
AUGUST 2000

G A M E D E V E L O P E R M A G A Z I N E

G A M E P L A N✎

L E T T E R F R O M T H E E D I T O R

A t E3, it’s typical to gravitate
toward the glitzy titles on
display. But in a relatively
subdued booth in the lobby
of the Los Angeles Conven-

tion Center, I found Nokia quietly telling
people about their plans to bring more
games to wireless devices.

Nokia has huge plans for cell phones
and games. The company estimates that by
2002 more than a billion people will have
mobile phones, and by 2003 more people
will access the Internet through wireless
devices than by PCs. Those are some huge
numbers, and it puts the companies who
control cellular networks in the catbird
seat. Nokia, for one, plans to make games
a central application on cell phones. Of
course, access to a large installed base of
customers doesn’t ensure the viability of a
platform. (I think the slow progress of
interactive television indicates what a well-
coordinated effort it takes to bring a new
interactive platform to market and make it
succeed.) But Nokia is quietly moving for-
ward into the games market, and I like the
company’s vision for the future.

With the launch of the Nokia Mobile
Entertainment service (a one-stop shop that
will let mobile network operators serve
games to their mobile subscribers), the com-
pany is positioning itself as a provider of an
online server platform in the world of wire-
less gaming devices. In theory, someday
your cell phone will have an “always on”
GPRS (General Packet Radio Service) con-
nection to your network operator, and when
you want to play a game, you will select a
game from among those currently offered
and begin playing. There will be no num-
bers to dial and billing will be automatic.

As a developer, you would approach a
Nokia Mobile Entertainment game publish-
er to get your game up on the service. (If
you’re a publisher, you would contact
Nokia directly.) In this revenue model, the
network operators would take their cut,
Nokia would take its cut, and you the game
developer would get your share, too, all
based upon the revenue the game generated
from users. Whether consumers would pay
a flat fee or some kind of hourly charge

based on usage would probably be up to the
network operators.

Of course, there are hurdles to contend
with. The most graphically impressive
demo that I saw on the Nokia booth was a
2D chess game, and the whole chessboard
couldn’t fit onto the small cell phone dis-
play. So improving the graphics capability
of cell phones is critical. One tool that
might help in this regard is n3D, a graphics
API that 3D Pipeline of La Jolla, Calif., is
creating for use in cell phones, PDAs, and
set-top boxes. According to Greg Passmore
of 3D Pipeline, n3D is very modular and
fits in a tight memory space. It will include
a sample game engine, a 3D API, a 2D API,
support for multiple colored lights, anti-
aliasing, and a scene graphics manager that
handles BSP culling, progressive transmis-
sion, collision detection, and more.

Nokia must also work with other com-
panies to make the Wireless Application
Protocol (WAP) the standard way for
mobile phones in the U.S. to communicate
with servers installed in the mobile phone
networks. Unlike Europe (which has
embraced WAP), there is no dominant pro-
tocol for this in the U.S., and until that
changes, support for any given wireless
application will be spotty and market
growth will suffer.

If and when games for cell phones take
off, small (even single-developer) game
development companies could benefit.
Because of their limited capabilities as
gaming devices, cell phone games them-
selves will have to be fairly simple (the
potential of n3D and its implications for
the platform notwithstanding), and as such
solo game developers might face a more
level playing field against deep-pocketed
game companies.

For more information about Nokia’s
plans, check out www.nokia.com/wap/
entertainment.html.

Fun & Games With
Cell Phones

C
Let us know what you think. Send

e-mail to editors@gdmag.com, or write

to Game Developer, 600 Harrison St.,

San Francisco, CA 94107

w w w . g d m a g . c o m

D E V E L O P E R

ON THE FRONT LINE OF GAME INNOVATION

600 Harrison Street, San Francisco, CA 94107
t: 415.905.2200 f: 415.905.2228 w: www.gdmag.com

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL

Editorial Director
Alex Dunne adunne@sirius.com

Managing Editor
Kimberley Van Hooser kvanhoos@sirius.com

Departments Editor
Jennifer Olsen jolsen@sirius.com

News & Reviews Editor
Daniel Huebner dan@gamasutra.com

Art Director
Laura Pool lpool@cmp.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Jeff Lander jeffl@darwin3d.com
Lisa Washburn article@vectorg.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook Verant Interactive
Susan Lee-Merrow Lucas Learning
Mark Miller Group Process Consulting
Paul Steed
Dan Teven Teven Consulting
Rob Wyatt Microsoft

ADVERTISING SALES

National Sales Manager
Jennifer Orvik e: jorvik@cmp.com t: 415.905.2156

Account Executive, Western Region & Asia
Mike Colligan e: mcolligan@cmp.com t: 415.356.3486

Account Executive, Northern California
Susan Kirby e: skirby@cmp.com t: 415.356.3406

Account Executive, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 415.905.2323

Sales Associate/Recruitment
Morgan Browning e: mbrowning@cmp.com t: 415.905.2788

ADVERTISING PRODUCTION

Senior Vice President/Production Andrew A. Mickus

Advertising Production Coordinator Kevin Chanel

Reprints Stella Valdez t: 916.983.6971

CMP GAME MEDIA GROUP MARKETING

Marketing Manager Susan McDonald

Product Marketing Manager Darrielle Sadle

Field Marketing Manager Jennifer McLean

Marketing Coordinator Scott Lyon

CIRCULATION

Vice President/Circulation Jerry M. Okabe

Assistant Circulation Director Kathy Henry

Circulation Manager Stephanie Blake

Circulation Assistant Kausha Jackson-Crain

Newsstand Analyst Pam Santoro

INTERNATIONAL LICENSING INFORMATION

Robert J. Abramson and Associates Inc.
t: 914.723.4700 f: 914.723.4722
e: abramson@prodigy.com

CORPORATE
President & CEO Gary Marshall
COO/Corp. President, Business Tech & Channel John Russell
President, Business Technology Group Adam Marder
President, Specialized Technology Group Regina Ridley
President, Channel Group Pam Watkins
President, Electronics Group Steve Weitzner
General Counsel Sandra L. Grayson
Vice President, Creative Technologies Johanna Kleppe
General Manager, CMP Game Media Group Greg Kerwin

Game Developer
magazine is

BPA approved

W W W . C M P G A M E . C O M

w w w . g d m a g . c o m 5

Z
F R O N T L I N E T O O L S

W H A T ’ S N E W I N T H E W O R L D O F G A M E D E V E L O P M E N T | d a n i e l h u e b n e r

S ony is entering the portable game sys-
tem fray with a remarkably cute

miniature version of the venerable 32-bit
Playstation. The new machine, cleverly
called PS One, comes in at just one-third
the size of the original system but with all
the original functionality. In addition,
the PS One will add network con-
nectivity in the form
of a cell
phone con-
nection
capability.
As a chal-
lenger to
Nintendo’s
Game Boy Color and Game Boy Advance,
however, the PS One faces some serious

limitations; the machine
won’t run on batteries and
will need to be plugged
into an AC outlet or car
lighter. Also, a four-inch

LCD screen will be sold as
an optional
accessory
rather than
being includ-
ed with the
machine.
The PS One

will land in
North Amer-

ica this September.

PS ONE | Sony | www.sony.com

RAD TOOLS FOR MAC

R AD Game Tools is
doing its part to

make the Macintosh a
more friendly place for
game development.
The company start-
ed its new Mac cru-
sade with MacOS
versions of its
immensely popular
Bink and Smacker 4
video codecs, and is now widening its
offerings by bringing the Miles Sound
System and Granny 3D animation system
to the Macintosh as well. For its part,
Alias|Wavefront is also jumping on the
Mac bandwagon and has a MacOS version
of Maya in the works.

RAD GAME TOOLS | www.radgametools.com

R ealviz is releasing a new version of its
image sequencing timer, ReTimer.

ReTimer 2, which allows users to speed up,
slow down, or adjust the timing of an
image sequence, offers several new features,
including a new engine. Whereas version 1
used a vector grid, each pixel now has its
own computed motion (dense flow) where
the user can define the density of the

motion field displayed for better con-
trol over output quality.

ReTimer 2 is avail-
able for Windows
NT, IRIX, and
Linux, and is priced at
$3,500, which includes one
ReTimer license, one batch license, and
three months of free maintenance (support
plus upgrades). One year of maintenance
costs an additional $525.

SGI is introducing a new line of Intel
processor-based workstations, offer-

ing not only the Windows NT operating
system but also Linux. SGI says its

230, 330, and 550 Visual Work-
stations are the industry’s

first workstations ever
built from the ground
up to accelerate
OpenGL in hardware
on the Linux operat-
ing system. They

include
either
single
or dual

Pentium III
or Pentium III Xeon

processors, a 133MHz front-side bus, up
to 2GB of main memory, and up to 90GB
of internal hard-disk space. Intel’s Vpro
cross-platform graphics family, delivering
up to 64MB of DDR graphics memory, is
making its first appearance in these
machines. Prices for the new workstations
start at $2,725 for the SGI 230.

SGI 230, 330, AND 550 VISUAL
WORKSTATIONS | SGI | www.sgi.com

SGI ROLLS OUT NEW
VISUAL WORKSTATIONS

REALVIZ ANNOUNCES RETIMER 2

VOODOO 5 ARRIVES

3dfx has finally pushed its Voodoo 5 out the
door after a brief delay and recall to iron

out some last-minute problems. Offering appli-
cation-independent real-time full-scene hard-
ware antialiasing compatible with all major
APIs, the Voodoo 5 5500 AGP is
based on dual 3dfx VSA-100
processors with the T-Buffer

digital cinematic effects engine and 64MB of total graphics memory.
3dfx is pricing the Voodoo 5 5500 AGP at an aggressive $299.99.

VOODOO 5 | 3dfx | www.3dfx.com

PLAYSTATION GETS SMALL

RETIMER 2 | Realviz | www.realviz.com

6 a u g u s t 2 0 0 0 | g a m e d e v e l o p e r

I N D U S T R Y W A T C HJ

Looking Glass Through. THIEF developer
Looking Glass Studios has closed its doors.
The decision was made in a company
meeting, resulting in the cessation of oper-
ations and the cancellation of ongoing
projects. Despite strong sales of THIEF and
THIEF 2: THE METAL AGE, Looking Glass
had been struggling financially. The com-
pany’s hopes for an infusion of capital
from publisher Eidos apparently fell victim
of Eidos’s own financial problems. Among
the cancelled titles is THIEF 3. Though that
game may hold interest for another pub-
lisher, designer Randy Smith expressed
doubts in an open letter to fans that the
game would ever see the light of day.

Nasdaq Cracks Down. The current
malaise in the game industry is putting a
number of publicly traded game companies
in an uncomfortable situation. Nasdaq has
threatened Interplay, Acclaim, and Info-
grames with delisting. In all three cases, the
companies have fallen below the require-
ments set by the exchange’s Listing Qualifi-
cations Board, and appeals have been filed
by all of the affected companies. Info-
grames, which has enjoyed healthy returns
despite recent unfavorable market condi-
tions, contends that its failure to meet the
$5 minimum bid requirement is simply the
result of a stock split which is distorting its
share price. Acclaim, meanwhile, is consid-
ering a stock consolidation to push its price
back above the market’s listing criteria.

Steed Ousted. Internal strife at id Soft-
ware has led to the dismissal of modeler
and animator Paul Steed. Commenting on
the matter in his .plan file, id co-owner
John Carmack suggested that his fellow
co-owners Kevin Cloud and Adrian Car-
mack (no relation) fired Steed in direct
retaliation over losing an internal dispute
about the company’s next title. Though a
decision was made in favor of John Car-
mack’s desire to create a third installment
in the hit DOOM series, the fallout of the
battle appears to be the loss of Steed.
Cloud has disputed John Carmack’s asser-
tion, however, saying only that the impetus
for Steed’s dismissal went beyond any dis-
putes over projects.

Sony Gears Up. Sony has clarified its
online gaming goals with its acquisition of

EVERQUEST developer Verant Interactive.
The privately held developer will become
the new core of Sony Online Entertainment,
with Sony phasing out its existing Los
Angeles operations in order to consolidate
its activities around Verant’s San Diego
headquarters. Sony has tapped Kelly Flock,
who worked closely with Verant while
heading up Sony’s 989 Studios, as CEO of
the new-look SOE. Sony is also preparing
itself for the North American launch of
Playstation 2 by investing more than a bil-
lion dollars to bolster Playstation 2 chip
production. Some of the additional chips
could find their way into machines other
than the Playstation 2, as Sony has
announced its intent to sell the new con-
sole’s component chip to other manufac-
tures in order to spread the platform’s mar-
ket share beyond home game machines.

Sega Keeps Up. Sega is keeping pace
with Sony move for move as it prepares
the Dreamcast to compete in the post–
Playstation 2 console world. Sega has
announced that it will beat Sony to the
broadband punch by offering cable modem
service to Dreamcast owners in Japan next
month. The service will start in conjunc-
tion with 40 domestic cable television
providers, and will eventually grow to
include 200 providers. Sega will sell an
adapter to connect the Dreamcast to cable
line Internet systems. Sega also has plans
in the works to sell game software directly
to broadband users in the future.

In addition, he company is seeking ways
to extend its platform beyond console
gaming, and has teamed up with Motorola
to create a Dreamcast-based cell phone.
The two companies will jointly develop an
API for the Internet-enabled phone using

Dreamcast technology to allow fast down-
loads of games, images, and other data.
Motorola hopes to use the technology to
enhance its phones’ data processing capaci-
ty as it looks to create next-generation
applications including mobile video
phones, while Sega is looking to diversify
its product set by both producing games
for the platform and collecting API license
fees from Motorola. Sega’s aggressive
moves come in the wake of the company’s
third annual loss in a row, a loss that
resulted in the resignation of Sega presi-
dent Shoichiro Irimajiri. CSK chairman
Isao Ohkawa has since taken on the job.

Nintendo Keeps Quiet. As Sony and
Sega continue to fight for mindshare, Nin-
tendo is still maintaining its low profile.
The company has confirmed that it is
delaying its next-generation Dolphin con-
sole until 2001, but Nintendo has still not
been forthcoming about the console’s
specifics. Though Game Boy Advance will
make its debut at Nintendo’s Space World
in Japan in August, Nintendo’s E3 pres-
ence focused exclusively on existing prod-
ucts and platforms. It is hard to argue with
the company’s current success: though
Nintendo’s annual net profit fell 35 per-
cent from last year, due largely to a overly
strong yen, it still reached a healthy $521
million for the year. q

T H E B U Z Z A B O U T T H E G A M E B I Z | d a n i e l h u e b n e r

E C T S
GRAND HALL

OLYMPIA CONVENTION CENTRE

London, England
September 3–5, 2000
Cost: variable
www.ects.com

F U N E X P O
SANDS EXPO AND CONVENTION CENTER

Las Vegas, Nev.
September 20–22, 2000
Cost: $10 and up
www.funexpo.com

The sequel to Looking Glass’s dark-themed
THIEF 2 may not be seeing the light of day.

U P C O M I N G E V E N T S

CCAALLEENNDDAARR

w w w . g d m a g . c o m 9

A s I write this, I’m fresh
back from E3, getting
ready for Siggraph, and
taking a week to go to the
first international confer-

ence on nonphotorealistic rendering
(NPR). I mean, how often do you get to
take a trip through Burgundy to the
French Alps and call it work?

It all has me pretty energized for the
advances I expect to happen in the game
industry this year. While I didn’t see many
big surprises at E3, there was a lot to fuel
my enthusiasm. Since my mind has been
on NPR, I noticed several games that have
embraced their limitations and gone for a
more stylized look. There was certainly no
shortage of racing games that are inspired
by cartoons or license them directly. These
titles traded realism for a 3D vision of the
cartoon world. Games such as Sega’s JET

GRIND RADIO, Red Storm’s ROSWELL CON-
SPIRACIES, and Kronos’s FEAR EFFECT

showed that you could use cartoon render-
ing techniques on detailed characters to
achieve a very stylized look without sacri-
ficing performance.

So this month I’m going to take another
look at real-time 3D cartoon rendering
and see how I can improve the look of my
characters. So open up a nice bottle of
Burgundy and let’s journey...

Back to Toon Town

Y ou may want to look back at my
March 2000 column (“Shades of Dis-

ney: Opaquing in a 3D World”) for a
refresher. When we last left our flat-shaded
friends, they were looking pretty toony
with their 1D texture lookup table for
shading and silhouette edge. You can see
an example in Figure 1.

There are quite a few ways I can
improve the quality of this character. The
problem of cartoon rendering on a com-
puter is very similar to that of traditional
cartooning. There are two steps: generate
the ink lines and paint the shade colors.

The ink lines come
in several types.
There is the silhou-
ette edge, which
defines the outline of
the object. This is the
most complicated to
create as it is view-
dependent and must
be recalculated any
time the camera or
the object moves.
The silhouette edge
for this character
was done easily using
the hardware render-
er, but it could still
use some work. I will
come back to that in a minute.

The second type of ink line commonly
used in cartoon rendering is the material
line. These lines separate materials in the
object, making them stand out more.
Material lines are easy to deal with. They
are not view-dependent, which means I
can calculate the material lines once and
store them for rendering. The material
lines can be detected using a preprocess
pass through the mesh which finds adja-

cent triangles that use different materials.
The edge that the triangles share is marked
as a material edge to be rendered later.

The final type of ink line is known as
the “hard” edge. This defines sharp creases
in the model which give an object its dis-
tinctive look. The hard edge is also view-
independent and, like the material line, can
be calculated in a preprocess. In this case,
the angle between two adjacent triangles is
determined and if the angle is greater than

Return to Cartoon Central
Adding Texture to a

Nonphotorealistic Renderer

A U T H O R ’ S B I O | Since Jeff has spent so much time thinking about stylized computer art
we have started to wonder why he just doesn’t pick up a pencil and start sketching instead. Let
him know it’s art not algorithms at jeffl@darwin3d.com.

j e f f l a n d e r G R A P H I C C O N T E N T

FIGURE 1 (top). A star from Toon Town, shaded with a 1D texture lookup table.
FIGURE 2A (bottom left). A car from Toon Town, sporting a view-dependent silhouette edge.
FIGURE 2B (bottom right). Here, the material edges are shown in red, the hard edges in blue. Both are
view-independent and generally need to be calculated only once.

the crease threshold, the edge is
marked as a hard edge. By
default I’m going to define a
hard edge as any crease greater
than 30 degrees. That is, if the
dot product of the two normals
is greater than the cosine of 30
degrees, or 0.866, I will draw
the hard edge. One important
note is that if your object is
deformable, the hard edges will
change and therefore will need
to be recalculated any time the
character deforms.

You can see these two types of
lines in Figures 2a and 2b. The
red lines are material edges and
the blue lines are hard edges.

The silhouette edge needs a
little more care. If I want to
improve the look of the silhou-
ette much, I need to find the
edges every frame (or at least
anytime the model moves or the
view changes). I can accomplish
this by brute force, comparing
each set of adjacent triangles to
see if one faces toward the
viewer while the other faces
away. This is the requirement
for a silhouette edge. Or, said
mathematically:

where N1 and N2 are the two face normals
for the adjacent polygons, V1 and V2 are
vertices on their respective edges, and E is
the eye point. Whenever this statement is
true, the edge is part of the silhouette.

I could just naively test every edge to
see if it matches the dot product condi-
tion. Alternatively, I could test neighbor-
ing edges once I have found a silhouette
edge and take advantage of any possible
spatial coherence. A very interesting
paper by Lee Markosian and his col-
leagues (see For More Information)
describes possible optimizations of this
silhouette edge detection.

Once all the edge types are detected,
they can be rendered as lines or even tex-
tured polygons with some form of soft
brush texture. An interesting approach for
drawing the ink lines in a stylized manner
has been proposed by J. D. Northrup and
Lee Markosian (see For More Informa-

tion). The technique stochastically varies
the width of the ink lines and changes the
color and opacity of the lines themselves.
This creates much more natural-looking
ink lines. I plan on investigating this tech-
nique further.

Paint an Inch Thick

N ow that the lines are all sorted out
and looking nice, I want to do some

work on the paint job. You may recall
from my March column that in order to
color my objects I used a 1D texture map
as a nonlinear lookup table to determine
when the shade should be applied. This
shade is modulated with the object’s mate-
rial color to create the final image. To
refresh your memory, Figure 3 shows vari-
ous shade textures applied to a sphere.

That’s pretty good for a basic cartoon
look, but I want to make things a bit more
stylized. Multi-pass graphics hardware is
pretty common now among game players

and it’s a shame not to take
advantage of it.

It may look interesting if I
apply different stylized textures
on the objects instead of using
color shades. In fact, several peo-
ple have done this already and it
looks pretty good. Intel has
developed a multi-pass method
to apply textures to cartoon-
shaded objects in their cartoon
rendering system, which is avail-
able as part of Digimation’s Real-
Time 3D Libraries (see Product
Update, April 2000). The only
drawback to their method seems
to be the large number of render-
ing passes needed to create the
textured style.

In order to create a textured
stylized rendering, I would like
to use my shade tables to control
texture rendering on an object.
The goal would be to get some-
thing like you see in Figure 4,
with one texture in the light area
of the object and one in the dark
area. It seems that would allow
for a great deal of control over
the placement of textures. From
Figure 3, you can see that the
shade table is implemented as

grayscale colors that are modulated with
the surface-material color in order to dark-
en the shaded regions of the model.

However, there is no reason that this
color needs to be grayscale. It could be any
color that would then modulate with the
surface color for different effects. Much
more interesting is the fact that the shade
table could contain alpha information.
Imagine if the shade table under the first
sphere were actually the alpha channel of
the shade table color. All the dark areas in
the shade table have alpha equal zero and
all the light areas have alpha equal one.

Now here’s where I get to use that cool
multi-texture hardware you all have on
your computers these days. Most game
graphics cards since 3dfx’s Voodoo 2 have
been able to combine two textures at once
in a technique called multi-texturing.
Under OpenGL, I access this hardware fea-
ture by using the OpenGL extension
GL_ARB_multitexture (or the Direct3D texture
stage settings). I am going to use this

N V E N V E1 1 2 2 0• −()() • −()() ≤

10

G R A P H I C C O N T E N T

a u g u s t 2 0 0 0 | g a m e d e v e l o p e r

FIGURE 3 (top). The shade tables as 1D textures applied to a sphere.
FIGURE 4 (bottom). Two-texture shading.

multi-texture along with two-pass render-
ing to get the image from Figure 4.

In pass one of the rendering, I will draw
the entire object with the “dark” texture,
T2. This will lead to some overdraw but
we can optimize this later. Pass two is
where the work gets done. This second
pass uses the multi-texture mode of the
hardware. There are now two textures
that need to be specified. Texture one is
the “light” texture, T1. Texture two will
point to the 1D shade-table texture.
Remember, my shade table contains the
alpha color values. This pass is now ren-
dered with alpha blending turned on.
(Actually, alpha test is probably better
since we are just using 1 and 0 for the
alpha values as it may run faster than
alpha blending on some hardware.)

What happens is that the shade-table
texture coordinate is calculated
just as I did for the basic car-
toon rendering. The color result
is multiplied with the texture
color. Anywhere the shade table
returns an alpha value of 0 will
not render to the final display
for that pass. Anywhere that
the alpha value is 1 will get the
new texture.

The final result is that I get
the image in Figure 4. Of course
it took two passes, one with
multi-texture. But this would be
a pretty tricky effect to achieve
in other ways. Realize that the
alpha values in the shade table
do not need to be strictly 0 and
1. By using fractional values at
any point in the shade table, I
would get a proportional blend
between the two textures.

By using this technique, I can
create very stylized textures and
selectively render them on an
object to highlight its shape,
much as a sketch artist does.
You can see some objects with a
pencil-sketch texture in Figure 5.

The main problem with this
technique is that since it requires
three textures, it requires the
two passes. However, that’s
about to change. ATI recently
announced its new 3D graphics
chip, the Radeon 256, which

will support blending of three simultane-
ous textures. That will allow me to draw a
two-texture sketch-style object in a single
rendering pass.

There are a lot of other interesting hard-
ware developments that will really improve
developers’ abilities to create new stylized
renderings. However, that will have to wait
until next month. Till then, play with the
new version of my cartoon renderer which
now supports two stylized textures. Get the
source and executable off the Game Devel-
oper web site at www.gdmag.com.

OpenGL Momentum Rant

D espite my best efforts most months,
I’m generally not able to put together

a long rant for this column. However, this
month something has been troubling me

enough to put the graphics aside and
sound off. Professionally, I am reasonably
API-agnostic. The final API target doesn’t
really matter that much as long as it does
the job of exposing the hardware features
I need. Making things work in an
OpenGL or Direct3D final product is no
big deal. For final delivery, it is speed and
the hardware that matter, not the API.
However, it must be clear to anyone who
has read this column before that I have a
fondness for OpenGL. This is for a variety
of reasons.

I like the idea of a platform-neutral 3D
rendering API. I would like to think that
the technologies and ideas I create can
work on a Macintosh, a Linux box, SGI,
or any other system that supports acceler-
ated 3D rendering. The fact that many of
my demos have been converted to a vari-

ety of platforms proves that to
some extent. There would prob-
ably be more of this if I were
less lazy about UI creation and
relied less on Windows controls.
However, trade-offs need to be
made between ease of use and
platform-independence.

I also find OpenGL to be an
incredibly creative API. I can get
something running and experi-
ment with it very easily. This is
similar to an artist who finds a
particular animation package
conducive to his or her creativity.
Most high-end animation pro-
grams can yield nice images,
however, all artists have their
favorite. I happen to find
OpenGL a very creative and intu-
itive graphics programming API
for both research and education.

Having explained all that, I
find myself troubled by the state
of OpenGL. This has been sim-
mering for some time now and
doesn’t show any signs of getting
better. For a long time, OpenGL
took a leadership role in real-
time graphics rendering on hard-
ware platforms. Consumer-level
3D hardware was in its infancy
and looked to the CAD and sim-
ulation markets for inspiration.
They had flashy features such as
geometry acceleration, filtered

a u g u s t 2 0 0 0 | g a m e d e v e l o p e r12

G R A P H I C C O N T E N T

FIGURE 5. Dual-texture sketch-style rendering.

texturing, and stencil buffers. We had
hardware that could hardly render a tex-
tured triangle.

Well, times have changed dramatically.
The consumer 3D graphics market has
advanced at a feverish pace. Competition
between hardware vendors led to feature
after feature and the list of features we
lacked quickly grew shorter. At the same
time, game developers began to recognize
that there were things important to us that
were not important to OpenGL’s tradition-
al users up until that point. Texturing
with multiple rendering passes became a
must-have feature for graphics hardware.
Clever ways to do real-time environment
and bump maps were needed. Developers
began looking to the OpenGL program-
ming manuals for inspiration for new
effects and found none.

So, developers started to read Siggraph
proceedings and books like The Render-
Man Companion looking for inspiration.
Hardware vendors started asking what
kinds of new features we desired. We
passed the last road sign directing us down
the real-time rendering highway.

The problem is that software develop-
ers and hardware manufacturers are fun-
damentally at conflict. Hardware makers
want to sell new products every year.
They want to develop features that differ-
entiate themselves from their competition
and give the buyer a reason to select their
product. Software makers, on the other
hand, want the best collection of features
that work on the largest set of systems.
Game developers would gladly sacrifice
vendor-specific features for cross-system
stability. These two philosophies are in
direct opposition.

There needs to be an arbiter of these
conflicting motivations. This arbiter must
combine the information and ideas from
all sides involved and develop a plan for
the future of real-time 3D graphics.
Microsoft is in a perfect position for this
role, and as you know, has stepped in to
fill it. They discuss with developers their
needs and wants (really, they do) and talk
to the hardware manufacturers to find out
what is possible. They then plot the road
map for where 3D hardware should go
and design an API to give developers
access to these features. This is where the
arguments start.

Microsoft is not really interested in
developing OpenGL. I understand that.
They are interested in designing an API
for gaming on Windows. Hopefully, they
will make it the easiest API possible for
developers to use. Hopefully, they listen to
what developers say they want to see in
an API and implement it. Whether you use
it in your game or not is your decision,
just like you decide which animation
package to use.

But in its role as real-time rendering
visionary, Microsoft actually does a lot
more than define an API that developers

can use. They actually guide future hard-
ware development to some extent. They
set goals and targets for hardware makers
and in doing so define many of the fea-
tures exposed to developers. This affects
all APIs and all operating systems that may
use this hardware.

Unfortunately for OpenGL, there seems
to be no one carrying this vision for its
future. There is no one really working
between developers and vendors to define
the path. There is the OpenGL Architec-
ture Review Board (ARB), which governs
the official OpenGL specification. How-
ever, the ARB encompasses a wide variety
of interests including the manufacturing,
simulation, and defense industries. It is a
very conservative body that implements
well-thought-out features, but this takes
time. Without this vision, OpenGL is left
to implement extensions that give access to
the features created by the D3D vision.
OpenGL support is left as an orphaned
afterthought.

So who could carry this vision and how
would it fit in with OpenGL? SGI once
carried the vision for the future of render-
ing. People like Mark Peercy and others
continue to come up with very interesting

ideas at the company. Many also point to
Nvidia as a potential standard-bearer of
OpenGL innovation. This makes some
sense as many of the best minds that
worked on OpenGL now work for that
company. However, hardware vendors do
not tend to look to each other for areas in
which to innovate. As I said before, they
are looking to differentiate themselves to
consumers, not come up with a common
direction for development.

This leaves the software developers
themselves. We need to spend some time
focusing on the features future graphics
hardware should have. We need to consid-
er how we want to access these features
and we need to work with the hardware
vendors to make sure it can happen.
Developers need to become more active in
API design instead of just grumbling
about how difficult a given one is to use
or how extensions are not widely support-
ed. This currently happens to some extent
through private conversations, .plan files,
and newsgroup postings. However, we
really need to organize these discussions in
order to present a coherent plan to hard-
ware vendors. Getting the features done
right in hardware is the key. That means
we need to try ideas out in software
instead of on the next graphics card
release. The OpenGL extension system is
an ideal way to experiment with new, for-
ward-thinking ideas before things get
locked into silicon. Forums like the Game
Developers Conference, the GDC Hard-
Core Technical Seminars, and public
newsgroups and mailing lists are perfect
vehicles for developers to get involved. We
need to discuss what we want to see and
how we want to use it. The future of your
favorite API depends on it. q

a u g u s t 2 0 0 0 | g a m e d e v e l o p e r14

G R A P H I C C O N T E N T

Unfortunately for
OpenGL, there seems
to be no one carrying
a vision for its future.

FOR MORE INFORMATION

Markosian, Lee, and others. “Real-Time Non-

photorealistic Rendering.” Proceedings of

Siggraph 97. pp. 415–420.

Northrup, J. D., and Lee Markosian. “Artistic

Silhouettes: A Hybrid Approach.” Proceed-

ings of NPAR 2000 (forthcoming).

Digimation Real-Time 3D Libraries
www.digimation.com

T here have been some major
changes in my little real-time
3D world lately, and I have a
feeling that there are many
more to come. I used to pride

myself on pinching every last vertex and
polygon until my model had just enough
detail to tell you its form. Now I’m using
vast arrays of polygons just to get the shad-
ing effect that I want. I used to spend hours
painting specular highlights and shadows
into tiny textures, grooming each pixel to
add to the illusion. Now I spend that time
creating detail and subtlety on high-resolu-
tion textures that don’t need much lighting
information at all. I’m using new modeling
techniques and creating special textures for
effects that I never thought would be possi-
ble in real time. What have I been working
on, you ask? Demos, I’ll tell you. Demos to
illustrate some of the things that can be
done with the new features of the latest 3D
graphics chips.

There are a lot of new possibilities for
what can be done as hardware technology
marches along, and as artists and pro-
grammers work with the new technologies
a lot of new effects will be discovered. I
can’t tell you all there is to know about
what effects are now possible, but I can
tell you about three very interesting ones:
real-time reflection, masked real-time
reflection and real-time bump mapping.
These are all effects that have only recently
become possible in real time thanks to
advances in graphics hardware, and have
already cropped up in games such as
EVOLVA. The demo that I was involved in
to show off these nifty new effects consist-
ed of a 22,000-polygon 3D model of the
graphics chipmaker’s company logo and
several different sets of textures to show-
case each effect. The simplicity of the art
production and the conciseness of what
the demo was designed to illustrate makes
it a good jumping-off point for explaining
what some of this new technology means
for artists.

Real-Time Reflection

R eal-time reflection can be amazing to
behold. As you might guess, as you

rotate an object that has a reflective mate-
rial on it, say a polished metal ball, the
reflection changes to give the illusion that
the object is reflecting back the correct
part of the environment (Figure 1). Mak-
ing objects reflective in real time is a key
element in making computer art look life-
like, as almost everything in the real world
has some reflective properties. Even specu-
lar highlight is a form of reflection, you
can imagine the added realism of having it
move as you rotate an object. So, what is
needed from the artist to create real-time
reflection? There are three basic elements:
a model that is built with certain issues in
mind (more on that later), a base texture,
and a reflection map. One other element
that’s worth mentioning is a good working

relationship with the programmer who will
be implementing the new features. As with
the implementation of any new feature,
and particularly because these new effects
happen in the engine (as opposed to being
painted into a texture), setting up a clear
procedure with the programmers on your
project will get you closer to the results
that you want in the end.

The reflective model. As I mentioned,
there are certain issues that you need to
keep in mind when you are building a
model that’s going to use real-time reflec-
tion, especially objects with a highly reflec-
tive surface such as polished metal. The
main issue is that the model needs to have
an evenly spaced and hopefully plentiful
array of vertices across the reflective sur-
face. These vertices are necessary in order
to get the most realistic and accurate reflec-
tion. The reflection is calculated based on
the normals of the vertices and the angle of

Bump and Shine
Getting Down with New 3D Hardware Effects

A U T H O R ’ S B I O | Lisa Washburn’s bumpy and shiny new world reflects Vector Graphics
(www.vectorg.com), her real-time 3D art production company. Send comments and questions
to article@vectorg.com.

w w w . g d m a g . c o m 17

l i s a w a s h b u r n A R T I S T ’ S V I E W

FIGURE 1. Real-time reflection on an object, utilizing both a base texture and a reflection map.

the camera (or viewer), as you can see in
Figure 2. What gets reflected between the
vertices is interpolated from this informa-
tion, so the more vertices you have, the less
guesswork the computer has to do, and the
more accurate your reflections will be.
Luckily, advances in graphics cards com-
bined with faster CPU processing speeds
give you a lot more vertices to play with. I
found that building objects with patches
can give you a nice even grid of vertices
when you change it into a polygonal model
(see “Skin Deep 2: Implementing Patch Sur-
faces,” Artist’s View, April 2000, for more
information on working with patches).

The base texture. For the demo men-
tioned earlier, which I will refer to as the
logo demo, we decided to go for a brushed-
metal effect. The most interesting thing
about texturing this model, and one of the
biggest changes from nonaccelerated real-
time 3D, is that there was no need to paint
lighting into it. The whole point of real-
time reflection is that the texture changes
as you move the object around, so painted-
on specular highlights would look obvious-
ly static compared with the dynamic reflec-
tion. New features such as stencil buffering
give you several options for dynamic shad-
ows. This particular demo didn’t feature
dynamic shadows, so that will have to wait
for another article. The other interesting
thing about the textures was their enor-
mous size. We used nine textures, two at
1024×1024 and seven at 1024×512, on this

part of the demo
alone. It probably
would have been pos-
sible to use more, but
that’s all that was
really necessary for
the effect that we
wanted. Granted we
only had one object
to texture, so depend-
ing on your scene
you will use different
configurations of tex-
ture sizes, but that’s a
lot of texture given
all the other effects
that were being
processed.

Reflection map.
Calculating reflec-
tions is a bit like ray-

tracing. You bounce a ray off of the object
and, based on a piece of math that uses the
angle at which you are looking at the
object and the normal of the nearest ver-
tex, you project the ray out into the scene.
Where the ray hits is what is reflected on
your object. Imagine the math that would
have to be processed if the computer had
to bounce a ray off the object for every
pixel that it drew and also had to detect
where in the scene the
ray went and what it
was hitting. After
detecting what the ray
hit, it would have to fig-
ure out what that
should look like and
then render it in the
reflection. That’s a lot
of calculations.

