
AUGUST 1999

G A M E D E V E L O P E R M A G A Z I N E

T here’s an old story (I chalk it
up as an urban legend) about
a young FBI employee who
was put in charge of the

bureau’s supply department. He fig-
ured that an efficient way to cut costs
would be to reduce the size of the
memo paper used throughout the
agency. When one of the memo
sheets found its way onto J. Edgar
Hoover’s desk, he got upset over the
change and wrote on the narrow mar-
gin, “Watch the borders.” For the next
six weeks, it was difficult to enter the
country by road from either Canada
or Mexico.

This tale is about as bogus as they
come, but it illustrates what can hap-
pen when communication gets garbled.
Efficient communication is tough.
That’s why so many Postmortem
authors in Game Developer have cited
“bad communication between team
members” as a major factor that hin-
dered their game projects. And perhaps
no aspect of game development is as
loosely defined and poorly documented
as game design.

As game players, we often take for
granted what makes a game “rock” or
“suck,” without digging deeper and
analyzing what that means and what
exactly evoked such a response. That’s
the luxury of the player. As developers
though, we’re expected to be masters
of the art; to see many layers beneath
the surface. We have to be familiar
with the devices that make games chal-
lenging, fun, addictive, exciting,
funny, scary.

Having a formalized vocabulary for
game design elements and techniques
would help the industry greatly. Other
forms of media have their own lexi-
cons — novelists, script writers, movie
directors, and composers converse
using well understood and accepted
terminology. (A quick search on
Amazon.com reveals dozens of dictio-
naries for filmmakers, fiction writers,
poets, and other creative profession-
als.) With decades (if not centuries) of

history behind these fields, perhaps
this comes as no surprise. Now that
we’re a multi-billion dollar industry
though, we should begin to designate
formal terms for our craft, too.

This month we present an article on
page 44 by Looking Glass’s Doug
Church which addresses the need for a
game design vocabulary. The article
takes the first steps towards the cre-
ation of a lexicon for game designers
— a collection of “formal abstract
design tools,” as Church calls it —
which can be applied to game designs
across various genres and platforms.

There will be some who say, “Bah —
what a bunch of pointy-headed non-
sense. Don’t turn game design into an
academic exercise and start jargoniz-
ing things.” That’s definitely not the
aim here — jargon for jargon’s sake
does no good. But try imagining what
filmmaking would be like if every time
the director wanted a zoom-in dolly-
back shot, he had to say, “Roll the
camera away from the actor while you
simultaneously increase the lens mag-
nification on him, just like Hitchcock
did in that neat scene in Vertigo!”
Without an effective vocabulary to
discuss a concept, it can get pretty dif-
ficult to communicate your intentions
and ideas.

Here’s Where You Come In

I f you read Church’s article and
want to submit some terminology

of your own, our sister web site
Gamasutra.com is launching an
online lexicon to extend the concepts
that Church presents. We invite you
to submit terms and view what others
have proposed. With a little inspira-
tion from Noah Webster, we may all
be able to take the art of game design
to the next level. ■

G A M E D E V E L O P E R A U G U S T 1 9 9 9

4

P L A NG A M E

Where’s Webster

When You Need Him?

D E V E L O P E R

ON THE FRONT LINE OF GAME INNOVATION

www.gdmag.com

600 Harrison Street, San Francisco, CA 94107
t: 415.905.2200 f: 415.905.2228 w: www.gdmag.com

Publisher
Cynthia A. Blair cblair@mfi.com

EDITORIAL

Editorial Director
Alex Dunne adunne@sirius.com

Managing Editor
Kimberley Van Hooser kvanhoos@sirius.com

Departments Editor
Jennifer Olsen jolsen@sirius.com

Art Director
Laura Pool lpool@mfi.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Jeff Lander jeffl@darwin3d.com
Mel Guymon mel@surreal.com
Omid Rahmat omid@compuserve.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook Verant Interactive
Susan Lee-Merrow Lucas Learning
Mark Miller Harmonix
Paul Steed id Software
Dan Teven Teven Consulting
Rob Wyatt DreamWorks Interactive

ADVERTISING SALES

Western Regional Sales Manager
Jennifer Orvik e: jorvik@mfi.com t: 415.905.2156

Eastern Regional Sales Manager/Recruitment
Ayrien Houchin e: ahouchin@mfi.com t: 415.905.2788

International Sales Representative
Breakout Marketing e: breakout_mktg@compuserve.com
t: +49 431 801703 f:+49 431 801797

ADVERTISING PRODUCTION

Senior Vice President/Production Andrew A. Mickus

Advertising Production Coordinator Dave Perrotti

Reprints Stella Valdez t: 916.983.6971

MILLER FREEMAN GAME GROUP MARKETING

Group Marketing Manager Gabe Zichermann

MarComm Manager Susan McDonald

Marketing Coordinator Izora Garcia de Lillard

CIRCULATION

Vice President/Circulation Jerry M. Okabe

Assistant Circulation Director Sara DeCarlo

Circulation Manager Stephanie Blake

Assistant Circulation Manager Craig Diamantine

Circulation Assistant Kausha Jackson-Crain

Newsstand Analyst Joyce Gorsuch

INTERNATIONAL LICENSING INFORMATION

Robert J. Abramson and Associates Inc.
t: 914.723.4700 f: 914.723.4722
e: abramson@prodigy.com

CEO/Miller Freeman Worldwide Tony Tillin
Chairman/Miller Freeman Inc. Marshall W. Freeman
President & CEO Donald A. Pazour
Executive Vice Presidents Darrell Denny, Galen A.
Poss, Regina Starr Ridley
Sr. Vice Presidents Annie Feldman, Howard I. Hauben,
Wini D. Ragus, John Pearson, Andrew A. Mickus
Sr. Vice President/Development Solutions Group KoAnn
Vikören
Group President/Division SF1 Regina Ridley

More Than Just a Steady
Paycheck to Some

C hris Hecker’s Soapbox column
(“So You Want to Make Movies?

Good Riddance!” June 1999) echoed
my long held belief about the status of
the game development industry.
Easily half of the artists I have worked
with in the industry would have pre-
ferred to be doing something else.
Whether it be film or traditional art,
game development is just a steady
paycheck to them while they “get
their demo reel ready.”

More than once I have had to
explain to other artists in the field why
I don’t want to work in film. Many of
them don’t understand that my goal is
to bring games to the level of film and
television and finally to eclipse those
media with interactivity.

This attitude is less prevalent
among programmers. Still, you
find more than a small share of
programmers who are enam-
ored of the technological
aspects of game development:
how many polygons can they
push, or how much physics can
they code. Technology can’t help
but push the games further, but
programmers shouldn’t sacrifice the
game itself in the name of technology.

Even the game designers might
rather be writers working on main-
stream fiction instead of writing up
design documents and honing the
game balance.

The real key to achieving the game
industry’s equivalent of a Casablanca
will be creating a game world that is as
accessible as a film or novel, and is just
as engaging. Such a game needs the
industry’s digital equivalent of Bogart
and Bergman, the writing nuances of
the Epsteins, and the directorial talents
of a Michael Curtiz.

I am eagerly awaiting Dramaera’s THE

INSIDER (http://www.dramaera.com) to
see if they can pull off real emotion in a
computer game.

C a r l L . P i n d e r

N e w W o r l d C o m p u t i n g ,

a d i v i s i o n o f T h e 3 D O C o m p a n y

v i a e - m a i l

I found Chris Hecker’s recent
Soapbox on developers with ulteri-

or aspirations interesting. I agree com-

pletely that complaining is annoying.
I also would never openly talk of
working for another company while
under the employment of another (it’s
just bad manners).

However, as a game artist and a lover
of independent film, I must disagree
with many of his points. First and fore-
most, I don’t ever think
that a game will
ever be
revered as a
work as
great and
as artistical-
ly poignant
as say, films
such as Saving
Private Ryan,

Apocalypse Now,
Forrest Gump,

Schindler’s List, the
Godfather movies,

Citizen Kane, and
The Maltese
Falcon.

Conversely,
we already

have many
games that are a

far superior experi-
ence to films such as

Starship Troopers and
Independence Day, both of which

suffered from over-emphasis on special
effects, while leaving the acting and
script as a secondary consideration. A
good example of this would be an
intensive game like UNREAL. That
game’s story line and rich background
do more for your sense of wonder and
imagination than these poetically
devoid big-screen bombs achieved.
Second, if Hecker only refers to games
as a medium of interactivity, then he
needs to open his eyes sometime at
Siggraph. Games are not the end-all
final destination for interactivity.
Interactive fine art that senses the
viewer and plays on body location is
happening right now. He obviously
needs to get out more often.

The bottom line is, I think his take
on games as a higher art form is comi-
cal at best. How serious can we take an
industry whose best seller stars a hero-
ine with anti-gravity boobs, and little
fan boys keep pictures of her that they
got from a few “galleries”? Comic
books have also had their war cry to
be recognized as a higher art form.

You almost can’t find a comic today
without some ridiculously propor-
tioned woman drawn in it.

Technology will bring us to a meld-
ing of cinema and interactivity soon.
Why would you condemn those peo-
ple who would leave the strict game
format for broader fields?

Perhaps the game industry can
make a classic game that

everyone knows and
loves like, say, the
board game classic
Monopoly. And to a
point that has hap-

pened a few times
already, namely with AGE OF

EMPIRES and QUAKE. But to think
that a PC game will ever be held in the
same light as a great movie is little
more than a delusion of grandeur.

T o n y C a s t e l l u c i

v i a e - m a i l

A U T H O R C H R I S H E C K E R R E S P O N D S .

My short response to you is this: I’m taking

bets. Cash money. Ten thousand dollars

due in 50 years — you pay me if games

have made it into the big leagues as an art

form. If they haven’t, I pay you. What do

you say?

My longer and less flippant response is

that for every potentially new art form,

there are proponents and detractors. Time

will tell who’s right, of course, but I think

games are qualitatively different from comic

books in that they are not the hybrid of two

existing art forms. While comic books are a

blend between written language and pictor-

ial art, games are not “in between” any two

existing art forms — they expand the enve-

lope of art via interactivity.

As for Siggraph-style “interactive fine

art,” I think that’s a totally valid use of

interactivity, and you have a good point. I

do think these works will relate to games in

the same way experimental art films relate

to more mainstream films. That is, these

interactive fine art pieces will have a smaller

audience and get less attention than main-

stream games and experiences.

As a friend pointed out to me, the term

“games” might be a limiting factor in and

of itself. Maybe we should all work towards

figuring out a better name that gives our

industry a little more room in which to

grow. Regardless of the name, however, I’ll

bet the medium will ultimately find its

rightful place alongside movies, painting,

music, and the like. Are there any takers

out there?

h t t p : / / w w w . g d m a g . c o m A U G U S T 1 9 9 9 G A M E D E V E L O P E R

7

S A Y S Y O U

t

Don’t keep it bottled up inside. E-mail
saysyou@gdmag.com, or write to

Game Developer, 600 Harrison Street,
San Francisco, CA 94107.

h t t p : / / w w w. g d m a g . c o m A U G U S T 1 9 9 9 G A M E D E V E L O P E R

New Products
by Jennifer Olsen

Gaming All the Way to the Bank

ERICSSON HEWLETT-PACKARD TELECOM-

MUNICATIONS (EHPT) has developed
Jalda, a non-proprietary system for han-
dling Internet payment transactions,
which EHPT hopes will enable game
developers to find innovative ways to
bring in (read: milk) revenue from their
online games. In case you haven’t
heard, online gaming has quickly
secured its place as one of the fastest
growing slices of that big, juicy e-
commerce pie, with total revenues pro-
jected to rise tenfold to almost $700
million in 2003.

Jalda is EHPT’s response to demand
from both consumers and content
providers for simple and secure Internet
payment systems, enabling transactions
spanning from collecting micro-
payments to awarding tournament prize
money into the right player’s account.
Developers and users can structure dif-
ferent pay-for-play modes, such as per-
click, per-minute, per-game, on up to

huge multiplayer tournaments. (Just
imagine each of those pay-per-clicks as
change jingling in your pocket.)

Jalda’s developers tout its security,
which uses RSA Public Key Infrastruc-
ture, a cryptographic technology that
claims to eliminate fraud using digital-
ly signed transactions whereby each
party in the transaction has his own
electronic ID. Better still, when some-
one pirates your game, Jalda’s soft cer-
tificate goes with it, and recipients of
pirated games start paying when they
start playing.

Jalda’s API is available for download
from the Jalda web site.
■ Ericsson Hewlett-Packard

Telecommunications AB

Stockholm, Sweden

+46 (8) 685-2000

http://www.jalda.com/eips

Strike a Pose

METACREATIONS has introduced Poser
4, its next-generation figure posing
and animation tool, hoping to pro-
vide an affordable package for new-
comers to 3D animation and a special-
ized pre-visualization tool for
high-end developers.

The upgrade introduces fea-
tures such as a redesigned
user interface, new animal
figures, a swappable 3D
clothes wardrobe, and new
morph targets for generating
characters. Advanced texture
controls allow users to incor-
porate transparency and
reflectivity into a scene, apply
a texture style to an entire
figure or body part, and cre-
ate effects such as wispy hair
using transparency maps.

Poser also comes with an
improved library of 3D fig-
ures, while new magnetic and
wave deformers allow users to
sculpt 3D figures by manipu-

lating body and facial surfaces. Poser 4
also supports multiple deformers for
customizing faces by allowing photos to
be applied as texture maps. Users can
generate new figures within Poser 4 by
importing 3D geometry, breaking it into
body parts, and then generating the
new figures using inverse kinematics.

Poser 4 has a suggested retail price
of $249 and upgrade discounts are
available.
■ Metacreations Corp.

Carpinteria, Calif.

(805) 566-6200

http://www.metacreations.com

New Toy Box for Digital Artists

RIGHT HEMISPHERE has released Deep
Paint 3D, which, despite the potential
for confusion over sequential number-
ing, is the successor to 4D Paint, its
Windows-based 3D paint program.

Deep Paint’s tool set has been
redesigned to include features resem-
bling airbrush, oil, watercolor, colored
and charcoal pencils, felt pens, chalks,
pastels, gouache, acrylics, impasto, and
texture and image spray paints, among
others. The addition of Phong render-
ing allows for improved 3D rendering
quality and speed by enabling users to
see in real time the variations in paint
texture shininess.

With support for .3DS and .LWO file
formats, Deep Paint integrates easily
with other modeling systems, includ-
ing 3D Studio Max, Softimage, Light-
wave, and Maya. It also supports
Photoshop plug-ins and a two-way
interface with Photoshop.

Deep Paint 3D runs on Windows
95/98/NT and Intel or Alpha processors.
The Intel version of Deep Paint 3D has
a suggested price of $795, the Alpha
processor version is $995.
■ Right Hemisphere Ltd.

Auckland, New Zealand

+64 (9) 309-3204

http://www.righthemisphere.com

New Products: Metacreations debuts
Poser 4, Right Hemisphere goes Deep,
and Jalda arrives to make your online
fantasies come true. p. 9

Industry Watch: Worries brew over
PSX2 development costs, Monolith
farms out distribution rights, and Brian
Hook leaves id for greener pastures. p. 10

Product Review: Seasoned sound
designer Andrew Boyd comes to grips
with Reality and shares his newfound
wisdom. pp. 12–16News from the World of Game Development

9

Manipulating faces is simple with Poser 4’s

magnetic deformers, but it sure looks painful.

B I T B L A S T S - I N D U S T R Y W A T C H

Industry Watch
by Alex Dunne

3DFX SUES CREATIVE. In the aftermath
of the divorce between 3dfx and its
former board-making customers, some
legal stuff has hit the fan. 3dfx filed
suit against Creative Labs and its par-
ent company, Creative Technology,
claiming that Creative breached a
licensing agreement and infringed on
3dfx copyrights by incorporating 3dfx
Glide source code into Unified, Cre-
ative’s new technology for running
Glide-only games on Creative’s TNT
and TNT2-based cards. (Unified con-
sists of a software layer that translates
Glide calls into the corresponding
commands in Direct3D, plus exten-
sions that support Creative’s Graphics
Blaster RIVA TNT.) If Creative did use
3dfx code for this purpose, that would
be a no-no — the Glide license agree-
ment stipulates that licensees can’t use
or modify 3dfx source code so that it
operates with non-3dfx hardware. 3dfx
also asserted a claim against Creative
Technology for unpaid amounts owed
for 3dfx products.

MS EMBRACES EAX. Microsoft
announced a licensing agreement with
Creative Technology for a number of
Creative’s EAX audio effects. The
licensed effects, including flange, cho-
rus, EQ and environmental reverbera-
tion, will be incorporated by Microsoft
into the next version of DirectX. While
Creative officials admitted that the
licensing agreement with Microsoft
“has no direct financial impact on
Creative,” it looks to be a strategic win
for Creative, which has been trying to
make EAX an industry standard for 3D

audio effects, thereby increasing sales
of Creative audio hardware.

EIDOS HAS A GOOD YEAR. Eidos
announced results for the year ending
March 31, 1999, and it had some nice
news for investors. The company saw
revenues increase by 65 percent to over
$364.3 million for the full year, result-
ing in a pre-tax profit of $50.3 million
(compared to $0.16 million in 1998).
Ian Livingstone, Eidos’s chairman,
cited the continued successful develop-
ment of existing franchise properties
such as TOMB RAIDER, GEX, CHAMPIONSHIP

MANAGER, and THIEF: THE DARK PROJECT

for the company’s successful year.
Nineteen new titles were launched by
Eidos during the year, and eight games
(including catalogue titles) achieved
sales in excess of 350,000 units.

SAVING UP FOR PSX2. While con-
sumers “ooh” and “ahh” over the stun-
ning graphics and processing power of
Sony’s recently-announced PlayStation
2, game developers may secretly be
wincing at what looks to be an expen-
sive platform for which to develop.
Some companies are starting the
bankroll-building process. Case in
point: 3DO just announced plans to
sell $34.5 million in new shares, which
will be used in part to fund its PSX2
games. 3DO plans to release at least six
titles for the new PlayStation around
the time the new console ships.

MONOLITH FARMS OUT DISTRIBUTION.
Apparently looking to focus more of its
resources on game development rather
than distribution, Monolith entered an
exclusive agreement with Interplay
which gives the latter North American
distribution rights to three of Mono-
lith’s upcoming RPGs, RAGE OF MAGES

II: NECROMANCER, SEPTERRA CORE and
ODIUM. All three titles are scheduled to
ship for the PC this fall.

GAME RATINGS REDUX. In the wake of
recent tragedies like the Columbine
shooting and the subsequent debate
that has ensued over the media’s role
in adolescent violence, Senators
Joseph Lieberman (D–Conn.) and
John McCain (R–Ariz.) introduced leg-
islation to create a uniform media rat-
ing system. Under the proposed legis-
lation, entertainment media industries
would have six months to develop an

across-the-board rating system for
videogames, television and music. The
warning labels would have to reflect
the nature, context, intensity of vio-
lent content, and age appropriateness
of the media product, Sen. Lieberman’s
office said. It’s not clear to what
extent the RSAC or ESRB ratings cur-
rently used by game publishers will
influence such a system. In related
news, Rep. Henry Hyde (R–Ill.) pro-
posed legislation that would restrict
youth access to videogames, movies
and other media containing violent
and sexually explicit material.

BRIAN HOOK left id Software for Verant
Interactive, developer of the successful
online game EVERQUEST.

CD-WRONG? Looking to divest itself
entirely from traditional CD-ROM
games and devote itself towards its
“high-growth Internet entertainment
community” business, Interactive
Magic sold its entire CD-ROM product
line to Ubi Soft. Interactive Magic will
retain the online rights to these CD-
ROM products, and operate the
Internet versions of the products exclu-
sively on the company’s games sites,
including iMagic Entertainment
Network, GameHub, and MPG-Net. ■

G A M E D E V E L O P E R A U G U S T 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

10

Siggraph ‘99

LOS ANGELES CONVENTION CENTER

Los Angeles, Calif.
August 8–13, 1999
Cost: $25–$760
http://www.siggraph.org/s99

ECTS ‘99

OLYMPIA CONFERENCE CENTRE

London, England
September 5–7, 1999
Cost: variable
http://www.ects.com

UPCOMING EVENTS

CALENDAR

Interplay will get North American dis-

tribution rights to Monolith’s ODIUM.

B I T B L A S T S - P R O D U C T R E V I E W

G A M E D E V E L O P E R A U G U S T 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

12

Seer Systems’
Reality 1.5

by Andrew Boyd

T he experience of receiving a
package containing “Reality” is
itself almost worth the purchase

price. True, in this case it refers to a
Windows 98, host-based software syn-
thesizer of that name, but there’s no
reason anyone else needs to know that.
As far as your programmers, producers
and management need to know, the
audio department has just received a
box of reality — and the philosophical
ramifications are staggering.

Reality (the product, not the episte-
mological construct) seems like a
promising solution to some common
problems in game sound and music pro-
duction. Specifically, when designing
effects there never seems to be enough
unique sources, ways to transform
sounds, or tools to let you really get at
creative new sounds. And when scoring
music using synths and samplers (which
most of us in games do), there’s never
enough polyphony — more modules
are always better. Reality offers up a
massively customizable synthesizer and
sample playback engine that can
address these concerns in a single prod-
uct, and do it inexpensively, leveraging
equipment you probably already own.

Reality is a 128-voice, 16-part multi-
timbral, fully editable synthesizer real-
ized wholly in software. It employs just

about every synthesis method you’ve
ever heard of, and a few you might not
have. It supports sample playback
(with full multi-sample and layering
functionality, and full compatibility
with SoundFont 2.0), four-operator FM
synthesis (using anything for the oper-
ator waveforms), subtractive “analog”
style synthesis, and 20 different types
of physical modeling algorithms such
as Simple Mallet, Plucked, Modal, and
others. It has a sophisticated modula-
tion matrix, programmable envelope
generators, powerful resonant filters (2-
pole to 16-pole), and an enormous
capacity for patch data.

Much like other synths, Reality orga-
nizes its sounds into banks (called
“Banksets”), which contain patches
called “Programs,” which can be a
patch or a combination of regions ref-
erencing one or more patches. Banksets
can also store MIDI files, which can be
played back inside Reality’s simple
sequence player. Reality can either be
used as a stand-alone MIDI sound
module (as I used it), or it can integrate
directly into a Windows sequencer
such as Cakewalk and provide a fairly
seamless production environment.
Reality can output audio using any
Windows sound card, though cards
with DirectSound drivers will exhibit
vastly more acceptable latency behav-
ior than cards without, and Reality can
also capture its output into a .WAV file.

Interface

Launching Reality brings up a main
workspace in which everything in the
program takes place. There are three
primary modes of operation: Bankset,
Program, and Options. The first two
are pretty self-explanatory, the last is
where MIDI channel assignments,
global adjustments, and effects editing
take place. The look of Reality’s inter-
face is pretty standard Windows 9x
fare, almost to a fault. Frankly, it looks
rather like a semi-finished demo appli-
cation. Its buttons, tabs, dialog boxes,
and drop-down lists have little in the
way of specialized graphics to ease the
feeling that programmers — not musi-

cians or artists — designed it, whether
that’s true or not. I ran Reality on a
desktop set at 1024×768, and some
pages use more than the available
screen space, requiring awkward scroll
bars, while others use far less, resulting
in odd-shaped expanses of Windows
gray. On the other hand, there are
some handy touches: a browser-like
pair of forward and backward buttons
let you bounce quickly between fre-
quently used screens; global volume,
reverb, and chorus level adjustments
are available on floating toolbars; and
meters measuring left and right output
levels and instantaneous CPU usage
appear automatically, too.

Although it isn’t the most attractive
program to grace a display, Reality’s
interface does an admirable job of trans-
lating the program’s astonishingly com-
plex synthesis engine into language,
components, and structure that users
can comprehend. It doesn’t try to hide
the complexity with presets or black-
box controls, but rather presents a win-
dow to it using a logical set of struc-
tures, which are split up with pages and
settings. The hierarchy is straightfor-
ward and it leads the user through the
process of designing a sound in a fairly
sensible, if awfully dry, manner.

For instance, within the Program edit-
ing environment, you get a pull-down
menu to select the algorithm type, and
each algorithm has a tab-selectable
Parameters page, which shows only
those settings relevant to that algo-
rithm. Also available are the tabs lead-
ing to the low frequency oscillator and
Envelope pages that are common to all
programs. The various connections
involved in the modulation matrix are
not always as obvious as they could be
— some sort of graphical representation
beyond just tabbed pages with drop-
down lists would be very useful (The
”cords” feature in E-Mu’s Emulator sam-
plers comes to mind as a great solution
to this problem). But for the most part,
the structure of a sound is laid out in a
straightforward manner. It’s essentially a
good, highly-specialized editor/librarian
application talking to a really sophisti-
cated synthesizer.

In Use

I installed and tested Reality on a
333MHz Pentium II running Windows

Andrew Boyd is Sound Design Manager for Stormfront Studios in San Rafael, Calif.
He’s been making sounds and music for computer games professionally since 1993.
Drop him a line at aboyd@stormfront.com.

G A M E D E V E L O P E R A U G U S T 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

14

98, with 128MB RAM and Ultra Wide
SCSI, and with Sound Blaster Live! and
Digidesign Audiomedia III sound cards.
I also had Cakewalk Pro Audio 8.1
installed on this machine, and Reality
integrates nicely with it, but my prima-
ry use for Reality was as a MIDI mod-
ule controlled through the Sound
Blaster card’s MIDI input. This was
connected to a Macintosh running
MOTU’s Digital Performer 2.5, through
a MOTU MIDI Timepiece AV, and using
an Alesis QS-7 as a controller.

The installation was pretty smooth. I
already had DirectX 6.1 installed, but
Reality will, presumably, install the
appropriate DirectSound drivers if nec-
essary. Reality detected the hardware
fine, asked about associating file types,
offered options for installing extra
Banksets and SeerMusic (Seer’s web-
based audio playback), and so on.
Strangely, though, the program didn’t
work right until I rebooted, even
though the setup neither requires nor
suggests this. I tried two other machines
with the same results. I suppose it’s sim-
ply good practice to reboot after an
installation, but there could have been a
note to this effect somewhere. Other
than this small issue, I found the pro-
gram to be very stable in use, without
any crashes throughout the testing.

Of course, it’s all about sound, and
Reality sounds pretty darn good. Steer
clear of the demo songs, unless cheesy
fusion or pseudo-ska really get you
excited. Reality can sound much better
than these demos would imply. Some
of the included Banksets are quite
usable, such as Drums and Bass, which
has a great velocity-layered drum kit,
and Woodwinds and Brass, which has
fairly convincing instruments with
great, playable modulation parameters
(aftertouch is routed to “blat” on the
trumpets, which is really fun). But
more so than with sampled or even
physically-modeled realistic sounds,
Reality excels in non-realistic, “analog”
and FM sounds and instruments. The
stock banks Amoeba and Electron show
these off nicely, with some fat basses
and great, shimmering pads.

The analog output was more than
acceptable for most purposes coming
straight off the Sound Blaster card, and
excellent from the Audiomedia (both
are unbalanced, but hardly noisier than
some of my professional equipment). I
often took advantage of Reality’s ability

to capture its out-
put directly to a
.WAV file, and
bypassed the
sound cards
entirely. The
latency inherent
in the Audio-
media’s WaveOut
drivers made
playing the synth
impractical (not
completely
impossible, but
not worth the
effort), but the
Sound Blaster
exhibited as little
perceived latency
as anything else
in my MIDI rig.
Reality’s direct
.WAV output dis-
patches a long-
time complaint
about software synths.

A great use of Reality is for pure
sound design, such as non-instrumental
sounds or sounds not meant for play-
ing in a musical context. In the same
way that I will often fire up my trusty
old Prophet-600 to get some wacky
source material for unusual effects,
Reality proved useful as a petri dish for
growing some really odd experiments
in sound combinations. Parameter
changes take effect in real time, which
is great for tweaking, and there are so
many available combinations of para-
meters and routings that surprises are
always right around the corner. What if
I take this source sound and stick it
into all four oscillators using different
tunings and envelopes on each of
them, then combine them using differ-
ent FM operator topologies? It’s fasci-
nating stuff.

Perhaps Reality’s biggest weakness
lies in its built-in effects. It would seem
that, as a Windows audio application,
it ought to be able to take advantage of
the same DirectX audio plug-ins that
have become standard, expected, even
necessary on other similar applications
(Sound Forge, Cakewalk, and Acid, for
example). But apparently the architec-
ture of these effects would cause unac-
ceptable latency in Reality, and so
they’re not supported. While I under-
stand these limitations, it would be
nice if Reality at least offered a work-

around — report to me the latency and
let me program around it in my
sequencer or something. But right now,
every modern hardware synth runs
rings around Reality in terms of avail-
able effects, and this is a bit frustrating.
It does have built-in reverb and chorus
effects, and they offer some amount of
programmability. They even sound
pretty good, for all that. They’re useful,
but ultimately disappointing because
the rest of Reality’s sound generation is
so impressive.

For musicians and composers, Reality
will be most useful to those who want
that analog synthesizer sound without
dealing with the irritating vagaries of
such beasts. Reality never drifts out of
tune or has a scratchy pot or broken key
(features my beloved Prophet currently
exhibits), for instance. Programmed cor-
rectly, Reality’s sound can be remarkably
fat and satisfying, with solid filters and
a lot of motion and articulation avail-
able in a voice. Its polyphony, multi-
timbrality, and programmability go far
beyond any analog synthesizer, too.
And of course, Reality costs around a
third of what you’d pay for that func-
tionality alone in a module.

For sound designers, I think Reality
is a great tool to have in the shed
when it comes to making otherworldly,
fantasy sounds. It’s such a quick way to
work, because its amazingly complex
architecture is laid out so plainly

Reality’s user interface won’t win any beauty contests, but it

gets the job done.

B I T B L A S T S - P R O D U C T R E V I E W

G A M E D E V E L O P E R A U G U S T 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

16

before you. And since it uses conven-
tions and terminology from synthesiz-
er programming, it will probably
already feel familiar and easily naviga-
ble to new users. Monster growls, laser
guns, spaceship engines, transporter
portals, and robot voices are so much
fun to make with this thing, it’s almost
cheating. And since it can capture its
output directly to a .WAV file, it inte-
grates simply with audio editors and
multi-track environments.

Reality’s manual is clear, complete,
and written in a friendly, accessible
style. One of the challenges for the doc-
umentation to an application like Reali-
ty is that it needs to be helpful to users
encompassing a wide range of experi-
ence. Some users are computer mavens
who have never seen a synthesizer
before, while others make their living
programming synths. But even the lat-
ter group may have never worked with
a host-based software synth, or with a
physical-modeling synth, and few will
have worked with a single synth that
does all of this at once. Given this
range, the manual does a great job pro-
viding all the necessary information
and some helpful hints, too, without
being condescending or overly dry.

The online help is, as is often the
case with Windows products, excellent,
relevant, well indexed, and much
handier than you ever think it will be.
Use it. It’s your friend.

Conclusion

Reality is an awfully impressive prod-
uct. It’s one of those fun products with
which you can get started quickly, but
whose depths you’ll probably never
fully plumb. It’s also one of those rare
products that will fit as well within the
context of a beginner’s home studio as
it will in the rig of a busy, experienced
composer or sound designer. It isn’t
perfect — the overall look and inter-
face could stand a little polishing, if for
no other reason than the psychological
effect this makeover would produce;
the modulation routings could be a bit
more intuitive; and the effects section
needs real attention. But Reality lives
up to its promise, and in addition to
great sound quality and useful func-
tionality, it’s quick and stable. And for
its price, I haven’t seen anything that
can touch it. ■

Seer Systems Inc.
Portola Valley, Calif.
(888) 232–7337
http://www.seer
systems.com

Price: $495

System Requirements:
Windows 95/98,
133MHz processor
(200MHz recommend-
ed), 32MB RAM

Pros:

1. Astoundingly flexible,
usable synthesizer
engine

2. Great sound quality.

3. With the right sound
card/driver combination,
it’s as playable as any
MIDI instrument.

Cons:

1. Unattractive interface
has a “first pass” look to
it.

2. Built-in effects are not
up to the level of hard-
ware synths.

3. Without DirectSound dri-
vers, latency is too high
for real-time playing.

Seer Systems’ Reality 1.5:

Excellent Very Good Average PoorBelow Average

b y J e f f L a n d e r G R A P H I C C O N T E N T

This experience with friction begins
when as babies we attempt to scoot
across the floor and find the carpet dif-
ficult and the linoleum floor relatively
easy. We build upon our experience
until as elementary-age children we are
able to pick up our video console con-
troller and expertly proclaim, “This
game looks so fake — the cars are slid-
ing all over the place. The physics in
this game bites!”

That is the challenge game develop-
ers face. The physical world is so famil-
iar to everyone in your potential audi-
ence, any departure from realism can
be glaring. However, realistically simu-
lating these simple physical properties
is quite challenging. This month, I’m
going to discuss simulation of friction

in real-time 3D applications, otherwise
known as the field of tribology.

Why Is It Such A Drag?

L et’s take a look at what makes up
the experience we term “friction.”

Grab your trusty copy of Computer
Graphics: Principles and Practice and set
it on the table. Give the book a push
with a small horizontal force. Notice
that if the force is small, the book will
not move. As you increase the force,
you will reach a point where the book
will start moving. Once it’s moving,
you may notice that it takes a little less
force to keep it moving.

How is it possible for a smooth book
on a smooth table to create a force that
resists your efforts to push it? Well, it
turns out that even relatively smooth
surfaces are actually pretty rough if you
look closely enough. It’s this roughness
that opposes your efforts. But even more

interesting is the fact that on a smaller
scale, when objects rest against each
other, atomic bonds tend to form
between them. These bonds form a kind
of glue that makes it necessary to apply
extra force to get an object moving.

It’s possible to measure the effect of
this roughness. In fact, this is exactly
what Charles Coulomb did in the late
eighteenth century. He established a
theory of dry friction (since called
Coulomb friction) that predicts the
maximum friction forces that are exert-
ed on an object in contact with a dry
surface before that object moves and
becomes dynamic. The theory also pre-
dicts the friction forces that the sur-
faces exert when they are in motion
relative to each other.

Don’t Give Me No Static

W hen you are applying force on
the book, the friction force

opposes your efforts. Let’s take a look
at a diagram of this situation. Figure 1
shows a free body diagram of the book
in static equilibrium, meaning that the
book is not moving.

Since the book is in static equilibri-
um, we can determine a number of
things via the principles of statics. The
normal force, N, to the collision of the
book with the surface is equal in mag-
nitude to the weight of the book, W.
Also, the friction force, f, must also be
equal in magnitude to the force being
applied on the book, F.

(Coulomb Static Friction)

N W

f F

f Ns

=
=
≤ µ

h t t p : / / w w w . g d m a g . c o m A U G U S T 1 9 9 9 G A M E D E V E L O P E R

19

The Trials and Tribulations

of Tribology

I have decided that friction is a drag. It’s almost as easy to understand as gravity.

We deal with it every day. Friction keeps me from sliding completely under my

desk when I slouch in my chair. It keeps my car from spinning out of control as

I turn corners with reckless abandon.

When not fighting the friction that keeps his butt planted in Redondo Beach, Jeff cre-
ates custom 3D real-time graphics applications at Darwin 3D. What’s the roughest
surface you know? E-mail it to him at jeffl@darwin3d.com.

F	 Force applied to system

f	 Force of friction

N	 Force normal to surface

W	 Force of weight of object
	 due to gravity

µ
s
	 Coefficient of static friction

µ
k
	 Coefficient of kinetic friction

w	 Width measurement

h	 Height measurement

A	 A point of reference

v	 Velocity of particle (vector)

ε	 Threshold of transition from
	 static to kinetic friction

TA B L E 1 . A summary of notations

used in this article.

W

N

F

f

F I G U R E 1 . A book in a state of

static equilibrium.

The Coulomb static friction model
states that the magnitude of the fric-
tion force is less than or equal to the
normal force, N, multiplied by a con-
stant coefficient of static friction, µs.
This coefficient describes the degree of
smoothness between the two surfaces
and generally depends on the material
composition of the contacting objects.
This value typically varies from 0
(which would be a perfectly smooth,
frictionless surface) to 1 (for a very
rough surface). Some examples of coef-
ficients of static friction can be seen in
Table 2.

There are some circumstances where
µs can actually be greater than 1. Drag
racing tires, for example, are designed
to be sticky so that the friction force
they exert is greater then the normal
force exerted by the road.

When the force you are applying on
the book causes the book to be on the
verge of sliding, the friction force that
opposes your efforts is at its maximum.
At this point, slip is said to be impend-
ing. Through statics you can calculate
the magnitude of the force necessary to
cause this slip.

(Coulomb static friction model)

(Objects are in static equilibrium)

(The maximum F before a slip occurs)

Therefore, the maximum force that
can be applied on the book before it
begins to slip is µsN. What is interest-
ing, and complicated, about static fric-
tion is the fact that the friction force
increases to equal the applied force
until this threshold has been reached.

What Happens Then?

Once the applied force is greater
than the slip threshold, the object

starts moving. We now leave the world
of statics and enter the world of
dynamics. It’s actually very similar to
static friction. The magnitude of the
friction force between two dry contact-
ing surfaces that are sliding relative to
each other is

where µk is the coefficient of kinetic
friction. This force resists the motion
of the two bodies. Its direction is
opposite the vector of relative velocity
between the objects. In general, the
value of µk is smaller than µs. How-
ever, this does not always have to be
the case.

That covers the Coulomb dry fric-
tion model in both static and dynamic
situations. By simply implementing
these two methods, you can create a
world represented by interesting phys-
ical properties.

How’s This Good For Games?

A n obvious application of the
Coulomb dry friction model is

for travel over surfaces. You may have
a game that requires a character to
travel over various types of terrain. By
specifying different coefficients of
friction for different types of terrain
(asphalt, grass, ice, and so on), you
can simulate movement over this ter-
rain in a realistic, and even more
importantly, a physically consistent
manner.

Many games simulate friction sim-
ply by reducing the velocity by a per-
centage based on the surface type.
This may seem at first to be the same
thing as the dry friction model
described above. However, it differs
from it in many critical ways. By
adjusting the velocity directly, you
eliminate the side effects of applying
the friction as a force. These side
effects are what make objects in the
physical simulation behave the way
players expect them to behave. These
small breakdowns in the simulation
make it glaringly apparent that the
world is fake. Perhaps an example
would help here.

The Adventures of Sara Craft

S ay I’m creating an adventure
game starring a beautiful woman

named Sara running around a danger-
ous, mystical temple in a stunning
cocktail dress. To escape from the tem-
ple, Sara must manipulate a series of
wooden boxes to activate various
switches embedded in the floor.
(Don’t blame me, my producer came
up with the concept.)

Sara pushes the boxes around by
applying a horizontal force to the
objects. If I do not consider friction at
all, then once the boxes are sliding
they will slide all around the room,
bouncing off the walls forever. Clearly
something needs to be done. So, I sim-
ply reduce the velocity of the object as
it slides around. This can be made to
look pretty good. However, there is still
a problem.

If you have ever pushed a box really
hard, particularly if your point of con-
tact is near the top of the box, the box
will sometimes tip over before it starts
sliding. In fact, if you throw a box
across the room, once it hits the floor
it will tumble all over the place
instead of simply sliding to a halt.
People are used to these facts. They
live with them every day. If your
world does not address these behav-
iors, it will not feel right.

But why does the box tip over? Well,
guess what, it is all about friction. Take
a look at the box in Figure 2. Sara will
be applying a force, F, to the box h
units above the ground. What I’m
looking for is a state for the system
where the box is about to tip over at
point A. I can apply the principles of
statics to solve this problem. (If you are
not familiar with statics, check out the
For Futher Info section at the end of
this column.) For an object to be in sta-f Nk= µ

F Ns= µ

f F=

f Ns= µ

G R A P H I C C O N T E N T

G A M E D E V E L O P E R A U G U S T 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

20

f
N

h

d

F

W

A

F I G U R E 2 . Forces exerted on a box

as it verges on tipping over.

Metal on Metal	 0.15 – 0.20

Wood on Wood	 0.25 – 0.50

Metal on Wood	 0.20 – 0.60

Rubber on Concrete	 0.60 – 0.90

Metal on Stone	 0.30 – 0.70

Coefficient of

Static Friction

Material

TA B L E 2 . Some coefficients of

static friction.

tic equilibrium, the sum of all forces and the sum of all
moments in the body must equal zero.

When the box is about to tip over, there is only a reac-
tion to the ground at point A. The support on the other
side has no reaction to the ground. Therefore, we can state
the equilibrium equations. Let me start with the sum of
forces.

The sum of horizontal forces consists only of F and f, and
they directly oppose each other. In the vertical direction, the
weight W and normal force N are also equal and opposite.
The sum of moments however, is a bit more complicated.
You may remember from physics that the moment of a force
about a point P is

where D is the perpendicular distance from the point P to
the line of action of the force F. Forces are sliding vectors,
meaning that they act equally along their entire line of
action. Let’s look back at the drawing in Figure 2. When the
object is about to tip over, it makes sense to look at the sum
of moments about the point A. There are two moments
being applied about point A. The force Sara is applying, F,
and the force of the weight of the object, W.

At the point of equilibrium where the box is about to slip,

So, I can substitute leaving

M h W d W h dA s s∑ = − = =() (.) (.) /µ µ0 5 0 0 5

f N Ws s= =µ µ

M hF
M d W

M hF d W

AF

AW

A

=
=

= − =∑
(/)

(.)

2

0 5 0

M DFP =

F F f F f

F W N W N

X

Y

= − = =

= − = =
∑
∑

0

0

G R A P H I C C O N T E N T

22 F I G U R E 3 . You can control how much force Sara must exert

on the box before it moves.

If Sara applies the force at a point (0.5d)/µs units high or
higher on the box, the box is going to tip over before it
starts sliding. What’s even more interesting is the fact that
the equation above states that the value for h is not depen-
dent on anything other than the dimensions of the box
and the coefficient of static friction. The magnitude of the
force F does not matter at all. It may seem that if Sara
pushes harder, the box would be more likely to tip. Statics
proves that this is not the case.

How Do I Use This Knowledge?

I am convinced. I want to have boxes that tip over if you
push them too high. That seems like something cool to

have in my game. But how do I go about accomplishing
this task?

I have been building up the pieces I need. If you look
back to my March and April 1999 columns (“Collision
Response: Bouncy, Trouncy, Fun,” and “Lone Game
Developer Battles Physics Simulator”), I have a soft body
dynamics package that models the forces and handles colli-
sion with surfaces. I will first handle the kinetic friction
problem.

As I described above, the magnitude of the kinetic friction
force is

and the direction of the force is determined by looking at
the current particle velocity. In my simulation, if the veloci-

ty of a point is greater than a certain threshold, ε, I deter-
mine that I need to use static friction for all contacting
points. Listing 1 shows the code for calculating and adding
in the force of friction.

The only change I really had to make to the structure of
the program was to a storage space for the contact normal
for contacting particles.

f Nk= µ

23F I G U R E 4 . Sara tips the box over instead of sliding it

away.

Static Friction

H andling static friction, however,
is much more complicated. The

problem is that static friction requires
that I determine when each contacting
particle makes the transition to sliding.
From the calculations above, I know
that the point of transition is when
F = µsN. Until that transition occurs,
the static friction force needs to pre-
vent sliding completely. That is, I need
to make sure that the particle accelera-
tion is kept at zero. Once the particle
begins sliding, then the force opposes

the acceleration
and has a maxi-
mum of µsN. All of
these conditions
lead to a situation
that is too complex
to be calculated in
my simulation.
David Baraff (see
For Further Info)
suggests a couple of
approximations.

The more com-
plicated method
Baraff suggests is to
approach static
friction as a qua-
dratic program-

ming problem. However, this method
is prone to failure in certain circum-
stances. The other suggestion, fortu-
nately, is easy to implement.

First, establish a velocity threshold
value ε which determines when to use
static friction. This threshold is then
used to scale the friction force as the
velocity varies from 0 to this thresh-
old. The formula for calculating the
static friction force then becomes
F = (µsN)(v/ε). This force is applied in
the direction opposite the velocity of
the particle. Listing 2 contains the code
for handling the static friction forces.

A Word about Integration

I n order for this static friction
approximation to work, the particle

must build up some velocity in order
for the static force to kick in. If the
value of ε is too large, it can cause the
object to crawl around a little. By
reducing this value, the crawling effect
can be eliminated.

One unfortunate side effect of this
approximation of static friction is that
it can play hell with your integrator.
When the particle is moving and sub-
ject to kinetic friction, things work
well. However, when static friction
kicks in, the direction of the static fric-
tion force swings wildly with small
fluctuations in velocity. This plays
havoc with the integration. If the value
for ε is too small, the differential equa-
tions can become “stiff,” requiring
more complex integration techniques
(See “Lone Game Developer Battles
Physics Simulator,” Graphic Content,
April 1999).

Let’s Drag

N ow I can get objects to tumble
around realistically as well as slow

to a halt based on the current coeffi-
cients of friction. You can download the
source code and executable to the sam-
ple application from the Game Developer
web site (http://www.gdmag.com). ■

G R A P H I C C O N T E N T

G A M E D E V E L O P E R A U G U S T 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

24

// Calculating Magnitude of Fn

FdotN = DotProduct(&curParticle->contactN,&curParticle->f);

// Calculating Vt Velocity Tangent to Contact Normal

VdotN = DotProduct(&curParticle->contactN,&curParticle->v);

ScaleVector(&curParticle->contactN, VdotN, &Vn);

VectorDifference(&curParticle->v, &Vn, &Vt);

Vmag = VectorSquaredLength(&Vt);

NormalizeVector(&Vt); // Get the Direction of Vt

if (Vmag > STATIC_THRESHOLD) // Handle Static Friction

{

ScaleVector(&Vt, (FdotN * m_Ckf), &Vt);

// Multiply By Normal force magnitude and Coef of Kinetic Friction

VectorSum(&curParticle->f,&Vt,&curParticle->f);

}

else // Handle it as Kinetic Friction

{

Vmag = Vmag / STATIC_THRESHOLD;

// Multiply By Normal force magnitude and Coef of Static Friction

// And Static approximation ratio

ScaleVector(&Vt, (FdotN * m_Csf * Vmag), &Vt);

VectorSum(&curParticle->f,&Vt,&curParticle->f);

}

L I S T I N G 2 . Code for handling static friction forces.

• Baraff, David. “Coping with Friction for

Non-Penetrating Rigid Body Simula-

tion,” Siggraph Proceedings: July 1991,

pp. 31–40.

• Beer and Johnston. Vector Mechanics

for Engineers: Statics, Sixth Ed. New

York: WCB/McGraw-Hill, 1997.

• Hecker, Chris. “Behind the Screen”

columns. Game Developer, October

1996–June 1997. Also available on

Chris’s web site at http://www.d6.com.

• Lötstedt, P. “Numerical Simulation of

Time-Dependent Contact Friction Prob-

lems in Rigid Body Mechanics.” SIAM

Journal of Scientific Statistical Comput-

ing Vol. 5, No. 2 (June 1984):

pp. 370–393.

FF OO RR FF UU RR TT HH EE RR II NN FF OO

// Calculate Magnitude of Fn

FdotN = DotProduct(&curParticle->contactN,&curParticle->f);

// Calculate Vt Velocity Tangent to Contact Normal

VdotN = DotProduct(&curParticle->contactN,&curParticle->v);

ScaleVector(&curParticle->contactN, VdotN, &Vn);

VectorDifference(&curParticle->v, &Vn, &Vt);

NormalizeVector(&Vt); // Get the Direction of Vt

// Multiply By Normal force magnitude and Coef of Kinetic Friction

ScaleVector(&Vt, (FdotN * m_Ckf), &Vt);

// Add into the Force Accumulator

VectorSum(&curParticle->f,&Vt,&curParticle->f);

L I S T I N G 1 . Code for calculating and adding in friction.

A R T I S T ’ S V I E W

This month, we’ll discuss the proce-
dures for efficiently animating the
facial hierarchy. We’ll get our hands
dirty setting up linked expressions and
constraints, and by the end of the dis-
cussion we’ll have an efficient, stream-
lined, and portable process for rapidly
animating several different types of
human heads.

Facial Animation Methodology

T he main focus of the hierarchical
method is generating a set of ani-

mation controls that will allow the ani-
mator to generate a wide variety of

facial expression and speech anima-
tions rapidly. In order to be truly useful,
this process must also be generic and
portable, so that the animation controls
created can be transplanted onto subse-
quent hierarchies with minimal effort.
With the final result in mind, the
process can be broken down into a few
discrete steps, as the flowchart in Figure
1 outlines. (For a detailed discussion on
generating the facial hierarchy, please
see last month’s column, “Talking
Heads: Hierarchical Facial Animation in
Real-Time 3D.”)

Clearly, the bulk of time spent on
facial animation is in setting up the
expression tables and assigning the
phoneme keys. This is a rigorous and
time-consuming process which can
take up to two weeks for the first char-
acter, depending on the complexity of
the mesh and the skill of the animator.
However, if the technique is done cor-
rectly, subsequent character hierar-
chies can bypass this step completely,
and with a few days invested into
modifying the expression constants,
the prep time for facial animation on
an entirely new character can be
reduced to only a few days.

Getting Started

B efore we start setting up our
expression tables, it would be use-

ful to reiterate the reasons behind our
particular nodal setup. Ultimately, the

facial animation we generate will be
used to allow our characters to commu-
nicate in some way with the player.
This communication can take multiple
forms: non-verbal, as in the case of a
conveyed emotion such as anger, fear
or surprise; verbal, speech-driven com-
munication; or a combination of emo-
tion and speech. While the non-verbal,
emotive expressions utilize the entire
range of facial nodes, the speech-driven
animations will deal only with those
nodes around the mouth.

If we examine the hierarchy in
Figure 2, we see that the nodal setup
lends itself to just this type of break-
down. The animations used for emo-
tion will involve linked expressions
driving both the upper and lower
facial node branches of the hierarchy,
while the speech-driven animations
will involve expressions driving only
the lower facial node and its children.
When we set up our expression tables,
we will therefore generate two discrete
sets of animation controls, one for
each region of the face.

Setting up the Animation Controls

Once the hierarchy is in place, the
next step in the process is to iden-

tify which emotions and phonemes
will be animated for the character.
While the game’s genre and character
background will influence this decision
(if your characters are never going to
cry, for example, you don’t need to add
the emotions of deep sadness to the
animation controls), there are standard
conventions which are useful. Figure 3
shows an example of these, although

G A M E D E V E L O P E R A U G U S T 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

28

Talking Heads:

Working with Expressions

L ast month, we outlined the steps required to assemble a fully functional

facial hierarchy. We discussed the reasons and motivations behind this

time-intensive and potentially rewarding technique, and performed a rigor-

ous examination of the physiological foundation of our hierarchical setup.

Mel Guymon has worked in the games industry for several years, with past experience
at Eidos and Zombie. Currently, he is working as the art lead on DRAKAN

(http://www.surreal.com). Mel can be reached via e-mail at mel@surreal.com.

F I G U R E 1 . A flowchart representing

how to generate a hierarchical set of

animation controls.

depending on which convention you
choose to follow, you may have any-
thing from 5 to 15 emotional states
and from 9 to 25 visual phonemes
included in your control system. For
further information on identifying
visual phonemes, please see Jeff
Lander’s column, “Read My Lips: Facial
Animation Techniques,” (Graphic
Content, June 1999) and Fleming and

Dobbs’ Animating Facial Features and
Expressions (Charles River Media,
1998).

Once you have identified the actual
target phonemes and emotions, you
can then build the controls into the
scene. Recall that earlier we discussed
separating the control scheme between
the upper and lower facial nodes. For
the upper facial nodes, we will create a

set of controls including only the emo-
tional states identified in Figure 3. For
the lower facial nodes, we’ll create a
similar set of controls made up of the
emotional states plus the visual
phonemes. Each control will consist of
a slider free to move only in the verti-
cal direction, with its vertical range of
travel limited between zero and one.
For our example this gives us a set of

h t t p : / / w w w . g d m a g . c o m A U G U S T 1 9 9 9 G A M E D E V E L O P E R

29

F I G U R E 3 . The 16 visual phonemes as identified by Fleming and Dobbs in Animating Facial Features and Expressions.

F I G U R E 4 . A typical controller setup.

b y M e l G u y m o n

F I G U R E 2 . A nodal setup hierarchy.

ten controllers for the upper facial nodes, and 26 controllers
for the lower facial nodes (see Figure 4). Once we’ve set up
our linked expressions, we can animate the face simply by
sliding the controllers up and down.

Defining the Linked Expressions

N ow we’ve come to the critical step in the process, defin-
ing the linked expressions. For many animators, this

represents a seemingly insurmountable stumbling block ,
since working with equations and variables seems so foreign
to working with keyframes and function curves. In reality,
we will be using only a single equation and simple arith-
metic rules to define our entire control system. The govern-
ing equation is given in Figure 5.

In order to make use of this equation, some of the values
on the right hand side of the “=” sign need to be deter-
mined. First, record the initial local coordinates of each
node in X, Y, and Z. These are the base values that will go
into your equations as the initial position (Xn0). Next, you
need to pick one of the controllers from the list and posi-
tion the nodes in the face to create the corresponding visu-
al expression. For instance, in Figure 6 we can see that the
node corresponding to the orbicularis oris muscle has been
positioned for the facial animation “Disgust.” The initial
position (Y = 1.232) and “Disgust” position (Y=1.836) of
the node have been recorded, and the net change, or

∆YTrans has been determined (1.836 – 1.232 = 0.604). The
corresponding equation that will define this relationship is

so that the vertical position of the node at any given time is
driven by the vertical position of the controller. Note that if
you input a value of zero for the YDisgust into this equation, you
arrive at the result that the node stays in its initial rest posi-
tion. This is a good first check to make sure your equation has
been set up correctly: if the controller doesn’t move, the node
that’s linked to it shouldn’t move either. Conversely, if the
controller is moved to its full extent, YDisgust would be given a
value of 1.0, and the node’s YTrans value should equal 1.232 +
0.604 = 1.836, which is the final “Disgust” position initially
determined. An intermediate position of the controller gives
an intermediate result, so that the animation is totally scal-
able between 0 and 100 percent. And although in this exam-
ple, the node in question moved only in the vertical plane,
most of the facial nodes will move along more than one axis
as they animate, so that the equations for all three axes will
need to be determined for each node, as follows:

The same basic set of equations is applicable to rotational
nodes as well (such as the tongue, eyes, eyelids, and jaw). The
positional variables of X, Y, and Z translation are simply
replaced with X, Y, and Z rotational values. The net change,
sampled in the same way (by subtracting the initial rotation-
al value from the final rotational value), is entered in degrees.

Multiple Controllers on a Single Node

S etting up the controllers seems fairly straightforward so
far, so why does it take so long (a few weeks at least), to

set up all the controllers for a single facial hierarchy? In our
example, there were 26 basic controllers which needed to
be assigned. And, since most programs don’t allow you to
assign multiple expressions governing a single variable, the
equations we will generate will be additive. That is to say,
the expression governing a single node will have modifiers
from every controller included within a single expression.
So in our case, it’s conceivable that for any given node, the
expression for each of the three positional coordinates will
have 26 factors in the equation, looking something like

X X DXY DXY DXY DXY

DXY DXY DXY DXY
Trans Trans L T D R M P B N

F V TH DH Laughter Confusion

= + + + +
+ + + + +• • •

0 / / / /

/ /

X X X Y

Y Y X Y

Z Z X Y

Trans Trans Disgust

Trans Trans Disgust

Trans Trans Disgust

= +
= +
= +

0

0

0

()

()

()

∆
∆
∆

Y YTrans Disgust= +1 232 0 604. (.)

A R T I S T ’ S V I E W

G A M E D E V E L O P E R A U G U S T 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

30

F I G U R E 6 . The node for the orbicularis oris muscle, posi-

tioned for the facial animation “Disgust.”

F I G U R E 5 . The equation governing our control system.

The final result of all this work is a nodal hierarchy
linked through expressions to a simple controller system.
To begin lip-synching and facial animation, simply ani-
mate the controllers and preview the result in real time.
And since each node’s expression includes modifiers from
every controller, the initial set of basic controllers can be
blended and used together to create thousands of unique
facial expressions.

The Importance of Portability

A s we discussed earlier, in order for the hierarchical
method to be advantageous, it must be truly portable.

That is, once the initial hierarchy has been created, it must
be applicable to additional characters with a minimal
amount of work, and that means keeping the expressions
intact. If the subsequent characters’ faces share the same
general shape and size, then the nodal hierarchy may be
directly applicable without any modification. However, if
the characters differ significantly in weight, age, or gender,
it’s unlikely that the expressions for one will work flawless-
ly for the other. Figure 7 shows a comparison between two
facial types which are different enough to warrant modifi-
cations in the underlying expressions.

The one advantage we have working for us is that all
human and humanoid faces share the same basic character-
istics. The bone construction and muscle characteristics
common to one will be common to another. This means
that although they may look different on the outside, they
act the same on the inside, and that’s what really matters to
us, since the nodes we created mimic the form and function
of the underlying facial muscles.

In Figure 7, the source model on the left has larger fea-
tures, and due to gender differences,
slightly different proportions. The head
and jaw are more squared-off, the nose is
broader, and the head more narrow. The
target model on the right has a rounded
face, proportionally larger eyes, a more
delicate nose and chin, and so on. Regard-
less, as you can see by the placement of
the respective nodes, the basic orientation
and nodal structure, and the relative posi-
tions of the nodes to each other are almost
identical between the two models, once
you account for scaling differences.

Because of this feature, modifying the
expression equations to accommodate the
new facial structure is exceedingly simple.
All that needs to be done is to change the
initial rest position term Xn0 to the new
initial position and the expressions
become valid. Obviously, since the pro-
portions in the new character are differ-
ent from the original, the net change
terms in each equation will not be exact.
However, this is mitigated by the fact that
the net change term operates on a vari-
able which is under direct control of the
animator: as the animator operates the

controller, it will immediately become clear which net
change terms need adjustment. But, the process is intuitive
and much less time-consuming since the expressions are
already in place.

Parting Words of Wisdom

T his wraps up our discussion of hierarchical facial anima-
tion, and with your controllers set up and your hierar-

chies in place, you’re ready to begin animating your talking
heads. And while there is no getting away from the fact that
facial animation can be extremely tedious, setting up a con-
trol system like this can reduce animator headaches and allow
more interactive characters to populate our virtual environ-
ments. Here are some parting thoughts to keep in mind:
SET UP YOUR INITIAL POSITION CORRECTLY. In some programs, chil-
dren in a hierarchy inherit the translation and rotation val-
ues of their parents. This can wreak havoc with your expres-
sion system if the offsets are not accounted for in
determining the initial position.
USE EFFICIENT CONTROLLER SETS. Take some time to identify
which controllers you need to have. Don’t waste time gen-
erating a controller that you will never use. Remember,
since the expression equations are additive, you can always
go back and add terms at the end of the equation. It’s better
to have started out with too few controllers than too many.
TAKE YOUR TIME. As with everything, an ounce of prevention is
worth a pound of cure, and this is especially true here.
Because the process is so front-loaded, early mistakes can
evolve into huge nightmares later on, and a few extra days
or weeks spent setting up the building blocks of your anima-
tion system can save months of frustration. Remember that
doing it right is more important than doing it fast. ■

h t t p : / / w w w . g d m a g . c o m A U G U S T 1 9 9 9 G A M E D E V E L O P E R

31

F I G U R E 7. A comparison of facial hierarchies for two different characters.

H A R D T A R G E T S

Apple’s interim CEO is probably the
best presenter, salesman, and bravado
performer the computer industry has.
When he stood on that stage in the
Moscone Convention Center and said
that Apple was serious about games,
you were right there with him.

As if that weren’t enough, Jobs then
brought out John Carmack, the geek
messiah of hardcore gaming, and he
knew he had even the skeptics in the
palm of his hand. Buttressed by the
strength of Carmack’s mere presence,
Jobs managed to secure more ink and
web space for Apple in the game world
than at any time in the last six years
that I can recall. P.T. Barnum would
have been proud, but there has to be
more to it than Jobs’s showmanship.

The Apple Doesn’t Fall
Far from the Tree

I t’s easy enough to believe that Apple
is the same company today that most

of us in the industry knew in the 1980s.
It has the same leader, it has a cool
product to set it apart, and it’s taking on
the establishment. Unfortunately, the
establishment this time around isn’t
IBM, a slow moving behemoth with
other things on its mind besides the
color of your computer. This time, the
establishment is a company that got the
Mac religion better than Jobs did, and
turned it into a monopoly: Microsoft
and its Windows operating system have

won the battle for the desktop. Every-
thing that isn’t Windows seems an aber-
ration, a positioning statement, or a
niche market play. From one point of
view, Apple is striving to get back to
where it was in the early 1990s, a pio-
neering company with a slice of the per-
sonal computer market that stops
Windows just short of absolute control
of the desktop. But does that make the
Mac a gaming platform? The market fig-
ures seem to indicate otherwise, but
game players are a difficult lot to
pigeonhole, so there must be a Mac clan
out there worth targeting, right?

In truth, comparing the Mac game
market to Windows is like having an
elephant and a mouse play see-saw; you
know it isn’t going to be much of a
contest. While Mac-only games are
almost a business novelty these days,
game publishers do succeed on the Mac
by other means. Hybrid games that sup-
port both Windows and Mac platforms
are strong market contenders. It’s
almost as if publishers are saying Mac
and Windows are on a level playing
field, but that’s not true. In fact, most
of Apple’s recent evangelism of games
has served to highlight the availability
of the most popular Windows game
titles on the Mac, where they have been
largely absent in recent years. That’s
why the real coup for Apple has been
the promise that QUAKE 3: ARENA would
appear simultaneously in Mac and
Windows versions. At best, the Mac
gaming market can only hope for parity

with the Windows platform insofar as
content choice is concerned, which
means the same A–list titles appearing
on both platforms. This isn’t progress
for Apple, but it does take the Mac back
close to where it was at the height of its
success. In those heady days, Apple was
actually the starting point for some of
the game market’s greatest success sto-
ries. You may remember MYST, which
still plays to a worldwide audience
despite a more advanced sequel and the
ravages of time.

To appreciate the Mac market you
have to dissect it in other ways. If you
choose to look at the Mac market from
the perspective of a niche market play-
er, you might just find reasons to
approach the platform more aggres-
sively on your next development pro-
ject. For instance, according to IDC
Research, game software revenues for
the Mac OS comprised 11.2 percent of
worldwide entertainment software rev-
enues in 1997, and it will show a com-
pound annual growth (CAGR) project-
ed to 2002 of 15.3 percent — not too
shabby. Of course, 32-bit Windows
games will see 31.4 percent CAGR in
the same period, but that still leaves
Mac OS games contributing 10 percent
of worldwide gaming revenues project-
ed for 2002. Presently, Windows and
Mac OS games deliver between $2.5
and $2.9 billion in revenues, and IDC
projects that figure will top $4.7 billion
by 2002. That makes the Mac OS mar-
ket for games a robust one; certainly
nowhere near as big as the Windows
market, but not one that should be
ignored either. Mac OS games may best
be viewed as an incremental sale,
rather than a unique sale, and that

G A M E D E V E L O P E R A U G U S T 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

32

Mac Games:

The Hype and the Fizzle

Isaw Steve Jobs’s keynote at Macworld in San Francisco earlier this year, and it was

quite a show. I must admit, I’m probably in the same boat as most people who

can’t quite comprehend the fascination with Apple that seems to consume the

general public. However, I believe it has everything to do with Jobs’s star power.

Omid Rahmat is the proprietor of Doodah Marketing, a digital media consulting firm.
He also publishes research and market analysis notes on his web site at
http://www.smokezine.com. He can be reached at omid@compuserve.com.

seems to be the sticking point for the
game industry, driven as much as it is
by hits these days.

What Should You Do for the
Mac Market?

Obviously, a Mac-only gaming strat-
egy is not going to make anyone

rich, judging by the total market oppor-
tunities. Neither is ignoring the Mac
platform a good idea if you are serious
about increasing your title’s exposure to
the biggest possible audience. There are
a number of other factors at play in the
Mac market that you can use to make
your call. First of all, while you need
success on the Windows platform to
make or break your title, the Mac is an
extension of your sales channels that
can deliver healthy profits with little
incremental costs. View it in the same
way as you might view online sales ver-
sus retail store sales, for example. Each
contributes a certain percentage to your
overall game revenues, and you make
your investment based on the expected
return on investment in each channel.

Moreover, Apple has gone to great
lengths to court game developers, and
it has an installed base in excess of 22
million users. Therefore, by creating a
hybrid title you’re probably not going
to add too much to your bottom-line
costs, while ensuring that you reach
the biggest non-Windows computer
market there is. That’s a sobering
thought for all those developers hitting
the Linux trail. As for actual bottom-
line costs, I have heard figures as low as
five percent of total development costs,
to as high as 30 percent. It’s all anecdo-
tal. The ultimate cost of Windows and
Mac hybrid support is up to your soft-
ware engineering management. Gener-
ating a code base that can be easily
modified from Windows to Mac is not

a big issue these days, so the challenge
is not technical, but rather more of a
project management issue.

In addition to the return on invest-
ment, you should consider the other
opportunities of being on the Mac plat-
form. It’s a self-contained universe that
doesn’t have the crowded masses of
game development that inhabit the
world of Windows. That’s a natural cost
savings because you don’t have to fight
so hard to be heard above the noise. The
channels are clear cut, the shelf space is
easy to target, and the distribution out-
lets are uniquely Mac-centric. Also
worth noting is the fact that the Mac
platform continues
to be less support
intensive than
Windows. For one
thing, you don’t
have as many per-
mutations of hard-
ware and compo-
nents to contend
with. That helps
your profitability
enormously, and
again, if it isn’t cost-
ing you much to
develop a hybrid
product, an added
chance for profitabil-
ity can’t be bad.

The other thing
that goes unnoticed
sometimes is that
Apple is going out of
its way to support
the game developer.
Apple’s developer
site has lots of inter-
esting information
on everything from
coding to marketing
your game. Some of
it may seem rather
naïve to anyone who

has been barraged by Microsoft Devel-
oper Network documents, but in gener-
al, it’s clean, easy to get through, and a
valiant show. I can’t see too many new
developers taking to the Mac platform
over the Windows alternative, but I do
think that Apple always offers the possi-
bility of breeding another PRINCE OF

PERSIA or MYST success story.
The only downside I can see to the

Apple market is that Jobs is still Jobs,
and Apple runs under his steam. Like
all good salesmen, his attention span
may be short once he’s closed the
deal, so once the Mac games market is
fully rejuvenated, I just wonder what
Apple will do for game players to up
the stakes. In the world of Windows,
there are plenty of people to push the
hardware envelope, as we have wit-
nessed in the 3D graphics arena, but
on the Mac, that level of competition
just isn’t there. So long as Apple’s cus-
tomers hunger for games, there is a
personal computer other than one
running a Microsoft operating system.
That may just be enough to keep the
maverick game developer supporting
the Mac. ■

h t t p : / / w w w . g d m a g . c o m A U G U S T 1 9 9 9 G A M E D E V E L O P E R

33

b y O m i d R a h m a t

Mac-Only Games 237	 $19.4 million	 873,000

Hybrid Games	 300	 $136.4 million	 6.227 million

This information is courtesy of the market research firm PC Data. The term "hybrid

games" refers to titles that are designed to run on both Windows and Macintosh

platforms. Unfortunately, there is no data to show whether a hybrid game is being

bought for a Mac or PC platform. Number of titles is based purely on titles that have

sold over $500.

 No. of Titles 1998 Revenues 1998 Units

TA B L E 1 . Mac’s slice of the game pie in 1998 revenues and units sold.

Title

G A M E D E V E L O P E R A U G U S T 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

GGAAMMEE AAII::GGAAMMEE AAII::
Ill

us
tr

at
io

n
b

y
Ro

b
er

t
Z

am
m

ar
ch

i

h t t p : / / w w w . g d m a g . c o m A U G U S T 1 9 9 9 G A M E D E V E L O P E R

35

t’s been nearly a year since my first article

outlining the then-current trends in the

game development industry regarding game AI

(“Game AI: The State of the Industry,” October

1998). Since that time, another Christmas

season’s worth of releases has come and

gone and another Game Developers

Conference (GDC) has provided yet another opportunity

for AI developers to exchange ideas. While polls taken at

the 1999 GDC indicate that most developers (myself

included) felt that the last year had seen incremental,

rather than revolutionary advances in the field of game AI,

it seemed that enough interesting new developments have

taken place, which makes an update to my previous article

seem natural.

I’m very pleased to say that good game AI is growing in

importance within the industry, with both developers and

marketeers seeing the value in building better and more

capable computer opponents. The fears that multiplayer

options on games would make good computer AIs obsolete

appear to have blown over in the face of one very practical

consideration — sometimes, you just don’t have time to

play with anybody else. The incredible pace of develop-

ment in 3D graphics cards and game engines has made

awesome graphics an expected feature, not an added one.

Developers have found that one discriminator in a crowd-

ed marketplace is good computer AI.

Steve's background in AI comes from over a decade of SDI-related work building massive real-
time distributed war games for the Air Force at the Joint National Test Facility. When he's
not saving the world, he does AI development on a contract basis and goes target shooting
when he gets the chance. Steve lives in Colorado Springs, Colo., with a very understanding
wife and an indeterminate number of ferrets. He maintains a web page on game AI at
http://www.gameai.com, and can be reached via e-mail at ferretman@gameai.com.

THE STATE

OF THE

INDUSTRY

THE STATE

OF THE

INDUSTRY

B Y

S T E V E N

W O O D C O C K

As with last year’s article, much of
the insights presented herein flow
directly from the AI roundtable discus-
sions at the 1999 GDC. This interac-
tion with my fellow developers has
proven invaluable in the past, and the
1999 AI roundtables proved to be every
bit as useful in gaining insight into
what other developers are doing, the
problems they’re facing, and where
they’re going. I’ll touch on some of the
topics and concerns broached by devel-
opers at the 1999 roundtables. I’ll also
discuss what AI techniques and devel-
opments seem to be gaining favor
among developers, the academic
world’s take on the game AI field, and
where some developers think game
AI will be headed in the coming year
or two.

Is The Resource Battle
Over?

L ast year there were
signs that develop-

ment teams were begin-
ning to take game AI
much more seriously than

they had in the past. Developers were
getting involved in the design of the AI
earlier in the design cycle, and many
projects were beginning to dedicate
one or more programmers exclusively
to AI development. Polls from the AI
roundtables showed a substantial
increase in the number of developers
devoted exclusively to AI programming
(see Figure 1).

It was very apparent at the 1999
GDC that this trend has continued at a
healthy clip, with 60 percent of the
attendees at my roundtables reporting
that their projects included one or
more dedicated AI programmers. This
number is up from approximately 24
percent in 1997 and 46 percent in 1998
and shows a growing desire on the part
of development houses to make AI a
more important part of their game
design. If the trend continues, we’ll see
dedicated AI developers become as rou-
tine as dedicated 3D engine or sound
developers.

AI specialists continue to be a viable
alternative for many companies that
lack internal resources to dedicate
developers exclusively to AI develop-
ment. Several developers and producers
present at the roundtables indicated

that they had used independent con-
tractors to roll the AI portions of their
process with varying degrees of success.
The primary complaints about using
contract help were perhaps the univer-
sal ones — you never really know what
you’re getting, and maintaining good
communication is, at best, a chore.

The most interesting comments,
however, concerned CPU resources
available to the AI developers (Figure
1). None of the developers answering
the poll questions regarding CPU
resources felt that they had too little
CPU available. Everybody felt they
could use more if they had it, but
nobody said that they were having to
fight tooth and nail for resources as
they had in the past. This is an amaz-
ing turn of events, which is in stark
contrast to previous years when AI
developers complained often and bit-
terly of fighting the graphics engine
guys for CPU cycles. The overall per-
centages of CPU cycles most developers
felt they were getting didn’t really
change, but developers were feeling
much less pinched than they had been
in the past. When asked why this was
the case, there were a variety of theo-
ries. Most developers felt that this was,
quite simply, due to the fact that faster
hardware is now standard on both PCs
and consoles — 5 percent of a 400Mhz
Pentium III is a heck of a lot more
horsepower than 5 percent of a
200Mhz Pentium I. Others thought
that the availability of faster 3D hard-
ware, combined with greater expertise
of the 3D engine manufacturers, had
simply made 3D engines more efficient
than they had been and thus freed up
more CPU resources for other tasks.
Whatever the reasons, everybody was
happy about it, and they thought it
would only get better as hardware got
faster.

The one great problem mentioned by
all was the impending-shipping-date-

syndrome. Christmas hasn’t moved
from its place as an almost magical
date for targeting new releases, and the
increasing complexity of games in gen-
eral hasn’t made meeting deadlines
any easier. While there are more pro-
grammers dedicated exclusively to the
AI portion of game development now
than there had been in the past, most
developers felt that the task itself had
become more difficult.

Part of the reason for this, of course,
is the increasing importance of game
AI itself — having made the case that
good game AI is important in increas-
ing the odds of a game’s success, devel-
opers must now actually deliver better
game AI. Quite simply, that takes time.
When coupled with the fact that most
AI testing can’t really begin until sub-
stantial portions of the game’s engine
are up and running, you’ve got a situa-
tion wherein dedicated AI developers
find themselves making compromises
in the face of impending shipping
dates.

Some developers also professed that
part of the problem was the advances
made in competing products. For
example, after one real-time strategy
(RTS) game introduced production
queues, players started looking for all
RTS games to do the same, and that
means additional AI development for
handling such things. There is also a
desire on the part of most developers
to avoid doing the “same old thing” in
a new release.

Technologies in the
Limelight

E xploring the AI
technologies used

by other developers in games has been
a popular topic at past CGDC roundta-
bles. Developers are increasingly turn-
ing to military and academic sources

G A M E D E V E L O P E R A U G U S T 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

36

G A M E A I : S T A T E O F T H E I N D U S T R Y

’97 CGDC ’98 CGDC ’99 GDC

Developers
dedicated to AI

% of the overall game
CPU reserved for

AI processing

24% 46% 60%

5% 10% 10%

F I G U R E 1 . Resources dedicated to AI development.

for new ideas and technologies (and
those disciplines are turning their eyes
on the game industry as well). Discus-
sions with developers at the roundta-
bles and at demo booths in the exposi-
tion hall yielded some interesting
information about what technologies
are in use today.
RULES-BASED AI. Rules-based approaches
to game AI, led by the Finite State
Machine (FSM) and the Fuzzy State
Machine (FuSM), continue to lead the
pack as the most popular technologies
among AI developers. The reasons for
this remain the same:

• They’re familiar to the developer,
building on principles that are
already well understood.

• They’re easy to test against, making
it simpler for developers to “cus-
tomize” behavior in various ways,
if necessary (something that hap-
pens in more games than one
might think).

• They’re still more familiar to
most developers than the more
exotic AI technologies, such as
neural networks and genetic
algorithms.

While every game shipped in the
past year makes use of rules-based AIs
to one degree or another, there were a
couple that seemed to stand out in
developer’s minds as particularly
interesting implementations. One of
these was Epic Games’ UNREAL, a first-
person 3D shooter that provided some
excellent examples of the complexity
of behaviors available using FSMs and
FuSMs. Taking the advances of Valve
Software’s HALF-LIFE one step further,
the AI in UNREAL also makes heavy use
of FSMs to control the behavior of the
player’s opponents to an often amaz-
ingly realistic degree. At higher levels,
there is evidence of considerable intel-
ligence on the part of monsters, which
run away, hide when wounded, sum-
mon reinforcements, and can even
lead the player into ambushes when
possible. Herds of miscellaneous crit-
ters scuttle about the game levels
using a fairly nice flocking algorithm,
adding to the overall effect of the liv-
ing world that the player has been
thrust. All of this was done by the
developers by layering FSMs, which
were built on top of an extensible
scripting system called UnrealScript
(more on that below).

A game making heavy use of FSMs is

Activision’s CALL TO POWER. Billed as
using “over-arching potentialities” to
guide its strategic thinking, CALL TO

POWER’s AI actually makes heavy use of
cascaded FuSMs throughout its design.
The primary reason for this was
straightforward enough, in that a num-
ber of different civilization personali-
ties had to be accommodated in the
design in order to reflect the differing
governmental and militaristic bents of
the various civilizations portrayed in
the game. If the developers had used a
strictly rules-based design to accom-
plish this, there would have been a
considerable amount of special code to
handle each civilization. Using FuSM
technology allowed the developers to
build on core AI engine in which its
various decision-making thresholds
could be modified by each civilization’s
unique personality and philosophical
leanings.

This approach allows the game to
accommodate a variety of different
playing styles and technological
research trees without bogging down
the design in too many special cases.
Every decision that a given civilization
can make is based partly on the strate-
gic situation, partly on that civiliza-
tion’s personality, and on the decisions
it had made previously. Anytime some-
thing isn’t terribly obvious, or not cov-
ered by a specific rule of some kind, the
AI uses fuzzy logic (in the form of the
FuSMs) to make a decision. This, in

turn, results in an AI whose decisions
are internally consistent and plausible,
yet still leaves the chance for a surprise
or two.
EXTENSIBLE AIS. A number of recently-
released games have featured
Extensible AIs (ExAIs) in one form or
another, building on a trend that
began a couple of years ago with the
release of QUAKE. The success of that
game’s QuakeC scripting language,
which permitted players to build their
own computer opponents, assistants,
and companions (known as “bots”)
and trade them over the web, has
inspired a number of other developers
to build similar capabilities into their
releases. Several developers at the 1999
roundtables mentioned that they were
at least exploring the possibility of
ExAIs in their projects.

To date, most ExAIs have cropped up
in the first-person 3D shooter genre.
Last year’s UNREAL and HALF-LIFE pro-
vided players with interfaces through
which they could devise their own
rules for computer opponents.
However, there were differences in
implementation. UNREAL went with a
general “directive-like” interface
through which AI behavior is con-
trolled using relatively simple com-
mands, such as “Move forward until
you see an enemy, then throw
grenades.” HALF-LIFE used a more tradi-
tional “programming-like” approach
that somewhat resembles Perl or
JavaScript. Both approaches have
proven extremely popular with players
and led to legions of users trading
scripts and bots online for games based
on both engines.

More recently, however, ExAI tech-
nology has been finding its way into
other genres of games. Interplay’s
BALDUR’S GATE, a role-playing game
(RPG) based in part on the Advanced
Dungeons & Dragons paper RPG, uses
scripts to control non-player characters
(NPCs) within the game — including
those that can be in the player’s own
party. These scripts allow players to
specify the basic reactions of their
NPCs to a variety of combat situations,
permitting them to adjust behavior
either to accommodate a player’s par-
ticular style (making mages more cau-
tious than they are by default, for
example) or to create entirely new NPC
classes. Several aficionados of the game
have already seized on this last capabil-

h t t p : / / w w w . g d m a g . c o m A U G U S T 1 9 9 9 G A M E D E V E L O P E R

37

Epic Games’ UNREAL .

Valve Software’s HALF-LIFE .

ity to develop a number of NPC
classes not present in the original
game, creating thieves, warrior-
mage combinations, elven
archers, and so on.

The AI scripts themselves are
heavily rules-based in the
HALF-LIFE vein, operating in a
strictly linear fashion from top
to bottom within the script.
Thus, rules “later” in a given
script might or might not ever
“fire” depending on the circum-
stances of the game and
whether or not the player over-
rides any particular NPC action
(an option always available).
Responses can be weighted to
control their probability of
occurrence, though there is no
provision for being able to
modify the internals of the
game’s AI engine itself. There
are some pre-defined, basic
strategies available for the
player-cum-AI-designer to use,
and, of course, the existing NPC
scripts are readily available as
examples of what can be done.
Documentation shipping with
the game is necessarily sparse
(probably to help avoid too
many support hassles), but a few
web sites have sprung up on
which tinkerers can exchange
information.

Listing 1 shows a snippet of a
script, which was kindly provid-
ed by BALDUR’S GATE enthusiast
Sean Carley for my game AI web
page. It’s from a warrior AI he
developed, and as you can see, the
scripting system is very English-like in
syntax.

However, adding ExAI capabilities to
a game isn’t at all easy, and most devel-
opers at the 1999 AI roundtables agreed
with the opinion from previous years
that the trend wasn’t likely to become
widespread. There are significant
design considerations that have to be
worked out if one desires to add the
ability for players to modify a game AI
to suit their tastes, not to mention the
problem of after-sale support. Develop-
ers have to decide how they’re going to
provide these hooks (code interface?
scripts?), how they’re going to docu-
ment them (in the manual? online?
HTML on the CD? not at all?), and just
how far they should go to bullet-proof

the whole interface in the first place.
(Whose fault is it if some player distrib-
utes an AI script that erases somebody’s
hard drive?)

These very issues were, in part, the
reason why Activision somewhat de-
emphasized its much-touted interface
to the AI engine in CALL TO POWER.
Originally, the development team had
planned to provide full and total
access to CALL TO POWER’s AI in such a
fashion that players could have hypo-
thetically replaced the game’s AI with
their own. The AI is completely encap-
sulated within a .DLL file, and it was
planned to have players access it via
header files that would have provided
an interface to many of the internal
functions (though the source itself
was not going to have been released to

the public). Users would have
been completely on their own
while using this interface — the
support issues could have been
nightmarish otherwise — and
this approach would have
allowed anybody who had the
time and patience to replace
CALL TO POWER’s AI completely
with their own — a first in the
industry.

Unfortunately for budding
developers, the pressure of ship-
ping on time and the design com-
plications encountered while try-
ing to implement this rather
unique feature made that goal
unrealistic. Activision was forced
to drop that part of the plan
(oddly though, you can still find
a .MAP file listing the various
function interfaces on the CD).
Still, a number of extensible fea-
tures made their way into the
game, enough so that, although
Activision isn’t advertising the
fact much, a number of players
have begun making variations
and trading them online. Players
can modify unit attributes (all
maintained in flat text files) and
have access to the fuzzy logic
rules sets used by the AI to set pri-
orities for the strategic-level AI.
This allows you to create new
unit types and civilizations, in
much the same fashion as
UnrealScript permits new bots. In
a similar vein, Microsoft’s AGE OF

EMPIRES provides much the same
level of customization of units

and civilizations, though emphasis is
more on customization of the various
personalities of each civilization type
than on actual modification of their
rules sets.
LEARNING AND STRATEGIC THINKING. Another
trend that bubbled to the surface at the
1999 AI roundtables was experimenta-
tion with learning AIs in various
games. While it was definitely a widely-
held opinion that most games featur-
ing learning AIs haven’t really done a
very good job of delivering, several
developers had high hopes that they’d
be able to incorporate some level of
learning into their next round of
releases.

Developers seem to be exploring a
number of different approaches to sim-
ulate learning, most involve comparing

G A M E D E V E L O P E R A U G U S T 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

38

G A M E A I : S T A T E O F T H E I N D U S T R Y

IF

// If my nearest enemy is not within 3

!Range(NearestEnemyOf(Myself),3)

// and is within 8

Range(NearestEnemyOf(Myself),8)

THEN

// 1/3 of the time

RESPONSE #40

// Equip my best melee weapon

EquipMostDamagingMelee()

// and attack my nearest enemy, checking every 60

// ticks to make sure he is still the nearest

AttackReevalutate(NearestEnemyOf(Myself),60)

// 2/3 of the time

RESPONSE #80

// Equip a ranged weapon

EquipRanged()

// and attack my nearest enemy, checking every 30

// ticks to make sure he is still the nearest

L I S T I N G 1 . Sample BALDUR’S GATE AI script.

Interplay’s BALDUR’S GATE.

the current strategic or tactical situa-
tion to similar past situations. Mythos
Games, in their recently released
MAGIC & MAYHEM, noted that they
were doing localized assault planning
by continually building a data file that
describes how attacks had fared histori-
cally in previous scenarios. A proposed
attack is compared to this database,
and if it succeeded most of the time,
it’s actually carried out (the threshold
is determined in part randomly and in
part by the personality of the AI play-
er). A “winnowing” algorithm discards
“old” lessons so the learning file does-
n’t become too large. The developer
reported that this approach resulted in
an AI that gradually tailored itself to
the player’s style of play — a feature
that is certainly something of a Holy
Grail to AI developers.

Interestingly enough, some develop-
ers (roughly 20 percent of attendees)
were experimenting with Artificial
Neural Networks (ANNs) as a learning
technology. ANNs have cropped up
often in the AI roundtables as a poten-
tial solution to the learning-AI prob-
lem, but there are some interesting
challenges in using the technology in
games that have discouraged most
developers to date. Historically, using
ANNs within a game presents the
developer with two particularly thorny
problems: First, it can be very difficult
to identify meaningful inputs and
match them to outputs that make
sense within the context of the game;
and second, most ANNs learn through
a technique called “supervised learn-
ing,” which requires constant develop-
er feedback. While it is possible to
build ANNs that can learn unsuper-
vised, there’s no guarantee that they
won’t “go stupid” and become com-
pletely helpless players.

Most developers are trying to avoid
these problems by training their ANNs
exclusively during the development
phase, then freezing them before the
game actually ships. This allows them to
let the AIs learn while playing against
the development team and play testers
without the risk that a shipping AI
might wander off into some Rain Man
universe of perception. The downside to
this, of course, is that the game doesn’t
learn anything from the player, and so
the whole effort boils down to an auto-
mated form of AI tuning (ultimately
similar to using genetic algorithm to try

to tune various game AI parameters). A
developer of an upcoming sports game
announced that he was working on a
way to integrate unsupervised learning
ANNs into his game, although he
planned to include an option to reset
the AI should the player feel it had
become feeble-minded (or too strong a
player, as the case may be).

One big problem with learning AIs
that caused much amused discussion at
the roundtables was the fact that a
learning AI is, by definition, unpre-
dictable. This leads to huge problems
when it comes time to do quality assur-
ance testing on your game — how can
anything be tested reliably if it behaves
differently from game to game? How
can a developer fix a bug if it’s impossi-
ble to recreate the conditions that led
to a certain behavior?

On a closely related vein, several
developers noted that they were
attempting to find AI technologies that
would do a better job at strategic-level
thinking and planning. To date, most
strategy games do an adequate job at
the tactical level — identifying cities or
units to attack, taking advantage of
unprotected assets, and so on — but do
a lousy job at developing and imple-
menting grand strategy. The problem,
from a programmer’s point of view, is
basically one of optimization.

Most war games (ignoring for the
moment most first-person shooters and

RPGs, since they are primarily tactical
in the extreme), whether real-time
strategy or turn-based, do a much bet-
ter job of optimizing small, tactical sit-
uations over larger, strategic ones. This
leads to AIs that fight battles well but
still manage to lose the war, often
because they overlook solutions glar-
ingly obvious to the human player. A
large part of this situation is simply the
result of the historical inclination of
developers to build AIs at the unit
level; for example, in a Civil War game,
a cavalry unit might decide to attack
an artillery unit without the presence
of any other support. This in turn leads
to an AI that often overlooks obvious
attacks in favor of frittering away its
forces. Adding in an ability for a unit
to call for help balances things out
somewhat, but that’s still a far cry from
strategic-level thinking.

Additionally, there’s the problem
that strategic-level planning may be
very good for the war effort overall, but
very bad for the individual unit. One
example of this might be a brigade
ordered to hold a vital mountain pass
in the face of overwhelming enemy
attack — the war might be won
because the delaying action bought the
time necessary to get reinforcements to
the area, but the unit itself isn’t likely
to survive. An AI built to handle only
unit-level thinking is going to have a
hard time making this kind of trade-
off. Chess game AIs are perhaps the
one exception to this rule, but they’re
cheating, since most chess programs
draw upon databases of thousands of
games and simply pick the highest-
scoring move available at that
moment.

Many developers present felt that the
time had come to redress this imbalance
and were looking to a number of AI-
related technologies for help. Some were
building on the same techniques used
for learning algorithms by using data-
bases of previously-successful moves to
develop plans for similar future moves.
Others were looking at tools such as
Influence Maps (see sidebar “Influence
Maps in a Nutshell,” p.40) to provide
ways for their AIs to “see” the grand
strategic picture. A few were hoping
simply to solve the problem the same
way most chess programs do, which is
to build large databases of opening
strategic moves based on feedback from
play testers and the development team.

h t t p : / / w w w . g d m a g . c o m A U G U S T 1 9 9 9 G A M E D E V E L O P E R

39

Activision’s CALL TO POWER.

Mythos Games’ MAGIC & MAYHEM.

G A M E D E V E L O P E R A U G U S T 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

40

G A M E A I : S T A T E O F T H E I N D U S T R Y

Interestingly enough, a vocal minori-
ty of developers felt the move towards
developing better strategic AIs was pri-
marily a waste of time, particularly in
games in which players can’t easily see
the other side’s forces. The theory they
put forth was that if the player can’t see
what the computer is doing, why waste
time on elaborate strategic AIs in the
first place? A few well-placed but thor-
oughly plausible unit placements (via
judicious cheating on the part of the AI)
would go a long way towards providing
the player with an enjoyable gaming
experience. Many of this group felt that
the mere appearance of a tank deep
behind enemy lines would be ascribed a
meaning by the player if the attack
came at a particularly vulnerable time.
They based this opinion on the reams of
e-mail they had received from players
that raved about the intelligence of the
AIs in their games, when the AI was, in
fact, cheating outrageously just to keep
up.
PATHFINDING. Pathfinding is a perennial
favorite topic at the roundtables, but
most developers this year were far
more interested in finding ways to
solve unusual pathfinding situations
than in learning “how to.” The A*
algorithm (for more details, see Bryan
Stout’s excellent article, “Smart
Moves: Intelligent Pathfinding,” Game
Developer, October/November 1996)
has become the de facto solution to
this problem for one very simple rea-
son: It works, and it works well. A*
has the added benefit of scaling well
into newer games that feature 3D ter-
rain, and it requires few tweaks and
modifications.

The 3D pathfinding issues presented
by the latest generations of first-person
3D shooters were generally felt to be
nowhere near the problem most devel-
opers were afraid it might be. The early
implementations of A* for 2D games
had been adapted easily by most devel-
opers for the 3D environment, with
most developers coming up with varia-
tions of the same solution of overlay-
ing a system of nodes within the 3D
environment against which paths were
found. Some games generate the nodal
network when the game map is loaded,
while others simply load a pre-defined
network as a part of the map data
itself. At least one upcoming first-per-
son-shooter style game, THE WAR IN
HEAVEN from Eternal Warriors, features

an AI that uses a pre-defined node map
for its basic pathfinding, but goes one
better by dynamically generating new
nodes for finer control based on the
tactical situation.

Developers at the roundtables were
very interested in exploring ways to
handle special case pathfinding prob-
lems. Identifying and dealing with
highly-restrictive terrain (such as
bridges or mountain passes) was a hot
topic, since these terrain types can
lead to traffic jams that make an AI
look extremely stupid to the player.
Most developers simply marked these
terrain features by hand in some fash-
ion in order to make them easy for the
AI to identify — although this greatly
complicated things when the AI
had to deal with randomly gen-
erated maps. Many developers
said that they solved the prob-
lem in part by assigning a special
AI agent to play traffic cop, thus
side-stepping the issue of bog-
ging down individual unit AIs
with the details of crossing a
bridge politely.

Another problem of keen inter-
est to developers was how to han-
dle the issue of changing terrain
gracefully. One of the failings of
the A* algorithm is that it assumes

the terrain over which it has calculated a
path doesn’t change — this is a bad side
effect should the bridge you were plan-
ning to cross get blown up by an
artillery round. To solve this problem,
some developers were using D*, a
dynamic A* variant tuned to handle
changeable terrain, but none were
happy with it due to the CPU hit
required to recalculate paths. Others
simply ignored the change until the unit
in question reached the point where it
couldn’t move, but this approach leads
to behavior that most players find
objectionable. A few confessed that they
didn’t bother trying to fix it — if a unit
got stuck, they just jumped it a few
squares to get it going again.

Influence Maps (IMs) are an inter-

esting AI technique with its roots in

the field of thermodynamics, of all

things. The technique is known by

a variety of other names, such as "attrac-

tor-repulsor" and "force fields".

The basic IM algorithm is refreshingly

simple for something in the AI field.

Imagine an array which corresponds in

size to the size of a strategic-level map.

For instance, a strategic map of the U.S.

might have resolution down to the state

level — in that case, the array might con-

sist of an array of five by ten values (one

value for each state). Set all values of the

array to zero. Adjust the value of each

array element upward by one for each

friendly unit in that sector of the map, or

downward by one for each enemy unit in

that sector. Then begin looking at each

location of the array and adjusting the

value found there by its neighbors.

Typically values are increased by one

for each adjacent friendly unit and

decreased by one for each adjacent

enemy unit.

Do this across the entire map and you

now have a "picture" of sorts, that your

AI can use tell how much control the two

players have over the board. The sign of

the value indicates which side has some

control. Values near zero indicate areas

where control is contested—the front.

Large values (positive or negative) indi-

cate strong control over an area.

There can be any number of variations

on this basic algorithm depending on the

needs of the game, of course, but the

principle is the same regardless. This

technique can be invaluable in providing

all kinds of strategic disposition informa-

tion to an AI, information which is often

difficult to characterize otherwise.

— Steven Woodcock

Influence Maps in a Nutshell

Eternal Warriors’ THE WAR IN HEAVEN.

Technologies on the
Wane

One interesting
side discussion

that cropped up at the
roundtables dealt with AI technologies
that developers had played with, but
then discarded. Some of these will be
familiar, since a year ago there was
quite a bit of excitement over the pos-
sibilities offered by some of them.

Generally speaking, Artificial Life
(A-Life) doesn’t seem to have gained
much use outside of the realm of RPGs
and CREATURES-style games. A-Life is a
natural for RPGs in particular, since it
gives developers a way to flesh out a
game world using NPCs to do all the
dozens of dull and mundane jobs that
no player wants to do, but which are
vital to the gaming experience. A good
A-Life AI can make whole hordes of
monsters and NPCs behave realistical-
ly with very little CPU overhead,
which gives the player the feeling of
being a part of a living, breathing
world.

Last year, a number of developers
were exploring different areas using A-
Life technologies in everything from
first-person shooters to RTS games, but
when push came to shove, many
ditched those plans in the face of the
inherent difficulty of predicting exactly
what a given unit would do in a given
situation. Developers found, for exam-
ple, that it really annoyed their produc-
ers when they created a 3D shooter
level in which a guard was only “usual-
ly” at the bottom of the stairs to raise
an alarm. Others found themselves
wrestling with games in which a unit
would ignore the commands given to it
by the player — a realistic situation,
perhaps, but hardly one the player is
happy to be paying for.

However, some subsets of A-Life
technology have found their way into
various games. Several of the recent
first-person shooters have used flock-
ing algorithms to one degree or anoth-
er to handle the movement of herds of
monsters, birds, fish, and so on. Some
RTS games were also making use of
flocking variants for group unit move-
ment, and at least one upcoming
space combat game (BABYLON 5 from
Sierra Studios) plans to make use of
flocking algorithms to control the

movement of enemy fighter wings
and fleets of enemy capital ships.

Genetic algorithms (GAs) also
haven’t found much use in games in
the past year. Again, outside of the
CREATURES genre (which that game
nearly owns entirely unto itself), most
attempts by developers to use this
technology have fallen flat. The main
reason most developers cited was the
usual one — too much CPU was being
taken up for adaptation and learning
that happened at too slow a pace to be
useful. After spending several months
experimenting with GAs, developers
found themselves abandoning the
technology in favor of more traditional
FSMs and FuSMs. Not only are these
more traditional techniques easier to
predict and tune, but they demand
considerably fewer resources of the
CPU.

A few developers did report success
in efforts to adapt GAs as tools to aid
in tuning their AIs, and they found
them easy to adapt to this task. AI tun-
ing is always something of a problem
for developers, because by the time a
game is near enough to completion to
make tuning a meaningful activity,
there can be hundreds of parameters
that can affect the AI’s style of play.
Testing every combination is an
impossible task, more so given the
often tight deadlines looming towards
the end of the development cycle.
Using GAs to tune an AI lets the devel-
oper automate this process, making
hundreds of runs of a game using vari-
ous parameters for the computer oppo-
nents. The best variations can be saved
out as the basis for the default AIs
shipping with the game.

Academia and the
Game Industry

One interest-
ing develop-

ment at the 1999
GDC AI roundtables was the atten-
dance of several members of the
research, or academic, AI profession.
The primary reason for this was proba-
bly the close scheduling of the 1999
American Association for Artificial
Intelligence (AAAI) Spring Symposium
and the GDC (see the sidebar “AAAI
Spring Symposium,” p. 42 for more
information on the developments at

the AAAI conference). This presented
an interesting opportunity for many of
the theorists in the field to meet some
of the engineers.

Feedback from our academic
brethren was fascinating, to say the
least. Two guests in one of my roundta-
bles, one a physics major dabbling in
AI, and the other a formal AI professor,
were adamant that the game industry
appears to be light years ahead of acad-
emia in producing practical, working
AI solutions to some very tough prob-
lems. This view was echoed by several
others in Dr. John Laird’s final-day lec-
ture titled “Developing an Artificial
Intelligence Behavior Engine.” They
greatly admired the game industry’s
rapid pace of development, noting that
more formalized AI studies can often
take years to formulate theories of
behavior, examine possible solutions,
and develop prototypes for testing. Of
necessity, the game industry moves
much faster (an order of magnitude
was how one professor characterized
it). The lack of rigorous methodology
frustrated our guests somewhat because
it makes many of the game industry’s
solutions unacceptable as support for
formal AI studies. Despite this, the aca-
demic world was still very interested in
studying the solutions game developers
have engineered.

h t t p : / / w w w . g d m a g . c o m A U G U S T 1 9 9 9 G A M E D E V E L O P E R

41

Flocking in Sierra Studios’ BABYLON 5.

G A M E D E V E L O P E R A U G U S T 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

42

G A M E A I : S T A T E O F T H E I N D U S T R Y

Many AI game programmers probably returned

home from the Game Developers Conference

(GDC) unaware that the next week held another

interesting gathering at nearby Stanford

University. The American Association of Artificial Intelligence

(AAAI) holds both Spring and Fall Symposia, and this year the

Spring Symposium (March 22-24) included a session focused

on AI in commercial computer games.

Overall, it was an enjoyable experience. The Symposium

was small enough that all participants met together in one lec-

ture hall for each session, and attendees from both academia

and industry got fairly well acquainted with each other in

those two-and-a-half days. There were both lectures and

demos, but most of the sessions were panel discussions. The

early sessions summarized game AI’s past, looking at its suc-

cesses and failures; sessions in the middle looked at current

work. In demos and sessions on NPC design and NPC control,

we saw work exploring techniques such as AI control architec-

tures, hierarchical AI, explanation-based representations,

pathfinding, natural language interfaces (speech), smart envi-

ronments, and artificial life. (You can order symposium pro-

ceedings at the URL below.) Robotics received a fair amount of

focus, which is worth noting by game developers for a couple

of reasons. First, game companies may wish to branch into

robotic toys (for example, Lego is designing programmable

vehicles that kids can tinker with, and its entries at RoboCup

soccer tournaments have performed respectably). Second,

software techniques and architectures used for mobile robots

are often applicable to computer game AI—even low-level

movement calculations are useful as game physics simulation

gets more realistic.

As interesting as these presentations were, I was even more

excited by the discussions about possible future developments

in the field of game AI. For example, one discussion session

covered AI engines and toolkits, which is a topic of growing

interest. In a survey made by one panelist, results revealed the

main reason game developers wanted an AI toolkit was to

make a better product, rather than reducing production cost or

time. Many potential obstacles to toolkit use were given, but

the desire to understand the tools was the most common

response. Other obstacles brought out in discussion included a

suspicion of outside code, a need to know that the technology

works, a lack of knowledge of AI fundamentals among develop-

ers, potentially large licensing fees, and common demands

such as fast speed, low memory, flexibility, availability of

source, ease of use, documentation, and support. Desired tech-

niques for toolkits included pathfinding, rule-based expert sys-

tems (perhaps with fuzzy logic), finite state machines, inverse

kinematics, resource allocation solvers, and perhaps natural

language handling.

Two sessions focused on new directions for game AI, and

potential killer applications for AI; these discussions were

necessarily more speculative. Possible new areas for AI in

entertainment included speech and camera input into almost

any program or toy (such as a Tamagotchi or Furby, but more

creative); genuine give-and-take conversation; intelligent

physical interaction in museums or theme parks; artificial life

(as CREATURES and PETZ are beginning to explore); real interac-

tive stories; and more personality presence in artificial agents.

Other suggestions for killer applications included a “god

game” apprentice that could recognize plans and intentions;

reliably smart AI for subordinates in strategy games or team-

mates in action games; variable-skill QUAKE bots; intelligent

story development (causality propagation); and “Furby done

right.” There was some debate on what landmarks could show

that AI has arrived (comments included “when AI is mentioned

first in game hype,” or “when AI is occasionally the lead cover

story in magazines”). It was generally agreed that games and

toys will be the vehicle to help familiarize and encourage

acceptance of AI by the general public.

Perhaps the favorite topic of discussion was how game

companies and academic AI researchers can work more close-

ly together. In the opening session, John Laird of the Univer-

sity of Michigan outlined the mutual benefit: AI makes games

more fun (a better challenge, more believability, better inter-

action), and AI helps sell more games; games help AI research

by giving great demos, igniting student interest, and providing

robust environments to work in and interesting research prob-

lems to solve. Further, he said the games community wants

academia to provide more information on AI technology, fast,

simple (and good) techniques, and more good AI program-

mers; academia in turn would like case histories of AI develop-

ment in games, lists of important problems, interfaces to hook

AI into real computer games, and funds to support research.

The symposium ended with a discussion of ways to build

better bridges between the game companies and academia.

Ideas include summer internships for AI students with game

companies, reverse internships to send programmers to

school for a course or two, a peer-reviewed journal on game AI

topics, cheap student rates to the GDC, and college degree

programs in interactive/electronic entertainment. It was

decided that there would be a similar symposium next year. I

enjoyed this year's symposium so much, I hope to attend next

year. See you there. —Bryan Stout

AAAI Spring Symposium

For a more detailed report on the symposium, check out a longer version of this sidebar at http://www.gamasutra. com

Check out the 1999 AAAI Spring Symposium proceedings at http://www.aaai.org/Press/Reports/reports.html#spring

For information on next year's symposium on AI in interactive entertainment: http://www.cs.nwu.edu/~wolff/AIIE-2000.html

1999 Symposium on AI and computer games: http://www.cs.nwu.edu/~wolff/aicg99/index.html

FF OO RR FF UU RR TT HH EE RR II NN FF OO

Several of the game developers pre-
sent (including myself) were both flat-
tered and astonished by this interest,
since many of us have long looked
upon the work being done in the acad-
emic realm as “real” AI. Both groups
agreed that there were lots of things
each could learn from the other, some-
thing which I hope this article may
help facilitate.

What’s Next?

A s always at the
AI roundtables,

I asked my fellow
developers for their
opinion on a num-

ber of questions regarding the future of
the industry. Where did developers
think game AI was going in the next
year or so? Will AI continue to be an
important part of game design, or will
multiplayers render good game AIs
moot? Where did developers feel the
next big advance in game AI would
come from?

Opinions on these questions were
mixed, as one might expect. Any AI
developer worth his salt, after all, is
pretty darn sure that his or her next
game will be the one to contribute
something of particular value to the
field. Most continued to feel that there
would be a slow move away from rigid,
rules-based AIs towards more flexible,
fuzzy AIs that made use of a variety of
technologies in combination with one
another. Additionally, as noted above,
most developers seemed to think that
there would continue to be a move
towards opening up the AI to ever-

greater levels of user interaction,
mostly through a scripting inter-
face of some kind. Everybody
was hoping that somebody
would manage to put out a game
that actually provided program-
ming-level hooks into the AI
engine, though nobody at the
roundtables volunteered.

Nearly every developer present
felt strongly that good game AI
would only increase in impor-
tance as a part of the finished
product, whether multiplayer
options were present or not. The
reasons for this belief were much
the same as they were last year
— good game AI will become

more of a discriminator as 3D technol-
ogy levels out, and advances in that
area become less spectacular. Learning
AIs that can adapt to a given player’s
style are considered to have big poten-
tial, and many developers are concen-
trating their efforts in that area.

When it came to where developers
felt the next big advance in game AI
would come from, opinions varied
widely across all genres. This was
echoed by a poll recently posted on my
game AI page, the results of which are
shown in Figure 2.

No particular conclusions can be
drawn from the above, except perhaps
that developers as a group seem to feel
that turn-based strategy games and
sports games just don’t offer much
opportunity for advancing the field. I
can only speculate as to the reasons
behind this, but I would hazard a guess
that developers feel there won’t be
many more turn-based games released
in the future, while sports games have
a number of restrictions that make AI
innovations a bit more difficult (if you
get anything wrong, 100,000 angry
fans will write the company to let you
know).

There is no question that the game AI
field continues to be one of the most
dynamic and innovative areas of game
development. CPU and memory con-
straints are (slowly) being lifted, freeing
developers to experiment with much
more interesting and aggressive AI tech-
niques. We’re figuring out what works
and what doesn’t, slowly building suites
of tools to speed things along, and just
generally getting better at the job. Better
and more entertaining games will be the
inevitable result. ■

h t t p : / / w w w . g d m a g . c o m A U G U S T 1 9 9 9 G A M E D E V E L O P E R

43

 23%
 First-
 Person
 Shooters

 38%
 Real-Time
 Strategy
Games

 9%
 Turn-Based
 Strategy
 Games

 7% Sports Games

 22%
 RPGs

F I G U R E 2 . Where do you think the next inno-

vation in game AI will come from?

Books: There are precious few books

that discuss AI from a gaming perspec-

tive. Most are more academic-oriented

texts that go into theory more than

practice. My favorite comprehensive

reference is still Artificial Intelligence:

A Modern Approach by Stuart J. Russell

and Peter Norvig (Prentice Hall, 1995).

In progress:

Author Bryan Stout is working on a book

dedicated to game AI due out in early

2000. It’s tentatively titled Adding

Intelligence to Computer Games

(Morgan Kaufmann).

Newsgroups: Several Usenet newsgroups

focus on artificial intelligence in general

and game AI in particular. A few of the

better ones in terms of noise-to-content

ratio are comp.ai.games, comp.ai, and

rec.games.programmer.

Web Sites:
http://www.gamasutra.com

The sister site to Game Developer mag-

azine maintains an online roundtable of

game AI that grew out of the GDC round-

tables. Highly recommended.

http://www.gameai.com

The author’s page, dedicated to all

things game AI related, provides links

to other AI resources and archives of

various Usenet threads.

http://hmt.com/cwr/boids.html

Craig Reynolds, known as the “father of

flocking,” has the best page on the web

to start research into the theory and

technology behind flocking and similar

A-Life technologies.

http://www.geocities.com/

ResearchTriangle/Facility/3773

James Swift has written a neat little util-

ity that allows exploration of various 3D

navigation algorithms.

http://ai.iit.nrc.ca/ai_point.html

The Artificial Intelligence Resources

page maintained by the NRC/CNRC

Institute for Information Technology is

an excellent starting point for AI

research.

http://www-cs-students.stanford.

edu/~amitp/gameprog.html

Amit Patel’s game programming page,

crammed with information on pathfind-

ing algorithms and pointers to other AI

resources is a good basic starting point

for anything AI-related.

FF OO RR FF UU RR TT HH EE RR II NN FF OO

In most disciplines, industry evolution is obvious: The
machines we play on are far more powerful, screens have
better resolution and more colors, paint and modeling tools
are more sophisticated, audio processing is faster, and sound
cards are more capable. Technical issues not even in our
vocabulary ten years ago are solved and research continues
with essentially infinite headroom. The technical base on
which games stand (game code and content creation tools)
is evolving.

Across all genres and companies, we build on our own
and others’ past ideas to expand technical limits, learn
new techniques and explore possibilities. Ignoring an
anomaly or two, no single company or team would be
where it is now had it been forced to work in a vacuum.

Design, on the other hand, is the least understood aspect
of computer game creation. It actualizes the vision, putting
art, code, levels, and sound together into what players expe-
rience, minute to minute. Clever code, beautiful art, and
stunning levels don’t help if they’re never encountered.
Design tasks determine player goals and pacing. The design
is the game; without it you would have a CD full of data, but
no experience.

Sadly, design is also the aspect that has had the most trou-
ble evolving. Not enough is done to build on past discover-
ies, share concepts behind successes, and apply lessons
learned in one domain or genre to another. Within genres
(and certainly within specific design teams), particular lines
have evolved significantly. But design evolution still lags far
behind the evolution of overall game technology.

How Do We Talk About Games?

T he primary inhibitor of design evolution is the lack of a
common design vocabulary. Most professional disci-

plines have a fairly evolved language for discussion. Athletes
know the language of their sport and of general physical

G A M E D E V E L O P E R A U G U S T 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

44

L E X I C O ND E S I G N E R ’ S

Formal
Abstract
Design Tools

hat is a modern computer game

made of? It fuses a technical base

with a vision for the player’s experi-

ence. All of the disciplines involved

(design, art, audio, levels, code, and so on)

work together to achieve this synthesis.

B y D o u g C h u r c h

Doug Church values beta testers heavily. After a beta test of this article, he learned half the testers found the first two pages slow read-
ing. If you’re in that half, skip to the third page, read to the end, then read the intro. Hey, it’s an interactive, multipath article.

WW

conditioning, engineers know the technical jargon of their
field, doctors know Latin names for body parts and how to
scribble illegible prescriptions. In contrast, game designers
can discuss “fun” or “not fun,” but often the analysis stops
there. Whether or not a game is fun is a good place to start
understanding, but as designers, our job demands we go
deeper.

We should be able to play a side-scrolling shooter on a
Game Boy, figure out one cool aspect of it, and apply that
idea to the 3D simulation we’re building. Or take a game
we’d love if it weren’t for one annoying part, understand
why that part is annoying, and make sure we don’t make a
similar mistake in our own games. If we reach this under-
standing, evolution of design across all genres will acceler-
ate. But understanding requires that designers be able to
communicate precisely and effectively with one another. In
short, we need a shared language of game design.

A Language Without Borders

Our industry produces a wide variety of titles across a
range of platforms for equally varied audiences. Any

language we develop has to acknowledge this breadth and
get at the common elements beneath seemingly disparate
genres and products. We need to be able to put our lessons,
innovations, and mistakes into a form we can all look at,
remember, and benefit from.

A design vocabulary would allow us to do just that, as we
could talk about the underlying components of a game.
Instead of just saying, “That was fun,” or “I don’t know,
that wasn’t much fun,” we could dissect a game into its
components, and attempt to understand how these parts
balance and fit together. A precise vocabulary would
improve our understanding of and facility with game
creation.

This is something we already do naturally with many
technical innovations, since they are often much easier to
isolate within a product or transfer to another project. A
texture mapper or motion capture system is easily encapsu-
lated. When everyone at the office gathers around some
newly released game, major technical “evaluation” is done
in the first five minutes: “Wow, nice texture mapping,” or
“Those figures rock” or “Still don’t have a sub-pixel accurate
mapper? What is their problem?” or “Man, we have to steal
that special effect.” But when the crowd disperses, few
observations have been made as to what sorts of design
leaps were in evidence and, more importantly, what worked
and what didn’t.

Design is hard to point at directly on a screen. Because of
this, its evolutionary path is often stagnant. Within a given
genre, design evolution often occurs through refinement.
This year’s real-time strategy (RTS) games clearly built on
last year’s RTS games. And that will continue, because
design vocabulary today is essentially specific to individual
games or genres. You can talk about balancing each race’s
unit costs, or unit count versus power trade-offs. But we
would be hard pressed to show many examples of how
innovations in RTS games have helped role-playing games
(RPGs) get better. In fact, we might have a hard time
describing what could be shared.

These concerns lead to the conclusion that a shared
design vocabulary could be very useful. The notion of
“Formal Abstract Design Tools” (or FADT, as they’ll be
referred to from here on) is an attempt to create a framework
for such a vocabulary and a way of going about the process
of building it.

Examining the phrase, we have: “formal,” implying pre-
cise definition and the ability to explain it to someone else;
“abstract,” to emphasize the focus on underlying ideas, not
specific genre constructs; “design,” as in, well, we’re design-
ers; and “tools,” since they’ll form the common vocabulary
we want to create.

“Design” and “tools” are both largely self-explanatory.
However, some examples may help clarify “formal” and
“abstract.” For instance, claiming that “cool stuff” quali-
fies as a FADT violates the need for formality, since “cool”
is not a precise word one can explain concretely — various
people are likely to interpret it very differently. On the
other hand, “player reward” is well defined and explain-
able, and thus works. Similarly, a “+2 Giant Slaying
Sword” in an RPG is not abstract, but rather an element of
one particular game. It doesn’t qualify as a FADT because
it isn’t abstract. The general notion that a magic sword is
based on — a mechanic for delivering more powerful
equipment to the player — is, however, a good example of
a FADT, so the idea of a “player power-up curve” might
meet the definition above.

Let’s Create a Design Vocabulary — What Could Possibly
Go Wrong?

Before we start investigating tools in more detail and
actually look at examples, some cautionary words.

Abstract tools are not bricks to build a game out of. You
don’t build a house out of tools; you build it with tools.
Games are the same way. Having a good “player power-up
curve” won’t make a game good. FADT are not magic ingre-
dients you add and season to taste. You do not go into a
product proposal meeting saying “this game is all about
player power-up curves.” As a designer, you still have to fig-
ure out what is fun, what your game is about, and what
vision and goals you bring to it.

But a design vocabulary is our tool kit to pick apart games
and take the parts which resonate with us to realize our
own game vision, or refine how our own games work. Once
you have thought out your design, you can investigate
whether a given tool is used by your game already. If it is,
are you using it well, or is it extraneous? If it isn’t used,
should it be, or is the tool not relevant for your game? Not
every construction project needs a circular power saw
(sadly), and every game doesn’t need every tool. Using the
right tools will help get the shape you want, the strength
you need, and the right style.

Similarly, tools don’t always work well together —
sometimes they conflict. The goal isn’t to always use every
tool in every game. You can use an individual tool in
different ways, and a given tool might just sit in a toolbox
waiting to see if it is needed. You, the designer, wield
the tools to make what you want — don’t let them run
the show.

h t t p : / / w w w . g d m a g . c o m A U G U S T 1 9 9 9 G A M E D E V E L O P E R

45

Tools Would Be Useful — Where Do
We Find Them?

So we need a design vocabulary, a set
of tools underlying game design

practice. There is no correct or official
method to identify them. One easy way
to start looking is to take a good game
and describe concretely some of the
things that work well. Then, from con-
crete examples of real game elements,
we can attempt to abstract and formal-
ize a few key aspects and maybe find
ourselves a few tools.

There isn’t enough space here to
exhaustively analyze each tool or game
— the goal here is to give an overview of
the ideas behind and uses of FADT, not a
complete view of everything. With that
in mind, we’ll start with a quick tour of
some games, tools, and ideas. Since we
are looking for examples of good game
design, we’ll start by examining MARIO

64. Once we have explored some con-
crete aspects of the game itself, we’ll step
back and start looking for things to
abstract and formalize that we can apply
to other genres and titles.

MARIO 64 Game Play

MARIO 64 blends (appar-
ent) open-ended explo-

ration with continual and
clear direction along most
paths. Players always have
lots to do but are given a lot
of choice about which parts of
the world they work on and which
extra stars they go for. The game also
avoids a lot of the super-linear, what’s-
on-the-next-screen feel of side-scrolling
games and gives players a sense of con-
trol. In MARIO, players spend most of
their time deciding what they want to
do next, not trying to get unstuck, or
finding something to do.

A major decision made in the design
was to have multiple goals in each of the
worlds. The first time players arrive in a
world, they mostly explore the paths
and directions available. Often the first
star (typically the easiest to get in each
world) has been set up to encourage
players to see most of the area. So even
while getting that first star, players often
see things they know they will need to
use in a later trip. They notice inaccessi-
ble red coins, hat boxes, strange contrap-

tions, and so on, while they work on the
early goals in a world. When they return
to that world for later goals, players
already know their way around and have
in their heads some idea about how their
goals might be achieved, since they have
already visited the world and seen many
of its elements.

MARIO’s worlds are also fairly consis-
tent and predictable (if at times a bit
odd). Players are given a small, simple
set of controls, which work at all times.
Simple though the controls are, they
are very expressive, allowing rich inter-
action through simple movement and
a small selection of jumping moves.
The controls always work (in that you
can always perform each action) and
players know what to expect from
them (for example, a triple jump goes a
certain distance, a hip drop may defeat
opponents). Power-ups are introduced
slowly, and are used consistently
throughout (for example, metal Mario
can always walk under water).

These simple,
consistent con-
trols, coupled
with the very pre-
dictable physics
(accurate for a
MARIO world),

allow players to
make good guesses about what
will happen should they try
something. Monsters and
environments increase in
complexity, but new and spe-
cial elements are introduced

slowly and usually build on an
existing interaction principle. This
makes game situations very discernable
— it’s easy for the players to plan for
action. If players see a high ledge, a
monster across the way, or a chest
under water, they can start thinking
about how they want to approach it.

This allows players to engage in a
pretty sophisticated planning process.
They have been presented (usually
implicitly) with knowledge of how the
world works, how they can move and
interact with it, and what obstacle they
must overcome. Then, often subcon-
sciously, they evolve a plan for getting
to where they want to go. While play-
ing, players make thousands of these
little plans, some of which work and
some of which don’t. The key is that
when the plan doesn’t succeed, players
understand why. The world is so con-

sistent that it’s immediately obvious
why a plan didn’t work. This chasm
requires a triple jump, not a standing
jump; maybe there was more ice than
the player thought; maybe the monster
moves just a bit too fast. But players get
to make a plan, try it out, and see the
results as the game reacts. And since
that reaction made sense, they can, if
needed, make another plan using the
information learned during the first
attempt.

This involves players in the game,
since they have some control over
what they want to do and how they
want to do it. Players rarely feel cheat-
ed, or like they wanted to try some-
thing the game didn’t support. By
offering a very limited set of actions,
but supporting them completely, the
world is made real for players. No one
who plays MARIO complains that they
want to hollow out a cave and make a
fire and cook fish, but cannot. The
world is very simple and consistent. If
something exists in the world, you can
use it.

Great! But I’m Not Writing MARIO 64.
I Mean, It’s Already Been Written.

So MARIO has some cool game
design decisions. In the context of

MARIO itself, we have examined briefly
how they work together, what impact
they have on the players’ experience
and how these design decisions, in
general, push the player toward deeper
involvement in the game world. But if
you’re developing a car-racing game,
you can’t just add a hip-drop and hope
it will work as well as it does in MARIO.
So, it’s time to start abstracting out
some tools and defining them well
enough to apply them to other games.

Looking back at the MARIO example,
what tools can we derive from these
specific observations? First, we see
there are many ways in which players
are encouraged to form their own goals
and act on them. The key is that play-
ers know what to expect from the
world and thus are made to feel in con-
trol of the situation. Goals and control
can be provided and created at multi-
ple scales, from quick, low-level goals
such as “get over the bridge in front of
you” to long-term, higher-level goals
such as “get all the red coins in the
world.” Often players work on several

G A M E D E V E L O P E R A U G U S T 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

46

D E S I G N E R ’ S L E X I C O N

goals, at different levels, and on differ-
ent time scales.

This process of accumulating goals,
understanding the world, making a plan
and then acting on it, is a powerful
means to get the player invested and
involved. We’ll call this “intention,” as
it is, in essence, allowing and encourag-
ing players to do things intentionally.
Intention can operate at each level,
from a quick plan to cross a river to a
multi-step plan to solve a huge mystery.
This is our first FADT.

INTENTION: Making an implementable
plan of one’s own creation in response to
the current situation in the game world
and one’s understanding of the game play
options.

The simplicity and solidity of MARIO’s
world makes players feel more connect-
ed to, or responsible for, their actions. In
particular, when players attempt to do
something and it goes wrong, they are
likely to realize why it went wrong. This
leads to another tool, “perceivable con-
sequence.” The key is that not only did
the game react to the player; its reaction
was also apparent. When I make the
jump, it either works or it doesn’t. MARIO

uses this tool extensively at a low level
(crossing a river, avoiding a rolling boul-
der, and so on). Any action you under-
take results in direct, visible feedback.

PERCEIVABLE CONSEQUENCE: A clear
reaction from the game world to the action
of the player.

We have examined the ideas behind
some parts of MARIO and abstracted out
two potential design tools. Note also
how MARIO uses these tools in conjunc-
tion; as players create and undertake a
plan, they then see the results of the
plan, and know (or can intuit) why
these results occurred. The elements
discussed are certainly not the only
cool parts of MARIO, nor the only tools
that MARIO uses, but hopefully this dis-
cussion gives an idea of how the
process works. Later, we’ll return to
examine how multiple tools work with
each other. But first, let’s see if inten-
tion and perceivable consequence can
be applied to some other games.

Same Tools, Different Games

P erceived consequence is a tool
often used in RPGs, usually with

plot or character development. A plot
event will happen, in which the game

(through characters or narra-
tion) essentially comes out
and says, “Because of X, Y
has happened.” This is clear-
ly a fairly pure form of per-
ceived consequence.

Often, however, RPGs are
less direct about conse-
quence. For example, the
player may decide to stay
the night at an inn, and the
next morning he may be
ambushed. Now, it may be
that the designers built this
in the code or design of the
game. (“We don’t want peo-
ple staying in town too much, so if
they start staying at the inn too often,
let’s ambush them.”) However, that
causality is not perceivable by the
player. While it may be an actual
consequence, to the player it appears
random.

There are also cases where the conse-
quence is perceivable, but something
still seems wrong. Perhaps there’s a
fork in the road, where players must
choose a direction. As a player travels
down the chosen path, an encounter
with bandits occurs, and the bandit
leader proclaims, “You have entered
the valley of my people; face my
wrath.” This is clearly a consequence,
but not of a decision players thought
they were making. Players bemoan sit-
uations where they are forced into a
consequence by the designers, where
they are going along playing a game
and suddenly are told, “You had no
way of knowing, but doing thing X
results in horrible thing Z.”

Here we can look at how MARIO uses
the perceivable consequence tool in
order to gain some insight into how to
make it work for us without frustrating
players. In MARIO, consequences are
usually the direct result of a player
decision. Rarely do players following a
path through the game suddenly find
themselves in a situation where the
game basically says, “Ha ha, you had
no way of knowing, but you should
have gone left,” or “Dead end! Now
you get crushed.” Instead, they see
they can try a dangerous jump or a
long roundabout path or maybe a
fight. And if it goes wrong, they under-
stand why.

So it should come as no surprise that,
in RPGs, often the best uses of conse-
quence come when they are attached

to intentional actions. Being given a
real choice to do the evil wizard’s bid-
ding or resist and face the conse-
quences has both intention and conse-
quence. And when these tools work
together, players are left feeling in con-
trol and responsible for whatever hap-
pens. However, being told “Now you
must do the evil wizard’s bidding” by
the designer, and then being told, “As
you did the evil wizard’s bidding, the
following horrible consequences have
occurred,” is far less involving for the
player. So while both examples literally
have perceived consequence, they
don’t cause the same reactions in the
player.

Same Game, Different Tool

O f course, there are reasons why
RPGs often force players into a

given situation, even at the cost of
removing some of the player’s feeling
of control. The usual reason is to give
the designer greater control of the nar-
rative flow of the game. It is clear that
“story” is another abstract tool, used in
various ways across all game styles in
our industry. But it’s important to
remember that, although books tell
stories, when we say “story” is an
abstract tool in game design, we don’t
necessarily mean expository, pre-
written text. In our field, “story” really
refers to any narrative thread that is
continued throughout the game.

The most obvious uses of story in
computer and video games can be
found in adventure-game plot lines. In
this game category, the story has been
written in advance by designers, and
players have it revealed to them
through interactions with characters,

G A M E D E V E L O P E R A U G U S T 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

48

D E S I G N E R ’ S L E X I C O N

The story unfolds in FINAL FANTASY VIII.

objects, and the world. While we often
try to set up things to give players a
sense of control, all players end up
with the same plot.

But story comes into play in NBA
LIVE, too. There, the story is what
happens in the game. Maybe it ends up
in overtime for a last-second three-
pointer by a star player who hasn’t
been hitting his shots; maybe it is a
total blowout from the beginning and
at the end the user gets to put in the
benchwarmers for their moment of
glory. In either case, the player’s
actions during play created the story.
Clearly, the story in basketball is less
involved than that of most RPGs, but
on the other hand it is a story that is
the player’s — not the designer’s — to
control. And as franchise and season
modes are added to sports games and
team rivalries and multi-game struggles
begin, story takes on a larger role in
such games.

STORY: The narrative thread, whether
designer-driven or player-driven, that
binds events together and drives the player
forward toward completion of the game.

Using Multiple Tools: Cooperation,
Conflict, Confusion

A dventure games often have little
intention or perceivable conse-

quence. Players know they will have to
go everywhere, pick up everything, talk
to everyone, use each thing on each
other thing and basically figure out
what the designer intended. At the low-
est level, there is intention along the
lines of, “I bet this object is the one I
need,” and just enough consequence
that players can say, “That worked —
the plot is advancing.” But there is little
overall creation of goals and expression
of desires by players. While the player is
doing things, it’s usually obvious that
only a few possibilities (the ones the
designers pre-built) work, and that all
players must do one of these or fail.

But as we’ve also seen, this loss of
some consequence and most intention
comes with a major gain in story. By
taking control away from the player in
some spaces, the designer is much freer
to craft a world full of tuned-up
moments in which the designer scripts
exactly what will happen. This allows
moments that are very powerful for
players (moments that often feel as

involving as player-directed actions, if
not more so). So here is a space where
tools conflict, where intention and
story are at odds — the more we as
designers want to cause particular situ-
ations, the less control we can afford to
give players.

Once again, tools must be chosen to
fit the task. Being aware of what game
you want to develop allows you to pick
the tools you want and suggests how to
use them. You cannot simply start
adding more of each tool and expect
the game to work.

Concrete Cases of Multiple Tool Use

A n interesting variant of the inten-
tion versus story conflict is found

in traditional SquareSoft console RPGs
(for example, the FINAL FANTASY series
and CHRONOTRIGGER). These games
essentially give each tool its own
domain in the game. The plot is usually
linear, with maybe a few inconsequen-
tial branches. However, character and
combat statistics are free-form, complex
systems, which have a variety of items,
statistics, and combo effects that are
under player control. Players must learn
about these systems and then manage
the items and party members to create
and evolve their party.

During exploration of the game
world, the plot reveals itself to the
player. The designer creates cool
moments which are shown to players,
in the game, but are not player-driven.
Despite little intention in terms of the
plot, players are given some control of
the pacing as they explore. While
exploring, however, players find
objects and characters. These discover-
ies impact the combat aspects of the
game. Combat in the game is entirely
under the players’ control, as they
decide what each character does, which
abilities and items to use, and handle
other details. Thus, players explore the
story while combat contains intention
and consequence.

SquareSoft games are, essentially,
storybooks. But to turn the page, you
have to win in combat. And to win in
combat, you have to use the characters
and items that come up in the story. So
the consequences of the story, while
completely preset and identical for all
players, are presented (usually) right
after a very intentional combat

sequence. The plot forces you to go
and fight your former ally, but you are
in complete control of the fight itself.

Rather than trying to use all three
tools at once, the designers use inten-
tion and consequence in the combat
system, and story and consequence in
the actual unfolding of the story. So, the
designers get to use all the tools they
want and tie the usage together in the
game. However, they make sure that
tools can be strongly utilized when
called on. They don’t try to put them in
places where it would be hard to make
them work effectively.

With a bit of a stretch, one can say
that sports and fighting games actually
mix all three of the tools into one. The
story in a game of NHL 99 is the scor-
ing, the missed checks or the penalty
shot. While this story is somewhat
basic, it’s completely owned by the
player. Each player makes his or her
own decision to go for the win by
pulling the goalie, or not. And, most
importantly, the decision and resulting
action either works or does not, driving
the game to a player-driven conclu-
sion. Unlike adventure games, there is
no trying to guess what the designer
had in mind, no saving and loading
the game 20 times until you click on
the right object. You go in, you play
the game, and it ends.

Similarly, in a fighting game, every
controller action is completely consis-
tent and visually represented by the
character on-screen. In TEKKEN, when
Eddy Gordo does a cartwheel kick, you
know what you’re going to get. As the
player learns moves, this consistency
allows planning — intention — and
the reliability of the world’s reactions
makes for perceived consequence. If I
watch someone play, I can see how and
why they’re better than I am, but all
players begin the game on equal foot-
ing. The learning curve is in figuring
out the controls and actions (in that
it’s player-learning alone that deter-
mines skill and ability in the game).
The fact that actions have complete
intention and consequence allows this.

In sports games, you direct players,
select an action, and watch something
happen in response to that action,
which gives you feedback about what
you tried to do. The player does direct
the action — a cross-check missed, a
slap shot deflected, a pass gone wrong
— but one level removed. While

h t t p : / / w w w . g d m a g . c o m A U G U S T 1 9 9 9 G A M E D E V E L O P E R

49

watching the action on screen, one
sees everything that happens, but can’t
be sure exactly why it happened. This
is because the basis of most sports
games is a statistical layer, and thus the
same actions with the controller can
lead to different results. When you
combine the different player ratings
with the die-rolling going on behind
the scenes, the probabilities make
sense, but may not be apparent to the
player. The intention is still there, but
the perceived consequence is much less
immediate. This removal of direct con-
trol (and the entire issue of directing
action) through a statistical layer,
which the player can intuit but not
directly see, is often present in RPG
combat. Thus, in TEKKEN, I can’t say,
“Man, bad luck, if only I’d rolled bet-
ter,” or “Yeah, now that I’m a tenth-
level ninja, I can do that move,” but in
NBA LIVE or an RPG, I often do.

Tool-Based Analysis

A fighter has a simple story (“I had
just a sliver of health left, but I

feinted a kick and then did my triple
punch combo — barely finished him
off”), but it’s the player’s story. There is
no, “Man, I can’t believe I missed that
shot,” or “Why did I go and do that?” or
“How come my check didn’t work?” A
simple story, backed up by complete
intention in a game that provides clear
consequences, makes a very powerful
experience for the player. So, both fight-
ing games and, with some obfuscation
of consequence, sports games attempt
to fuse intention and consequence and
from that allow the players’ actions tell
a story. The complete control pro-
vided by a fighter may make the
game more real to the player, but
the larger scale of a sports game
may provide more sense of story.
Or, it may be that the direct con-
trol of the fighter makes for a more
personal story, and the large scale
of a sports game makes for a more
epic story. In either case, neither
the fighter approach nor the sports
simulation approach to story and
intention is right or wrong. Each
elicits a different set of reactions
from the player. As a designer, you
must understand the ramifications
of tool usage if you’re going to cre-
ate the experience you intend.

Ahhh, So What?

T ools as a vocabulary for analysis
present a way to focus on what

player experience the designer wishes
to create. In this high-level introduc-
tion to FADT, I have focused on inten-
tion and perceived consequence, with
less attention to story. (And what story
is mentioned is slanted toward the
player-driven.) This is not because
these are the only tools or even the
best tools. However, as we start to ana-
lyze our designs and the player experi-
ence provided by the tools we use, it’s
vital we try to understand what our
medium is good at.

Games are not books; games are not
movies. In those media, the tools used
(camera placement, cuts, zooms, music
cues, switching narrators, and so on)
are used to manipulate viewers or read-
ers, to make them feel or react exactly
the way the director or author wants
them to. I believe the challenge and
promise of computer game design is
that our most important tools are the
ones that involve and empower players
to make their own decisions. That is
something that allows each player to
explore him or herself, which is some-
thing our medium is uniquely
equipped to do.

So I look to tools to help me under-
stand that aspect of game design and to
maximize the player’s feeling of involve-
ment and self. But that’s because that’s
the kind of game I want to make. Each
designer must choose the game he or she
wants to create and use the tools avail-
able to craft that experience.

Hopefully, I have presented enough
examples of the tools and tool-based

analysis process to provide a useful
overview. Of course, I only mentioned
a few tools, but, as stated previously,
this article was not intended to be
exhaustive or complete. It’s a justifica-
tion for us to begin to put together a
vocabulary. For this to become gen-
uinely useful, we must engage in dis-
cussion and analysis to get a set of
tools we like and then refine those
tools until they are well understood.
With that, we can start to do more
careful analysis of the stuff we like and
don’t like in current games and work to
improve future ones. And we can talk
to each other more about design inno-
vations, not just technical ones.

We will have to invest a lot of time
if we’re to generate a full list of tools
we’ve used (or should use) in our work.
There are resource economies, learn-
ing, player power-up curves, punish-
ment/reward and many others to con-
sider. And each tool could have an
article written just about it — how it
has been used over time, what games
use it particularly well or poorly, and
different aspects of it. Similarly, it
would be great to take a game such as
MARIO or WARCRAFT and really decon-
struct it, perform as complete an
analysis as possible to see if that would
be useful. This article is simply a
primer to scratch the surface and give
examples of this sort of process.

I make no assumption that tools are
necessarily useful. Many people may
find them overly pedantic. And
there’s clearly a danger of people start-
ing to use words such as “intention”
and “consequence” in the same way
that terms and phrases such as “non-
linear,” “endless variety,” or “hun-

dreds of hours of game play” are
used meaninglessly. Not surpris-
ingly, that’s not the intent.

FADT offers a potential frame-
work for moving the design dis-
cussion forward — no more, no
less. Although it’s no magic bullet,
the hope is for this framework to
be broadly useful and allow collab-
orative analysis and refinement of
the game design practice, leading
to better designs, more interesting
products, and satisfied players. If
they’re not the right framework,
we should figure out why and
determine what is the right frame-
work. And then we’ll work to
evolve and develop it together. ■

G A M E D E V E L O P E R A U G U S T 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

50

D E S I G N E R ’ S L E X I C O N

The outcome of consequence in FINAL FANTASY VIII.

In DROIDWORKS, players take on the role of a
rebel spy disguised as a Jawa droid engineer, and
are assigned the mission of learning the art of
droid building. Players use their skills to solve
several physical puzzles, collecting clues that
lead them along the path to a secret factory
where Jabba the Hutt has been making evil assas-
sin droids for the Empire. To defeat Jabba, play-

ers must engi-
neer droids
that roll, jump,
walk, and run.

In many
cases, players
need to build
droids with
special abilities
— to move
heavy objects,
see in the dark,
or perform
some special

task — and players have to explore and apply
basic physical principles in order to infiltrate the
factory and reprogram the assassin droids.

DROIDWORKS met with rave reviews from fami-
ly magazines, online educational sites, teachers,
kids, parents, and even from many hard-core
gaming sites. We did see a number of game play-
ers scratching their heads, possibly thinking,
“What’s the point?” But for the most part, peo-
ple seemed to love the game for its entertain-
ment and educational value. Eventually, we won
several awards including the first-ever award for
children’s interactive software from the British
Academy of Film and Television Arts, the
NewMedia Invision gold medal in the children’s
category, the NewMedia Invision award in the
entertainment category (against “pure” enter-
tainment titles including AGE OF EMPIRES,
UNREAL, and THE X-FILES), and the 1998 Codie
award in the young adult category.

As a company founded to create a new kind of
educational software, we knew we couldn’t cre-

G A M E D E V E L O P E R A U G U S T 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

52

n the fall of 1998, LucasLearning emerged from its shell

with the offering of its first educational software product,

STAR WARS DROIDWORKS. The game combines first-person

shooter game technology with solid educational content to

create something different: a thoughtful game that’s actual-

ly fun and that helps kids learn within the game medium.

B y J o n B l o s s o m
a n d C o l l e t t e M i c h a u d

LucasLearningÕs
STAR WARS DROIDWORKS

P O S T M O R T E M

Project leader Collette Michaud and lead programmer Jon Blossom were two of the first employees at
LucasLearning. They designed and built STAR WARS DROIDWORKS with the help of an incredible team.
Collette can be reached at collette@lucaslearning.com, Jon at blossom@aya.yale.edu.

II

53

h t t p : / / w w w . g d m a g . c o m A U G U S T 1 9 9 9 G A M E D E V E L O P E R

ate just another action game. In addition to the unique chal-
lenges introduced by an educational bent, DROIDWORKS

faced the same technical, artistic, and design hurdles faced
by strictly entertainment computer games. We combined
gaming styles as diverse as the 3D puzzle games used in
TOMB RAIDER, engineering and outfitting games such as
TERRA NOVA, adventure games such as MONKEY ISLAND, and
role-playing games (RPGs) such as DIABLO, and we took
ambitious steps forward to tackle them all at once.

What Went Right

Imagine the scene: A bunch of Star Wars fans with over-
active social consciences, who have been culled from the

computer game industry and the world of education and
curriculum development, are dropped into a room and told
by George Lucas to “make software that is as educational as
it is entertaining, make it better than anything else on the
market, and don’t spend a lot of money.” They’re given a
blank slate and released from the starting gate, ready to cre-
ate products that grab kids and parents with the Star Wars
name, hold them with great game play and production
value, and satisfy them with intelligent, thought-provoking
content. What could possibly be more right?

1.SIMPLICITY, FREEDOM, AND VISION. Lucas’s three-point
mandate to the design team was brain-dead simple.

His philosophy — and ours — was equally simple: When
kids play, they’re experimenting, and by experimenting,
they’re learning. Lucas gave us the freedom to innovate, just
as our products would give our users the freedom to experi-
ment and learn. He directed us towards software that would
give players the freedom to build, explore, and learn from
the experience, one that would mimic Erector sets and
Legos. He asked us to allow kids to make mistakes, learn at
their own pace, and direct their own learning in a fun and
open environment, and then he let us go.

Project leader Collette Michaud started dreaming up prod-
uct ideas. She had often thought about a Star Wars game in
which you build different types of droids, and she eventual-
ly simplified the concept into one sentence: Give players the
opportunity to build any kind of Star Wars droid and see it
animate. To any computer-savvy Star Wars fan, that idea
immediately conjured a complete vision, and as soon as any-
one heard it, they said, “Of course.” Lucas had been ponder-
ing a similar idea and he quickly approved it as the product
to launch his new company.

Distilling an idea always renders it more potent, and all of
the ideas behind DROIDWORKS had been distilled to their

very core before we started building. This made it easy to
communicate the idea quickly, get people excited, and align
them with a central vision that drew on all the good memo-
ries they had of their own childhood toys. We could see
from the very beginning how cool the game would be, and
because the ideas were so concentrated, they never lost
potency for the life of the product.

2.KID ADVISORY GROUPS. Usually, computer game design-
ers have the luxury of designing games for ourselves.

We’re the target audience and we’re the judges, so if our
game makes us say “wow,” it’s a good game. For many of us
making the transition from adult games to kids’ games, we
had to realize we were no longer the target audience — we
couldn’t just build something we thought was cool, we had
to build something kids would think was cool. So we enlist-
ed the help of a Kid Advisory Group (KAG), and building
that into our production process proved very successful.

We assembled a group of about a dozen kids in the prod-
uct’s target age range to help critique and design the product
during the stage when their input could still change the
game’s evolution. Involving kids early in the process helped
us make important design decisions, gauge the level of edu-
cational appropriateness, and make sure the game remained
fun as we moved through the development process. Seeing
the kids react to our ideas and grab onto the game energized
and enlightened us month after
month, and working with the KAGs
proved to be one of the most reward-
ing and useful aspects of the develop-
ment process. Their responses, which
were always blatantly honest, could
throw us into tears of laughter or
despair, and their visits always left us
with something new to think about.

LucasLearning
San Rafael, Calif.
(415) 444-8800
http://www.lucaslearning.com

Release date: October 1998
Intended platform: Windows 95/98, Macintosh 7.5.5
Project length: 19 months
Team size: 15, including three programmers, four artists, and

three level designers
Critical development hardware: Pentium 200MHz 60MB RAM
Critical development software: Form•Z, Softimage, 3D Studio

Max, and Adobe Photoshop

DROIDWORKS

The KAGs were more than focus
groups. Our kid advisors came back
several times and grew emotionally
attached to the project as they saw
some of their own ideas filtering
through the game. They became part of
the team, helping the rest of us step
back from our adult lives and watch
the project through the eyes of our
audience. Regular consultation with
KAGs from the early stages of an idea
has become standard practice at
LucasLearning, and each project gets
new groups about every six months,
retiring one group in order to assemble
another with a fresh perspective. The
experience we had working with kids
on DROIDWORKS made clear to us the
importance of timely, appropriate, and
constant feedback.

3.SUBJECT MATTER EXPERTS. We also
consulted on design issues from

the opposite end of the classroom by
enlisting Subject Matter Experts, fondly
called SMEs. The SMEs are adults with
interest, expertise, and experience in
the field of study at the core of our
games, who were invited to help brain-
storm, provide feedback, and check in
periodically during the course of the
design process. As with the kids’
groups, SME groups quickly became a
standard part of the LucasLearning
product development process.

As game designers, artists, producers,
and programmers, we spend most of
our days working with computers, piec-
ing together code and artwork, working
out budgets and schedules, and keeping
the project on track. To create a game,
you don’t need much else — you can
make most of it up, or possibly base it
on historical research. However, to cre-
ate an educational product, you have to
check every detail to make sure what
you’re teaching is correct and well-
presented, and, like a teacher, you have
to know your audience. We couldn’t
possibly do this full-time, so we looked

to the SMEs for their expertise.
For DROIDWORKS, our original team

of SMEs consisted of a variety of
science and math teachers, curriculum
experts, science museum coordinators,
and engineers. We spent a day with
them at Skywalker Ranch, tossing
around ideas and playing with the
DROIDWORKS concept. We continued
to talk with them during develop-
ment, but focused on two participants
— one a middle school science teacher
from the Sacramento area, and the
other a retired science teacher now
working at the Exploratorium muse-
um in San Francisco. We continued to
meet with them every other month
until the end of the project to discuss
the status of the game and the educa-
tional content we had incorporated
into each of the missions. These two
consultants helped us immensely in
designing the product by pointing out
flaws in our physics and showing us
how to present things in kid-friendly
ways.

4.LUCASARTS, JEDI KNIGHT, AND THE

LUCASFILM FAMILY. LucasLearning
benefited immensely from its family
tree. A small, brand-new educational
software company would have had a
very difficult time starting up without
a powerful license, and our ability to
use the Star Wars universe was never in
doubt. Furthermore, we enjoyed a spe-
cial relationship as the sister company
of LucasArts, and they made many of
their resources available to help us
jump-start our own efforts. We con-
tracted with their sound, voice, and
music departments, used their testers,
and took advantage of their cutting-
edge game technology (including their
proprietary Smush video compressor),
and, most significantly, the JEDI KNIGHT

3D engine.
When we first started adding details

to the DROIDWORKS concept, interac-
tive 3D graphics seemed an obvious fit,

but we weren’t sure we could do it.
Time and budget constraints meant we
didn’t have very many resources to
devote to core technology, and with all
we had planned, starting from scratch
would mean cutting several key fea-
tures we had hoped to include. When
we realized we could use the JEDI

KNIGHT engine, which was then near-
ing its beta phase, the doors opened up
for us. Not only would we have a real-
time 3D engine, we would also have a
custom-built level design tool (Leia)
and an animation previewer/editor
(ModelX), and we’d be able to find
artists who had used both — in fact,
two of our three level designers had
worked on JEDI KNIGHT. Better yet, we’d
be able to grab the code immediately
after it had gone through years of
development and debugging.

Significant work had to be done to
adapt the JEDI KNIGHT code, though.
Pieces had to be ripped out, twisted
around, and somehow welded into a
new framework to turn a first-person
shooter engine into a creativity tool.
Then, a software funnel would have to
be fitted to translate all the informa-
tion from the workshop area of the
game into a form that the world simu-
lation engine could handle. The final
structure felt like a digital Franken-
stein’s monster, but the first time we
saw a custom droid standing in an
empty room in place of Kyle Katarn,
the hero of JEDI KNIGHT, we breathed a
huge sigh of relief and thought,
“Maybe this can work.”

DROIDWORKS would have been a very
different project without the JEDI

KNIGHT engine. We could have tried to
build a new simulation engine, using
some high-end 3D API such as OpenGL
for rendering, but it could easily have
ended up taking much longer. We
could have created a new level design
tool, or hacked something into an
existing 3D modeling package, but we

G A M E D E V E L O P E R A U G U S T 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

54

P O S T M O R T E M

would have had to solve a whole host
of other technical issues. We could
have written our own scripting lan-
guage and interpreter, which could be
prone to bugs. We could have thrown
our hands up in the air and made
DROIDWORKS in 2D… and what a differ-
ent game it would have been.

5.THE VIOLENCE ISSUE. Almost as
soon as we settled on creating

the game in an interactive 3D environ-
ment using technology from a first-per-
son shooter game, our Director of
Content, Jane Boston, spearheaded a
debate that raged up until the very end
of the project. DROIDWORKS exists in
the Star Wars universe, a universe of
explosions, guns, death, and violence.
How much of that should we include
in DROIDWORKS? What level of violence
would be acceptable? How could we
create a story about saving the world
from evil assassin droids, in a game
with the word “wars” in the title, with-
out resorting to violence? And how do
we even define what “violence” is?

Eventually, we decided to avoid vio-
lence at all costs, to bend the design in
any way necessary to avoid scenarios
that would otherwise end in violence.
There would be no gratuitous explo-
sions, no laser guns, no death (just
total loss of power or shields), and the
assassin droids would have to get by
with only their “shock” value — literal-
ly, since they disable you by touching
you to drain your power. The gamers
among us groaned, but everyone got
behind the idea, and, remarkably, it
turned out to be one of the better deci-
sions we made.

Implementing the non-violence
mandate often proved next to impossi-
ble as we drew trick after trick from our
game-design tool chests, and then
threw away idea after idea when we
realized how much violence had
become part of our everyday game
vocabulary. As game designers, we’re

used to looking for a fun solution
that’s easy, so we resorted to standard
game vocabulary, such as bad guys hid-
den around corners or doors guarded
by adversaries so difficult that you
avoid them until you’ve completed
enough puzzles to gain the power to
defeat them. Many times we banged
our heads for days trying to find an
interesting solution, wishing we could
just hand over a laser gun or blow up a
bad guy. Imposing the constraint on
violence forced us to get creative and
pushed us into new territory.

We’re very proud to have created
missions that require players to think
rather than react, and in the end,
some of the kid advisors who had
complained about the lack of violence
and guns thanked us, saying they
enjoyed the game more. They
described having the time to really use
their brains and learn something
while having fun, rather than shutting
off their brains in order to react to vio-
lent situations. Needless to say, par-
ents thanked us, too.

What Went Wrong

A ctually, few things went unex-
pectedly wrong in the develop-

ment of DROIDWORKS. The team
moved together so well that
often what seemed to be insur-
mountable roadblocks from
a distance proved to be
minor bumps when we
actually approached them.
Not that we didn’t have our
share of mind-numbing chal-
lenges. We had aimed so
high that we couldn’t pos-
sibly include everything
we had hoped for in the beginning,
and many features we wanted to
include had to be cut. (Where’s the
print button? And, why can’t you plug

an arm into the head socket?)

1.JEDI KNIGHT. Ironically, choosing
the JEDI KNIGHT engine rather

than rolling our own 3D world simula-
tion system proved to be one of the
worst problems we had to face, even
though it was also one of the best deci-
sions we made. Looking back on the
project, we go back and forth trying to
decide whether it was the right thing
to do. Could we have saved the time
and energy we put into working
around its limitations by creating a
new engine from scratch that would
have addressed our needs directly?
We’ll never know.

In choosing the JEDI KNIGHT engine,
we hoped to benefit as much from its
physics simulator as from its rendering
engine. We wanted our game to teach
simple physics in an open-ended envi-
ronment, and we hoped concepts of
velocity, acceleration and gravity
would just fall out of the simulator.
How wrong could we have been? The
level designers closely controlled the
world of JEDI KNIGHT, and the physics
engine had been tuned to make maxi-
mum fun out of running characters
and flying projectiles. We had hoped to
teach interactive real-world physics,
not cartoon game physics in which the
main character could run 80 miles an
hour, nothing bounced, and nothing

could be pushed. We expected a
fairly robust dynamics simulation

but wound up with sphere-based
collision detection in a system that
often couldn’t respond properly to
the collision of two moving objects.
The lack of rotational forces made
it difficult to build levers and
fulcrums.

By the time we discovered
how difficult it was to create com-

plex combinations of physical puzzles
within the constraints of the existing
system, we had no choice but to move
forward with the plan. We had to

h t t p : / / w w w . g d m a g . c o m A U G U S T 1 9 9 9 G A M E D E V E L O P E R

55

redesign the missions constantly to
accommodate the physical quirks of
the engine; ultimately, we scripted
many key interactions where we hoped
the physics engine would “just work.”
Using heavy scripting by our level
designers, and a few custom modifica-
tions to the engine, we managed to cre-
ate missions that worked well within
the engine, but unfortunately they fell
somewhat short of our original design
intentions.

Designing for the JEDI KNIGHT engine
posed other problems as well. In a
game such as JEDI KNIGHT, almost all
significant player interactions with the
world have been scripted by the level
designers and the animators, in a situa-
tion where they know everything
about the character ahead of time. The
character has been completely modeled
and animated ahead of time, and his or
her strengths and weaknesses have
been determined well in advance. In
fact, many physical constants were
hard-coded into the engine itself. We
felt DROIDWORKS had to give players
choices during droid construction that
had tangible physical consequences

when they took their droid into the
game world. “Make the droid matter,”
we chanted. In JEDI KNIGHT or TOMB

RAIDER, level designers know exactly
how tall the character is, how far she
can jump, how much she can lift, and
which things she can pick up. In
DROIDWORKS, we couldn’t even
promise the level designers that the
character tackling their worlds would
have legs.

Another hurdle we didn’t see coming
was the JEDI KNIGHT art path. The

artists who worked
on JEDI KNIGHT had
used 3D Studio Max
to model and ani-
mate their charac-
ters, while our
artists wanted to use
Softimage. The GRIM

FANDANGO team had
also chosen to use
the JEDI KNIGHT

engine for render-
ing, animation, and
collision detection,
and they had
proven an art path

from Softimage in concept. What the
heck, we thought, it’s just data. After
outfitting our artists with Softimage
and starting the production process, we
discovered hidden bugs in the data
path that caused glitches in our anima-
tions and scaling problems in our mod-
els — problems that often required a
complete rebuild to fix. We frequently
found ourselves manually editing text
files containing pitch/yaw/roll values
to fix problems introduced during the
translation from Softimage.

G A M E D E V E L O P E R A U G U S T 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

56

P O S T M O R T E M

2.COMPLEXITY: “MAKE THE DROID

MATTER.” The number of droid
combinations possible in DROIDWORKS

gives the game its power. How many
droids can you build from 87 droid
parts, anyway? At one point during
development, we could build over 65
million fully functioning droids,
but design decisions forced us
to scale back to 25 million by
the time we shipped. How do
you deal with that kind of
complexity?

To begin with, we knew we
could never test the game
completely. It would take one
person 290 days working
around-the-clock, building
one droid a second, just to
build them all — let alone test
them. A team of ten testers
building a droid every minute in a
non-stop eight-hour day could do it in
14.25 years if they agreed to work
seven-day weeks. As is often the case
with simulation games, we knew we
would ship the game without complete
testing coverage. Our testers accepted
that challenge and did a great job cov-

ering a huge variety of droid types.
Our level designers also saw the

nightmare of complexity. They could
never be entirely sure what kind of
droid would be walking into their
rooms, and they had to leave the levels
as open as possible. In many cases,

they created ingenious physical filter-
ing mechanisms that would guar-

antee only certain types of droids
went beyond certain points in the
level: A steep hill would weed
out biped droids in favor of
droids with tractor treads, a
chasm would weed out
wheeled droids who could-
n’t jump, a narrow canyon
would weed out wide
droids, and a short door
would weed out tall
droids. The designers

used the terrain leading up
to key puzzles to reduce the
complexity of the puzzle
itself, giving kids a chance
to uncover the mission requirements
within the context of the game rather
than being told, “You can’t bring that
kind of droid here.”

3.POSITIONING. In part because we
used the JEDI KNIGHT engine,

and in part because we designed it for
fun, DROIDWORKS looks more like an
entertainment title than a traditional
educational product. In our minds, the
real beauty of DROIDWORKS lies exactly
in that constant tension between
entertainment and education. If we
hoped to attract the attention of eight-
to twelve-year-olds, we felt we had to

give them something that could
compete for their attention
against games such as QUAKE or
JEDI KNIGHT. We believed we
could combine traditional
game-play elements with
new and interesting kinds of
physical puzzles, creating a
game players can think
through rather than shoot
through, and we pushed hard
to steer the company in that
direction.

From the beginning, our
KAGs gave the game rave reviews, but
many adults greeted it with confusion.
How could something that felt so
game-like be educational enough the

h t t p : / / w w w . g d m a g . c o m A U G U S T 1 9 9 9 G A M E D E V E L O P E R

57

be called a learning title? How would
we explain it to consumers, who
expect to find products either on the
game shelf or the education shelf? At
some point, reality hit us full in the
face, and we had to decide how to
position the product and the
company. Which shelf should be
our home?

We had very little data, other
than hunches. Who made the
purchasing decisions in this
age range? Parents typically
look on the education
shelves, while teenagers
and pre-teens typically
look on the game shelves.
Teens wouldn’t want to play
a game they found next to
Barney or Barbie, would they?
Additionally, we were piggy-backing
on the LucasArts sales force in order to
get into all the big chain stores. All
their distribution channels led
straight to the entertainment shelf. In
the end, that’s where DROIDWORKS

landed, too.
Landing in the entertainment cate-

gory proved problematic for
DROIDWORKS. On those crowded
shelves, DROIDWORKS disappears
among action-oriented shoot-em-up
games. Its bright blue box stands out
from the dark tones of the adult games
and catches the eye, and it feels
strangely out of place. Furthermore,
retailers have shorter attention spans
for products on the entertainment
shelves than they do for educational
products: If a game doesn’t disappear
in the first two weeks, the stores send it
back. Despite its great reviews and the
press coverage we garnered in the
month or two prior to its release,
DROIDWORKS had a difficult first month
of sales, and we started thinking our
particular education/entertainment
blend might just be too confusing for
consumers. Luckily, stores gave it a
break — thanks to the Star Wars name
and the muscle of LucasArts distribu-
tion — and by the end of the month,
sales had improved and things were
looking up.

4.TIMING. DROIDWORKS also had
its share of timing problems.

We originally planned a fairly luxuri-
ous development cycle that had us
landing on shelves in time for the 1998
holiday season. About halfway through
production, after looking at the num-

bers, our marketing department decid-
ed we should aim for Labor Day
instead, which is the official kick-off of
the back-to-school buying season.
Everyone agreed, so we took a deep
breath, reworked major pieces of the
design, and made some heavy cuts.

The team rallied behind the new
date, and we managed to hit our

sign-off date.
As the game took final shape,

the company’s marketing
efforts began to kick into full
gear. Until that time,
LucasLearning had no pub-
lic presence. Our mission
and message had never

been projected to the out-
side world, so we weren’t just

marketing a product, we were
marketing our entire company.
We had lived in the cocoon of
secrecy that typically sur-
rounds Lucas’s endeavors,
and the time had come
to let the world know
what we were up to.
That process turned out
to be harder — and more
time-consuming — than
we expected.

While the development
team cranked away making the prod-
uct, the marketing team cranked away
designing the box, advertisements, and
collateral materials. The entire compa-
ny watched in frustration as materials
were proposed, created, and shot down
in their final moments. Labor Day
came and went, and no box had been
approved. Magazine advertising dead-
lines came and went, and we watched
in horror as the holiday season
approached. Finally, an approved pack-
age came down, and we landed on
shelves in October, with our first maga-
zine ads poised to hit newsstands in
December, barely in time for
Christmas.

5.GROWING PAINS. Although we
had several aces in our hands,

including guaranteed private funding
and one of the most popular film
licenses in the world, LucasLearning
was still a startup. We had to hire
staff, find space, clarify our vision,
define our culture, and adopt process-
es for doing everything. Even though
we had a lot of industry veterans on
board, we often ran on hunches, not
having time to pause the project in

order to figure out the “right” way to
do something.

Building a company while building a
groundbreaking product is a difficult
task. We tripped a few times, and we
cobbled together many of our processes
from bits and pieces of past experience.
It turned out all right, and many of
these processes worked well enough to
become common practice in the com-
pany. Others, however, fell apart when
the light of day shone on them after
the project, and there are many cases
today where we look at what the
Droids team did and say, “This is exact-
ly the wrong way to do this.”

We all learned from our mistakes:
Centralize your asset database,
even if you’re working with out-
side contractors (we ended up
using Access, FileMaker, and

Excel to track various kinds of
assets, depending on the for-
mat used by our suppliers).
Also, don’t try to track art pro-
duction too closely, as collect-
ing, processing, and keeping
all that information up to
date takes more time than it
saves. Keep whatever assets
require internationaliza-

tion in a single database from the
beginning, not scattered around in sev-
eral obscure files that also contain non-
internationalized assets. These are just
a few of the things we did while we
devoted our brains to other urgent
tasks.

Success

However it sells or doesn’t sell, we
consider DROIDWORKS a huge suc-

cess. We succeeded in creating a prod-
uct that uses Star Wars in an engaging,
non-violent way to teach basic physical
concepts in an open-ended interactive
environment that competes in produc-
tion value and fun value with its enter-
tainment-oriented peers. We succeeded
in creating a product with broad
appeal: Players have written us fan
mail, the press has praised our effort,
and teachers have developed lesson
plans around the product. We succeed-
ed in pulling together a great team of
talented people, producing a quality
game on time and on budget, and
launching a brand new company, all at
once. ■

G A M E D E V E L O P E R A U G U S T 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

58

P O S T M O R T E M

legislation to curtail the effects of vio-
lent videogames on the public inade-
quate and inconsistent — now that the
U.S. Congress is contemplating similar
regulations, the industry proves unable
to take a stand for itself.

I describe the German law in some
detail in an article on Gamasutra.com,
and it was my 1998 investigation into
this topic that got me invited to climb
onto this soapbox. German history
holds a number of lessons on vio-
lence and censorship alike, and
German legislation echoes that
history. It strives to prevent
exposure of minors to content
that might be “ethically disorient-
ing.” In addition, criminal law pro-
hibits “glorification of violence,”
be it in print, on the big
screen, or on the little
screens of TVs and PCs.
These laws have to coexist
with Germany’s constitu-
tion, which ostensibly
denies all censorship,
and legalistic tap danc-
ing still surrounds this
issue today. Ironically,
these laws, which were con-
ceived with vivid memories of the
Nazis’ use of entertainment for propa-
ganda purposes, also remind us of the
inevitable contradiction between cen-
sorship and freedom of expression.

To make the problem worse, laws are
executed by fallible individuals, and
the power of censorship is easily
abused. (A German public prosecutor’s

indictment of Art Spiegelman’s Maus as
Nazi propaganda is a recent case in a
string of embarrassing examples.) In
addition, the means to prevent minors
from exposure to “harmful” material
(such as the Index, which imposes
restrictions on sales and advertising)
are rapidly losing effectiveness in the
Internet age.

In the U.S., the advent of the Internet
gave birth to the Communications
Decency Act and its similarly flawed
offspring. In Germany, attempts have
been made to apply said criminal law to
all kinds of location-based entertain-
ment: video arcades in general, laser-

dromes, paint ball, and online multi-
player games in particular. Unlike the
Index, criminal law applies to adults
and minors alike. Mere possession of
MORTAL KOMBAT or WOLFENSTEIN 3D,
the only two games that have been con-
fiscated under this legislation (as
opposed to hundreds merely put on the
Index), is illegal.

Games never had much ground to
stand on in Germany. Homo ludens, the
“player of games” is considered a liabili-
ty in a society which favors games
about economy, and criticizes literature
as an escape from reality. Being a writer
of fantasy and science fiction, I have
been accused of “escapism” numerous

times — a truly German objection
against entertainment of any kind.
Against this backdrop, it’s diffi-
cult to make a case for an incrim-
inated game based on its merit.
This, however, is the ultimate

consequence of rating content:
You have to prove your work’s
relevance and value.

In a way it seems appropriate
that the unquestioned pursuit
of visual realism has brought

the current turmoil upon
the industry — media goons

thrive on images. Photo-
realism has no inherent

value, neither with respect
to art in general, nor for

game design in particular —
quite the contrary, visual detail

is often paid for by sacrificing
game play. Yet, the much debated

statement “a game is not a simulation”
does not seem to be an issue when it
comes to anatomical correctness.

Personal preference, however, should
never lure one into accepting false accu-
sations and double standards. The influ-
ence of game violence on children of all
ages has yet to be understood, as the few
serious researchers out there would
readily admit, placing the ongoing
blamestorming on shaky ground. None-

G A M E D E V E L O P E R A U G U S T 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

64

b y B e r n d K r e i m e i e rS O A P B O X

Killing Games:

Violence vs. Censorship

F rom a German’s perspective, the current

U.S. discussion about violence in video-

games is best described as déjà vu. U.S. game

developers have often considered German

Bernd Kreimeier is a writer, physicist, and coder, mystified by the intricate delusions
we call reality. Share your personal waking dream at bk@gamers.org.

continued on page 63.

illustration by Jackie Urbanovic

theless, a videogame bill recently pro-
posed in Pennsylvania by State Senator
Jack Wagner (D – Pittsburgh) takes aim
specifically at games’ biggest asset —
their interactivity. All of a sudden,
active participation in cartoonish vio-
lence passes as shooter training, with
multiplayer games presumably being
the worst.

Some claim that the alleged hypnot-
ic effects of all entertainment are
amplified by interactivity. That, if
nothing else, should meet vocal oppo-
sition from all game developers.

History offers many lessons about

the penalty of keeping silent at the
wrong time. Every so often, there
comes a moment when you have to
stand up for what you stand for. Being
vocal about the technology and stan-
dards you require, while keeping quiet
in the face of unfounded public criti-
cism of the art you believe in, is a dou-
ble standard in itself. In Germany,
we’ve seen it all — publishers abandon-
ing controversial writers, products qui-
etly withdrawn from the market, preju-
dice leveraged against competition,
abuse of the law for personal crusades,
and courts judging the quality and rel-

evance of a work of art by weighing it
against its alleged offensiveness.

Freedom is often stripped from the
individual with the empty promise of
public protection. No rating system
will ever suffice to appease the driving
force behind censorship: the primal
urge to protect us, minors and adults
alike, against the evil inside. It’s not
the goal, it’s the means that have to be
questioned, and we are the ones to do
it. Don’t expect anybody else to speak
on our behalf.

The witch-hunts are not over yet.
Ignore the henchmen at your peril. ■

S O A P B O X

h t t p : / / w w w . g d m a g . c o m A U G U S T 1 9 9 9 G A M E D E V E L O P E R

63

continued from page 64.

Atari Games Corporation 60

Black Ops Entertainment Inc. 60

Boss Game Studios 61

Conitec Datensysteme GmbH 63

Digital Anvil 60

Digimation 47

Discreet Monsters 16

Duck Corporation 13

Future Light 22,23

Hewlett-Packard 15

Immersion Corporation 6

Intel 5

Kinetix C2,1

Locomotion Studios 56,57

Metrowerks Inc. 8

Motion Analysis C3

Multigen 11

Nichimen 21

Numerical Design 2

Rad Game Tools Inc. C4

Resounding Technology 62

Savannah College of Art and Design 62

Savannah College of Art and Design 33

Stainless Steel Studios 59

Upstate Games 62

Yamaha 18

N A M E P A G E N A M E P A G E

A D V E R T I S E R I N D E X

	back:

