
(512) 478-5605
www.renderware.com/renderwareai.html

Simbionic
Stottler Henke
San Mateo, Calif.
(650) 655-7242
www.simbionic.com

FIGURE 2. Screenshot from DirectIA’s inter-
face.



N ot only has Peter Moly-

neux’s Lionhead Studios

created innovative game

ideas like BLACK & WHITE,

the studio has also forged

new ground in development and resource

management with its satellite studio idea.

Lionhead wanted to help young, inde-

pendent development teams by looking for

ways to keep a development company’s

creativity intact while offering them

Lionhead’s resources. The satellite

scheme’s mission was to allow outside

groups to keep ownership of their compa-

nies, with Lionhead taking a modest stake

in them — from both a financial and man-

agerial point of view. 

In 1999, Big Blue Box became the first

Lionhead satellite developer. The second,

Intrepid, joined soon after. 2001 saw the

creation of Black & White Studios, and a

new outfit is developing THE MOVIES, a standout of originality

at this year’s E3.

Game Developer had a chance to talk to Lionhead’s devel-

opment director Mark Webley about Lionhead’s unique

approach to game development and its possible impact on the

gaming community.

Game Developer: What is Lionhead’s biggest challenge right now?
Mark Webley: I think the major problem is trying to get a

game out within a reasonable timescale while maintaining real-

ly high quality thresholds. 

If we could sit down at the beginning of a product cycle and

say, “This new game is going to be done in two-and-a-half

years’ time,” and then two-and-a-half years later, boom! the

game’s finished — and the game is good — we’d be laughing.

We are learning all the time, and the arena for making games

is changing all the time. Core team sizes are generally much

bigger, there’s a lot more expected of a game [from the con-

sumer side], and the production values are much higher than

five years ago. Today, there’s a much wider diversity of skills

required to put a game together.

Game Developer: One of Lionhead’s goals since its inception has
been to keep a small, lean team of 20 to 25 employees. Have you
kept that goal? 

MW: I would say that these figures are reasonably true even

today, as we have grown Lionhead in a totally different way than

just adding people. Using our satellite model we’ve set up a num-

ber of different studios which are made up of teams of 20 to 25

people each, who focus very intensely on devel-

oping a particular game. But currently

Lionhead — as an independent organization

— has around 200 employees.

GD: How much autonomy does each of
Lionhead’s satellite studios have? 

MW: Lionhead currently has four satellite

studios, and there is also the development

studio based at Lionhead’s main office.

In terms of day-to-day operations, the stu-

dios are very autonomous, but in terms of the

development plan and strategy, these are dis-

cussed regularly. There are a number of

monthly meetings whereby the studio heads

get together and discuss their projects and

future plans.

GD: Is this a business plan you see more
studios adopting? What lessons has Lionhead
learned from running this style of business
model?

MW: Whether this type of model works for

other studios really depends on the studio and the strength of

the satellite.

All Lionhead satellites have a very strong management and

production team, people that are very experienced in making

games, and are staffed by people we know and have worked

with in the past. Whether it works for someone else depends on

their philosophy. For us, one of the reasons for keeping studio

sizes small and manageable was one of culture. Culture is very

important at Lionhead and something which gets difficult to

manage when a company gets too big. That’s something we

loved when we started Lionhead and something which we have

fought to maintain.

GD: Lionhead is currently working on a new concept and title, THE

MOVIES. Can you give us a brief idea of how this concept originated
and the steps taken to develop this idea into a full-fledged game? 

MW: THE MOVIES is quite interesting in the way that the proj-

ect came together. In December 2001, Peter came into the stu-

dio and said that he’d had a dream about a game about run-

ning a movie studio. 

By March 2002 we had the first two team members in place,

Adrian Moore and James Brown; we had worked with Adrian

before and both had worked with each other in the past. We

knew what the game was about and it could be summarized on a

single page. 

From the original idea to getting the first inkling of a team

together took three to four months — unique for Lionhead.

The team has just recently moved into their own offices.  q

a u g u s t  2 0 0 3 | g a m e  d e v e l o p e r12

P R O F I L E S
T A L K I N G  T O  P E O P L E  W H O  M A K E  A  D I F F E R E N C E  |  e v e r a r d  s t r o n g

Life under the Satellites
Mark Webley on Lionhead’s approach to multi-project management

Lionhead co-founder Mark Webley looks
to encourage an environment that fosters
creativity.



a u g u s t  2 0 0 3 | g a m e  d e v e l o p e r14

j o n a t h a n  b l o wI N N E R  P R O D U C T

W hen creating a networked game, we need

to transmit messages between a client

and server, or between peers. Bandwidth

is expensive on the server side and per-

haps scarce on the client side; therefore

we want our messages to be as small as possible while contain-

ing as much information as possible. In other words, we want

those messages to be compressed.

At present, most games don’t do a good job of compression.

Often, games will compose network messages using values that

are multiples of a byte in size; more ambitious games will trim

their values down to a 1-bit resolution using something like the

Bit Packer I discussed last year (“Packing Integers,” The Inner

Product, May 2002). But as I pointed out in that article, a 1-bit

resolution still wastes significant bandwidth when your values

are small. I introduced the Multiplication Packer as a simple

way to pack values without wasting space.

Back then I only discussed packing, which is only one part of

compression. Statistical modeling is the other part: if data con-

tains some values that are more common than others, we can

exploit that fact to reduce the overall size. That’s where the

Arithmetic Coder comes in.

This month, I’ll provide some engineering reasons for using an

arithmetic coder. I’ll also talk about packing values in the absence

of any statistical modeling. We’ll do modeling next month.

Engineering Reasons to Use an
Arithmetic Coder

T he arithmetic coder is a plug-in replacement for the Bit

Packer or other buffering scheme that your game already

needs. I’ve found my engine gets simpler when I switch to an

arithmetic coder, due to the coder’s elegance. I also gain confi-

dence in the engine’s solidity, since it becomes impossible to

have range-checking problems. Briefly, I’ll explain the reason

range-checking is necessary with a bit- or byte-packer.

An attack on your system, or perhaps just a fouled-up packet

transmission, can cause your game to receive a message filled

with garbage values. Therefore you can’t trust any value you

read from a network message. Specifically, suppose you are

unpacking a 4-byte value that indicates the length of some

array. You might know that a legitimate client will never pack a

value higher than 5,000, which you chose as the maximum

array length. But if you read the 4-byte quantity without range-

checking it and it consists of garbage data, you could get a

number in the billions. Subsequently attempting to allocate a

billion-element array will cause you problems. 

For this discussion, the basic API for packing a value into a

message looks like this:

void Arithmetic_Coder::pack(int value, int maximum_value);

int  Arithmetic_Coder::unpack(int maximum_value);

Suppose that somewhere in my code I have defined:

const int ARRAY_LENGTH_MAX = 5000;

extern Arithmetic_Coder *coder;

extern Array array;

If you want to put the length of an array into the current mes-

sage, do this:

coder->pack(array.length, ARRAY_LENGTH_MAX);

The coder is probably written to assert if you pass a value

parameter that exceeds the maximum_value. When the guy receiv-

ing the message wants to get the length back out, he does this:

int length = coder->unpack(ARRAY_LENGTH_MAX);

J O N A T H A N  B L O W  | Jonathan is
hanging out at a coffee house. He’s hungry,
even though he just had a Bulgogi Burger. Send
dinner suggestions to jon@number-none.com.

Using an
Arithmetic Coder: Part 1

y=2

y=1

y=0

x=0 x=1 x=2 x=3 x=4

10 11 12 13 14

5 6 7 8 9

0 1 2 3 4

FIGURE 1. When packing two numbers, x and y, together into a mes-
sage, the number x can take on values from 0–4 and y can take on val-
ues from 0–2, producing a total of 15 possible cases, represented by
the numbered grid squares. The number in each square is y * 5 + x,
which is what the Multiplication Packer would compute if you first
packed y, then x.



a u g u s t  2 0 0 3 | g a m e  d e v e l o p e r16

I N N E R  P R O D U C T

At this point, length will be between 0 and ARRAY_LENGTH_MAX. So

long as you’ve defined ARRAY_LENGTH_MAX appropriately, you can’t

obtain horrible results. Garbage input will just give you a

garbage value within the legitimate range. (Though you may wish

to detect garbage packets somehow, it is now unlikely that

improper detection will cause your game to crash.)

Once the arithmetic coder is in place, you can start feeding it

probability tables that describe the input data, and your band-

width usage will magically go down. Generating these tables does

take a little bit of effort, but they are not required; if you are pro-

totyping, or you don’t care about certain message types, you

don’t supply tables for them. It should be standard practice for

networked games to use an arithmetic coder. Despite all the bene-

fits, though, I’m not aware of a single game that uses a full-

blown arithmetic coder for networking: a tragedy. (I’m using one

in my current project, but it’s not done yet, so it doesn’t count.)

How an Arithmetic Coder Works

L ots of references out there can show you various mecha-

nisms for implementing an arithmetic coder; see Howard

and Vitter’s paper in For More Information. Here I’ll look at

the coder from a nontraditional viewpoint and try to supply

some less easily found intuition about why it works.

Recall the basic functionality of the Multiplication Packer

(Listing 1): You call pack repeatedly to create a message; when

you’re done, you have an integer between 0 and range – 1,

which you somehow put into a network packet. Back then we

used the Bit_Packer to do this; the magnitude of range tells us

how many bits we need. Visualize the packing operation as

indexing a 2D grid  (see Figure 1). See last year’s Integer

Packing article for more detail.

The Multiplication Packer was inconvenient; every time you

pack a value, range gets larger. If you try to pack too much, the

Multiplication_Packer::Multiplication_Packer() {

accumulator = 0;

range = 1;

}

void Multiplication_Packer::pack(u32 value, u32 limit) {

range *= limit;

accumulator = (limit * accumulator) + value;

}

LIST ING 1 .  THE  MULTIPL ICATION PACKER



packer overflows the 32-bit integer and you’re in trouble. We

would like to spool the data into a buffer as we pack, to prevent

overflow and eliminate the cumbersome use of a separate Bit

Packer. Unfortunately it’s unclear how to do this; because all the

bits of range change every time you multiply, there’s nothing

coherent to store in such a buffer.

The arithmetic coder gets around this using a simple but

effective trick: instead of packing an integer between 0 and

range – 1, it packs a fixed-point binary number between 0

and 1. The Multiplication Packer added information to a

number by letting its magnitude grow divergently. Now,

instead, we add information by growing the number to the

right of the decimal, in such a way that it converges toward a

limit. Because the number converges quickly, its most signifi-

cant bits become stable after each packing step; those stable

bits can be written into a buffer, freeing up space within the

32-bit integer.

It’s astonishing how easy it is to make this change when

playing with the math. The Multiplication Packer gives us a

number in the interval [0, range) and we want a number in [0,

1) so we just divide by range.

If we write out the function of the Multiplication Packer as a

recursive rule, we get this: 

accumk = limitk · accumk–1
+ valuek

rangek = rangek–1
· limitk

After n total packing steps, range will be:

Now I am going to rewrite the equation for accumn by

expanding the definition of accumn–1
:

accumn = limitn · (limitn–1
· accumn–2

+ valuen–1
) + valuen

We can repeat this expansion recursively, rewriting the term

for accumn–2 and so on. I’ll do it just once more:

accumn = limitn · (limitn–1
· (limitn–2

· accumn–3
+ valuen–2

)

+ valuen–1
) + valuen

We refactor this equation by distributing the multiplication

across the addition:

accumn = limitn · limitn–1
· limitn–2

· accumn–3
+ limitn · limitn–1

· valuen–2
+ limitn · valuen–1

+ valuen

w w w . g d m a g . c o m 17

range limitn k

k

n

=
=

∏
1



Now an interesting pattern starts to become clear. But the

preceding equation still isn’t fully expanded, because we have

that accumn–3
term that we could keep expanding all the way

down to accum
1
. Let’s do that:

Recall that I am doing all this because I want to divide by         

. And looking at the equation now, it’s triv-

ial. This equation wants to be divided by               . It’s begging

for it. So:

The terms of this sequence converge, because the denomina-

tor grows geometrically but in general the numerator doesn’t

grow. The result is the value between 0 and 1 computed by an

arithmetic coder. To reiterate, it’s the value computed by the

multiplication packer, divided by rangen. This divide allows us

to save out the most significant bits of the result incremental-

ly, achieving successful packing of arbitrarily many values.

To me, the grid-ness of the multiplication packer is easy to

visualize, but the shrinky-ness of the arithmetic coder is less so.

Being able to factor between them gives me comfort.

Arithmetic Coders and Security

A s we’ve seen, when we use an arithmetic coder to pack

up messages, individual data items get multiplied by arbi-

trary values before they are written into the output buffer. To a

casual viewer — someone looking at your network transmis-

sions with a packet sniffer or a hex editor — the data will

appear unstructured, since important fields will not land on bit

boundaries. Since your game protocol is difficult to see, it’s dif-

ficult to hack.

This statement is more than anecdotal when you look at the

situation from an information-theoretic viewpoint. Compres-

sion works by exploiting and reducing predictable structure.

This increases the “entropy” of the data. Data with no struc-

ture whatsoever is random and has maximum entropy. Thus,

perfectly compressed data appears completely random.

This idea of maximum entropy comes up in another area

we’re familiar with: encryption. Like compression, encryption

is about crunching on data in a reversible way to produce

maximum-entropy output. So in a sense, perfect compression

is equivalent to perfect encryption; the probability tables act

as a secret key.

Unfortunately, our current compression schemes are nowhere

near perfect, so data that’s “encrypted” via compression is very

crackable. Even high-order statistical models of the input data

leave a lot of structure in the output, so you should not use just

an arithmetic coder to encode life-or-death secrets and then con-

sider them secure. My point is that when you use an arithmetic

coder, hacking your protocol becomes a matter of employing sta-

tistical analysis, known plain-text attacks, and the like — either

that, or reverse-engineering all your networking from assembly

language. Both of these options require substantial effort on the

part of a would-be hacker; most of the people with enough

knowledge to hack your protocol will be off programming their

own games. 

So just by using an arithmetic coder, with our primary goal

being to save bandwidth, we also raise the barrier to entry for

those who want to hack our game. That’s a nice side benefit.

Now suppose you do really want to secure your data stream.

You should use a hard encryption algorithm for this. But even

in that case, the arithmetic coder helps you out. The reason is

that hard cryptographic algorithms become easier to brute-force

attack the more you know about the input data. Suppose a

hacker is playing your game and types a chat message; this

causes an encrypted network packet to be sent to the server.

The hacker knows that the source data is mostly ASCII text,

and he or she can use this knowledge to help break the encryp-

tion key. But if you compress the data with an arithmetic coder

prior to encryption, the hacker must work a lot harder to break

the key. For more of an explanation of this, see section 8.5 of

the sci.crypt FAQ listed in For More Information.

Charles Bloom pointed out to me that the preceding discus-

sion is slightly dangerous, since there have been several attempts

to use arithmetic coders as strong encryption, but all such sys-

tems have been breakable. So I want to re-emphasize that I am

not encouraging the use of such schemes. If you need strong

encrytion, use a strong encryption algorithm. If you don’t need

strong encryption, you can still take comfort in the fact that by

compressing your data, you’ve gained protection against the

casual intruder.

You can download this month’s source code at

www.gdmag.com. q

I N N E R  P R O D U C T

a u g u s t  2 0 0 3 | g a m e  d e v e l o p e r18

Howard, Paul G., and Jeffrey Scott Vitter. “Practical
Implementations of Arithmetic Coding.” 
http://citeseer.nj.nec.com/howard92practical.html

MACM-96 Multi-precision Arithmetic Coder Module
www.cbloom.com/news/macm.html

Cryptography FAQ for sci.crypt, section 8.5: “How do I use com-
pression with encryption?” 
www.faqs.org/faqs/cryptography-faq/part08

FOR MORE INFORMATION

accum
range

value

limit

value

limit

value

limit

n

n

k

k

k

k

n

k

k

n
= ⋅ + + +

= = =
∏ ∏ ∏

1

1

1

2

1

2

1

...

limitk

k

n

=
∏

1

range limitn k

k

n

=
=

∏
1

accum

limit

limit

value

limit

limit

value

limit

limit

valuen

k

k

n

k

k

k

k

n

k

k

k

k

n

k

k

n n= ⋅ + ⋅ + + ⋅=

=

=

=

=

=

∏
∏

∏
∏

∏
∏

1

1

1 1
1

1

2 2
1

1

...



A R T I S T ’ S  V I E W h a y d e n  d u v a l l

a u g u s t  2 0 0 3 | g a m e  d e v e l o p e r20

I f you work in the game industry,

chances are that you yourself

enjoy playing games. I know

that there are some who work in

the industry because they could-

n’t get a gig with Pixar, and some are just

killing time until they move to their first-

choice career (I actually worked with a

programmer who wanted to be a land-

scape gardener), but most professional

game developers have played games fair-

ly consistently from around the time they

left the womb. As this is the case, most

of us have lists of games that represent

the very highest points of our gaming

experience over the years.

Admittedly, there is some nostalgia

involved when we gaze back through the

Vaseline-smeared lens of our mind’s eye

to the games we feel most impressed us,

but allowing for the technological limita-

tions of the time, it is often fair to say

the best games always manage to capture

our imagination in some way.

Last month (“Genre Art, Part 1,” July

2003), I looked at first-person games,

and I am reminded of what was probably

my earliest experience of a genuine first-

person game (even though at the time, I

had no idea that that was what I was

playing). The game was called PHANTOM

SLAYER, written by Ken Kalish, and dur-

ing the summer of 1982 I sat terrified in

my friend Mark’s living room (he was the

one who always had the cool computers),

staring at the achingly garish colors of

the Dragon 32 on the screen and waiting

to be caught by the titular Phantom. In

this game, which was in hindsight far

ahead of its time, the player negotiated a

simulated three-dimensional maze, con-

trolling what was essentially the camera,

thus providing a first-person experience.

Remembering this game and how dis-

tinct it was from the majority of other

games of the time made me aware of

how much more prominent the third-per-

son game has been through the decades.

No doubt the technical limitations of

early machines made the third-person

perspective an obvious option, but plac-

ing the player on-screen also strikes me

as a conscious design decision which in

many cases must have surely related to

the building and marketing of a charac-

ter-based brand.

Here is the center of the third-person

genre’s defining quality: A third-person

perspective structures a game largely

around character. There are some excep-

tions, but most third-person games have

players control a character that is obvi-

ously not themselves (despite the rather

lame process that has occasionally sur-

faced of allowing players to import their

own likenesses into the game). The expe-

rience for the player of playing the game

is a projection of what the character

experiences on the screen.

But before I get bogged down in trying

to determine what the psychology of the

third-person experience tells us about the

human condition, let me focus for a

moment and bring myself back to the

purpose of this article. Seeing as many of

us will now or at some future time be

involved in producing art for a third-per-

son game, what do we need to think

about or avoid in order to be successful

in this genre?

Environment

S o what do we need to be aware of

when creating a third-person envi-

ronment? As there is such a huge variety

of game styles that fit under the banner

of  “third-person,” it’s impossible to

address all of the possibilities. A general-

ization may be helpful: Think about

what the player will see.

This is a rule that game artists must

follow regardless of the specifics of their

project. Failure to give this rule proper

consideration inevitably wastes time and

resources in areas that will ultimately

have little or no impact on the player’s

experience.

The issue of clarity, or readability, is

important for third-person games. One

HAYDEN DUVALL I Hayden started work in 1987, creating air-
brushed artwork for the game industry. Over the next eight years,
Hayden continued as a freelance artist and lectured in psychology at
Perth College in Scotland. Hayden now lives with his wife, Leah, and
their four children, in Garland, Tex., where he works as an artist at 3D
Realms. Contact Hayden at haydend@3drealms.com.

Genre Art, Part 2: 
Third-Person Games

The early simulated-3D game PHANTOM SLAYER

began to shed light on the role of player per-
spectives in games.



major (if obvious) distinction between

first- and third-person games is that play-

ers in a first-person game have no on-

screen presence (not counting weapons

or hands), and as such are extremely lim-

ited in terms of how they move through

the levels. Some jumping and crouching

is fine, but more adventurous types of

movement are hard to convey in the first

person and so they are also likely to be

confusing and not at all fun.

Third-person perspective, however, is

ideal for complex character movement

and interaction with the environment, as

the player has a good view of exactly

where he or she is and is also able to

appreciate the quality of their character’s

animation. Hence players are best served

by an environment that gives them a

clear visual understanding of where they

can go and what they can do.

Hazards that take the player by sur-

prise because they look identical to the

rest of their surroundings are never a

good idea, as players feel cheated when

they’re not given an opportunity to avoid

them. Visual cues need to balance

between the obvious and the invisible so

that a player has to be vigilant but not

clairvoyant. Hazards such as lava are

fairly easy to read, but as artists we have

failed a player who runs across a surface

expecting it to be safe because it looks

like most of the others, when it is in fact

deadly stinging Devil Grass.

Landmarking is also as important in a

third-person game as it is in a first-per-

son one. While assets are likely to be

duplicated around a level, anything that

helps players navigate areas of explo-

ration will help reduce the chances of

player frustration that arise when they

feel lost.

If the third-person camera presents us

with a reasonably distant point of view,

much of the detail in the environment can

be shifted from the geometry into texture

where appropriate. However, we are at a

point now where chances are that we will

run out of texture memory well before

our polygon count becomes an issue, so

geometry detail can be a better solution.

This is especially the case with lighting

systems that produce dynamic shadow-

ing, where texture detail remains static as

opposed to the shadows generated by fea-

tures that are actually modeled.

Larger exterior areas can also benefit

from some form of procedural texturing

to provide tonal variation, with a detail

layer to make it look like grass or dirt.

There is also the option of including ver-

tex coloration to affect the hue in a con-

trolled way.

Characters

C entral to any discussion about the

art for a third-person game is the

process of character design. A third-per-

son game by definition means that the

player-character is visible (and usually

centered on the screen), so character

design deserves prominent consideration.

Lara Croft made it obvious that hitting

the jackpot with a lead character could

open doors to unimagined wealth, and if

you were very lucky indeed you might

get to meet Angelina Jolie. Once the link

between character and potential returns

was clearly established in the minds of

those who signed the checks, producing

the next hit character started to become

more about marketing budgets than pure

design considerations, but nevertheless,

characters still don’t make themselves,

they need to be created.

Given that third-person characters

spend a great deal of their time with their

back to the player, it is important to put

sufficient effort into the design of the

character from the back as well as the

front. Nowhere are a character’s buttocks

more important than here, but it is also

wise to add secondary movement with

some sort of physics-based clothing or

hair geometry to break the monotony of

a rigid mesh.

Since third-person game players don’t

project themselves into the game as they

are inclined to do in a first-person game,

successful characters must appeal to the

player in some way to draw them in.

The Hot Chick. Playing to the lowest

common denominator of the target audi-

ence is one way that has proved success-

ful in the past. Lara may be the most cel-

ebrated example of designing a lead char-

acter whose physical attributes are more

Baywatch than Indiana Jones. Since play-

er demographics inform us that there are

more males playing games than females,

giving your audience some of what they

want is good business.

Comic books have long led the way in

terms of unfeasibly proportioned hero-

ines, and creating a female character that

feeds off these same stereotypes is not

hard. But unless she has some kind of

distinct visual identity, she is likely to be

nothing more than the equivalent of an

w w w . g d m a g . c o m 21

TOMB RAIDER’s Lara Croft exemplifies the Hot
Chick character.



E3 booth babe, which is to say, nice to

look at, but ultimately forgettable.

How to make your Hot Chick charac-

ter stand out is a matter of taste, opin-

ion, and fitting her into your overall

game design, but it is no longer the case

that simply replacing the muscle-bound

male lead in your action game with a

sexy female vixen will gain you any

points for originality. Ms. Croft and her

legacy have put an end to that.

The Crazy Creature. Especially common

to the platform end of third-person

gaming, the Crazy Creature character is

often used to solicit the player’s affec-

tions. Whether it’s Crash, Sonic, or

Spyro, this kind of character design typ-

ically targets the younger audience in

particular. Watching a few hours of

kids’ TV on a Saturday morning will

introduce you to many of the same

types of characters.

Larger-than-life personalities that match

the frenetic gameplay in many platformers

are underlined with the exaggerated fea-

tures and over-the-top animations of this

kind of character. Using an animal is a

good start (even if it’s something as

unlikely as a blue hedgehog), as many car-

toon characters have proven how appeal-

ing this route can be. If you have exhaust-

ed all your conventional animal options,

there is always the fantasy animal route,

best illustrated by the Pokemon pantheon

of creatures that are close relatives of ani-

mals that we know, each with specific

character traits and special powers.

A major advantage of Crazy Creatures

is that they don’t need to be even vaguely

realistic in terms of movement and ani-

mation — in fact, the exaggeration of

their characteristics adds to their interest.

The Tough Guy. Possibly the most boring

lead character type, but in many cases,

he is still the best choice. To some extent,

the male player is invited to project him-

self onto this kind of character in much

the same way that we all wanted to be

the Karate Kid in 1984 (although the

thought now of ever wanting to being

Ralph Macchio fills me with terror). In

this case, the cooler the character, the

bigger the payoff.

Choosing this kind of lead happens

most often when working with a more

realistic, mature-oriented game, so the

visual design of such a character is

restricted to some extent by the need for

realism. The same rules that were in

effect for the Hot Chick character hold

true for the Tough Guy: without a strik-

ing design, he will be readily absorbed

into the ranks of leading male characters

from across the years. This can actually

enhance the players’ ability to project

themselves into the game, if that’s your

design goal. The faceless Space Marine

could quite easily be you or me, but there

is only one Duke Nukem.

Life in the Third Person

W orking on a third-person game is

more likely to allow an artist the

chance to create larger spaces and more

complete worlds than a first-person

game, which typically concentrates on

more confined enclosed spaces. It is also

a great opportunity to focus on a charac-

ter design that will in many ways drive

the game. Whatever the situation, it’s the

artists’ task to make the most of what

they’ve got.  q

A R T I S T ’ S  V I E W

a u g u s t  2 0 0 3 | g a m e  d e v e l o p e r22

Duke Nukem is the archetypal Tough Guy
character.



T ime management — it can

define your success as a

sound designer, recordist, or

composer. Develop good

time-management skills and

reap the benefits of smoother projects,

achieved deadlines, and less stress during

crunch time. We’ve all heard this lecture

before. But what about “the space

between”?  How should we be spending

our time between projects or even during

those slow days? Here are a few produc-

tive alternatives.

Computer maintenance. If you are like

me, you have a love/hate relationship

with your machines. You love them when

they work and hate them when they

don’t. Downtime is the best time for

dealing with disk fragmentation, file

backups, driver updates and software

installs. Remember, a happy computer is

a working computer.

Technical maintenance. Take some time

to inspect cables and connectors. Dust

off those soldering skills and make any

necessary repairs. Properly install any

gear that might have been hastily imple-

mented during your last project. If you

are using a patch bay, take the time to

clean the patch cables and jack field.

Make sure that the patch bay labeling

and studio wiring documentation are

updated.

Sound effect and sample libraries.
Update your databases. Regardless of

whichever system you use to keep your

sound effects and samples organized,

take advantage of downtime to keep

them current. Assets recently created for

one project could prove to be invaluable

for another in the future. Taking the time

to catalog and document those elements

now can save a lot of headaches and hair

pulling later. Nothing is worse than dig-

ging through piles of backed-up audio

sessions looking for the full-bandwidth

version of that killer explosion you creat-

ed nine months ago.

If you are not currently using an on-

line solution for sound-effect storage and

management, you might want to take

the time to investigate those options.

Software solutions such as SoundLog

Pro, NetMix, MTools, and Soundminer

all offer databasing, search, conversion,

and export tools for multiple worksta-

tions sharing a common library.

CDExtract is a similar software package

for auditioning, cataloguing, and con-

verting synth sample libraries. 

Resource gathering. If you have a

Rolodex, make sure you use it. If you

don’t have one, then go get one. Use this

time to fill it with contact information

for current and potential vendors, con-

tractors, musicians, and voice actors. The

worst time to be searching for any of

those people is amidst a project with a

looming deadline.

Training. This can be as involved as

taking a class or seminar on a very tar-

geted subject, or as simple as brushing up

on a few of the manuals you have been

using as a doorstop for the last six

months. I have accidentally stumbled

upon a variety of amazing features on

gear that I use every day by perusing the

manual. Also, download demos and eval-

uate new audio software applications. In

addition to keeping current with new

technology, it helps you to reevaluate the

tools you are currently using. 

Consider joining a trade-related organi-

zation. Groups such as the AES (Audio

Engineering Society), GANG (Game

Audio Network Guild), and the IA-SIG

(Interactive Audio Special Interest Group)

provide online resources, discounts on

products and seminars, and a wealth of

contacts through other members. 

Listening. Take some time to critically

evaluate the sound on current games, tel-

evision, cinema, and albums. This goes

beyond just brushing up on the competi-

tion and keeping up with the Joneses. As

an artist, exposure to other professionals’

works can be an inspiration as well as an

education. It is important to look beyond

the game industry. Sound design and

music provides influence across all forms

of media. Styles and trends found in film

audio and composition can easily be

applied to interactive entertainment.

Exploring. Experiment not only with

your creativity but also with the technol-

ogy with which you surround yourself.

Under time constraint we often resolve to

using proven methods when developing

content. Take the opportunity to reinvent

the wheel. Sometimes the new wheel is

faster, more efficient, and sounds better. 

Productivity in the studio is a by-

product of our own creativity and the

tools we use to capture it. The space

between gives us the time and opportu-

nity to maintain those tools and refuel

our imagination. q

M I K E  V E R R E T T E  | Mike is audio director for Wicked Noise
and a member of the Game Audio Network Guild. During periods
of downtime he reads everything you send him at 
mike@wickednoise.com.

The Space Between:
Efficient Use of Downtime

m i k e  v e r r e t t eS O U N D P R I N C I P L E S

a u g u s t  2 0 0 3 | g a m e  d e v e l o p e r24

O N L I N E SFX & S A M P L E D ATA B A S E S

CDXtract: www.cdxtract.com
MTools: www.mtools.info
NetMix: www.net-mix.com
Soundlog Pro: www.soundlog.com
SoundMiner, Inc.: www.soundminer.com

O R G A N I Z AT I O N S

Audio Engineering Society (AES) 
www.aes.org

Game Audio Network Guild (GANG)
www.audiogang.org

Interactive Audio Special Interest Group 
(IA-SIG) www.iasig.org

RESOURCES



a u g u s t  2 0 0 3 | g a m e  d e v e l o p e r26

T his month I’m doing a spot

check of two upcoming mas-

sively multiplayer online

titles that through a mix of

social interaction and inter-

nal mini-games, are both trying to reach

audiences beyond the hardcore gamer. It’s

interesting to see how well each follows

three of the earliest-published rules from

The 400 Project.

THERE. The first of the two titles is

THERE (www.there.com). There Inc. start-

ed back when dot-coms were still boom-

ing and secured over $30 million in fund-

ing, which they’ve put to good use, hiring

some heavyweights of game development,

like Stewart Bonn, one of EA’s first pro-

ducers, and Amy Jo Kim, one of the top

experts on online communities. They’ve

also taken years to get their online world

going and are rumored to be taking many

more months of tinkering before they’re

ready for a full launch. THERE provides

an online world with very realistic avatars

depicting young men and women, in a

sort of cyberspace Club Med setting,

complete with fashion shows, trivia con-

tests, scavenger hunts, hover boards,

paint guns, and the option to design and

sell your own clothing and other items.

TOONTOWN ONLINE. TOONTOWN ONLINE

(www.toontown.com), brought to us by

Disney, is a massively multiplayer world

for young kids, where they can chat using

preselected phrases and participate in

both 3D arcade mini-games as well as a

larger overall simple quest-oriented struc-

ture not unlike that of many standard

MMORPGs. There is combat of sorts

against Cogs, grim robotic NPCs and

their buildings, but it is combat via joke

and gag, and players accumulate new

types of gags as they level up.

Rule: Maintain Suspension of Disbelief.
Both games do fairly well with this rule.

TOONTOWN sets up a world that, though

different from our own, feels internally

consistent and very Disney — it’s imme-

diately comfortable and cheerful. THERE

has a more ambitious task, creating a

world closer to reality and aiming at a

wider range of players, but it also man-

ages to do well at creating an inviting,

more grown-up world. One quibble: you

start the game with $10,000 in

“Therebucks,” but you arrive almost

naked, and a T-shirt costs about $1,500,

with other clothes priced accordingly.

Since the world seemed so realistic, that

immediately roused my disbelief — I

would much rather have been given $100

at the beginning with T-shirts costing

$15, or call the currency “beads” that

could reasonably be 1,500 to the shirt.

TOONTOWN’s currency supports this rule

better, though based on jellybeans. Who

knows how many jellybeans it should

take to buy a squirting-flower gag?

Rule: Provide Clear Short-Term Goals.
Here, TOONTOWN leads the player elegant-

ly but unobtrusively from the start. THERE

players are left to flounder at times, but of

course they are farther from launch and

are likely to provide more directed activi-

ties as their user base grows. I expect

they’ll depend more on a friendly user

base helping newbies get up to speed,

which is already starting to happen.

Rule: Provide Parallel Challenges with
Mutual Assistance. Both games are fairly

evenly matched on this rule. Both pro-

vide multiple ways to earn their respec-

tive currencies and gain skills, and gain-

ing currency or skill in one activity can

make others easier, providing mutual

assistance.

Both online worlds incorporate good

design rules and have clearly profited

from analysis of previous online titles.

Whatever luck they have opening the

online world to both kids and a wider

range of adult players will benefit all

online game developers in the long run.

From the mailbox. This month, a couple

of responses to my June 2003 column on

consistency, “The Hobgoblin of Little

Minds.”

Brett Douville of LucasArts says, “It’s

my belief that you have stumbled across a

meta-rule in discussing the Emerson

quote. This is, in fact, a rule about rules.

Another way [of] stating it might be:

‘Rules should be followed, except when

they shouldn’t be.’ It is often the role of

experience to determine when and why

rules should be broken; there is no greater

teacher of wisdom than experience.”

While Major Jeff Bourne of Texas

A&M University suggests that the impor-

tant thing is internal consistency, even if

the rules change within a game. He refers

to my example about exploding crates:

“Players don’t need to know that boxes

explode; however, once they start to learn

that they explode, there should be some

reason why they do, and some way to

alter destiny based upon their actions.”

More comments on consistency will

follow in future columns.  q

A Tale of Two MMOGs

TOONTOWN ONLINE is geared toward providing
online entertainment for young kids.

n o a h  f a l s t e i nB E T T E R  B Y  D E S I G N

N O A H  F A L S T E I N  | Noah is a 23-year veteran of the game

industry. His web site, www.theinspiracy.com, has a description of

The 400 Project, the basis for these columns. Also at that site is a

list of the game design rules collected so far, and tips on how to

use them. You can e-mail Noah at noah@theinspiracy.com.





w w w . g d m a g . c o m 29

H ardware and technology are changing rapidly.
Game development teams and budgets have
grown to keep pace. However, our methods for
creating game technology have often not kept
pace. We waste millions of dollars and years of

time to create games that don’t meet the gameplay or visual
quality bar that consumers expect.

In many cases, this situation is due to methodology that we
use to create game technology. Ad hoc methods used to support
a few artists or tune a simple game mechanic are not suitable for
teams of 30 people or more. Also, given the growing size of pro-
gramming teams, ad hoc leadership and team communication
styles are no longer effective.

The most apparent effect of these problems is an increasing
amount of thrashing, or wasted effort within a team. Content
creators (artists and designers) are often delayed by key tech-
nology; even if they do have a working pipeline, they are
delayed by long iteration time between making changes to
assets and seeing them in the game. On the programming side
we wind up chasing frequently changing goals and conducting
death-march efforts to keep pace with schedules created from
some dim, optimistic past.

These are not the best conditions for creating the games we
wish to create. Such conditions leave little time for exploration
of what will make the game fun. At worst, they sap the passion
of the developers to make a great game.

The game development industry needs to mature. It needs to
develop technologies and methods for freeing up creative and
content roadblocks. It needs to keep schedules realistic and pro-
vide time for refactoring our code and updating our assumptions. 

To that end, this article describes building a technology
foundation for a new game development studio. It’s about tak-
ing all the team members’ accumulated experience and trying
to get it right from the start. It’s about addressing specific tech-
nical infrastructure problems that can prevent us from making
the best games possible. Although it is far easier to start with a
new group and blank slate, every one of these problems
described can be addressed by any existing programming team.
The solutions presented are based on our collective experience
over our careers and may be ideal for your organization, but
the goal is to present a starting point. Many of our lessons
learned have come from failure as well as success.

The Goals

O ur goal is simply to make our development teams as pro-
ductive as possible. We want to give the content creators

(designers and artists) fast and intuitive control through tools
which allow them to discover gameplay and resolve production
problems as early as possible. We want to establish a methodol-
ogy that will allow the programmers to work in an effective
team environment. Our focus is to create the technology and
processes that will support these goals and provide the basis for
a number of development projects running in parallel. The
approach we’ve taken is to invest heavily in a technology infra-
structure from the start. This meant creating a sizable Engine
and Tools Group from the beginning.

The following article describes the decisions we’ve made
regarding technology, tools, and methodology. It’s about our
solutions to common problems given the opportunity to start
from nothing but a commitment by Sammy Studios to invest in
a technical infrastructure.

Technology

T echnology is the foundation for development. We want to
architect this foundation to make it both flexible for proto-

typing and robust for production.
Data-driven design. Game design requirements are very

dynamic, and our technology needs to be designed to handle
this. Game behaviors and tuning parameters must be iterated
frequently to produce the best results. Game engines often do
not support this approach. A common practice is to embed the
behavior of the game’s entities too deeply into code. As a result,
a programmer will end up spending a great deal of time making
small code changes and building a new version of the game for
a designer. To address this, programmers might create simple
text-format files for storing frequently changed parameters, but
don’t make the parser robust enough to handle format changes
and backward compatibility.

Another problem is depending too much on object hierar-
chies for behavior. Anyone who has written a large object hier-
archy knows that moving object behavior around the hierarchy
can produce a great deal of problems in the long run. An exam-

It’s not every day a studio gets to reinvent the game development
wheel by setting up a brand-new technology group. Combining
awareness of tomorrow’s trends with the knowledge gained from
game development’s past, Sammy Studios chose to invest in a new
technical infrastructure.



ple of this is moving AI behaviors around the hierarchy until
you end up with AI behaviors in base classes or a great deal of
cut-and-pasted code. Both of these solutions create a fragile
code base that becomes increasingly difficult to maintain.

A data-driven design can solve these problems. The system
that we created is called an Actor Component System. This sys-
tem allows groups of components, or basic objects of behavior,
to be aggregated together to form actors within our games. The
components that make up actors are driven by XML data files
which the designers or artists tune with a Maya plug-in editor.
Components and actors communicate with each other through
a messaging system that allows the data contained in the com-
ponents to be loosely coupled. 

For example, say you have a locked door. The designer may
want you to change that door to have it unlock when there is a
specific class of NPC in view, which would require adding an
“eye” component to the door. When the eye component “sees”
an NPC it recognizes, it broadcasts a message to its parent
actor indicating that the door should unlock and open. The
benefit of this approach is that you don’t have to have all door
objects contain eyes, and eyes don’t have to know to what they
are attached. A simple scripting system glues the logic together
(for example, seeing a particular NPC would trigger a door-
open action). Making this change in an object hierarchy behav-
ior model would be more challenging.

There are problems to be aware of with a data-driven design.
You can easily give the designers too much control or provide
too many controls to adjust in this system. This can result in
unforeseen combinations of behaviors that can generate a great
deal of problems. We address this issue by having programmers
combine components into Actors templates ahead of time. You
don’t want to create a system that attempts to remove the pro-
grammer from the design loop.

Middleware. As a new studio, middleware was an obvious
choice for us. Halfway through the current console cycle is not
the best time to be creating a new technology base. Creating
your own core technology requires a time-consuming process of
hiring specialists in programming graphics, physics, audio, and
all the rest, for all platforms. The amount of time it takes to
create this core engine adds a great deal of risk to development. 

We chose to leverage mature middleware wherever possible,
which has accelerated our prototype development. Middleware
vendors provide plug-ins and exporters for Maya or Max,
allowing us to focus programmers familiar with the SDKs for
these programs on extending functionality for our own use.

Middleware must be carefully evaluated. We’ve rejected some
middleware packages after our evaluation determined we could
not meet our goals with them. Middleware that does not have

source code licenses adds a great deal of risk and has been a big
basis for not using certain libraries. Middleware that has not
been used on a published game is also a risk. Such risk might be
acceptable if you were replacing some existing technology, but in
our case we didn’t have technology to fall back on. Also, some
middleware can be suited for prototyping but not for production. 

Engine design. People are often confused by our effort to
develop an engine after we have chosen to use middleware.
Such confusion stems from misunderstanding what a game
engine really is. It’s not a renderer, but rather a framework and
wrapper for the various subsystems (including middleware) in
the application. It unifies resource management, control, sound,
networking, and gameplay with common interfaces that allow
them to work well together.

Engine design is often neglected, which can lead to problems.
When middleware and platform implementations are not well
insulated, replacing them can create major headaches. Subsystems
that are not insulated from one another can create a web of
cross-dependencies that build up during development and take
more and more of the programmer’s time to maintain. When
subsystem interfaces are created independently, it becomes any-
one’s guess as to how systems will all work together properly.

The solution is to architect the engine and framework as
early as possible. For us this began with an agreement about
the coding standards and project structure. A design phase
defined the top-level design, the interfaces, and several use
cases describing the top-level flow of a game using it. Our
framework consists of a number of subsystems that inherit an
identical interface. This interface defines each phase or opera-
tion of the subsystem from startup, reset, simulation update,
rendering, and shutdown (among others). These subsystems
are treated as tasks with their own priorities. This framework

a u g u s t  2 0 0 3 | g a m e  d e v e l o p e r30

FIGURE 1. Three-level tool hierarchy based on iteration time, depth of
data manipulation, and interface complexity.

Iteration Time

Networked Console Tools

MFC/Engine Tools

Maya

In
te

rf
ac

e 
Co

m
pl

ex
ity

TIP: Focus your interface development in areas 

that will be used the most. A value that is rarely set can be

given a text field. A frequently tuned value may deserve a

custom slider control.

T E C H N O L O G Y  M A N A G E M E N T



allows us to control the game flow at this highest level of
code rather than having lower-level systems having to “know”
about each other.

Insulating the higher-level code from the lower levels is
important. This includes creating wrappers or defines for mid-
dleware-specific types and isolating platform specifics through
common interfaces. Proper interfaces are the key to solid
engine design.

Generic networking libraries. Online networking is a popular
feature these days, and it’s important to address it early, as it’s
not easy. Leaving network development to later in the project
will create a lot of refactoring in your game object behavior.
These objects need to be developed and tested with networking
technology in place.

We created a generic network layer very early and have bene-
fited in many ways. It allowed us to test new behaviors in the
networking environment as soon as they were written and fix
problems that are best solved when the code is fresh in the
mind of the author. There were also a few surprising benefits as
well: By allowing early network play, our designers had early
insights on potential AI behavior. In addition, we have fully
leveraged this technology for our tools, creating robust tools
that run on the PC and work and communicate with the games
running on the consoles. 

Tools and Pipeline

O ur goal is to give content creators fast and simplified
access to the technology. The more times they can iterate

and the less time spent waiting for fixes, exports, and program-
ming changes, the better the game will be.

Tools. Tools for development are essential, but their develop-
ment can easily be mishandled. They can limit content quality
and production flow if not properly developed. This is often
due to limited resources being dedicated to tool production
early on. Tool development can also be too ambitious, provid-
ing complex, deep tools that do not meet the expectations of
professional artists who are used to mature interfaces. Tools
can place a major burden on users by introducing complex
steps or latency between creating assets and seeing them in the
game. They might depend on parallel functionality in the game

that could be changing rapidly and end up requiring heavy
maintenance. At worst, an asset that works in the tool might
not work at all in the game once it is imported.

Our approach to tools is to create them at three levels. These
levels correspond to how tightly coupled the assets and data the
tool manipulates are with the game (and how fast changes hap-
pen) and how deep the user interface is. Figure 1 shows the
relationship among the different types.

The top level consists of plug-ins and extensions to Maya
and other commercial tools. Maya has hundreds of man-years
of development in its user interface, there is a rich pool of tal-
ent that knows how to use it, and its interface is extremely cus-
tomizable and extensible. This is what the artists and designers
use to perform the large-scale operations of creating levels and
geometry and setting up gameplay. They spend most of their
time in this environment, and so their tools need to be solid.

The mid-level tools are MFC applications linked to our engine.
An example of this is a tool that allows us to create and tune our
animation finite state machine (FSM). FSMs are often defined in
code or in obscure text files that designers or artists cannot
manipulate. A user interface such as MFC allows your tool pro-
grammers to create capable interfaces rapidly. The artist is graph-
ically manipulating the FSM and its parameters, and can see the
immediate progress within the game view. There is nothing that
can be lost in translation or code duplication between the engine
and the tool when they are linked together.

The lowest level of tools we develop are those which run
directly on the console. These tools manipulate data that is
dependent on the hardware. An example of this is our mip-map
tuner which allows the artist to select a texture within the game
running on a PS2 and tune the mip-map (l and k) settings in real
time. The networking layer allows this tool to be run on a PC
that is on the same network as the PS2. Once the artist is happy
with the settings, he or she saves the parameters out to the asset
pipeline, which uses those values for all subsequent PS2 exports.

Another important feature is to make sure the interfaces are
as uniform as possible, for example, making all your camera
controls work the same as Maya’s. Keeping a dozen or so tools
under proper control creates problems. Properly versioning the
tools and the assets they create is a major requirement for the
pipeline, which I’ll address next.  

Asset pipeline. Channeling the flow of thousands of assets
(source and exported) through a system that maintains many
revisions can be a major challenge. The problems are too
numerous to list individually, so I’ll generalize them:
• Maintaining revision control not only of the assets but of the

executables. When everyone has different versions of the

w w w . g d m a g . c o m 31

TIP: Having a single interface where everyone on the team

can control the version of their assets and launch the game

from one place is very useful. In the past I have written

independent tools to do this, but we were able to integrate

this tool into the Alienbrain client. Using the Alienbrain

instant messaging system can bring everyone on the team

immediately up-to-date with any changes to the assets,

executable, or exporters. Links to new files can be sent and

automatically updated.

Renderware Graphics 3.5 introduced platform-independent
XML format (RF3) and export templates that control how the
RF3 is converted to platform-dependent assets. This is a
great example of an intermediate file format that made the
pipeline far more extensible.



game, it’s hard to track down problems but easy to lose tun-
ing improvements.

• Old assets that are no longer useful clutter the system long
after they should be retired.

• Numerous paths for adding assets exist. No permission sys-
tem exists to protect the data.

• No meta-data exists to control the asset export. For instance,
what would you do if you needed to change the scale of
every exported asset?

• Bad data (assets that can crash the game, for example) needs
to be caught before it goes out to the rest of the team.
The first step in creating an asset pipeline is to visualize what

you want it to do. We flowchart the path for assets through
each system we want to create and work with the artists and
designers to develop case studies of how specific areas of a
pipeline will work. The goal of this flowchart is to identify and
remove bottlenecks for the artists to create scenes and see them
in their final form.

Many developers have created custom asset management
tools that required major investments. The impact on budgets
and schedules due to bad asset pipelines certainly justified the
expense. However, there are some recently released commercial
applications that make such an investment in homebrewed
solutions no longer necessary. We chose Alienbrain as our base
asset management system. Alienbrain came with Maya integra-
tion built-in and an extensive COM-based interface that
allowed us to integrate it with our engine and tools.

One other key element of the system is the use of an inter-
mediate XML file format that is exported by the tools
(Figure 2). This intermediate file format is an additional file
that is exported into the pipeline. It contains all the data that
you would potentially be interested in. This gave us two
major benefits:

First, assets can be re-exported from an automated system if
we wish to change some basic value. For example, when we
wanted to rescale our geometry, we changed one float in one
template and hit one button to re-export everything. 

The other benefit is that exported assets can be deleted and
regenerated every night. Together with meta-data–driven asset
tracking, this is a useful system for culling old assets that are no
longer used.

The major ongoing issue of an asset pipeline is that it is con-
stantly changing. With the addition of tools during develop-
ment it is easy to introduce problems and pathways that make
it harder to use. Revisiting the state of the pipeline and fixing
problems is a must, as asset pipelines are never truly “finished.”

Methodology

T he effectiveness of a programming team is determined by
how well they are organized and how well they work

together. A team that is not moving toward a commonly under-
stood goal and sharing the same practices is not going to be
very productive. 

Shared practices. Creating a game is a team effort that should
be supported by certain practices. Such practices include shar-
ing tool improvements and improving the ability for program-
mers to understand each other’s code. Code that is hard to
read, poorly documented, or full of bugs hinders efforts to
streamline programmer productivity. Improvements to the tech-
nology and development tools need to be shared widely enough
to benefit all programmers on the team. 

To help solve this, we use a best practices document. This
document is a collection of all the standards and practices that

a u g u s t  2 0 0 3 | g a m e  d e v e l o p e r32

FIGURE 2. Three-level tool hierarchy based on iteration time, depth of
data manipulation, and interface complexity.

Maya 
Scene

Export from
Maya

Separate
export tool

XML
File

Xbox
Dependent

File

GC
Dependent

File

PS2
Dependent

File

THE BEST PRACTICES DOCUMENT 

During development there are many improvements to the

technology or methods made to make life easier. How do you

track these improvements? A single document that collects

descriptions of these is a great help.

Think of what you would want to hand to new programmers

joining your team. You want them to come up to speed on

your team’s practices as efficiently as possible. If they need

to know it, it should be in the best practices document.

T E C H N O L O G Y  M A N A G E M E N T



have been established. This document is constantly updated to
include improvements or refinements to the system.

The best practices document includes coding standards, setup
instructions, naming conventions, documentation requirements,
commit practices, and descriptions of useful utilities and tools
for the programmers. Revisions to this document happen con-
tinually; whenever someone sends out a useful macro for
debugging, I’ll have them include the information for that in
this document.

A best practices document alone is not sufficient, however.
Other practices such as code reviews and pair programming
exist to ensure that the entire team is continually following
these practices and that good practices are being promoted. If
these practices are followed, you’ll find that everyone’s code
quality will improve and maintenance will be reduced. Pro-
grammers write better code when they know more people are
going to look closely at it.

Commit practices. Source version control tools are essential,
but they can introduce as many problems to a project as they
solve. It’s very easy for programmers in a rush to commit
untested code changes that bring the entire project to a halt. It’s
not uncommon to see teams spending half their time fixing
problems related to this issue.

We’ve set aside a PC that is our commit test target. Before a
programmer makes a commit, he or she first reserves this
machine. Following the commit, the test PC retrieves those
changes and rebuilds all configurations of the game. When all
the builds are successful, the target PC is released and the pro-
grammer sends a note to a team list describing the changes.
This catches most of the problems committed, but not all of
them. Daily build tests catch many of the rest.

Nightly builds. A common problem occurs when you’re not
sure what version of the game or assets is being used by mem-
bers of your team. An artist might have a crash problem on his
or her machine, but the problem cannot be replicated on a
development system. Trying to figure out such puzzles wastes a
large amount of time.

Earlier I mentioned that we re-export all of our assets
overnight. This is done on the PC that is used as the commit
test target. The tool that creates these builds also embeds ver-
sion numbers in the executables and the game (for run-time ver-
sion testing). Each morning the assistant producer runs the
game that was regenerated overnight and goes through a regres-
sion test. Any problems must be solved immediately. Once a
working set of assets and executables are identified, they are
copied up to a network drive. Everyone on the team is

informed (using Alienbrain instant messaging) that they can
update to these versions. 

The benefit of this is that the team can copy known working
assets and executables to their local drives and start making
changes. If an artist introduces a new asset that breaks their
local copy of the game, then they know they caused it and that
that they cannot commit this new asset. The same goes for pro-
grammers changing code. In such a situation the artists are
encouraged to seek a programmer to solve the problem. 

Leadership. Programming teams are often led by someone
who does not yet understand how to lead. That person has
shown a great talent for programming and was probably pro-
moted with no instruction on how to fill the lead programmer
role. This situation can lead to disaster for the team, because
the lead will continue to focus on programming and not lead-
ing the team.

Leads need to spend half their time managing the effort,
dealing with problems that are affecting the team, planning to
avoid future problems, and making sure everyone is working
toward the same goal. During milestone crunch times, they will
need almost all of their time free for putting out fires. As a
result, leads should not assign themselves key tasks around crit-
ical milestone deliverables. Leads should focus on mentoring
and taking a global view of the technology being developed by
the entire team. There is no way a lead programmer alone can
create enough useful technology that would offset the benefit
gained by having someone focusing on team issues.

From Investment to Returns

M any of the problems described here are common to every
developer. Our solutions were developed based on our

current circumstances and collected experience. These same
solutions may not apply to you, but the problems still need to
be addressed. Creating and justifying the expense for infrastruc-
ture can be an uphill battle with management; the value added
by infrastructure cannot easily be tracked by counting games
sold. A solid infrastructure does not ensure a hit game; rather it
reduces the number of obstacles that get in the way of creating
a hit game.  q

w w w . g d m a g . c o m 33

Brown, William J., and others. AntiPatterns: Refactoring Software,
Architectures, and Projects in Crisis. John Wiley & Sons, 1998.  

Cerny, Mark, and Michael John. “Game Development Myth vs.
Method.” Game Developer vol. 9, no. 2 (June 2002): pp. 32–36.

Game Programming Gems, vols. 1–3. Charles River Media,
2000–2002.

McConnell, Steve. Rapid Development. Microsoft Press, 1996. (Or
any of McConnell’s other books.)

Meyers, Scott. Effective C++, 2nd Ed. Addison-Wesley, 1997.

S U G G E S T E D  R E A D I N G

A lot of automation to control the

commit practices can be built. This

automation makes the task of

committing and sending mail to the

team as painless as possible. 



j a y  l e eD ATA - D R I V E N  S U B S Y S T E M S

a u g u s t  2 0 0 3 | g a m e  d e v e l o p e r34

Data-Driven
Subsystems for MMP
Designers:

A Systematic Approach

C orporate IT departments have long leaned on

relational databases as the foundation for their

mission-critical applications. There are many rea-

sons why they chose this route, but one of the

most significant has to be because relational

databases are robust, reliable, and in short, they just plain work. 

This has not been lost on massively multiplayer (MMP) game

developers; many are using databases to implement the cus-

tomer billing, account management, and character persistence

aspects of their online services. However, designers of MMP

games (or any game with very large content requirements) can

also leverage the power of a relational database to implement

data-driven game subsystems effectively.

The advantages to the game designer are many. For one

thing, relational databases can build a more maintainable,

extensible, and flexible game, qualities that can ultimately

make a game better. The game can be tweaked or grown in a

large variety of ways simply by modifying existing data values,

or adding new data to realize new content.

In addition, data-driven designs can utilize the easy-to-learn

yet powerful Structured Query Language (SQL) to write queries

that answer any question imaginable about existing game con-

tent in the database. This reduces the need to find answers in

potentially out-of-date design documents or by searching

through source code.

Referential integrity in the database can also serve as an

extra set of eyes watching out for errors in data entry that vio-

late assumptions made in the game. These rules prevent the

occurrence of bugs that might otherwise be expensive to track

down and fix if they got into the game.

Furthermore, choosing a commercial database makes the

operations department very happy, because the game is built on

top of enterprise-quality software, making their job significant-

ly easier compared to home-grown solutions. Using tools that

come with the database, they can easily perform on-demand

and scheduled backups and restorations as well as monitor

database activity and disk space usage.

Finally, databases provide easy access to in-game information

for community staff, allowing them to leverage the data for

additional offerings that increase player interest and loyalty,

while they also allow a more dependable offering at launch,

increasing the possibility of having a life outside of work.

Getting Started

T here are two major parts to the puzzle of data-driven

design. One part is determining how to write game code to

utilize the data within a database. This is beyond the scope of

this article, but I’ve included some resources that address this

topic in the For More Information section.

The other part of the puzzle is the creation of the database

structure, or schema, that will drive the game. The remainder of

this article describes an easy-to-follow process to create the

schema needed to support a game’s data-driven subsystem.

First, I’ll name and define the steps in the process. Next, I’ll

introduce a real-world and nontrivial example subsystem and

describe its requirements. The result will be a database schema

that fully supports these requirements. Then I’ll discuss the dif-

ferent roles involved, providing an overview of the various

responsibilities of team members during the process and once

the schema is implemented. Finally, I’ll offer some direction on

how to go about applying this approach to your game.

Before jumping in, be aware that some assumptions have

been made when presenting the material. You should already

have some basic understanding of relational databases and how

they are structured into tables with columns and rows that con-

tain data. You should also understand basic SQL syntax and

how it is used to retrieve and manipulate the data in tables. If

this is not the case, check out the For More Information section

for suggested sources for this background information.

J A Y  L E E  | Jay recently completed his eighth year in the game
industry after spending 10 years wearing suits to work. His body
starts to twitch at the thought of going back to a dress code. Jay is
currently working on TABULA RASA for NCsoft Corporation and
can be reached at jlee@ncaustin.com. 



w w w . g d m a g . c o m 35

Spawner
Column Name            Data Type      Length Allow Nulls

SpawnerId int 4
SpawnerDesc varchar 50
SpawnRadius real 4
MinPopulationCount smallint 2
ActiveFlag bit 1

Zone
Column Name            Data Type      Length Allow Nulls

ZoneId int 4
ZoneDesc varchar 50

ZoneSpawner
Column Name            Data Type      Length Allow Nulls

ZoneId int 4
SpawnerId int 4
LocationX real 4
LocationY real 4
LocationZ real 4

Creature
Column Name            Data Type      Length Allow Nulls

CreatureId int 4
CreatureDesc varchar 50

CreatureSpell
Column Name            Data Type      Length Allow Nulls

CreatureId int 4
SpellId int 4
DamageMultiplier real 4

Spell
Column Name            Data Type      Length Allow Nulls

SpellId int 4
SpellDesc varchar 50
MinDamageAmount smallint 2
MaxDamageAmount smallint 2
MaxEffectiveDistance real 4

LootPackage
Column Name            Data Type      Length Allow Nulls

LootPackageId int 4
LootPackageDesc varchar 50

LootPackageItem
Column Name            Data Type      Length Allow Nulls

LootPackageId int 4
ItemId int 4
MinItemAmount smallint 2
MaxItemAmount smallint 2
DropProbability smallint 2

SpawnerCreature
Column Name            Data Type      Length Allow Nulls

SpawnerId int 4
CreatureId int 4
MinSpawnCount smallint 2
MaxSpawnCount smallint 2
GroupedFlag bit 1
MinScaleFactor real 4
MaxScaleFactor real 4
MinHitPoints smallint 2
MaxHitPoints smallint 2
MinManaPoints smallint 2
MaxManaPoints smallint 2
LootPackageId int 4
EquippedItemId int 4 ✔

Item
Column Name            Data Type      Length Allow Nulls

ItemId int 4
ItemDesc varchar 50

Weapon
Column Name            Data Type      Length Allow Nulls

ItemId int 4
DamageRange real 4

FIGURE 1. Database schema for creature-spawning subsystem



The Process

T here are four steps in the process of creating data-driven

subsystems: (1) discover entities, (2) discover relationships,

(3) assign attributes, and (4) iterate.

The “discover entities” step uncovers the things that we

care about in the subsystem. These are the objects, actions,

or concepts considered to be in scope of what the subsystem

is to accomplish. For example, a Spell is an entity in a spell-

casting subsystem, while an Item would be an entity in a

vending subsystem.

In step two, “discover relationships,” we consider the entities

from step one and ask whether they share an association of

importance that is within scope. If they do, we determine the

nature of the relationship. In a spell-casting subsystem, the

SpellBook entity has a relationship with the Spell entity. A

SpellBook entity can contain many Spells, and the same Spell can

appear in different SpellBooks.

Additional pertinent information about entities and relation-

ships is captured in step three, “assign attributes.” SpellName is

an example of an attribute of the Spell entity in a spell-casting

subsystem.

The last step, “iterate,” requires revisiting steps one

through three as many times as needed until stasis is achieved.

The process is deemed complete when additional iterations do

not reveal any new entities, relationships, or attributes, and

the participants agree that what is captured meets the subsys-

tem requirements. 

Now that we are armed with an overview of the process, let’s

look at our example subsystem.

Creature Spawning Requirements

A n effective way to learn a process is to follow along as it is

being applied to a familiar yet nontrivial example. Most

MMP games contain creatures of some type, and these creatures

have to be made to appear in the game world. The subsystem that

does this is usually known as the creature-spawning subsystem.

The following requirements were identified for a creature-

spawning subsystem:

First, spawner objects may be placed anywhere in the 3D

world and are utilized to create creatures for players to battle.

The valid spawn area is anywhere designated by the radius of a

circle from the given location of the spawner. 

The second requirement is that the spawner should ensure

that a minimum population of creatures is maintained for its

area and should respawn as needed when this falls below the

desired level as creatures are killed. The distribution of creature

types by a spawner should be configurable.

Third, the game world is divided into zones, and each zone

represents a geographic region that is allocated to a server. When

the server running a zone starts up, it should place and initialize

all spawners assigned to that zone. Spawners can be tagged as

inactive so that they are ignored at the next server restart.

Fourth, spawners can spawn multiple creatures from the set

of creatures; each spawned creature will be assigned random

hit points, mana points, and size based on allowable ranges.

Multiple instances of a type of creature may be spawned at a

time, within a range. If they are tagged as grouped, the crea-

ture manager should be notified so that the appropriate group

AI kicks in.

Fifth, when creatures die, they distribute loot to the player

that landed the killing blow. The loot carried by a creature

should be assigned from a specification that allows for a range

representing the random amount of the given item, and a prob-

ability out of 1,000 that the item is actually dropped (like a die

roll). Creatures may drop multiple different items. Players get

experience points equal to the hit points of the creature divided

by the number of people in the party.

The final requirement is that creatures are armed with a sin-

gle (optional) weapon. When in range, they utilize the weapon

in combat when they are unable to cast any spells they have.

However, when they die they do not drop the weapon. Crea-

tures may have multiple spells to use in combat but have the

same set of spells regardless of where they are spawned. They

only configurable attribute of a creature-based spell is a factor

representing the damage done compared to the base spell dam-

age. For example, a factor of 1.5 means that when used by the

creature, the spell does 1.5 times the normal damage.

It may not be the case that all our requirements fall out as

neatly as these have been defined, but that doesn’t invalidate the

process, nor does it prevent us from starting to develop our

schema. The steps are always the same; we might have to employ

more iterations before arriving at a satisfactory result if the

requirements come about in a more piecemeal fashion.

Let’s begin developing the schema with the first step in the

process.

Step 1: Discover Entities

F rom a database perspective, entities are the things that we

care about representing in the subsystem. They are typically

the nouns used by designers when defining requirements, either

verbally or in a design document. Entities should be labeled with

singular names that are clear in intent. From the requirements

we can quickly identify Creature, Spawner, Item, Weapon, and Spell

as candidate entities. Some less obvious entities might be Zone

and LootPackage. The latter is a term we’ll use to describe the

specification of items dropped by creatures.

Every entity should be given a primary key whose numeric

value is automatically assigned by the database. A primary key

is an identifier capable of uniquely addressing a particular

instance of an entity. In Figure 1, the Creature table shows

CreatureId as the primary key on the Creature table. We do not

care specifically what its value is, as long as it is unique and

remains unchanged once assigned. For example the Orc may

have a CreatureId of 25, whereas the Wolf may have a

CreatureId of 12.

a u g u s t  2 0 0 3 | g a m e  d e v e l o p e r36

D ATA - D R I V E N  S U B S Y S T E M SD ATA - D R I V E N  S U B S Y S T E M S



Each entity should also be assigned a description or name.

This is the familiar handle assigned an entity instance by which

it is normally referred. However, it’s not the primary key

because variable-length strings are relatively inefficient to query,

and we may at some point want to rename the creature current-

ly referred to as “Orc.”

Our list of candidate entities is Creature, Spawner, Item, Weapon,

Spell, Zone, and LootPackage. Each would be given a primary key

and a description. This could be recorded in a word processor,

on a whiteboard, or using a tool suitable for capturing data-

base schema.

Step 2: Discover Relationships

W hen we connsider how entities relate to each other, this

allows us to start developing a picture of what the

subsystem is really about. When taken alone, Spawner and

Creature can offer little. Once they are related, however, we

observe that they can describe what types of creatures are

spawned by a particular Spawner or that a particular Creature is

exclusive to a single Spawner.

Relationships or associations are implemented in terms of

placement of the primary key of entities onto the tables of the

other entities in the subsystem. In some cases the association of

two entities results in a third table, forming a new entity with a

compound key, a key with more than one column.

Figure 1 shows that the association of Creature and Spawner

has resulted in one such new table, not so subtly named

SpawnerCreature. This table has a compound key made up from

CreatureId and SpawnerId and should be interpreted to mean that

in order to address a single row on this table, one must provide

both a SpawnerId and CreatureId.

To uncover relationships in a subsystem, we must ask for

every pair of candidate entities: For any given entity A, how

many are there of entity B? The same question is posed in

reverse: For any given entity B, how many of entity A are there?

For Creature and Spawner we are asking: For any given Spawner,

how many Creatures may be spawned? Then, for any given

Creatures, how many different Spawners may spawn them? The

answers to these questions reveal the type of relationship used to

associate the given entities.

If the questions don’t make sense for a pair of entities, or if

the answer to both questions is 0, we can be fairly certain that

no relationship exists within the scope of the subsystem.

If the answer to both questions is 1, then they are in a 1-to-

1 relationship (1-1). This type of relation is relatively rare. It

captures a significant constraint. In the example, it would

mean that a Spawner can only spawn one type of Creature, and

that a particular Creature may only be spawned by a single

Spawner instance in the entire game. It’s unlikely to represent

what is desired in the subsystem. But if it were, the SpawnerId

column could be placed on the Creature table, or vice versa, to

represent the association. The foreign key must only allow

unique values to ensure the 1-to-1 nature of the relationship.

If the answer is 1 to one question, and “many” to the other,

the entities are associated in a 1-to-many (1-m) relationship.

The “many” answer reveals the entity that receives the primary

key from the other entity as a column to signify the relation-

ship. The inherited column is known as a foreign key from the

sending entity. If a Spawner can spawn multiple Creatures but a

Creature could only be spawned by a single Spawner instance,

Creature would get SpawnerId placed on it. If a Creature could be

spawned by many Spawners but a Spawner could only spawn a sin-

gle Creature, Spawner would get the foreign key. 

w w w . g d m a g . c o m 37

WHICH LIBRARY? Retrieving the data for use in the game is obvi-
ously critical. Be diligent when selecting the library used to inter-
face with the database. Choices run the gamut from vendor-pro-
prietary to industry standard, from easy-to-use to arcane. We
must understand what we are choosing and why and ensure that
it is extremely reliable in delivering the data into the game.

AVOID THE SERVER GAME LOOP. It is extremely beneficial to avoid
directly accessing the database at critical points in the server
game code, since database calls block while processing. Preload
and cache the data for run-time use. Load player data only when
they log in and implement an asynchronous access strategy for
anytime we need to hit the database.

NOT DIRECTLY FROM THE CLIENT. The client is too speed-sensitive
to directly access the database. We can generate data files for use
by the client offline from the database and retain the benefits of
centralized repository of data. 

OPTIMIZE THE STRUCTURE FOR RUN-TIME ACCESS. When the data
is needed at run-time, it must be accessed as efficiently as possi-
ble. Map the loaded data into constants, lists, hash maps, arrays,
or whatever choice returns what you need most effectively for any
given set of data. These choices are independent and unaffected
by the database structure, which is exactly the flexibility we want.

USE PYTHON? If Python is used on your game, you must check out
a product called mxODBC. This multi-platform Python library
makes database access incredibly simple and supports a large
array of database products.

USE REFERENTIAL INTEGRITY. Utilize RI in the database to help keep
bugs out of the game. Use it everywhere possible. If a bug shows
up because bad data is entered, write new rules to detect the
error and prevent it from happening again.

USE STORED PROCEDURES. Stored procedures wrap SQL state-
ments and control statements into network-efficient, reusable
database objects that can take arguments. They abstract schema
specifics and can keep code immune to schema changes. Not
using them should be a criminal offense.

USE MICROSOFT SQL SERVER. Take advantage of the Database
Diagram, a very useful object in SQL Server that allows you to
build and maintain your schema visually.

Tips for Leveraging the
Schema in the Game



If both answers are “many,” then a third type of relationship

known as many-to-many (m-m) has been found; a Spawner can

spawn many Creatures and a Creature can be spawned by more

than one Spawner. This is what is called for in the requirements,

resulting in the creation of the SpawnerCreature entity and its

table. The foreign keys from both entities in a many-to-many

relationship are brought together to create a new table and act

as its primary key.

Running through the candidate entity list and asking the

questions, we might arrive at the following relationships and

types: Spawner-Creature (m-m), Zone-Spawner (1-m), Creature-Spell

(1-m), LootPackage-Item (1-m), Creature-LootPackage (1-1), Item-

Weapon (?-?). It’s a first pass, and for now we are not even sure

what type of relationship Item and Weapon are involved in, only

that they somehow go together. This is O.K.; perhaps as we

add some detail to each entity in the next step, things will

become clearer.

Step 3: Assign Attributes

T he third step is to assign attributes to entities. Attributes are

additional columns added to a table to describe further the

entity to which they are assigned. An attribute should apply

completely and only to the entity that it is describing.

For Spell, that might include columns such as SpellDesc, a

description of the spell; MaxEffectiveDistance, a value indicating

the distance from the caster where the spell is no longer effec-

tive; and MinDamageAmount and MaxDamageAmount, the range of hit

points of damage delivered by the spell. CreatureId would not be

an attribute, since the same Spell can be associated with more

than one Creature.

We look through each of the requirements defined previously,

and when we find what looks like an attribute, we assign it to

the most likely entity. Adding or removing attributes is fairly

trivial, so we don’t let ourselves get too hung up in this step.

Look at some of the entities in Figure 1 for additional examples

of attributes gleaned from the requirements. 

Step 4: Iterate

O nce a single pass is made through the first three steps, it’s

time to examine the resultant schema to determine

whether it is complete and correct. As new information is dis-

covered or better understood, we make the appropriate modifi-

cations and iterate again. This is done as many times as needed,

until we reach a point of stasis. We may go back to the require-

ments one more time to validate that each one is addressed, or

present the schema to other team members to see if they have

anything to add. 

Let’s iterate through our current results and see what hap-

pens. After some consideration, it is apparent that we will

want to reuse Spawners across Zones. If a particular Spawner is

effective, then it is beneficial to assign the same instance else-

where in the game world. The ZoneSpawner table results from

this decision. The actual location of the Spawner is recorded on

this table also.

The association of Spawner and Creature appears solid. We’ll

add some attributes to SpawnerCreature to validate it.

MinSpawnCount, MaxSpawnCount, GroupedFlag, EquippedItemId (and

other attributes seen in Figure 1) all appropriately describe a

Creature created by a Spawner. 

Because we discover that it is desirable that a given Creature

have different loot depending on where it is spawned, we will

add LootPackageId as an attribute (and foreign key) to

SpawnerCreature. This renders the original association between

Creature and LootPackage obsolete, so it is removed.

LootPackageItem captures what is needed; the attributes

MinItemAmount, MaxItemAmount, and DropProbability allow us to

specify easily what is needed for creatures to drop loot.

CreatureSpell also appears solid. The attribute

DamageMultiplier can be added to it.

Now to our special case, the association of Item and Weapon

that puzzled us. It turns out that in our game, every Weapon is

an Item, but the reverse is not true. This is known as a depend-

ent relationship, because having an entry on the Weapon table is

dependent on having an identically valued entry on Item. To

represent this type of relationship, we carry the key of Item

onto a new entity called Weapon. Weapon is implemented as a sep-

arate table and would have its own weapon-specific attributes

(for example, DamageRange) while sharing the attributes of its

row on Item.

Figure 1 in its entirety represents a very solid pass at the

database schema needed to support the requirements of the

sample creature-spawning subsystem. As an additional exercise

to help verify completeness, we may want to consider asking

questions of the schema and see how well they can be

answered. 

For example, suppose the Zone with the ZoneId of 5 is known

to contain terrain that is tricky to navigate. Can we determine

whether there are any Spawners that violate the recommended

radius of 30 meters for tricky terrain? Figure 2 shows an SQL

query that easily provides the answer, including giving the

location in the world where we can find the offending Spawners

should we desire to do a visual check.

Try other scenarios yourself. You should discover that the

schema stands up to just about any question that you can imag-

ine to ask. 

Armed with an understanding of the process itself, let’s move

on and consider the various roles of the team members develop-

ing data-driven subsystems.

a u g u s t  2 0 0 3 | g a m e  d e v e l o p e r38

SELECT SpawnerDesc, SpawnerRadius, LocationX, LocationY, LocationZ 

FROM Spawner A, ZoneSpawner B 

WHERE A.SpawnerId = B.SpawnerId AND ZoneId = 5 AND SpawnerRadius > 30

FIGURE 2. A SQL query that tests for Spawners that
violate a 30-meter SpawnerRadius in a specific Zone.

D ATA - D R I V E N  S U B S Y S T E M S



Roles 

D uring schema development, the designer primarily acts as

customer; that is, he or she is considered the domain

expert for the subsystem being developed. The designer defines

the requirements that the subsystem must meet, both via a

design document and in person to clarify details.

When the designer plays this role, the programmer is an

analyst and database administrator. In this role, he or she

gleans the salient requirements by reviewing the design docu-

ment and interviewing the game designer(s) responsible for

the subsystem.

An effective approach is for the programmer to develop a

straw man of the database schema that he or she believes meets

the requirements as defined in documentation. The programmer

then uses the time with the designer to verify that this correctly

captures the requirements, recording the modifications as they

are identified. 

Once the schema is agreed on, it is implemented in the data-

base by the programmer. At this point the roles of both partici-

pants change. 

The designer switches to become data provider, responsible

for populating the database with the values that correctly cap-

ture the game content. If the subsystem in question manages in-

game items, for example, the designer provides information

such as item value, quality, name, and enchantment level.

The programmer moves on to providing the data entry tools

needed to enter and modify the data. This may be as simple as

making available tools provided by the database vendor. For

example, Query Analyzer and Enterprise Manager are data

entry tools that come with Microsoft SQL Server. Or the pro-

grammer may build custom forms for data manipulation,

employing tools such as Microsoft Access or Visual Basic. 

While customized forms make it easier for the designer to

enter data, additional development time is required. This

means that there can be a significant delay between the time

the schema is implemented and when it is populated with

data. An effective approach is to allow data entry immediately

with off-the-shelf tools, and then to build a customized front

end to make the task easier where the volume of data entry

justifies a custom tool. 

Of course, the other critical role of the programmer is to

build the game logic that uses the data entered in the database.

Wrap Up

T he next logical step is to select a medium-complexity subsys-

tem that you are working on and apply the process.

Whatever you do, don’t forget to iterate. When a candidate

schema has been determined, implement it in the database and

build some data entry tools and queries that utilize the schema.

Ask yourself questions about the subsystem and experience how

well what you have built answers those questions.

After that, get the subsystem implemented in the game so that

it utilizes the data that resides in the tables in your schema.

Then catch yourself grinning as you change behavior in the

game by modifying data, or add content to it by adding new

rows to tables.

As you apply the process to each new subsystem that gets

implemented, the entire game becomes data-driven. Once the

team gets the hang of the process, existing subsystems created

before the paradigm shift can be quickly migrated. Don’t be

surprised to find yourself wondering how you ever did it any

other way.

I am interested in getting feedback via e-mail from those of

you who choose to use the concepts presented here in your

game. As an incentive, I am offering to answer any questions in

the correspondence related to implementing the process in your

first data-driven subsystem. That’s a pretty good deal, so I look

forward to hearing from you.  q

w w w . g d m a g . c o m 39

INTRODUCTORY DATABASE RESOURCES
Date, C. J. An Introduction to Database Systems, 7th Ed. Addison-

Wesley, 1999.
Lee, Jay. “Relational Database Management Systems Primer,”

Massively Multiplayer Game Development, edited by Thor
Alexander. Charles River Media, 2003.

Silberschatz, Abraham, Henry F. Korth, and S. Sudarshan, Database
System Concepts, 4th Ed. McGraw-Hill, 2001. 
http://db-book.com

COMMERCIAL DATABASE PRODUCTS
Interbase: www.borland.com/interbase
IBM DB2: www-3.ibm.com/software/data
Microsoft SQL Server: www.microsoft.com/sql/default.asp
Oracle: www.oracle.com
Sybase: www.sybase.com

OPEN SOURCE RELATIONAL DATABASES
MySQL: www.mysql.com
Postgress: www.pgsql.com

DATA-DRIVEN PROGRAMMING RESOURCES
Lee, Jay. “Leveraging Relational Database Management Systems to

Data Drive MMP Gameplay.” In Massively Multiplayer Game
Development, edited by Thor Alexander. Charles River Media,
2003. 

Rabin, Steve. “The Magic of Data-driven Design,” InGame
Programming Gems, edited by Mark DeLoura. Charles River
Media, 2000.

SOURCE FOR CREATURE-SPAWNING SCHEMA
The source for re-creating the schema in Microsoft SQL Server can
be found at www.gdmag.com/code.htm. Check the readme.txt for
details on usage.

FOR MORE INFORMATION



g r e g  l o p i c c o l o  a n d  a l e x  r i g o p u l o sP O S T M O R T E M

40 a u g u s t  2 0 0 3 | g a m e  d e v e l o p e r

W hen Alex

Rigopulos and

Eran Egozy found-

ed Harmonix

Music Systems in

1995 (they met in the computer music group

at the MIT Media Lab), the duo’s original

motivation for starting the company had

nothing to do with videogames. Harmonix was

created to provide solutions for a problem we had found:

playing a musical instrument feels really good, but because

learning to play an instrument is too darned hard, very few

people ever get to experience this. With Harmonix we wanted to

create new ways in which nonmusicians could more easily discover

the unique pleasure that comes from making their own music.

In pursuing this goal, our first few years were spent building not

games, but interactive music experiences. But then in the late 1990s,

games such as PARAPPA, BEATMANIA, and DANCE DANCE REVOLUTION

appeared in Japan. Seeing the enormous potential “rhythm action”

gameplay could have in bringing music-making to a mass audience,

we started devoting ourselves to music gaming. Starting with Greg

LoPiccolo, who joined from Looking Glass Studios to head up

product development, we began recruiting talent. We drew up a

design, built a prototype, and showed it to Sony Computer

Entertainment America (SCEA) back in spring of 2000. They “got it,”

and development for FREQUENCY for Playstation 2 began. 

With FREQUENCY, we wanted to build upon the foundation

introduced by the Japanese music games, by introducing a more

captivating play experience, both by deepening the gameplay and

by increasing the gameplay’s musicality. FREQUENCY was

released in November 2001.

Critical Acclaim Does Not Pay the
Bills

I n the critical acclaim department, we couldn’t have hoped

to do much better. The game received enthusiastic reviews



G A M E  D A T A

PUBLISHER: Sony Computer
Entertainment America

NUMBER OF FULL-TIME
DEVELOPERS: 20

NUMBER OF CONTRACTORS: 
3 (plus 4 testers)

LENGTH OF DEVELOPMENT:
15 months

RELEASE DATE: March 2003
TARGET PLATFORM: Playstation 2

DEVELOPMENT HARDWARE:
1–2 GHz CPU PCs with 256–512MB of

RAM and GeForce 2/3/4 cards, 
PS2 dev kits

DEVELOPMENT SOFTWARE USED:
Visual Studio 6, CVS (with homebrew

GUI), SN Systems ProDG PS2 
compiler, 3DS Max 5, Photoshop

PROJECT SIZE: 380,000
lines of C++ code, 

6,000 lines of script code.

across the board and won several awards (including a British

Academy Award), and we were flooded for months with

frothing-at-the-mouth e-mails from fans who couldn’t stop

playing it. And how about commercial success?  Let’s just say

that sales were ... err ... disappointing.

Despite the weak sales, however, SCEA decided (remarkably

and admirably) to fund a sequel and give the concept another

shot. (Credit here goes to Shuhei Yoshida, Sony’s VP of prod-

uct development, a genuine innovator in an industry that is

ever-increasingly innovation-averse.)

Presented with this second opportunity, we sat down 

and spent a great deal of deep thought trying to figure out

what factors contributed to FREQUENCY’s failure in the mar-

ketplace, in spite of the critical acclaim. There were a num-

ber of marketing factors that one could point to, but blam-

ing marketing is a game developer’s lazy way out. Proper

marketing is crucial, but it’s also largely beyond the devel-

oper’s control, and focusing one’s critical analysis outward

rather than inward is a surefire recipe for failure.

FREQUENCY’s Lessons Learned

A ll of the available evidence suggested that FREQUENCY’s

gameplay was rock-solid, fun, and addictive. Then why

didn’t it sell? We have our theories.

For starters, the musical content in the game was almost

exclusively electronica, and electronica is not mainstream music.

Having an artist like Paul Oakenfold write a song for the game

might have helped us among the niche market of techno-heads,

but it didn’t get us very far with the mass market.

But beyond the musical content, which is really as much

G R E G  L O P I C C O L O  | Greg is the vice president of product development at Harmonix and was
project director and co–lead designer on FREQUENCY and AMPLITUDE. His e-mail is greg@harmonixmu-
sic.com.
A L E X  R I G O P U L O S  | Alex is the co-founder and CEO of Harmonix and was executive producer
and co–lead designer on FREQUENCY and AMPLITUDE. E-mail him at alex@harmonixmusic.com.

41w w w . g d m a g . c o m



P O S T M O R T E M

a u g u s t  2 0 0 3 | g a m e  d e v e l o p e r42

a marketing/positioning issue as anything

else, we also felt, looking back, that

there were some deep flaws in the game

itself that impaired its success. All of

these flaws carried a common theme: We

didn’t do enough to hook the players;

not only during the opening few

moments of gameplay, but before they

even started playing it.

There are hundreds of games to

choose from out there, and so consumers

will often make their first judgment

about a game based upon a momentary

glance at a screenshot. If any aspect of a

game fails to entice immediately, a player

will move on to the next option. Critics

who delved deeply into FREQUENCY and

who, once inside, became hopelessly

addicted to it wrote most of

FREQUENCY’s positive reviews. But con-

sumers, understandably, don’t have that

kind of patience. We believe there were

three main reasons that FREQUENCY

failed to win over prospective consumers:

Not pretty enough. FREQUENCY was our

first PS2 game. We scrambled to build a

graphics engine from scratch within a

tight timeframe and budget. Our art staff

did a great job with the resources avail-

able, coming up with a cool retro look

for the game that actually functioned

within the constraints of the limited graph-

ical capabilities at our disposal. But at the

end of the day, we didn’t come close to

hitting the high graphical bar evident in

the PS2 marketplace. In fact our stylish,

retro look often evoked the response, “It

looks like a PS1 game.” We knew this

was a shortcoming, but at the same time

we underestimated the magnitude of the

impact. We had faith that, with com-

pelling enough gameplay, looks wouldn’t

matter so much. We were wrong. Most

prospective players will write off a game in

an instant if, at first glance, it doesn’t hit

the graphical production standards to

which they’re accustomed.

Interface too abstract. The graphical

interface for FREQUENCY was not compli-

cated — at all. It was certainly consider-

ably simpler than the graphical interfaces

of most games on the market. But our

problem was that the interface was

extremely abstract. With most games, it’s

immediately apparent from a glance at the

screen what the player is supposed to do

and what the game is about. If you see a

football player on the screen, you know,

“Hey, it’s a football game.” If you see a

car on a racetrack, you know, “Hey, it’s a

racing game.” If you see a brawny pair of

arms holding a big gun, you know, “Hey,

I’m supposed to shoot stuff.” But in

FREQUENCY, there is no character run-

ning around on screen, no car, no space-

ship, nothing for the player to identify

with. All you see are three little target

spots, with blue dots flowing through

them that the player must “shoot.” This

interface, while extremely simple once

understood, is also completely foreign to

most prospective players. Faced with this

conceptual barrier, it was far too easy for

the uninitiated to respond, “I don’t get

it,” and move on.

Too hard. The opening game levels

were simply too hard. Given its innova-

tive interface and gameplay, what the

game desperately needed was for the

opening levels to be forgiving and

accommodating for players who are hav-

ing a tough time getting started. Instead,

the struggling newbie quickly met with

defeat after defeat (accompanied by

humiliating boos, no less). A few more

tries would have gotten them over the

hump, but many players never gave us a

few more tries.

Addressing These
Problems with
AMPLITUDE

Process. By its very nature, innovative

game design carries with it a special bur-

den: players don’t know what to do at

Steps along the development path for the Metaclouds arena.



w w w . g d m a g . c o m 43

first. Inspired by an increased apprecia-

tion for this reality, we modified our

development process for AMPLITUDE,

placing an obsessive focus on a player’s

first impressions. Specifically, we began

play-testing AMPLITUDE the moment we

had a first playable, and then we repeat-

edly play-tested it over and over and

over, every single month, through the

end of development. With each succes-

sive round of playtesting, we brought in

a fresh set of players who had never

seen the game before. Consequently,

throughout the entire development

process we were getting a steady infu-

sion of quality information about how

our iterative design tweaks were affect-

ing the way new players were reacting to

our game.

Design changes. One of our first moves

was to change the musical focus of the

game from electronica to more main-

stream music — rock, pop, metal, and

rap. Chuck Doud, our producer at Sony,

assembled an impressive roster of well-

known bands (Garbage, Blink 182, POD,

and others) and artists (David Bowie,

Herbie Hancock, Pink) for the game,

which helped us significantly in attract-

ing attention to AMPLITUDE among both

players and music fans.

In tackling our beauty problem, we

invested a much greater percentage of

our production resources this time

around (both on the art side and the

engineering side) in making the graphics

as breathtaking a part of the play experi-

ence as the music and gameplay.

To make sure new players could get

the feel of the game right away, we

redesigned the interface in a number of

ways, introducing a spaceship that the

players steer to shoot lasers at targets.

This way, when a prospective player sees

a screenshot of AMPLITUDE, or watches

someone else play the game, he or she

immediately reacts, “Oh, I get it, I’m

supposed to shoot those things.”

Interestingly, this interface change really

only affects players for the first few

moments of play. Thereafter, the player’s

attention ends up focused on the same

three little target spots that were the cen-

ter of the interface in FREQUENCY. But

the key point here is that those first few

moments are absolutely crucial for luring

in the new player.

In resolving the difficulty problem, we

went medieval on the tuning process. We

moved from three difficulty levels to

four, to support a wider range of players

(especially at the bottom end of the

curve), we gathered a giant pile of quan-

titative gameplay data at all difficulty

levels from our repeated play-testing ses-

sion, we built tools to visualize and ana-

lyze that data, and we kept on tuning

until we knew we’d gotten it right.

There were many other design changes

— too many to mention here — all of

which were similarly focused on making

sure that the new player is coaxed and

nurtured into the play experience from

the game’s first screenshot.

What Went Right

1.Features cut early and often.
During FREQUENCY’s develop-

ment, we wasted precious development

time by deferring decisions to cut some

features until fairly late in the develop-

ment process, which resulted in the team

putting hard work into features that ulti-

mately didn’t make it into the game.

Armed with that experience (and with

a hard ship date hanging over our

heads), we resolved to be rigorous and

realistic about the scope of our ambi-

tions for AMPLITUDE. As each milestone

was completed, we reviewed our overall

feature set, and when it became clear

that any given feature was not going to

fit into the remaining schedule, we cut it

immediately. We didn’t let hope and opti-

mism drive our feature set, and conse-

quently, almost everything we worked on

ended up in the game, with very little

work having to be discarded. (See What

Went Wrong #4 for one unfortunate

digression from this approach.)

Evolution of AMPLITUDE’s FreQ characters, the player’s in-game musician avatar.

Blasting a vocal track in AMPLITUDE.



2.Lots of early re-architecture
and investment in technolo-

gy. FREQUENCY was our first title on the

PS2 platform and our first large-scale

game. By the time we wrapped it up, we

had firsthand knowledge of the many pit-

falls of developing for PS2. At the onset of

AMPLITUDE development, co–lead pro-

grammers Eric Malafeew and Eran Egozy

made a strong case for scrapping the bulk

of our core libraries and rewriting them.

We wanted to take all of our “I wish we

had coded it that way” moments and

address them in our new project. 

Our goal was to create a solid software

architecture consisting of encapsulated,

abstract, portable, individually testable

modules. This meant that we had to wait

longer than we would have liked to actu-

ally get a first playable, since the first

three to four months of coding time were

devoted to upgrading or rewriting our

core libraries. However, this strategy paid

off big-time at the end of the project, as

we had comparatively few mysterious

crashes, memory leaks, or other ulcer-

inducing late-stage problems, and the

issues that we did encounter were much

more easily resolved.

3. Collaborative design process.
At Harmonix, game design is a

collaborative process. As many as a half-

dozen or more senior team members con-

tributed significantly to the AMPLITUDE

design on an ongoing basis. We held

weekly design reviews where the design

contributors met to debate design issues

(often heatedly).

With this sort of distributed design

responsibility, the process had to be man-

aged carefully and continually to keep

the design from bogging down. But it

was worth it; we were able to derive the

benefits of widely varied design insights

from team members with very different

design talents and perspectives, and the

result was a game design that was far

superior than it would have been with

only one of those individuals in charge of

the game’s design. A collaborative design

process also had the benefit of keeping

all of the team principals bought in to

the design on a fundamental level.

4. Testing, testing, testing.
Since we were building a game

experience that would be new to most of

our prospective audience, we were care-

ful not to make assumptions about what

players would understand or enjoy. We

tested our initial design, then revised it

and tested some more. We tried to inter-

ject ourselves as little as possible into the

testers’ experience and thereby learned

some valuable lessons about holes in the

tutorials and early game flow that we

would not have caught by simply

explaining the gameplay to the testers.

We tested each game mode (Solo, Multi,

Duel, Net, Remix) separately, as many of

them differ significantly in their design

and user interface. When we were satis-

fied with the design of each mode, we

transitioned to difficulty testing. By the

time we shipped the game, we were pret-

ty sure there were no unwelcome surpris-

es awaiting our audience.

5.Meeting early milestones
saved us from a death

march. Early in the development

process, we discussed as a team what sort

of development cycle we wanted to under-

go. By this point the team was experienced

and focused, with all team members capa-

ble of assuming responsibility for their

individual schedules. However, no one on

the team (including management) was

particularly enthusiastic about having to

undergo the kind of grueling late-stage

death march that we endured in getting

FREQUENCY ready for market.

To minimize the risk of death march,

we defined each milestone in great

detail, revising and enhancing the defini-

tion as the milestone approached. As we

got to each milestone date, the team

stepped up its efforts to complete the

milestone fully, working evenings and

weekends as necessary throughout the

project. Since we defined our early mile-

stones carefully and completed them all

fully and on-schedule, we were spared

the end-of-project anguish that arises

when it becomes clear that many tasks

that were checked off weren’t actually

done, and that countless other small

issues weren’t adequately planned for. It

was still a struggle to get the title com-

pleted on time, and we did work some

long hours, but we never worked a

seven-day week, and we were almost

never at work after midnight. For us,

that was a big accomplishment.

What Went Wrong

1.Started QA too late. We under-

estimated the scale and complexi-

ty of the QA effort that we needed to

ship AMPLITUDE. FREQUENCY had shipped

without a network mode (which we then

developed subsequently), but we hadn’t

needed to test both the core game and the

networked game during the same devel-

opment cycle; we had too few testers, and

they started too late in the process.

Because the scope of our QA efforts

was insufficient, there were a lot more

P O S T M O R T E M

a u g u s t  2 0 0 3 | g a m e  d e v e l o p e r44

Concept sketches, geometry, and skins for two final FREQ heads.



bugs in AMPLITUDE than we realized. We

were making final scheduling estimates

based on a fairly modest number of bugs

in our database (more than 200), under

the mistaken assumption that those were

all the bugs we had and that the title was

in good shape. Once the QA department

staffed up and got serious, our bug count

ballooned and we had to scramble to hit

our ship date. Lesson learned: QA for

networked games is much more difficult

and time-consuming than for non-net-

worked games (especially on consoles,

where games can’t be patched). 

2.Not enough art previsual-
ization. We had scheduled

some art previsualization time at the

beginning of the project, but we ended

up curtailing this phase pretty quickly

and moving straight into production.

This cost us time later in the project, as

by the time production began, the art

staff didn’t have the look nailed down,

and had to resort to time-consuming

experimentation during the production

cycle. The early press demos suffered as

well, with less visual polish than we

would have liked.

3.Too much to do, too little
time. We had a clear mandate

from our publisher to make our date;

slippage was not an option. However,

we had pared our feature set to the mini-

mum that we were comfortable shipping.

We were very aware that as a sequel,

AMPLITUDE had to constitute a significant

advance beyond FREQUENCY to be

accepted by the press and public. We

were caught between a hard ship date

and a feature set that we didn’t think we

could cut without potentially crippling

the product in the marketplace. In prac-

tice, this meant that our carefully nur-

tured milestone-completion discipline

began to unravel at the end of the proj-

ect, and we ended up implementing core

features well into beta. We didn’t have

nearly enough time to debug and tune a

game of AMPLITUDE’s complexity, and we

ended up gambling that the competence

and focus of the team and the solidity of

our code base would see us through to a

final candidate. While the gamble paid

off, it was not a developmental approach

that anyone would have liked to choose.

4.Fancy game shell more trou-
ble than it was worth. The

game shell was a very ambitious design,

incorporating journeys through a fully

realized 3D world as the player navigat-

ed between screens. The design was

clearly more elaborate than was genuine-

ly necessary and probably could have

been scaled back early in development to

retain most of its coolness without cost-

ing so much time and effort. However,

we didn’t provide sufficient managerial

guidance as the early game shell environ-

ments were coming online, failing to rein

in the scope of development until it was

too late and we were locked into an

implementation that was more elaborate

and expensive than we really needed.

5.There is no number five. By

and large, AMPLITUDE was an

incredibly focused effort by an experi-

enced team on a short cycle. We were

very satisfied with how closely the final

game met the developmental goals that

were identified at the start of the project.

Conclusion

A MPLITUDE hit stores shelves in

March 2003. So, were our theo-

ries correct? Did any of our changes

help? AMPLITUDE’s early sales are cer-

tainly outpacing FREQUENCY’s, but it’s

still far too early to tell whether the

title will become a hit. AMPLITUDE, like

FREQUENCY, has been earning critical

acclaim, and from our testing process,

we have no doubt that if people give

the game a try, they’ll have trouble put-

ting it down. For now we’re waiting to

find out whether the changes we made

will help encourage a mass audience to

give the game a shot.  q

w w w . g d m a g . c o m 45

Design evolution from FREQUENCY’s Activator to AMPLITUDE’s Beatblaster.



S O A P B O X w a g n e r  j a m e s  a u

a u g u s t  2 0 0 3 | g a m e  d e v e l o p e r56

T here’s an upcoming

low-budget thriller

called The Deadly
Percheron, based on a

bizarre cult novel about a

psychiatrist, his deranged patient, and

an imaginary leprechaun. 

And it’s being bankrolled by Rupert

Murdoch and Fox News Corporation, who

also brought us this summer’s $110 million

sequel to X-Men. 

Percheron was put into development by Fox

Searchlight, Newscorp’s “indy label,” which

distributes art house and international films.

Searchlight didn’t worry that the project was

such odd, niche fare. Instead, says Howard

Rodman, the veteran screenwriter who’s adapt-

ing it, “They got that it was strange.” They did-

n’t mind, because it was marketable as a psycho-

logical thriller.

Most Hollywood studios have an indy label, and they

don’t finance them from any great love of art. It’s really about

“distribution of specialized product,” as Rodman puts it; stu-

dios use their indy labels to find a market for films that

wouldn’t work in wide release but that, with savvy promotion,

can become breakouts. The trick is to keep overhead, acquisi-

tion, and development costs down, so films such as The Full
Monty or Bend It Like Beckham offset the inevitable bombs.

The side benefit in all this (and the thing most film-lovers

appreciate) is that these indy labels are outlets for unique,

groundbreaking films that drive the form forward.

By now, you’ve likely surmised where this is heading: Where

are all the indy labels of the major game publishers?

Once more, with irony: Since many publishers are owned by

media conglomerates that have indy labels in their film divi-

sions, why don’t they at least apply similar logic in their games?

But there’s no indy label at Fox Interactive, no Miramax at

Disney Interactive, no Sony Pictures Classics at Sony Computer

Entertainment, no Focus Features at Vivendi Universal Games.

The point here isn’t to bash publishers. Rather, it’s to point

out a path that’s already in their best interest to take: Why not

invest a fraction of game profits to create an indy label and use

it to distribute international and independently produced

games which don’t fit standard genre categories? And if pub-

lishers aren’t

willing to try this

— and they have a

bad fiscal year, anyway

— how would they explain to

shareholders why nothing went

into building a distribution model

that’s worked so well in a related

medium?

The games are out there. A few

months ago, to thunderous GDC

applause, WILD EARTH captured several

major Independent Games Festival awards.

But according to head developer James Thrush,

despite some promising leads (and a modest $10,000 pro-

duction budget), no publisher has yet put up the funds for its

release. It looks like it eventually will be released, but even then,

it would be among the few IGF winners to reach that pinnacle.

Most major publishers, Thrush supposes, “are very short-sighted.”

To be fair, publishers are understandably concerned about

the risk. But surely there are ways to defray these fears, with

the right angle of attack. By way of example, I offer two:

Small game, big name. Identifiable auteurs (for example Wes

Anderson and Paul Thomas Anderson) are crucial to selling

indy-label films. Similarly, there’s potential in a game label, in

which creative oversight over a few select indy games is provid-

ed by name developers. These games could be released under a

rubric along the lines of “Renowned Developer Presents

Obscure Indy Guy’s Game.” The developer’s name and track

record generates brand awareness (good for marketers), while

increasing the chances for a left-field hit. 

Don’t believe something along those lines is feasible? I

e-mailed Will Wright and asked him whether this was a

prospect he’d be interested in. His quick reply: “I would say

yes, assuming I had no contractual issues to consider (which I

do), I think I would consider this idea.” He added that Peter

continued on page 55

Ill
us

tr
at

io
n 

by
 S

te
ve

 M
un

da
y

An Indy Jones



Molyneux already does something simi-

lar with his Lionhead Studios’ spin-off

satellites such as Big Blue Box (FABLE). 

Inside outsiders. When indy film labels

succeed, says Rodman, it’s largely attrib-

utable to the better executives running

them, who have experience both in the

studio system and in the rangy independ-

ent film scene. They bring a canny sense

for fresh, unpredictable talent, and just

as key, they know how to steward it

toward commercial success. In the same

way, publishers should bankroll business-

minded developers who have a foot in

both realms, and send them out onto the

Internet, armed with a modest check-

book, in the hunt for wild game artistry. 

Don’t believe such inside outsiders

exist? The judges roster at the IGF web

site suggests otherwise. 

From an economic standpoint, the

need to find new markets is pressing. In

his invaluable weblog (May 28, 2003,

entry), noted game designer Greg

Costikyan predicts an imminent drought

for the industry, with game sales tapering

off, production costs accelerating, and

audience growth flattening out. Ironical-

ly, Costikyan himself wrote a Soapbox in

this space advocating for indy games (“A

Platform for New Ideas,” November

1999) — the passage of four years’ time

presents little progress and a far more

dire outlook.

There are ways to make indy labels

work, if we can only learn from the suc-

cess stories in our sister media. In this,

there’s little to lose but a modest invest-

ment (which would have likely been

burnt on derivative, underperforming

titles anyway). There’s a cascade of

breakthroughs to gain. 

So here is where the bravest voices on

the business side of our industry must

answer the call. (And developers should

acclaim the efforts of the stars — let’s

give the IGDA’s First Penguin Award to

Eidos Interactive, for founding Fresh

Games, a label bringing unique Japanese

titles to the U.S. market.) Our thriving

future depends on business visionaries to

nobly count the necessary beans, and

then to fling some out on the off-chance

of magic happening.  q

W A G N E R  J A M E S  A U  |  James
(wjamesau@well.com) is a contract design-
er/writer whose credits include MAJESTIC

and SECOND LIFE, the object-building
MMOG for which he writes “New World
Notes” (www.secondlife.com/notes). He
also writes about games as an emerging art
form for Salon.

S O A P B O X

w w w . g d m a g . c o m 55

continued from page 56


	02gameplan
	04indwatch
	06prodrev
	12profile
	14innerp
	20artview
	24soundp
	26betterby
	28f-keith
	34f-lee
	40postmort
	56soapbox

	return: 