Enter the third piece
of art that is needed to
create real-time reflec-
tions: the reflection map.
A reflection map is a 2D image of the scene
surrounding the shiny object. This drasti-
cally optimizes the rendering time by sim-
plifying the calculations done by the com-
puter to figure out what to reflect. Using a
reflection map, the computer calculates a
second set of UV coordinates that tells it
where on the reflection map to render,
instead of the computer having to detect
where in the scene the ray has bounced to.
This calculation is done for each vertex

that is rendered. As I mentioned when I
discussed building the model, the area
between vertices is interpolated from the
information at the vertices. Reflection maps
are a bit more complicated than just a 2D
picture, however. There are two different
types of reflection maps that are used most
commonly in real-time reflection, namely
spherical and cubic. There is a third option
called planar reflection, but this only works
for flat surfaces and is generally calculated
on the fly. A fourth option is dual-parabo-
loid environment mapping, but it is not
commonly used and therefore will not be
covered here.

A spherical reflection map is a single 2D
image that looks like you took the reflec-
tive object, say a drop of water, surround-
ed it with a shiny chrome ball and then
took a picture of the chrome ball. Basically
it’s a picture of the environment surround-
ing the droplet reflected in a chrome ball,
an example of which you can see in Figure
3 where a bee is standing next to a drop of
water on a leaf. There are two major
drawbacks to using spherical maps.

The first is that it is only truly accurate
from the viewpoint at which the reflection
image was generated. As you move farther
away from that viewpoint the distortion
gets worse, especially along the edges and

in particular around the
back. This means that if
you are using a spheri-
cal map you can rotate
the shiny object, but as
soon as you move the
camera the reflection
will be distorted, and
possibly completely
inaccurate. For exam-
ple, imagine that you
are holding a chrome
ball in front of your
face. If you turn the

ball, without moving your head, your face
with the same background will be reflect-
ed in the side of the ball that is facing
you. The viewpoint hasn’t changed. If that
same chrome ball is spherically mapped in
a real-time 3D environment, and you
move the camera around to look at the
back, you will see distortion that looks
like the reflection has been bunched
together to cover a hole. It’s similar to the
mapping distortion that you get at the

a u g u s t 2 0 0 0 | g a m e d e v e l o p e r18

A R T I S T ’ S V I E W

normal

reflection ray

FIGURE 2 (above). Calculating the reflection. More vertices produce better
results and the technique lends itself well to patch-based objects.
FIGURE 3 (below). Using spherical reflection maps can produce appealing
results, but distort when the camera or viewpoint changes.

poles of a ball when you use the
spherical mapping option in
your 3D modeling software.
Objects that are only somewhat
reflective can probably get away
with this type of distortion. The
shinier the reflection, however,
the more obvious the inaccura-
cies will be.

The second problem is that
because of the way in which the
map needs to be distorted, spheri-
cal maps are difficult to generate
and aren’t usually generated on
the fly in the game engine. You
take a rendering of the environ-
ment, use the Spherize plug-in in
Photoshop, and hand-paint the
specular highlights to create
something like what you see in
Figure 3. It’s not strictly accurate
from a mathematical standpoint,
but it still gives you a reasonable
spherical reflection effect.

The second kind of environ-
ment map, which we used for
the logo demo, is cubic mapping.
Cubic mapping uses six different
images that are generated by tak-
ing your shiny object and sur-
rounding it with a cube. Now
put a camera in place of the
shiny object and render six
images of the surrounding envi-
ronment using each side of the
cube as its frame. The camera
rotates in 90-degree increments,
but doesn’t move. You will get
an image for front, back, right, left, top,
and bottom, as you can see in Figure 4.
The biggest advantage to cubic mapping is
that it is viewpoint-independent. Unlike
the spherical map that was only accurate
from the viewpoint from which it was ren-
dered, cubic mapping references six differ-
ent viewpoints. This means that you can
rotate the camera in the scene, or the
object, and you will still get an accurate
reflection. Cubic reflection maps are also
easy to generate, as they are straightfor-
ward renderings of the environment, as
opposed to the chrome ball effect of the
spherical map. The only stipulations for
cubic maps is that they need to have a 1:1
aspect ratio, have a 90-degree field of view,
and be pixel-tight with no overlapping at

the edges. If you have a digital environ-
ment already built you can use your 3D
modeling package to generate them. 3D
Studio Max has a Reflect/Refract Map
option in the material editor that will gen-
erate a set of cubic maps for you. Other
software packages have similar options.

If you want to reflect an actual physical
environment there are even digital cameras
that can be set up to generate cubic maps.
These are used for “virtual tour”–type
options on the Internet. Figure 4, which
was used in the logo demo, was generated
using a digital camera. If you have the
bandwidth, cubic reflection maps can also
be generated on the fly by setting up the
six extra cameras in your scene and having
them render to the reflection. This gives

you the option of capturing mov-
ing objects in your reflection
maps. The biggest drawbacks to
cubic reflection maps are the
logistics of handling six textures
instead of the single one that
spherical mapping uses, and that
not all real-time 3D platforms
support them.

Masked Real-
Time Reflection

M asked real-time reflection
uses the alpha channel of

the color texture map to control
the level of reflection for the
shiny object. Using the alpha
channel to control reflection is
very similar to using it to control
transparency. By using a gradient
from black to white, you can
specify how shiny an object will
be when it is rendered. For
example, if you specify that black
is mirror-shiny and white is not
reflective at all, then a light gray
would be a dull shine similar to
lightly polished marble. Likewise,
you can also mask out areas so
that there are shiny details inside
of nonreflective textures.

This is what we did for the
logo demo. I created a circuit-
board design that was green with
metal traces and soldering joints
running across it. I masked out
the green areas, which created the

effect of shiny metal details on a matte plas-
tic background (see Figure 5). This tech-
nique opens up all kinds of opportunities.
Shiny objects can have dull, scuffed areas,
such as rub marks or fingerprints on a
doorknob, or scratches on the fender of a
car. Semi-reflective objects can have highly
reflective details such as a gold inlay on the
polished black handle of a sword or any
other number of possibilities.

Real-Time
Bump Mapping

B ump mapping is used to create the
illusion of 3D detail on a surface. It

creates the illusion through a series of 2D
textures and doesn’t require the detail to

a u g u s t 2 0 0 0 | g a m e d e v e l o p e r20

A R T I S T ’ S V I E W

FIGURE 4 (top). A cubic environment map utilizes six different viewpoints,
enabling the object or viewpoint to rotate without distortion.
FIGURE 5 (bottom). Masked real-time reflection uses the base texture’s
alpha channel to mask certain areas of an object’s reflective surface.

be present in the geometry. It adds realism
to objects that have a bumpy, wrinkled, or
cracked surface by creating the look of
subtle shadow changes as a light source is
moved around it. It’s a recent addition to

real-time 3D,
although it’s been
used in prerendered
3D for years.

There are several
different ways to do
real-time bump map-
ping, each with vary-
ing degrees of real-
ism and performance
hit. The procedure
that we used for the
logo demo is gener-
ally called “dot
product 3,” which
refers to the type of
calculation used to
figure out the light-
ing. On the art pro-
duction side of bump
mapping there are
two things that are

needed: the color texture and a grayscale
image (essentially a height map) that
determines what the bump looks like. This
grayscale image can be in the alpha of the
color texture, or it can be a separate
image. For the logo demo, we didn’t use a
color texture, just the bump map and
reflection, so the bump map was not in
the alpha channel. You can see the results
in Figure 6. The grayscale map was of tex-
tured steel plating with a metal border
around the edge and screws in the corners
(Figure 7).

To create the effect of real-time bump
mapping, the grayscale height map is
turned into a normal map for each pixel of
the object. This means that each pixel of
the object now has a directional normal
based on its shade of gray. Next, a vector
is generated that points to the light source
in the scene. This pixel normal and the
light vector are then used to calculate
where the highlight and shadow should be.
As the light is moved around the object,
the shadow and highlight are recalculated
for each pixel. This gives you the effect of
light playing over the surface of a bumpy
object, even though there is no geometry
there to interact with the light.

A tip for creating color maps that have
companion bump maps: don’t put any
lighting in the color map. For example, say
that your object is a rock with a crack in
it. It’s O.K. to add details to the crack,

such as accumulated dirt, but you will get
better results if you don’t put in a dark
shadow. If the crack is specified in the
bump map, then the shadow will be gener-
ated dynamically as a light is passed over
it. If the shadow is already statically paint-
ed into the color map, then the bump map
will not look right.

Real-time 3D is growing closer to pre-
rendered 3D with every turn of the graphic
chip development cycle. What does this
mean for artists? It means that we have to
break out those tutorials and explore how
to use some of the more advanced features
of our 3D software that we thought we
wouldn’t ever get to use. We artists will
soon spend our time actually building the
detail into our models instead of trying to
figure out ways to fake them, be it through
texture or modeling tricks. We will actual-
ly light scenes instead of figuring out ways
to paint lighting effects into the texture or
light map. We will be freed up to use more
of the dynamic material options that ship
with our 3D package of choice, like bump
mapping and cubic reflection. And finally,
it means that with the help of a talented
programmer, RT3D artists are poised on
the brink of creating some of the most
realistic, mind-blowing 3D artwork in the
history of computer gaming graphics. Well,
at the very least some of the most bumpy
and shiny. q

22 a u g u s t 2 0 0 0 | g a m e d e v e l o p e r

A R T I S T ’ S V I E W

FOR MORE INFORMATION

A C K N O W L E D G E M E N T S

Special thanks to Curtis Beeson and Joe
Demers, Jeff Lander of Darwin 3D
(www.darwin3d.com), and Chris Hecker of
definition six (www.d6.com) for their techni-
cal insights and huge amounts of patience.

FIGURE 6 (top). Real-time bump mapping.
FIGURE 7 (bottom). The grayscale map used.

There’s a lot of information on the devel-

oper pages of all the chip manufacturers.

NVIDIA
www.nvidia.com/Developer.nsf

ATI
www.ati.com/na/pages/resource_centre/
dev_rel/devrel.html

3DFX
www.3dfx.com or e-mail
devprogram@3dfx.com

GAME AI
The State of the Industry

b y s t e v e n w o o d c o c k

Illustration by Justin White

O ne thing was made clear in
the aftermath of this year’s
Game Developers Confer-
ence: game AI has finally
“made it” in the minds of

developers, producers, and management. It
is recognized as an important part of the
game design process. No longer is it relegat-
ed to the backwater of the schedule, some-
thing to be done by a part-time intern over
the summer. For many people, crafting a
game’s AI has become every bit as important
as the features the game’s graphics engine
will sport. In other words, game AI is now a
“checklist” item, and the response to both
our AI roundtables at this year’s GDC and
various polls on my game AI web site
(www.gameai.com) bear witness to the fact
that developers are aggressively seeking new
and better ways to make their AI stand out
from that of other games.

The technical level and quality of the GDC AI roundtable dis-
cussions continues to increase. More important, however, was
that our “AI for Beginners” session was packed. There seem to be
a lot of developers, producers, and artists that want to understand
the basics of AI, whether it’s so they can go forth and write the
next great game AI or just so they can understand what their pro-
grammers are telling them.

As I’ve done in years past, I’ll use this article to touch on some
of the insights I gleaned from the roundtable discussions that Neil
Kirby, Eric Dybsand, and I conducted. These forums are invalu-
able for discovering the problems developers face, what tech-
niques they’re using, and where they think the industry is going.
I’ll also discuss some of the poll results taken over the past year
on my web site, some of which also provided interesting grist for
the roundtable discussions.

Resources: The Big Non-issue

L ast year’s article (“Game AI: The State of the Industry,”
August 1999) mentioned that AI developers were (finally)

becoming more involved in the game design process and using
their involvement to help craft better AI opponents. I also noted
that more projects were devoting more programmers to game AI,
and AI programmers were getting a bigger chunk of the overall
CPU resources as well.

This year’s roundtables revealed that, for the most part, the
resource battle is over (Figure 1). Nearly 80 percent of the devel-

opers attending the roundtables reported at
least one person working full-time on AI on
either a current or previous project; roughly
one-third of those reported that two or more
developers were working full-time on AI.
This rapid increase in programming
resources has been evident over the last few
years in the overall increase in AI quality
throughout the industry, and is probably
close to the maximum one could reasonably
expect a team to devote to AI given the real-
ities of the industry and the marketplace.

Even more interesting was the amount of
CPU resources that developers say they’re
getting. On average, developers say they
now get a whopping 25 percent of the CPU’s
cycles, which is a 250 percent increase over
the average amount of CPU resources devel-
opers said they were getting at the 1999
roundtables. When you factor in the increase
in CPU power year after year, this trend

becomes even more remarkable.
Many developers also reported that general attitudes toward

game AI have shifted. In prior years the mantra was “as long as
it doesn’t affect the frame rate,” but this year people reported
that there is a growing recognition by entire development teams
that AI is as important as other aspects of the game. Believe it or
not, a few programmers actually reported the incredible luxury
of being able to say to their team, “New graphics features are
fine, so long as they don’t slow down the AI.” If that isn’t a sign
of how seriously game AI is now being taken, I don’t know
what is.

Developers didn’t feel pressured by resources, either. Some
developers (mostly those working on turn-based games) contin-
ued to gleefully remind everyone that they devoted practically
100 percent of the computer’s resources for computer-opponent
AI, but they also admitted that this generally allowed deeper
play, but not always better play. (It’s interesting to note that all
of the turn-based developers at the roundtables were doing strat-
egy games of some kind — more than other genres, that market
has remained the most resistant to the lure of real-time play.)
Nearly every developer was making heavy use of threads for
their AIs in one fashion or another, in part to better utilize the
CPU but also often just to help isolate AI processes from the rest
of the game engine.

AI developers continued to credit 3D graphics chips for their
increased use of CPU resources. Graphics programmers simply
don’t need as much of the CPU as they once did.

w w w . g d m a g . c o m 25

A U T H O R ’ S B I O | Steven Woodcock’s background in game AI comes from 16 years of ballistic missile defense work building massive real-
time war-games and simulators. He did a stint in the consumer arena, then returned to the defense world to help develop the AI for the national
missile defense system. He maintains a web site dedicated to game AI at www.gameai.com, and is the author of a number of papers and publi-
cations on the subject. Most recently, he contributed to a chapter to Game Programming Gems (Charles River Media, 2000). Steve lives in gor-
geous Colorado Springs, Colo., at the foot of Pikes Peak with his lovely wife Colleen and an indeterminate number of pet ferrets. His hobbies
include hiking, shooting, writing, and anything Battlestar: Galactica (go figure). Contact him at ferretman@gameai.com.

FIGURE 1. AI poll results from the GDC 2000
roundtables.

100
90
80
70
60
50
40
30
20
10
0

One or more devel-
opers dedicated to
game AI

% of overall game
CPU reserved for
AI processing

1997
GDC

1998
GDC

1999
GDC

Game
AI poll

+

+

2000
GDC

+ +

Trends Since
Last Year

A number of AI technologies
noted at the 1998 and 1999

GDCs has continued to grow and
accelerate over the last year. The
number of games released in recent
months that emphasize interesting AI
— and which actually deliver on their
promise — is a testament to the ris-
ing level of expertise in the industry.
Here’s a look at some trends.

Artificial life. Perhaps the most
obvious trend since the 1999 GDC
was the wave of games using artifi-
cial life (A-Life) techniques of one
kind or another. From Maxis’s THE

SIMS to CogniToy’s MIND ROVER,
developers are finding that A-Life
techniques provide them with flexi-
ble ways to create realistic, lifelike
behavior in their game characters.

The power of A-Life techniques
stems from its roots in the study of
real-world living organisms. A-Life
seeks to emulate that behavior
through a variety of methods that
can use hard-coded rules, genetic
algorithms, flocking algorithms, and
so on. Rather than try to code up a
huge variety of extremely complex
behaviors (similar to cooking a big meal),
developers can break down the problem
into smaller pieces (for example, open
refrigerator, grab a dinner, put it in the
microwave). These behaviors are then
linked in some kind of decision-making
hierarchy that the game characters use (in
conjunction with motivating emotions, if
any) to determine what actions they need
to take to satisfy their needs. The interac-
tions that occur between the low-level,
explicitly coded behaviors and the moti-
vations/needs of the characters causes
higher-level, more “intelligent” behaviors
to emerge without any explicit, complex
programming.

The simplicity of this approach com-
bined with the amazing resultant behav-
iors has proved irresistible to a number of
developers over the last year, and a num-
ber of games have made use of the tech-
nique. THE SIMS is probably the best
known of these. That game makes use of
a technique that Maxis co-founder and

SIMS designer Will Wright has dubbed
“smart terrain.” In the game, all charac-
ters have various motivations and needs,
and the terrain offers various ways to sat-
isfy those needs. Each piece of terrain
broadcasts to nearby characters what it
has to offer. For example, when a hungry
character walks near a refrigerator, the
refrigerator’s “I have food” broadcast
allows the character to decide to get some
food from it. The food itself broadcasts
that it needs cooking, and the microwave
broadcasts that it can cook food. Thus
the character is guided from action to
action realistically, driven only by simple,
object-level programming.

Developers were definitely taken with
the possibilities of this approach, and there
was much discussion about it at the round-
tables. The idea has obvious possibilities
for other game genres as well. Imagine a
first-person shooter, for example, in which
a given room that has seen lots of frags
“broadcasts” this fact to the NPCs assist-

ing your player’s character. The NPC
could then get nervous and anxious,
and have a “bad feeling” about the
room — all of which would serve to
heighten the playing experience and
make it more realistic and entertain-
ing. Several developers took copious
notes on this technique, so we’ll prob-
ably be seeing even more A-Life in
games in the future.

Pathfinding. In a remarkable depar-
ture from the roundtables of previous
years, developers really didn’t have
much to ask or say about pathfinding
at this year’s GDC roundtables. The
A* algorithm (for more details, see
Bryan Stout’s excellent article “Smart
Moves: Intelligent Path-Finding,”
October/November 1996) continues to
reign as the preferred pathfinding
algorithm, although everybody has
their own variations and adaptations
for their particular project. Every
developer present who had needed
pathfinding in their game had used
some form of the A* algorithm. Most
had also used influence maps, attrac-
tor-repulsor systems, and flocking to
one degree or another. Generally
speaking, the game community has
this problem well in hand and is now
focusing on particular implementations

for specific games (such as pathfinding in
3D space, doing real-time path-granularity
adjustments, efficiently recognizing when
paths were blocked, and so on).

As developers become more comfortable
with their pathfinding tools, we are begin-
ning to see complex pathfinding coupled
with terrain analysis. Terrain analysis is a
much tougher problem than simple
pathfinding in that the AI must study the
terrain and look for various natural fea-
tures — choke-points, ambush locations,
and the like. Good terrain analysis can
provide a game’s AI with multiple “resolu-
tions” of information about the game map
that are well tuned for solving complex
pathfinding problems. Terrain analysis also
helps make the AI’s knowledge of the map
more location-based, which (as we’ve seen
in the example of THE SIMS) can simplify
many of the AI’s tasks. Unfortunately, ter-
rain analysis is made somewhat harder
when randomly generated maps are used,
a feature which is popular in today’s

a u g u s t 2 0 0 0 | g a m e d e v e l o p e r26

G A M E A I

TOP. A smart rover navigates a maze in CogniToy’s MIND ROVER.
BOTTOM. THE SIMS made ample use of A-Life technology.

games. Randomly generating ter-
rain precludes developers from
“pre-analyzing” maps by hand and
loading the results directly into the
game’s AI.

Several games released in the past
year have made attempts at terrain
analysis. For example, Ensemble
Studios completely revamped the
pathfinding approach used in AGE

OF EMPIRES for its successor, AGE OF

KINGS, which uses some fairly
sophisticated terrain-analysis capa-
bilities. Influence maps were used to
identify important locations such as
gold mines and ideal locations for
building placement relative to them.
They’re also used to identify staging
areas and routes for attacks: the AI plots
out all the influences of known enemy
buildings so that it can find a route into an
enemy’s domain that avoids any possible
early warning.

Another game that makes interesting use
of terrain analysis is Red Storm’s FORCE

21. The developers used a visibility graph
(see “Visibility Graphs,” p. 30) to break
down the game’s terrain into distinct but
interconnected areas; the AI can then use
these larger areas for higher-level pathfind-
ing and vehicle direction. By cleanly divid-
ing maps into “areas I can go” and “areas
I can’t get to,” the AI is able to issue high-
er-level movement orders to its units and
leave the implementation issues (such as
not running into things, deciding whether
to go over the bridge or through the
stream, and so on) to the units themselves.
This in turn has an additional benefit: the
units can make use of the A* algorithm to
solve smaller, local problems, thus leaving
more of the CPU for other AI activity.

Formations. Closely related to the sub-
ject of pathfinding in general is that of unit
formations — techniques used by develop-
ers to make groups of military units
behave realistically. While only a few
developers present at this year’s roundta-
bles had actually needed to use formations
in their games, the topic sparked quite a
bit of interest (probably due to the recent
spate of games with this feature). Most of
those who had implemented formations
had used some form of flocking with a
strict overlying rules-based system to
ensure that units stayed where they were

supposed to. One developer, who was
working on a sports game, said he was
investigating using a “playbook” approach
(similar to that used by a football coach)
to tell his units where to go.

State machines and hierarchical AIs. The
simple rules-based finite- and fuzzy-state
machines (FSMs and FuSMs) continue to
be the tools of choice for developers, over-
shadowing more “academic” technologies
such as neural networks and genetic algo-
rithms. Developers find that their simplicity
makes these approaches far easier to under-
stand and debug, and they work well in
combination with the types of encapsula-
tion seen in games using A-Life techniques.

Developers are looking for new ways to
use these tools. For many of the same rea-
sons A-Life techniques are being used to
break down and simplify complex AI deci-
sions into a series of small, easily defined

steps, developers are taking more of
a layered, hierarchical approach to
AI design. Interplay’s STARFLEET

COMMAND and Red Storm’s FORCE

21 take such an approach, using
higher-level strategic “admirals” or
“generals” to issue general move-
ment and attack orders to tactical
groups of units under their com-
mand. In FORCE 21 these units are
organized at a tactical level into
platoons; each platoon has a “tacti-
cian” who interprets the orders the
platoon has received and turns them
into specific movement and attack
orders for individual vehicles.

Most developers at the roundta-
bles who were working on strategy

games reported that they were either plan-
ning to implement or already had used this
type of layered approach to their AI
engines. Not only was it a more realistic
representation, but it made debugging sim-
pler. Most of those who used this design
also liked the way it allowed them to add
hooks at the strategic level to allow for
user customization of AIs, building strate-
gies, and so on, while isolating the lower-
level “get the job done” AI from anything
untoward that the user might accidentally
do to it. This is another trend we’re seeing
in strategy games that players find quite
enjoyable — witness the various “empire
mods” for games such as STARS, EMPIRE OF

THE FADING SUNS and ALPHA CENTAURI.

Can AI SDKs Help?

T he single biggest topic of discussion at
the GDC 2000 roundtables was the

feasibility of AI SDKs. There are at least
three software development kits currently
available to AI developers:

• Mathématiques Appliquées’ DirectIA,
an agent-based toolkit that uses state
machines to build up emergent
behaviors.

• Louder Than A Bomb’s Spark!, a
fuzzy-logic editor intended for AI
engine developers.

• The Motion Factory’s Motivate, which
can provide some fairly sophisticated
action/reaction state machine capabili-
ties for animating characters. It was
used in Red Orb’s PRINCE OF PERSIA

3D, among others.

28 a u g u s t 2 0 0 0 | g a m e d e v e l o p e r

TOP. Ensemble Studios revamped the pathfind-
ing in AGE OF EMPIRES II: THE AGE OF KINGS by
including terrain analysis.
BOTTOM. Red Orb’s PRINCE OF PERSIA 3D used The
Motion Factory’s Motivate SDK.

G A M E A I

Many developers (especially those at the “AI for Beginners”
session) were relatively unaware of these toolkits and hence were
very interested in their capabilities. It didn’t seem, however, that
many of the more experienced developers thought these toolkits
would be all that useful, though a quick poll did reveal that one
or two developers were in the process of evaluating the DirectIA
toolkit. Most expressed the opinion that one or more SDKs would
come to market that would prove them wrong.

In discussing possible features, most felt that an SDK that pro-
vided simple flocking or pathfinding functions might best meet
their needs. One developer said he’d like to see some kind of stan-
dardized “bot-like” language for AI scripts, though there didn’t
seem to be any widespread enthusiasm for this idea (probably
because of fears it would limit creativity). Also discussed briefly in
conjunction with this topic was the matter of what developers
would be willing to pay for such an SDK, should a useful one
actually be available. Most felt that price was not a particular
object; developers today are used to paying (or convincing their
bosses to pay) thousands of dollars for toolkits, SDKs, models,
and the like. This indicates that if somebody can develop an AI
SDK flexible enough to meet the demands of developers, they
should be able to pay the rent.

Technologies on the Wane

It’s become clearer since last year’s roundtables that the influ-
ence of the more “nontraditional” AI techniques, such as neural
networks and genetic algorithms (GAs), is continuing to wane.
Whereas in previous years developers had many stories to tell of

exploring these and other
technologies during
their design and
development efforts,

at this year’s sessions there was much more focus on making the
more traditional approaches (state machines, rules-based AIs, and
so on) work better. The reasons for this varied, but essentially
boiled down to variations on the fact that these approaches are
better understood and work “well enough.” Developers seemed to
want to focus much more on how to make them work better and
leave exploration of theory to the academic field.

Genetic algorithms have taken a particularly hard hit in the
past year. There wasn’t a single developer at any of the roundta-
bles that reported using them in any current projects, and most
felt that their appeal was overrated. While last year’s group had
expressed some interest in experimenting with using GAs to help
with game tuning, the developers who had tried reported this
year that they hadn’t found this to be very useful. Nobody could
think of much use for GAs outside of the well-known “life simu-

a u g u s t 2 0 0 0 | g a m e d e v e l o p e r30

Visibility
Graphs
O ne of the interesting areas that game

AI is beginning to explore is the
realm of terrain analysis. Terrain analysis
takes the relatively simple task of path-
finding across a map to its next logical
step, which is to get the AI to recognize

the strategic and tactical value of various
terrain features such as hills, ridges,
choke-points, and so on, and incorporate
this knowledge into its planning. One
tool that offers much promise for dealing
with this task is the visibility graph.

Visibility graphs are fairly simple con-
structs originally developed for the field
of robotics motion. They work as fol-
lows: Assume you are looking down at a
map that has a hill in the center and a
pasture with clumps of trees all around it.
Let appropriately shaped polygons repre-
sent the hill and the trees. The visibility
graph for this scene uses the vertices of
the polygons for the vertices in the graph,
and builds the edges of the graph between
the vertices wherever there is a clear
(unobstructed) path between the corre-
sponding polygon vertices. The weight of
each connecting line equals the distance

between the two corresponding polygon
vertices. This gives you a simplified map
against which you can run a pathfinding
algorithm to traverse the map while
avoiding the obstacles.

There are some problems with visibility
graphs, however. They only give raw con-
nection information, and paths built using
them tend to look a little mechanical.
Also, the developer needs to do some
additional work to prevent all but the
smallest units from colliding with polygon
(graph) edges as they move, since the path
generated from a visibility graph doesn’t
take into account unit size at all. Still,
they’re a straightforward way to break
down terrain into simplified areas, and
they have uses in pathfinding, setting up
ambushes (the unobstructed graph edges
are natural ambush points), and terrain
generation.

Visibility graphs were used in Red Storm
Entertainment’s FORCE 21.

Relic Entertainment’s HOMEWORLD used flocking techniques.

G A M E A I

lators” such as the CREATURES and PETZ

series.
The one exception to this, as previously

noted, is the continued use of A-Life tech-
niques. From flocking algorithms that help
guide unit formations (FORCE 21, AGE OF

KINGS, HOMEWORLD) to object-oriented
desire/satisfaction approaches (THE SIMS),
developers are finding that these tech-
niques make their games much more life-
like and “predictably unpredictable” than
ever before.

Where We’re Headed

A lways interesting at the roundtables
are the inevitable discussions of

where the industry in general, and game AI
in particular, is headed. As usual, we got
almost as many opinions as there were
attendees, but some common trends could
be seen emerging down the road.

Everybody thought that game AI would
continue to be an important part of most
games. The recent advances were unlikely
to be lost to a new wave of “gee-whiz” 3D
graphics engines, and the continued
increase in CPU and 3D card capabilities
was only going to continue to give AI
developers more horsepower. There was the
same feeling as last year that the industry
would continue to move slowly away from
monolithic and rigid rules-based approach-
es to more purpose-oriented, flexible AIs
built using a variety of approaches. It
seems safe to assume that extensible AIs
will continue to enjoy some popularity and
support among developers, mostly in the
first-person shooter arena but also in more
sophisticated strategy games.

Academia and the defense establishment
continue to influence the game AI field (see
“Bridging the Gap Between Developers
and Researchers,” page 34), though it
sometimes seems that the academic world
learns more from game developers than
the other way around. For the most part,
developers seem to feel that the academic
study of AI is interesting but won’t really
help them ship their product, while
researchers from the academic field find
the rapid progress of the game industry
enviable even if the techniques aren’t all
that well documented.

There can be no doubt that the game AI
field continues to be one of the most inno-

vative areas of game development. We
know what works and tools are beginning
to appear to help us do our jobs. With
CPU constraints essentially eliminated and

the possibilities of good game AI now part
of the design process, AI developers can
look forward to a bright future of innova-
tion and experimentation. q

a u g u s t 2 0 0 0 | g a m e d e v e l o p e r32

G A M E A I

F O R M O R E I N F O R M AT I O N

WEB SITES
Far and away the best place to find out more about any aspect of game AI is the Internet. There are

more excellent web sites filled with tutorials, information, sample code, and so on, than anybody

could possibly list in one place. Some of the recommended ones include:

www.gameai.com

Steven Woodcock’s site, dedicated to all things game-AI-related. Provides links to other
AI resources, reviews on AI implementations in games already on the market, and
archives of various Usenet threads.

www.gamasutra.com

The sister site to Game Developer magazine continues to be an excellent discussion
area for people with game-AI-related questions. The game AI discussion list there is the
largest on the site.

www.gamedev.net

Another excellent site dedicated to all aspects of game development, there is an exten-
sive list of resources and an active discussion group on the topic.

www.red.com/cwr.boids.html

This site remains the single best source for any information about flocking and related
A-Life technologies.

www.pcai.com/pcai

PC AI magazine has a marvelous web site crammed with all kinds of useful AI
resources. From sample applications to research papers, you can find it here.

http://ai.eecs.umich.edu/people/laird/gamesresearch.html

John E. Laird’s site

www.aaai.org

American Association for Artificial Intelligence

NEWSGROUPS
Of course Usenet continues to be a great place to do research on a variety of AI-related topics. The

best newsgroups for this purpose remain comp.ai.games, comp.ai, and rec.games.programmers.

PAPERS
Laird, J. E., and M. van Lent. “Interactive Computer Games: Human-Level AI's Killer Application.”

Proceedings of the AAAI National Conference on Artificial Intelligence, August 2000.

Laird, J. E. “It Knows What You're Going to Do: Adding Anticipation to a Quakebot.” Proceedings of the

AAAI 2000 Spring Symposium Series: Artificial Intelligence and Interactive Entertainment, March

2000 (AAAI technical report #SS-00-02).

BOOKS
As Steven Woodcock mentioned in his article, there really aren’t too many books that discuss game

AI. Probably the best comprehensive reference remains:

Russell, Stuart J., and Peter Norvig. Artificial Intelligence: A Modern Approach. Upper Saddle River,

N. J.: Prentice Hall, 1995.

O ne would think that the combined coolness factor
of artificial intelligence and computer games
would be an irresistible topic, bringing game
developers and AI researchers together. Unfortu-
nately, there has been a mutual lack of interest

between serious game developers and academic AI researchers.
Game developers have picked up a few AI techniques, such as
decision trees and the ubiquitous A* algorithm for path planning,
but there has been nothing like the knowledge transfer that has
taken place with graphics. When game developers look at AI
research, they find little work on the problems that interest them,
such as nontrivial pathfinding, simple resource management and
strategic decision-making, bot control, behavior-scripting lan-
guages, and variable levels of skill and personality — all using
minimal processing and memory resources. Game developers are
looking for example “gems”: AI code that they can use or adapt
to their specific problems. Unfortunately, most AI research sys-
tems are big hunks of code that require a significant investment of
time to understand and use effectively.

Why AI Research and Game
Development Diverge

A I researchers rarely use computer games for their research,
outside of classic board and card games such as chess, check-

ers, and bridge. Possibly they see most game AI problems as sim-
ple “engineering” problems. This view has not been completely
unjustified because often the goal of game AI is not to create intel-
ligence, but to improve gameplay through the illusion of intelli-
gent behavior. Many of the techniques used to improve the illu-
sion of intelligence have nothing to do with intelligence, but
involve “cheats,” such as giving game AIs extra production capa-
bility or the ability to see through walls, or “faking it” by creating
bots that “talk” to each other but completely ignore what is said.
There also has been a drift in AI research toward problems and
approaches where precise empirical evaluation is possible. Need-
less to say, gameplay isn’t something that today’s AI researchers
feel comfortable evaluating.

Although there is currently a significant gap between game
developers and AI researchers, that gap is starting to close. The
inevitable march of Moore’s law is starting to free up significant
processing power for AI, especially with the advent of graphics
cards that move the graphics processing off the CPU. The added
CPU power will make more complex game AI possible. Still, game
developers should still be wary of AI researchers who say, “My
algorithm doesn’t run in real time right now, but just wait. In a
few more years, I’m sure the processing power will be there.”

A second, equally powerful force that is closing the gap is soci-
ological. Students who grew up loving computer games are getting
advanced degrees in AI. This has the dual effect of bringing game
research to universities and university research to game companies
— already there are at least five AI Ph.D.s at game companies. AI
researchers are discovering that building interesting synthetic
characters in computer games is much more than just an engineer-

ing problem. Moreover, games provide cheap, robust, immersive
environments for pursuing many of the core AI issues. They could
be the catalyst for a rebirth in research on human-level AI (see my
paper on the subject, listed under For More Information, p. 32).

The final force is the game-playing public, who are starting to
demand better AI. With the saturation in the quality of computer
graphics, better physics and AI are the two technologies that have
the most potential to improve gameplay. Players are looking for
more realistic AIs to populate their worlds with interesting non-
player characters (as in THE SIMS) and humanlike opponents who
must be out-thought and not just out-shot (and who don’t cheat).
AI can also provide dynamic game control, adjusting the game-
play based on how the game is played. Imagine playing a first-per-
son shooter where the AI not only reacts to your behavior, but
also anticipates your actions by using an internal model of the
way you play the game to make its plan. It also adjusts its skill at
the tactical level to match yours, so that the game is never a
blowout for either side. Our research group has built such a bot
using our own Soar AI engine connected to the deathmatch ver-
sion of QUAKE 2 (see my paper under For More Information). Our
research is a peek at what can come out of research labs. The
combination of complex AI and computer games can improve
existing game genres, and give rise to some new types of games.

Closing the Gap

W hat can computer game developers do to hasten the collab-
oration of developers and AI researchers? The most impor-

tant thing is to make commercial computer game interfaces avail-
able to AI researchers. Developers of games such as UNREAL,
QUAKE, and HALF-LIFE publish DLLs, making it possible for not
only hobbyists but also AI researchers to build bots that play
games. If developers from other genres such as real-time strategy
games follow suit, you would see an explosion of research on AI
for these games. Game developers can also join AI researchers in
discussing AI problems and solutions in open forums. There is
now a yearly symposium sponsored by the American Association
for Artificial Intelligence (AAAI) on AI and interactive entertain-
ment that brings together game developers and AI researchers.

One final note, building good AIs is hard work. Automated
learning approaches such as neural nets and genetic algorithms
can tune a well-defined set of behavioral parameters, but they are
grossly inadequate when it comes to creating synthetic characters
with complex behaviors automatically from scratch. There is no
magic in AI, except for the magic that emerges when a great pro-
grammer works very hard. q

a u g u s t 2 0 0 0 | g a m e d e v e l o p e r34

Bridging the Gap Between Developers & Researchers

A U T H O R ’ S B I O | Professor John E. Laird is associate chair of
computer science and engineering at the University of Michigan. He is
one of the original developers of the Soar AI architecture and leads its
continued development and evolution. For the last five years he has
taught a senior-level design course on computer game development.
He was an organizer of two symposia on AI and computer games and
has been a presenter at the last three GDCs.

G A M E A I j o h n e . l a i r d

A s I slowly reclined back
into the seat of the last E3
bus this spring, I was cer-
tain of two things: some
really great games were

coming out in the next year and my feet
hurt like hell. A lot of the games that cre-
ated a buzz featured excellent AI. Since
my fellow Ensemble-ites assured me
(repeatedly) that no one really cared to
hear about my feet, I thought I’d use this
space to talk about some of the games
coming out in the next 18 months and the
new and improved AI technology that will
be in them.

Better AI Development
Processes and Tools

A I has traditionally been slapped togeth-
er at the eleventh hour in a product’s

development cycle. Most programmers
know that the really good computer-player
(CP) AI has to come at the end because it’s
darn near impossible to develop CP AI until
you know how the game is going to be
played. As the use of AI in games has
matured, we’re starting to see more time
and energy spent on developing AI systems
that are modular and built in a way that
allows them to be tweaked and changed
easily as the gameplay changes. This allows
the AI development to start sooner, result-
ing in better AI in the final product. A key
component in improving the AI develop-
ment process is building better tools to go
along with the actual AI.

For Ensemble’s third real-time strategy
(RTS) game, creatively code-named RTS3,
we’ve spent almost a full man-year so far
developing a completely new expert system
for the CP AI. It’s been a lot of work tak-
ing the expert system (named, also cre-
atively, XS) from the in-depth requirements
discussions with designers to the point
where it’s ready to pay off. We’ve finally
hit that payoff and have a very robust,
extensible scripting language.

The language has been so solid and
reusable that, in addition to using it to
write the CP AI content, we’re using it for
console and UI command processing, cine-
matic control, and the extensive trigger
system. We also expect to use XS to write
complicated conditional and prerequisite
checking for the technology tree; this way,
the designers can add off-the-wall prereq-
uisites for research nodes without pro-
grammer intervention. Finally, we will
also use the XS foundation to write the
script code that controls the random map
generation for RTS3. The exciting aspect
of XS from a tools standpoint is that we
will have XS debugging integrated with
RTS3’s execution. For fans who used the
AGE OF EMPIRES II: THE AGE OF KINGS

(AOK) expert-system debugging (a display
table of 40 or so integer values), this is a
huge step up, since XS will significantly
increase the ease with which players can
create AI personalities.

Better NPC Behavior

I n the early days of first-person shooters,
non-player characters (NPCs) had the

intelligence of nicely rounded rocks. But
they’ve been getting much better lately —
look no further than HALF-LIFE’s story-
telling NPCs and UNREAL TOURNAMENT’s
excellent bot AI. The market success of
titles such as these has prompted develop-
ers to put more effort into AI, so it looks
as if smarter NPCs will continue to show
up in games.

Grey Matter Studios showed some really
impressive technology at E3 with RETURN

TO CASTLE WOLFENSTEIN. When a player
throws grenades at Nazi guards, those
guards are able to pick up the grenades
and throw them back at the player, adding
a simple but very effective new wrinkle to

NPC interactivity. A neat gameplay
mechanic that arises out of this feature is
the player’s incentive to hold on to
grenades long enough so they explode
before the guards have a chance to throw
them back. Thankfully, Grey Matter
thought of this and has already made the
guards smart enough not to throw the
grenades back if there’s no time to do so.

More developers are coupling their AI
to their animation/simulation systems to
generate characters which move with
more realism and accuracy. Irrational did
this with SYSTEM SHOCK 2 and other devel-
opers have done the same for their proj-
ects. The developers at Raven are doing
similar things with their NPC AI for STAR

TREK: ELITE FORCE. They created a com-
pletely new NPC AI system that’s integrat-
ed into their Icarus animation system.
ELITE FORCE’s animations are smoothly
integrated into the character behavior,
which prevents pops and enables smooth
transitions between animations. The result
is a significant improvement to the look
and feel of the game. I believe that as the
use of inverse kinematics in animation
increases, games will rely on advanced AI
state machines to control and generate
even more of the animations. As a side
benefit, coupling AI to animation gives
you the benefit of more code reuse and
memory savings.

Better Communication
Using AI

S ince the days of Eliza and HAL, peo-
ple have wanted to talk with their

computers. While real-time voice recogni-
tion and language processing are still sev-
eral years off, greater strides are being
made to let players better communicate
with their computer opponents and allies.

36 a u g u s t 2 0 0 0 | g a m e d e v e l o p e r

The Future
Of Game AI

A U T H O R ’ S B I O | Dave Pottinger is the technical director at Ensemble Studios. When not
working on becoming a Supa-L33t Hax0r, he spends his time with his lovely wife Kristen and
their house, Bill. E-mail him at dpottinger@ensemblestudios.com.

G A M E A I d a v e c . p o t t i n g e r

For example, in our upcoming AGE OF

EMPIRES: THE AGE OF KINGS expansion
pack, THE CONQUERORS, we’ve enabled a
chat communication system that lets you
command any computer player simply by
sending a chat message or selecting mes-
sages from a menu. Combined with AOK’s
ability to let you script your own CP AI,
this lets you craft a computer ally that
plays on its own and lets you have conver-
sational exchanges with it in random-map
games. This is a small step toward the
eventual goal of having players talk to
their computer allies in the same way as to
humans. Unfortunately, we still have to
wait a while for technology to catch up to
our desire.

Better Pathfinding AI

I n addition to adding great new fea-
tures, many upcoming games simply

have improved on existing AI features,
particularly in the area of pathfinding. No
one likes screaming at the stupidity of unit
movement. Despite the seemingly simple
nature of the problem, pathfinding in
games has become a big topic in recent
years. Many games (including our own
AGE OF EMPIRES) have been roasted for
bad pathfinding.

In the next year, we will likely see more
true 3D games, necessitating the use of
pathfinding algorithms that work in three
dimensions rather than a hacked-up 2.5
dimensions (two dimensions with a small
number of third-dimension planes at fixed
heights). Pathing and moving true 3D fly-
ing units is much harder than moving units
around on the ground, due to the desire to
have units bank and turn realistically. So
far, no one has proffered a simple solution
for pathing in true 3D while taking into
account things such as turn radius and
other movement restrictions. Instead, most
games path without any movement restric-
tions, use movement restrictions when pos-
sible while the unit follows the path, and
resort to a contrived turn-in-place
approach when movement restrictions con-
flict with the path.

To help compensate for the addition of
this extra calculation complexity, we will
likely see innovations in the way standard
pathfinding algorithms (such as A*) are
used. For example, I expect developers will

begin to time-slice pathfinding systems so
that particularly long routes can be com-
puted over multiple game-world updates
and renders. This task can get complicated
in a world with dynamic terrain and many
moving units, but it can be done if you’re
willing to spend the memory on it. And
improving paths while still maintaining
high frame rates is a big advantage.

Also upcoming are more hierarchical
pathfinding techniques. Different path-
finding algorithms or data sets can be
tuned to a particular need (for example,
long or short paths). A hierarchical
approach also allows paths to be generat-
ed at progressively more detailed levels on
an as-needed basis.

Hierarchical AI

N ot surprisingly, RTS games have some
of the most demanding AI needs.

Their AI has to meet a player’s expecta-
tions of a challenging strategy game, yet
still make decisions within milliseconds in
order to meet the game’s frame-rate
requirements. Hierarchical approaches to
AI have been successful in helping address
these needs.

In hierarchical RTS AI, there are differ-

w w w . g d m a g . c o m 37

TOP. The CONQUERORS expansion pack builds on
the AI engine from AGE OF EMPIRES II: THE AGE OF

KINGS.
MIDDLE. ELITE FORCE showcases an excellent
combined animation/AI system.
BOTTOM. Interesting new entity AI features will
be a key component in CATACLYSM.

ent layers to the AI. The strategic AI makes
high-level decisions such as “What units
should I train?” The tactical AI executes
the orders given by the strategic AI in the
best possible way, deciding things such as
where to train the units requested by the
strategic AI. Usually, the strategic AI is
evaluated far less frequently than the tacti-
cal AI. There’s often a third layer, which
we’ll call entity AI. Entity AI represents the
physical entities in the game, such as units
or groups, and is manipulated by the tacti-
cal AI. Thus, the entity AI is usually
processed more frequently than the tactical
AI (particularly if the entity AI has com-
bined AI and animation responsibility).

As the genre matures, RTS developers
are finding more interesting ways to use
this type of system. The upcoming HOME-
WORLD sequel, CATACLYSM, builds heavily
on the idea of combining simple AI behav-
iors. Unit aggression stances are used typi-
cally to control how far units pursue ene-
mies. That concept is combined with the
simple idea of patrolling between two
waypoints. So, if the units are set in an
aggressive stance while patrolling, they will
attack any targets they come across. How-
ever, if the units are set in an evasive
stance, they will avoid enemy contact dur-
ing patrols. While this isn’t hard to do
(assuming the code is written well), it’s an
example of how the entity AI can evolve to
become more complex.

THE CONQUERORS features another
example of behavior combination. In AOK,
your villagers stand around loafing after
finishing that lumber camp on the edge of
your town. In THE CONQUERORS, villagers
are smarter; they begin chopping wood
after finishing constructing a lumber camp.
Again, this seems simple, but it makes for
a much better game (and was one of the
most well-received features by AOK fans at
E3). Features such as this can also help
offload responsibility from the oft-over-
burdened tactical AI. If the tactical AI can
rely on villagers to keep working after
building a resource drop-site, it can
remove another round of villager-tasking
from its plate.

A little farther out on the RTS horizon
are our own RTS3 and Blizzard’s WAR-
CRAFT 3. Both will rely heavily on
autonomous agent behavior (a fancy
name for entity AI). Similar to combining

simple behaviors,
an event-driven
hierarchical entity
AI can alleviate a
lot of needless AI
polling by execut-
ing code only
when there is a
reason to do
something. This
frees up processor
time for more AI,
graphics, and
other tasks.

A comprehen-
sive group-AI sys-
tem also makes it
a lot easier to imple-
ment features such as group-based protec-
tion. Imagine that you’ve ordered a group
of melee units to protect some ranged
units. If the ranged units aren’t in danger
or actively taking damage, you probably
want the melee units to go beat on some-
thing. However, as soon as the ranged
units take damage, you want the guarding
melee units to rush over and stomp the
attacking units. This is possible in a non-
group-AI system, but it requires very
clunky data structures and is a lot harder
to achieve. And if it’s a lot harder to code,
then it will take longer to develop and be
less robust (read: really, really buggy). On
the other hand, if you have a group sys-
tem you can simply pass the damage noti-
fication up to the group and let it quickly
iterate through its guarding units, com-
manding them to attack the evil enemy
units as necessary.

Fun versus Difficulty

O ne long-standing AI question is, “To
cheat or not to cheat?” It used to be

that game developers had to bypass the
game rules that bound players in order to
empower the AI. Weak AI can hurt the
game experience, and allowing the com-
puter to cheat was the only way around
that problem. Happily, that’s been chang-
ing over the last few years. Several games
have been released in which the AI has at
least some difficulty levels that don’t cheat
(AGE OF EMPIRES, for example). This has
all been done under the assumption that
increased difficulty means more fun. A bet-

ter, more difficult AI is more fun to play
against, right? Not always.

Fresh from of a frustration-filled game
against a few of THE CONQUERORS’ AI
opponents, Tim Deen (one of Ensemble’s
designers) sent out an e-mail declaring that
he really wished we’d focus on making the
AI more fun to play against for the RTS3
project. Some healthy discussion ensued
and we discussed the relative complexity
of making an AI player harder to play
against versus more fun. The consensus
was that it was a lot easier to make an AI
more difficult to play against. So, being
good lazy programmers, we had done just
that without really giving it much thought.

As we start to build AI systems that can
stomp good players into the ground fair
and square, we need to look at the next
step. That next step should be making the

38 a u g u s t 2 0 0 0 | g a m e d e v e l o p e r

G A M E A I

TOP. Watch out for those tricky grenade-throw-
ing guards when you get off of the gondola in
RETURN TO CASTLE WOLFENSTEIN.
BOTTOM. UNREAL TOURNAMENT delivered on the
promise of excellent bot AI.

game fun. Since it’s not much fun to
play against an AI that never has a
chance to beat you, the AI has to be
able to put up a really good fight. Natu-
rally, we have tools to do that, and it’s
easy to measure the success of that
approach using lots of fun spreadsheets
and graphs. It’s more difficult — and,
more significantly, considerably more
subjective — to make an AI fun to play
against. Conveniently, many of the tools
that we already have from building diffi-
cult AIs can be leveraged to make the
game more fun to play.

UNREAL TOURNAMENT has some great
bot code that can really compete with
the best players. Yet, it’s also fun to play
against. It intentionally makes mistakes
and doesn’t always do the best thing it
can. While that may not be the most inter-
esting thing from an academic AI perspec-
tive, it’s a lot more fun than getting shot in
the back every single time.

In our RTS3 project, we’re going to use
the XS scripting language to control the

level of difficulty. Since we have an idea of
how long we’d like each game to take, our
AI designers can check things such as game
time, how many of the CP’s units have been
killed, how many of the human player’s
units were killed by the CP, or the score of
the game to see who’s “winning.” Armed
with that information, they can scale back
the quality of the AI to make sure the game

doesn’t drag out long after the outcome is
really determined. If you start to aug-
ment that ability with other features such
as game history logging, you have the
makings of a good opponent that quickly
scales to your initial difficulty level and
continues to give you a challenging game
even as you get better.

The next year or so still looks to have
a heavy focus on graphics, particularly
as X-Box, Playstation 2, Dolphin, and
the good old PC continue to vie for
visual supremacy. But, perhaps less
glamorously, AI keeps chugging along
and is getting better. As more develop-
ers dig into AI and realize that good AI

is just as difficult as pushing tons of poly-
gons to the screen, AI is getting increased
attention. Almost every developer at E3
had an answer to the question, “So what
new AI stuff are you doing with this
game?” You can’t get much cooler than
that, which is why I’m optimistic about
the continuing improvement and refine-
ment of AI in games. q

WARCRAFT 3 sports a complete overhaul of everything in the
engine, including the AI.

a u g u s t 2 0 0 0 | g a m e d e v e l o p e r40

I M P L I C I T S U R F A C E S b r i a n s h a r p

Moving
Fluid:

The Conclusion of a

Two-part Series about

Implicit Surfaces

h is pre-set for the drop cap. The first drop cap in an article should be set in the charac-

ter style sheet drop cap - intro. Ad

A two-article series is the ultimate in delayed gratification. The first

month you have to sit there and read a bunch of math, and you get

nothing for your work save a few measly screenshots. Even worse, it

ends without tying up any loose ends, and just leaves you sitting there in

the dark.

Then you have to wait an entire month before you get to

read the second article, which brings everything together

and gives you a juicy demo to sink your teeth into.

Well, good news: since this is the second article, I’ll

(hopefully) provide some closure and I’ll definitely

provide a demo.

For any of you who skipped class last month (“Go

with the Flow: Improving Fluid Rendering Using

Implicit Surfaces,” July 2000), this article probably

won’t make very much sense. Having read last month’s

article is a pretty firm prerequisite to making it through this

month’s material, so grab last month’s issue and chow down.

41

A U T H O R ’ S B I O | I, Brian Sharp, can be reached at brian@maniacal.org. Rather
than the usual lighthearted bio this month, though, I’m taking this space to dedicate this

series of two articles to a very good friend who died in March 2000. Seumas McNally of
Longbow Digital Arts was an inspiration and great help on these two articles, as for all my others, and

I’ll think back fondly on our conversations even if he never did like martinis. Seumas, farewell. We’ll all miss you.

w w w . g d m a g . c o m

Mercury Fountain by Steve
Ash

ley of Stainless

St
ee

l S
tu

di
os

Now, Where Were We?

S o, in case you’ve forgotten, we’re try-
ing to model liquids using implicit sur-

faces. Last month I covered quite a bit of
ground. I described the technique for mod-
eling surfaces using a number of mole-
cules. I then defined the value of our
implicit function: Let p be the point in
space for which you want to evaluate the
implicit function. Then let ci be the loca-
tion of the ith molecule (where the total
number of molecules is n). The value of
the function at p is then:

From there, I examined the basic march-
ing cubes algorithm used to tessellate the
surface. I broke space up into a uniform
3D grid and for each grid cell sampled the
function and generated polygons based on
the results. You can see some example tes-
sellations in Figure 1.

Slow Going at First

U sing the basic, brute-force marching
cubes algorithm, you can already

generate a full surface: vertices, normals,
texture coordinates, colors, the whole
deal. So what do we have left to do? Well,
as I pointed out last month, the brute-
force marching cubes algorithm is slow.
Very slow.

The first thing I’ll cover in this article is a
brief (and informal) overview of algorithm

analysis. After all, we can’t very well opti-
mize our algorithms if we don’t understand
why they’re slow in the first place. After
that, I’ll detail the process of optimizing
brute-force marching cubes with the goal of
creating a process that runs in real time and
scales well with larger surfaces.

Finally, after that, I’ll discuss physics.
It’s one thing to be able to render an
implicit surface, but it’s another thing to
make that implicit surface move like fluid.
We’ll look at methods for modeling fluid
cohesion and flow, incorporating gravity
and other external forces, and dealing with
collisions against the rest of the world.

Algorithms in Brief

I f you already have a grasp of algorithm
analysis, feel free to skip this section, but

understanding running times is an impor-
tant prerequisite to getting our fluid render-
ing to run at a good speed. Also note that
these few paragraphs provide just the bare
minimum necessary to understand the arti-
cle, and are no substitute for a good refer-
ence on algorithms. My personal favorite
algorithm text is Introduction to Algo-
rithms, listed in the For More Information
section at the end of the article.

Any algorithm, such as a sorting algo-
rithm for example, has what’s known as a
running time. There are different ways to
refer to running time, but the notation we
care about is what’s known as “big-O”
notation. You may have seen it before,
something to the effect of, “This algorithm
runs in O(n2) time.”

Big-O is an upper bound on the running
time. It means that the algorithm takes at
most n2 time. The n2 is a reference to how
the algorithm scales. The n refers to some
variable. For a sorting algorithm it’s almost
always the number of items being sorted.

In this example, if the sorting algorithm
was O(n2), it means that doubling n — the
number of items being sorted — will
quadruple the time it takes to sort them:
sorting 20 items will take four times as long
as sorting 10 items, since 202 = 4 * 102. To
make an analogy to code, n2 is just like a
doubly-nested for loop, where for every ele-
ment in an array, it walks through and con-
siders every other element in the array.

Other common running times include
O(n), known as linear time, since the exe-
cution time scales linearly with the input.
Also, O(logn) is not uncommon. Logarith-
mic time usually has something to do with
walking a tree data structure. If we’re
recursing down an octree for instance with
n leaf nodes, we have to walk down log8n
nodes to get from the top to a leaf node.

Running times are also subject to com-
mon arithmetic: if we have an algorithm
that runs in O(n) time and at every step of
the way it executes another algorithm that
runs in O(n) time, the total algorithm
takes O(n) * O(n) = O(n2) time.

One caveat to all this running time stuff
is that it obviously says nothing about how
long it actually takes to run the algorithm,
which can be in milliseconds, seconds, or
years. The time depends on a number of
things, other constants such as the speed of
the machine, and how many machine
instructions the algorithm compiles into.
But that’s not to say the constant is unim-
portant: if it took a year to tessellate a real-
ly basic droplet of fluid, all the scalability in
the world would be pointless, because the
algorithm would simply run too slowly.

Luckily, that’s not the case. Even the
brute-force marching cubes algorithm can
tessellate a small surface quickly, which
means our constants are O.K. So the ques-
tion is, what’s wrong with our scalability?

Optimize!

T o answer that, we need to figure out
the running time of our brute-force

marching cubes algorithm. This process
isn’t quite as easy as the one for a sorting

potential p
c pii

n

()








=

−
−

=
∑max ,0

1
1

2

0

I M P L I C I T S U R F A C E S

FIGURE 1. Example cubelet configurations and resulting polygonizations. Orange vertices are inside
the surface, green are outside.

1 vertex
 inside surface

2 vertices
 inside surface

4 vertices
 inside surface

a u g u s t 2 0 0 0 | g a m e d e v e l o p e r42

algorithm because it’s not immediately
clear what our n should be — what’s the
variable we’re measuring?

Consider the bounding box of the
implicit surface. Since the number of
cubelets sampled is directly related to that
bounding box’s volume, we’d like to relate
the running time to that volume. So, I’ll
choose n to be the length of one of the
edges of the bounding box. Here I’m
assuming that the bounding box is roughly
cubical. Given that, the brute-force march-
ing cubes algorithm is about O(n3), since
the number of cubelets it considers is rela-
tive to the box’s volume, which is about n3.

Suffice it to say that we’d like to be able
to do better than n3. And, intuitively, we
should be able to. Consider that the brute-
force marching cubes algorithm is sampling
the entire 3D volume. But the surface itself
is really only two-dimensional: it bounds a
3D volume, but it — the boundary — has
no volume. I’ll admit to a lot of hand-wav-
ing here, but practically speaking, as we
crank the tessellation density up, the surface
will occupy a very small percentage of the
cubelets in the bounding box.

Therefore, if brute-force sampling of the
entire volume gives us O(n3), being more
efficient should hopefully let us get closer
to O(n2), since we’re stepping down from
sampling a 3D volume to, ideally, a 2D
surface. If we could get close to that, it
would make a huge improvement in our
running time.

Sounds Good, but How?

T he general idea for achieving this
increase in speed is pretty obvious: the

vast majority of the cubelets currently
being sampled are empty, so we should
stop sampling all those empty ones. What’s
not necessarily obvious is how we do so.
There are two techniques commonly used:
the octree method and the surface crawler.

The octree method. The first technique
uses an octree to partition the surface’s
bounding box. Instead of treating space as
a 3D grid, we treat it as an octree with
those cubelets as its leaves. In order to tes-
sellate, then, we don’t just iterate through
all the cubelets. We start at the top of the
octree and if any of that node’s child nodes
contain the surface, we recurse on them.
When we get to leaf nodes, if they contain

the surface, we polygonize them with the
standard marching cubes algorithm. A tes-
sellation done with this technique is shown
in Figure 2.

Now, to analyze the speed-up. As the
algorithm recurses through the octree, it
will eventually touch every cubelet on the
surface — and there are O(n2) of them. It
will also hit every node in the octree on
the way down to those O(n2) cubelets, and
if you add all those up, they’re on the
order O(n2) as well. This leaves our algo-
rithm running at our goal of O(n2) total.

Does this mean we’re done? Well, let’s
look at some of the downfalls of this algo-
rithm. The first is that it’s very hard to
determine at each step down the octree
whether a node contains the surface or
not. Remember that for the brute-force
marching cubes algorithm we decided that
we didn’t care whether we undersampled
the surface or not; the solution was just to
crank up the tessellation. Unfortunately,
with the octree approach, we can’t afford
to undersample.

Consider a larger node higher up in the
octree that contains a large blob of fluid,
but the blob doesn’t touch any of the edges
of the node’s bounding box. If we don’t
notice this and just check the corners of
the node’s box to determine whether we
should recurse, we’ll miss this entire blob
of fluid. That’s basically unacceptable and
no matter how fine the final tessellation is,
the higher nodes will have large bounding
boxes. As a result, the act of determining
whether to recurse on a node is quite com-

plicated — we need to consider whether
any molecules are in or near the box,
which amounts to a lot of work.

Furthermore, when I implemented this
scheme to see how it worked in practice, I
found that it still does a lot of unnecessary
work. For example, when the algorithm
reaches a second-to-bottom node in the
octree, it has eight child nodes to consider,
and it’ll execute the standard marching
cubes evaluation on each one. However, it
could be that only a single one of those
cubelets actually contains the surface. You
can see this a bit in Figure 2, where it
spends time considering many cubelets
near, but not on, the surface. Therefore, it’s
worth looking at the second speed-enhanc-
ing technique to see if it’s any better.

The surface crawler. This technique, the
surface crawler approach, takes advantage
of the fact that the surface is continuous
— that it has no open holes. The algo-
rithm first finds a cubelet on the surface,
polygonizes it, and “crawls” to all neigh-
boring cubelets that also contain the sur-
face. It recurses until it has polygonized
the entire surface.

Let’s analyze the speed-up. The algo-
rithm takes some amount of time to find
that initial cubelet on the surface. Further-
more, if the surface is broken into multiple
pieces, it takes some time for each surface
to find an initial cubelet. But this work is
dwarfed by the work it does recursing over
the surface. And since it considers every
cubelet on the surface exactly once, this
algorithm too runs in O(n2) time.

One of the detriments of the surface
crawler technique is that it has some tricky
details. When it traces out the surface, it
forms what’s known as a directed cyclic
graph. That is, the path it walks over the
surface potentially has cycles — if you just
blindly recurse, you’ll end up in an infinite
loop. Thus, be careful when recursing to a
cubelet’s neighbors so you only recurse to
those that haven’t previously been polygo-
nized. This requires the use of a hash
table, and that adds a hash table lookup
per cubelet.

On the other hand, a benefit of the sur-
face crawler technique is that it doesn’t
consider a bunch of cubelets that aren’t on
the surface; other than initially finding the
cubelet on the surface, every cubelet it con-
siders is guaranteed to contain the surface.

a u g u s t 2 0 0 0 | g a m e d e v e l o p e r44

FIGURE 2. An example of octree tessellation:
blue boxes are cells considered but empty,
green boxes are cells considered that contain
the surface.

I M P L I C I T S U R F A C E S

Deciding between this technique and the
octree one comes down to a question of
constants — they both scale the same way
but one is likely slower by a constant factor.
In this case, I found the surface crawler
algorithm generally faster and so it’s the one
I’ve used for the sample implementation.

Surface crawling specifics. I left out some
implementation details while trying to
decide between octrees and surface crawl-
ing; now that I’ve chosen my method it’s
time to get into specifics. The first process
that I didn’t specify in much detail was
how we find the initial cubelet on the sur-
face to start recursing from. To do this, we
start a cubelet at each molecule’s location
and march it outwards until it lands on the
surface. This usually takes only a few steps
for each molecule; once the cubelet reaches
the surface, we recurse to find the rest.

Determining which neighboring cubelets
contain the surface is easy, as it falls right
out of the polygonization. Consider Figure
1 again. Note the third case with the poly-
gon right through the middle of the cubelet
— it’s obvious that all its horizontal neigh-
bors will contain the surface. In general, for
any cubelet face with a polygon edge across

it, the neighboring cubelet that shares that
face will also contain the surface.

Figure 3 shows a UML diagram of a
piece of our implementation. The surface
crawler first uses the molecules to find the
initial cubelet on the surface. Then the sur-
face crawler uses the cube polygonizer to
assemble the polygons for each cubelet,
and also to return neighbor information.
The cube polygonizer uses the potential
function evaluator as part of polygoniza-
tion, and it deposits the generated poly-
gons in the vertex arrays.

The surface crawler stores a hash table
that maps cubelet locations to a flag. If the
flag is set, it means that you’ve already
considered that cubelet. To avoid looping
infinitely, every time you polygonize a
cubelet, set its flag in the hash table, and
when recursing to neighbors, don’t recurse
to those whose flags are set.

One particular nitty-gritty detail of opti-
mization that matters quite a bit is the
choice of hash function. It must be fast to
evaluate, since you’ll be evaluating it for
every cubelet on the surface. But you also
need to make sure that it produces a uni-
form distribution or else the hash table dis-

tribution will be poor and accesses will be
slow. What I do is store each cubelet’s
address as three shorts, an (x,y,z) triple.
Then, to generate a hash key, I just chop
off the higher-order bits of each and con-
catenate them. This makes the hash func-
tion act like a mod table in space, where
nearby cubelets hash to different hash
buckets. In practice, this generates very
even distributions.

Still Not Fast Enough!

T here’s actually a variable that I’ve been
leaving out of the running times that

matters a whole lot, which is the number
of molecules. For instance, I mentioned
previously that the running time of the sur-
face crawler is roughly O(n2). But really,
for each cubelet that’s evaluated you have
to iterate over all the molecules to evaluate
the implicit function. That means that each
cubelet polygonization is O(m), where m is
the number of molecules. Taking this new
variable into consideration, the surface
crawler is actually O(mn2).

This is a pretty big deal, too, consider-
ing that the surface may have many hun-
dreds of molecules in it, only a very few of
which will be near enough to any given
point to contribute to its potential. Recall
that our falloff function is designed to hit
0 at a distance of 1.0 from the molecule,
for the specific purpose of limiting the
number of molecules that could affect a
point’s potential.

Furthermore, because we’re modeling
liquid and liquid is noncompressible, the
physics system should always keep the
molecules from packing tightly together.
This further ensures that you’ll never have
all the molecules contributing to a single
point’s potential.

So, what to do about this? Here I intro-
duce yet another spatial partitioning mech-
anism to the system. Don’t worry, though,
it’s pretty straightforward. I just break the
surface’s bounding box into a uniform set
of grid cells — sound familiar? — and sort
the molecules into their respective cells.
The difference between this grid and the
marching cubes grid, however, is that this
grid is much coarser: each grid cell is large
enough to contain a molecule’s entire influ-
ence sphere. This way, whenever you have
a point in space for which you’d like to

a u g u s t 2 0 0 0 | g a m e d e v e l o p e r46

I M P L I C I T S U R F A C E S

FIGURE 3. A high-level UML diagram of the entire fluid-flow system.

Hash Table

Surface
Crawler

OpenGL

Vertex
Arrays

Cubelet
Polygonizer

Physics

Molecules

Potential
Function

Evaluation

Rendering Tessellation Surface Representation

evaluate the potential, you only need to
consider molecules in that point’s cell and
the surrounding 26 cells, since anything
farther away is guaranteed to be more
than 1.0 unit away.

Maintaining the molecules in their cells
is simple, too. Each cell is just a pointer,
and to add molecules to it you chain them
on the end of the pointer, forming a linked
list. For every frame, you clear all the cells
and rebuild the lists from scratch.

With this system in place, there’s a fixed
maximum number of molecules that you’ll
ever consider in evaluating the potential
function at a point. This is great, because
it brings the running time for the surface
crawler back to O(n2), since the number
of molecules in the entire surface has no
bearing on how many are near a particu-
lar point.

There is a downside to this approach,
though: as the bounding box of the surface
grows, the amount of allocated memory
grows to O(n3) since we blindly allocate
empty cells regardless of whether they will
contain molecules or not. This means that if
the surface is spreading out a lot, or even if
a single molecule goes flying into the air or
something, the system can grind to a halt as
it allocates a huge number of empty cells.

This hasn’t been a problem so far in my
implementation, but if it should prove a
problem, there’s a solution that trades off
memory for a little bit of running time.
Instead of storing the molecule cell table as
a 3D array of grid cells, we could store it
as an octree, only allocating lower nodes
when a molecule needs to be added to
them. Sounding familiar again? Indeed,
this is a lot like the octree approach to tes-
sellation, and where that achieved some
running time improvements, this wins
some space improvements: the total
amount of space needed comes down to
O(m) since you’ll never need more cells
than there are molecules.

The downside to this, though, is that
looking up a molecule becomes more
expensive, since you can’t directly index
into a grid cell as you can for the 3D
array. It requires traversing down the
octree, which is O(logn), since the depth of
the tree will still depend upon the surface’s
bounding box. This would bring our total
running time for the surface crawler to
O(n2logn), which is less desirable than

O(n2). For some applications, though, it
might be necessary to conserve memory.

Phew! Fast Enough?

W ell, we’ve succeeded. The original
running time of the brute-force

marching cubes algorithm was a fairly
atrocious O(mn3). Through the surface
crawler and the spatial partitioning of the
molecules, it’s now down to O(n2), which
is a tremendous speed-up. Again, these
running times are approximate, and there
are pathologically bad cases (very complex
surfaces) that will still be slow, but in prac-
tice the algorithm is now fast enough for
real-time use. Now, if only we had some-
thing real-time to do with it!

Physics. Far be it from me to rehash
information that’s already been covered in
Game Developer. If you haven’t read Chris
Hecker’s four-article series on rigid-body
dynamics (Behind the Screen, Oct./Nov.
1996–Feb./Mar. 1997 and June 1997) or
Jeff Lander’s forays into physics (“Physics
on the Back of a Cocktail Napkin,”
Graphic Content, September 1999), you
should do yourself a favor and read them.

However, our physics system has some
unique characteristics that demand choic-
es different from those you might make
for, say, a racing game. For instance, in a
racing game there are maybe 16 cars. At
that level, you can afford to give each of

them a detailed physics model and deal
with collisions in expensive, analytically
correct ways.

For our application, however, there are
hundreds of molecules. Each of them is
always moving and colliding with things,
and to treat each one with the accuracy of
a race car model would bring the system
to its knees. The most important thing to
keep in mind is that the physical model for
the molecules needs to be kept simple or
else you’ll pay for it later.

On our side, though, are some nice sim-
plifications you get for free. The most
notable of these is that, as particles, the
molecules don’t rotate or spin, so you don’t
have to deal with torque. Furthermore, you
can ignore friction since it doesn’t make
sense — at least, not in a simple enough
way — to talk about friction of water
against a surface.

So all you really need to worry about
are two things. One is the molecular inter-
actions: how the molecules exert forces
upon each other to give the appearance of
cohesion and flow. The other is how mole-
cules collide with things and how you
respond to those collisions.

Intermolecule Forces

I n order to make fluid look convincing
and not like a bunch of points moving

around independently, you need some

a u g u s t 2 0 0 0 | g a m e d e v e l o p e r48

FIGURE 4. The force function used for molecule vs. molecule interactions.

increasing distance
at

tr
ac

tio
n

re
pu

ls
io

n

0

I M P L I C I T S U R F A C E S

forces to make it look cohesive but also to
keep the points from piling together.

The forces I use are shown in Figure 4.
At very close distances, I consider the mol-
ecules to be interpenetrating and hit them
with a strong force to prevent interpene-
tration. Somewhat farther away, I repel
them to an equilibrium point. If they move
farther away than that, I exert an attrac-
tive force to keep them together, which
eventually falls off to zero: the fluid is only
attractive locally.

Furthermore, I supplement these forces
using damping forces based on velocity: if
two molecules are in the collision zone and
are still moving together very quickly, I
exert more repulsive force. If they’re mov-
ing apart, I exert less. Conversely, if they’re
in the attraction zone and moving together,
I exert less attractive force, if they’re mov-
ing apart, I exert more.

World collisions. Collisions, collision
response, and resting contact are easily
the most complex and involved aspect of
physical simulation. Generally speaking,
we have two routes to go: the analytical
route, or the “looks good enough” route.
The analytical route has some issues with
worst-case running times and unluckily
for us, we tend to hit those fairly fre-
quently: when all the molecules pile on
top of each other, finding the forces to
prevent interpenetration skyrockets to
intractability.

So I chose to go with somewhat more
forgiving alternative penalty methods.
The basic idea is that you do collision res-
olution by exerting a spring force and
damping force on colliding objects. The
spring force increases as the objects inter-
penetrate more in the hopes of preventing
interpenetration. The damping force is

based on the objects’ velocities: if they are
moving into each other, the damping
force augments the spring force; if they’re
moving apart, it damps the spring force.
This doesn’t guarantee that things won’t
interpenetrate — in fact, it virtually
ensures that they will a little bit. But it
provides some wiggle room, and for our
purposes it’s O.K. if things aren’t perfect
as long as they look good.

The payoff is that the simulator can
then run in O(m) time even under the
worst conditions. A molecule doesn’t need
to know about any molecules other than
the ones it’s colliding with, and we never
end up solving for global solutions. The
other nice thing about penalties is that
they keep the entire physics model force-
based. To the simulator, the penalty repul-
sive forces look exactly like any other
force, such as gravity or wind.

The downside to penalty methods is that
the spring forces can get very large, or
“stiff,” and if we’re not careful things can
explode all over the place. Keeping things
stable is the job of our integrator.

Integration. I’m going to assume you’re
familiar with the concepts behind numeri-
cal integration or else you’re going to have
a tough time working with computational
physics. Chris Hecker has some great ref-
erences on his web page (www.d6.com/
users/checker/dynamics.htm) if you feel the
need for a refresher.

While integrator stability is always
important, it’s even more important than
usual here. This is another side effect of
the large numbers of molecules. Say that
a single molecule slams into the ground
very hard, hard enough to generate a
penalty force that makes the integrator
blow up. If we’re unlucky, this can start a

chain reaction by jostling nearby mole-
cules around — again, hard enough to
cause some problems.

It’s a little hypocritical of me to write
about how important stability is, because
as of this writing I’m using a brain-dead
explicit Euler integrator — the lowest of
the low — which is neither particularly
accurate nor at all stable. In some of the
demos, I ended up cranking the physics
frame rate up to 100Hz just to keep things
from blowing up.

However, there is a solution. It’s just
not particularly easy. If instead of an
explicit Euler I used an implicit Euler
integrator, sometimes called a “back-
wards” Euler integrator, most of my
instability problems would go away. The
downside is that implicit integration is
more computationally expensive, a down-
side that would probably be offset by
being able to run the physics at a much
larger timestep.

On with the Demo

Y our reward for reading all the way
through these two articles (or at least

this one) is a fairly comprehensive demo.
Ceding my programmer-caliber artistic
skills, I enlisted the help of Steve Ashley,
currently working at Stainless Steel Stu-
dios, for the model of the fountain. For a
little historical background, the model is of
the Mercury Fountain by American artist
Alexander Calder. Calder originally
designed the Mercury Fountain for the
Spanish Republican pavilion at the Paris
Universal Exhibition of 1937. The piece
honored the mercury-mining town of
Alamdén, a region that was devastated
during the Spanish Civil War. Calder

a u g u s t 2 0 0 0 | g a m e d e v e l o p e r

I M P L I C I T S U R F A C E S

FIGURE 5. Screenshots from the demo. (A) Fluid cohesion. (B) External forces — gravity. (C) Collision against planes and cylinders. (D) Collision against
height fields.

A DCB

50

donated the Mercury Fountain in 1975 to
the Fundació Joan Miró in Barcelona
where it resides today (see the Fundació
Joan Miró web site, in the For More
Information section).

If you can’t get to Barcelona, though,
this demo is the next best thing. That fact
that the fountain runs with mercury is per-
fect: mercury is much easier to render than
a transparent liquid. For mercury, a good
shiny environment map will do, whereas
for transparent liquids it’s hard to mimic
effects such as refraction realistically.

Along with the fountain, the demo
includes a number of other simulations of
more focused effects — molecular attrac-
tion and repulsion (Figure 5a), external
force exertion (Figure 5b), collision with
basic primitives (Figure 5c) and collision
with height fields (Figure 5d).

So Now What?

T he obvious next step is to take this
technique and put it in your game

today. I want to be clear about this: I
want better water in games, better lava,
better liquid in general, and I want it now.
All joking aside, though, I don’t want to
imply that you could actually drop this
into your engine in an hour and a half;
there are admittedly some obstacles with
this technique. First of all, the tessellation
and rendering are not fast enough to ren-
der, say, an entire ocean. Furthermore, the
physics computation can take quite a bit
of time with involved surfaces on complex
height fields.

That’s not to say the technique doesn’t
have some promising uses. There are a
number of possible ways to add dynamic
fluid to your game. The first possibility is
to use it as “window dressing” — have the
faucets in the gritty subway bathroom of
your first-person shooter be broken and
spraying on the floor. Or use it for some
spell effects in your role-playing game.
Something like that.

What I’d prefer, though, is a use that
makes this technique an important part of
the gameplay. It’s possible, it just has to be
done carefully. For example, in the exam-
ple I mentioned last month of diverting a
river to flood an enemy base, you probably
wouldn’t want to render the entire river
with implicits. Instead, use the jiggly plane

technique wherever the river is steadily
running, and only use implicits at the head
of the river as it rushes down its new path.
Some distance back from the head, stitch
the implicit tessellation to a jiggly plane,
and you’re set.

One way or another, I hope these two
articles have been useful and I hope I’m
not the only developer thinking about
ways to improve our fluid rendering tech-
niques. While you’re thinking of the per-
fect way to integrate this into your upcom-
ing hit title, enjoy the demo, and feel free
to e-mail me (please!) with any thoughts,
questions, or comments on these articles or
the demo. q

w w w . g d m a g . c o m 51

ACKNOWLEDGEMENTS

Thanks to Kent Quirk of CogniToy for dis-

cussions, proofreading, and camaraderie

while I was writing this and past articles.

Thanks to Steve Ashley of Stainless Steel

Studios for the model of the Mercury

Fountain. And thanks to Zack Simpson for

reminding me of my interest in Alexander

Calder with his Virtual Calder simulation.

F O R M O R E I N F O R M AT I O N

WEB SITES

Author’s site
www.maniacal.org

Chris Hecker’s dynamics page
www.d6.com/users/checker/dynamics.htm

Fundació Joan Miró
www.bcn.fjmiro.es

Zack Simpson’s Virtual Calder
www.totempole.net/balance/balance.html

ArgoUML Open-Source CASE Tool
www.argouml.org

BOOKS

Cormen, T., C. Leiserson, and R. Rivest.

Introduction to Algorithms. Cambridge,

Mass.: M.I.T. Press, 1998.

Bloomenthal, Jules, and others. Introduction

to Implicit Surfaces. San Francisco, Calif.:

Morgan-Kaufmann, 1997.

W hen the Sony/Psyg-
nosis Leeds studio
opened in 1996, it
became the Liver-
pool-based compa-

ny’s sixth development house. Although
the studio’s initial titles — which by most
standards were good products — didn’t
achieve particularly impressive sales or
market penetration, the studio had proved
itself to be capable and professional
enough to be entrusted with two of the
company’s key intellectual properties:
WIPEOUT and COLONY WARS.

I joined the Leeds studio in late 1998.
At that point, the COLONY WARS series,
developed by our sister studio in Liverpool,
had seen two incarnations, both of which
had won critical acclaim. They became the
definitive 3D space combat games, with
fluid controls, epic full-motion video
sequences, and flashy special effects. Now
the torch was passed on to us, a complete-
ly new team in a different studio, to carry
on the good work with COLONY WARS:
RED SUN.

Inauspicious Beginnings

T he initial briefing from our Liverpool
studio’s marketing department was not

encouraging. COLONY WARS: RED SUN was
intended to be a bridge title, a smooth path
between COLONY WARS 2 and, potentially,
COLONY WARS 4 on the Playstation 2
(which would be developed sometime in
the future). Consequently, we faced a very
short development schedule — about six
months of full development before we had
to complete our alpha.

Our development process got off to a
shaky start. Most of the production staff

and experienced Playstation programmers
in the studio were still tied up with ongo-
ing projects, so it fell to Gareth Preece
(who had a small amount of Playstation
programming experience to his credit) and
me (a die-hard PC programmer) to start
the programming ball rolling.

The art team was less pressed for
resources. We had five experienced artists
from day one: Chris Hogg, Pete Owen-
James, Roger Coe, Andy Hanson, and Ben
Devereau. They came up with concepts on
paper, and dissected the models and extrac-
tion tools from the previous games to see
how the underlying systems ticked.

On the design side, Paul Walker, Simon
Stratford, and Jody Cobb were starting to
piece together some initial ideas for enhanc-
ing and extending the gameplay. They had
to solve the thorny problem of how to make
a sequel to a sequel interesting enough to
justify the $40 price tag while staying true
to the spirit of the original two titles. Our
entire team went through an extensive ini-
tial brainstorming process that mapped out
the sort of things we might want to do, even
if we didn’t have the technical experience on
board to say “yes” or “no” to particular
ideas at the time.

From that point onward, the develop-
ment cyle of COLONY WARS: RED SUN

evolved into a “game of two halves.” The
first half was pretty bleak and largely con-
sisted of the programming team putting
out fires rather than adding new function-
ality. The second half of the development
cycle turned everything around.

What Went Right

1.We set reasonable goals. Our
first good decision was to set goals

Psygnosis’s
COLONY WARS: RED SUN

a u g u s t 2 0 0 0 | g a m e d e v e l o p e r52

G A M E D A T A

PUBLISHER: Sony Computer Entertainment
Europe/America

FULL-TIME DEVELOPERS: Five full-time
programmers, five artists,

three designers, one musician
CONTRACTORS: Video — Havoc

BUDGET: $2.35 million
LENGTH OF DEVELOPMENT: 14 months

RELEASE DATE: Spring 2000
PLATFORM: Playstation

HARDWARE USED: 600MHz Pentium IIIs
with 128MB RAM,

SN Systems’
Playstation dev kit

SOFTWARE USED: Softimage 3.8,
Microsoft Visual Studio 6,

Microsoft Visual Sourcesafe 5,
Gnu C++, Watcom WMAKE

LINES OF CODE: 220,000

P O S T M O R T E M j u l i a n g o l d

A U T H O R ’ S B I O | Julian Gold is a senior programmer with Sony Computer Entertainment
Europe’s Leeds Studio in the U.K. After suffering the slings and arrows of outrageous industry
practices, COLONY WARS: RED SUN is his first credited title. With an academic background in
math and science and seven years’ industry experience, he specializes in physics and mathemati-
cal methods for games. He is currently trying to make sense of Playstation 2 without the use of
Borg implants or genetically modified tomatoes.The COLONY WARS: RED SUN development team.

w w w . g d m a g . c o m 53

ABOVE. Diverging from the “humans
only” thread of the first two games,
COLONY WARS: RED SUN added extra depth
and character to the COLONY WARS uni-
verse with the introduction of new, more
sinister, bad guys.

for the project at a level appropriate for our limited development
time and the limitations of the code and resources at our disposal.
Rather than trying to take the gaming world by storm with a
ground-breaking title, or, given the uphill battle we faced, taking
the path of least resistance and releasing a substandard game, we
simply chose to be “better” than COLONY WARS 2 in as many
departments as we could.

This helped in a number of ways. It made the task at hand seem
achievable. Reviews of COLONY WARS 2 complained that it was too
difficult, there wasn’t enough variety in the missions, and its story
was too depressing. These were areas where we could immediately
focus our attention. We could create a game with an easier learning
curve and provide some training missions, we could create a wider
variety of game activities and ways to achieve goals, and come up
with a lighter story line. All of these goals were easy metrics against
which to measure our progress.

2. Farming out work to qualified contractors. We real-
ized early on that our team couldn’t do everything given

our limited schedule. In particular, we did not have the capacity
to do the full-motion video scenes. Fortunately we were sensible
enough to avoid jumping into the arms of the first contractor that
could do the job.

We didn’t select the lowest bidder to do the video scenes. We
went with Havoc, a relatively new studio based in Manchester
that had a strong portfolio. Havoc offered us a good overall
package, one that included scriptwriting as part of their service.
So while their bid was not the most competitive, we got our
money’s worth with the writer, plus the added bonus of their
close proximity to us. In the long run we saved money without
compromising the quality of the in-game FMV, and this money
was used to ensure high standards in the video quality: we
employed casting agents and recorded the voice talent at the
world-famous Pinewood Studios.

One of the other places we decided that COLONY WARS: RED

SUN could easily excel was in its music. It seemed natural, riding
on the tail of The Phantom Menace, to have a really big orches-

tral soundtrack, and our resident musician Gary McKill was
raring to write it. Having drafted an initial score, the studio
recruited the 70-piece Midlands Symphony Orchestra to record
it in the BBC studios in Birmingham. I think everyone agrees
this was money well spent: the music matches the look and feel
of COLONY WARS, and adds a significant amount to the game-
play immersion.

3.Ripping out legacy code. The project started turning
around about two months after the majority of the team

came on board (four months from the start of the development
cycle). In the initial period, we worked on a number of different
tasks: converting the C files to C++ (this became nontrivial after
we found out that there was a data member called “class” almost
everywhere), adding the ability to do some new flashy visual
effects in the game, restructuring the resource system to track
dependencies so that adding models and textures was the trivial
process it ought to be, and upgrading the game’s mission editor so
that it was easier for the mission builders to use.

But we tiptoed around the existing code that was still, despite
our efforts, quite unwieldy in places. As time went by, this “don’t
break the build” philosophy became harder and harder to adhere
to because the code simply wouldn’t support what we wanted to
do. Finally we came to the conclusion that there was no alternative
but to rip out large chunks of code and replace them with new
code that did what we wanted. We anticipated that this might
mean that artists and designers would have to live without an up-
to-date and functional game editor and Playstation executable for a
few weeks, but as it turned out we were overly cautious with this
estimate. Though our new code did break, it was usually fixed
within a few days so there was no prolonged, continuous period

a u g u s t 2 0 0 0 | g a m e d e v e l o p e r54

P O S T M O R T E M

ABOVE LEFT. A concept sketch of a Syncharis — the ultimate in armored
space prawns. Fighting for the Sha’Har aliens, these heavily armored
ships are hard to kill and deal out a deadly dose of laser fire.
ABOVE RIGHT. Aurora Station: Inside League–controlled space things were
a far more human — but no less deadly — affair.

when nothing worked. The added benefit was that morale (especial-
ly among the programmers) immediately started to lift. Frightening-
ly, by the end of the project, we had replaced or re-engineered most
of the major game systems (and reclaimed a lot of wasted memory,
to boot).

Another small morale booster was our “crap code of the week”
corner on the team whiteboard. Every time we found a particularly
atrocious piece of legacy code, we added it to the board and got
happily self-righteous about it. Towards the end of the project we
even started putting each other’s (or even our own) code up there.

We all began tearing out lumps of the code and replacing them
with more robust, more efficient, and/or more functional objects.
One of our first goals was to make the game frame-rate independ-
ent. We wanted to have larger numbers of highly complex objects
on screen, but the code was hard-wired to run in two frames
(30FPS NTSC, 25FPS PAL). Simon Booth and I spent a week
going through the code, looking for the multitude of places where
velocities were added to positions and the like, and augmenting
them to scale with the frame rate. COLONY WARS: RED SUN can
run in four frames in debug build, but since we made the game
frame-rate independent, we’ve never had a single complaint of the
game running too slowly.

Another area that we devoted attention to was the AI. In the
earlier two COLONY WARS games, enemy craft had a habit of fly-
ing directly towards you, shooting, then flying directly away
from you. This tactic would be repeated ad nauseam and had
two major flaws. First, it made combat against faster ships very
difficult. Second, since the enemies were visible for only an
extremely brief period, the artwork for those ships was barely
seen and essentially wasted. To fix this, we recruited the talents

of Dave Ranyard, a Ph.D. in AI. He rewrote the AI system,
which was good because it was one of the pieces of code that
nobody else wanted to go near (from what we could discern from
the original programmer, it used a combination of fuzzy logic
and state machine technology). Dave commented out the existing
code and replaced it with a small, simple routine within a day,
and it was hard to spot any difference in the game. Moral: Don’t
use 1,000 lines of gibberish when you can accomplish the same
thing in 20 simple ones. Next, Dave built more complex AI by
combining several simple strategies, and then exported these
complex behaviors to the game editor so the mission builders
could use them.

The tedious process of stripping and reorganizing the code
base turned out to be well worth it. It helped the remainder of
the programming team ramp up quicker, as they didn’t have to
wade through so much spaghetti. But more importantly, because
the new code was so modular, it was considerably easier to deter-
mine which bits we wanted, which bits we could get rid of, and
which bits we would rewrite. It didn’t make the process trivial
but at least it became manageable, and that improved the mood
of the developers.

4. Solid mission-building. The designers, primarily Simon
and Wayne, planned all the missions out prior to develop-

ment. Each mission had a brief document depicting the important
objects, their relative positions, and a list of conditions for failure or
success. This proved to be really helpful when it came to implemen-
tation, and while there probably isn’t a single mission that ended up
exactly as it was originally planned, they’re all pretty close.

Missions were constructed in a stand-alone Windows exe-
cutable with a simple GUI that allowed objects to be placed and
given a prioritized list of tasks to run. In some respects, the mis-
sion construction process was more of a programming task than a
design task. Furthermore, because new (or even existing) features
sometimes didn’t work the first time around, it made sense for
those missions that required new functionality and/or complex
mechanics to be constructed by a programmer. If there was a

w w w . g d m a g . c o m 55

ABOVE LEFT. Marjorie’s Kitchen — a haven to any who pass through, or a
den of iniquity — it’s all a matter of taste.
ABOVE RIGHT. The Black Widow — a concept sketch of one of the deadlier
ground-based craft. The RED SUN team dramatically improved the renderer,
leading to the inclusion of a greater number of more detailed planet-side
missions.

57

crash (or an assertion, which we threw
into the code in copious numbers), a pro-
grammer could start the debugger and pin-
point faults that might require reproduc-
tion if it happened on a designer’s
machine. Thus mission-building turned out
to be another one of the areas where we
made a really good decision; this time to
allow crossover between job roles where it
made sense. As a result, Dave Ranyard,
Pete Sheppard (who was also maintaining
the game editor), and I became responsible
for about one-third of the planned mis-
sions and the associated code.

The missions were constructed in a
phased fashion. A “pass 1” mission was
one that exhibited all the required behav-
iors but may have had placeholders and
outstanding design or code issues. A “pass
2” mission was one that had all objects in
place, had all the required behaviors, and
had no outstanding code or design issues. It
was at an “acceptable” level for release.
Finally, a “pass 3” mission was one that
had been polished and tuned. This system
allowed us to monitor the state of the 50
game missions in terms of 1s, 2s and 3s (for
instance, 30 missions at 1, 15 at 2, and five
at 3). It also allowed us to prioritize the
order that we’d polish missions. For exam-
ple, we got all the missions to pass 1. Then
we’d start on the early missions and get
them to pass 2. Finally, time permitting, we
would start getting the early ones to pass 3.
Although this meant that not all missions
got to pass 3, it did make the best use of
the time we had at our disposal.

Another example of where job crossover
worked for us was in production. COLONY

WARS: RED SUN was a production-intensive
game. With internal issues, plus the external
FMV, scripts, voice recording, and an
orchestra to handle, producer Dave Sem-
mens still found time to take over some of
the tasks that lead programmers usually
perform (even tedious tasks such as con-
verting FMV file formats and collating for-
eign-language audio files). And if that
weren’t enough, he would always stay late
and arrange evening meals for the team,
who invariably were working late. He real-
ly helped foster an “all for one, one for all”
spirit that kept us going into the wee hours.
And by taking some workload off of our
programming lead, he probably saved us
months in the long run.

5.Building a new renderer. As I
stated earlier, our team was initial-

ly paralyzed by the scope of the project
and the limited time we had to complete
it. Having finally just bitten the bullet and
accepted that most of the major systems
were going to be replaced, we could not
ignore the frighteningly inflexible renderer.
About halfway into the development,
Graeme Baird finished his first pass on a
new rendering system, which was back-
wards compatible with the existing model
format. Instead of worrying about how we
could make a new renderer work with the
old code, we simply kept the old one in
place while we built the new one, then
switched them when no one was looking.
This was braver than it sounds, because a
side effect was that it broke the game’s
collision detection system. But ultimately
this wasn’t bad, because the original colli-
sion detection system was inefficient (it
was testing everything against everything
else on each update), so Graeme complete-
ly rewrote the low-level system to work
with the new model format, and I wrote a
high-level partitioning system that elimi-
nated most of the redundant tests.

It was around this time that both devel-
opment and production were realizing

that, far from being the bridge product as
originally intended, COLONY WARS: RED

SUN was turning into a significant product
in its own right. And that fact allowed us
to buy the most priceless commodity:
extra time. Not a lot of it, maybe a few
precious weeks, but enough to enable us
to do quite a bit more than the minimum
“just better than its predecessors.” This
was the biggest morale boost we could
possibly have had.

By the time we hit beta, things were
going well, but Christmas 1999 was loom-
ing and we really wanted to finish before
the holiday. At that point we had rewritten
much of the code, improved the game in
all the respects we had wanted to (and
then some), had 50 missions at pass 2
awaiting polish, and had the finish line in
our sights. This was much more satisfying
for everyone than had we just taken the
easy way out and produced a mission set
for COLONY WARS 2.

What Went Wrong

1.Working with legacy code. If
lack of time had been our only

problem, we probably would have been
O.K. But the size of the task at hand only

P O S T M O R T E M

In-game screenshots showing the variety, size, and detail of just some of the more than 180 craft
used in COLONY WARS: RED SUN.

w w w . g d m a g . c o m

a u g u s t 2 0 0 0 | g a m e d e v e l o p e r58

P O S T M O R T E M

started to become apparent when we unpacked the legacy code
and artwork. A bit of background is relevant here: from the
moment our studio started up, we took the relatively bold step of
embracing C++ as the primary development language. This was a
big step in terms of the company’s other studios, which largely
employed C die-hards (never mind what the rest of the industry
was doing).

Adopting C++ was something I endorsed wholeheartedly. I’d
spent a lot of time in the industry trying to encourage good pro-
gramming practices such as coding standards, use of object-orient-
ed design, software reuse, version control systems, and the like.
When I started out in the industry I was shocked at the sloppiness
of programming and the inverted snobbery that often came with
it. It became quite a little crusade for me in the end. So when I
started looking through the source files of COLONY WARS 1 and 2,
I was not particularly impressed.

To put things into perspective, the C code handed to us had
already been through three commercial projects (first KRAZY IVAN,
then COLONY WARS 1 and 2), so there was a lot of “scotch tape”
holding parts of the system together. Additionally, all the past proj-
ects (in particular COLONY WARS 2) had been put together under
very tight time constraints, and the code reflected this. Over the
course of development we discovered large blocks of unused allo-
cated memory, as well as data and code that was being written over
in numerous places. Sometimes we found ourselves surprised that
the game ran at all. The code was very interdependent (“strongly
coupled” in programmer-speak), and that made it difficult to
remove any one part of it without taking the rest down with it.

2.Problems importing assets. While there were serious
problems with the code, things weren’t much better with

the game art. It proved to be a less than trivial task to import
models into the game, and you could basically forget about
importing textures. Indeed, the whole resource management struc-
ture was so frighteningly piecemeal and complex that we initially
decided to just live with it until somebody who knew more about
Playstation development either figured it out for us or threw it
away. The question was, what were we going to do about it? This
forced us to choose among some difficult options.

The first option was to make COLONY WARS: RED SUN just an
add-on mission pack for COLONY WARS 2. We would just make
whatever fixes were needed to keep the ship afloat, implement as
many new gimmicks as the system would allow, and that would
be that. The problem was that this would severely limit the scope
of what the design team could produce. To sell enough to make a
profit, we had to do much more than just repackage the previous
game. Not surprisingly, nobody liked this option.

Option two was to rewrite the game completely. In a perfect
world this would have been the best solution. But back in reality,
with about six months of development time left and little Play-
station experience on the team to begin with, this would have
been hard to sell to anyone. Worst of all, there would have been a
period of several months when the designers and artists would
have little or nothing to play with, and we’d just have to pray that
it all came together in the end. So this didn’t seem particularly
workable, either.

These concept sketches are of two Empiret Stompers. The larger is a
Cargo Stomper and the smaller is its underarmed Escort.

Our third option was to strip, salvage, and rebuild. This
seemed the only viable option. We chose to purge all the COLONY

WARS 2–specific code, reorganize what was left into an engine,
and then add the required functionality on top. The artist would
be able to add and test models, albeit with some difficulty, and
the designers would have something to play with from day one. It
sounded plausible, so we decided to go with it.

I spent the better part of three months performing global search-
and-replaces, renaming functions and variables, putting guards in
header files, removing unused variables, and so on, then rebuilding
the project after every set of changes to make sure nothing had bro-
ken. Sometime around Christmas 1998, Gareth (perhaps under-
standably) transferred to another project in the studio. That left
just me as the programming “team.” I was not happy that day.

While all this was going on, the art and design teams were
keeping busy, and needed all sorts of new technology, such as
properly keyframed animation (previously it was all hard-coded),
support for multi-texturing and transparency, and new mission
features. The lack of Playstation experience on the team prevent-
ed us from making the decisions and commitments that our
artists and designers wanted, which was very frustrating for
everyone concerned.

By the time we had a proper team assembled (mid- to late
January 1999), a fair amount of new art had already been creat-

ed, which made some of the difficult programming decisions
easy in the sense that we now had little alternative but to imple-
ment certain features. It wasn’t as if we were running short on
tough decisions, so in this way having a fewer tough calls to
make helped.

As the programming team ramped up, it quickly became clear
that the “strip and rebuild” philosophy would only take us so far.
We needed to be able to throw away a lot of the code and start
again. But with such a short development time, it was difficult to
persuade ourselves, let alone our producer, that we should rip out
systems we didn’t like and replace them with (potentially) better
ones. So we tiptoed around, tweaking this and that, trying not to
break stuff. Needless to say, morale wasn’t high and it was some-
times hard to see how the project could progress.

3. Long turnaround times. One of the biggest problems
we suffered from, especially toward the end of the devel-

opment cycle, was our production turnaround time. The time
between making a change in a mission and seeing that change
reflected in the game was too long. The cause of the delay was
our custom, PC-based conversion tool, ResMake. ResMake
would scan all the mission files and for each file it would look for
all the referenced models, textures, required collision data, and so
on. It would then run the appropriate extractor to convert every-
thing from PC format into Playstation format, load that data, and
merge everything into a single Playstation binary file. This was
not a trivial process, given that the game had hundreds of models
and 50 missions. ResMake took 20 to 25 minutes to convert and
load the whole game, which was far too slow.

Alas, fixing it was not an option. It was written and maintained
by our lead programmer, Mike, who was constantly backed up
with the usual nasty lead programmer duties such as creating for-
eign-language versions, stand-alone demos, bootstrap demos,
cover-disk demos, and so on. There was no way he could stop
what he was doing to make the required changes to ResMake. In
hindsight, it was a mistake to put that tool’s support on the critical
path of the project — especially when so many team members
depended on it.

a u g u s t 2 0 0 0 | g a m e d e v e l o p e r

P O S T M O R T E M

A concept sketch of a Donachet alien fleetship. The Donachet are an insu-
lar race who get drawn closer into the plot as their age-old enemies the
Hilachet begin to work ever more closely with the human “League of Free
Worlds.”

60

P O S T M O R T E M

4.No project plan or milestones. It’s difficult to say in
retrospect whether a project plan would have helped us.

We could easily have written down a list of required systems and
features, and estimated the time to build them all. But you didn’t
need to be a mathematician to see that there was not enough time
to complete half of what needed to be done.

We did put together a schedule of sorts, mainly to keep produc-
tion and management happy, but nobody had a great deal of faith
in the tasks and times. We knew that long evenings and weekends
lay ahead in order to get the job done, which is par for the course
in this business. But at the time there was not a great deal of
enthusiasm among the programming team for the task.

5.Niche markets still require effective marketing. In
the end, we wrote a good game. We got excellent reviews.

But the days when good reviews translate to high sales seem to be
long gone. The statistics about how many sales you can expect to
make with a project such as COLONY WARS: RED SUN can be fright-
ening: space combat games comprise about 0.2 percent of the Play-
station game market. Now that’s still a big number of Playstations:
150,000 potential customers. But it does tend to limit the success in
terms of the chart position — and hence visibility — that your
game can achieve. And without visibility, how can the public be
made aware of your product? It’s a vicious circle. Without an effec-
tive marketing campaign to push the product, sales will always be
disappointing. COLONY WARS: RED SUN had no significant market-
ing to justify the quality of the final product, which turned out to
be mistake number five.

Lessons from an Accelerated Schedule

A very short project life cycle requires a different set of devel-
opment rules from those that govern typical (though still

never long enough) 18- to 24-month project schedules. In a situa-
tion such as ours, you have to set realistic goals early on and stick
to them as much as possible.

In the end it’s all subjective anyway, so I’ll let the figures speak
for themselves. The two reviews of COLONY WARS: RED SUN to
date have scored 91 and 94 percent (the former being the highest-
ever score for a 3D space shooter in Germany), equaling or sur-
passing COLONY WARS 1 and 2. However each of us perceives the
game, these ratings are testament to the talents, judgment, and
hard work of the team over the course of the year we were
together. q

Players enter the fray with a Wingman (Wingwoman in this instance) and
take on the might of the Rebel Stronghold on Dendray, one of the moons
of Peripolis in the Magenta system.

a u g u s t 2 0 0 0 | g a m e d e v e l o p e r72

S O A P B O X d e r e k s a n d e r s o n

e spend years, and
millions of dollars,

developing games. We
spend thousands of

hours writing and opti-
mizing our code, thousands more making
the art “just so” in order to create the best
visual effects possible within the constraints
imposed by time and budget.

And then many of us take these techno-
logical masterpieces and flush their quality
down the toilet by not giving the most
basic elements of our game design the same
attention to detail we do our code and art.
This design inconsistency takes many
games that could be “A” titles and drags
them down to mediocrity.

What do I mean by “design inconsisten-
cy”? I’m referring to any aspect of your
game that doesn’t blend seamlessly with
your overall design. As the saying goes, if
you’re not part of the solution, you’re part
of the problem, and as an industry we are
prone to creating problems where there
should be none. Bad voice acting and typo-
graphical or grammatical errors are still far
too common, despite being a source of
derision (and lowered ratings!) from game
reviewers for years. Other problems are
subtler, such as dialogue or story elements
that don’t fit a game’s overall feel. These

non sequiturs lead to a reaction of “Huh?”
when they are encountered by players.
Whatever the flaw, however, there is a com-
mon element to these lapses: they collec-
tively break the sense of immersion, pulling
players out of the environment and remind-
ing them that they are only playing a game.

This is a bad thing. When we read books,
we want to be immersed in the story. A
typo or poorly written line of dialogue
reminds us that we are only reading a book,
pulling us from the environment woven by
the author and jostling our attention back
to the real world. An excess of such mis-
takes leads to the novel being set aside,
never to be completed, never to be recom-
mended to others, and worst of all, lessen-
ing the likelihood that the author’s future
works will be purchased and read. Commit
the same design sins in a movie, and poor
reviews consign it to a shorter run in the
theaters, smaller box office receipts, and less
money in the pockets of all those who col-
laborated in the film’s production.

So why, then, do so many of us not pay
attention to the finer details of game
design? Why do we take our lovingly craft-
ed games and introduce things that detract
from the experience we have worked so
hard to produce? Every bad voice actor,
every poorly written dialogue, every typo-

graphical error, and every gameplay element
that doesn’t fit the rest of your design
detracts from the overall gaming experience.
Each such mistake has the potential to drive
away a customer who would otherwise like
your game; commit enough of these sins
and you’ll never have a classic, no matter
how fast your engine or slick your graphics.

Let’s talk about poor writing; what
you’re reading now is a good example. I
consider myself a decent hack, and can
string sentences together reasonably well.
But before a single word I type sees print,
a professional editor will read every bit HI
MOM, making changes GO CUBS to
ensure my prose meets the standards of
the magazine.

Does the writing in your company’s
games undergo the same process? Do pro-
fessional writers create your dialogue and
game messaging, or do the designers and
programmers make it up as they go? Once
the text is written, does your QA staff
review it for grammatical and typographi-
cal accuracy? Does anyone exist on your
team whose job it is to ensure every bit of
your game’s writing meets the same high
standards of quality, so it consistently con-
veys the same message about your world?
For most of us, I fear, the answer is no.

continued on page 71

A Grand Unification
Theory for Game Design

Knowing When to Give Incongruous Design Elements the Hook

A Grand Unification
Theory for Game Design

Ill
us

tr
at

io
n

by
Pa

ul
Gi

lli
gan

w w w . g d m a g . c o m 71

S O A P B O X

And what about your voice acting? I’ve
had friends whose projects had voice actors
who were clearly not up to the task, and
when they pointed this out to the producer,
were told the acting was “good enough” to
get the job done. In one case, “good
enough” was cause for a full-star reduction
in ratings from several game magazines.
And how many of us have worked on
games in which the majority of the voice
“talent” came from team members who
couldn’t act their way out of a paper bag?

Out-of-context story elements require a
keener eye to spot, but eliminating them is
just as important as any other aspect of
building a quality game. My favorite exam-
ples of such inappropriate elements come
from the (really good) post-nuclear-holo-
caust role-playing game, FALLOUT 2. FALL-
OUT 2 is set in a world in which the nuclear
fears of 1950s America came true and fea-
tured an outstanding cast of characters with
vivid, humorous personalities, all of them
impeccably voice-acted: an antler-headed
medicine man who speaks in riddles, a
country-bumpkin ghoul who gasps and
wheezes as if he were on his last legs, a
tough, no-nonsense mutant with the person-
ality of a classic Old West sheriff. Other ele-
ments of the game are similarly humorous,
with many of the jokes poking fun at the
nuclear paranoia and other cultural hall-
marks of 1950s America.

Most of FALLOUT 2’s humor fits perfectly

into the overall atmosphere of the game,
but there are several instances where the
designers went too far, placing humor ele-
ments in the game that did not fit the rest
of its environment. For example, late in the
game the player comes across a rope bridge
spanning a huge chasm. The bridge is
guarded by an old man who insists you
answer three questions to pass — you
guessed it: your name, your quest, and your
favorite color, straight from Monty Python
and the Holy Grail. In another part of the
game, one encounters a wrecked Star Trek
shuttle, complete with the bodies of “red
shirts” lying about. Funny? Yes, for a
moment. But the joke broke my suspension
of disbelief, ultimately lessening the game’s
otherwise excellent quality.

So why does this matter? There are hun-
dreds of games I could have picked on for
being absolute, irredeemable crap, but I
wanted to make my point by showing how
a good game can harm itself by losing
focus. FALLOUT 2 has its non sequiturs,
EVERQUEST its typos, and many other prod-
ucts have voice-acting deficiencies while still
remaining decent games overall. Although
recent phenomena (such as the boom in dis-
count titles or the closure of Looking Glass
Studios) may seem to prove otherwise, I still
believe the market rewards quality. If we as
an industry can improve on the consistency
of our games’ quality, we will be better
poised to take advantage of the coming
boom in gaming.

Our industry is at a crossroads. Our par-
ents may not have grown up with comput-
ers or home videogame systems, but most
people born after 1975 have, and there will
eventually come a day when no person
alive can remember a time before video-
games existed. If we are to take advantage
of the rapidly expanding market of game-
savvy consumers, we need to ensure we
provide them with products of consistent,
outstanding quality. We need to do this
with every game we make, because the
mass market not only judges your individ-
ual game, not only your company, but
gaming in general when they get burned by
a bad purchase.

“Quality” doesn’t mean every game we
ship has the latest in graphical splendor.
Not all of us have multi-million-dollar art
or programming budgets. Not all of us have
time to add every feature we would like and
still make our ship dates. However, consis-
tent design, compelling writing, and good
acting are within the reach of everyone, and
Hollywood has shown us that you don’t
need a lot of special effects to make a good
movie. Casablanca, anyone? q

3DO Company 66

Adaboy 35
AICS 60
Autonomous Effects 69

BOPS 31

Center for Digital Imaging and Sound 69
Charles River Media 51
Cinram 70
Compaq 23
Conitec 62
Criterion Software Ltd. 27
Cyan 58

Dice.com 67
Digipen 70
Discreet 21

Ensemble Studios 64
Ework Exchange Inc. 4

Face2Face 7

Havok C2
Hewlett-Packard 43

Improv Technologies 33
INoiz.com 45

Lipsinc 39
Luce Forward 11

MathEngine 3
Metrowerks 59
Microsoft 13
Midway 65
Motek 8

Multigen-Paradigm 16

Newtek 29
Numerical Design Ltd. 47
NxN Software 19

RAD Game Tools C4
Rainbow 67

Savage Entertainment 65
Savannah College of Art 70
Softimage 15
Sony 63

Totally Games 65

Vancouver Film School 69

Wild Tangent C3

A D V E R T I S E R I N D E X

A U T H O R ’ S B I O | Derek Sanderson is a
game systems designer for ULTIMA WORLDS

ONLINE: ORIGIN, a.k.a. “The game formerly
known as ULTIMA ONLINE 2.” If you thought
he was a pain in the ass from reading this
article, you should see him at the office.
E-mail Derek at gamedesigner@aol.com.

continued from page 72

C O M PA N Y N A M E PA G E C O M PA N Y N A M E PA G E C O M PA N Y N A M E PA G E

	01aug cover
	02gameplan
	05frontlin
	06indwatch
	09graphic
	17artview
	24f-woodco
	40f-sharp
	52postmort
	72soapbox

	return:

