
AUGUST 2001

G A M E D E V E L O P E R M A G A Z I N E

G A M E P L A N
L E T T E R F R O M T H E E D I T O R

W e’ve reached a turn-
ing point in the game
development industry.
We’re not the hacker
culture we once were.

You’re not making games in your basement.
Suddenly you’re scouring research papers to
get a leg up on your competitors, you’re
using software engineering tools to describe
design patterns to your peers, and you’re
hiring Ph.D.s fresh out of school to work on
your physics simulation. Orchestras and top-
40 bands are on your soundtrack. You have
someone dedicated to landing license agree-
ments for advertisements inside your game.
And you’re directing sports stars in motion
capture shoots and Hollywood starlets for
your voice-overs.

What Happened?

G ames have become big business. Over
one billion dollars will be spent mar-

keting game consoles this year. Microsoft
has joined the fray. RealNetworks is dis-
tributing games in addition to audio and
video. WildTangent recently landed $34
million in third-round funding, largely
based on a revenue model of making
money through games as advertisements.
Nokia is courting game developers for cell
phone titles. Ericsson was building a
portable game device with cellular features.
Even Sun is building a Java Game API.
Everyone wants games.

In this new, new world of game develop-
ment, the old paradigms aren’t working.
You can’t just get together with a few of
your closest friends and create a top-tier
title. There’s big money to be made out
there, but making it takes a lot of risk, and
that necessitates a lot of planning.

For the new game studio this means
exclusive deals, licensing arrangements,
royalty advances, and extensive reviews
with the publisher. For you day-to-day this
means more pre-production work, design
documents, software engineering, use of
design patterns, reusable components, and
code reviews. If you’ve been in the industry
for a while, this new landscape may not be
very appealing. With big money it’s harder
to take a big risk. The creativity of the

industry slowly bleeds away.
But with these new challenges comes a

huge crop of young and excited game
developers, raring to put your new title on
the shelves. Game development is being
taught around the globe, at both reputable
universities and dedicated schools.

Suddenly these new graduates, and their
research, are very applicable to game
development. Current graphics research is
particularly valuable, as even the venerable
Siggraph conference has slowly turned
toward pushing real-time graphics as the
new frontier.

Looking for New Models

B ut graphics aren’t the only area
where you can find value outside our

industry. Hollywood has a lot to offer us.
Motion capture studios, camera tech-
niques, lighting and set design, storytelling,
and music composition are all areas that
Hollywood has been studying for years,
and they are directly applicable to your
games. If you’re not tapping TV and film
resources, you’re falling behind.

Some say that copying Hollywood’s way
of doing things will result in our industry
losing its uniqueness. They say that we
shouldn’t copy Hollywood, lest we end up
like Hollywood, full of big money players
who take no risks, and with a seedy under-
belly. But consider that everyone in the
world near a TV or theater is already
familiar with the “language” of how
Hollywood tells a story. These people
understand camera angles and the nuances
of a film score, and they are your new
audience. Speak to them. It is perhaps
unavoidable that the game development
industry will generate its fair share of libel
suits, velvet ropes, licensing battles, con-
tract fights, scandals, and National
Enquirers. But consider that these are
always attracted to a successful, popular,
high-money industry. With any luck, in
another 10 years, you’ll be looking back at
today and saying, “I remember when …”

Pivot

600 Harrison Street, San Francisco, CA 94107
t: 415.947.6000 f: 415.947.6090 w: www.gdmag.com

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief
Mark DeLoura mdeloura@cmp.com

Senior Editor
Jennifer Olsen jolsen@cmp.com

Managing Editor
Laura Huber lhuber@cmp.com

Production Editor
R.D.T. Byrd tbyrd@cmp.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Daniel Huebner dan@gamasutra.com
Jeff Lander jeffl@darwin3d.com
Tito Pagán tpagan@w-link.net

Advisory Board
Hal Barwood LucasArts
Ellen Guon Beeman Beemania
Andy Gavin Naughty Dog
Joby Otero Luxoflux
Dave Pottinger Ensemble Studios
George Sanger Big Fat Inc.
Harvey Smith Ion Storm
Paul Steed WildTangent

ADVERTISING SALES
Director of Sales & Marketing
Greg Kerwin e: gkerwin@cmp.com t: 415.947.6218

National Sales Manager
Jennifer Orvik e: jorvik@cmp.com t: 415.947.6217

Senior Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 415.947.6224

Account Manager, Recruitment
Morgan Browning e: mbrowning@cmp.com t: 415.947.6225

Account Manager, Northern California
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Account Manager, Western Region, Silicon Valley & Asia
Craig Perreault e: cperreault@cmp.com t: 415.947.6223

Sales Associate
Aaron Murawski e: amurawski@cmp.com t: 415.947.6227

ADVERTISING PRODUCTION
Vice President, Manufacturing Bill Amstutz
Advertising Production Coordinator Kevin Chanel
Reprints Stella Valdez t: 916.983.6971

GAMA NETWORK MARKETING
Senior MarCom Manager Jennifer McLean
Marketing Coordinator Scott Lyon
Audience Development Coordinator Jessica Shultz

CIRCULATION
Group Circulation Director Catherine Flynn
Director of Audience Development Henry Fung
Circulation Manager Ron Escobar
Circulation Assistant Ian Hay
Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes
t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas
t: 650.513.4234 f: 650.513.4482
e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall
Executive Vice President & CFO John Day
President, Business Technology Group Adam K. Marder
President, Specialized Technologies Group Regina Starr Ridley
President, Technology Solutions Group Robert Faletra
President, Electronics Group Steve Weitzner
Senior Vice President, Human Resources & Communications Leah Landro
Senior Vice President, Global Sales & Marketing Bill Howard
Senior Vice President, Business Development Vittoria Borazio
Vice President & General Counsel Sandra Grayson
Vice President, Creative Technologies Philip Chapnick

Game Developer
magazine is

BPA approved

W W W . G A M A N E T W O R K . C O M4

A D I V I S I O N O F C M P M E D I A L L C

✎

S A Y S Y O U
C T H E F O R U M F O R Y O U R P O I N T O F V I E W . G I V E U S Y O U R F E E D B A C K . . .

Reader Questions
Artificial Lag

T he lag compensation technique
described in Yahn Bernier’s article,

“Leveling the Playing Field” (June 2001),
has a problematic drawback that was not
mentioned in the article — artificial lag.
For example, suppose an enemy is running
away and will hide behind a corner in the
next moment. If now, by a cheat hack, the
client is prevented from getting further
updates from the server, the cheating play-
er has somehow “stopped time.” He has
all the time in the world to run behind the
enemy, target the enemy, and press the fire
button. When the server gets these latest
movement and fire commands, it calculates
back to the state at the stopped time where
the enemy was not behind the corner yet
and calculates the hit by the gun. For this
cheat, in principle you only need a simple
switch to suspend incoming networking
packages. Maybe in HALF-LIFE, for exam-
ple, they were able to avoid this particular
cheat by not allowing a sudden change of
the ping time.

On the other hand, this is a more funda-
mental problem with this kind of lag com-
pensation technique. There seems to be in
principle no way to protect against the fol-
lowing cheat: two players in a team sit
next to each other, but player A plays with
an additional artificial lag of one second
relative to player B. Then the screen of
player B somehow shows the future of

player A one second ahead. If on screen B
an enemy performs some particular action,
player A knows that with a one-second
delay the enemy will perform the same
action on his screen, and he can perform
all preparations to fight the enemy in the
best way, since he knows the “future.”

Folker Schamel

via e-mail

YAHN BERNIER RESPONDS: The “artificial lag”
technique is something we were aware of
during the design and implementation of
lag compensation. There were three things
we did to reduce the effectiveness of the
lag technique. First, we placed an absolute
limit on the amount of time for which we
would allow lag compensation. The default
compensation time for HALF-LIFE and its
mods is 500 milliseconds. Even if the user
freezes their net connection with artificially
created lag, it would be hard to move
entirely behind the enemy in that small
amount of time. Second, we allowed server
operators to dampen the latency measure-
ment for players on the server. By sampling
latency over several packets, any large
changes in latency caused by creating lag
are smoothed out over time. Finally, since
the HALF-LIFE engine contained a built-in
way to simulate latency, we ended up eas-
ing in and out of simulated latency in our
system and, later, making the latency simu-
lation command available only to clients
playing on servers with cheats enabled.

Article Targets Wrong
Audience

T he comments about software patents in
Game Developer (“Software Patents

Should Be Abolished,” Soapbox, May
2001) are true; however, if you are trying
to convince software engineers and design-
ers, you are targeting the wrong folks.
Software patents are not about protecting
innovation, they are about lawsuits and
money. I don’t mean that most companies
pursue patents to file lawsuits — they pur-
sue them to protect themselves from other
companies. It’s like an arms race. We have
to arm ourselves because the other guys are
arming themselves.

Roger Collins
via e-mail

CHRIS AND CASEY RESPOND: Some companies
and individuals use patents offensively, not
defensively, and we mean “offensively” in
every sense of the word! And even for
those that only use patents defensively, if
even a small part of the effort of attaining
patents was put toward reforming or dis-
mantling the patent system, the world
would be a better place. Burying one’s
head in the sand while muttering, “Every-
body else is doing it,” is not a recipe for
improving the situation.

C
Send e-mail to editors@gdmag.com, or

write to Game Developer, 600 Harrison St.,

San Francisco, CA 94107

6 a u g u s t 2 0 0 1 | g a m e d e v e l o p e r

Kludge by Tiger Byrd and Daniel Huebner

It was my first
time. Man, she was so
beautiful, so special.

And then it was
all over — suddenly I wasn’t
“fast enough” for her, and I

didn’t “look good enough.”

Come on
man, you’ve got to give
it another shot. Get
back out there! Try to
meet another one!

Here, meet the
PS2. How ‘bout that fill
rate, eh? Hubba hubba!

She’ll just
hurt me too!

8 a u g u s t 2 0 0 1 | g a m e d e v e l o p e r

I N D U S T R Y W A T C H
J

Microsoft acquires Ensemble
Studios. Microsoft has acquired
Dallas-based Ensemble Studios.
Ensemble and Microsoft have a long-
standing publishing relationship, and
collaborated on the popular AGE OF

EMPIRES series. Ensemble will continue
to operate from its Dallas headquar-
ters; the terms of the deal were not
disclosed. Ensemble is the latest in a
string of Microsoft game-studio
acquisitions, joining the likes of FASA
Interactive of MECHWARRIOR fame;
Access Software, known for the LINKS

golf simulation games; and Bungie
Software, creators of the MYTH series,
ONI, and the forthcoming HALO.

Sony and AOL form PS2 partner-
ship. Thanks to a new partnership
between Sony and AOL, Playstation 2
owners will soon be able to access the web
and e-mail through AOL’s online service.
AOL features, including e-mail and real-
time chat, will become part of Sony’s PS2
SDKs and made available for developers to
incorporate into their games’ designs.
Sony hopes to have this functionality built
into the SDK by this winter, meaning it
will be at least six to 12 months after that
before the first AOL-enhanced PS2 games
appear at retail. Also in the works to
expand PS2 online possibilities are a Net-
scape browser and a version of the Real
Networks media player.

Mixed financials. With the console tran-
sition nearing its final stages, some strug-
gling companies are seeing the light at the
end of the tunnel. For its part, Activision
managed to beat analyst predictions in its
fourth quarter. Revenues for the period
were $127 million, up 22 percent from
$104 million in the same period last year.
Earnings for the period added up to
$875,000, compared with a net loss of $53
million in the fourth quarter one year ago.
The promising results have led Activision
to raise its full-year 2002 per-share earn-
ings estimates.

Electronic Arts also managed to beat
estimates in their fourth-quarter results,
posting a smaller-than-expected loss.
Consolidated net revenue for the fourth
quarter was $307.3 million, up from
$294.3 million in the same period last year.
The company’s loss for the fourth quarter

was $17.9 million, compared with net
income of $3.4 million for the fourth quar-
ter last year. The company incurred a one-
time pretax charge of $2.7 million in the
quarter related to the acquisition of
Pogo.com.

The picture is less rosy at Eidos. The
company is reporting revenue of $32.1 mil-
lion and a quarterly loss of $38.3 million.
Looking to secure new capital, Eidos is
planning to offer existing shareholders a
bargain on new shares. The company plans
to raise more than $70 million by offering
its shareholders the option to buy into the
new issue at a price substantially below
current value. Eidos holds that the issue is
intended to raise funds to finance new
development projects, but following the
company’s recent financial woes a share
issue could also help erase debt as Eidos
looks to return to profitability in the com-
ing year.

Sega is also looking for ways to tap
new capital. Extraordinary costs related
to the Dreamcast shutdown are forcing
Sega to issue bonds. The company will
issue more than $400 million worth of
zero coupon bonds in order to offset
Dreamcast debt and costs related to devel-
opment for rival consoles.

Xbox and Gamecube set dates,
announce pricing. Both Microsoft and
Nintendo took advantage of the press gath-
ered at E3 to unveil launch dates and pric-
ing for their next-generation game con-
soles. Microsoft set November 8 as the
launch date for Xbox and announced that

it will be priced at $299. Microsoft
said it expects to sell as many as 1
million to 1.5 million units during
the holiday season. Just hours later,
Nintendo fired its first volley in
what is shaping up to be a true con-
sole war between Nintendo and
Microsoft. Nintendo set the U.S.
Gamecube launch for November 5,
three days earlier than Xbox. Nin-
tendo upped the ante even more,
announcing several days later that
Gamecube will come to market at
$199, $100 less than the $299
Xbox price tag.

Havas Interactive changes
name to Vivendi. Havas Interac-
tive, the parent company of Sierra,

Blizzard Entertainment, Universal Inter-
active Studios, and Knowledge Adven-
ture, has changed its name to Vivendi
Universal Interactive Publishing. The
name change standardizes the Vivendi
name across the company. Vivendi Uni-
versal Interactive Publishing is itself a
subsidiary of Vivendi Universal Publish-
ing. The newly named company is made
up of two operating divisions, Vivendi
Universal Interactive Publishing North
America and Vivendi Universal Interac-
tive Publishing International, each con-
trolling the sales, distribution, and opera-
tions within its region. q

d a n i e l h u e b n e r | T H E B U Z Z A B O U T T H E G A M E B I Z

G D C E U R O P E
EXCEL

London, U.K.
August 31–September 1, 2001
Cost: £411.25 before July 31; £528.75
after July 31
www.gdc-europe.com

E C T S
EXCEL

London, U.K.
September 2–4, 2001
Cost: Advance registration free via
web site; £25 on-site registration
www.ects.com

U P C O M I N G E V E N T S

CCAALLEENNDDAARR

AGE OF EMPIRES, Ensemble Studios’ popular real-time strategy game.
Ensemble was recently acquired by Microsoft.

W ith Director 8.5,
Macromedia promis-
es developers the
ability to deliver
dazzling 3D enter-

tainment on the web. Not only do they
deliver on this promise, but they have
exceeded many people’s expectations.
Using Director 8.5, developers can create
3D web-based games that are small, run
reasonably fast, and operate cross-platform
for Windows and Mac.

Obviously, the biggest change from
Director 8.0 to 8.5 is the addition of the
3D rendering engine. However, in addi-
tion to the 3D engine, Director 8.5 and
the new Shockwave Multi-User Server 3.0
support UDP messaging. This is the first
step toward being able to offer truly real-
time multiplayer gaming through
Shockwave. Director 8.5 now also sup-
ports embedded Flash 5 files, and
RealVideo through Shockwave.

Director 8.5 offers very easy access for
developers to create 3D content. Using
Director’s built-in programming language
(called Lingo), developers can create four
basic types of primitives: sphere, box,
cylinder, and plane. However, possibly the
most useful feature is the ability to create
an arbitrary mesh via Lingo. This allows
developers to create any object by passing
in the vertex data for the faces. The possi-
bilities for this feature are practically limit-
less. One developer has even created a tool
that reads in and creates the geometry for a
QUAKE level using this technique. Another
interesting feature which can be accessed
without requiring modeling software is
particle systems. While this is not a neces-
sary feature for any 3D engine, it is a very
welcome one. The particle systems run rea-
sonably fast and provide an easy way for
developers to create effects such as smoke,
fire, sparks, and so on.

The true power of Director 8.5 is seen
when models are created in modeling pack-

ages and imported into Director. It sup-
ports the new Shockwave3D, or .W3D, file
format. Several companies have committed
to creating exporters for this format. At the
time of this writing, Discreet has an
exporter available for 3DS Max 3.1 and
4.0, Alias|Wavefront has an exporter for
Maya 3, and Caligari has included their
Shockwave 3D exporter into TrueSpace
5.1. According to Macromedia, exporters
for Lightwave and Softimage are in beta
testing or ready for release soon.

Aside from not requiring artists to learn
a new program to create models for Direc-
tor 8.5, another benefit of using .W3D files
is access to modifiers. Seven modifiers are
provided which greatly enhance the abili-
ties of Director 8.5:

Level of detail (LOD). This can reduce the
number of polygons interactively based on
how far the object is from the camera, or
to achieve an author-specified target frame
rate. Setting this up requires a bit of
tweaking to get right, but the benefits can
be well worth the effort, especially on
older systems.

Subdivision of surfaces. This does the
opposite of level of detail, adding polygons
to objects and theoretically making the
object look better. This can do a lot for
smoothing out round objects, but in most
cases this feature will probably not provide a

large enough benefit to be used extensively.
Keyframe and bones player. These provide

methods for playing keyframe and bones
animations created in a 3D package and
are the easiest way to incorporate anima-
tions. Both modifiers support animation
blending, which enables smooth transitions
between animations. This is a very power-
ful technique that allows character anima-
tors to set up different motion cycles, such
as a walk and a run cycle, without having
to worry about the transitions between
them. Several very impressive demos have
been created with characters modeled and
animated in 3DS Max and Character Stu-
dio. The big advantage here is that new
bones animations can be exported without
the accompanying geometry data. The file
size for these animations is very small, so
many animations can be included without
a major file-size hit.

Mesh deform. This modifier provides
access to every vertex and face in a model, as
well as the normals and texture coordinates.
As the name implies, it also allows the defor-
mation of a mesh. This modifier can be used
to create impressive rippling water effects.

Toon and inker. An interesting new tech-
nology that has yet to find a good use is
non-photorealistic rendering (NPR). The
toon and inker modifiers will render mod-
els with a cartoonlike look. While there is a
noticeable performance hit for doing this,
the effects are quite astounding.

While Director 8.5 is designed to pro-
vide a general 3D rendering engine for
many diverse applications, the most com-
pelling application is for game develop-
ment. With this in mind, we set out to cre-
ate a typical first-person shooter (FPS).
Sure, there are much more innovative
things to create than an FPS, but we fig-
ured if Director 8.5 can handle a decent
FPS, then it should be able to handle just
about anything for games.

In order to utilize the streaming func-
tionality, as well as to test importing mul-

10

XXT H E S K I N N Y O N N E W T O O L S

P R O D U C T R E V I E W S

An image created in Macromedia’s Director 8.5
Shockwave Studio.

Macromedia Director 8.5
Shockwave Studio
by brian robbins

a u g u s t 2 0 0 1 | g a m e d e v e l o p e r

XP R O D U C T R E V I E W S

12 a u g u s t 2 0 0 1 | g a m e d e v e l o p e r

tiple models into one world, we created
our levels out of “building block” models
pieced together to create hallways and
rooms. The advantage to this method is
that 3D modelers can create the pieces
and rely on the programmers to create the
levels, as opposed to forcing the 3D mod-
elers to create the levels. However, the
biggest drawback is that cloning the sepa-
rate models into the 3D world and then
subsequently duplicating them to actually
build the level takes more time than sim-
ply opening a complete .W3D level. This
necessitates the use of the same loading
screen that you see in almost every 3D
CD-ROM game produced.

One drawback to Director 8.5’s general-
purpose 3D engine is that it does not
know anything about the world it is dis-
playing and thus cannot make any display
optimizations. This means that the devel-
oper should do a lot of performance opti-
mizing, such as removing models from the
world that aren’t visible. Fortunately, the
methods for adding and removing models
are extremely fast, and using them effec-
tively will drastically increase perfor-
mance. This drawback is a necessary fact
of life. While the engine in our case is
being used to create games, it needs to be
able to handle all types of applications,
from product demos to business and mar-
keting presentations.

We also put Director’s streaming ability
to the test with this game. The initial file
download is just over 400KB. This con-
tains everything needed for the first level
of the game. The remaining 400KB of data
is streamed in while the user is playing.
Not only is our entire five-level FPS less
than 900KB total, but half of it streams in
while playing. While this takes a few min-
utes on a modem, it is still very playable.
That’s a big difference when compared to
the 50-plus-MB game demos for most CD-
ROM games.

The overall performance of the Director
8.5 rendering engine is commendable.
With our first-person shooter, we typically
have between 2,000 and 3,000 polygons
visible at a time, and we are able to achieve
approximately 30 FPS with a 450MHz
Intel Pentium II processor and a 3dfx
Voodoo 3 card.

My favorite feature, and the one that I
believe will truly set Director 8.5 apart

from the competition, is the inclusion of
Havok’s rigid body physics. While current-
ly not providing the full physics constraints
provided in Havok Hardcore, Havok has
made available rigid body collision detec-
tion and resolution, as well as dashpots
and springs. As with everything developed
in Director 8.5, this is available royalty-
free for all projects.

The Reactor review that appears in this
issue will give a much better idea of exactly
what Havok’s physics engine can do in
Max, but for Director developers, this
functionality far exceeds anything else
available. The Havok data can be created
entirely with Lingo, or the 3DS Max plug-
in can be used and the results imported
into the world. As a test of the Havok
engine, I created a Newton’s Cradle–type
application and a simple ball rolling on a
plane. Both of these demos were working
in less than four hours and behaved almost
exactly as you would expect them to.

For straight web-based game develop-
ment, the main competitors of Director are
Flash and Java. Flash 5 contains a moder-
ately robust programming language, and
developers can use it to create fairly com-
plex games. However, Flash has a long way
to go before it can approach the speed and
complexity provided in Shockwave. Java
has a development environment that can
be obtained for less money than Director;
however, Director more effectively sup-
ports multimedia natively, and provides a
robust development environment.

For 3D web-based games, the main
competition for Director 8.5 is Wild-
Tangent. Director has several advantages
over WildTangent’s technology. Director
and Shockwave are cross-platform, and
are, according to Macromedia, already
installed in over 60 percent of web
browsers and require no licensing fees for
use. The cost for publishing a single com-
mercial title with WildTangent technology
is more than the cost to purchase Director
8.5. Director 8.5 adds the functionality of
Havok’s physics engine and an environ-
ment that is already familiar to many
developers.

For developers already using Director
8.0 and not looking to create 3D content,
there is no compelling reason to upgrade.
Numerous minor improvements and bug
fixes have been made, but none of them is

so critical as to demand an upgrade. How-
ever, any developer looking at creating 3D
content on the web, whether they have
used Director before or not, should seri-
ously consider Director 8.5. It offers an
astounding number of features that work
very well at a very reasonable price. q

Lego’s ROBOHUNTER, created in Director 8.5.

DIRECTOR 8.5 XXXX

XXXXX
XXXX
XXX
=XX
X

excellent

very good

average

disappointing

don’t bother

STATS
MACROMEDIA

San Francisco, Calif.

(415) 252-2000

www.macromedia.com

PRICE

$1,199 per platform. $199 Director 8 to

Director 8.5 upgrade. $399 Director 5–7 to

Director 8.5 upgrade. 90 days of technical

support beginning with first call.

SYSTEM REQUIREMENTS

Windows 95/98/ME or NT 4/2000, or

Macintosh OS 8.1 or later. 64MB of RAM,

100MB of disk space, 800�600 resolution

display or greater, 3D accelerator recom-

mended.

PROS
1. Solid 3D engine by proven company.

2. Havok provides world-class simulation.

3. Support from leading 3D vendors

reduces learning curve.

CONS
1. Exporters not yet available for all 3D

development products.

2. 3D on the web not yet successful.

3. Significant learning curve for developers

unskilled in 3D.

16 a u g u s t 2 0 0 1 | g a m e d e v e l o p e r

XP R O D U C T R E V I E W S

CAKEWALK’S SONAR XL
by andrew boyd

S onar XL is Cakewalk’s new flagship
digital audio sequencer. It appears in

place of Pro Audio 10 — apparently Twelve
Tone Systems, makers of the Cakewalk line,
felt that the brand was due for a freshening.
Having reviewed Pro Audio 8 for Game
Developer (March 1999), I was quite inter-
ested to see if more than just the name had
changed in the last couple of years. After
working with Sonar, it certainly does feel
like they’ve taken the software in a new
direction — and a good one at that.

I installed Sonar on a 700MHz Pentium
III running Windows 2000 with a Sound
Blaster Live! doing MIDI and audio duty.
Installation was quick and easy, and fea-
tured automatic migration from Cakewalk
Pro Audio 8, and automatic detection and
configuration of the sound hardware.
Performance was consistently excellent,
even with lots of tracks and effects run-
ning. In true Cakewalk tradition there is a
thorough and helpful printed manual pro-
vided and deep, easy-to-use online help.
But neither should be necessary, as opera-
tion is impressively intuitive.

In use, Sonar looks more like Sonic
Foundry’s Vegas than like previous Cake-
walk products. This is not necessarily a bad
thing, as the Pro Audio line looked a little
rough. Sonar has a slick, modern feel, and
workflow is quite smooth. Most of the
work in Sonar takes place in the Tracks
window, which should be comfortable if
you’ve ever used any multi-track audio soft-
ware. MIDI and audio are displayed togeth-
er in the right-hand pane of this window
along with easily editable automation and
controller data. Like Vegas, track informa-
tion and mixing tools are in the left pane.
All the volume, pan, mute, solo, effect
inserts and sends, and metering are avail-
able for display right alongside the track.
Tabs across the bottom of the left pane of
this window allow you to quickly reduce
the amount of information to common con-
figurations — Mix, FX, and I/O. A tradi-
tional mixer window can be opened if you
prefer to work that way.

It is evident that Sonar maintains Cake-
walk’s reputation for deep and robust MIDI
functionality. As with other high-end
sequencers these days, you would have to

work hard to find a MIDI editing chore
that is not easily accomplished in Sonar. Its
audio implementation is similarly thorough
— Sonar may be “version one,” but it is
essentially the tenth generation of Cake-
walk’s audio sequencer, with all the maturi-
ty that implies. Sonar also features a few
extras that set it apart, such as native Acid-
style loop tools and a new architecture for
plug-in software synthesizers.

Sonic Foundry’s Acid has become an
industry standard tool; so much so, in
fact, that Sonar’s ability to import “Acid-
ized” loops is a selling point of the soft-
ware. Cakewalk’s web site even brags that
Sonar’s loop tools make it a replacement
for Acid. Not quite. For one thing, the
independent time and pitch manipulation
processes simply don’t sound as good as
they do in Acid. Many loops I tried
worked fine, but in others I could hear
artifacts not evident when using Acid.
And, because Sonar is a big product
designed to do a lot of things, it doesn’t
have the fun simplicity that Acid does. But
don’t get me wrong, the inclusion of this
functionality gives Sonar a new level of
flexibility. It’s a wonderful addition to the
package, and it does work well much of
the time.

Sonar also debuts Cakewalk’s DirectX
Instruments (DXi) plug-in architecture.
The world probably didn’t need another
plug-in format, but DXi does seem to work
well and already has impressive support
announced. Sonar XL installs several DXi
instruments and a tube-amp simulator
called ReValver SE DXi. ReValver is not an
“instrument” as such, but what Cakewalk
calls a DXi “transformer.” This is basically
a plug-in much like the DirectX processors
also supplied with Sonar, but it offers
automation through MIDI like an instru-
ment. This is a great idea that I expect will
catch on. None of the bundled effects or
instruments blew me away, but all were
quite serviceable, and they make up a very
satisfying package.

If you’re in the market for a Windows-
based digital audio sequencer, Sonar should
be high on your list of products to check out.
It’s got all the expected features, a great new
interface, and some really exciting extras.

XXXX | SONAR XL
Cakewalk | www.cakewalk.com

DISCREET’S REACTOR
by david wu

T ake a game developer with an in-
house physics engine, ask them to

build their editor as a plug-in for Max,
and you will end up with an offering in the
spirit of Reactor. Reactor appears to have
been designed from the ground up as an
interface to the various features and con-
cepts of the Havok physics engine. Its per-
formance is outstanding — comparable to
that of a mature game physics engine.

While not as well integrated as a system
such as Maya, the 3DS Max/Reactor com-
bination compares favorably to a good
game editor. If you are comfortable with
Max and you have both a basic under-
standing of physical modeling and some
time on your hands, you should be able to
put together your own dynamics-enabled
scene. After I was comfortable with Reactor
I had a lot of fun experimenting with it; in
fact, I enjoyed playing with Reactor more
than most games out there. I did find that if
you are not careful, you can break the sim-
ulation — as my art director puts it,
“Physics are not to be toyed with.”

Reactor provides a suite of discrete co-
existing technologies that collaborate to
provide a powerful framework for integrat-
ing secondary dynamics into a scene. While
it is possible to model the dynamics of
characters and moderately complex vehi-
cles, the level of control that you need in a
game or cutscene is not something that is
supported out of the box. Unless you are
willing to write a highly complex controller
in a limited environment, inanimate mech-
anisms such as boxes, barrels, dice, ropes,
and ponytails form the scope of your
dynamics-enhanced arsenal.

The strengths of Reactor include a stable
rigid-body dynamics model, consistent colli-
sion detection and resolution, and real-time
performance. While their rigid-body dynam-
ics does not look quite right, it is highly
robust and there exist many ways in which
to customize and refine physical behavior.
While less efficient than what you might find
in a collision detection system designed for a
specific game with specific constraints, Reac-
tor’s collision detection performs decently
across a wide range of inputs. Highly com-
plex and concave objects cause problems,
but this is to be expected, given the nature of

XXXXX
XXXX
XXX
=XX
X

excellent

very good

average

disappointing

don’t bother

18 a u g u s t 2 0 0 1 | g a m e d e v e l o p e r

XP R O D U C T R E V I E W S

the beast. Reactor’s fluids, soft body dynam-
ics, and cloth are not completely convincing,
but on par with the simulation experienced
in today’s games. Reactor’s weak support for
highly articulated structures is somewhat
disappointing, but I expect that this will be
improved in the near future. For now your
primary characters will need to be physically
agnostic — affecting the secondary dynamics
of a scene but themselves oblivious to their
kinetic interactions.

Anyone familiar with incorporat-
ing dynamics into a
game knows the value
of a real-time preview.
No matter how well
you understand physics
and animation, you
will need to iterate to
get what you want. If
you do not completely
understand every physi-
cal parameter and set-
ting required to add
dynamics to a scene, trial
and error can be an invalu-
able learning tool.

In summary, Reactor is a step in the right
direction. It combines a number of power-
ful physics technologies into a somewhat
unified, conditionally stable, moderately
intuitive package — slightly less than what
you would ultimately wish for, but a lot
more than anyone else has to offer. If you
are a game developer licensing the Havok
physics engine, Reactor is a must-have. If
you have your own physics system, Reactor
might be a highly economical path for get-
ting physical attributes into your game.

XXXX| REACTOR
developed by Havok for Discreet

www.discreet.com

RIGHT HEMISPHERE’S
DEEP PAINT 3D WITH
TEXTURE WEAPONS

by steve theodore

D eep Paint 3D from New Zealand–
based developer Right Hemisphere is

a full-featured 3D painting application
that allows users to paint directly onto 3D
models. The program exchanges models
with 3DS Max, Maya, and Softimage and

supports other applications through .3DS
or .LWO files.

3D painting is remarkably similar to the
familiar 2D painting process. Performance
in 3D painting is surprisingly good, nearly
real-time even on mid-range machines.
Tablet feedback is excellent, and feels
smoother than Photoshop’s. Models in the
3D window are rendered with not only
color but also bump specularity and self-
illumination maps. Each map channel can

contain an arbitrary number of
layers, allowing experimenta-
tion and the isolation of details.
Unfortunately, the layers offer
only simple or multiplicative
compositing — Photoshop
users will miss modes such as
additive and “soft light.”

Deep Paint 3D borrows liber-
ally from Photoshop in its selec-
tion tools, “quick mask”
friskets, filters, and even hotkey
assignments. Despite these influ-

ences, however, the program really
resembles Corel Painter in spirit. Its prima-
ry tool is an extremely configurable “free-
hand” brush that can render excellent imi-
tations of traditional media (chalk, air-
brush, and the like) or be tweaked for inter-
esting technical effects. The brush mecha-
nism is also used for most image-processing
tasks — functions such as dodging, desatu-
rating, and sharpening are performed with
special brushes rather than filters. Image-
based brushes aid in rubber stamping and
cloning textures.

The “everything-is-a-brush” structure is
powerful, but not friendly. While Deep
Paint 3D includes numerous preset brush-
es, it’s taxing to wade through dozens of
names to find a brush you need. Apart
from a nice method of interactively resizing
a brush without an options dialog, the
interface does a mediocre job of organizing
the program’s complex tools.

Quality painting in Deep Paint 3D
depends on the underlying UV mapping
of the model; if adjacent mapping areas
have mismatched texel densities or orien-
tations, visible seams and erratic brush-
work may be hard to avoid. The Texture
Weapons add-on is an excellent tool for
modelers whose 3D packages have poor
UV-mapping abilities.

Texture Weapons can apply UV coordi-

nates to an object so that texel density is
equal everywhere. The practical result is the
elimination of projection smears and pinch
points. This process produces lots of dis-
crete patches in UV space, effectively trad-
ing more seams for fewer texture smears.
This fragmented mapping can be ineffi-
cient; a disjointed map may use fewer than
half the pixels in a given bitmap.

Texture Weapons allows you to tweak
the trade-off between texture distortion and
fragmentation, and provides strong UV
editing tools to combat inefficiency and
seams. UV coordinates can be scaled and
welded to minimize seams and make more
efficient use of texture space. A unique
addition is the ability to preserve a texture
after editing UVs, so that a reorganized
mapping does not demand repainting.

Texture Weapons also adds “Projection
Paint” mode, where painting operations
are done in screen space, independent of
the model’s UV maps. This means brushes
no longer change resolution as the texel
density of the model changes. Even better,
seams are disguised by the downsampling
of the projected image. Moreover, it is pos-
sible to paint very effective subpixel detail
simply by painting from a zoomed view.
Projection paint is less interactive — enter-
ing and leaving the mode can take upwards
of 30 seconds for a complex model — but
provides a high-quality solution to the
common annoyances of 3D painting.

The Deep Paint 3D and Texture Weapons
combination has some rough edges. The
interface is far from self-explanatory and
some of its most interesting functionality is
buried deep within options dialogs. Small
details are skimped — there are no tool tips,
for example, and the hotkeys are not
remappable. Live import and export com-
munications with Max and Photoshop is
occasionally flaky. Despite these imperfec-
tions, Deep Paint 3D is a solid tool which
performs an important function. For pack-
ages with weak UV tools, particularly Max
and Lightwave, the Texure Weapons add-on
is invaluable. For anyone who is interested
in sophisticated texturing, Deep Paint 3D
demands a serious trial.

XXXX
DEEP PAINT 3D WITH TEXTURE WEAPONS

Right Hemisphere
www.righthemisphere.com

XXXXX
XXXX
XXX
=XX
X

excellent

very good

average

disappointing

don’t bother

20

P R O F I L E S
m a r k d e l o u r a | T A L K I N G T O P E O P L E W H O M A K E A D I F F E R E N C E

eorge Sanger, also known as The Fat Man, is
absolutely unmistakable. From his Texan hat and
Nudie suits to the fat sounds he created for legendary
titles such as WING COMMANDER and THE 7TH

GUEST, George is an industry original. In his copious
spare time, he organizes Project BBQ, an audio industry brainiac
camp-out, and GamePlayMusic, a flat-rate music library for games.

Game Developer. Are you really working on slot machines?
George Sanger. The people in the slot

machine business are in a very lucky place.
They can tell when something is good,
because it makes money. They’ve been able to
cleanly measure that good sound makes more
money. Because of that, I’m designing a Fat
Sound speaker system for slot machines, and
redesigning sounds for a whole bunch of slot
machines. Some of them still only have the
brain power to play four sounds, so I’m
replacing four clanks with four different real-
ly nice clanks. On the newer games, we’ve
got whole new elaborate systems in there. It’s
PC work, but we know what PCs are in
there. It’s not a moving target, and that’s real-
ly pleasant. So I’m working on speakers, I’m
working on sounds, and I’m working on
sound systems. The challenges include mak-
ing audio that’s appropriate to the environ-
ment that’s there — in other words, it’s not
going to sound like an arcade. My goal is to
make a very pleasant place for a human being
to be for a long time. That’s what it’s about,
doing something positive when you have a
chance to. There are so many opportunities to do remarkable
things right now with audio. And so many of those opportunities
are still open and unexplored — it’s a very exciting time.

GD. What kinds of opportunities?
GS. When I gave my first talk at the GDC in 1992, it was possi-

ble to make a game soundtrack as good as anything on TV or in
the movies. It still is, but people aren’t thinking, “We could win a
Grammy.” Have we done anything that’s better than the movies
yet? I don’t know. But that should be our slogan as an industry:
“Not as good as a movie, better than a movie.” Some of the
smartest people in audio don’t feel that interactive music can be
done to the level of satisfactory art that linear music or visuals
can be done. And the reason is that audio is all about timing, and
you don’t have control over the timing. But if we consider that
there is a legitimate art form called interactive music, it follows
that it would be like linear music, and it would be satisfactory.
But it’s influenced by what the user does, and how the user expe-
riences it, so that regardless of what the user does, it’s always a

satisfactory experience. This is really similar to the phrase I heard
when I took a sculpture class: “effective when viewed from any
angle.” Whatever interactive music is, it would be to linear music
what sculpture is to painting.

GD. How is GamePlayMusic going?
GS. It’s remarkable, GamePlayMusic has not gotten a single

response from anyone. And there’s a mystery for you. I mean,
from musicians it has. But I have this fabulous resource which is

about two feet of CDs, full of remarkable
music from people all around the world, all
sorted by categories like battle, medieval,
high-tension, low-tension, walking around
in mystery, and it’s all keyed right to our
industry. It would just blow your mind to
hear some of this audio.

GD. Do you think that audio designers are
reluctant to purchase music that isn’t specif-
ically designed for their title?

GS. Absolutely. And to them I say, that’s
not your problem. You could certainly write
a small number of tunes to go specifically
with your title. But people don’t complain
about computer game music not having
enough unique melodies. What people do
complain about is hearing the same music
over and over again. We’re in business here
to do something aesthetically pleasing, we’re
here to entertain. And we’re screwing up in
the audio department. Seriously, we’ve got-
ten the message: repetition is the problem in
game audio. And somehow what we hear is:
it’s those tiny speakers. Well, it’s not! Every

time you think you hear someone say, “It’s those tiny speakers”
— I don’t know who hypnotized us into translating one as the
other, but televisions with little speakers do fine!

GD. If you’re an audio guy and want to break into doing inter-
active audio, where would you start?

GS. It would behoove them, to get a start, to go to the GDC,
just to get a feel for it. I’ve been telling my son, who really wants
to make bamboo windchimes and sell them door to door, don’t
sell anything until you’ve done it about 10 times. So score 10
games, for nothing, for yourself. Don’t put them in a game, just
score them. And see if you like that. If you do, well you’ve just
got yourself a hell of a great hobby, and now your life is bear-
able. And if you can’t stand doing it, then get out of the business
before you get in it.

The answer is, “Just do it, for godsakes just do it, and don’t
think about the money.” Put the energy into it that it deserves,
and make it sound really good to you. And then, that’s all, and
see if success comes. I have a feeling it will if you’re sincere. q

George Sanger
The Fat Man Cometh

a u g u s t 2 0 0 1 | g a m e d e v e l o p e r

ABOVE. George Sanger, The Fat Man.

w w w . g d m a g . c o m 23

I s enough ever enough? When are computers fast enough
for games? Are we nearing the time when 3D graphics
cards have so much fill rate and polygon throughput
that we have all the triangles we need? Questions like
these come up from time to time. Usually the question

comes up in the public relations blurb for the latest hardware
release, hot game, or game engine. You get quotes like, “We now
have all the polygons we could ever need,” or, “Our engine can
push so many polygons that our artists have trouble finding
places to add any more.”

There are definitely two sides to the argument. Games
should be about the gameplay and not necessarily the look of
the objects in it. It should be obvious that simply having more
polygons to work with doesn’t make a game more fun. PONG is
still a pretty fun game with only a few triangles making up the
display. Have an ancient Atari 2600 lying around? Spark it up
at your next party and many people will still want to play
COMBAT. Certainly we all have played quite a few games full of
cutting-edge visuals and massive polygon counts that just
weren’t fun at all.

However, games that look better can certainly be more immer-
sive. Reality is much easier to suspend in a world full of rich
details. We also can’t ignore the fact that consumers who buy
these new consoles or latest computers with high-end graphics
accelerators are expecting more realistic and detailed graphics
with each new game released. The hardware manufacturers cer-
tainly don’t believe we have enough power yet. It is in their
financial interests to keep the demand for more and more com-
puting power high. That way they can continue to sell more and
more powerful hardware every quarter.

It is true that production issues make creating this incredible
amount of art assets difficult. Increasingly we are also starting to
hit memory storage, loading delay, and bus bandwidth issues.
But the need for more computing power still exists. We don’t just
need the power to create more detailed models. With the power
available now, artists can create pretty compelling characters and
environments. Sure, we could add a few more polygons here and
there, round out some curves, add some detail to the gothic arch-
ways in our dungeons — but that is not where the real problem
lies. What game worlds really lack is “stuff.”

Many games have very detailed architecture with realistic
shadows, but the environments are totally lacking in clutter. Just
modeling the amount of clutter on my desk where I am typing
this column now would easily bring the fastest available system
to its knees. Sure, the stuff may not be interesting to the game-
play, though I obviously think I need it on my desk or I would
throw it away, right? But, it is that level of detail that takes the
game environments to the next level of authenticity. Maybe it is
time to start thinking about having virtual set dressers that walk
through a level, strategically dispersing clutter and placing com-
mercial products for endorsement deals.

Game worlds also lack people. How many nightclub sets
have you walked through in a 3D game? There are always a
couple of people in there, one of whom you can usually talk to.
Now, I know why that is a problem. People take up a ton of
polygons. They are hard to make look good and even more dif-
ficult to make move well. Creating animation for characters is
one of the most difficult and costly parts of production. That is
why you don’t see too many people walking around our inter-
active worlds, and even when you do, they are pretty lifeless.
But people are the critical parts needed to make most games
more credible. The world is full of people and we as players are
used to that, so until I can walk into a dimly lit, smoky bar,
packed shoulder-to-shoulder with people and a blues band on
stage, I don’t think we have nearly sufficient horsepower to
make things interesting.

Inside the Smoky Room

I am very confident that the makers of computing hardware
will keep improving the machines until we are fully capable of

creating the smoky bar scene I just described. The hardware isn’t
really a barrier. Just throw some time and some smart hardware

G R A P H I C C O N T E N T j e f f l a n d e r

Last Call at the
House of Blues

J E F F L A N D E R | Visions of a smoked-filled

speakeasy where men are mysterious and dames

even more so obscure the rays from the summer’s

sun. Help Jeff lift the fog from his world at

jeffl@darwin3d.com.

w w w . g d m a g . c o m

24

G R A P H I C C O N T E N T

guys in fierce competition, and those issues will be addressed.
Creating the content to put on this hardware is the tricky bit. For
example, look at the characters that are in the bar. Someone is
going to have to build all those characters and bring them to life.
For the characters that are integral to the story and action of the
game, this is an expensive but very necessary task. Once the
graphics and animation systems are in place, it is just a matter of
creating the mountains of content for those characters.

But what about all the dozens of other people that we need to
populate our bar? Each of them needs to have a distinctive per-
sonality, unique look, and characteristic movement. Who is going
to create all of them? Probably not your lead artists if you ever
want to get the project finished.

In the case of movie production, we would just have a casting
call for extras. A production assistant would go out and get a
bunch of people who look and act like ordinary people and can
fill out the scene. In interactive entertainment, however, we do not
currently have the equivalent of extras that we can bring in for
the production.

Certainly, we can make some character meshes and a set of
generic motions that can be applied to all of them. We could trig-
ger these different animations based on some sort of artificial
intelligence system like a finite state machine. This kind of thing
has been done before. There has even been some licensable tech-
nology to provide this level of character function. An animation
system like this can be effective. However, these extras have a
pretty limited repertoire. If they are required to do any kind of
new behavior, they may not be up to the task. For example, if you
walk up to an extra and trip him or hit him on the back of the
head with a chair, unless that is in the character’s animation set,
nothing will happen.

What we really want are intelligent physical objects. In a car
race game, we can set up rules for the physics of the world and
the cars. Then we can just drop a bunch of these cars in the world
and let them go, driven by simple AI that controls the motion of
the cars. We can teach the cars special moves like navigating
through traffic and parking so they can get around. However,
since the game has a basis in physical simulation, when the unex-
pected happens, like some cars run into each other, the result is
something that is both unique and believable.

As you probably know, making a physical simulation for a
bunch of cars is a much easier problem than simulating people
walking around a room. In fact, it is not just a single problem; it
is a whole series of difficult problems. The task of simulating a
human in a game environment seemed so daunting to me until a
few months ago. I thought it was a goal that we should shelve for
a few years until the hardware became powerful enough to handle
environments full of passively animating characters. Then we
could tackle how to automate them more believably.

A few things have happened that have really changed my mind
about this. For one thing, we have the knowledge and ability to
create pretty interesting characters. Technologies such as facial
animation, motion blending, secondary motion, and on-demand
inverse kinematics are well understood and pretty easy on modern
game hardware. Yet characters in games are only slowly getting
better. Talking to developers, it seems that production issues, not

technology, is what is really holding them
back. Knowing how to animate a face is one
thing, but creating streams of animation to
actually perform the action is really time con-
suming. Simulation could help with this issue.

Second, I have learned that we don’t need
to grab for the final prize of fully simulated
characters in order to achieve some major
advancement in character interaction. I, as
well as others, have combined some fairly
simple simulation systems with traditional
blended animation. This has been moderately
successful. The characters seem much more
alive, since they can, at least to a limited
extent, react directly to the circumstances
around them. With this in mind, I am going
to take up the gauntlet of physically simulated
characters and see what I can learn.

Take a Seat at the Bar

T he problem of physically simulating a living creature can be
broken up into two major pieces. The first part is simulating

the physical kinematics of the character. That is, simulating how
the body moves through the connection of the various limbs and
body parts. The second part is controlling the body parts to make
the character move. This “controller” problem is very difficult.
You can equate it with teaching a baby to learn to walk. Simply
staggering along without the legs wobbling too much is a pretty
big accomplishment. Learning how to dance like Fred and Ginger
is going to take awhile.

For now, let me stick with the kinematic part of the problem. A
human being is composed of linked rigid bodies that are connect-
ed in a hierarchy. Anyone who has created a character in a model-
ing package and animated it by using a bone system should be
familiar with the idea. For example, in a simple human character,
at a bare minimum I probably want to use 16 connected rigid
links: head, neck, upper body, lower body, upper arms, lower
arms, hands, upper legs, lower legs, and feet. You can see a graph-
ic representation of this linked system in Figure 1.

Each link is connected together at a joint. In the case of my
character, there are two types of joints. Some joints have one
degree of freedom and can bend only along one axis, like the
elbow or knee. Other joints can move about all three rotational
axes, like the shoulder or hip. Obviously, joints are not entirely
unlimited even in their free direction of motion. A knee cannot
bend around 360 degrees, for example. Restrictions on joint rota-
tion (called joint limits or degree-of-freedom restrictions) are used
to keep the joint from over-rotating. I will get back to that issue
in a moment.

The mathematics of rigid body motion, where the objects are
linked by joints, is called constrained rigid body dynamics. A very
good introduction to the topic can be found in Chris Hecker’s
two-part article in Game Developer (“How to Simulate a Pony-
tail,” March and April 2000). For now, however, I am going to
ignore the fact that the links are rigid.

a u g u s t 2 0 0 1 | g a m e d e v e l o p e r

FIGURE 1. A 16-link
rigid-body man.

a u g u s t 2 0 0 1 | g a m e d e v e l o p e r26

G R A P H I C C O N T E N T

In previous columns, I have had a lot of luck simulating soft
body objects by using point masses connected by springs. I have
even been able to extract a rigid link orientation from an object
composed of these connected point masses. A rigid body can be
thought of as a series of point masses separated by constant dis-
tances. So, if we are able to maintain the constant distance
between particles, we could simulate a rigid body using simple
particle physics.

At the Game Developers Conference this year, Thomas Jakob-
sen from IO Interactive presented a system that he used in the
game HITMAN: CODENAME 47 to do just this. The developers
connected points representing parts of the body into a rigid hier-
archy. By enforcing various constraints to make the joints bend
correctly, they were able to simulate the degrees of freedom of a
simple human character. They then used the system to simulate
characters that could collide with the world and fall to the
ground realistically.

Four point-mass particles are connected by rigid links in the
form of a tetrahedron, creating a stable rigid body that will not
collapse on itself. For the body to be truly rigid, I need to make
sure that the distances between the points are kept constant.
When creating a soft body that can squish slightly, the separation
distance can be maintained with springs. In order to keep the
objects fairly rigid, the springs will need to be stiff. If not, this can
lead to numeric instability and crash your simulator as I discussed
in my column on cloth simulation (“Devil in the Blue Faceted
Dress: Real-Time Cloth Animation,” May 1999). Better numerical
integration techniques can address this problem, but to maintain
exact distance between points, it may be necessary to move the
points after integration in a fixup stage as described by Xavier
Provot in his paper on cloth animation (see For More Informa-
tion). In HITMAN, Jakobsen used multiple fixup passes instead of
springs to maintain the rigid links between points. If the points
are moved in a fixup pass, it may be necessary to correct the point
velocity to insure the integration scheme doesn’t break. Jakobsen
avoided this by using a velocity-less integrator like the Verlet inte-
grator described in his paper. In my experience, either method
works well.

To link the rigid bodies, a single point of the tetrahedron can
be constrained to stay in place. This allows the rigid body to
rotate about that point in three degrees of freedom. If I then con-
strain another point of the object to stay in place, that removes
two degrees of freedom, leaving an object with one degree of
freedom. With these two types of constraints, I can start building
my character.

How About Some Elbow Room?

L et me start building the object with a simple linked chain for
the arm. The arm is made of two connected tetrahedrons, as

you can see in Figure 2.
The position of point b represents the shoulder joint and should

be pinned in place. The two links are connected at edge c, which
represents the elbow joint of the arm. While the lower arm link
can rotate around edge c, it is not free to rotate in any other
direction. But, it is free to rotate completely around c. That means

the angle a can vary from 0 to 360 degrees.
That is obviously something that would be
physically impossible with a real elbow. A
real human elbow can bend up to about
145 degrees. This can be enforced either by
checking the angle between the joints with
the dot product or by limiting the size of
the gap between the joints. The over-rotat-
ed joint can then be pulled back either
with a spring or by using a rigid con-
straint. The benefit of a spring is that the
joint will tend to return to a comfortable
“rest” position. Large over-rotations can
also then appear to cause a hyperextension
or “dislocated” joint.

Constraints can also be used to keep
joints from colliding with each other. Since
I don’t want the arm to pass through the
body, space between the arms and body
can be maintained with minimum distance
constraints.

He Slid Under the Table

B y using these techniques, the physical representation of a
character can be created and all of the joint constraints

added. This is done automatically, creating the different forms of
links based on the degrees of freedom and range of motion for
each joint. Once that is done, I can stick the character in the sim-
ulator and let it run. Since the character is just composed of sim-
ple particles connected by simple constraint functions, the process-
ing time is minimal. The routines are also ideally suited for paral-
lel processing.

However, the character doesn’t do a whole lot right now. If you
apply forces to the links, the character will move in a physically
believable way. Apply gravity and collision detection with complex
environmental objects and the character could be made to crash
into objects and fall over in a somewhat realistic manner. For
HITMAN, this feature was enough to make the system worthwhile.

But, to make things more interesting, we need to integrate these
passive dynamic effects with more active systems. I really want to
create characters that can balance and move on their own, or take
a hit and then react with plausible and appropriate motion
sequences. That will just have to wait till next time. It’s time for
me to order another drink. q

F O R M O R E I N F O R M AT I O N

Jakobsen, Thomas. “Advanced Character Physics.” 2001 Game
Developers Conference Proceedings. pp. 383–401.

Provot, Xavier. “Deformation Constraints in a Mass-Spring
Model to Describe Rigid Cloth Behavior.” Graphics Interface,
1995. pp. 147–155.

FIGURE 2. A simple
arm chain.

a u g u s t 2 0 0 1 | g a m e d e v e l o p e r28

A R T I S T ’ S V I E W t i t o p a g á n

T here you are at your computer, tumbling a nicely
designed 3D polygonal model that needs texturing.
Maybe it’s a highly detailed architectural structure or
some organic alien plant life created in your favorite
3D package. The assignment now is to texture-map

this intricate model for a real-time game and then create the actu-
al custom images you will assign to it. Aesthetically speaking,
your texture-mapping work should not only be well detailed and
designed but also appear seamless on your model and have a rela-
tively even distribution of pixel resolution throughout your
model. Technically speaking, your mapping should make efficient
use of your texture sheet by using the maximum possible area of
the texture space. Sound easy?

The process for assigning mapping coordinates is quite the same
whether you are creating 3D geometry for a PC title, a console title,
or a web-based game. The actual steps you take for setting up and
mapping texture coordinates onto complex geometry are equally
laborious for each of these platforms. The focus here is to get you
through this less creative process efficiently and with great accuracy
so that you can have more fun creating the bitmap images after-
ward. The more intuitive and interactive this creative process
becomes, the better control you’ll have and the more convincing
your final result will be. In your efforts, you may find a plug-in or

two that will help expedite a few steps in this process, but the basic
steps are always the same. The “make it so” one-click feature that
creates the perfect mapping hasn’t been written yet for any 3D pro-
gram. Until that happens, here are some proven basic steps you can
take that will help you prepare your models for skinning and pro-
duce great mapping results every time. (For the rest of my column, I
will assume you are experienced with 3DS Max 3 and know your
way around Adobe Photoshop.)

Analyze Your Model’s Geometry

I f you are the original modeler of the 3D object you are about to
texture-map, then you’re already intimately familiar with every

detail and polygon that makes up this geometry. If another model-
er handed off the model for you to texture, take the time to ana-
lyze the design and look for ways you can begin subdividing the

Efficient UV Mapping of
Complex Models

T I T O P A G Á N | Tito is a seasoned 3D
artist/animator working at WildTangent and
teaching at DigiPen in Seattle. His e-mail
address is tpagan@w-link.net, or visit his web
site at www.titopagan.com.

a u g u s t 2 0 0 1 | g a m e d e v e l o p e r30

A R T I S T ’ S V I E W

entire model into smaller groups of more primitive-like shapes (see
Figure 1). Doing so will make your next step easier by breaking
down your model into manageable parts to which you can assign
separate mapping coordinates. For example, a spider’s body can be
thought of as narrow cylinders attached to a couple of spheres or a
capsule-like shape. Look for elements in the design of the geometry
that are identical. A spider’s eight legs can be the same identical
pieces without compromising much of the design. This is probably
the way it was created to begin with — one leg was created and
then cloned seven more times for a full set.

Subdivide and Consolidate

F or this step you will dissect and delete parts of the model. If
you work in a production environment with other contribut-

ing artists like I do, this may feel uncomfortable at first because
you may be taking apart someone else’s model. This is a neces-

sary and practical step that can’t be avoided. If the identical or
repeating mesh detail is to have the same bitmap assigned to it,
there is no point in defining mapping coordinates for this detail
twice. Nor would it be efficient to use valuable texture space to
represent the same texture detail on the model’s similar geometry
more than once. This conservation of time and consolidation of
texture space can be handled in two ways.

The first approach you can take is to subdivide your model
and delete anything that is represented in your model more than
once (see Figure 2). This is the approach I often use. Focus on
doing a good job applying mapping coordinates to only one of
these similar parts. Later you will duplicate and attach the newly
mapped parts back to the model in their original positions.
Again, fewer pieces of geometry representing your entire model
will equate to fewer polygons, less work in mapping these sub-
parts of your model, and therefore more texture space real estate
you can devote to these fewer parts.

FIGURE 2.

FIGURE 1. A decorative structural column (14,419 polygons) with precise UV mapping.

32

A R T I S T ’ S V I E W

a u g u s t 2 0 0 1 | g a m e d e v e l o p e r

The second
approach is to leave
your mesh object
intact and do a face-
level subobject selec-
tion as many times
as you need to and
apply separate map-
ping coordinates for
each selection. I
don’t recommend
this approach
because it is more
work than it’s worth,
takes more time to
execute, and doesn’t
yield better results.

Assign a
Texture

Y ou are now at a
good place to

assign a bitmap to
your model. Create
a texture file using
your final asset
name and place it in
the directory for
your game’s final
bitmap assets.
Assign it to the
model from within
Max’s Material Edi-
tor. This is usually a
.BMP or .JPG image
file that is 512�512
pixels in size or

smaller. I like using the highest possible resolution for texture
images that the game will support while I create them. This
enables me to design and evaluate my textures at their most opti-
mal level. It also gives me the flexibility of easily downsampling
this size later to 256�256 or 128�128. This will depend on reso-
lution limitations imposed by low-end graphics cards or file opti-
mization issues that often arise toward the end of many projects.
Another common practice is to create a “test purpose” temporary
bitmap that has a consistent pattern throughout and assign it to
your model. A checker pattern of small black and white squares is
what I have found works well (see Figure 3). Other artists use
numbers and colored squares in their test texture.

Applying UVs

A pplying your initial mapping coordinates is a relatively sim-
ple process. 3DS Max offers many options for specifying

how bitmaps are projected onto the surface of an object. Mapping
coordinate types such as Planar, Cylindrical, or Spherical can be
found using the UVW Map modifier (see Figure 4). Here again is
a step in the process that can be handled in several ways. A high-
production 3D artist will typically develop proficiency in Max for
at least two or more approaches. I will discuss two of my person-
al favorites.

The first approach is to take your ready-to-map pieces of
geometry and break them down into a “flat pattern” to which
you can then apply a Planar-type mapping coordinate. This
approach is like breaking down a simple cardboard box. A more
complicated cardboard box, like a closet shoe storage box with
cubbyholes, would of course present a bigger challenge to flatten
out, but it can still be done. When you think about it, even an
automobile’s exterior body once started out as a series of flat-
patterned sheets of metal that were formed and welded into a
unique shape. This idea of reverse engineering the construction of
your model’s geometry requires you to know your way around
Max’s vertex manipulation and translation tools comfortably.
You can find third-party plug-ins to help you through this
process. Just remember always to clone a copy of this shape
before you deform it into something suitable for mapping,
because you will need it to morph (a compound object type for
creating geometry) your newly deformed object back to its origi-
nal shape. Use the copy as a morph target after you are done
with your map assignments (see Figure 5). Avoid deleting or cre-
ating new vertices in either copy of this object. This is important
to remember if you want to guarantee you’ll get back to the orig-
inal target shape during the simple morphing process. You can
temporarily hide this copy to get it out of your way while you
work on the other.

A second common approach to applying initial mapping coor-
dinates is to leave your object’s mesh intact and select a small
group of faces you wish to planar-map. Make sure that these
selected polygons all face the camera as if you were looking
down their normals. This puts your selected polygons perpendi-
cular to your camera. Assign a UVW Map modifier and set the
alignment to View Align, thus reorienting the mapping icon to
face the active viewport, which is the camera. This will be good
enough for a first pass at applying mapping coordinates for
these faces.

You could have easily rotated your object to put these selected
faces perpendicular to an active orthographic viewport. Often-
times, however, translating an object in world space presents prob-
lems with alignment to other objects. It can also throw off orienta-
tion during integration into your game. I don’t recommend it.

Evaluate Your 2D Image Space

T he Unwrap UVW modifier is used to assign planar maps to
subobject selections of polygons and to edit the UVW coor-

dinates of these selections (see Figure 6). I strongly suggest that
you become very familiar with the Unwrap UVW modifier. We
will use it as a UVW coordinate editor to unwrap and edit the
existing UVW coordinates which were created earlier using the

FIGURE 3 (above). Create a temporary bitmap
and assign it to your model. FIGURES 4, 5, and
6 (below, left to right). The editing modes of the
UVW Map and Unwrap UVW modifiers.

34

A R T I S T ’ S V I E W

a u g u s t 2 0 0 1 | g a m e d e v e l o p e r

UVW Map modifier. When the Unwrap UVW modifier is
applied, it takes the current UVWs applied to the object and
stores them in the modifier. If the incoming data on the modifier
stack (from bottom of the stack upwards) is a face-level subob-
ject selection, then only the UVWs for the previously selected
faces are brought into this modifier. These same selected faces
will display in the UVW window as UVW faces and UVW ver-
tices overlaying a 2D image space of the map. (Technically, I
should refer to bitmap coordinates as “UVs” instead of
“UVWs” because the “W” represents the axis that is generally
only used for procedural maps.)

You will want to scale and adjust your UVW vertices to
ensure you are getting a consistent pixel resolution and distri-
bution throughout your model. As you move the vertices
around, you will see the texture move about the surface of your
model as it updates in your viewport (see Figure 7). I suggest
you turn on Texture Correction at this time by right-clicking
the label of that viewport. Look at the checkered squares on the
surface of your model. If areas appear to have rectangular
checkers instead of square checkers then you have stretching
going on in the direction of the longer side of your black and
white rectangle. To correct this, select and scale the UVW ver-
tices that define those faces in Unwrap UVW using the Scale
Vertical or Scale Horizontal tools. If the checkers in some areas
appear to be larger or smaller than most (see Figure 8), adjust
in Unwrap UVWs using the uniform Scale tool until they better
resemble the other checkers.

Don’t be overly concerned about trying to use all of your 2D

image space. Depending on your texture detail, contrast, and
complexity, maintaining a consistent pixel resolution and clear
surface detail may be more important than using up every possi-
ble area in your 2D image space. With time and experience you
will get better at deciding which is more important as you adjust
your UVW lattice. When you are done with all of your mapping
you can weld your vertices back to quickly re-create the single
object with which you originally started.

Create Your Bitmap Iteratively

S ince a correctly named texture is already referenced to your
model and the mapping coordinates are also properly

applied, you are now ready to “improve” your existing bitmap.
If you’re like many 3D artists I know, the excitement is building
up knowing the fun part is only moments away. You’ve just
worked hard to prepare your model and you’re about to slap
down some cool colors and rich detail that will take this con-
tent to the next level of believability. I recommend that you do
a couple of things before starting to make this last iterative step
feel more interactive. Open and view your texture space in the
UVW window that displays the UVW faces of your entire
model. Take a screenshot to capture the 2D image space of the
map that shows all of the UVW lattice lines. This will put a
copy of what you see on your screen into your system’s clip-
board. Now launch Photoshop, if you don’t already have it
open, and create a new image by clicking on Control-N. Hit
Enter when the options box comes up to accept the new image
file with the default dimensions. Paste your clipboard image
into it by clicking Control-V. Now you have a wireframe print
of your UVW lattice for your mapped model as a reference.
Crop your image to include only the 2D image space area in the
image. Resize this image to 512�512 pixels using Image Size in
Photoshop, making certain that the Constrain Proportions
option is not checked. I like having a dark line wireframe refer-
ence image in a top layer with its layer-blending mode set to
Multiply and a low Opacity setting (see Figure 9).

Finally, to help automate the iterative process of saving an
updated copy of your image over the existing bitmap referenced
in Max’s Material Editor, we’ll create a Photoshop Action. By
doing so you can duplicate your image, hide or delete your wire-
frame reference layer, merge your other layers, save a copy of
this image file over your existing one, and close the file, all with
a single click of a button. You can now jump back into Max by
hitting Alt-Tab. With the Material Editor open and your Bitmap
Parameters>Reload button showing for your objects material,
you’re a click away from seeing how your new texture is shap-
ing up, all in the context of your model or scene. Can you want
more than that without the expense or learning curve of other
third-party software?

These steps are all you will need to know to improve your
skinning process and get up to speed with industry veterans. By
eliminating tons of guesswork during the mapping stage, you
can save yourself lots of time and headaches. Good art alone
requires enough of your time already — these basic steps should
buy you more time to create just that. q

FIGURE 7 (above
left). View your tex-
tures in the UVW
window that displays
the faces of your
entire model.
FIGURE 8 (above
right). Scale your
UVW vertices for
consistent pixel res-
olution. FIGURE 9
(left). A dark line
wireframe reference
image with its layer-
blending mode set to
Multiply and a low
Opacity setting.

a u g u s t 2 0 0 1 | g a m e d e v e l o p e r36

G A M E A I s t e v e n w o o d c o c k

I f last year’s Game Developers
Conference made it abundantly
clear that game AI and AI devel-
opers had finally “made it” and
were being taken seriously

throughout the design and production
process, the 2001 conference took things
up one more notch. Developers are turning
to tried and true engineering techniques to
build their AI, and it shows in the quality
of their products. No longer is AI jury-
rigged to meet the needs of the schedule;
developers are finding themselves with the
time to actually design their systems for
maximum flexibility and playability.
“Fuzzy” technologies have fallen by the
wayside in favor of solid, well-thought-
out, easy-to-modify designs — even Dr.
Marvin Minsky’s packed keynote address
at the GDC noted this trend.

Nearly every engineer I spoke to cited
one game as inspiration for taking the time
to do AI design right: Will Wright’s mas-
terpiece, THE SIMS. The success and flexi-
bility of THE SIMS’ design is easy to see —
the game continues to sell at the top of the
charts more than a year after its release,
and whole legions of add-on packs and
user-built objects are available to extend
and strengthen the lifetime of the game. By
taking the time to carefully craft his
“smart terrain” design, in which the ter-
rain and objects within the game broadcast
their ability to satisfy the needs and desires

of the Sims within the game, Wright was
able to lay the foundation for an AI system
that was extensible in ways he probably
never imagined. Users in turn have
responded by building and releasing hun-
dreds of objects; the most innovative is
probably the radio object released as a
publicity stunt that tunes in to a streaming
broadcast of that station over the Internet.

The influence of THE SIMS was evident
throughout AI designs described at the
conference. Developers have found that
having a solid design makes everything
much simpler if done correctly. It’s not a
panacea of course. As the SHADOW WATCH

team noted, their work is still “60 percent
design and 40 percent plugging holes.” But
the industry as a whole is a fair sight far-
ther along than it was a few years ago, and
the success of the thorough AI design in
THE SIMS will only serve to benefit game
players in the future as developers wrestle
with the problems of multiple platforms
and ever-shortening schedules.

Resources Revisited

T his year’s roundtables showed that the
resource availability trend for devel-

opers continues to hold steady from years
past (see Figure 1). Nearly 94 percent of
developers attending the roundtables
reported that they have at least one dedi-
cated AI developer on their current or

most recent project, and several have two
or more. One developer, Quicksilver,
boasted a total of three AI developers for
their upcoming MASTERS OF ORION 3 (not
unreasonable, given the immense scope
that the game promises to deliver).

Developers also continued to report
that they have more than enough CPU
time available. No developer present
thought that they had too few CPU cycles
to do the job, and some developers were
downright embarrassed at the riches
available to them. As in years past this
trend in part represents the enormous
growth in power of the CPUs available in
systems today — there’s just more horse-
power to be had. Developers continue to

S T E V E N W O O D C O C K | Steve’s background in game AI comes from 18 years of ballistic missile defense work building massive real-time
war games and simulators. He did a stint in the consumer arena, then returned to the defense world to help develop the AI for the national
missile defense system. He maintains a web page dedicated to game AI at www.gameai.com and is the author of a number of papers and publi-
cations on the subject. He now pursues game AI through a variety of contract work and served as contributor to and technical editor for sever-
al books in the field, most recently the Game Programming Gems series. Steve lives in gorgeous Colorado Springs at the foot of Pikes Peak
with his lovely wyfe Colleen and an indeterminate number of pet ferrets. His hobbies include hiking, shooting, writing, and working on old
GMC trucks (go figure). He can be reached at ferretman@gameai.com.

100
90
80
70
60
50
40
30
20
10
0

GDC1997 1998 1999 2000 2001

One or more
developers dedi-
cated to game AI

Percent of overall
game CPU reserved
for AI processing

Game AI: The State of the
Industry 2000–2001
It’s Not Just Art, It’s Engineering

Figure 1. The 2001 AI resource picture.

Pe
rc

en
ta

ge
s

w w w . g d m a g . c o m 37

Ill
us

tr
at

io
n

by
 C

la
ud

ia
 N

ew
el

l

credit this abundance to the powerful
graphics cards which are now fairly com-
mon in players’ systems, but the fact that
all of this extra CPU power isn’t just
being spent on eye candy is telling.

Tools of the Trade:
Trends of the Past Year

T he single most striking development
evident in the past year is the arrival

of true engineering techniques and disci-
pline to the AI problem. Not to say that
many developers are doing anything differ-
ent than they’ve ever done — there are
many excellent developers that have
always taken the time to design their AI
engines in the most efficient fashion possi-
ble. But it was evident at this year’s GDC
by the success of modular, well-engineered
games such as THE SIMS and the AGE OF

EMPIRES series that more developers than
ever before are being inspired to focus on
their designs before writing a single piece
of code.

Many developers have been taking their
design cues from studying the way that
nature has built organisms to handle their
environments. Artificial Life (A-Life) tech-
niques continue to gain popularity for the
simple reason that they work. A-Life seeks
to emulate the behavior of real-world
organisms by allowing developers to break
complex actions down into simpler, small-
er pieces. Combining the execution of
these many little actions leads to a phe-
nomenon called emergent behavior. When

tied to the motivations and needs of indi-
vidual AIs (for example, “I really want to
capture that city over there”), the interac-
tions that occur between the low-level,
explicitly coded behaviors and the higher-
level needs of each AI result in the emer-
gence of higher-level, more sophisticated,
more “human” behaviors. This in turn
makes the AI look smarter and appear
more motivated than scripted, and more
decisive than reactive.

Several of the presentations at this year’s
GDC reflected this continued interest in A-
Life techniques for games. Demetri Terzo-
poulos, John Funge, Bruce Blumberg, and
Craig Reynolds collaborated on a full-day
tutorial titled “Artificial Intelligence for
Computer Games” which focused on all
kinds of A-Life and biological techniques.
Terzopoulos focused on building artificial
animals with artificial sensory systems,
while Blumberg’s portion of the talk dis-
cussed learning in the animal world using
dogs as a model, and how these techniques
might be adapted to non-player characters
in a massively multiplayer online game.
The upshot of these discussions was that
by emulating nature, developers can auto-
matically get NPCs that look and act more
naturally. The standing-room-only crowd
at this presentation was a testament to
developer interest in learning to build AI
that acts more like an actual organic sys-
tem might.

Learning from the
Military: Team AI

P erhaps more significant than develop-
ers picking up tips from Mother

Nature is the trend among AI engineers to
focus on lessons from the military. In
roundtables and presentations, developers
expressed one common theme they’d
found useful in solving their AI design
problems: structuring their AIs into layers
or groups to better reflect operational doc-
trine and its abstraction of basic battlefield
problems. These layers go by a variety of
names depending on the application but
can be loosely defined as strategic, opera-
tional, and tactical. While not every game
necessarily needs or uses all three levels
(STARFLEET COMMAND, for example, uses
two levels, the Admiral and the Captain),
this is the conceptual model that develop-
ers say they are using as a starting point.

The strategic level of a layered AI is the
one that sets the goals. In a sports game,
this is the manager who decides, “Take the
end field.” In a real-time strategy game,
this is the Emperor who decides to attack
player X within 10 turns.

The operational layer of a layered AI
builds the plans for achieving those goals:
how many troops are needed to take a
given city, when transports need to be
available and where, and so on. The lofty,
generalized goals of the strategic layer are

a u g u s t 2 0 0 1 | g a m e d e v e l o p e r38

G A M E A I

ABOVE. SHADOW WATCH’S AI is both analytical
and extensible. RIGHT. The AGE OF EMPIRES

series continues to produce modular, well-
engineered games with strong foundations in
design.

broken down into smaller, testable, achiev-
able subgoals, and resources are allocated
to make them happen.

The tactical AI is pretty much what it
sounds like, the basic AI at the unit level of
the game. It could be the AI controlling an
individual football player who decides to
snap left instead of driving straight. It
could be the AI of an NPC in a first-person
shooter who decides to set up an ambush
to wait for the player. While responding to
the direction given to it by the operational
AI, this is also the level at which there are
individual motivations, needs, and decision
making which often make or break the sus-
pension of disbelief that is so very impor-
tant to the game-playing experience. If a
unit does something dumb here, this is
where the player will notice it.

Much of this focus on using military
tactics is due in part to the wave of squad-
level games that have come out in the last
couple of years. From S.W.A.T. 3 to
STARSIEGE and ROGUE SPEAR to SHADOW

WATCH, a number of games focused on
squads rather than supersoldiers and
forced developers to take a higher-level
design look at making groups of individu-
als work together realistically.

For example, the SHADOW WATCH team
gave an impressive presentation on the
design and implementation of their AI, and
it was apparent that some extremely
detailed analysis took place while they

were building the AI for this squad-level
game. While the strategic AI within the
game sets general goals (for example,
“assault that building”), the operational or
squad-level AI next analyzes the terrain
around the building for ideal approaches,
maximum cover, and so on. The individual
soldiers operating under the tactical AI
approach the building in their own unique
ways, some crawling, some running, and
others wary of the fact that they are low
on ammunition. While the game primarily
uses a series of prescripted attack styles
from which the squads choose, this doesn’t
take away from the detail of the design. It
was very simple for the SHADOW WATCH

team to add new attack and movement
styles as necessary throughout the game’s
development, having built the basic engine.
These basic action scripts can also be made
available to the player for modification
and extension, a trend which is becoming
ever more popular.

It’s interesting to note that while devel-
opers are generally very enthusiastic about
the possibilities of good team AI, there are
problems to overcome. One topic of dis-
cussion at the GDC roundtables was the
fundamental issue of how to handle what
the player doesn’t see. There was much
unhappiness that players often don’t see
how clever the team AIs in a given game
are. A player doesn’t always know, for
example, when a teammate AI takes out

an enemy soldier that has nearly ambushed
the player’s avatar. This in turn leads to a
difficult design decision, usually late in the
development process, that if the player
can’t see something and it just appears to
be random, then maybe it ought to be ran-
dom in order to conserve CPU resources
for the things the player can appreciate.
Feedback of some sort between the NPCs
and the player is vital.

Trends in Tools and
Analysis

N othing points to the focus on engi-
neering and design going into today’s

game AI as strongly as the development of
tools and analysis within the industry. In
my article last year (“Game AI: The State
of the Industry,” August 2000), I noted
that as developers were getting more com-
fortable with basic pathfinding in 2D and
3D worlds, they were turning to more
sophisticated tools such as terrain analysis
to make the pathfinding problem more
intelligent. This year was no exception,
with more games than ever before building
on some of the terrain analysis techniques
presented at previous GDCs or in the
pages of Game Developer, such as Dave
Pottinger’s excellent article, “Implementing
Coordinated Movement” (February 1999).

Briefly, terrain analysis is a technique in
which the AI analyzes the game map to
look for various natural features such as
choke points, ambush locations, and so

a u g u s t 2 0 0 1 | g a m e d e v e l o p e r40

ABOVE. The trend of squad-based games such
as STARSIEGE has forced developers to find ways
to make groups of individuals work together.
LEFT. REPUBLIC features “level-of-detail AI,”
which takes an algorithmic approach to keep-
ing runaway AI processing in check.

G A M E A I

42

on. While this comes naturally to most
humans, it’s not at all obvious to the AI.
Good terrain analysis can provide the AI
with several resolutions of information
about the game map that are well suited
to the various AI levels of decision mak-
ing. The problem is complicated by the
extreme popularity of randomized and
user-built maps. It’s often a toss-up
whether the analysis should be done
when a level is loaded, which slows down
gameplay, or during run time, which
means the AI is always working with an
incomplete picture.

This focus popped up in a number of
presentations and games. The Ensemble
team themselves completely revamped
their terrain analysis techniques while
working on AGE OF EMPIRES II: THE

CONQUERORS, resulting in AI that makes
better use of terrain, choke points, and
other level features than ever before. The
SHADOW WATCH team cited Pottinger’s
Game Developer article as inspiration for
much of their team-based AI battlefield
analysis that went into that game. William
van der Sterren made an impressive pres-
entation that built upon many of those
same techniques within a QUAKE 2 envi-
ronment to build a sniper-based game that
is uncanny in its ability to select the per-
fect place for an ambush.

Level-of-detail AI (LODAI). One of the
more interesting techniques that generated
widespread buzz at the conference was
Demis Hassabis’s presentation of what he
called “level-of-detail AI” (LODAI) that is
used in Elixir’s upcoming game, REPUBLIC.
A technique he developed to control run-
away AI processing in the game, LODAI
focuses on an algorithmic approach to
expanding and collapsing AI processing
that allows the bulk of the CPU resources
to be allocated to the areas directly in view
and control of the player. Off-screen AIs
such as those being used in other cities
don’t just run less frequently than the AIs
immediately before the player, as is com-
mon in many FPS and RTS games. Rather,
LODAI techniques ensure that those off-
screen AIs are abstracted using algorithms
developed by Hassabis’s team that can
provide the same general and believable
results as the more detailed algorithms, but
without the processing overhead.

Important details, such as dress colors for
important individuals within the game, are
maintained over and above the higher-level
AI algorithms using a technique called
augmentative transitive networks, a some-
what proprietary approach that Hassabis
himself designed.

It was interesting to see how quickly the
topic of LODAI was picked up at the
roundtables. Most developers felt that
LODAI was more of a tuning issue than
anything else, though there was general
agreement that an algorithmic approach, if
workable, could be a boon to saving pro-
cessing cycles. It turns out that the prob-
lem is one faced by a number of develop-
ers, as a variety of approaches beyond
those Hassabis outlined in his talk were
discussed by the attendees on how they are
handling LODAI in their projects. Current
solutions range from upping the priority of
individual AI threads to building the AI in
an event-based fashion so that agents far
from the player don’t get as much process-
ing time. Nobody had yet explored the
idea of an algorithmic approach (or at
least none said so publicly). Most develop-
ers felt that LODAI was ultimately some-
thing that they won’t worry about much
during development proper, but that is
important to the overall design.

Toolkits and SDKs. As mentioned in previ-
ous years, developers have a great deal of
interest in AI SDKs and toolkits, but few
are actually taking the time to try any out
for themselves. When the subject was
broached at the roundtables, nearly every
attendee wondered if anybody else had
used or was considering using one. It
turned out that nobody was using any
kind of AI SDK or middleware for pretty
much the same reasons as in previous
years — they didn’t feel they were practi-
cal, or currently offered sufficient benefits.
We discussed the various AI SDKs current-
ly available on the market (Mathematiques
Appliquees’ DirectIA, LouderThanA-
Bomb’s Spark!, and the new Biographic
Technologies’ Autonomous Character
Engine plug-in for Maya) and their poten-
tial benefits, but beyond the basic informa-
tion, nobody had used or considered using
them for any project. It is apparent that if
AI middleware is to gain widespread
acceptance, the developers of these toolkits

still have a lot of convincing to do. It will
have to be very clear that using the SDK
will save time and money.

There’s nothing like the state machine. It’s
beginning to sound like a worn record
from year to year, but once again develop-
ers at GDC 2001 described their game AI
as not being in the same province as aca-
demic technologies such as neural net-
works and genetic algorithms. Developers
continue to use simple rules-based finite-
and fuzzy-state machines for nearly all
their AI needs. Their basic simplicity
makes these approaches far easier to
understand, debug, and explain to the
level designer, and they work well in com-
bination with the types of encapsulation
seen in games using A-Life techniques as
mentioned above. Newer tools such as
scripting are simply seen as ways that pro-
vide developers and level designers with
more flexibility in building and tuning
their state machines.

Exotic technologies maintain a slim toe-
hold. Does this mean that developers are
stuck in a rut? Could it be that while
they’re designing perfectly solid AIs that
have extensibility and flexibility and all
kinds of wonderful features, they’re com-
pletely overlooking the possibilities of
more exotic AI technologies? Not really.
There are some developers who are look-
ing at other possibilities while making sure
they get their job done in a timely fashion.
One developer, who asked not to be identi-
fied, is hard at work exploring the possi-
bility of using genetic algorithms as part of
his upcoming massively multiplayer online
game. He’s interested in setting up little
“genetics labs” on each player’s computer
while they’re online and using those labs
to generate bits of story line for the larger
online game itself. These would be based
in part on the actions of the players and
their interactions with others, then
uploaded to the main game server when
the players log off for the night. There, the
main server would splice together bits and
pieces of story lines from hundreds of
players to dynamically generate new
adventures and story lines for everybody
else the next day. This is certainly an
intriguing idea, if it can be pulled off.

However, that anecdote is the exception
rather than the rule. Exotic AI technolo-

a u g u s t 2 0 0 1 | g a m e d e v e l o p e r

G A M E A I

gies simply aren’t getting much attention
anymore. A few developers at the roundta-
bles talked about the possibilities, but they
didn’t get a great deal of encouragement
from the “old hands” who had already
explored these technologies. There is gen-
eral agreement that the fuzzier AI tech-
nologies sound really great, but they sim-
ply can’t deliver the kind of predictable,
understandable, and, most importantly,
tunable control over a game’s AI that
developers really need.

Where Game AI Is Going

A favorite topic of discussion among
developers at the AI roundtables is

where game AI and game AI technology
are headed. There are always a lot of opin-
ions on this subject, which of course is
what makes it interesting.

Everybody agreed that developers
would continue to gain in terms of
resources, barring some catastrophic
development in physics or speech synthe-
sis that would suddenly pull resources
away. There is no doubt that game AI will
continue to play an ever more important
role in most games, if only because there
will be fewer other features differentiating
between most products. Most AI develop-
ers feel that the industry will continue to
move away from hard-coded, monolithic
AIs toward designs which are more flexi-
ble and better thought out, as witnessed
by the talks at this year’s GDC. It is wide-
ly believed that extensible and “roll your
own” AIs will continue to receive some
attention so long as players demand it
and there is any business case whatsoever,
and most feel that we will see these
advancements slowly make their way into
the multiplayer online games as a matter
of course.

Many developers feel that the future of
games lies heavily in the online multiplay-
er market, but this by no means is the end
of the need for good AI. Players are going
to demand sophisticated NPCs in their
online games, and developers will contin-
ue to scramble to provide new and better
ways for those NPCs to interact in a
believable fashion with the player. A deli-
cate balance is necessary here: an NPC
that is too smart detracts from the player’s
game, while an NPC that can’t be trusted

to keep the horses safe will make players
feel like their money is being wasted by
the online experience. It is evident that
much research is going to be done in this
area in the coming years.

One topic which popped up briefly,
because the game had only just hit the mar-
ket when GDC was happening, was the AI
in Lionhead Studios’ BLACK & WHITE and
what that meant for future games. (See
Richard Evans’s article in this issue, “The
Future of AI in Games: A Personal View,”
based largely on his experiences developing
the creature AI for BLACK & WHITE.) The
avatars in BLACK & WHITE are somewhat
different from those in most games, in that
they are heavily influenced by and learn
from the actions of the player and the
world around them. While they start out
fairly ignorant, they rapidly learn both from
player training (or beating) and observation
of where food is, what kinds of things are

acceptable to do and what aren’t, and so
on. The overall design appears quite sophis-
ticated and powerful. All of this tied in
heavily with the perceived need for better
NPCs in the online multiplayer games, since
these are exactly the characteristics develop-
ers are striving for in those games. It was
generally expected that there would be
much study of the BLACK & WHITE AI in
the upcoming year.

Game AI continues to be the single
most innovative and fastest-growing seg-
ment of the game industry. Developers
have a solid feel for what works and are
beginning to experiment with designs that
let them meet their schedules while still
allowing for some experimentation and
evolution. There are no more CPU con-
straints; AI teams are now large enough
to allow for all kinds of innovation to
come down the road. This is a great time
to be a game AI developer. q

44 a u g u s t 2 0 0 1 | g a m e d e v e l o p e r

F O R M O R E I N F O R M AT I O N

BOOKS
The past year has seen several excellent AI
references come to the market. Probably the
best is the Game Programming Gems series by
Charles River Media. Game Programming Gems,
edited by Mark DeLoura, was published in
August 2000 and, while not exclusively AI-ori-
ented, has a heavy AI section that has proven
very popular. Game Programming Gems 2 is due
out as this issue goes to press and again has
a section heavy on AI techniques and tips.
Charles River Media has also announced a
third volume, tentatively titled AI Wisdom, which
will use the same “Gems-style” format focus-
ing exclusively on game AI. That book is slated
for publication at GDC 2002.

WEB SITES
Far and away the best place to find out more
about any aspect of game AI is on the web.
There are more excellent sites filled with tuto-
rials, information, and sample code than any-
body could possibly list in one place. Some of
the ones I recommend include:

www.gameai.com. The author’s own site, dedi-
cated to all things game AI related. Provides

links to other AI resources, reviews on AI
implementations in games already on the
market, and archives of various Usenet
threads.

www.gamasutra.com. The sister site to Game

Developer magazine continues to be an excel-
lent discussion area for people with game AI-
related questions. The game AI discussion list
there is among the largest on the site.

www.gdconf.com/archives/proceedings/2001/

homepage.htm. The proceedings for all of the
many excellent AI design papers presented at
GDC 2001 can be found at the conference web
site.

www.gamedev.net. Another excellent site dedi-
cated to all aspects of game development, it
has an extensive list of resources and an
active discussion group on game AI.

www.pcai.com/pcai. PC AI magazine has a mar-
velous web site crammed with all kinds of
useful AI resources. From sample apps to
research papers, you can find it here.

G A M E A I

w w w . g d m a g . c o m 45

I n this article, I will describe some
AI techniques which, I believe,
will become increasingly com-
monplace in computer games. The
conclusions I draw are based on

my experience developing the minds of the
creatures in Lionhead Studios’ BLACK &
WHITE, a god game with lofty ambitions
released earlier this year to critical and
commercial acclaim.

We’ll start by looking at the creatures in
BLACK & WHITE, and then go on to specu-
late about what sorts of interesting agents
we can expect in computer games in the
next few years.

The creatures in BLACK & WHITE had to
fulfill two very different requirements. First,
we wanted users to feel they were dealing
with a person. The creatures had to be
plausible, malleable, and lovable. Second,
the creature had to be useful to players in
their many quests and goals. In BLACK &
WHITE the creatures aren’t just toys you
experiment with, they can be trained to be
invaluable helpers in the campaign.

To my knowledge, this combination of
features has not been attempted before.
There are titles such as CREATURES and
THE SIMS in which you feel you are dealing
with passably plausible agents, but these
packages, excellent as they are, are more
like sandboxes than games: they are pure
goal-less simulations in which the enter-
tainment is to be gained from experimen-
tation, not from progressing through a
series of quests. And then there are games
such as DAIKATANA, in which the player’s
character is given helpers to aid on the
quest, but in these games the helpers are
just state machines, hard-coded for the
particular task at hand.

At first glance, there seems to be some
conflict between BLACK & WHITE’S two
requirements. The person-like requirement
implies the creatures are autonomous,
whereas the usefulness requirement seems to
preclude too much autonomy. Later on we
shall see how this conflict was “resolved.”
To start, let’s look at the first requirement,
making persons out of creatures.

Making a Person: The
Architecture of an
Agent

In order for the player to see his crea-
ture as a person, the creatures had to

be psychologically plausible, malleable,
and loveable.

Psychologically plausible agents. To make
agents who were psychologically plausible,
we took the belief/desire/intention architec-
ture of an agent, fast becoming orthodoxy
in the agent programming community, and
developed it in a variety of ways. The
underlying methodology was to avoid
imposing a uniform structure on the repre-
sentations used in the architecture, but
instead to use a variety of different types
of representation so that we could pick the
most suitable representation for each of
the very different tasks (see Marvin
Minsky’s paper on Causal Diversity in For
More Information). Beliefs about individ-
ual objects were represented symbolically
as a list of attribute-value pairs, beliefs
about types of objects were represented as
decision trees, and desires were represented
as perceptrons. There is something attrac-
tive about this division of representations
— beliefs are symbolic structures, whereas
desires are more fuzzy.

The augment-
ed belief/desire/inten-

tion architecture used by
creatures in BLACK & WHITE is shown in
Figure 1. Creatures use desires, beliefs, and
opinions (which are like universally quanti-
fied beliefs) to construct an overall plan.
For instance, the creature might decide to
attack a certain town. Next, he refines his
plan from having a general goal to using a
specific action, such as deciding to fireball
a particular house in that town. Finally, he
breaks that action into a number of simple
subtasks which are sequentially executed.

To make a plausible agent, there must be
an explanation of why he is in that particu-
lar mental state. In particular, if an agent
has a belief about an object, that belief
must be grounded in his perception of that
object. Creatures in BLACK & WHITE do
not cheat about their beliefs — their beliefs
are gathered from their perceptions, and
there is no way a creature can have free
access to information that he has not gath-
ered from his senses. I call this requirement
epistemic verisimilitude.

Further, if a creature wants something,
there must be an explanation of why he
wants it. For example, if the creature is
angry, it might be because he has been
watching you being destructive and has

The Future of
AI in Games:

A Personal View

a u g u s t 2 0 0 1 | g a m e d e v e l o p e r46

R I C H A R D E V A N S | Richard is head of artificial intelligence at Lionhead Studios. He studied
philosophy at King’s College, Cambridge, and then went on to do an M.Sc. in AI at Edinburgh. At
the IBM Research Centre, Richard worked on computational natural-language processing. He has
also worked as a research consultant at the Institute of Economics and Statistics, Oxford Universi-
ty. Before he joined Lionhead, Richard tinkered with AI techniques in his bedroom.

Desires
(perceptrons)

Opinions
(decision trees)

Beliefs
(list of attributes)

Overall Plan
(goal, main object)

Specific Plan
(action, object list)

Primitive Action
List

FIGURE 1. The belief/desire/intention architecture
used for creatures in BLACK & WHITE.

F U T U R E G A M E A I r i c h a r d e v a n s

decided to copy you; or, the creature might
grow angry after getting hurt. Each desire
has a number of different desire-sources
which jointly contribute to the current
intensity of the desire. For example, there
are three possible explanations of why a
creature could be hungry: his energy could
be low, he could have seen something that
he knows is tasty, or he could be sad. By
tweaking the thresholds of these three
sources, you can make a variety of different
sorts of personalities: creatures who only
eat when they are starving, creatures who
are greedy, even creatures who binge-eat
when they are depressed (see Figure 2).

Malleable agents. We wanted the crea-
tures to be malleable in many different
ways; we wanted them to learn many dif-
ferent types of things, and we wanted there
to be many different types of situations
that would prompt learning. “Learning”
covers a variety of very different skills:
• Learning that (for example, learning

that there is a town nearby with plenty
of food)

• Learning how (for example, learning
how to throw things, improving your
skill over time)

• Learning how sensitive to be to different
desires (for example, learning how low
your energy must be before you should
start to feel hungry)

• Learning which types of object you
should be nice to, which types of object
you should eat, and so on (for example,
learning to only be nice to big creatures
who know spells)

• Learning which methods to apply in
which situations (for example, if you
want to attack somebody, should you
use magic or a more straightforward
approach?)

The architecture was designed to allow all
these different types of learning. Learning
can be initiated in a number of very differ-
ent ways:
• From player feedback, such as stroking

or slapping the creature.
• From being given a command. When

the creature is told to attack a town,

the creature learns which sort of towns
should be attacked.

• From the creature observing others,
such as the player, other creatures, or
villagers.

• From the creature reflecting on his expe-
rience: after performing an action to sat-
isfy a motive, seeing how well that
motive was satisfied, and adjusting the
weights representing how sensible it is to
use that action in that sort of situation.

The architecture was designed to allow all

w w w . g d m a g . c o m 47

H ow does a creature learn what sorts of
objects are good to eat? He looks back at his

experience of eating different types of things and
the feedback he received in each case, as well as
how nice they tasted, and tries to “make sense” of
all that data by building a decision tree. Suppose
the creature has had the following experiences:

He may build the following simple tree to explain
this data:

A decision tree is built by looking at the attrib-
utes which best divide the learning episodes into
groups with similar feedback values. The best deci-

sion tree is the one which minimizes entropy. The
entropy is a measure of how random the feedbacks
are. If the feedbacks are always 0, there is no ran-
domness; entropy is 0. If the feedbacks are always
1, again there is no randomness and entropy is 0.
But if the feedbacks alternate between 0 and 1, the
feedback is random and unpredictable; entropy is
high. We build a decision tree by choosing attrib-
utes that minimize the entropy in the feedback.

To take a simplified example, if a creature was
given the following feedback after attacking
enemy towns:

Then the creature would build a decision tree for
Anger like this:

The algorithm used to dynamically construct
decision trees to minimize entropy is based on
Quinlan’s ID3 system (see For More Information).

Learning Opinions: Dynamically Building Decision Trees

A big rock –1.0
A medium rock –0.5
A small rock –0.4
A tree –0.2
A cow +0.6

What he ate Feedback — “How
nice it tasted”

Animate Inanimate

Animate or Inanimate?

–0.5+0.6
Friendly town, weak defense, tribe Celtic –1.0

Enemy town, weak defense, tribe Celtic +0.4

Friendly town, strong defense, tribe Norse –1.0

Enemy town, strong defense, tribe Norse –0.2

Friendly town, medium defense, tribe Greek –1.0

Enemy town, medium defense, tribe Greek +0.2

Enemy town, strong defense, tribe Greek –0.4

Enemy town, medium defense, tribe Aztec 0.0

Friendly town, weak defense, tribe Aztec –1.0

What he attacked Feedback from player What he attacked Feedback from player

Allegiance:
Friendly

Allegiance:
Enemy

Allegiance?

–1.0
Defense?

Defense:
None

Defense:
Medium

Defense:
Maximum

+0.4 +0.1 –0.3

Low
Energy

Tasty
Food

Desire to Eat

Depressed

Thresholds

1

0 1

Entropy

Ratio of Rewards to Total Feedback

FIGURE 2. Desire sources contribute to the
intensity of desire experienced by a creature.

these different ways in which learning can
be initiated.

All these different types of learning,
and different types of occasions which
prompt learning, coexist in one happy
bundle. I will only go into detail about
one of these types of learning, learning
which types of objects are most suitable
for various different desires. (See the side-
bar “Learning Opinions: Dynamically
Building Decision Trees.”)

Lovable agents. We wanted the player to
feel emotionally attached to the creature.
We soon realized that empathetic attach-
ment is intrinsically reciprocal. The reason
why it is childish to feel emotionally
attached to your teddy bear is because
your teddy is not going to reciprocate.
Conclusion: If you want the player to get
attached to the creature, you must first
ensure the creature is empathetically
attached to the player.

Agents in computer games are at best
like severely autistic people. They are capa-
ble of perceiving and predicting the behav-
ior of objects in the world, but incapable
of seeing other people as people — inca-
pable of building a model of another
agent’s mind which could be used, to great
effect, to predict its actions.

In BLACK & WHITE, the creature’s mind
includes a simplified model of the player’s
mind. He watches what actions the player
is performing and tries to make sense of
those actions by ascribing goals to the
player which would explain those actions.
He stores a simple personality model of the
player, which he uses in decision making.
He also has goals which relate directly to
his master: the desire to help his master,
the desire to play with his master, and the
desire for attention.

Making a Useful Person:
Autonomy Can Go Too
Far!

T he creatures in BLACK & WHITE had to
be person-like, but they also had to be

useful. The person-like requirement implies
the creatures are autonomous, whereas the
usefulness requirement seems to preclude
too much autonomy. How can we resolve
these conflicting requirements? The solution
we arrived at was that creatures start off
completely autonomous, but over time,

through training, the player can mold them
so that they only do what the player wants
them to do. This gives players an enormous
feeling of satisfaction that they have trained
the creature to actually be useful in the
game. The downside is that your creature
loses something of his charm the more you
train him. He becomes more focused on a
few goals in a few situations on a few types
of objects. As he becomes more useful, he
becomes more “robotic.”

A related issue, equally difficult to bal-
ance, is to what extent should the creature
start off being a blank slate, or should we
give him knowledge at birth to enable him
to be more useful? When the first creature
was put into the game world, he just stood
there, staring at his feet. I was expecting
him to exhibit more interesting behavior
than this and was rather disappointed. After
debugging, it turned out the reason he was
just standing there staring at his feet was
that he was very hungry, had looked around
for something to eat, and had chosen him-
self as the nearest candidate foodstuff. He
kept trying to pick himself up, failing, and
trying again. Now, we could have just left
this in there and had creatures learn over
time that they cannot eat themselves, and
learning from failure. However, this would
have been learning for learning’s sake, not
interesting in a game world, so we gave the
creature the additional knowledge that he
cannot eat himself.

Creatures can also learn the healing spell,
and early on in development we had crea-
tures learning which sorts of things to try
to heal. They would try anything — they
would even try to heal rocks. Again, this
sort of thing is flexibility for flexibility’s
sake, and just means that the initial crea-
tures are more dysfunctional and the play-
ers have more to do to train them. In the
end, we just insisted that the only sort of
thing you can heal are living things and
houses — there is still enormous room for
variety of behavior within these more sensi-
ble constraints.

Future Directions:
Extrapolating from
BLACK & WHITE

N ow we shall move on and consider
how the concept of a semi-

autonomous helpful agent can be expand-

ed. These are the things we are hoping to
do next:

Person-like agents. What could we do to
make more realistic agents? First, we
could give them an infinite number of
goals. Creatures in BLACK & WHITE have a
finite number of goals. People, by con-
trast, have an indefinite number of goals:
you can want to write a story, you can
want to write a detective story, you can
want to write a detective story in which
the detective is a woman, you can want to
write a detective story in which the detec-
tive is an old, cantankerous woman, and
so on. Desires have the same combinatori-
al structure as human language itself, and
this needs to be captured explicitly.

Additionally, there needs to be an infi-
nite number of ways of satisfying goals
with real-time planning. Creatures in
BLACK & WHITE use plan libraries to
work out what to do. The creatures know
(at birth, if you like) that there are k ways
of satisfying a particular goal. When they
try to satisfy that goal, they just go
through those k ways, seeing which is
most suitable in the current situation.
People, by contrast, sometimes use real-
time planning, where they generate novel
ways of satisfying a goal by trying out
various options and considering the
results of those actions. This is computa-
tionally expensive but gives the agent a
freedom and flexibility currently missing.

What advantages would these additions
give us? They would give us an indefinite
amount of flexibility in possible behavior.
Even with a finite number of different ani-
mations the agents can play, these addi-
tions would enable an indefinite number of
different ways of sequencing these anima-
tions. (Important parallel: There are only a
finite number of words in a language, but
an infinite number of possible sentences.)

Empathetic agents. If we want to make
more plausible agents, we enrich the men-
tal model of the agent. If we want to make
more empathetic agents, we enrich the
mental model that the agent uses to model
other agents. (These two are quite distinct:
the latter is invariably going to be simpler
than the former, for space-efficiency rea-
sons. The agent is going to have models
about lots of different agents, so these
models should be small.) The creatures in
BLACK & WHITE have simple models of

a u g u s t 2 0 0 1 | g a m e d e v e l o p e r48

F U T U R E G A M E A I

other agents’ minds; they just model the
desire part of the architecture. Wouldn’t it
be nice to add more?

The trouble is that the more we enrich
the agent’s model of other agents, the hard-
er it is for the agent to figure out what the
other agent is thinking. For instance, sup-
pose our agent’s model of another agent
includes data about the other agent’s beliefs
as well as his desires. Then we have made
the task of understanding the other agent
considerably harder, because there will be
more models which fit the data, and it will
be harder to figure out which is best.

Suppose, for instance, that an agent fails
to eat the apple. This might be because he
hasn’t seen the apple (and consequently has
no belief about it), or because he doesn’t
like apples, or because he just isn’t hungry.
Which of these is the right explanation? We
can’t tell until we have seen a lot of exam-
ples. (This problem just doesn’t arise if you
keep an excessively simple model of other
agents: if you just model them as a bunch
of desires, then the only possible explana-
tion is that he isn’t hungry.)

There are proposed solutions to this in
philosophical literature: the principle of
charity solves the apple problem by
assuming the agent’s beliefs are correct,
but if we are going to assume this across
the board, then there is no point in model-
ing beliefs at all. We can sidestep this
problem by keeping a number of alterna-
tive possible models of an agent’s mind,
but this requires even more storage space.
These problems are not intractable, but do
show that making a deeper model of
empathy isn’t particularly trivial.

What advantage would a deeper model
of empathy give us? If agents had a richer
model of other agents’ minds, they could
use it to understand language. As the
philosopher Paul Grice argued, under-
standing that agent X is saying P involves
understanding that X wants me to believe
P, and understanding that X wants me to
believe that X wants me to believe P (and
so on). More generally, interesting social
behavior involves the modeling of other
agents’ minds. (For example, deception
involves understanding that if you say P, X
will believe P, and will then do A.) At the
moment, communication with computer
agents in role-playing games involves
choosing from a small, finite list of canned

sentences. Empathetic mod-
eling of other agents’ minds is
the key here.

Summary

O f the concepts I’ve presented in
this article, there are three fea-

tures from BLACK & WHITE that I
expect will become increasingly com-
monplace in game AI in the coming
years. First, agents’ minds will come to

include both
symbolic

and connec-
tionist representations, happily
coexisting in one unified
architecture. Second, they will
become both more person-like

and useful in the game. And
finally, they will become more

empathetic, constructing models of
other agents’ minds and using these
models in planning. q

w w w . g d m a g . c o m 49

F O R M O R E I N F O R M AT I O N

BELIEF/DESIRE/INTENTION ARCHITECTURES

Rao, Anand S., and Michael P. Georgeff. “Modeling

Rational Agents within a BDI-Architecture.” Pro-

ceedings of the 2nd International Conference on

Principles of Knowledge Representation and

Reasoning, 1991.
http://citeseer.nj.nec.com/rao91modeling.html

MARVIN MINSKY ON CAUSAL DIVERSITY
www.ai.mit.edu/people/minsky/papers/

CausalDiversity.html

QUINLAN’S ID3: DYNAMIC LEARNING OF
DECISION TREES

Quinlan, J.R. C4.5: Programs for Machine Learning.

Morgan Kaufmann, 1993.

http://yoda.cis.temple.edu:8080/UGAIWWW/
lectures/C45

PAUL GRICE’S THEORY OF MEANING

Grice, H. P. “Meaning.” The Philosophical Review.

Vol.66 (1957): 377–388.

Collision
Detection
Using Ray

Casting

G ame physics can be divided up into three distinct
and (usually) separate phases: simulation, collision
detection, and collision response, colloquially
known as which way do I go, what did I hit, and
where do I go from here.

Collision detection is generally the bottleneck of the three. It is
a math-intensive task to determine when something hits some-
thing else, and even today’s high-horsepower PCs and consoles
can choke on the load. To throw gas on that fire, games are con-
tinually getting more complicated, with more objects to simulate,
more polygons to collide against, and more sophisticated physics.
As the physics programmer on Volition’s recently released
Playstation 2 FPS, RED FACTION (RF), I can tell you that flame
burns hot.

RF takes physics complexity to a new level, beyond most current
games. Volition’s proprietary GeoMod engine is designed to allow
real-time arbitrary geometry modification, something that hasn’t
been done in a 3D game before. This means that a player can point
a rocket at any wall and create a gaping hole to jump through. The
big problem this poses for collision detection is that it eliminates a
lot of the preprocessing tricks that can be used to optimize calcula-
tions. A BSP tree, for example, is not something that you can
recompute between frames if the level geometry changes.

A second design challenge for RF is a very ambitious physics
engine. When the player blows up a bridge (for example), big
chunks of rock should break off and tumble to the ground in a
realistic way, maintaining angular momentum and picking up spin
from friction with the ground. These computations take up a lot
of CPU cycles and require a pretty accurate collision detection sys-
tem to look right.

So, we can use no preprocessing and we need high accuracy.
What kind of collision detection is going to work with these terri-
fying caveats? Let’s take a brief look at some of the options.

a u g u s t 2 0 0 1 | g a m e d e v e l o p e r50

C O L L I S I O N D E T E C T I O N t i m s c h r o e d e r

T I M S C H R O E D E R | Tim is a programmer working at Volition in
Champaign, Ill., and a card-carrying member of the Canadian brain

drain. When the big Canuck isn’t beating his head against a wall try-
ing to solve collision detection problems, he can usually be found

doing something sporty. He can be reached at tims@volition-inc.com.

FIGURE 1. Good old terra firma, minus the firma.

Intersection Testing

B y far the most popular form of collision detection in games,
intersection testing is conceptually simple and robust. It

works by checking an object’s desired position and determining
whether it will intersect the world or another object. If it will
intersect, the object is backed up and tested again, recursing until
no collision occurs. The common algorithm for this process is a
binary subdivision of the distance between the last valid position
and the desired position of the object. The beauty of binary subdi-
vision is that it allows you to find a happy medium between accu-
racy and speed by tuning the number of iterations.

There are a number of methods for doing the actual intersec-
tion test, from axis-aligned bounding boxes to convex hulls
employing Voronoi regions. There are also a number of prepro-
cessing steps that can make the intersection testing faster. A com-
mon method is to generate a BSP tree of the world geometry. This
simplifies the intersection test to a series of plane equations and
nicely subdivides the world into a hierarchical tree of valid areas.
You can also use a simplified set of planes to define the bound-
aries of the world separate from the rendered geometry to cut
down on the complexity of the collision detection.

The main problem with intersection testing is that for any mov-
ing object you can choose a sufficiently large frame time and a
sufficiently high velocity such that the object moves completely
from one side of an obstacle to the other without intersecting it.
Thin walls pose a significant problem for that reason. This was a
big strike against that method when evaluating schemes for RF,
since the player can make all manner of malformed geometry by
blowing away chunks of the world. In a controlled environment
restrictions can be put on level designers to solve this problem,
but it’s impossible to do the same for the player.

Ray Casting

R ay casting is fundamentally different from intersection test-
ing in that it projects the object along the path from its last

valid position to its desired position and attempts to determine the
exact time that the object collides with an obstruction (see Figure
2). This is a fairly simple operation with a particle, but it becomes
much more expensive with objects of volume. To cut down on
complexity, the object is generally approximated with simple

shapes, such as a bounding box, a collection of spheres, or possi-
bly a convex hull.

The advantage of this system is that it only requires one itera-
tion and the results are more accurate than multiple iterations of
binary subdivision intersection. The drawback is that the collision
calculation is more expensive than an intersection test for objects
of equal complexity. The trade-off between speed and accuracy
becomes more apparent at high velocities.

The preprocessing steps that are applicable to intersection test-
ing are just as applicable to ray casting. Unfortunately, most of
them assume a static world and thus are not applicable to RF.

Our Design

A fter evaluating the options for RF, ray casting came out the
clear winner. Even so, there was a whole host of optimiza-

tions we needed in order to make the collision detection speedy
enough. In the rest of this article, I’ll detail the collision detection
methods implemented in RF. But first, let’s look at a roadmap of
the system as a whole.

At the highest level, the world in RF is divided into a series of
rooms separated by portals. This is a common rendering opti-
mization that nicely breaks the world up into bite-sized chunks.
The polygons located in a room are organized into a binary tree
of bounding boxes. At the lowest level, the polygons themselves
each have individual bounding boxes around them. In order to
collide an object with a polygon, the object’s bounding sphere is
used. The object first has to pass through the right room, then the
right section of the bounding box tree, and finally the bounding
box of the polygon.

Now that you have an idea of how our collision detection sys-
tem works, let’s start with the basics and work our way up.

Simple Particle/Polygon Collisions

T he simplest form of ray casting boils down to a particle
(which has no volume) moving through space, and a polygon.

There are two tests to perform when doing collision detection
with a particle:
1. Where does the particle cross the plane of the polygon?
2. Is that collision point inside the polygon?

The first test is greatly simplified if the plane equation of the
polygon is known. In RF each world face stores its plane equation
to keep from having to recompute it every time it is needed.

Let me clarify what constitutes a collision. A collision occurs
when an object passes from the front of a polygon to the back.
Objects moving in the other direction are not considered.

Now that we’re clear, let’s collide our particle with the plane.
To do this we need the initial position of the particle, its path dur-
ing this frame, and the plane equation of the polygon. The algo-
rithm is very simple:
1. Find the distance (dist) from the particle to the plane.
2. Find the length (len) of the path vector along the normal of the

plane.
3. Determine the time of the collision using distance divided by

length.

w w w . g d m a g . c o m 51

0

0 1

3 2 1

intersection testing

ray casting

FIGURE 2. Intersection testing versus ray casting.

If the time of the collision is negative, the plane is behind the
particle. If the time is greater than 1, the plane is too far away to
hit this frame. The code to find the collision point follows. Note
that path is the vector from the current valid position of the parti-
cle to the desired position, and it is not normalized.

bool collide_line_plane(vector &pos, vector &path, plane &pl,

float &time)

{

float dist, len;

dist = pl.distance_to_point(pos);

if(dist < 0) {

// behind plane

return false;

}

len = -(path * pl.normal); // Vector dot product

if(len < dist) {

// moving away from plane or point too far away

return false;

}

time = dist/len;

return true;

}

If the particle has crossed the plane this frame, the time variable
will contain the fraction of the frame time at which the collision
occurred. The collision point P can then be found with the follow-
ing parametric equation:

P = (path � time) + pos

Now we need to see whether that hit point is within the bound-
aries of the polygon. To do that, we reduce the problem to two
dimensions by eliminating one of the world axes from our calcula-
tions. We eliminate the dominant component of the normal to get
the best projection onto a plane formed by two of the three axes.
Representing the vectors as arrays, those two remaining axes are
identified by the indices j and k. We then compute 2D vectors for
the hit point P and two vertices V1 and V2 relative to the third
vertex,V0:

A = V1 – V0

B = V2 – V0

C = P – V0

This allows us to describe the hit point as the sum of two of the
edges of the polygon:

C = α A + βB

We can now solve for α and β using determinants:

α = (B
k
C

j
– B

j
C

k
) / (A

j
B

k
– A

k
B

j
)

β = (A
j
C

k
– A

k
C

j
) / (A

j
B

k
– A

k
B

j
)

Three conditions must be satisfied for the point to be inside
the polygon:

1. � ≥ 0
2. � ≥ 0
3. � + � ≤ 1

If all three conditions are true, we have found a collision. Note
that this algorithm only works on triangles. N-sided polygons will
have to be triangulated first or the algorithm modified to loop
through the vertices of the polygon three at a time. For further
detail on this algorithm, see For More Information.

Crank up the Volume

C olliding rays with polygons is all well and good for a parti-
cle system, but our objects have some volume, so we need

something more complex. There are a number of possible tech-

a u g u s t 2 0 0 1 | g a m e d e v e l o p e r52

C O L L I S I O N D E T E C T I O N

normal

path

len dist

pos

FIGURE 3 (above). Colliding
with the plane.

FIGURE 4 (right). Deter-
mining if the hit point is

inside the polygon.

P.

V

V
V

0

1

2

FIGURE 5. Objects are just collections of spheres.

niques for approximating an arbitrary object to use in collision
detection. These include bounding boxes, collections of linked
particles, and convex hulls. In RF, objects are approximated by a
collection of spheres.

Spheres have a number of wonderful properties for collision
detection, not the least of which is that a sphere has the same
shape from every viewing angle. This makes colliding a sphere
with a polygon very similar to colliding a particle. When a sphere
bumps into a plane, it’s always the point closest to the plane that
touches, so if we find that point we can then pass it and the
sphere’s path into the collide_line_plane() function described earli-
er to determine the hit point. The point on a sphere (centered at
pos) that’s closest to the plane pl is found using the equation:

P = pos – (pl.normal � r)

Sphere/edge collision. The complication, however, is that if the
hit point isn’t located within the polygon, it is still possible for the
sphere to have hit just an edge of the polygon, or even just a ver-
tex. Let’s look at the edge case first — we need a function that can
determine the collision of a sphere with a line segment (an edge of
the triangle).

Two conditions are true when a collision occurs: First, the dis-
tance from the line to the sphere center is equal to the radius of
the sphere, and second, the vector from the hit point to the
sphere center is perpendicular to the line (in other words, their
dot product equals 0). If we put our conditions into equations
we get:

1. (hit_pos – hit_point) • (hit_pos – hit_point) = r2

2. (hit_pos – hit_point) • (V1 – V0) = 0

Where the position of the sphere at the time of impact is given by
the parametric equation:

hit_pos = (path � hit_time) + pos

and the hit point on the edge is likewise given by the parametric
equation:

hit_point =[(V1 – V0) � dist] + V0

The two things we need to compute are hit_time, which is the
time when the sphere hits the line, and dist, which is the distance
from V0 along the line to where the sphere touches when they col-
lide. Hit_time must be between 0 and 1 for a collision to occur in
this frame, and dist must be between 0 and 1 for the hit point to
be between the end points of the triangle edge. That leaves us with
two equations and two unknowns. If you’re like me this is when
you break out Mathematica.

Once the equations have been simplified and solved, we wind
up with a quadratic function in the form y = ax2 + bx + c. The
roots of that function are the hit_time values for collisions of the
sphere with the line subject to our constraints. The coefficients (a,
b, and c) of the quadratic turn out to be an unholy concoction of
dot products:

a = (Ve • Vs)2 – (Ve • Ve)2

b = 2 � [(Vd • Ve) � (Ve • Vs) – (Vd • Vs) � (Ve • Ve)]
c = (Vd • Ve) � (Vd • Vs) + [r2 � (Ve • Ve)] – [(Vd • Vd) � (Ve • Ve)]

Once we have a, b, and c we can plug them into the quadratic
formula and see what comes out. The quadratic formula, which
you probably thought would never come in handy outside a high
school math class, is:

If b2 – 4ac (the determinant) is less than 0, the solution is com-
posed of imaginary numbers, which means that the sphere never
got close enough to the line to collide. If the determinant equals 0,
there is only one root, which means that the sphere grazed the line
tangentially. There is typically no collision response necessary for
that case, so we can safely ignore it as well.

If we do get two roots, the smaller is the one that interests us
because it is the hit time of the collision. The larger represents
when the backside of the sphere would have collided with the line
segment on its way past.

Sphere/vertex collision. Unfortunately we’re still not done. If
the sphere didn’t hit the line within the vertices, it could still hit
one of its end points, so we need to test for collision with them as
well. The good news is that since we test every edge of the poly-
gon, we only need to check the first vertex on each edge. Also,
some of the work we did to set up for the edge collision is appli-
cable to the vertex collision.

a = Vs • Vs

b = 2 � (Vd • Vs)
c = (Vd • Vd) – r2

All that’s left is to plug the new a, b, and c into the quadratic

roots
b b ac

a
= ±– –2 4

2

w w w . g d m a g . c o m 53

r

pos

V

V

V

Ve

1

s

0

Vd

hit_pos

hit_point

normal

pos

normal � -r

FIGURE 6 (left).
Turning a sphere col-
lision into a particle
collision. FIGURE 7
(below). Sphere/line
segment collision.

formula and find the roots the same way we did for the line.
One thing to note is that sphere/line segment collision tests are

by no means cheap, yet they potentially occur three times for
every polygon. Further, each line segment in the scene could be
tested twice, since polygons share edges. One thing that we did on
RF that eased this pain was to check the edge against a bounding
box around the sphere’s path. The line segment/bounding box test
quickly culls out the edges that couldn’t possibly collide and
makes a nice segue to my next point.

Putting Polygons into Boxes

N ow we have the tools for throwing spheres around and col-
liding them with the world. Unfortunately, unless your

world consists of just a few boxes, this isn’t going to be fast
enough to run in real time. The big problem is that planes are
infinite, so if you don’t have some notion of locality, you are
forced to do expensive collision tests with every polygon in the
entire world. The collision detection system needs a fast way to
cull the number of faces it has to check. Enter axis-aligned
bounding boxes (AABBs).

The simplest collision test you can perform is the intersection
of two AABBs, which takes at most six comparisons. If each
world face has a bounding box around it, and we create a
bounding box around the path of the sphere, then we can quick-
ly and easily tell whether that object can possibly hit the poly-
gon. In fact, it is usually faster to compute these face bounding

boxes on the fly and use them for culling than it is to do the
expensive sphere/face tests.

A problem with the bounding box test is that if the sphere
moves quickly its bounding box will be quite large, particularly if
it moves diagonally to the world axes. A slightly more expensive
but potentially much more accurate test is to intersect the sphere’s
path vector directly with the face bounding box. But when collid-
ing the path of a sphere with the bounding box, the radius of the
sphere must be added to the bounding box for this to work prop-
erly. The line segment/bounding box intersection function we used
in RF eliminates twice as many faces as the standard bounding
box intersection test and is only slightly slower.

The way this works is similar to Cohen and Sutherland’s 2D
line-clipping algorithm (see For More Information). Each end-
point of the line segment is given an outcode based on which sec-
tor it is in. The trivially true case, where either of the endpoints is
inside the box, and the trivially false case, where both endpoints
are on the same side of the box, are found quickly with minimal
effort. If further work is required, the outcodes isolate which
planes to clip the line segment against.

For each plane of the bounding box that clips the line segment
we need to check the intercept point on the plane to see whether
it actually falls on the box. This is accomplished by determining
the distance along the line segment at which it intercepts that
plane. If we are clipping to the bounding box’s maximum x plane,
for example, this equation is:

dist = (V1x – V0x) / (xmax – V0x)

And the intercept point would be:

intercept = [(V1 – V0) � dist] +V0

In our example, the y and z values for the intercept are then
checked to see whether they fall within the minimum and maxi-
mum values for the bounding box.

Note that any line segment that intersects the box will cross at
least two planes, but finding one is sufficient to know that we
can’t cull this polygon. The time and position of the intersection
can be ignored if the bounding box test is used only for culling.

Putting Boxes into Bins

I nstead of thousands of expensive sphere/polygon checks, our
engine now does thousands of cheap bounding box checks.

That’s a big win, but it’s still a lot of number crunching. We need
a way to cull out more than one polygon at a time so that we
don’t need to look at every polygon in the level for every potential
collision. We’ll use some spatial partitioning to narrow down the
list of potential collision candidates.

A very simple but effective partitioning system is to create a
binary tree of AABB “bins” which hold the polygon AABBs. Each
bin contains either two smaller bins or a collection of polygons.
Creating the tree is easy, and it can be tuned for performance.
Once the tree has been created, bounding box testing becomes a
recursive procedure of checking whether an object is within suc-
cessive child boxes. The creation algorithm is:
1. Create a bin that encompasses all polygon bounding boxes.

a u g u s t 2 0 0 1 | g a m e d e v e l o p e r54

C O L L I S I O N D E T E C T I O N

FIGURE 8 (right).
Bounding box

inaccuracy.
FIGURE 9 (below).

Rooms separated by
portals.

a u g u s t 2 0 0 1 | g a m e d e v e l o p e r56

C O L L I S I O N D E T E C T I O N

2. Divide the bin in half across its longest axis.
3. Use the center of each polygon to determine which bin it

belongs in.
4. Add the polygon AABB to the proper split bin.
5. Repeat step 2 for both new bins.

The recursion can be truncated as necessary with a limit on the
depth of the tree, a target for the number of polygons in a bin, or
a maximum bin volume. The ability to tune the algorithm with
these parameters was vital for RF, because the tree has to be recal-
culated whenever the level geometry changes.

One undesirable property of the resultant tree is that there can
be a fair amount of bin overlap if the polygons are large. This
means that an object can be found in both child bins at the same
time, which defeats the purpose of having the tree in the first
place. In practice, however, using the tree drastically cuts the num-
ber of AABB checks performed, and the method scales up very
well with level size and polygon count.

I mentioned earlier that the RF renderer is room/portal based. It
makes sense to utilize that natural partitioning to help out the col-
lision detection. Since all polygons in a level are explicitly linked
to exactly one room, it is a simple task to create a bounding box
tree for each room. This is also a big win when recalculating a
tree after a geometry modification occurs, since only the affected
room needs to be recalculated.

Floating-Point Fun

O ne thing left to mention is how to deal with numerical
imprecision. If computers could represent real numbers

exactly, there would be no problem implementing mathematical
formulae in code. In practice, however, computers are finite and
imprecise. Colliding a sphere with a plane when the two are
almost touching, for example, is not guaranteed to work without
error. Because of this imprecision it is a good idea to incorporate
some judicious fudging into the equations. It is in the fudge fac-
tors that the art of collision detection is found.

The best place I’ve found to add fudge is to the hit time returned
from the collision detection functions. If you collide a sphere with
the world and you determine that it hit a wall 60 percent of the
way into the frame, you can artificially manipulate that hit time to
make your sphere stop short of the wall. You don’t want to do
that based strictly on time, however, since slow objects would then
stop closer to walls than fast ones. A better option is to make this
buffer distance-based, and more than that, to maintain the distance
from the polygon rather than the hit point.

To adjust the hit time, first find the distance from the current
position to the plane of the polygon. Then subtract the buffer
distance from that and recalculate the percentage along the origi-
nal path.

len = – (path • normal)

dist = (len � hit_time) – buffer_dist

new_hit_time = dist / len

It’s important to keep the adjusted hit time from going nega-
tive, even though that means that the object is inside the buffer

zone. A negative hit time will back the object up and might put
it through another polygon behind it, which is much worse.

Summing Up

L ike most things, ray casting has advantages and disadvan-
tages. It works very well within the framework of RED

FACTION’s unique challenges, but it isn’t the solution to every
game’s collision detection needs. However, even if ray casting
doesn’t float your particular boat, the optimization techniques
used in RED FACTION can be incorporated into other collision
detection systems.

Ray casting is a well-researched area of computer graphics,
and there are some great resources available on the web. The
most useful one I’ve found is The 3D Object Intersection page
(see For More Information), which provides links to various
intersection algorithms and source code repositories in a handy
grid. Another good resource is David Andsager, but he’s general-
ly only available at the Volition offices. The source code for the
techniques detailed in this article is available for download from
Game Developer’s web site at www.gdmag.com. q

FIGURE 10. Clipping a
line segment to an
AABB.

F O R M O R E I N F O R M AT I O N

RAY-POLYGON INTERSECTION ALGORITHM

Badouel, Didier. “An Efficient Ray-Polygon Intersection.” In Graphics

Gems, edited by Andrew S. Glassner, pp. 390–93. San Diego: Aca-

demic Press, 1990.

THE COHEN-SUTHERLAND LINE-CLIPPING ALGORITHM

Foley, James D., and others. Computer Graphics: Principles and Prac-

tice, 2nd ed. Reading, Mass.: Addison-Wesley, 1996. pp. 113–17.

THE 3D OBJECT INTERSECTION PAGE

www.realtimerendering.com/int

a u g u s t 2 0 0 1 | g a m e d e v e l o p e r58

P O S T M O R T E M a d e l c h a v e l e h a n d d e n i s p a p p

A D E L C H A V E L E H | Adel co-founded
TimeGate Studios upon graduating from

Louisiana State University in computer and
electrical engineering. He made his debut in

the computer gaming industry serving as pro-
ducer on KOHAN. When he’s not playing

KOHAN online, you can reach him at
adel@timegatestudios.com.

D E N I S P A P P | Denis is the lead pro-
grammer at TimeGate Studios. He obtained

his master’s degree in computer science from
the University of Alberta, where his thesis
involved developing one of the first strong

poker AIs (“Loki”) with the Games Research
Group. He started professionally at BioWare

Corp. as the lead programmer completing
SHATTERED STEEL. He can be reached at

denis@timegatestudios.com.

ot everyone can assemble an entire team, make the necessary con-
tacts, and ship a polished game in two years, but we knew it could
be done and were determined to do so. TimeGate Studios was
founded in late 1998 by executives of large Houston-based corpo-
rations in the healthcare, oil and gas, and real estate industries.
From day one, TimeGate had access to accounting, human
resources, and information technology departments. These are some
of the headaches that most startups face, so having access to this
structure quickly proved to be a strong point for our new company.

This allowed us to concentrate on assembling an extremely dedicated, skilled team.
During those first few months, the game development market was very competitive,

and there were several new game development companies being formed. The first obsta-
cle that we had to overcome was being a startup, so we had to set ourselves apart from
the rest. With stories of game companies being created and shut down within the course
of a year, several people that we spoke to were leery of the label “startup.” Their con-
cerns were put to rest after visiting our offices, and seeing how our shareholders were
hardcore about gaming, yet experienced in business. After the first four months, the core
team was in place and the majority of our project research had been done. It was time to
proceed with full-scale production.

We were huge fans of every genre out there, but we were very partial to the popular
real-time strategy (RTS) genre. The one thing that bothered us about RTS games was
their emphasis on micro-management that detracted from high-level strategy. Our plan
involved combining concepts from multiple genres to create a game that would make
people look at RTS games in a whole new light. We wanted a
unique game that had mass appeal, yet would also appease hard-
core strategy fans. The ambitiousness of these gameplay concepts,
combined with the fact that this was TimeGate’s first project, pre-
sented a serious challenge. However, this challenge was some-
thing we were ready to undertake and very excited about.

The story line for KOHAN was in development for nearly a
decade prior to the start of production. It was the brainchild of

TimeGate Studios’
KOHAN

TimeGate Studios’
KOHAN

w w w . g d m a g . c o m 59

our executive producer, Alan Chaveleh. The game is
set in the world of Khaldun, a fantasy setting with
strong Persian influences. Players take on the role of a
Kohan, one of a race of immortals that were once the
ruling power of the world but have had their culture
and society destroyed by a series of massive cataclysms.
Eternal death is prevented by their immortal nature,
and they have begun to resurface. In campaign mode,

the player must solve the mystery of the Kohans’ destruction and return them
to their former glory.

What Went Right

1.Good project setup. One of the good things about our initial corpo-
rate infrastructure was that from the start we had the standard support

departments (IT, HR, accounting) in place and working efficiently. We were
able to hit the ground running, but TimeGate was kept as a privately held,
independent corporation. We had the stability of a large corporation and the
independence of a small creative studio, with our own custom office space,
working hours, and perks.

With that solid foundation in place, we started listing the hurdles that we
were most likely to encounter. Over time, these evolved into philosophies that
we used to keep the project vision in sight. Defining phrases such as “content is
king,” “we will not be a clone,” and “let’s keep it simple” were often heard
around the office. By adhering to these development philosophies from the
beginning of the project, we kept everyone from deviating from our core goals.

Having experienced businessmen at the helm was another great advantage.
The founders, who had been doing business successfully for well over a decade,
managed all forms of deals, contracts, and negotiations. Being self-funded obvi-
ously aided in these negotiations. Ultimately, we landed deals for different terri-
tories with publishers that were extremely excited about KOHAN.

G A M E D A T A

PUBLISHERS: Strategy First (North America),
Ubi Soft (Europe, South America)
Gamania (Korea, Taiwan)
Sunsoft (Japan)

FULL-TIME DEVELOPERS: 12
PART-TIME/CONTRACTORS: 7
BUDGET: $1.8 million
LENGTH OF DEVELOPMENT: 25 months
RELEASE DATE: March 2001 (North America)
DEVELOPMENT HARDWARE: 700MHz Pentium IIIs with

128MB RAM, 20GB hard drives, and GeForce 2s
DEVELOPMENT SOFTWARE: Windows 98 (programming

and design), NT (art), Visual C++ 6.0, 3D Studio Max 3.0,
Character Studio 2.5, Photoshop 5.0, SourceSafe,
Microsoft Office Suite, Microsoft Project, Bugzilla

PROPRIETARY SOFTWARE: TimeGate Editing Tool (TET),
TimeGate Art Processor (TAP), Game Integrated
World-Editor

NOTABLE TECHNOLOGIES: DirectX, Bink Video, GameSpy,
RTPatch

CONTENT: 250,000 lines of C++ (some assembly), 2,000
final resource files, 40,000 words localized

CHIPS AND SALSA ORDERS EATEN: 1,342

2.Gameplay-driven design. The
primary factor to consider if you

want to stand out in the RTS genre is good,
solid gameplay, and KOHAN’s emphasis on
gameplay is one of its strongest attributes.
With the exception of the interface and pro-
gram stability, we treated everything else as
secondary to gameplay. One of the most
common complaints we heard about RTS
games was the level of micro-management
necessary. These games tend to be very tac-
tical; you micro-manage your economy and
each of your military units (even to the
point of individually directing them to use
special abilities), often resulting in a “click-
fest.” Few players had time left over for
real strategy.

KOHAN’s primary focus was to counter-
act this by streamlining the economy, mak-
ing the smallest controllable entity the
company (a group of seven units), making
companies auto-recruit, and introducing a
zone system. These are the most critical
elements behind KOHAN’s gameplay. The
upkeep-based economy system was some-
thing that was designed after production
began — we had already established that
we wanted a high-level economic system,
but we had to justify the automatic recruit-
ing ability of companies without auto-

deducting from the player’s gold supply.
For companies, we designed rules of
engagement and developed a two-layer tac-
tical AI. This AI gives companies the ability
to get their units to carry out goals and
allows units to use their special abilities,
such as spell casting, automatically. The
zone management system involved a signif-
icant amount of production time to work
out and implement, but it allowed us to
have terrain-based concepts of visual range,
supply, and control. It was all worth it, as
raising the primary attention level allows
the game to run at a comfortable pace,
which enables the player to think in terms
of high strategic concepts instead of
improving reaction times with the mouse.

KOHAN really tried to bring elements of
multiple genres together. We had extensive
experience with several turn-based, real-
time strategy, and war games. We looked at
what worked and what didn’t. It was clear
that the driving force behind the lifespan of
an RTS game is replayability in multiplayer
and skirmish games. To this end, we
included several different AI players (as
well as the ability to create your own), an
editor, a versatile random-map generator,
and a wide range of options for skirmish/
multiplayer games. As a testament to the

quality of the gameplay, several members
of the development team and public beta
team still play the game religiously, and
“unbeatable strategies” appear and disap-
pear every week.

3.Minimizing the learning curve.
Since KOHAN features several

advanced and new concepts for an RTS,
we maintained a focus on intuitiveness.
Having extensive experience with many
popular games, we identified and main-
tained several interface conventions. The
interface emphasizes information group-
ing, and every action is possible with
either hotkeys or the mouse. For basic
users, it is important that they be able to
play the game with the mouse and that
every button have a tool tip — this elimi-
nates frustration for the beginning player
(who usually jumps into the game without
reading the manual). For advanced users,
it is important that they be able to do
everything via hotkeys (most of which are
indicated in the tool tips) — this elimi-
nates frustration that comes from having
to move the mouse to perform an action.

Adapting interface conventions from
other popular games was also important.
For example, we couldn’t understand why

a u g u s t 2 0 0 1 | g a m e d e v e l o p e r60

P O S T M O R T E M

TOP LEFT. Magic plays a key role in combat. BOTTOM LEFT. Monsters can become a serious menace if their lairs are overlooked. RIGHT. Players use the
company creation interface to customize their army. Each company contains one captain or hero, four front-line elements (such as an archer or
beastrider), and two support elements (such as a cleric or magician). The interface was designed to be intuitive and informative.

a first-person shooter game
would come out that didn’t use the
standard QUAKE hotkeys, since this is
the key set that the majority of FPS
players are accustomed to. We made
sure that someone could come from
playing other popular RTS games and
immediately jump into KOHAN. The eco-
nomic system may require a little adapta-
tion, but the interface does not. A player
checking out a demo who can’t figure out
the interface in five minutes is likely sim-
ply to uninstall.

To help players understand the
advanced concepts in KOHAN, we included
three important features: tutorials, films,
and an editor. Tutorials, regardless of
whether they are noninteractive, leading,
or directing, are absolutely required in a
game of any complexity whatsoever. In
KOHAN, we take the player gradually
through the concepts. We have two tutori-
al campaigns. In the Basic Tutorial, the
player is introduced to required concepts,
and in the Advanced Tutorial, the player is
introduced to optional concepts (primarily
combat-related). Films, recordings of a sin-
gle- or multiplayer game, have contributed
to the game as well. For us, they were use-
ful during the beta phase for tracking
down bugs, but since KOHAN’s release they
have realized their full potential as a
scouting tool and a way to enjoy other
players’ classic battles. Films ensure that
early game strategies disseminate through-
out the player population, because no one
is able to hide themselves or their playing
style from the film. Finally, the editor
allows players to create new maps and sce-
narios and to test strategies and concepts.

4.Dedicated team. One of the
strongest factors contributing to

Kohan’s high quality and on-schedule
completion was the strong team — experi-

ence where it counted and plenty
of talent.

The art team was primarily new
to the gaming industry, but quickly

blossomed to produce excellent visuals.
They overcame their lack of game industry
experience with dedication and an eye for
quality. Much of the art in KOHAN was
redone several times. While the decision to
redo the art is sometimes a decision
made by the management, our artists
would take it upon themselves to
improve their work constantly.

The programming team lost
some members, but managed
to recover quickly with the
use of local contractors.
Fortunately, the areas in
which we needed more man-
power didn’t involve a huge
learning
curve.

The design
team pushed to pro-
duce a lot of missions in a
short period of time, given
that a fully functional sce-
nario editor was not ready
until late in the project.
Until late in the beta stage,
we only had one full-time
designer on our staff.

This required many different people to get
involved in aspects of design. This may
have detracted from their tasks at hand,
but we benefited from it in that there
were multiple people that were close to
the design.

Everyone else was very supportive and
made the time when necessary. We had
several major milestones that required
plenty of extra hours, and the KOHAN

team was dedicated to making the game
on time and top-notch. The company
encouraged this dedication with incentives
and morale building. At the beginning of
the project we defined a lucrative mile-
stone bonus program and profit-sharing
system. In addition, for three straight years
(since TimeGate’s inception), we’ve taken
the entire team to E3 in Los Angeles, had
year-end parties, anniversary trips, and
barbeques (we are in Texas, after all).
These events were not simply about hav-

ing fun, but about team building. While
living and breathing what we are

working on, we still enjoy being
around each other.

5. Strong quality
assurance. Our

team’s dedication to QA
proved to be a strong
asset. The game engine
was created from scratch.
This, in conjunction with
the fact that our gameplay

concept was signifi-
cantly different
from other RTS

games out there,
made us realize that
QA was going to
play a huge role in
the game’s success
or failure. Time-
Gate was a rela-
tively unknown
company at the
time, and the

KOHAN brand was
just as new to the

industry. We knew
that only one thing was

going to get us noticed —
a fun, polished game.

We laid out a plan that
involved six months of

a u g u s t 2 0 0 1 | g a m e d e v e l o p e r62

P O S T M O R T E M

Darius,
an immortal avatar in the

world of the Kohan.

beta testing, incorporating a small in-
house QA team, two external beta-testing
forces (publisher and public testers), and
several tools and processes. We imple-
mented necessary features that maximized
the amount and type of information we
received and our ability to duplicate prob-
lems: films, logs, screenshots, save-games,
and exception traps. Of course, while all
these tools helped, it could have been even
better. It was troublesome for users to
assemble this information, if they even
knew what to provide. An auto-reporting
mechanism for crashes and bugs would
have helped tremendously.

The day we hit our beta milestone, we
received a large number of external beta
applications. From this we handpicked a
number of people to be our initial group of
testers. Our communication with KOHAN’s
external testers was through the TimeGate
beta web site, message board, beta chat
room, and our defect-tracking software
(the web-based Bugzilla). Beta events were
organized and focused. We scheduled
weekly multiplayer nights (twice-weekly
toward the end of beta) and chat sessions
with the external testers. Without test
plans, we knew that testing would be hap-
hazard and unfocused, so with each new

beta build created (approximately one each
week), we provided our external testers
with detailed test plans and organized
processes for communicating with us.

We became addicted to our own game
and would go home from a long day at
work and play KOHAN. We were present at
all of the beta multiplayer sessions, inter-
acted with our testers on a daily basis, and
responded promptly to most bug reports.
As a result, our external testers were very
active and played a key role in our getting
KOHAN out on time and well tested.

What Went Wrong

1.Nothing playable until late in
the project. If we were to redo

KOHAN, one of the first things that we
would focus on is having a fully playable
version early in the project. Our executive
producer had a vision as to what the next
evolution of RTS gaming should be. With-
out something hands-on to show, however,
his gameplay concepts and vision were
nothing more than a strategy gamer’s wish
list. We had never played a game that
would play the way KOHAN was envi-
sioned. It was difficult getting people to
understand exactly how the game would

end up looking, playing, and feeling. It was
easy to fall into the trap of thinking in
terms of other games in the genre. This was
beneficial in some cases, such as interface
conventions, but was a problem with
many of the new gameplay concepts.

The uniqueness of our concepts turned
out to be an obstacle for us on two fronts:
our development team and potential pub-
lishers. Early in the process, the entire
development team did not fully understand
some of the new concepts. A good bit of
early work was completely redone because
it did not bring the game closer to making
the vision a reality. Working time into the
schedule to create a playable version early
in the project would have reduced this risk
of lost work. However, we did manage to
keep the team focused and working
toward the original vision through con-
stant design discussions.

The biggest hurdle we encountered was
making potential publishers understand
the game. No publisher was willing to rely
on our word as a new studio that KOHAN

was the next big thing. The common
response was, “Do you have a demo?”
Upon reaching the stage of development
that the demo was ready, the interest from
publishers peaked, and we ultimately land-
ed the first publishing deal for KOHAN.
Creating a demo early thus has the
twofold benefit of both getting the entire
development team on the same page and
having a concept demo for potential pub-
lishers. Simply put — schedule time for a
demo early in the project.

2.Dependency on outside
resources. Something that most

development houses have to deal with these
days is working with outside resources. We
believe that, as the game industry matures,
outsourcing will become more and more of
a viable option for specialty areas of pro-
duction, such as sound, music, and cinemat-
ics. By outsourcing, we thought we could
avoid the extra risk of having to invest in
specialty employees, expensive equipment,
and extra management time and resources.

However, subcontracting items that are
integral to a project doesn’t necessarily
reduce risk. Outsourcing has its own risks,
risks that were realized in developing
KOHAN. We used several contractors for
different facets of production, and some

w w w . g d m a g . c o m 63

Economic buildings, such as woodmills or quarries, in the cities support the upkeep required by
the companies.

were based in foreign countries. While
there was always communication, the time
difference often resulted in a day’s delay in
receiving responses. When we ran into an
issue or problem during a workday, we
couldn’t just pick up the phone and give
them a call. This inefficiency would have
been avoided had all the work been done
in-house. Other resources utilized were
more accessible, but while the communica-
tion was more efficient with these parties,
timeliness of delivering finished goods
became an issue. We would receive “fin-
ished” work that lacked the quality and
polish that we were striving for. This
resulted in several back-and-forth sessions
that finally yielded something acceptable
to all parties, but took much longer than
originally planned.

We learned to evaluate closely the costs

and benefits of outsourcing specific items
and the competence of the contractor.
Although at first glance it appears that
outsourcing will save you time and money,
ultimately it may not be true.

3.Documenting standards
and processes. While

most of our processes were infor-
mally developed, they were
not officially documented.
For example, a new unit
had a particular set of
steps it would go
through before finding
its way into the game.
Everyone knew the
process (at least with
respect to their own
involvement), but it was

not formalized. Furthermore, we did not
have an official checklist for verifying
resources from art or maps from design.
For example, every sprite had to have a
hotspot set, and every campaign map had
to have the AI kingdom names set.

In addition, there were several problems
with respect to terminology and naming
conventions, particularly with respect to
the user interface and art files. In the UI,
controls were not consistently named, and
some interfaces had unintuitive names (for
example, the “Multiplayer” interface was
really the skirmish game setup interface,
while the “Connection” interface was
reached by clicking on “Multiplayer”).
Without naming conventions, several
resources had different names from their
respective design resources. There was also
no official convention defining what folder
a particular type of resource belonged to.

These problems manifested themselves
further on in the project in the form of
confusion, missteps, and wasted time. The
clear solution is to be more aggressive in
writing and maintaining documentation
and following processes. This requires a
disciplined environment, since even the
documentation process should be formal-
ized: use a document template and use revi-
sion control. Then create an official reposi-
tory, since these documents must be acces-
sible enough that people get in the habit of
referring to them. Once this system is
established, define processes, terminology,
and naming conventions. Better yet, take
the time to write tools that force them.

4.Managing the production
pipeline. As we stated in the

previous section, several processes in the
production pipeline were not formally

defined. Initially, this worked fine,
and we simply corrected the occa-

sional mistake. However, in the
beta stage these mistakes

proved costly. We had to
lock down the process:
only one person was
given write access to the
official repository of
resources for the builds,
and that person would
verify every resource
that went in. This was

a time-consuming

a u g u s t 2 0 0 1 | g a m e d e v e l o p e r64

P O S T M O R T E M

TOP. The TimeGate Editing Tool (TET) is a custom tool which was created to touch up unit animations.
BOTTOM LEFT. Sprite viewer tool. BOTTOM RIGHT. Ahriman’s citadel in 3D Studio Max.

process, and still vulnerable to
mistakes. Additionally, revi-
sion control for binary
resources (maps, audio, and
art) was done either by hand,
or not at all. This was another
risky situation, since an error
could potentially cost a week
or more of redone work.

What was missing was a tool, or set of
tools, to handle asset management, both
for revision control and for managing the
production pipeline (getting an asset from
working version to final). Unless the right
commercial tool is available, this can be a
lot of work, particularly since it should
be integrated into third-party tools that
the artists and designers use. However, it
will save a lot of potential anguish in the
long run, more so if it is a project-inde-
pendent solution.

5.Design document not imple-
mented effectively. The prob-

lem was not specifically our design docu-
ment. The problem was that our design
document was not started until production
was well under way, and we were pioneer-
ing several new game concepts. Not all top-
ics were completely fleshed out prior to
reaching them in the schedule. This resulted
in changing requirements and feature creep.
In turn, those implementing the design were
frustrated, schedules were difficult to write
and adhere to, and the designer lost a lot of
time answering design questions.

Due to the changing requirements, the
development of a game feature often
resulted in it actually being a prototype.
Some of the more complex interfaces
were rewritten several times. The sched-
ule, particularly for programming, had to
be rewritten several times. We had a sig-
nificant feature list, and had to make
some tough calls about which could be
dropped and which could not. Marking a
feature as “if possible” was the same as
sending it to the guillotine.

These problems spelled doom for the
design document. Many things were either
worked out when implemented, or
worked out in a spontaneous design dis-
cussion resulting in notes scratched in
notebooks. The initial design document
was not complete enough for implementa-
tion, so no one read it. It was also not

easily accessible (placed “in your
face” seems to be the best solu-
tion). Furthermore, the design
document was not being updated,
and, since no one was using it,
there were no complaints.

Fixing these problems was a lit-
tle difficult for a game like KO-

HAN, which was constantly evolving. It was
revolutionary to the genre and difficult to
understand, since there was no one game
you could relate to and say, “It’s like game
X.” Emphasis must be placed on fleshing
out the design document as much as possi-
ble during preproduction, and developers
must be trained to refer to it. That means
keeping it updated, making it easily accessi-
ble, and telling everyone to refer to it if the
answer is contained therein.

Looking Back, Looking
Ahead

T he KOHAN project was full of risk from
day one. TimeGate was an unknown

development studio that was working on a
new breed of RTS and using its own money
to develop the title. Entering the competi-
tive and overpopulated real-time strategy
market was an even greater risk.

In hindsight, we feel that we did a
great job calculating and minimizing these
risks, and successfully crossing all the
hurdles. By working professionally when
dealing with people outside the company
and by delivering on our promises, our
company’s image started out on the right
foot. Although the KOHAN brand is new,
we feel that it is now associated with
innovation and quality.

Developing KOHAN was without doubt a
learning experience for all of us. However,
our success was the result of a dedicated
team, an innovative product, and a solid
company structure. It was definitely a fun
ride. We are already working on our next
title, putting all of our newly gained expe-
rience and knowledge to use. Going for-
ward, TimeGate’s motto will continue to
be “Gameplay first.” q

w w w . g d m a g . c o m 65

m o n t h 2 0 0 1 | g a m e d e v e l o p e r66

P O S T M O R T E M

a u g u s t 2 0 0 1 | g a m e d e v e l o p e r72

S O A P B O X d a m i o n s c h u b e r t

You’re
the Boss

T here’s an epidemic sweeping across the game indus-
try. It’s a vast onslaught of gaming tedium that
makes an average day of C-SPAN seem like New
Year’s Eve. I am referring to our boss monster
encounters. The elements of the game that should act

as the climaxes of our gaming experience are being reduced to
boredom and frustration instead of providing the pure gaming
bliss that they should.

Now, I’m not naïve. I know that boss encounters are often lack-
luster because they require special code and art, which in turn
translates to money, time, and bugs. Also, they are often moved to
the schedule’s end, which makes them ripe for gross oversimplifi-
cation (if they don’t get cut altogether). Complex bosses also can-
not be reused easily — and resources you can only
use once per game are extremely expen-
sive. Still, we can do better.

In this age of beautiful graphics
and sound and well-crafted stories,
most boss encounters are still
“whip out your biggest gun, go
mano a mano, and hope you don’t
die.” Which usually devolves into a
health meter that moves down too
slowly and way too many
quick-loads. We’ve seen minor
progress, but this usually
entails introducing such strate-
gies as “shoot him when he
taunts,” “shoot him in the
stomach,” or if we designers are
really clever, “shoot him in the
stomach when he taunts.” Been
there. Done that.

Boss monster encounters should
be the emotional highlight of your
game, the apex of adrenaline, the part
of the game that players describe
around the water cooler. And yet, I
often hear about people reaching for
cheats as soon as they hit the first
boss, because we game designers are
still making the most basic mistakes.
Mistakes such as not putting a save

point before the boss encounter. Or not giving any visual feed-
back of how much damage has been done. Or giving your boss
critter insta-kill attacks. Or, God help you, incorporating jump-
ing puzzles into the epic fight.

To all of the game designers out there who are contemplating
the boss encounters for their game, I would ask you to do three
simple things.

Know the weaknesses of your game. Quite simply, identify what in
your engine is fun, and what isn’t. Then don’t base any boss
encounters around the “not fun” parts. The easiest example I can
think of is swimming. In many 3D console games, swimming is
difficult and unwieldy due to the limitations of the controller. If
this is true for your game, then don’t put in underwater bosses.

Remember, just because you can do
something with your engine, doesn’t

mean you should.
Multiplayer game designers

should be aware that latency puts
severe limitations on their boss

encounters. A superpowerful
charging attack that can be eas-

ily sidestepped in a single-player
game may become impossible to
dodge once latency is added to the

equation. Timing-related vul-
nerabilities (for example,
shoot him when he taunts)
present similar problems.

Server-client games such as
DIABLO or EVERQUEST should
never have a boss hovering
around a teleport-in location,

especially if there are long load
times. Few things make one want to

chuck a CD in the trash quite like dying
before your avatar is even visible.

Challenge the notion of a boss mon-
ster. Bosses are merely the emotional

apex of part of your game. They can be
reinvented. Getting out of the space sta-
tion before it blows or trapping Bossy in
an airlock and releasing him into space

continued on page 71

w w w . g d m a g . c o m 71

also have the potential to offer a similar
high. SERIOUS SAM did a great job at this
by making you kill a thousand little crit-
ters instead of one big one. CONKER’S BAD

FUR DAY also did a great job by having
boss encounters that incorporated the
environment.

Also, consider that as designers you do
not have to be limited to increasing the
challenge level. One can also increase the
power of the player. After all, the real
point of a boss experience is to provide an
emotional high point for the character and
player. Consider that an even more potent
psychological drive than that of fear is one
of self-actualization — the notion that, for
a little while, your player can go toe to toe
with the big boys.

Have mortals play-test your boss
encounter. I buy any shooter I can and typ-
ically rank high in any deathmatch game I
play. So when I face a boss monster that
crushes me the first 19 times I try, my first
thought is, “Is it even remotely possible for
Joe Wal-Mart to get through this?” And if
Joe Wal-Mart gets crushed repeatedly by
the first boss, will he finish the game? Or
buy the sequel?

If you must have extremely tricky boss
monsters, then be sure that you give obvi-
ous clues as far as how to beat the mon-
ster. Another alternative is putting in some
kind of workaround. You don’t have to
just open a door. You can also give hints
at the five-minute mark. Have super-
weapons appear at the 15-minute mark.
Reward the player who can’t win, but
who can survive.

Boss monster encounters in most games
right now are below the quality of the rest
of the game — but they don’t have to be.
Even with the harsh constraints put upon
us designers, it is possible to make encoun-
ters that elevate the game to new levels
instead of making players reach for the
cheat codes. q

D A M I O N S C H U B E R T | Damion has
been professionally designing games for six
years, and is most known for his stints as
lead designer of MERIDIAN 59 and the now-
defunct ULTIMA ONLINE 2. His current status
is unknown, although it is rumored that he is
up to no good. He can be reached at
damion@zenofdesign.com.

continued from page 72

S O A P B O X

	04gameplan
	06saysyou
	08indwatch
	10prodrev
	20profile
	23graphic
	28artview
	36f-woodc
	46f-evans
	50f-schroe
	58postmort
	72soapbox

	return:

