
AUGUST 2002

G A M E D E V E L O P E R M A G A Z I N E

L E T T E R F R O M T H E E D I T O R

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief

Jennifer Olsen jolsen@cmp.com
Managing Editor

Everard Strong estrong@cmp.com
Production Editor

Olga Zundel ozundel@cmp.com
Product Review Editor

Daniel Huebner dan@gamasutra.com
Art Director

Elizabeth von Büdingen evonbudingen@cmp.com
Editor-At-Large

Chris Hecker checker@d6.com
Contributing Editors

Jonathan Blow jon@bolt-action.com
Hayden Duvall hayden@confounding-factor.com
Noah Falstein noah@theinspiracy.com

Advisory Board
Hal Barwood LucasArts
Ellen Guon Beeman Beemania
Andy Gavin Naughty Dog
Joby Otero Luxoflux
Dave Pottinger Ensemble Studios
George Sanger Big Fat Inc.
Harvey Smith Ion Storm
Paul Steed WildTangent

ADVERTISING SALES
Director of Sales/Associate Publisher

Michele Sweeney e: msweeney@cmp.com t: 415.947.6217

Senior Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 415.947.6224

Account Manager, Northern California & Southeast
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Account Manager, Recruitment
Raelene Maiben e: rmaiben@cmp.com t: 415.947.6225

Account Manager, Western Region & Asia
Craig Perreault e: cperreault@cmp.com t: 415.947.6223

Account Representative
Aaron Murawski e: amurawski@cmp.com t: 415.947.6227

ADVERTISING PRODUCTION
Vice President, Manufacturing Bill Amstutz

Advertising Production Coordinator Kevin Chanel

Reprints Cindy Zauss t: 909.698.1780

GAMA NETWORK MARKETING
Director of Marketing Greg Kerwin

Senior MarCom Manager Jennifer McLean

Marketing Coordinator Scott Lyon

CIRCULATION

Group Circulation Director Catherine Flynn

Circulation Manager Ron Escobar

Circulation Assistant Ian Hay

Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes

t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas

t: 650.513.4234 f: 650.513.4482 e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall

Executive Vice President & CFO John Day

Chief Operating Officer Steve Weitzner

Chief Information Officer Mike Mikos

President, Technology Solutions Group Robert Faletra

President, Business Technology Group Adam K. Marder

President, Healthcare Group Vicki Masseria

President, Electronics Group Jeff Patterson

President, Specialized Technologies Group Regina Starr Ridley

Senior Vice President, Global Sales & Marketing Bill Howard

Senior Vice President, HR & Communications Leah Landro

Vice President & General Counsel Sandra Grayson

Vice President, Creative Technologies Philip Chapnick

W W W . G A M A N E T W O R K . C O M

✎

S o, what do you think of the

show?” This question is the

most basic opening gambit

of tradeshow banter. After a

couple of days (or some-

times only hours) spent fighting the sen-

sory assault of game industry events,

sometimes its pure simplicity holds your

only hope of stringing together an intelli-

gible thought to communicate to another

person. Whether engaged in this

exchange myself or merely observing

another conversation, I lost count of the

number of times this year at GDC and

E3 that people’s response to this question

was to gaze wistfully off into the distance

and say something to the effect of, “It all

seems so . . . grown up.”

No one seemed quite sure whether that

was a good thing or a bad thing, but

there is a measure of truth to the senti-

ment. The tangible business aspects of

industry events such as E3 have come

more clearly into the fore, making wel-

come inroads against the seedy sideshow

angle. I didn’t bring my tape measure or

calipers to E3 this year, so I lack empiri-

cal data, but even the smarmy booth

babe presence seemed to be on the

decline. There was less noise for the sake

of noise, less latex for the sake of latex.

Not none, but less.

It makes sense; there’s more real busi-

ness to do every year as the industry

grows. But what I also see is the game

industry beginning to feel truly comfort-

able in its own skin. We’re no longer the

brooding stepchildren of other entertain-

ment or technology sectors but confident

that our unique offerings can hold their

own in the mainstream, and do so on our

terms, not as an adjunct to another indus-

try chafing at our continued presence.

And while there are still a small token

handful of Hollywood-wannabes out

there embarrassing themselves on our

behalf, many in the industry feel within

striking distance of finding the path to

Hollywood-level success without ending

up in a gutter on the Sunset Strip.

We’re moving beyond the days of the

developer with the rock-star complex

striking off to run his own studio, only

to find out that running a business is

more than putting a ROBOTRON machine

in the breakroom and giving employees

free soda. Development professionals

eyeing their future don’t want to be road-

ies on tour with a rock star, they want a

solidly run company that stands a good

chance of succeeding and producing

quality products. With publishers’ toler-

ance of risk nearing all-time lows, a con-

sistent track record of sensible business

dealings is any development studio’s best

asset right now.

But as our success and growth outlook

lead to more attention on the serious busi-

ness of game development, are we losing

part of our identity by showing a more

grown-up face? When game development

transitioned from solo programmers

working a project to teams of program-

mers, artists, and designers, some develop-

ers couldn’t adapt and left the industry for

good, taking their talent and experience

with them. Does “growing up” mean

alienating another segment of rare talent

who were first drawn to game develop-

ment because of the eccentric, laid-back,

and decidedly unpretentious environment?

The trick will be to continue to focus

on what has brought the industry success

in the first place: offering consumers a

kind of entertainment experience they

can’t get from any other medium. As long

as we continue to nurture and develop the

unique interactive essence of games while

continuing to improve on the overall pro-

duction values, quality of entertainment,

and variety of our offerings, we may yet

be able to retain the identity that got us

this far.

600 Harrison Street, San Francisco, CA 94107 t: 415.947.6000 f: 415.947.6090

4

Game Developer
is BPA approved

G A M E P L A N

Growing up, Not Growing Old

Jennifer Olsen

Editor-In-Chief

“

Safety First

S cripting has become quite common-

place in game development, and the

questions of which language to use

plague every project design. In “Creating

a C++ Scripting System” (June 2002),

Emil Dotchevski makes many references

to the safety of the scripting language

and finding ways to prevent users from

crashing the game by invalid memory

access (bogus pointers).

While I agree this is a big issue for

scripts, there are much more significant

safety issues (such as access to critical sys-

tem functions) you must consider when

using any compiled language that will be

loaded by the system. In fairness, the titles

listed in Mr. Dotchevski’s credits are con-

sole titles and scripting is far more con-

trolled. For PC titles, we aren’t so lucky.

We look bad when a newly down-

loaded mod crashes our game, but we

look like total idiots when that mod

crashes the system by modifying the reg-

istry, fills our hard drives with bogus

files, modifies our work, or uploads our

information to a remote server without

our consent.

Script safety needs extreme scrutiny.

Unfortunately, safety issues of this nature

are all too frequently an afterthought, or

not a thought at all, when considering our

scripting language. C++ certainly is viable

as a scripting language, but the way it is

packaged and loaded requires a good deal

of care.

Cliff Owen

Goblin Software

XSI Animation Mixer
Not That Recent

S teve Theodore’s article “Understand-

ing Animation Blending”(May 2002)

was clear, informative, and timely. I want-

ed to comment on the reference to XSI’s

animation mixer, described as “most

recent and perhaps the most powerful”

among a list of similar technologies. It is

far from the most recent. In fact, we were

the first of the systems listed in the article

to commercialize timeline-based anima-

tion mixing. It was a core feature of XSI

1.0 way back in May 2000, predating

similar functionality found in Maya, Max,

and Lightwave.

Michael Sheasby

Softimage

Smoothing Over Bumps

Iwas both pleased and disappointed

when I read Hayden Duvall’s Artist’s

View column “From Source to Texture”

in the June 2002 issue. As a 3D graphics

engine programmer, I have a real appreci-

ation for Hayden’s advice that artists

retain versions of their work at the high-

est possible level of detail. In the past, I

have seen situations in which a develop-

ment team has kicked themselves for not

saving a higher-resolution or higher-

color-depth version of some textures cre-

ated a year earlier.

I wish the article had talked more

about designing textures to be used with

modern per-pixel lighting engines. In sev-

eral places, the article mentions the addi-

tion of lighting and shadows to texture

maps, but I think artists need to get used

to not doing this because modern graph-

ics hardware now enables this informa-

tion to be calculated in real time. Hayden

says that “in-game lighting can often

have a flattening effect” on textures, but

the opposite statement is true when

bump maps are used. For a bump-

mapped object to be rendered correctly,

its texture should contain absolutely no

lighting or shadowing information —

you actually want it to be flat. The tex-

ture shown in Figure 2 would perform

particularly badly in a per-pixel lighting

engine due to its pre-lit appearance. The

texture shown in Figure 6 would proba-

bly look all right when used with a bump

map, but it would be better if the shad-

ows were removed and the specular high-

lights flattened out.

With the widespread availability of

graphics hardware possessing per-pixel

lighting capabilities, the days of applying

only one kind of texture to each surface

are numbered. Artists will have to learn

to separate the surface shading informa-

tion that used to be combined in a single

texture and adapt to the process of creat-

ing a base texture containing only flat

color information, a bump map contain-

ing depth information, a gloss map con-

taining reflectance information, and the

list continues.

Eric Lengyel

Terathon Software

a u g u s t 2 0 0 2 | g a m e d e v e l o p e r6

S A Y S Y O U
A F O R U M F O R Y O U R P O I N T O F V I E W . G I V E U S Y O U R F E E D B A C K . . .C

C
E-mail us your feedback to

editors@gdmag.com, or write us at

Game Developer, 600 Harrison St.,

San Francisco, CA 94107

C O R R E C T I O N

Jennifer Olsen's July 2002 “Game Plan” col-

umn (“So It’s Come to This”) incorrectly refer-

enced H.R. 4652 as the Protect Children from

Video Game Sex and Violence Act. The cor-

rect bill number is H.R. 4645. H.R. 4652 is the

Consumer Protection for On-Line Games Act,

which was introduced in Congress the same

day. We regret the error.

With the widespread availability of
graphics hardware possessing per-pixel
lighting capabilities, the days of apply-

ing only one kind of texture to each
surface are numbered.

Interplay unravels. Despite posting

its first quarterly profit in nearly two

years, Interplay’s financial self-destruc-

tion shows no sign of abating. The com-

pany was able to post net income of $1.5

million for the first quarter of 2002, a

sizeable improvement from the $8.4 mil-

lion loss in the same period one year ago.

The positive results may not be

enough to rescue the debt-ridden compa-

ny, however. Interplay’s most recent fil-

ing with the Securities and Exchange

Commission reports $54 million in debts

and just $61,000 in cash on hand. Even

with the $47 million the company

brought in through the sale of Shiny to

Infogrames, Interplay admits that it

needs to raise substantial amounts of

new financing to stay afloat. In an effort

to raise capital, Interplay recently sold

the rights to many of its game properties

— including MESSIAH, MDK, KINGPIN,

SACRIFICE, and EARTHWORM JIM — to

Titus Interactive.

Nintendo reaches record profits,
Yamauchi takes a bow. A weak yen

couple with strong Gamecube sales

equaled record profit for Nintendo in its

fiscal year 2001. The company posted a

net profit of 106.4 billion yen ($858 mil-

lion), over 10 percent higher than

Nintendo’s profits last year. While the

company cited Gamecube and Game Boy

Advance sales as its growth leaders, the

yen paints a big part of Nintendo’s finan-

cial picture, and a strengthening Yen has

prompted Nintendo to warn that fiscal

2002 likely won’t reach the lofty heights

the company enjoyed this year.

The strong financial results offered a

perfect opportunity for Nintendo’s chair-

man and president, Hiroshi Yamauchi.

Yamauchi to announce that he is step-

ping down after leading the company for

more than five decades. Yamauchi’s

retirement was long expected, and the

news did not affect Nintendo’s share

price. He will be kept on as an advisor

but will not be part of the company’s

management team. Satoru Iwata, the

company’s chief of corporate planning,

has been appointed Yamauchi’s successor.

Prior to joining Nintendo in 2000, Iwata

was president of HAL Laboratory, where

he coordinated software development

and production of several Nintendo

games, including the KIRBY series.

Secure no more, Xbox heads
online. A graduate student at the

Massachusetts Institute of Technology

discovered a way to foil the Xbox’s secu-

rity system, in theory making it possible

to run non-Xbox applications on the con-

sole. In a paper posted on the MIT web

site, Andrew Huang, a Ph.D. student,

describes a “secret boot block” in the

Xbox’s media processor (built by Nvidia)

which contains the console’s encryption

algorithm and security key. The boot

block was decrypted using a custom “tap

board,” which intercepted data traveling

between the central processor and the

media chip over the Hyper Transport bus.

Separate from any security concerns,

Microsoft has announced its online strat-

egy for the Xbox. Directly opposite to

the hands-off online plans laid out by

Sony and Nintendo, Microsoft plans to

invest much of its $2 billion Xbox devel-

opment budget for the next five years

into a proprietary subscription-based

online service called Xbox Live. The

Xbox Live service will debut in Europe,

North America, and Japan this fall at the

tentative price of $49.95 per year and

will let people play online and download

content to the Xbox hard drive. Micro-

soft expects to have over 50 online

games available for the Xbox by the end

of 2003, including STAR WARS GALAXIES,

HALO, and PROJECT GOTHAM RACING.

Microsoft will build new data centers in

Seattle and Tukwila, Wash., Tokyo, and

London to support the service.

No Payne, no gain. MAX PAYNE is

moving from Remedy Entertainment to

Take-Two for $34 million in cash and

stock. The deal includes all intellectual

property rights associated with the

brand, including trademarks, copyrights,

characters, perpetual license to utilize

proprietary technologies (including the

MAX PAYNE game engine), and rights to

license fees from ancillary MAX PAYNE

brand extensions such as cinema, televi-

sion, and literary productions. A MAX

PAYNE sequel is in the works from Take-

Two’s Rockstar Games in conjunction

with original MAX PAYNE developer

Remedy Entertainment. q

a u g u s t 2 0 0 2 | g a m e d e v e l o p e r8

I N D U S T R Y W A T C H
T H E B U Z Z A B O U T T H E G A M E B I Z | d a n i e l h u e b n e rJ

G D C E U R O P E
EARL’S COURT

London, U.K.
August 27–29, 2002
Cost: £350–£450
www.gdc-europe.com

E C T S
EARL’S COURT

London, U.K.
August 29–31, 2002
Cost: Advance registration free via
web site; £25 on-site registration
www.ects.com

U P C O M I N G E V E N T S

CCAALLEENNDDAARR

MAX PAYNE. A man with a $34 million price tag on his head.

XX

I ntel’s VTune has a long-standing

reputation as one of the better

tools for application analysis —

at least for applications headed

for Intel-based systems. I hadn’t

touched it since version 3.5, and I was

more than curious to see what new im-

provements were implemented in the new

version 6. I wasn’t disappointed either.

I had actually used the Xbox version

of VTune only a few months earlier, and

the install process had been more than a

little painful, so I was a bit nervous.

However, apart from a few redundant

reboots and a small problem recognizing

the installed version of Flash, everything

went smoothly.

I created a quick wizard project,

turned on call graphing, and off it ran.

After 20 seconds, the project stopped,

reran, and then did it again. Was this a

bug? On reading the tutorial further, I

discovered that the first pass was a cali-

bration pass, the second pass was the

actual samples, and the final pass was

call graphing. Simple enough, but why

did it all only take 20 seconds? It seems

that is the default execution time; this

might not work well if that time is spent

loading, though fortunately you can

modify activities and increase this time.

Even without call graphing you’ll need

the calibration pass, so I manually

aborted that after a minute or two, and

then left the main sampling pass for a

few minutes. There is also a simple

option for the project to run an applica-

tion with sampling paused and then

have the user manually resume, so you

can add your own hooks in your code

to generate resume/pause messages using

a vtuneperformance.dll. This came in

very handy for isolating samples to spe-

cific areas (for example, if the frame

rate drops, call a resume function to

start logging samples).

I made numerous attempts with sam-

pling, trying to get a good representa-

tion, and it didn’t take long for me to

remove the call graphing. I think this is

a feature to turn on only in trouble

spots, as it’s very intrusive in execution

timing and slows down a game to the

point where it’s not really useful unless

you know what you’re looking for — or

if you’re smart and have set up some

prerecorded joystick presses that can

walk through a game perfectly every

time (I’m not that smart).

The results I got without the call

graph were great starting points. I

recorded about five minutes of samples

and counter events. After sampling, the

data is displayed in graph form repre-

senting everything from CPU percent

time, privileged CPU percent, page miss-

es, thread queuing, and more. Intel has

supplied a lot of mechanisms to view

this data, including graphing as splines,

blocks, solid, or wire form, and it’s all

very customizable. I chose a spline form,

though I recommend playing with the

display a bit as it does impact how you

Intel’s VTune 6
Performance Analyzer

by andi smithers

a u g u s t 2 0 0 2 | g a m e d e v e l o p e r10

P R O D U C T R E V I E W S
T H E S K I N N Y O N N E W T O O L S

A N D I S M I T H E R S | Andi is lead engineer at The Collective and currently resides in
Newport Beach, Calif. You can reach him at andis@collectivestudios.com.

Intel’s VTune Performance Analyzer in action.

perceive the data execution. Using

another icon, I selected a time range in

order to investigate a peculiar spike in

processor-privileged time that looked

odd. I highlighted a small, one-second

range, hit the drill-down icon, and was

rewarded with a much more detailed

breakdown. At this point I had numer-

ous modules (DLLs and also the EXE) I

wished to look at, but I couldn’t merge

all the modules together. It’s a minor

annoyance, but one I can live with until

version 7.

Now, it was a simple case of double

clicking on the desired module to bring

up a detailed source breakdown, though

it did ask me to specify the DSP (project

or makefile). This led to my second prob-

lem: the project I was debugging has

numerous DLLs as well as the main

EXE, but the system only wanted to

accept a single project file. I wanted it to

ask for my workspace from Visual C++

(the .DSW), as it is an extremely complex

source base. The good news for Java and

other non-C++ people is that VTune does

allow you to specify a multitude of proj-

ect types. I was very happy to see Java,

.NET, and even FORTRAN supported

(does anyone really still use that?).

By now I’ve screamed a few times in

my head, and once out loud, when my

eyes gravitate to the top 10 functions

that stall out the execution. Intel’s terms

are CPU Clockticks (non-sleep) and

Instructions Retired (sounds like a CIA

euphemism for a shagged compiler).

One particular surprise VTune found

was a bit of code that looked harmless

enough, but when I viewed the source

with disassembly it showed the NEG

assembler instruction was kicking the

function’s teeth in, taking a bite out of

its performance, and doing this twice.

After a quick fix, it dropped off the top-

10 list completely.

I tried another of my top-10 items, and

rather than trying to find a solution

myself, I just right-clicked on the source

and selected “VTune Assistant, This

Function” (you can also do this to a

selection or an entire file). Now this is

where I started to get impressed. The

assistant returned about 20 occurrences

of problems with nice little light bulbs at

the lines concerned. It also offered a light

bulb at the end of the function, with sug-

gestions on a general problem and solu-

tion. What I was very pleased to see was

the comment “Logical AND/OR state-

ment conditional,” which offered me a

very informative description of what it

believed could be done.

VTune’s assistant is one I would gladly

hire, or at least get writing PS2 code. It

also caught the loop invariant catch,

where you resolve a pointer to a pointer

within a loop or a for statement that has

the count of a pointer to a class — nasty

stuff. But my favorite feature and the one

I am very interested to do more with is

vectorization, which crops up a lot with

virtuals and templates. If you’re a pro-

gressive C++ engineer who likes to tem-

plate array handling, then VTune’s going

to ring your bell, because one of its rec-

ommended optimizations is to recom-

mend the new Intel C/C++ compiler ver-

sion with the new supported vectoriza-

tion pass, meaning that the compiler will

use SSE instructions for some loop opera-

tions. I saw this compiler at GDC this

year, and it was very impressive (at least

by this feature). Beyond that, it recom-

mends restructuring the code to allow for

better vectorizing.

I’m generally very happy with the

assistant, though I thought it lacked a

single critical feature, which really got to

be frustrating. The assistant is in its own

window, and it displays the line number,

but I can’t click on the line number and

have the window scroll to the correct line

of source, so I had to scroll down manu-

ally to the line number. This became

annoying, especially when I started to do

class analysis over function analysis and

wanted large blocks of code to be ana-

lyzed by the assistant so that I could just

scroll through the trivial fixes. Another

problem was I could not jump to code in

the editor. For those who have used SN

Systems’ debugger, it has a hot key,

Ctrl+E, that jumps to code in Visual

C++. I sorely missed this when VTuning

my data.

All in all, I thought VTune 6 was

extremely good, very stable, and the

tutorial was insightful and valuable,

making my life significantly easier. The

in-depth help, and the fact that hitting

F1 on any item brought up the correct

context help menu, was invaluable. I had

only one crash during a marathon six-

hour session. Even when I did crash,

when I got back up and running, my

project was intact, and it was just a

minor inconvenience. VTune 6 is a must

for developers, and you don’t need to be

an assembler wiz to use it (though it

does help).

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

w w w . g d m a g . c o m 11

STATS
INTEL

Santa Clara, Calif.
(408) 765-8080
www.intel.com

PRICE
$699 (MSRP)

SYSTEM REQUIREMENTS
Hardware: At least an Intel Pentium III
processor-based system and 128MB of
RAM. An Intel Celeron, Intel Pentium II,
Pentium II Xeon, Pentium III, Pentium III
Xeon, Pentium 4, or Intel Xeon, or Intel
Itanium processor-based system for
event-based sampling. Note: Event-
based sampling is not supported on
mobile processors. Software: Microsoft
Windows 98 (SE), Windows ME,
Windows NT 4.0 with Service Pack 4 or
later, Windows 2000 Build 2195 or later,
or Windows XP Build 2475 or later.
Microsoft Internet Explorer 5.0 or later
(5.5 or newer recommended).

PROS
1. Excellent tutorial.
2. Great VTune assistant.
3. Easy to get into and get real info out of.

CONS
1. Could have better integration back into

Visual Studio for editing source.
2. Windows could be better sized and

positioned, as it gets a little cluttered.
3. Calibration phase was frustrating.

VTUNE 6 XXXX

BIONATICS’ NATFX
by daniel sánchez-crespo

G raphics hardware is evolving at a

gigantic pace. Gone are the days of

low-polygon meshes; today’s games allow

rendering of very complex geometry and

are opening the doors to representing life-

like, lush, organic environments. One of

the elements that has only recently found

its way to desktop graphics are realistic

trees, light years away from the classical

billboards found in games of yesteryear.

Still, tree modeling can be a complex art:

the developer must cleverly find a balance

between real geometry and textured

planes, often with the help of some level-

of-detail processing. This makes tree

modeling a time-consuming task, and

results are often unpredictable. To ease

this task, a number of specific tree-model-

ing tools have appeared. One of these is

Bionatics’ NatFX, designed specifically

with game developers in mind.

NatFX, a Max plug-in (a Maya ver-

sion is also available) that allows the

rapid creation of trees and plants of vari-

ous types, is the result of almost 20 years

of research dealing with synthetic plant

representation, growth, and visualization,

carried out at the CIRAD institute in

France. Essentially, the package can cre-

ate all types of plants, which are encoded

in a virtual DNA. By using that DNA

and Bionatics’ simulation technology,

you can then reproduce an instance of

that tree at any given age and time of the

year, including seasonal changes.

Tree modeling is only one of the fea-

tures found in NatFX. Once the tree is

done, the package offers a variety of

methods to reduce its triangle counts to

real-time requirements. From a full 3D

representation of a tree (typically in the

tens of thousands of polygons), NatFX

will construct a hybrid representation of

the same tree, combining geometry and

texture maps. The result? The tree shrinks

down to the 1,000 or 100-polygon range,

while keeping a very similar look to the

high-resolution model. Additionally,

NatFX can create different levels of detail

(LODs) for the same tree. Beginning with

the full 3D version for extreme close-ups,

you can define up to three LODs of

descending triangle counts. By using some

clever alpha transitions, you can smooth-

ly move from miles to meters, without

perceiving any quality loss.

NatFX provides interesting features

custom-tailored for game developers: from

tuning the number of billboards employed

to reusing texture maps to reduce memory

footprint, the package really delivers in

terms of features. The technology is rock-

solid, creating some of the best-looking

trees around. They look quite natural,

tending away from the classical recursive

look found in some packages.

Still, NatFX comes with a few annoy-

ing glitches that spoil an otherwise

smooth ride. To begin with, the interface

is not very intuitive. Ideally, artists would

be allowed to work with concepts they

are familiar with, such as color, size, and

age. Sadly, this is not the case with

NatFX. Artists must understand how the

program works in order to exploit its full

potential. Actions such as setting the

desired number of triangles, modifying

already existing trees, or changing the

color of the leaves would seem logical in

a tree-designer mindset. And yet the soft-

ware fails to present its workflow in a

simple, coherent way.

Last, NatFX’s advantages come at a

price. At a base license of $990 (with 10

plants) and an additional $100 per extra

tree, NatFX is a bit on the costly side,

especially considering you have no way

(other than purchasing trees from Biona-

tics) to expand your tree collection. There

is no editing tool to allow users to create

variations or completely new species. So,

if you need to create a varied collection of

trees, you are certainly going to pay for it.

Still, NatFX is one of the best tree-

modeling packages based on features. It

promises a lot, and delivers, creating

stunning trees that will work well with

your 3D engine of choice. It has lots of

options and sliders to play with, from

LODs to texture reusing and aging, and

the geometry reduction method is just

fantastic. Still, it’s a shame that some

interface problems and the pricing

scheme prevent it from being the ideal.

XXX]
| NatFX

Bionatics | www.bionatics.com

Dani is the founder and lead program-
mer of Novarama Studios, an independ-
ent developer from Spain. He is also the
director of the master’s program in
Computer Games at UPF (Barcelona,
Spain), where he is involved in research
projects. He can be reached at
dani@novarama.com.

GREAT CIRCLE 6.0.0.9
by francis irving

T here’s nothing worse than finding

you still have a serious crash bug a

week before gold master. It happened to

me on CREATURES 3, and although it was

exhilarating, it was also terrifying that if

we didn’t fix it we would miss the CD

a u g u s t 2 0 0 2 | g a m e d e v e l o p e r12

XP R O D U C T R E V I E W S

Aleppo Pine, 80 years old, 92,000 polygons. Aleppo Pine, 80 years old, 8,500 polygons.

factory slot. As serious software devel-

opers we need better tools available as

standard to end this kind of problem for

good. So it was with some interest that I

installed Great Circle, Geodesic’s testing

and diagnostic environment.

At first glance Great Circle appears to

be just a memory problem detector. The

underlying technology is quite clever; it’s

really a general-purpose garbage collector

for C++ (more about this later); with lit-

tle performance overhead you can con-

nect it to your game and observe it while

it’s running.

Great Circle can detect memory bounds

overwriting, multiple calls to free on the

same piece of memory, and memory leaks.

For me the most exciting feature is memo-

ry profiling, which would have detected

our problem with CREATURES 3.

In contrast to memory leaks, you

sometimes get memory used up which is

freed when the application shuts down

but goes out of control while it is run-

ning. A memory profile lets you view

allocated memory at any point while the

game is running, with a stack trace for

each allocation. This information can be

used to fix memory drains and reduce

the memory footprint.

So, how hard is it to use Great Circle?

There are two ways of attaching it to

your program, either by injection into an

existing application, or by recompiling. I

had difficulty with both, because when

something goes wrong you don’t get a

decent error message; it just doesn’t work.

A good knowledge of Visual C++ is essen-

tial to help interpret the manual’s confus-

ing instructions. There are several tricks

you might need to use to get it going.

Geodesic’s customer support helpline is

very good, so when you have trouble they

should be able to help you get it on track.

Keep in mind that all products of this

nature are quite hard to set up.

Once up and running you view infor-

mation from a web browser. This makes

the interface quite familiar and reliable,

but also fairly clunky. Errors in the pro-

gram are quickly highlighted in red and

you can click through to a call stack to

find the source of the problem.

The quality of information is by and

large good, but sometimes there is spuri-

ous extra data. For example, memory

allocations mysteriously appear with no

call stack. It would be useful if Great

Circle at least listed the library in which

the allocation occurred.

I tried Great Circle out on a game that

Creature Labs is about to release which

has a memory drain. Unfortunately, the

problem turned out to be undetectable by

most tools, including Great Circle. The

leaking memory was not on the heap but

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

w w w . g d m a g . c o m 13

allocated in a different way by DirectX.

Great Circle is very cross platform and

has no Windows API– or library-specific

features, so it isn’t surprising that it did-

n’t catch this. However, there is room in

the market for a tool with far more

heuristics and which looks at the memo-

ry that Windows reports is used by the

process, rather than trusting an over-

loaded malloc function.

Great Circle isn’t very well suited to

the game industry. It is very cross plat-

form for the business world but is no

good for game consoles. It supports injec-

tion to help with systems integrators who

struggle with legacy applications, when

game companies always have the source

code. There is, however, a separate com-

panion product using the same technolo-

gy which may be useful, called Geodesic

Runtime Solutions, which is a library that

you compile into your released applica-

tion. If you have missed any memory

errors, it compensates for them, both by

acting as a C++ garbage collector and by

preventing obvious mistakes such as dou-

ble frees. The garbage collector actually

scans memory for pointers which may

refer to a block of memory and if it does-

n’t find any it recycles the memory. This

could add an extra layer of stability to

your game client or server. It’s also the

only solution if the memory leak is in a

third-party library for which you do not

have the source code.

Overall, Great Circle isn’t particularly

cheap at $1,495. Check out the competi-

tion before buying. Having said that,

keep the Runtime Solutions in mind; it

may just give your next game server that

extra fraction of a percent at uptime.

Note: Great Circle will only run under
Windows NT, 2000, or XP operating
systems. This product is not available for
Windows 98.

XX | Great Circle 6.0.0.9
Geodesic | www.geodesic.com

Francis Irving is a senior programmer
making virtual organisms at Creature
Labs (www.creaturelabs.com). Contact
him at francis.irving@creaturelabs.com,
or visit his personal web page at
www.flourish.org.

a u g u s t 2 0 0 2 | g a m e d e v e l o p e r14

XP R O D U C T R E V I E W S XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

Great Circle’s Heap Statistics function at work.

C hris van der kuyl hardly fits

your brooding-on-the-moors

vision of a Scotsman, but he

has been working tirelessly to

advance the Scottish game

development industry, which sports the two

crown jewels of Rockstar North (formerly

DMA Design) of GRAND THEFT AUTO and

LEMMINGS fame, and Chris’s own VIS

Entertainment, whose recent output includes

the cheeky riot action game STATE OF

EMERGENCY. Chris founded VIS in 1996 and

has nurtured it from a handful of people to

the present staff of 120 in three different

offices around the U.K. We caught up with

Chris in the comfort of the big blue Scottish

Games Alliance booth (he’s the founder and

past chair of the association) at E3 in May.

Game Developer. I loved STATE OF EMERGENCY at first sight at E3
2001. How did you chart a course to do a good riot game?

Chris van der kuyl. We looked at various ideas of what we

could do as a concept. It was at a time before the Seattle stuff

— we always get lambasted for going on the back of the

WTO riots in Seattle — but we were actually working on it

before it all happened. So we thought, O.K., this whole idea

of civil unrest is quite cool. Imagine if you put yourself in the

center of a riot, how good would that be on a next-generation

console if you can literally see hundreds of people screaming

and they’re all going off doing their own thing?

GD. What did you identify as the central fun factor of the game?
CVDK. The sheer volume of people around. It’s the sheer may-

hem you can cause with an Uzi. We really purposely went to a

kind of comedy, cartoon look.

GD. You don’t necessarily want to be too realistic with that kind
of situation I guess.

CVDK. Right, because that wasn’t the point we were trying to

make. It’s all tongue-in-cheek. And undoubtedly there’s going to

be sequels. One of the things we did for the first one is from

the minute you start playing the game it is all played at 100

percent. But people said, we’d like to have more depth, we’d

like to see a bit of story where you slowly kick off a bit of a

disturbance here and see what happens.

GD. Make causing trouble a little more strategic?

CVDK. Absolutely. The AI from that perspective

will get a lot more sophisticated. The model is

pretty good, we maxed out at something like

400 autonomous characters simultaneously. But

we found out that was too many. You couldn’t

cope with that many people running around. So

100 people is as much as you want to see,

because you just couldn’t physically cope with

such a huge mass coming at you. You can’t

watch it.

GD. How do you keep growing teams focused on
the successful execution of a certain vision for a
game?

CVDK. Our teams are running 40 to 45 people,

and that’s a lot of people to be focused on one

game and one idea. If the vision for that game is

not clear, then they’re going to tamper with it in

their own way. That is why the great talent is so

good, because they can add things that you never thought

about but always wanted. I’m really keen on the idea of having

on one sheet of paper not some silly corporate mission state-

ment but how to play the game. If anybody is working on the

game, they can always pick this piece of paper up and make a

decision themselves.

GD. So you’re part of the current anti-documentation backlash?
CVDK. The idea that you can build 500-page document with

every piece of the game and expect 45 people on your team to

follow it as if it was an instruction manual is wrong. If it truly

was an instruction manual for the game, it would take you the

same amount of time to write the game as to write the docu-

ment, so you’re talking about a three-year document. If you’re

going to define every single element so that basically somebody

who was untalented could pick it up and implement it, that’s

like painting by numbers.

GD. How easy or hard is hiring development talent in Scotland?
CVDK. We have people looking at these issues constantly. We

do ad campaigns in the U.K. and European trade press. We

spend a massive amount of time on graduate recruitment, so we

work with the universities and help them develop courses that

suit us and suit them, because we know they are places we can

go to. We try to get a balance, because you want a good num-

ber of young guys coming through but you also want some

experience coming in. q

a u g u s t 2 0 0 2 | g a m e d e v e l o p e r16

P R O F I L E S
T A L K I N G T O P E O P L E W H O M A K E A D I F F E R E N C E | j e n n i f e r o l s e n

What a Riot!
A conversation with
Chris van der kuyl

VIS Entertainment CEO Chris van
der kuyl is helping Scotland stand
out on the game development map.

T his month I’m going to talk about rendering level-

of-detail (LOD) algorithms and make some recom-

mendations about how to use them in the game

you’re currently designing. When I say “rendering

LOD,” I mean reducing the number of triangles

you use to represent a 3D scene visually at run time, in a way

that tries to put most of the geometric detail where it will be

most effective. In years past, when game programmers said

“LOD” we typically did mean “rendering LOD.” But these

days we often talk about LOD for a number of different sys-

tems, such as AI and physics. So don’t be lulled into thinking

that if you solve the rendering LOD problem, your game is

golden; other LOD-style problems may still be lurking.

For rendering LOD, we have a number of types of systems

to choose from. We can use a continuous level-of-detail

(CLOD) system, progressive meshes, or the old low-tech solu-

tion in which we have a number of precomputed levels of

detail for each mesh and we just switch meshes based on

viewpoint distance criteria (“static mesh substitution”). I’m

going to emphasize the point that you ought to be as low-tech

as possible and use static mesh substitution. I’ll give more

detail soon, but first I will justify my assertion by criticizing

the other methods of LOD. I’ll start with CLOD, since that’s

what I have worked with the most.

A Basic Property of LOD

T o understand that CLOD schemes are flawed, let’s take a

look at the basic nature of LOD’d geometry. Figure 1

shows some screenshots from a terrain project I worked on a

couple of years ago. Figure 1a shows the rendered image, and

1b shows a wireframe representation of the terrain geometry;

I have circled groups of triangles in the scene based on their

distance from the viewer. The triangles circled in red are very

close to the camera; yellow indicates triangles in the middle

distance, and green indicates triangles that are very far away.

In this image, roughly half the triangles on the screen are

close to the viewpoint. We expect this from LOD’d geometry,

assuming that the world is shaped mostly two-dimensionally

(like a terrain, or most first-person shooter maps) and that the

idealized geometry does not consist of large, flat surfaces. By

“idealized geometry,” I mean the geometry of your world at the

maximum level of detail, which might even contain infinitely

fine features (if your surfaces are fractally shaped, for example).

You can do some simple math showing that this behavior is

expected. You start by writing down the constraint that your

LOD algorithm uses in order to split triangles (usually, it

bounds the screen-space-projected length of some world-space

distance, like Lindstrom-Koller’s delta values or ROAM’s

wedgies). Assuming that the average value of this world-space

distance is proportional to the length of a triangle’s edge

(meaning that detail does not diminish with scale), you can

see that the LOD algorithm is trying to make the triangles

projected to the screen be of roughly the same size.

Then, do some trigonometry: Since the map is mostly 2D,

idealize it as an infinite plane being projected to the screen.

Imagine a frustum with a 90-degree vertical field of view, so

that the vector from the eye through the bottom of the screen

is pointing at your feet in world space, and the vector through

the top of the screen is pointing toward the horizon. Then, if

your eye is a height h from the ground, half the triangles on

the screen are within distance h of your feet! Now, a 90-

degree vertical field of view is pretty excessive, and you don’t

usually walk around in such a way that you can see your feet,

so this result is a little bit high. But if you play around with

the result on a piece of paper, you’ll see that the numbers

don’t get all that much better as you tweak the parameters.

The Problem with CLOD Algorithms

Most CLOD algorithms maintain a persistent mesh that

they take great pains to update incrementally, under the

misconception that these meshes will not change quickly. As

the ROAM paper (see For More Information) says: “ROAM

a u g u s t 2 0 0 2 | g a m e d e v e l o p e r18

JONATHAN BLOW I Jonathan is a game tech-
nology consultant who can’t think of anything
to write in this space. Send suggestions to
jon@bolt-action.com.

Level-of-Detail Forecast

I N N E R P R O D U C T j o n a t h a n b l o w

Rendering

execution time is proportionate to the number of triangle

changes per frame, which is typically a few percent of the out-

put mesh size, hence ROAM performance is insensitive to the

resolution and extent of the input terrain.” There’s a contra-

diction inherent in that sentence.

If you, the avatar in a game world, are two meters tall, half

your tessellated mesh is within two meters of you. By defini-

tion, if you move two meters forward, most of the active tessel-

lation will have to be recomputed. How much time does it take

you to walk two meters in real life? How long does it take in a

game world, where we often move at unrealistic speeds?

Most CLOD algorithms do a lot of bookkeeping to change the

mesh continuously; that bookkeeping is much slower than the

clean “discard this, use that” approach of static mesh substitu-

tion. When your terrain is detailed enough, and you move quick-

ly enough, these algorithms drown in their own bookkeeping.

These problems don’t usually arise in the research papers

that present CLOD algorithms, because those papers use rela-

tively low density tessellations, low viewpoint speeds, and

viewpoints that are very far from the terrain being viewed

(without corresponding enlargement of the viewable terrain

distance). But anyone who tries to render a 70,000-triangle

CLOD terrain will need to sweat very hard to make the sys-

tem run acceptably. At the same time, you can render a

500,000-triangle terrain with static mesh substitution, and

you don’t even need to think much; you need maybe one-fifth

of the software engineering effort to get the program working,

and afterward, the program is much easier to maintain.

In addition, CLOD systems usually impose topology con-

straints that we don’t want (terrain algorithms require the

input data to be a height map, so you can’t have overhangs or

holes). And I can argue that nobody’s even shown that CLOD

algorithms provide good tessellation efficiency, which would

supposedly have been the whole point of using them. But

there’s not enough space in this entire magazine for that par-

ticular rant.

The only time I can recommend use of a CLOD system is

when your data set is constantly changing, in which case you

use a nonpersistent form of CLOD, such as Seumas McNally’s

“split-only ROAM” (see For More Information).

Once upon a time, when I was very enthusiastic about

CLOD, I had an e-mail conversation with Charles Bloom and

Tom Forsyth. They were proponents of using VIPM, a certain

kind of progressive mesh, to represent terrains, but I was con-

vinced that CLOD was better. Well, I’ve clearly changed my

mind about CLOD, but I don’t think progressive meshes are

very good, either.

The Problem with Progressive
Meshes

L ike CLOD terrain, progressive meshes have a certain tech-

nological wow-factor, because they also provide a contin-

uum of sorts: you can adjust the LOD of a rendered object to

a granularity of one triangle. And with certain progressive

mesh implementations, like the VIPM implementation shown

to me by Tom and Charles, you can render those objects effi-

ciently with modern 3D hardware.

But when rendering an object in a game, such as a character

or a vehicle, we just don’t need fine-grained control of the

object’s triangle count. When our total triangle budget is in the

millions, small changes in triangle count are completely in the

noise. When we’re building static levels of detail, the number of

triangles we want to discard is usually proportional to the num-

ber of triangles in the mesh. If you’re building static LOD for a

5,000-triangle object, it makes sense to build a reduced mesh at

2,500 triangles, but building a mesh at 4,900 triangles would

be silly.

One might think that the single-vertex-at-a-time path provid-

ed by progressive meshes would help with tasks like geomorph-

ing. But it doesn’t; when geomorphing, you need to be able to

skip across large numbers of collapses, because otherwise

you’re limiting the speed at which you can adjust the object’s

detail. This limitation would result in poor system behavior.

So progressive meshes do not provide a concrete benefit

over static substitution. But they’re more complicated, so they

w w w . g d m a g . c o m 19

FIGURE 1A (left). A rendered terrain. FIGURE 1B (right). A wireframe of that terrain, with triangles grouped by distance.

incur more software-engineering overhead, making your game

harder to finish. When approaching problems like building

normal maps to augment geometry with static meshes, you

can consider each different-resolution mesh in isolation and

get good results. With progressive meshes, triangles of differ-

ent detail levels overlap in UV space, so you have to write

more complicated code to solve the problem.

The Plan

S o if you’re designing an LOD system for your next game,

my recommendation is to switch between precomputed

static meshes, just like we did in the mid-1990s. Back then,

because of the low triangle counts, we would usually have art

folks hand-create the low-resolution meshes. These days, there

is no good reason to do that. High-quality mesh reduction algo-

rithms, like Garland-Heckbert Error Quadric Simplification, do

a good job of generating low-resolution meshes, and your

artists’ time is valuable.

I’ve recently been playing around with the normal-map gen-

eration technique put to good use in DOOM 3. Using this tech-

nique, we can render meshes that appear to have a large

amount of geometric detail, but that really consists of a mod-

erate number of triangles. But aside from just looking good,

this technique helps make LOD more effective than it has been

in the past. LOD is about removing vertices from a mesh, but

historically, we have tended to color objects with vertex-based

lighting, so the LOD was removing the maxima and minima of

our lighting functions. This caused a lot of popping.

With dot3 normal mapping, we can greatly reduce the

extent to which the object’s appearance depends on individual

vertex positions, and thus the popping decreases. This is a

case in which static-mesh switching benefits tremendously, yet

the more complex CLOD systems find it very difficult to

leverage this technique, so they are left further behind.

What about the Game World?

So that’s what I recommend for objects, but what about

terrains or office complexes?

Casey Muratori and I tend to make the same predictions

about future environment LOD. There will be a unification,

with the same kind of system used for indoors and outdoors.

It’ll involve chopping the world up into a bunch of blocks. We

then perform a process like mip-mapping, where each of these

blocks of geometry is like a texel from a texture map. To get a

lower level of detail for the whole world, combine every four

neighboring blocks and detail-reduce the resulting mesh (four

blocks if the world mostly extends through two dimensions; it

should be eight blocks if the world is more volumetric). Keep

doing this until you get all the way down to one block repre-

senting the entire world.

At run time, you start near the camera, rendering high-reso-

lution blocks; then, as you traverse the scene and go farther

from the viewpoint, you switch to lower-resolution blocks. At

places where the resolution transitions occur, you will need to

stitch together blocks of neighboring detail levels, or else

cracks will appear in the scene. This stitching is trivial for the

case of a height map; it becomes more difficult with arbitrary

topologies crossing the detail boundaries, but the solution is

largely a matter of bookkeeping. Since your algorithm per-

formed the detail-reduction steps for the blocks, it can effec-

tively trace backward along that sequence of reductions to see

how edges should match up.

Thatcher Ulrich implemented something like this procedure

for terrain rendering. Sometime soon, I plan to do it for trian-

gle soups; drop me a line if you beat me to it. q

a u g u s t 2 0 0 2 | g a m e d e v e l o p e r20

F O R M O R E I N F O R M AT I O N

I N N E R P R O D U C T

When we’re building
static levels of detail,

the number of triangles
we want to discard is

usually proportional to
the number of triangles

in the mesh.

Duchaineau, Mark, and others. “ROAMing Terrain: Real-time Optimally

Adapting Meshes.” Proceedings of IEEE Visualization, 1997.

McNally, Seumas. “The Tread Marks Engine,” part of “Two Advanced

Terrain Rendering Systems.” 2000 Game Developers Conference

Proceedings.

The Virtual Terrain Project

http://vterrain.org

Ulrich, Thatcher. “Chunking LOD”

http://tulrich.com/geekstuff/chunklod.html

Garland, Michael, and Paul Heckbert. “Surface Simplification Using

Quadric Error Metrics.” Siggraph 1997.

http://graphics.cs.uiuc.edu/~garland/research/quadrics.html

A R T I S T ’ S V I E W h a y d e n d u v a l l

a u g u s t 2 0 0 2 | g a m e d e v e l o p e r22

S o, what is the future going

to be like? Will we find

ourselves booking an opera-

tion to implant the latest

biomechanical eyes from

Nikon, courtesy of a William Gibson

future of cybernetics? Will we end up

being chased through a decaying hotel by

a Scandinavian android in a Philip K.

Dick–style dystopia? Or (and this is my

personal favorite) will we all be running

for our lives from impossibly large

insects that have been mutated by

mankind’s careless use of nuclear energy?

The best thing about the future, from a

designer’s point of view, is that it could

turn out to be pretty much anything.

Setting a game in the future takes advan-

tage of this flexibility and gives the artist a

bit of space to be inventive. There are,

however, some areas that can benefit from

an element of realism if readers are to

read the game successfully.

Long ago, in “Building the Future,

Part 1” (January 2002), we looked at

how to envision the future through archi-

tecture. This time, we’ll look at designing

our way around in our futuristic environ-

ments, in vehicles.

Simplification or
Complexity?

T he history of industrial design tells

an interesting story. Looking at the

last 60 years, we can follow a path that

has firmly linked design to technological

advancement. It is interesting to exam-

ine the progression that has led from

rudimentary concepts built to be func-

tional, through the era of ”high-tech”

knobs and buttons (1970s and 1980s),

into what we now see as desirable: sim-

plicity and attractiveness.

Perceptions of what “high-tech” actual-

ly means have changed throughout the

decades; this, in part, has influenced

designers keen to produce progressively

more cutting-edge designs. These percep-

tions, mirrored in the science-fiction films

of each period, give us some insight into

what represented futuristic transport in

each era. The relatively simplistic forms in

Forbidden Planet (1956) become the com-

plex industrial shapes of Alien (1979),

that once again move back toward simpli-

fied shapes of modern-day Star Trek. The

technological aspect is represented as less

industrial and more aesthetic.

There are many ways in which the tech-

nology of the future may advance: minia-

turization, and a more complete under-

standing of the laws of physics and the

development of new materials together

with their associated methods of fabrica-

tion, are possible future trends. An excel-

lent illustration of the impact of miniatur-

ization (through advancements in elec-

tronics) can be found in studying the

development of the modern calculator.

While the rules of addition and subtrac-

tion have not changed, the advent of the

transistor and the subsequent rampage of

microelectronics have shrunk the size of

calculators significantly as each decade

has passed. We are now able to create a

complex calculating circuit on the head of

a pin, and this projected level of miniatur-

ization allows us to extrapolate into the

future and make assumptions about our

vehicles and their technology.

In terms of designing vehicles, areas

such as aerodynamics and advances in

fabrication processes have made forms

previously seen as purely theoretical and

made them realistic.

Vehicles of the 1920s, such as the

Model T Ford, were limited by the materi-

als and construction methods available at

the time, as well as levels of understanding

H A Y D E N D U V A L L I Hayden started work in 1987, creating
airbrushed artwork for the games industry. Over the next eight years,
Hayden continued as a freelance artist and lectured in psychology at
Perth College in Scotland. Hayden now lives in Bristol, England, with
his wife, Leah, and their four children, where he is lead artist at
Confounding Factor.

Building the Future
Part 2: Vehicles

The best thing about the future,
from a designer’s point of view, is
that it could turn out to be pretty

much anything.

in areas such as aerodynamics. By con-

trast, today’s concept cars look ahead to

what the future may hold, using our pres-

ent levels of technology as a springboard.

Assuming that the future will be even

more open in terms of vehicle design,

which path, as artists, do we choose to

follow?

The Mechanics of
Motion

A s with most design decisions where

a future or fantasy world is con-

cerned, you have a choice as an artist:

either throw reason out the window and

develop a world that is pure fantasy, or

attempt to ground your design in some-

thing more realistic.

Future vehicles are a pillar of science

fiction, and whether they be the oddly

asymmetrical Millennium Falcon or the

long-legged mechanical turtle that was

the AT-AT, we can use such vehicles to

learn about the world to which we have

been transported.

When designing a vehicle, the first (if

somewhat obvious) question to ask is,

what kind of vehicle is it? Or more

specifically, on or through what medium

does it travel? When you’re considering

designing something that travels outside

a planet’s atmosphere, you obviously

have a whole different set of constraints

to consider than when you’re designing

something that travels through water.

TV and films are often guilty of pro-

ducing ships that have the look of futur-

istic airplanes even though they only fly

over the vacuum of space. For example,

the sleek lines of many Star Trek ships

belie their deep-space designation. The

original mining ship from Alien (the

Nostromo), however, neatly illustrated

the practical differences between space

flight and what one would need to enter

an atmosphere. The detachable front

module was designed to land on a plan-

et’s surface, leaving the unwieldy cargo

section in orbit. For the purpose of this

article, though, we will leave the vagaries

of space travel behind and concentrate

on something that’s more down to earth:

land transportation.

How Much Detail?

B efore laying down a single polygon,

it is important to look at your game

and establish the level of detail that is

appropriate for the vehicles. As always,

the platform on which you are developing,

as well as your engine’s limitations, have a

part to play. But possibly the most impor-

tant element to consider is to what extent

the vehicles that you will be making fea-

ture in your game.

The most recent incarnations of our

favorite racers boast cars that are immac-

ulately modeled and textured replicas of

the real-world cars they represent, right

down to the smallest detail. Look at the

wheel arch of any of these cars and you’ll

be hard-pressed to spot the angularity of

their constituent triangles. Obviously, as

these models are pretty much the entire

focus of such games, their developers can

safely invest resources on realism. Also, a

racing game places much less emphasis

on its environment — not that the

scenery in a racing game isn’t detailed,

but the limited area of play means you

don’t need to create a detailed world,

ready to be explored.

In such games as HALO or GRAND

THEFT AUTO 3, vehicles still feature promi-

nently in the game’s structure, but unlike

pure racers they are one element in a

much more complex world. Games of this

nature need to expend significant energy

on character animation and thus aren’t

able to be as detailed with their models.

Fortunately, with games of this kind, a

player’s attention is going to wander from

the vehicle toward the marauding aliens

or the machine-gun-toting thugs, and so

absolute accuracy of detail becomes less

important. Tailoring the level of detail of

your vehicles to make sensible use of

resources in the context of your game

design is always a worthwhile exercise.

Fight or Flight?

W e also need to consider the vehi-

cle’s designation. Will it be used

for combat, racing, civilian transport, or

turnip harvesting? A vehicle’s shape is

largely defined by its functionality. But

while it is certainly true that basic vehi-

cle shape is normally linked to function,

A R T I S T ’ S V I E W

a u g u s t 2 0 0 2 | g a m e d e v e l o p e r24

FIGURES 1A–C. Consideration given to specific features of a vehicle help identify its type and function: aerodynamics for racing (a), mechanical
devices for maintenance (b), weaponry for combat (c).

often additional features help define a

vehicle’s type.

Figure 1 shows how a combination of

overall styling, together with the addition

of aerodynamics, mechanical devices, or

weaponry can set a vehicle up as being for

racing, maintenance, or combat.

Propulsion

W hen considering what it is that

makes an individual vehicle futur-

istic, a good place to start is propulsion,

or how a vehicle is powered. One area

available for an artist to convey advances

in design is in imagining how a method of

transport may be powered in the future.

The legendary concept artist Syd Mead

(Tron, Blade Runner) has said that part of

his design process is assuming that some

leap in technology has occurred between

now and the future point for which he is

designing, and one of the most obvious

ways in which this assumption can mani-

fest itself is propulsion.

Most ground-based vehicles use wheels,

and while it’s reasonable to suggest that

there’s nothing especially futuristic about

wheels, you can use wheel design, sizing,

and number of wheels to build the impres-

sion of a futuristic vehicle.

Also, tracks are a reasonably recent

addition to vehicle design and generally

represent a vehicle built for difficult ter-

rain, most often military. However, the

juxtaposition of tracks and traditionally

wheel-driven vehicle types can produce

interesting results if this fits in with your

overall design.

As we get more futuristic, we

inevitably see vehicles that are powered

by a form of jet engine or have some

kind of antigravity hovering capabilities.

The hover car has seen many incarna-

tions, but the central idea of some form

of antigravity device is appealing, as it

requires no obvious mechanism, as jet-

powered vehicles do. However, even

when we eliminate friction through hov-

ering, we need to take care of forward

propulsion, and here again, some form of

jet engine is important.

The Need for Speed

Speed is often perceived as one of the

main advances we can expect from

travel in the future. This prediction is not

without foundation, as even though speed

limits on our roads have more or less

remained the same for the past several

decades, top speeds of vehicles produced

have gone through the roof, with most

regular production cars reaching 120 mph

and beyond.

Several visual features can have an

impact on conveying the idea of poten-

tial speed (besides painting flames along

the sides). They are somewhat in opposi-

tion, but depending on the style con-

straints of your game, one or both meth-

ods may be useful.

The raw power needed to push a vehi-

cle to extreme speeds is often conveyed

successfully by oversized engine parts or

excessive means of propulsion that seem

insane in comparison to the vehicle they

are powering. This approach favors the

cyber-punk design ethic, championed by

the Mad Max school of automotive design

and exemplified in the insanity of The
Phantom Menace’s pod racers. If we are

going to travel fast in the future (and most

of us would be disappointed if this

weren’t the case) we will need some seri-

ous machinery to propel us. Building this

kind of model for a game can require

more geometry, with tubes and pipes, air

vents and exhaust ducts. However, it also

allows the artist plenty of room for inven-

tion, and much of the finer detail can be

put in texture.

The alternative to this approach is to

take the more elegant, sophisticated route.

Real speed, the kind that accelerates you

so fast that it can peel the enamel clean

off your teeth, requires more than just

welding the mother of all engines to four

wheels and a gear stick. If we consider

those rocket-shaped cars used to test land-

speed records as an example, faster travel

also creates the need for better lines, max-

imized airflow, and the reduction of drag.

Extreme speed demands very smooth

lines, and this is another possibility to

explore for future vehicles.

Simpler shapes with less additional

geometry to clutter their surface make

smaller demands on resources; on the

other hand, a mesh that attempts to sim-

ulate smooth curves is going to need to

be highly detailed to avoid angular edges,

so the real savings may be deceptive.

Whichever approach you favor (or even

a combination of the two), vehicle design

can be one of the most enjoyable parts of

an artist’s job. As long as you take the

time to consider context, designation, and

overall game styling, the results can be as

spectacular as they are varied. q

A R T I S T ’ S V I E W

a u g u s t 2 0 0 2 | g a m e d e v e l o p e r26

In terms of designing vehicles,
areas such as aerodynamics and

advances in fabrication processes
have made forms previously seen
as purely theoretical and made

them realistic.

a u g u s t 2 0 0 2 | g a m e d e v e l o p e r28

Imagine this: The phone is ringing,

a television is blaring in the next

room, water is running into a

growling garbage disposal, dogs

are barking, a neighbor’s stereo is

thumping, another neighbor has his leaf

blower set on gale-force, kids are scream-

ing, skateboards are grinding on the curb,

a motorcycle is revving on the street, all

while you are trying to enjoy a quiet

Saturday morning of leisurely cartoon

watching. This is an example of what a

bad game can sound like, the kind of hor-

rendous audio mess where so much is

happening that you end up missing out on

what is ultimately important.

A saturated soundscape means degrad-

ed effectiveness. The only options avail-

able are to turn it down or turn it off —

we can prevent either from ever happen-

ing. Music, sound effects, and narratives

can coexist within the soundscape peace-

fully, but a relative amount of care should

be taken to ensure they do.

Musical elements. A composer’s instincts

dictate that each piece of music should be

able to stand on its own. In order to make

the music interesting, composers add sev-

eral layers of musical ingredients: a

melody here, a countermelody there, per-

cussions, fills, and on and on. If it doesn’t

sound great on its own, it won’t sound

good in the game, right? Well, there are

appropriate times where this type of music

may work: intro sequences, cinematics,

menu screens, and other stand-alone cues.

However, music intended as background

music, has to be just that — in the back-

ground. Busy, complex scores do nothing

for the overall soundscape when all those

musical layers start to interfere with what-

ever else may be going on.

To compose music that is true to the

game is a unique challenge. If music is the

only audio playing at a particular time,

you are home free. But if the music will be

sharing real estate with other sounds, lay

back a little and make some room for the

rest of the audio to be heard. Save the

elaborate performances for a soundtrack

release and let your professionalism shine

through for the sake of the product.

Sound effects. Compelling sound

effects sometimes require a bit of ingenu-

ity. Because the player needs the feedback

these audio cues provide, they need to be

heard. For something as basic as a menu

screen, for example, a jamming dance cue

could be playing, psyching up the player

for the upcoming experience. The player

clicks a selection, and except for the visu-

al cue of seeing the button depress and

the screen changing, the player receives

no aural response. The sound effect asso-

ciated with the button click was either

too low in volume or lost in the music.

Some choices need to be made.

Do you turn down the volume of the

music? Do you increase the volume of

the sound effect? Do you dump the

sound effect? A better solution is to cre-

ate a sound that actually stands out from

the music.

A bass-heavy music track won’t leave

room for any other low-frequency activi-

ty in the soundscape. Hits or explosions

may barely be heard because they com-

pete directly with the bass components of

the music. To remedy this, consider keep-

ing the sound effects in the mid- to

upper-frequency ranges or remix the

music with less bass. A “thump” may

not be heard among music with this type

of low-frequency congestion — try a

“click” instead. Conversely, that

“thump” will work well with music with

a lot of high-frequency, percussive activi-

ty, where the “click” might get lost.

Another trick is to build room in the

frequency spectrum of the music to let the

sound be heard. Set the musical bass ele-

ments to reside around the 50Hz range,

and explosions around 60Hz. By separat-

ing their predominant frequencies slightly

and manipulating the audio accordingly,

the game can be experienced as intended.

Notice how the vocals in a song stand

out? Same theory.

Voice-overs, narratives, and speech.
Vocal ingredients require the same con-

sideration as other audio. Most game

creators have a tendency to want their

vocalizations full-bodied, like those

attention-demanding FM radio jocks.

While these narratives may sound great

on their own, when added to the mix of

music and sound effects, such frequency-

saturated voices become mud. Instead of

simply increasing the volume of the

speech, narrow the spectrum the voice

uses and develop a good mix with equal-

ization. The words will be easily heard

and understood, and the rest of the audio

will be clear.

Put it all together. A common mistake

inexperienced music producers make

when doing final music mixes is to solo

each instrument and tweak them individu-

ally to perfection. When all of the instru-

ments are brought together, however, the

resulting competition for space creates a

mix that is cloudy.

What ultimately matters, for the good

of the overall production, is that every-

thing sounds good together. Applying a

little attention to detail allows each audio

ingredient to work together, hopefully to

be heard clearly and as intended. q

a a r o n m a r k s

AARON MARKS | Aaron (aaron@onyourmarkmusic.com) is a com-
poser, sound designer, author of The Complete Guide to Game

Audio (CMP Books), and the humble proprietor of On Your Mark
Music Productions (www.onyourmarkmusic.com). He is currently
hard at work on game projects for Vivendi/Universal, Flipside.com,
and Enemy Technology.

Blending the
SoundscapeTotal

S O U N D P R I N C I P L E S

a u g u s t 2 0 0 2 | g a m e d e v e l o p e r30

This month’s game design rule was
inspired in part by a discussion with Teut
Weidemann, head of Wings Simulations
(developers of PANZER ELITE) in Germany.

The Rule: Distribute game assets asym-
metrically.

W hen there are

objects or experi-

ences the player can

encounter in a

game, place them

asymmetrically, both spatially in the sense

of clumping some together and spreading

others thinly, and temporally in the sense

of having some be common, some uncom-

mon, and some rare over time. Of course,

particularly useful or powerful items are

good candidates to be the rarest.

The Rule’s domain. The rule applies to

all games, and in fact, applies to most

things the player can encounter in those

games.

Rules that it trumps. Asymmetrical dis-

tribution trumps rules that emphasize

consistency and uniformity in games. It’s

important, for example, to provide con-

sistent stimulation and an unending flow

of interesting decisions for the player to

make, but that doesn’t mean a pre-

dictable and unvarying distribution of

the same type of decisions. You can

always provide a consistent flow of dif-

ferent kinds of decisions. Since another,

closely related rule is “Avoid player

fatigue,” this asymmetry rule is a good

one to follow to keep the distribution of

power-ups or other assets uneven and

surprising and to keep the player interest-

ed and alert.

Rules that it is trumped by. This rule is

trumped by the need to provide a

smooth learning curve for the game on a

larger scale. New game interface con-

cepts, characters, units, and player abili-

ties should be presented smoothly

throughout the game so players can mas-

ter one before being confronted with the

next. It would not do to asymmetrically

clump the introduction of four new mili-

tary units in one part of one level of an

RTS and not introduce any new ones for

the next three levels. But within a level

it’s a good thing to distribute the

resources in clumps, like a forest of trees

instead of individual trees spread

throughout the landscape, or a gold

mine instead of small packets of gold

evenly placed in the world.

Examples and counterexamples. This is

a very universal rule, understood by

designers everywhere. In every good

game you will find examples, like areas

where there are few enemies followed

by an ambush where many descend on

you at once, or a few paltry gold pieces

followed by a treasure chest full of rich-

es. Richard Garfield turned the use of

common, uncommon, and rare items

into an entire mini-industry with

MAGIC: THE GATHERING. Think how

much less compelling the metagame of

collection would be if all the cards in

that game were equally distributed.

Less often is this principle employed for

intangible parts of games. Consider the

vocal acknowledgement that an infantry-

man in an RTS game gives when you click

on him. If he says “Yes, sir?” every time,

it not only becomes annoying quickly, but

also breaks the “Maintain suspension of

disbelief” rule (May 2002). If he says

“Yes, sir?” or “At your command” or

“My orders?” or “You rang?” each 25

percent of the time, it’s somewhat of an

improvement, a bit more realistic and less

monotonous. But if he says the first two

things 40 percent of the time each, the

third one 15 percent, and the last one 5

percent, a player is likely to be surprised

when he or she hears “You rang?” for the

first time 10 or 20 minutes into the game.

Adding one more unexpected response

such as, “Yeah, whaddaya want? Oh, it’s

you, sir!” that occurs only 1 percent of

the time not only provides a fun surprise

for players, but also leaves them expecting

to find more unusual utterances and will

keep them intrigued long into the game.

One old Infocom game, SPELLBREAKER,

used a similar principle to hide the devel-

oper’s favored name for the game that had

been vetoed by the publisher. Once in

every 100 or so games it displayed the old

name of the game, MAGE, surprising quite

a few players.

Update to “Name That Trump!” challenge.
Last month I set forth a challenge to solic-

it rules that trumped the rule of allowing

the player to save games anywhere. I’ve

received some mail strongly in favor of

more games following this rule, but only

one trump so far. I’ll suggest some

answers next month. q

N O A H F A L S T E I N | Noah is a 22-year veteran of the game
industry. You can find a list of his credits and other information at
www.theinspiracy.com. If you’re an experienced game designer inter-
ested in contributing to The 400 Project, please e-mail Noah at
noah@theinspiracy.com (include your game design background) for
more information about how to submit rules.

Distribution

Ensemble Studios’ upcoming RTS, AGE OF

MYTHOLOGY, shows how resources can be dis-
tributed asymmetrically to provide interest.

Asymmetrical

n o a h f a l s t e i nB E T T E R B Y D E S I G N

n a t y h o f f m a n & a rc o t j . p re e t h a m

Photorealistic
Real-Time Outdoor

Light Scattering

a u g u s t 2 0 0 2 | g a m e d e v e l o p e r32

S ome of the most striking aspects of outdoor scenes

are the result of light interacting with the atmos-

phere: shades of blue in a clear noon sky; the red

and gold colors of sunset; the purple tint of distant

hills; the gray, washed-out look of a foggy day.

In this article, we will explain the basic principles of scatter-

ing physics, and use them to derive a scattering model. We will

then show how to implement this model with a vertex shader,

so that these effects can be generated and changed in real time.

Scattering Fundamentals

W e will start with some fundamental concepts as a back-

grounder:

Radiant flux (φ) measures a quantity of light through a sur-

face (through all points and in all directions). Radiant flux is

power, which is measured in watts.

Solid angle (w) measures a sheaf of directions in 3D, like an

angle measures a sheaf of directions in 2D. While angles are

defined as arcs on a circle and measured in radians (2π in a

complete circle), solid angles are defined as patches on a sphere

and measured in steradians (4π in a complete sphere).

Radiant intensity (I) measures a quantity of light through all

points in a surface going in a single direction. Radiant intensity is

power over solid angle, and is measured in watts per steradian.

Radiance (L) measures a quantity of light in a single ray

(through a single point in a single direction). Radiance is power

over (area times solid angle), and is measured in watts per

steradian per meter squared. The pixel values of the final ren-

dered image are derived from the radiance values for rays going

through each pixel into the camera.

Pixel values are RGB triples. However, radiance is distributed

along a continuous range of frequencies. There are two ways to

derive RGB values from a set of wavelength-dependent equa-

tions. The fast way (commonly used for real-time graphics) is to

plug three sample frequencies into the equations, resulting in an

RGB triple. The more precise way (often used for offline render-

ing) is to use several dozen samples evenly distributed through-

out the visible spectrum. The resulting series of numbers is con-

verted to an RGB triple via perceptual weighting and integration.

O U T D O O R L I G H T I N G

N A T Y H O F F M A N | Naty has been leading the development of
the Earth & Beyond graphics engine at Westwood Studios since
1997. Previously he worked at Intel as the lead microprocessor
architect for the Pentium with MMX chip and contributed to the
MMX, SSE, and SSE 2 instruction sets. Contact him at naty@west-
wood.com.

A R C O T J . P R E E T H A M | Preetham (preetham@ati.com) is a
software engineer working on various rendering techniques for
next-generation graphics hardware at ATI Research. Prior to this,
he developed 3D modeling and reverse-engineering software at
Paraform, and worked on rendering atmospheric effects for flight
simulators at Evans & Sutherland.

Im
ag

e
by

 S
ol

om
on

 S
ri

ni
va

sa
n

We will use the fast method, but at a cost. Figure 1 shows the

spectral sensitivity for the three kinds of cones in the human reti-

na. We can see that no matter which three sampling frequencies

we pick, we will lose information on the spectral structure

between them, which introduces inaccuracies.

Atmospheric Light Scattering

T here are three types of interactions that can occur between

a photon and a particle (an atom, molecule, dust speck,

water droplet, and so on). The particle may scatter the photon

into the line of sight (in-scattering), it may scatter it out of the

line of sight (out-scattering), or it may absorb the photon alto-

gether (absorption).

Atmospheric light scattering (we include both scattering and

absorption under this term) is responsible for many varied visu-

al effects in outdoor scenes, but for the purposes of this article

we will concentrate on three: the sky, sunlight, and aerial per-

spective. First we will discuss the sky. When looking at a clear

sky you would see nothing but black if atmospheric light scat-

tering was not present. In Figure 2 we can see how the atmos-

phere scatters sunlight toward the eye. Since blue light tends to

scatter more than red light (more on this later), the sky usually

appears blue.

In Figure 3 we can see how the atmosphere, via out-scattering

and absorption, removes part of the sunlight before it reaches

the eye. Again, mostly blue light is affected, which causes the

color of the remaining sunlight to shift toward yellow and red.

When the sun is near the horizon, sunlight travels a much larger

distance through air than when it is at the zenith. This explains

why this effect is strongest at sunrise and sunset.

Aerial perspective causes distant objects to shift in color. In

Figure 4 we can see how the atmosphere attenuates the light

from distant objects via out-scattering and absorption, and

adds new light via in-scattering. Since mostly blue light is

involved, this causes distant dark objects to appear blue and

distant bright objects to appear reddish.

We can divide the scattering phenomena into two groups:

those which remove light from a ray (absorption and out-scat-

tering, which we will combine under the term “extinction”),

and those which add it (in-scattering). Let’s compare the radi-

ance in a ray before and after it is affected by atmospheric light

scattering (L0 and Lscattering, respectively). Extinction has a multi-

plicative effect on L0, which we can express as a dimensionless

factor Fex. In-scattering has an additive effect on L0, which we

can express as a radiance value Lin. This gives us Equation 1:

The rest of this article will focus on how to calculate Fex and

Lin for all objects in a scene in real time.

Absorption

T he absorption cross section measures how well a single

particle absorbs light around it. In Figure 5 we see a single

absorbent particle. The first assumption we will make is that

w w w . g d m a g . c o m 33

FIGURE 1. Spectral sensitivity curves for cones in the retina.

FIGURE 2. Skylight is scattered toward the eye by the atmosphere.
Because blue light scatters more than red light, the sky usually
appears blue.

FIGURE 4. Aerial perspective causes distant bright objects to appear
reddish and distant dark objects bluish.

FIGURE 3. The atmosphere removes some sunlight before it reaches the
eye by out-scattering an absorption. The scattering of blue light makes
the sky appear red when the sun is near the horizon and its light must
travel farther through the atmosphere to reach the eye.

L F L Lscattering ex 0 in= +
Eq. 1

the particle interacts with light in an isotropic manner, that is, it

doesn’t matter from which direction the light comes. Given this,

we will look only at the light coming from a single direction

and ignore light coming from other directions. In this example,

the light from this direction has a constant radiance L. The par-

ticle will absorb a certain amount of total radiant flux φab, how-

ever we only care about the absorbed flux coming from one

direction (the absorbed radiant intensity, Iab).

We define the absorption cross section as the absorbed radi-

ant intensity per unit incident radiance, or Iab/L (this is equiva-

lent to the commonly used definition of absorbed flux per unit

irradiance and is easier to explain). If we assume that the parti-

cle is a solid absorbent sphere, then for the purpose of absorb-

ing light from this direction we can treat it as a flat disc perpen-

dicular to the light. Each point in this disc absorbs an amount

of radiance. Integrating over the disc’s area A gives us Iab = AL,

so σab= A.

If the particle is very large compared to the light wavelength,

then its absorption cross section is equal to its geometric cross

section. Smaller particles cannot really be treated as spheres (or

as having any shape at all), but fortunately we don’t need to

care — σab captures everything we need to know about how

well they absorb light. Note that σab varies as a function of

wavelength, so it is actually an RGB triple: , , .

Understanding how a single particle absorbs light is all well

and good, but how is light affected by passing through an

absorbent medium containing many such particles? We will

characterize this with a new quantity: the medium’s absorp-

tion coefficient , defined as the particle density multiplied by

. Since density is measured in meters–3 (particles per cubic

meter), the units of work out to be meters–1, or inverse

length. This seems a bit odd at first but will make perfect

sense in a moment.

In Figure 6, we see a thin slab of absorbent medium with

depth ds and area A, through which photons are passing in a

perpendicular direction. The total absorption cross section of

the slab is σab multiplied by the number of particles in the slab.

The number of particles is equal to ρab multiplied by the slab

volume, which is equal to Ads. This gives us a total absorption

area of Aab = σabρabAds for the slab. The probability Pab that

any given photon will be absorbed is equal to the ratio of the

total absorption area to the slab area, which is:

Pab = Aab/A = σabρabds = βabds

So the significance of βab is that it relates the distance a pho-

ton travels through the medium to its chance of being absorbed.

This explains why it has units of inverse length — βab times dis-

tance equals probability, a dimensionless number. Another way

to look at βab is that it relates the distance a ray of light travels

through the medium to the degree by which its radiance is atten-

uated by absorption. With this in mind, we can rewrite Equation

2 as a differential equation:

We will assume that βab is constant along the ray’s path.

Then we can solve this equation to get the radiance of a ray

(with starting radiance L0) after traveling a distance through

the medium:

This is a simple exponential decay formula. If βab is not con-

stant, the solution is more complicated (see Hoffman and

Preetham in For More Information). Note that if we have differ-

ent types of absorbent particles in the medium we can just add

their absorption coefficients together and use the sum as the

total absorption coefficient. L(s), L0, and βab are RGB triples.

Out-Scattering

T he derivation for out-scattering is similar to that for absorp-

tion. We have a scattering cross section σsc (see Figure 7),

scattering coefficient βsc = σscρsc and the equation for radiance

attenuation due to out-scattering in a constant medium is:

O U T D O O R L I G H T I N G

a u g u s t 2 0 0 2 | g a m e d e v e l o p e r34

FIGURE 6. A thin slab of absorbent medium.

σ ab

R σ ab

G σ ab

B

dL
ds

L= −βab

L s L e s() = −

0

βab

L s L e s() = −

0

βsc

FIGURE 7. A single particle scattering light.

ds

σsc

FIGURE 5. A single particle absorbing light.

σsc

Eq. 2

We can also add up the scattering coefficients for different

particle types and use the sum as the total scattering coefficient.

Extinction

S ince both absorption and out-scattering cause attenuation

of light, we can sum the absorption and scattering coeffi-

cients to get the extinction coefficient:

Then the total attenuation due to extinction is:

In-Scattering

L ight is scattered into the view ray from all directions; we will

only handle in-scattering from the sun. The scattering coeffi-

cient tells us how much light is scattered but not in which direc-

tion. For this we define the scattering phase function f(θ,ϕ). This

is a density function for the probability of a photon being scat-

tered in the direction θ,ϕ. We assume that f(θ,ϕ) depends only on

the angle θ between the incoming direction and the scatter direc-

tion (f(θ,ϕ) = f(θ)), and that it is not wavelength-dependent. Both

assumptions are reasonably accurate for most classes of atmos-

pheric particles. The phase function’s units are inverse solid

angle, and integrating it over the sphere yields a result of 1.0.

In Figure 8 we can see that the view ray intersects the scatter-

ing cross section of the particle, so an in-scattering event is hap-

pening (as well as an out-scattering event, but that isn’t relevant

to the present discussion). How much radiance is scattered into

the view ray by this event? First we need to integrate f(θ) over

the sun’s solid angle to get the probability that radiance is in-

scattered from there. Since the sun covers a small cone (about

half a degree across), we can assume f(θ) does not vary within

it. In this case the in-scattering probability is equal to f(θ)ωsun.

To find the amount of radiance in-scattered by this event, we

multiply the in-scattering probability by the sun’s radiance, Lsun,

to get f(θ)ωsunLsun. We define a new constant Esun = ωsunLsun,

which expresses the total illumination intensity of the sun and

is similar to intensity values used in point light source lighting

equations (there the intensity is “squeezed” into a zero solid

angle, which implies an infinite radiance — point light sources

don’t really exist). Then the radiance added by a single in-scat-

tering event is Esunf(θ).
To get the total in-scattered radiance over a short distance ds,

we need to multiply Esunf(θ) by the probability of an in-scatter-

ing event, which is βscds. The result is Esunf(θ)βscds. We define

the angular scattering coefficient βsc(θ) as equal to βscf(θ). Then

the in-scattered radiance over the distance ds is Esunβsc(θ)ds. This

gives us another differential equation:

Unfortunately, we can’t solve this equation without taking

extinction into account, since in-scattered light undergoes

extinction before it reaches the eye. Adding extinction gives us

the following differential equation:

If we assume Esun, βsc(θ), and βex are constant along the path,

then the solution to this equation is fairly simple (otherwise the

solution is much more involved, see Hoffman and Preetham in

For More Information). It is essentially Equation 3, plus a new

in-scattering factor:

The in-scattered radiance is a function of s (the distance from

the eye) and θ (the angle between the viewing ray and the sun).

Equations 1, 3, and 4 together describe the complete scattering

equation.

Filling in the Parameters

N ow that we have the complete scattering equation, we

need to determine the parameter values to plug into it: ,

, , , , , Esun, and f(θ). Esun is itself dependent on

extinction — we will take care of it in the implementation sec-

tion. In the next two sections we will look at two kinds of par-

ticles and determine the coefficients and phase functions for

each. We will sum βex for the two types to get the total βex, and

the two βsc(θ) functions will be added to get the total βsc(θ).

Air Molecules and Rayleigh
Scattering

F irst we will look at particles much smaller than the wave-

length of visible light, such as air molecules. These particles

do not absorb light, so we will look only at scattering. The

scattering coefficients for these particles were discovered by

Lord Rayleigh around 1870, so this type of scattering is called

Rayleigh scattering (see For More Information). For air we use

the following scattering coefficient:

w w w . g d m a g . c o m 35

F s e s
ex

ex() = −β

dL
ds

E= ()sun scβ θ

dL
ds

E L= () −sun sc exβ θ β

L s E e s
in

ex

sun sc
ex,θ

β
β θ β() = () −()−1

1

 βex

G

 βex

B

 βsc

R

 βsc

G

 βsc

B

βex

R

FIGURE 8. A single in-scattering event.

β

π
λscAir =
−() +

−






8 1

3

6 3

6 7

3 2
2

4

n

N
p
p

n

n

Eq. 3

Eq. 4

βex = βab + βsc

Where n is the refractive index of air (a dimensionless quantity,

equal to 1.0003 in the visible spectrum), N is the number of

molecules per cubic meter (equal to 2.545�1025 for air at 0˚ C

and 1 atmosphere) and pn is the depolarization factor (a dimen-

sionless quantity, equal to 0.035 for air). Plugging in the values

for air, together with the R, G, and B sample frequencies (650,

570, and 475 nm respectively) yields the following numbers:

If your game has significantly different conditions (for exam-

ple, high altitudes or a planet with very high air pressure), you

can work out new values. The important thing to note here is

that Rayleigh scattering has a very strong preference for shorter

wavelengths, so blue is scattered much more than red. The

Rayleigh phase function for air scattering is:

Figure 9 is the polar plot for this function. We can see that

Rayleigh scattering is weakly directional and includes equal

amounts of forward and backward scattering.

Haze Particles and Mie Scattering

P articles much larger than air molecules (soot, dust, water

vapor, ice crystals, and so on) are called haze particles.

The βabHaze coefficient can vary from 0 to about 5�10–5 m–1; it is

usually negligible unless there is a lot of pollution present

(βabHaze usually has no strong wavelength dependence).

A theoretical model which covers scattering for these parti-

cles was published by Gustav Mie in 1908, so this type of scat-

tering is called Mie scattering. Mie equations are very complex

and highly dependent on particle size. Haze particle size distri-

butions in the real world are also highly varied, and it is diffi-

cult to model βscHaze and fhaze(θ) analytically. Fortunately, many

empirical measurements are available. The phase function can

be approximated by the Henyey-Greenstein phase function (see

For More Information):

The equation may look scary, but from Figure 10 we can see

that this is simply the polar form of an ellipse, where is the

eccentricity parameter (and also controls whether the ellipse

points forward or backward). For most haze distributions,

should be negative. As βscHaze increases, g increases in magnitude

and βscHaze becomes more monochromatic. A group of typical val-

ues derived from empirical measurements can be seen in Table 1.

These values are for “normal” real-world environments. For

more unusual environments, almost any values can be used; feel

free to have a strongly colored absorption coefficient, or even a

red-colored scattering coefficient (those even happen in the real

world on rare occasions, thus the expression “once in a blue

moon”).

Aerial Perspective

A erial perspective is caused by both extinction and in-scat-

tering. Since the viewing rays are close to the ground, the

constant density atmospheric model is a reasonable assumption

and all the equations hold up. We treat the original (without

scattering) color of the object as L0 and multiply with Fex(s) and

add Lin(s,θ) to get the final color. These factors can be precalcu-

lated into textures and rendered using functions of s and θ as

texture coordinates, calculated per-vertex, or calculated per-

pixel either on the fly or in a post-processing pass. In our

implementation we chose to calculate them per-vertex in a ver-

tex shader or vertex program.

This approach makes good use of modern hardware capabili-

ties, enables changing parameters on-the-fly efficiently, and

should work reasonably well even on older hardware with soft-

ware vertex processing. Our implementation happens to use a

DirectX 8 pixel shader for combining the factors with the origi-

a u g u s t 2 0 0 2 | g a m e d e v e l o p e r36

fAir θ
π

θ() = +()3

16
1 2cos

f
g

g g
HG θ

π θ
() =

−()
+ − ()()

1

4 1 2

2

2
3 2

cos
/

βscAir

R =

βscAir

G =

βscAir

B =

O U T D O O R L I G H T I N G

6.95�10–6m–1

1.18�10–5m–1

2.44�10–5m–1

TABLE 1. Typical haze parameter values.

FIGURE 9. Rayleigh phase function polar plot.

FIGURE 10. Henyey-Greenstein phase function polar plot.

0.75 0 -0.5 -0.750.5

Description
Light haze
Heavy haze
Light fog
Heavy fog

βscHaze

2�10–5

8�10–5

9�10–4

10–2

βscHaze

3�10–5

10–4

10–3

10–2

βscHaze

4�10–5

1.2�10–4

1.1�10–3

10–5

g
-1
-3
-10
-30

R G B

nal color, but advanced fragment processing is not necessarily

required — depending on what else is happening in that pass, it

could be possible simply to store the factors in the diffuse and

specular vertex colors and combine them using the standard

fragment pipeline. We can see L0, Fex(s), and Lin(s,θ) being com-

bined in Figure 11.

Sunlight

T he sun intensity factor Esun is used for lighting the scene and

for in-scattering calculations. We calculate it once a frame

by applying an extinction factor Fex(s) to the sun’s intensity in

outer space Esun
0 . We could get an exact value for Esun

0 in watts

per meter squared for R, G, and B, but we would still need to

convert the resulting radiance values at the end to pixel values

we can handle. Since this factor scales every radiance value in

the scene, we will simply set it to the largest illumination value

we can handle. On older systems this may be 1,1,1 (perhaps

2,2,2 with some careful use of overbrightening techniques), but

on newer hardware and graphics engines we should be able to

use larger values.

We will use the same parameters and model to calculate Fex(s)
as we used for aerial perspective. However, it is not clear what

to use for s, and the atmospheric density along the path is far

from constant. We solve both problems at the same time by

using optical length for s. Optical length is a distance defined as

the integrated density along the ray divided by the density at

ground level. So if we use our constant-density atmosphere

model and use optical length for s, we will get the right extinc-

tion results.

The optical length of the atmosphere for air molecules is

about 8.4 kilometers at the zenith (straight up). The exact opti-

cal length for haze particles depends on various factors, but a

reasonable value to use is 1.25 kilometers (haze particles thin

out faster with height than air molecules, so the optical length

is shorter for them). For other directions the length follows

Equation 5 (see Iqbal in For More Information):

Note that in this equation θs is in degrees. Since we are using

two different values of s (for air molecules and for haze), the

equation for Fex looks a little different:

Sky Color

T he sky color in all directions is the result of in-scattering.

An accurate model would take multiple scattering into

account and would be quite complex and expensive to evaluate,

especially since it needs to be evaluated for many points every

frame. In this case we go for consistency over accuracy and use

the same scattering model for the sky as we used for the sun

and other objects. A sky mesh is created, reasonably well tessel-

lated, which conforms in size to the air molecule optical length

values in all directions. Note that the sky mesh is always cen-

tered on the camera.

The sky mesh needs to be rendered with a similar vertex

shader or vertex program to that used for the aerial perspec-

tive. The main difference is that here we have different values

of s for the two particle types. Fortunately, the ratio between

the two is a constant, so we can size the mesh to the air mole-

cule optical lengths and then pass in the ratio as an additional

parameter to the vertex shader. The vertex shader can then

internally generate sHaze from the vertex distance and the ratio

constant. We assume that sAir > sHaze, so we can treat the

atmosphere as two shells: the inner shell contains both air and

haze and the outer contains only air. The resulting equation

for Lin is:

Since the sky uses a different vertex shader, we can also take

advantage of the fact that the starting color is black (outer

space) and skip the extinction factor calculations. We can also

use a simpler fragment pipeline setup that just copies the inter-

polated in-scattered color.

w w w . g d m a g . c o m 37

l

l
s

s s

θ
θ θ

() =
+ − −

Zenith

cos() . (.) .0 15 93 885 1 253

L s sin Air Haze, ,θ() =

E e s
sun

scAir scHaze

exAir exHaze

exAir exHaze Haze
β θ β θ

β β
β β() + ()

+






−()




− +()1

e es s sscAir

exAir

exAir Air Haze exAir exHaze Haze
β θ

β
β β β()

−() 




− −() − +()1

 F s s e s s
ex Air Haze

exAir Air exHaze Haze,() = − +()β β

Eq. 5

FIGURE 11. Aerial perspective in action.

Vertex Shader

I n our implementation, we used a Direct3D 8.1 vertex shader.

It should be straightforward to implement this in OpenGL as

well, given access to the appropriate extensions. The vertex

shader computes Fex(s) and Lin(s,θ), then writes them into oD0

and oD1.

The inputs to the vertex shader are vertex position, transfor-

mation matrices, sunlight intensity factor Esun, the sun direc-

tion (for computing cosθ), the various extinction and scattering

coefficients, and the Henyey-Greenstein asymmetry factor g.

The equations to compute Fex(s) and Lin(s,θ) are the same ones

presented earlier in this article, and the vertex shader is a

straightforward implementation of these equations. Our cur-

rent version (which has not yet been thoroughly optimized)

uses 33 instructions (not including macro expansions) and

eight temporary registers.

Results and Sample Demo

W e can see some results in Figures 12a–c. Figure 12a

shows a scene with a low concentration of haze particles,

so Rayleigh scattering is predominant. The sun is high in the

sky. Figure 12b shows a scene with a high concentration of haze

particles (Mie scattering is predominant) and a high sun angle.

In Figure 12c there is an intermediate haze concentration, and

the sun angle is low. These images were rendered on a 600MHz

Pentium III with an ATI Radeon 8500 at about 60 fps.

The sample demo (available at www.gdmag.com) requires

graphics hardware that supports Direct3D pixel and vertex

shaders and includes shader source code. The application has

some sliders which control the various parameters and a fly-

through demo mode.

Getting Light Right

W ith the right simplifications and assumptions, a full

model of the interaction of light with the atmosphere

can be expressed with a few reasonably simple equations. These

equations can be evaluated in real time to add light scattering

and absorption to any outdoor scene without unduly impacting

performance. For future work we would like to make the sky

color model more accurate, and also handle clouds within a

physical scattering framework. q

O U T D O O R L I G H T I N G

a u g u s t 2 0 0 2 | g a m e d e v e l o p e r38

F O R M O R E I N F O R M AT I O N

We would like to thank Kenny Mitchell for providing the terrain-ren-
dering and lighting engine used as the basis for the demo, and
Solomon Srinivasan for help with the fly-through mode.

Blinn, J. F. “Light Reflection Functions for Simulation of Clouds and
Dusty Surfaces.” Computer Graphics, 16(3): 21–29, July 1982.

Henyey, L. G., and J. L. Greenstein. Diffuse Reflection in the Galaxy.
Astrophysical Journal, vol. 93: 70, 1941.

Hoffman, N., and A. J. Preetham. “Rendering Outdoor Light
Scattering in Real Time.” Proceedings of the Game Developers
Conference, March 2002.

Iqbal, M. An Introduction to Solar Radiation. Academic Press, 1983.
Klassen, R. V. “Modeling the Effect of the Atmosphere on Light.”

ACM Transactions on Graphics, 6(3): 215–237, July 1987.
Mie, G. “Bietage zur Optik truber Medien Speziell Kolloidaler

Metallosungen.” Annallen der Physik, 25(3): 377, 1908.
Preetham, A. J., P. Shirley, and B. E. Smits. “A Practical Analytic

Model for Daylight.” Computer Graphics (Proceedings of SIG-
GRAPH 1999): 91–100, August 1999.

Strutt, J. W. (Lord Rayleigh). “On the Light from the Sky, Its
Polarization and Colour.” Philosophical Magazine, vol. 41:
107–120, 274–279, April 1871.

A C K N O W L E D G E M E N T S

FIGURES 12A–12C. Results of low haze with Rayleigh scattering (12a),
high haze with Mie scattering (12b), and intermediate haze with a low
sun angle (12c).

A

B

C

a u g u s t 2 0 0 2 | g a m e d e v e l o p e r40

P H Y S I C S I N T E G R A T I O N m a t t m a c l a u r i n

Here at Cyan Worlds, we’re more than a year into our use of a

commercial physics engine, having integrated it with our own

proprietary game engine. I’m going to share with you some of

the nuts and bolts of our integration process. In the first part

of this article, I’ll talk about the fundamentals: data export,

time management, spatial queries, and application of forces.

Then, with an eye toward character-centric game implementa-

tions, I’ll visit the twin demons of keyframed motion and play-

er control. In these areas, challenges arise because both of

them require that you bend the laws of physics somewhat, and

that means you must draw some clear distinctions between

what is physics and what is programming for effect.

Integration Basics:
Geometry Export

T here are three categories of geometry supported by physics

engines. The simplest are primitives, represented by formu-

lae such as sphere, plane, cylinder, cube, and capsule. Some-

what more expensive is convex polygonal geometry. Convexity

simplifies detection and response greatly, leading to improved

performance and better stability. Convex shapes are useful for

objects where you need the tighter fit that you can get from a

primitive but don’t have to have concavity. Finally, there is

polygonal geometry of arbitrary complexity, also known as

polygon soups. Soups are fairly critical for level geometry such

as caves and canyons but are notoriously difficult to implement

robustly and must be handled with care to avoid slowdowns.

Since these geometric types have different run-time per-

L icensing rendering engines is now a well-established

practice, with great potential cost and time savings

over the development of a single game. As game

developers reach for new forms of gameplay and a

better process for implementing established genres,

the wisdom of licensing physics engines is becoming inescapable.

Commercial engines such as Havok and Mathengine’s Karma (at

press time, Criterion Software, makers of the Renderware line of

development tools, were in negotiations to acquire Mathengine)

have become mature platforms that can save months in develop-

ment and test. Their robust implementations can provide critical

stability from day one, and their advanced features can offer

time advantages when developers are exploring new types of

gameplay.

This sophistication does come with a cost. Physics engines do

more than just knock over boxes, and the interface between your

game and a physics engine must be fairly complex in order to har-

ness advanced functionality. Whether you have already licensed an

engine and want to maximize your investment or you’re just

budgeting your next title, gaining a better understanding of the

integration process will save a lot of trial and error, and hopefully

let you focus on better physics functionality while spending less

time watching your avatar sink through the sidewalk.

The bare minimum we expect from a physics engine is fairly

obvious: we want to detect when two objects are interacting

and we want that interaction to be resolved in a physically real-

istic way — simple, right? As you progress deep into integra-

tion, however, you’ll find physics affects your user interface,

logic mechanisms, AI routines, player control, and possibly even

your rendering pipeline (Figure 1).

M A T T M A C L A U R I N | Matt writes code for avatars, anima-
tion, and physics at Cyan Worlds. In previous lives he spent five
years as an engineer at Apple and ran his own studio for eight
years. He has a movie special-effects credit and remembers the
register names on the 6502, despite years of trying to forget.
Contact him at mmaclaurin@hotmail.com.

AI & Planning Player Control

Graphics Pipeline Geometry Database Import & Export

Puzzle Logic

Physics

Outsourcing
RealityIntegrating a Commercial

Physics Engine

FIGURE 1. Physics has many (inter) faces.

w w w . g d m a g . c o m 41

formance costs, you’ll want to make sure that your tools

allow artists to choose the cheapest type of physical repre-

sentation for their artwork. In some cases your engine can

automatically build a minimally sized primitive (an implicit

proxy) at the artist’s request; in other cases the artists must

hand-build substitute geometry (an explicit proxy). You’ll

need to provide a way to link the proxy to the visible geom-

etry it represents, so that changes in the physical state of an

object will be visible to the user.

Transforms

T ransforms in a rigid-body simulation do not include

scale or shear. This mathematical simplification makes

them fast and convenient to work with, but it leaves you

with the question of what to do with scale on your objects.

For static geometry, you can simply prescale the vertices and

use an identity matrix. For moving physical geometry, you’ll

most likely want to forbid scale and shear altogether; there’s

not much point in having a box that grows and shrinks visu-

ally while its physical version stays the same size.

In most cases, a proxy and its visible representation will

have the same transform; you want all movement generated

from physics to be mirrored exactly in the rendered view. To

relieve artists from having to align the transforms manually

— and keep error out of your process — you may find it

worthwhile to move the vertices from the proxy into the

coordinate space of the visible geometry (Figure 2a).

However, if the proxy geometry will be used by several

different visible geometries, you may wish to keep the ver-

tices in their original coordinate system and simply swap in

the visible geometry’s transform (Figure 2b). This method

42

will let you use physical instances, wherein the same physi-

cal body appears several different places in the scene. This

latter approach, while enabling efficiency via instancing, can

be less intuitive to work with because the final position of

the physical geometry depends on the transforms of objects

it’s used for and not the position in which it was actually

modeled.

Time Management

D ealing with time cleanly is an extremely important thing to

get right early on in integrating a physics engine. There are

three key aspects of time relevant to simulation management:

game time, frame time, and simulation time.

Game time is a real-time clock working in seconds. While you

might be able to fudge your way from a frame-based clock to a

pseudo-real-time clock, working with seconds from the start will

give you a strong common language for communicating with the

physics subsystems. The more detailed your interactions between

game logic, animation, and physics, the more important temporal

consistency becomes — a difference of a few hundredths of a sec-

ond can mean the difference between robust quality and flaky

physics. There will be situations where you want, for example, to

query your animation system at a higher resolution than your

frame rate. I’ll talk about this kind of situation later in the

“Integrating Keyframed Motion” section.

Frame time is the moment captured in the rendered frame.

Picture it as a strobe light going off at 30 frames per second.

While you only get an actual image at the frame time, lots is hap-

pening between the images.

Simulation time is the current time in your physics engine.

Each frame, you’ll step simulation time until it reaches the cur-

rent target frame time (Figure 3). Choosing when in your loop to

advance simulation can greatly affect rendering parallelism.

Rendering frame rates can vary; if your physics step size

varies, however, you’ll see different physical results — objects

may miss collisions at some rates and not at others. It’s also often

necessary to increment, or step, the simulation at a higher rate

than your display; physics will manage fast-moving objects and

complex interactions more accurately with small step sizes.

Tuning your physics resolution is straightforward. At physics

update time, simply divide your elapsed time by your target

physics frequency and step the physics engine that many times.

Careful though, if your frame rate drops, this approach will take

more physics steps so that each step interval is the same size,

which will in turn increase your per-frame CPU load. In situa-

tions of severe lag, this can steal time from your render cycle,

lowering your frame rate, which then causes even more physics

steps, ad infinitum.

In such scenarios, you need a way to drop your physics-pro-

cessing load until your pipeline can recover. If you’re close to

your target frame rate, you may be able to get away with taking

larger substeps, effectively decreasing your physics resolution and

accepting a reduction in realism. If the shortfall is huge, you can

skip updating the simulation altogether — simply freeze all

objects, bring the simulation time up to the current frame time,

and then unfreeze the objects. This process will prevent the

degeneracies associated with low physics resolution, but you’ll

have to make sure that systems that interact with physics — such

as animation — are similarly suspended for this time segment.

If you’re receiving events from the physics engine, the differ-

ence in clock resolution between graphics and physics has anoth-

er implication: for each rendering frame, you’ll get several copies,

for example, of the same contact event. Since it’s unlikely that

recipients of these messages — such as scripting logic — are

working at physics resolution, you’ll need to filter out these

redundant messages.

Applying Forces

T here are three ways to give an object motion in a physics

world: you can apply a force to the object, you can apply an

impulse, and you can set its velocity directly. Each has different

trade-offs.

a u g u s t 2 0 0 2 | g a m e d e v e l o p e r

P H Y S I C S I N T E G R A T I O N

SIM TIME

GAME TIME

LA
ST

 F
RA

M
E

su
bs

te
p

su
bs

te
p

su
bs

te
p

NE
XT

 F
RA

M
E

FIGURE 3. The simulation takes smaller steps than the game clock.
They meet at frame boundaries.

FIGURE 2A. Move proxy vertices
(green), into the visible geome-
try’s coordinate system (blue), to
ensure exact correlation.

FIGURE 2B. Leave proxy vertices
(green) unchanged to allow reuse
on several visible geometries
(blue).

43w w w . g d m a g . c o m

To be effective, a force has to be applied over a specific

amount of time. In many sims, applying a force means “apply

this force over the next simulation step.” This is usually not

what you want, as applying a force for 1/60th of a second

won’t push it very far unless it’s a huge force. What you do

want is a way to say, as simply as possible, “apply this

amount of force for this amount of time.” There are three

ways to do this.

The first approach is to continually reapply the force each

substep until you’ve reached your target time. For each force

you wish to apply, keep track of how long it needs to be

applied, and apply it one substep at a time. The problem with

this approach is its complexity; you need to keep track of each

force that you’re applying, how long it’s been applied for, and

how much longer it’s going to be applied. There’s also the

minor problem that you must apply forces over an integer num-

ber of substeps, which limits how finely you can tune your use

of forces.

The second approach is to use impulses. An impulse is a

force premultiplied by a time and which takes effect instanta-

neously. If you want to apply a force of 10 newtons continu-

ously over 1/10th of a second, a 1-newton impulse will do the

trick. The limitation to using impulses is that the force is not in

fact applied for the entire time; all the energy is delivered

instantly, and your object reaches its target velocity instanta-

neously rather that being gradually accelerated. For quick

forces, such as a jump or a bullet, the simplicity of impulses

makes them preferable to actual forces. If you want to lift

something slowly, though, forces are the way to go.

The third approach — velocities — is both limiting and par-

ticularly useful for situations where you need very tight con-

trol. We’ll discuss it in detail later in the “Player Control

Strategies” section.

Spatial Queries

Physics engines by their nature incorporate high-performance

spatial data structures. These are handy for a lot of query types:

• Trigger volumes (switch to camera B when the user enters this

region).

• Line-of-sight (can I see the power tower from here?).

• Ray casts for AI environment probing (can Watson see me?).

• Proximity queries for AI (start talking when the player is

within five feet).

• Evaluating theoretical object placement (can this door close

without crushing anything?).

• Ray casts for picking (let the user click on the lever).

• Volume queries for motion planning (can I walk all the way

to the hatch?).

Spatial queries can affect many types of game logic. A good

query interface will save you time every day; it’s an area of inte-

gration that will reward careful planning. While it can be very

game specific, there are a few design parameters for your query

interface that apply to almost all games:

Cascading. One query can significantly narrow the field for

multiple, more complex queries: a 20-foot sphere around your

avatar can gather all potentially interesting objects for subse-

quent query by line-of-sight.

Triggers. Some queries are set up once and report only when

their state changes. For example, a region might notify you

when the player enters, rather than you having to ask all

regions each frame. This will typically be delivered as an event

from the collision system.

Explicit queries. Some queries are only relevant at a particular

moment and must be resolved instantaneously, for example,

“Is that door in my way?”

Query partitioning. Some questions are only asked about spe-

cific types of objects; a camera region may only ever care if an

avatar enters it, not a creature or rolling boulder. If your

physics engine has an “early out” callback, you can use such

application-specific type information to partition the query

space, eliminating expensive detailed testing for pairs of objects

you know will never interact.

Integrating Keyframed Motion

If you’re not using physics for a racing game or flight simula-

tion, you’re probably looking for interesting gameplay — big

complicated machines, moving platforms, and the like. It’s like-

ly that many of these will be lovingly hand-animated by your

talented artists. Unfortunately, hand animation is not obligated

to obey the laws of physics. How do we integrate keyframed

motion into a physically based simulation?

The approach I’ll discuss here is particular to the Havok API;

it happens to be what we’re using, and a proper discussion of

these details requires a bit of specificity. It should be illuminat-

ing regardless of your choice in API, however, as it demon-

strates how time, movement, and frame rate can all affect your

simulation.

There are two primary issues involved with “physicalizing”

keyframed animation:

1. Translate motion from the hierarchical scene graph into the

flat physics world.

2. Give the physics engine enough information about the mov-

ing object to allow it to interact realistically with other, non-

keyframed objects.

We’ve adopted a few simplifying assumptions for keyframed

What you want is a way to
say, as simply as possible,

“apply this amount of force
for this amount of time.”

motion, which greatly simplify implementation while still cap-

turing the essential functionality.

First, we consider keyframed motion to be nonnegotiable. A

keyframed sliding wall can push a character, but a character

cannot push a keyframed wall.

Our second assumption is that we do not ask the physics

engine to resolve interaction between two keyframed systems.

Because these systems are hand-animated and initiated by

script, avoiding interdependencies is the level author’s domain.

When considering the integration of physics and keyframed

animation, we first need to gather the local-to-world trans-

forms of all the keyframed objects, as we’ll need them to feed

positions and velocities into the simulation. Because physics

has no sense of hierarchy, you’ll need all your kinetic infor-

mation in world space. One way to do this is to cache matri-

ces as you traverse your scene graph in preparation for ren-

dering. This process gives you the matrix that you need to

match the flat transform structure of physics. Because of the

no-negotiating rule for keyframed objects, you can go ahead

and submit the keyframed objects to your rendering pipeline

as you traverse, as physics will not change those transforms.

This helps parallelism, since all static and keyframed geome-

try can be transmitted to the graphics card before physics

even starts.

Keyframed objects participate only partially in the simula-

tion; they are not moved by gravity, and other objects hitting

them do not impart forces. They are moved only by keyframe

data. For this reason, it is necessary to “freeze” the

keyframed objects during the simulation phase in which such

forces are calculated and applied.

Keyframed objects are further marked at setup time as

zero-order-integration objects. This advises physics that these

objects are explicitly positioned and instructs the engine to

call back during each integration substep. In this callback,

you are responsible for updating the position, orientation,

linear velocity, and angular velocity for the keyframed object.

This information is critical for determining what happens

when, say, your avatar is standing on top of that keyframed

elevator. Since the physics engine has no knowledge of the

forces at work, it’s relying on you to help it fake the results.

To illustrate the importance of getting the velocity right,

think about the difference between standing on an elevator

that’s moving down and one that’s moving up. In the down

case, a collision between you and the elevator should be

resolved by you moving down. In the up case, the exact

opposite is desired. The only difference here is velocity, and

an incorrect result will embed your player up to the knees in

the elevator floor — undesirable by most standards.

The process of calculating velocities is a simple matter of

interpolating position and orientation from the animated

transforms that you stashed away a few paragraphs back. As

an alternate, higher-quality-but-higher-cost approach, you

can ask your animation system at each physics substep to

interpolate a fresh position for you. This extra bit of work

can be expensive, because you have to reinterpolate the motion

channel not only for the object in question but also for any par-

ent transforms.

What this gains for you is a greater degree of frame rate

independence for keyframed physical objects. To illustrate the

problem of frame rate dependence, take a look at Figure 4.

Figure 4 shows an elevator reaching the bottom of its descent

and moving back up. At frames 1 and 2, it’s in the same posi-

tion but moving in two different directions. If you’re sampling

position only at frame boundaries, you’ll conclude that the ele-

vator is stationary. If you add a sample in the middle, you’ll

have a more accurate simulation, at a cost of reaccumulating all

transform dependencies. This is a fairly dramatic case; in many

other cases, you’ll see the object calculate different velocities at

different frame rates. How much this matters to your players

depends in large degree on your game’s animation speed, object

velocities, and tolerance for error in motion. In a surprising

number of cases, this winds up not mattering, but it’s an accu-

racy trade-off of which you should be well aware.

The approach I just outlined is not the only one to handling

keyframed motion. The Karma engine provides a different facil-

ity in which the keyframe data is used as a constraint to the

object’s position but does not control it directly. The end result

is that the object is attached to the animation in a springy fash-

ion; if there are a lot of people in your keyframed elevator, it

will lag behind, springing ahead again as folks jump off. You

a u g u s t 2 0 0 2 | g a m e d e v e l o p e r44

FIGURE 4. Velocity calculation depends on sampling rate.

P H Y S I C S I N T E G R A T I O N

frame 1

time

frame 2

no change in position

el
ev

at
or

 v
er

tic
al

 p
os

iti
on

w w w . g d m a g . c o m 45

Big deal, you say,
we have a

fancy physics package.

can adjust the strength of the spring and the speed with which

it acts. This is a neat gameplay effect and can be excellent for

the right application.

Player Control Strategies

P layer control of the avatar is, for many games, where

you’re going to spend the most time fine-tuning your

physics integration. Every design trade-off you’ve made regard-

ing physics resolution, applying forces, keyframe data, and the

like will all come together to affect how your character navi-

gates and how realistic it feels. The avatar is so central to the

player’s perceptions that any glitch becomes extremely visible.

I’m going to talk about the strategy we’re using for our applica-

tion, a multiplayer, networked, third-person exploration game

with a mix of indoor and outdoor environments and an empha-

sis on photorealism. Naturally, your approach will vary

depending on the design of your game, but you’ll probably rec-

ognize issues that apply to your own situation.

A key decision for player control is the shape of the proxy

you’ll use to do collision for your character. A popular choice is

a simple capsule (Figure 5). This shape has several advantages:

It’s smooth on the bottom, so it can glide over uneven terrain;

it’s radially symmetric from above, so your avatar can turn in

place without being pushed away from the wall; and it has no

sharp corners, which can get caught on narrow doorways. A

subtler advantage is that since it presents no

sharp corners to the ground, it won’t

jump or stick as it hits polygon joins

in an otherwise flat terrain.

Notice that the character’s arm

sticks out through the capsule. He’s

illustrating a point, which is that

this capsule is used only for his

gross movement in the environment,

and it does not handle detail inter-

actions between, say, his hand and a

lever. We use a com-

pletely different

mechanism for

such detail inter-

actions; the prob-

lems of detail inter-

action are beyond the

scope of this article, but suffice it

to say that they’re different enough

to justify separate mechanisms from

those used for movement. As for the

realism of the simplistic shape, it’s instructive to note that a

large percentage of a human’s motor control goes into main-

taining the illusion that we’re not a bundle of flailing limbs all

moving in different directions. A real human body does an

extremely good job of moving our head along on a smooth

path. As a result, a simplified physical body can actually lead

to more realistic results than a multi-limbed physics body.

That’s how we’re shaped, but how do we move? What trans-

lates button presses into forward motion? There are three fun-

damental approaches. First you can set the position and orien-

tation of your character directly. Second you can set the veloci-

ty (linear and angular) of your character. And finally, you can

apply forces to propel your character.

Setting position is attractive because it’s so simple: You’re

standing here and you want to move forward, so just add a

vector. This approach falls apart pretty quickly, unfortunately,

and it is the least friendly to using physics in a general fashion.

Assume we start each frame in a physically valid position.

Our player tells us to move forward, so we construct a vector

representing typical forward motion, orient it to our player’s

forward vector, and add it to our position. Easy enough so far,

and if all games were played on an infinite flat plane, this

would work great. But what happens when the position we

want to occupy overlaps with a wall, or even with a slight rise

in the ground?

Big deal, you say, we have a fancy physics package. We’ll just

ask it to validate the position before we finalize it. So what do

you do when the position is not valid? You’ll have to calculate

the point of impact, figure out where your character is deflect-

ed, and so on. This situation only gets worse when you consid-

er that there are other moving objects in the environment. The

problem is that by setting position directly, you’ve shut your

physics engine out of the loop and you now have to write more

code to take its place. How do we get physics to do this work

for us?

Forces are a natural way to move a physics body around. On

the good side, you’ll find that a lot of unplanned situations tend

to work when you use forces: If your character hits some

boxes, he’ll knock them over. If he’s hit by a rolling boulder, the

force imparted by the boulder will combine with his walking

force to move him in a new direction. He’ll interact realistically

with slopes and walls. In general, it’s a major improvement.

On the other hand, using forces to move the player some-

what decreases your level of control over exactly how the

player moves. Subtler issues such as friction come into play,

and it becomes hard simply to say, “Walk to this spot.”

Forces tend to highlight the fact that we’re using a simplistic

capsule shape for the player and not a 400-bone muscu-

FIGURE 5.
An avatar and his
capsule-shaped proxy.

P H Y S I C S I N T E G R A T I O N

a u g u s t 2 0 0 2 | g a m e d e v e l o p e r46

loskeletal simulation. While a golf ball might fly 100 yards if

you whack it with a paddle, a human won’t, and the reasons

why are a complex to emulate.

Positioning the player by setting velocity is a reasonably

happy medium between the total physics-unfriendliness of set-

ting position and the loose control provided by forces. Rather

than saying what position you want to be in each frame, calcu-

late how fast you need to be moving to reach your target posi-

tion and set the velocity on your physics body accordingly.

This has many of the same benefits as forces. If your charac-

ter hits a wall, he’ll either stop or slide along it. If he steps off a

cliff, he’ll start to fall, and if he hits a slope he’ll climb up it.

Little rises and falls in the ground will be automatically incor-

porated into your character’s movement, and you still have

pretty tight frame-to-frame control of your character’s move-

ment; he won’t go flying off down a hill if you’re setting his

speed each frame, and you won’t get an unfortunate confluence

of external influences causing him to fly through the air.

One drawback to this approach is that your motion is still

based on movement on a flat plane, so you’re going to see some

unrealistic movement when, for example, the ground drops

away rapidly. If you’re just applying that forward-walk vector,

downward gravitational force will be applied every frame, but

it will be blown away by your preordained velocity. As a result,

the character will fall at a slow, constant rate and won’t accel-

erate toward the ground as he should; he’ll only get one frame’s

worth of acceleration each time before starting over at zero.

There are two solutions to this problem. The first is to leave

vertical velocity alone when you’re walking, and the second is

to stop walking when you’re in the air. In actuality, both are

necessary; you don’t want a single-frame departure from the

ground (common when hitting a bump) to interrupt your for-

ward progress, so your walk behavior should continue for a

short time after leaving the ground. Since this can cause a few

frames of floating when stepping off a cliff, not setting vertical

velocity is necessary to trim off any extra frames of floating

when cresting a peak. A rule of thumb is that each navigational

state should have a sense of what kind of velocity it can set: a

walk can’t set vertical velocity, but a jump can.

Another drawback to the velocity-based approach is that it

does not automatically integrate external forces. If your avatar

is walking forward and suddenly slammed by a 10-ton rolling

boulder moving left, he won’t budge unless you take extra

measures to notice that the velocity you sent down last frame

has been modified somewhat. Resolving this correctly is some-

what beyond our scope here, but it involves keeping track of

the intended velocity and combining it intelligently with the

actual velocity, rather than just setting it.

We’ve just touched on a few of the issues regarding player

control in a physical environment. While they can be extremely

challenging, solving these problems creatively will open up a lot

of new possibilities.

Focus on Creativity

Now that we’ve been freed of the burden of writing yet

another BSP-versus-bouncing spheres physics engine, we

find that integrating a full-featured commercial engine can be

just as much work. The critical difference between the two

approaches is huge, though: a robust implementation of fully

generalized physics is capable of forms of gameplay we haven’t

even dreamed of yet.

I think that physics engines are going to do for gameplay

what rendering engines have done for visuals: provide a rich

base of stable features, freeing implementers to focus on cre-

ative new functionality rather than being chained to an endless

wheel of reinvention. We’ve already seen our play-testers using

the laws of physics to invent new gameplay for which we had-

n’t even planned. Managed carefully, this combination of plan-

ning and discovery holds great promise for the future of games

and gameplay. q

F O R M O R E I N F O R M AT I O N

Havok
www.havok.com

Mathengine’s Karma
www.mathengine.com

Source code for calculating a tight-fitting spherical
primitive from a polytope:
http://vision.ucsd.edu/~dwhite/ball.html

Generating convex hulls from arbitrary geometry:
www.geom.umn.edu/software/qhull

Using BSPs to break a level into convex shapes:
www.faqs.org/faqs/graphics/bsptree-faq

UNC’s excellent pages on collision, with several academic
implementations:
www.cs.unc.edu/~geom/collide/packages.shtml

Russell Smith’s excellent open-source physics engine, ODE:
www.q12.org/ode/ode.html

Physics engines are
going to do for gameplay

what rendering engines have
done for visuals.

a u g u s t 2 0 0 2 | g a m e d e v e l o p e r48

j a m e s f r i s t r o mP O S T M O R T E M

J A M E S F R I S T R O M | James is the lead programmer on the SPIDER-
MAN team at Treyarch. He occasionally posts his thoughts on game
development at http://fristrom.editthispage.com.

T reyarch was finishing up

MAX STEEL and TONY

HAWK’S PRO SKATER 2 for

Dreamcast when we

agreed to do a game that

would tie in with the Spider-Man movie,

and release it simultaneously on all three of the

next-generation consoles: Playstation 2 (PS2),

Xbox, and Gamecube. We formed a new team

out of parts of the others to begin work on

the proof-of-concept and design. This team

of four programmers, four designers, four

artists, and a producer wasn’t starting

totally from scratch; we had Activision’s

previous SPIDER-MAN game for the

Playstation (PSX) to look at.

We wanted to improve some of the

things about the game, such as giving

the web-swinging more freedom, and

play to that game’s strengths, such as the

hostage modes and variety of ways in which

you could be Spider-Man. We also wanted to add

a whole new type of gameplay: aerial combat,

the ability to take on flying villains as you swing

around Manhattan. Sony/Columbia gave us a ton

of concept art and stills from the movie on which

to base our work.

The PS2 was our lead SKU, because it has the

largest installed base and was the easiest to get

development kits for. We figured if we

could make our game run on

the PS2, we could make it

run on anything. We began

work on the Xbox a few

months after the PS2 and

the Gamecube a few months

after that.

What Went Right

1. Good people. “All you need is

good people,” says the submarine

commander in Das Boot, after the chief

engineer repairs the boat and saves their

lives. It’s true, with good people you don’t

need to enforce process because it happens

automatically. Everyone makes sure they

do a good job: they volunteer for code

reviews, they write their own unit tests,

they find better ways to do things instead

of the ways passed down from on high.

Our team was made up of a number of

talented individuals, who each made

their own unique, lifesaving contribu-

tions. Even the interns were amazing.

Because I’m not in HR, I don’t know

how we got

these people,

but I think

part of the

reason is

that the people in charge of interviewing

know their stuff, whether it’s art or code.

Part of it is the referral bonus we give

employees for recommending new hires;

part of it is that Treyarch is an environ-

ment not too many people are willing to

leave. (We’ve seen what’s out there, and

it’s worse.) Part of it may be the free

soda, and free dinners during crunch

time, and part of it is our policy of not

hiring just anyone to fill a position. (We

do hire out of desperation occasionally,

but rarely. And when we discover we’ve

hired someone who is just average, we let

that person go.)

This team was not only talented but

also motivated. Even though adding

unplanned features was discouraged,

many of us stayed late, on our own time,

to get stuff in we thought would make a

real improvement to the game. This is

where the playing-as-Green-Goblin mode

came from, and the secret bowling level,

the rats in the sewer level, and a lot of

special effects.

2. Developed
cross-plat-

form libraries and
intermediate file for-
mats. Treyarch was

developing a few titles

for the next-generation

platforms, and it was obvi-

ous that having one cross-

platform library to do the

rendering, which all the teams

shared, would be a big advan-

tage. We formed a new team,

Next-Generation Libraries

(NGL for short). The SPIDER-

MAN graphics/PS2 pro-

grammer split off from

our group to lead the

team, providing the architecture and API

to which the various platform graphics

libraries would be written, and he devel-

oped the initial PS2 graphics library.

w w w . g d m a g . c o m 49

G A M E D A T A
PUBLISHER: Activision

FULL-TIME DEVELOPERS: 30
PART-TIME DEVELOPERS: 20

LENGTH OF DEVELOPMENT: 18 months
RELEASE DATE: April 2002

PLATFORMS: Xbox, Gamecube, PS2
DEVELOPMENT HARDWARE USED (average):

Programmers used dual Pentium Dell boxes
with GeForce 2s, averaging about one and a

half development kits per programmer.
Artists used single Pentium Dell boxes, and

approximately every other artist had a Debug
Station with ProView to look at their work.

DEVELOPMENT SOFTWARE USED: PS2: ProDG and
ProView; Xbox: Visual C++; Gamecube:

Codewarrior. WinCVS for code and
SourceSafe for binary, plus 3DS Max 3.1 with

Character Studio.
NOTABLE TECHNOLOGIES: NGL, in-house cross-

platform libraries.
PROJECT SIZE: Approximately 300,000 lines of

C++ code, much of it legacy and obsolete.

Postmortem: Treyarch’s

SPIDER-MAN

P O S T M O R T E M

a u g u s t 2 0 0 2 | g a m e d e v e l o p e r50

NGL had disadvantages as well as

advantages: the advantage of more effi-

cient use of coder resources was balanced

with the worry that we might not be able

to rely on a separate team. The NGL

team wasn’t always kept in the loop

about when our deliverables were due

and sometimes weren’t available on a

weekend or night when they were needed.

Finger-pointing would occur: is it an

NGL bug or a client-side bug? And some-

times finger-pointing didn’t happen when

it needed to: a client-side bug would

linger on the plate of an NGL program-

mer who didn’t know how to fix it.

At times, the NGL programmers

became de facto SPIDER-MAN program-

mers. They were building the SPIDER-

MAN code base on their machines to

make sure their changes worked with it,

to optimize for the game’s worst cases,

and to make sure the Xbox and Game-

cube matched the PS2 close enough. In

the end, NGL worked out great, finishing

features and fixing bugs in time to ship.

3. Engine reuse. The first deci-

sion we had to make was what

engine to use. (Writing one completely

from scratch was out of the question for

an 18-month project, a lesson we learned

the hard way with DRACONUS.) We had

access to the previous SPIDER-MAN PSX

engine through Activision, but our

designers and programmers were used to

the engine we used for MAX STEEL and

DRACONUS, an engine that was already

next-generation and cross-platform. Our

engine had a powerful scripting lan-

guage, but it also had slow turnaround

times and was never intended for a

SPIDER-MAN game.

Despite its shortcomings we felt that

this engine was the one to use, and it

turned out we were right: we were able

to get Spidey swinging through Manhat-

tan on the PC in record time. Now all we

had to do was port it to three platforms

and add as many features as we could.

4. Good process. At its heart,

our methodology was “code

and fix.” However, there were many

semiformal processes that prevented our

software cowboyism from totally spiral-

ing out of control.

The artists and designers were sched-

uled in Microsoft Project. For the coders

we started with an XP-like system of file

cards representing weeks, posted up to a

large corkboard. But the schedule

changed so frequently that this method

stopped being good enough, and we

switched to Joel Spolsky’s method from

www.joelonsoftware.com. This worked

pretty well; I would go through the

schedule every morning to make sure

everyone was keeping their schedules up

to date. Also, once we switched to this

system our estimates tended to be more

accurate, which was a nice side bonus.

Using Microsoft Access, we started

logging bugs right away. People would

log bugs by sending an e-mail to the pro-

ducer, who would first log the bug into

the database and then later print out

paper lists for people. We broke bug pri-

orities down into: 0 — don’t leave your

desk until it’s fixed; 1 — fix ASAP; 2 —

fix ASAP unless you’re holding some-

body up; and 3 — this one can slide until

the next milestone. Our policy was to fix

the bugs first, which meant that most

bugs were marked with priorities of 2 or

lower. As the project grew, it became

clear that the work of maintaining the

bug database was sucking down most of

our producer’s time, and after trying an

off-the-shelf bug tracker that didn’t meet

our needs, we built one in-house using

Streamline Technology’s Seven Simple

Steps, which all of the teams at Treyarch

use. It’s an Access back end with a web

front end that e-mails you when you

have a bug. This not only freed up a lot

of producer time but also became one of

the main tools we used to communicate

tasks and bugs to others and to make

sure those tasks got done.

On average we broke two levels a day,

usually due to simple things like not

checking in a new file. To protect our-

selves from these errors, we did daily

build and smoke tests on the PC and the

PS2. We did the daily build on a machine

that would do a complete update of the

data and source depositories, rebuild and

recompile the various intermediate files

into their final output, and run an auto-

mated test of every level, just to see if

they ran. (Generally we’ve found that 95

percent of the bugs we introduce are of

the variety that makes levels stop loading

at all.) This way, we’d catch bugs up to a

day after they were introduced, instead

of discovering the hard way, days or

weeks later, that a level nobody had

touched in a while didn’t work.

On the art and design side of things,

we would storyboard a movie or create

concept art for a level before we began

animating or modeling it. A professional

A still from a movie within the SPIDER-MAN game.

writer wrote the script with all the voice-

overs. Before we designed a level, we

would have a level implementation meet-

ing, where the participants in creating

that level would discuss what the level

was going to be before it was modeled

and scripted. Because of this process, sev-

eral of our levels were very close to good-

enough-to-ship on the first iteration,

although several other levels had to be

revisited several times before we signed

off on them. We had a concept of “level

alpha,” which meant the level was basi-

cally ready to go in the box except for

cutscenes (scripted or animated) and

voice-over, and game designers didn’t

work on the next level until they had

their previous one at “level alpha.”

Finally, we had a small internal test-

ing department. It’s fairly standard in

the game industry to wait for a game to

reach so-called “alpha” (a completely

nebulous term) and then put it into QA.

Then QA tests the game out of sight of

the developers and submits bug reports.

Although we did do the standard exter-

nal QA with Activision, before the game

was at alpha we had internal testing. At

first this was just one person, but as we

got closer to finishing, the number grew.

And once the game hit alpha, Activision

sent some of their best and brightest

testers over to Treyarch (which was

easy, since our offices are one block

from theirs) to test the game on-site, so

they could demonstrate bugs in person,

work with the very latest revisions, do

testing on development kits, and ask us

when they discovered bugs whether or

not the bugs were important. They

became part of the team, and I think

that because we could meet them and

see them face-to-face we accorded them

more respect than the faceless testers at

Activision. By the end of the project,

half of our bugs were caught internally;

although there were many duplicates,

there were many more bugs that exter-

nal QA never saw.

5. Communication. The layout

of our office was geared to

encourage communication between the

people who needed to communicate. The

leads’ offices were fairly central in an L-

shaped office suite. The game designers

were close to the programmers who sup-

ported them, which was key in getting

things to happen and encouraged addi-

tional lunchtime communication. The

programmers who dealt with specific

platforms were farther away. NGL was

on a different floor, but their lead was in

a nearby office, and NGL representatives

would share offices with us when it was

useful for them to do so.

All of our design documents were

made available on an intranet web site,

along with short documents on how to

use the tools and a small FAQ that had

some common troubleshooting answers.

Finally, we had a lot of management.

Greg John oversaw the entire project.

There was a producer watching deliver-

ables. There was a creative director.

There was a level-modeling lead. There

was an animation lead. There was a

game design lead. There was a lead pro-

grammer. The engineering group — the

programmers who wrote the platform-

independent, gameplay-related code —

had their own lead. Each console had a

lead go-to guy who understood that con-

sole best. NGL had a lead programmer

and a producer. In all we had about one

lead for every five people, and all the

leads met once a week.

Although communication was good, it

could have been better, particularly

between the art and design departments.

That’s something we’ll have to work on

for the next project.

What Went Wrong

1.Not enough staff soon
enough. Some of our other

problems can be traced back to staff

size. When the project started, we had

about four programmers, four game

designers, three modelers, one texture

artist, one producer, and one creative

director. NGL was only in our imagina-

tions at this point. Treyarch was eagerly

looking for more staff, but staff doesn’t

just come out of thin air. Most impor-

tant, we didn’t have a concept artist, we

didn’t have a writer, and we had so

many people working on the proof-of-

concept that we didn’t really have some-

one to come up with a full design.

Later, when we rolled into full pro-

duction of our inadequate design, things

got even worse, because some of our vet-

erans were taken away to work on other

projects, without adequate replacement.

Eventually we were fully staffed and

then some; we had more than 40 people

at points during the project, and more

than 50 worked on it at one point or

P O S T M O R T E M

a u g u s t 2 0 0 2 | g a m e d e v e l o p e r52

SPIDER-MAN’S Aerial Combat feature lets players take to the skies and battle airborne villains like
the Green Goblin over the streets of Manhattan.

another. We had to make up in the end

for what we lacked in the beginning.

2. Inadequate initial design. I
think designing is overrated;

coming up with a 200-page design docu-

ment only to scrap most of it seems like

a waste of resources. Still, you need some

design — a bad plan is better than no

plan — and you need more than we had.

By the time we finished our proof-of-

concept, the design consisted basically of

a list of bosses, a list of levels, and some

ideas on how our new AI system might

work. Each item had about a paragraph

devoted to describing it. Our story was a

page long. By the end of the project, we

had a wealth of design: we had the out-

put of each level implementation meet-

ing; we had the script; we had a couple

of pages on each boss, describing the

moves he would be capable of; we had

concept art and storyboards; we had con-

cept art for the front end. If we had

come up with that material earlier in the

project, we would have been rudderless

for less time and could have made more

game before shipping.

3. Audio and voice-over prob-
lems. Because we didn’t hire a

scriptwriter until fairly late in the project,

we didn’t get the script approved by Acti-

vision and Sony/Columbia until even

later. By the time the people who make

these decisions had decided to accept the

script and get Willem Dafoe and Tobey

Maguire to do the voice-over, we were

long past the drop-dead date we had

given to Activision. It was already alpha,

and we had very few of the cutscenes

done, because it’s a waste of resources to

do the cutscenes until you have final

voice-over. But we soldiered on. We got

the final voice-over recorded and trans-

planted animators into the SPIDER-MAN

animation sweatshop to get all of the

cutscenes finished as soon as possible.

The end result is that a lot of our

cutscenes don’t look as good as we

would like.

Audio also suffered from massive dis-

organization. We didn’t have anyone on

our team dedicated to managing audio

resources. What we needed was a good

directory structure, file-naming conven-

tions, and the like to make dropping in

final sound effects easy. Too many times

we put in a placeholder sound effect

without changing the name, resulting in

massive confusion about which sound

file went with what. After those issues

were all resolved, we discovered that the

console versions didn’t sound the same as

the PC version, due to discrepancies cre-

ated by the different tool chains on the

different consoles. We were working out

these problems right up until we shipped.

4. Too much done in script
engine. One of the most valu-

able things about our game engine is

CHUCK, the script language named after

its creator, Chuck Tolman. It’s a C++-like

script language that emulates multi-

threading, allowing you to have multiple

game entities processing their individual

scripts at the same time. It’s used to

script game events, trigger audio, change

AI states, speed up or slow down the

whole game or individual entities, and

even place front-end widgets and text on

the screen. One can prototype whole new

kinds of gameplay in CHUCK with very

little programmer help; this is where the

stealth mode of SPIDER-MAN came from,

for example. The game designers on

SPIDER-MAN are really programmers in

their own right. They are empowered.

Because CHUCK is such a powerful

script language, however, game designers

would often take on tasks that could

have been handled in code better.

CHUCK doesn’t really have arrays, and

it doesn’t have a debugger, so for any-

thing complicated, C++ is the way to go.

Unfortunately, it wasn’t always the way

we went.

The worst example of this may have

been the front end. Although program-

mers did the work, we thought it would

be clever to write it in CHUCK instead of

C++ with the idea in mind that this would

open it up for more people to maintain it,

if necessary. This idea worked in a way:

when we got to the eleventh hour and we

still hadn’t finished the front end, the

game designers stepped in and helped fin-

P O S T M O R T E M

a u g u s t 2 0 0 2 | g a m e d e v e l o p e r54

A gallery of villains: Vulture, Scorpion,
Shocker, and the Green Goblin

ish it off. If we had done the front end in

code, we would have finished it sooner

and the game designers wouldn’t have had

to step in at all.

Again, this is a result of our staffing

difficulties, because if we’d had more

staff sooner, programmers could have

provided these features in code. Instead,

the game designers got fed up and did it

themselves, costing us efficiency in the

long run.

5. Not enough QA before
alpha. Nothing prepared us

for how many bugs we’d find in this

project. The total came in at around

16,000, about half of which were inter-

nal and half of which were external. This

was more than twice as large as the

largest bug count we’d ever seen on a

project at Treyarch before, partly because

we were on three platforms and therefore

had more bugs. (The same bug on three

different platforms might show up as

three or even six bugs, as PAL SKUs were

being tested independently from their

NTSC counterparts.) Still, even though

our find rates were high due to the num-

ber of platforms, our fix rates were quite

ordinary. Our open bug graph looked

like Figure 1.

Watching our bug count was like

watching the stock market, and we felt

lost at sea. On previous projects we’d

been able to guess fairly accurately how

many bugs we’d have and develop a

good idea when we’d be complete. On

this project, all we knew was that it was

going to take longer than we thought,

and possibly a lot longer. All we could do

was work extra overtime and mark “will

not fix” or “as designed” on as many

bugs as we could. At this point in the

project, it’s a gray area between a “bug”

and a feature that “really has to be

there.” Although we fought against as

many changes as we could during this

period, most of the battles were lost, as

we reluctantly agreed that the opportuni-

ty justified the risk of these features. If

we’d fought any less hard, or lost any

more of those battles against unplanned

feature changes, we would not have

made our ship date.

Normally we like to have the game in

testing for a week after we hit zero bugs,

to make sure that there aren’t any linger-

ing, hard-to-detect problems. We didn’t

have that luxury on this project. A week

before our final date to submit we still

weren’t at zero bugs. All we could do was

be careful during this week with our fixes:

access to SourceSafe was restricted; the

team was admonished that they mustn’t

fix any more low-priority bugs, lest they

introduce a stop-shipment bug; and we

did informal inspections on all source

changes. When we finally hit zero bugs,

we worked overnight to get the burns out

and submitted the next morning.

While our

submissions

were cooking at

the console manufac-

turers, we continued

testing at Activision, so we could find

any problems before the console manu-

facturers did. We found about half a

dozen problems that we would have

loved to fix, but they were either very

rare or not serious enough to warrant a

resubmit, although they were quite

embarrassing.

We haven’t worked out the details of

how to reduce our bug count for the next

project; more and better and different

QA is necessary, but how much and what

kind? Formal code reviews? Unit tests?

More black-box testing? More soak tests

with random monkeys? Maybe we

should make asserts and developer-eyes-

only error messages fatal, to force people

to stop and fix these problems instead of

working around them. Maybe we should

rely less on the PC version, so we can

catch console-specific bugs sooner. What-

ever we do, I hope it’ll go into the “What

Went Right” section of Treyarch’s next

Postmortem.

One View of Many

T his article represents data sifted from

the internal postmortem we did at

Treyarch. After we shipped the NTSC ver-

sions, everyone wrote their lists of what

went right and what went wrong on the

project. Categorizing that data was diffi-

cult, and my lead programmer bias has

seeped into what’s been presented here. If

senior producer Greg John, creative direc-

tor Chris Soares, or design lead Tomo

Moriwaki had written the article, you

would have seen a much different view.

Due to the massive movie marketing,

the SPIDER-MAN phenomenon is huge.

Being a part of it, seeing SPIDER-MAN

paraphernalia everywhere, is exciting,

and partly makes up for the frustration.

But what really makes up for the frus-

tration is the fact that we somehow

pulled it off: an original title, three new

platforms, 18 months. And so far, it’s

doing very well. q

w w w . g d m a g . c o m 55

1%
$

0#

200#

400#

600#

800#

1000#

1200#

1400#

1600#

5# 10# 15# 20# 25# 30# 35# 40# 45# $50# 55# $60# 65# 70# 75# 80# 85# 90# 95#
number of days from alpha#

nu
m

be
r o

f o
pe

n
bu

gs
#

FIGURE 1. SPIDER-MAN’s open bug graph.

O ver the past decade or

so, the vast majority of

computer games have

been published under a

business model that

looks something like this:

After a year or two (or more,

usually less) of development by a

developer, a game gets handed

over to the publisher, who man-

ages manufacturing, package design

and assembly, then arranges for

distribution via retail outlets.

Prompted by a slick marketing

campaign, a consumer spots

the title on the shelf and makes a

purchase. The developer (sometimes)

gets a fat royalty check, the publisher

(occasionally) gets lots of sales, the retail-

er moves units and the consumer gets a

wonderful gaming experience. A perfect

example of market forces at work, right?

For the most part we’d be correct.

Like any other new industry, the gaming

industry has undergone a phase of mete-

oric growth. Market forces pressure

strong publishers to become larger and

more efficient, while weaker publishers

scramble to form partnerships, find prof-

itable niches or close their doors.

From the standpoint of the independ-

ent game developer, the current system

increasingly favors large software pub-

lishers with the distribution and market-

ing muscle needed to get vital shelf pres-

ence at retail outlets. Excluding in-house

production via publishers and the dozen

or so developers who have the resources

to remain largely independent, taking

even a small computer game from con-

cept to shiny box at the local Wal-Mart

can be a feat of Herculean proportions.

Recent developments in digital game

distribution are beginning to offer a

glimpse of a future where many games

— as purely digital content — could be

distributed in their entirety over the

Internet, giving small game developers

new opportunities to get their wares to

market.

At one end of this spectrum is the sale

of small games over the web, currently

being championed by such online servic-

es as Real One Arcade and

Shockwave.com. Users play a free ver-

sion of a small game online, and then

pony up a small fee — usually some-

where between $10 and $20 — to down-

load the entire game. Most of these

games aren’t available in normal retail

channels, giving indie developers a new

way to reach paying consumers.

At the other end of the spectrum, digi-

tal content delivery systems — optimized

for broadband Internet connections —

promise to allow full-price commercial

PC games to be rented online (via

streaming media technology) or pur-

chased and downloaded outright.

A host of new start-ups and technolo-

gies have emerged to make digital game

distribution both secure and a viable

profit stream for retailers and publishers.

TryMedia System’s ActiveMARK

technology enables retailers and

publishers to create secure digi-

tal distribution networks of

their own, or rely on

TryMedia’s own distribution

service.

“Consumers are absolutely

ready for digitally distributed

content,” explains Gabe

Zichermann of TryMedia Systems.

“Our research shows that among peo-

ple who purchased a game online, 73%

of them said they would prefer to buy

and download all their favorite games.”

Arguably one of the most talked about

of these new digital distribution tech-

nologies is Valve’s Steam platform,

announced at GDC 2002 by Gabe

Newell. Like other content delivery solu-

tions, Steam hopes to supplement the

physical distribution and sales of game

software by allowing broadband-

equipped users to purchase and down-

load games directly over the Internet.

As promising as digital distribution

may look, one need only look at the

plight of the music industry to see how

the future may look threatening to nerv-

ous game publishers and retailers.

Thanks to Napster and its workalikes,

the music industry has been reeling from

the proliferation of readily available file-

swapping utilities and an Internet with a

seemingly bottomless appetite for free

content. Why should gamers buy what a

few mouse clicks and a fat download

could obtain for free?

Steam seeks to solve that problem by

making the shrink-wrap product and the

online component two parts of a cohe-

S O A P B O X j e f f j a m e s

a u g u s t 2 0 0 2 | g a m e d e v e l o p e r64

continued on page 63

Ill
us

tr
at

io
n

by
 Ia

n
M

itc
he

ll

Digital Game
Distribution

sive, inseparable whole.

“It’s pretty hard to pirate code that is

always trying to call back to its creators,”

says Newell. “As games look more like a

service – connecting to servers to acquire

new content, to connect with mods and

other players – it’s going to be increasing-

ly difficult to pirate, as you have to figure

out how to pirate an entire system,

including back-end servers you can’t get

physical access to.”

Since the dawn of the PC, the advent

of significant new technologies — VGA,

CD-ROM, 3D graphics and the Internet

— offers challenges for existing players

in the market and new opportunities for

those quick and smart enough to see the

often-imperceptible scribbles on the wall.

Savvy retailers and publishers will

undoubtedly harness digital game distri-

bution to help them push the computer

gaming industry to new and even greater

heights. Those same technologies should

also empower small game developers to

create new and exciting game content

that may have never seen the light of day

under the current system.

“We certainly hope it opens up the

world for a wider group of developers,

and we also hope that it will allow for

riskier game designs and alternative con-

tent development models to flourish,”

says Newell. “I was talking to Warren

Spector at Eidos, and he summed it up as

‘This is the way all developers want to be

– it’s just a question of when the transi-

tion will occur.’”

If the advent of digital game distribu-

tion results in more innovative game

designs, additional avenues of distribu-

tion and increased competitive pressure,

gamers, developers and the gaming

industry itself will reap the benefits. q

S O A P B O X

w w w . g d m a g . c o m 63

J E F F J A M E S | Over the years Jeff has
worn many hats: starving freelance author,
gaming mag editor, web site manager and
video game producer. He is currently a
Senior Producer for the Internet division of
the LEGO Company. Comments are wel-
come at jeff.james@america.lego.com.

continued from page 64

	04gameplan
	06saysyou
	08indwatch
	10prodrev
	16profile
	18innerp
	22artview
	28soundp
	30betterby
	32f-hoffman
	40f-maclau
	48postmort
	64soapbox

	return:

