
V

AUGUST 1998

G A M E D E V E L O P E R M A G A Z I N E

If you were in the early stages of
developing an Internet-based
game last year, and you heard
about a company that “provides

game and simulation content develop-
ers with a software solution to build
and deploy stand-alone and network-
based applications that make full use of
interactive 3D graphics,” would you
invest in it?

Apparently not too many people did,
because Newfire Inc. — whose
Catalyst/Torch products supplied the
above marketing quote — died a quiet
death last spring. Maybe I’m overly
sentimental, but I was disappointed
that the company couldn’t stick it out.
I really want to believe that there’s
room in the industry for a game engine
company.

In the wake of its passing, I’ve been
considering whether a company like
Newfire can be successful. I’ve spoken
with a number of game developers as
well as employees at various tool com-
panies on this subject, and it’s been
interesting to hear the different takes.
While I haven’t come up with a pat for-
mula for success (like I’d still be here
typing if I had), I have some observa-
tions to share.

I think the biggest hurdle that game
tool companies have to clear is the “not
invented here” (NIH) bias that many
game developers harbor. And it seems
that the more core functionality a tool
attempts to provide, the more skeptical-
ly it’s viewed by developers. There’s a
pervasive attitude — which is not
entirely unfounded in my opinion —
that shrinkwrapped game engines can’t
cut it at the core of a game. A tool com-
pany trying to sell such a product a
long road ahead of it.

First, there’s the credibility issue that
these companies have to overcome with
game developers. Developers ask, “Who
are these people providing this technol-
ogy, and why should I pay so much
money to them instead of coding the
functionality myself?” A pedigree in
game development or a related field is
necessary to even be considered.

Second, the solution needs to solve a
problem that developers want a solution

to. I’m assuming you, a Game Developer
reader, are passionate about game devel-
opment and enjoy working on your pro-
ject. Would you want to hand off a good
portion of your game’s core functionali-
ty to an off-the-shelf solution? It
depends, right? Management might be
interested in purchasing a product if it
can shave some weeks or months off of a
schedule, but if the tool upsets the devel-
opment team and causes some talented
people to bolt, those considerations can
weigh in against the investment.

Third, developers need to see a proof
of concept. Epic MegaGames, id,
Monolith, and others can get away with
licensing their engines for hundreds of
thousands of dollars because their
games say more about their engines
than any salesperson or datasheet could.
Newfire, which was selling for a fraction
of the cost of these engines, couldn’t
compete because there weren’t any titles
to hold up and say, “Here’s what it can
do when put into the hands of a client!”

Finally, to make matters tougher for a
company like Newfire, there’s the
always contentious issue of pricing. The
luxury pricing of the QUAKE and UNREAL

engines not only provides great addi-
tional revenue for their developers, it
ensures that only a top developer will be
able to afford to license it, that those
that do will be heavily incented to do
great things with the engine, and that
the engine won’t be seen in too many
other titles. To put this in a different
light, I think Newfire would have been
equally in trouble had it further lowered
its price (it was already a fraction of the
QUAKE and UNREAL engines) and suc-
ceeded in licensing out its engine to
hundreds of companies. Would these
licensees (or the gaming public) be
happy with a slew of games that looked
strikingly similar? I’ll wager that the
folks at Newfire considered these possi-
bilities and had contingency plans to
upgrade their engine or increase pricing
if demand picked up, but nevertheless it
points to the fragile nature of their
product’s economic model. ■

G A M E D E V E L O P E R A U G U S T 1 9 9 8

4

P L A NG A M E

Requiem for a

Game Engine Company

EDITOR IN CHIEF

MANAGING EDITOR

DEPARTMENTS EDITOR

ART DIRECTOR

EDITOR-AT-LARGE

CONTRIBUTING EDITORS

ADVISORY BOARD

COVER IMAGE

PUBLISHER

WESTERN REGIONAL SALES
MANAGER

EASTERN REGIONAL SALES
MANAGER

SALES ASSOCIATE

MARKETING MANAGER

AD. PRODUCTION COORDINATOR

DIRECTOR OF PRODUCTION

VICE PRESIDENT/CIRCULATION

ASST. CIRCULATION DIRECTOR

CIRCULATION MANAGER

CIRCULATION ASSISTANT

NEWSSTAND ANALYST

REPRINTS

CEO-MILLER FREEMAN GLOBAL

CHAIRMAN-MILLER FREEMAN INC.

PRESIDENT/COO

SENIOR VICE PRESIDENT/CFO

SENIOR VICE PRESIDENTS

VICE PRESIDENT/PRODUCTION

VICE PRESIDENT/CIRCULATION

VICE PRESIDENT/
GROUP DIRECTOR

SENIOR VICE PRESIDENT/
SYSTEMS AND SOFTWARE

DIVISION

Alex Dunne
adunne@sirius.com

Tor D. Berg
tdberg@sirius.com

Wesley Hall
whall@mfi.com

Laura Pool
lpool@mfi.com

Chris Hecker
checker@d6.com

Jeff Lander
jeffl@darwin3d.com

Josh White
josh@vectorg.com

Omid Rahmat
omid@compuserve.com

Hal Barwood

Noah Falstein

Brian Hook

Susan Lee-Merrow

Mark Miller

Naughty Dog Inc.

Cynthia A. Blair
cblair@mfi.com

Alicia Langer
(415) 905-2156
alanger@mfi.com

Kim Love
(415) 905-2175
klove@mfi.com

Ayrien Houchin
(415) 905-2788
ahouchin@mfi.com

Susan McDonald

Dave Perrotti

Andrew A. Mickus

Jerry M. Okabe

Mike Poplardo

Stephanie Blake

Kausha Jackson-Craine

Joyce Gorsuch

Stella Valdez
(916) 983-6971

Tony Tillin

Marshall W. Freeman

Donald A. Pazour

Warren “Andy” Ambrose

H. Ted Bahr

Darrell Denny

David Nussbaum

Galen A. Poss

Wini D. Ragus

Regina Starr Ridley

Andrew A. Mickus

Jerry M. Okabe

KoAnn Vikören

Regina Starr Ridley

Miller Freeman
A United News & Media publication

www.gdmag.com

Polygon Decimation
RAINDROP GEOMAGIC is releasing
the geomagic Decimator in July, and is
showcasing it at SIGGRAPH 98.

Decimator is a polygon reduction
tool designed to increase the rendering
capability of any machine by greatly
reducing the number of triangles in the
surface mesh of a 3D model. During
the decimation process, this software
can improve the quality of the surface
mesh while simultaneously preserving
surface curvature and proximity to the
original surface. The tool allows you to
select regions on a model to preserve
detail or reduce complexity. The inter-
active decimation command allows

you to press a button and watch the
polygons disappear, one by one, in real
time. Features include the ability to
import and export 3D model formats:
.STL, .OBJ, .3DS, .VRML, .DXF, .WRP;
selective or global real-time polygon
reduction; editing capabilities; flat and
smooth shading; wireframe and shaded
viewing options; surface improvement
with refine operations; and add-and-
move-points operations.

Decimator works on Windows 95,
Windows NT, and Silicon Graphics
workstations. The suggested retail price
is $295.
■ Raindrop Geomagic Inc.

Champaign, Ill.

(800) 251-5551 / (217) 239-2551

http://www.geomagic.com

G A M E D E V E L O P E R A U G U S T 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

6

BIT BBBB LLLL
N E W S F R O M T H E W O R L D

P O R T A L S I T E S on the web just awoke to
the luring power of games. Excite and
Infoseek announced alliances with TEN to
offer Java-based multiplayer parlor games.
Both sites now offer Spades, Euchre,
Hearts, Chess, Checkers, and various word
games, with more on the way. Excite plans
to use TEN’s automated ranking system and
host tournaments as well.
S E G A O P E N E D I T S K I M O N O and
revealed details about its upcoming
Windows CE-based Dreamcast console,
which launches in the fall of 1999 in
America. The 128-bit console features a
Hitachi RISC processor, PVRSG graphics
hardware, a Yamaha 3D sound chip sup-
porting 64 audio channels, and has built-in
networking features. An interesting
Dreamcast feature is its visual memory sys-
tem, a console memory card that doubles as
the world’s smallest LCD-based portable
game device.
P A R R Y I N G S E G A ’ S A N N O U N C E-

M E N T , VM Labs let out some information
about Project X. Project X is essentially an
embedded technology which will be
licensed out to consumer electronics com-
panies for use in devices like home DVD
players, digital satellite receivers, and set-
top boxes beginning in 1999. Motorola has a
non-exclusive license to develop, manufac-
ture, and sell semiconductors and systems
based on the VM Labs technology. Toshiba
and Thompson Consumer Electronics (mak-
ers of GE, RCA, and ProScan brands) will
incorporate Project X technology into prod-
ucts next year, and Activision, Capcom,
Psygnosis, Hasbro, and Berkeley Systems
are working on content.
P E T E R L I N C R O F T , a senior programmer
for Totally Games who worked on
LucasArts’ X-WING VS. TIE FIGHTER, X-WING,
and TIE FIGHTER has left to form Ansible
Software in Berkeley, CA. Ansible will spe-
cialize in the science fiction genre, and

I N D U S T R Y
W A T C H
I N D U S T R Y
W A T C H

b y A l e x D u n n e

Massively Multiplayer SDK
VR•1 INC., a developer of massively
multiplayer online entertainment,
announced that its VR•1 Conductor SDK
is now available.

The SDK, a component of the VR•1
technology suite, allows you to build
massively mulitplayer games on the
VR•1 Conductor platform, which powers
online-only games such as MICROSOFT

FIGHTER ACE. VR•1 Conductor lessens
latency in online gaming by optimizing
packets, setting bandwidth limits,
accommodating varying modem speeds,
and monitoring client and server CPU
and network performance. It also facili-
tates network administrative functions
such as game management, security, and billing. VR•1 Conductor SDK users can
also take advantage of VR•1’s Global Game Alliance, a strategy for partnering con-
tent developed on this platform with online gaming providers around the world.
The charter members of the Alliance are six network providers that have endorsed
VR•1 Conductor technology: Sony Communication Network in Japan;
Bertelsmann Game Channel in Germany; British Telecom’s WirePlay in England;
Samsung SDS and DACOM in The Republic of Korea; and Videotex Netherlands
and KPN Telcom’s Online Service in the Netherlands. VR•1 expects to announce
new alliance members in the coming months.
■ VR•1 Inc.

Boulder, Colo.

(303) 546-9113

http://www.vr1.com

Cockpit view from MICROSOFT FIGHTER

ACE, which is powered by the VR•1

Conductor platform.

Geometry Box II
GEOMETRIC COMPUTING has
released the Geometry Box II SDK, a
real-time 3D software development kit.
The SDK contains three distinct ele-
ments: the Geometry Box Architect II
Database Development Software, the
Geometry Box InfiniteMotion II Real-
Time Rendering and Interactivity
Software, and the Geometry Box Class
Libraries II.

These components are used to pro-
duce different elements of interactive
software applications. The Architect
software creates virtual worlds (databas-
es) that players explore. You can place-
actors in the world and apply pro-
grammed behaviors to the actors. You
can also use the Architect to store work-
ing versions of databases, and to create
optimized, real-time ready versions of
databases that InfiniteMotion can load
and play back. The programming
libraries are used to customize different
aspects of InfiniteMotion, and to create
plug-in behaviors that Architect can
load. The key use for the programming
library is the creation of behaviors that
you can apply to actors and execute in
InfiniteMotion. Geometric claims that
Geometry Box streamlines the develop-
ment process through its integration of
tools and conversion processes with
real-time rendering. Geometry Box II
can be used for PC and arcade develop-
ment, and has a suggested retail price of
$595 (plus $20 shipping).
■ Geometric Computing

West St. Paul, Minn.

(800) 334-8494

http://www.geometricom.com

K6-2 with 3DNow!
AMD introduced the AMD-K6-2
processor featuring 3DNow! at this
year’s E3 in Atlanta.

The AMD-K6-2 processor combines
3DNow! instructions and superscalar

MMX capability to increase 3D graphics
performance. By improving the x86
processor's ability to handle floating-
point calculations, 3DNow! technology
lessens the gap between processor and
graphics accelerator performance and
eliminates the bottleneck at the begin-
ning of the graphics pipeline. 3DNow! is
a set of 21 new instructions that use
SIMD (Single Instruction Multiple Data)
and other performance enhancements
to clear out the bottleneck between the
host CPU and the 3D graphics accelera-
tor card. The instruction set accelerates
the front-end physics and geometry
functions of the 3D graphics pipeline to
enable full performance of the accelera-
tors. This clears the way for improved
3D and multimedia performance. The
DirectX 6, OpenGL 1.2, and 3Dfx Glide
APIs are all optimized for 3DNow!
technology.

The AMD-K6-2 processor is currently
available. The AMD-K6-2/333 is priced
at $369; the AMD-K6-2/300 at $281;
and the AMD-K6-2 at $185, each in
1,000-unit quantities.
■ AMD

Sunnyvale, Calif.

(800) 222-9323 / (408) 749-5703

http://www.amd.com

h t t p : / / w w w . g d m a g . c o m A U G U S T 1 9 9 8 G A M E D E V E L O P E R

7

AAAA SSSS TTTT SSSS
O F G A M E D E V E L O P M E N T

plans to release an action simulation title
in time for Christmas 1999.
C R E A T I V E T E C H N O L O G Y ’ S R E V-

E N U E S and gross margins for its fourth
quarter (ending June 30) fell short of ana-
lysts’ expectations. Revenues for the quar-
ter are anticipated to be about 10 percent
lower than revenues for the same quarter
last year. Despite the strong demand for its
Voodoo2-based cards, the company said
that the recent collapse of prices in the
low- and mid-range 2D/3D graphics market
reduced Creative’s margins and sales.
T H E A C A D E M Y of Interactive Arts and
Sciences (AIAS), a sister to the Academy of
Motion Picture Arts and Sciences (think
Oscars) handed out its first-ever Interactive
Achievement Awards at E3 in Atlanta. The
biggest winner of the evening was Rare’s
GOLDENEYE 007, which received three
awards, including “Interactive Title of the
Year.” Full IAA results are available at
www.interactive.org.
A C T I V I S I O N just inked some nice licens-
ing deals. First, it signed on Marvel’s X-
MEN, which will debut next spring as a 3D
fighting game for the PlayStation. Next it
landed the rights to White Wolf’s
“Vampire” role playing universe, which is
second only to AD&D in worldwide players.
Nihilistic will turn that one into a 3D RPG
for release in the fall of ’99. Finally,
Activision landed rights to the movie, The
Fifth Element.
T H E I D S A released an economic impact
report about the interactive entertainment
(IE) industry. First, it states that the comput-
er and video game industry (a subset of the
overall IE industry) racked up $5.1 billion in
retail sales last year, and generated anoth-
er $500 million on video game rentals.
Second, the videogame and computer game
industry grew over 35 percent in ’97, mak-
ing it the fastest growing segment of the
entertainment industry — ahead of records,
movies, and books. Third, the IE industry
directly employs at least 50,000 US workers
(up 18 percent from two years ago) and
17,000 abroad. Finally, total R&D spending
in the industry reached $2b in 1997, and the
average company invested 30 percent of its
equity funding into R&D.

Correction. The Bit Blasts section of the

June 1998 issue contained an announce-

ment of the new Miles Sound System

4.0 from RAD Game Tools. The phone

number listed for RAD was incorrect.

The correct number is (801) 322-4300.

It felt to me as though games had real-
ly hit the big time. I’m not talking
about when the press declared a mar-
riage between Hollywood and the
games industry a couple of years ago.
That was just a brief, over-hyped flash
of what was to come. What has really
happened since then is that game
development has become a major

force in computer graphics technology
and artistry.

For years, I’ve searched through
computer graphics literature trying to
improve my craft. Up until now, I’ve
generally found game graphics
between five and twenty years behind
the state-of-the-art in computer graph-
ics. When we were using Bresenham’s
routines to scan convert a polygon,
they were trimming NURBS surfaces.
When we were applying an affine tex-
ture to these polygons, they were
applying specular lighting and bump
mapping to an alpha-blended, perspec-
tive-correct textured micro-polygon.
But we’ve been steadily catching up.

The Hardware

M uch of our recent burst of speed
has come from the consumer 3D

hardware market. Affordable, high per-
formance 3D hardware has brought us

power that was previously only avail-
able in the realm of the Reality Engines
and graphics supercomputer worksta-
tions. This past year, we’ve seen the
ante upped time and time again. We are
now at the point where the Christmas
offerings from all the 3D card manufac-
turers should come very close to Brian
Hook’s dream in his September 1997

column (“All I Want for Christmas ‘98
Is a Hardware Accelerator That Doesn’t
Suck”). In fact, many of the offerings
from the card vendors are exceeding
everyone’s expectations.

Let’s take a look at the fall offerings
in consumer 3D hardware shown at the
CGDC this year.

Z-Buffering

L ast year, we all agreed that a 16-bit
Z-buffer was a reasonable baseline

for all 3D consumer hardware for 1998.
But it was hardly ideal. Many applica-
tions on the market suffer from Z-alias-
ing artifacts even on these 16-bit Z-
buffers. When you’re creating a game
that requires resolution of near ele-

ments as well as distant objects, 16 bits
of Z (or even W) are not enough. So,
what did the card manufacturers have
to say about this problem?

3Dfx was prominently displaying its
Voodoo2-based boards. This board still
uses 16 bits for the depth buffer.
However, the buffer is now a 16-bit
floating point number, and 3Dfx has
added the ability to use this as a W-
buffer, effectively increasing the far
view Z precision.

S3 was the surprise of the show. After
taking more lumps than the President
last year, S3 came out with a shocker. I
was one of the many who, when told
that I needed to visit S3’s booth, said
“Yeah, right...” I was then told that I
really needed to check it out, and boy,
am I glad I did. Their Savage 3D made
quite an impression. The display of
TUROK running on a Savage 3D and
beating Voodoo2 in performance was
quite a sight. But what really interested
me was the support for 24-bit depth and
color buffers. As of the CGDC, these fea-
tures were not yet being exercised, but I
look forward to seeing them in action.

Nvidia wasn’t showing the new TNT
board on the show floor (it was shown
to selective people behind closed doors),
but the numbers they were quoting
couldn’t be ignored. The full-featured
24-bit Z-buffer should effectively elimi-
nate most Z-aliasing problems.

Matrox was showing their new MGA-
G200 card with a full 32-bit Z. However,
they also were awaiting drivers to really

Looking Forward with a Backward

Glance at the CGDC

A nother Computer Game Developer’s Conference is over. I spent lots of

time talking to friends, checking out the hot new products, and gener-

ally catching up on the state of the industry. This year, I returned feel-

ing more enthusiastic than ever about the game business.

b y J e f f L a n d e rG R A P H I C C O N T E N T

G A M E D E V E L O P E R A U G U S T 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

8

I’m not talking about when the press declared
a marriage between Hollywood and the games
industry a couple of years ago. That was just a
brief, over-hyped flash of what was to come.

Is coming up with new technology all that Jeff Lander and the crew at Darwin 3D do
at their home on the Digital Riviera? Mostly. But Jeff can also be seen helping in the
rehabilitation of Marine Mammals along the So Cal coastline.

put the 32 bits through their paces. It’s
not clear to me at this time if this card
uses the full 32 bits for Z or if the Z-
buffer is 24 bits with 8 bits for a stencil,
like the Nvidia TNT.

The NEC Power VR Second
Generation (PVRSG) doesn’t really have
a Z-buffer, but it does use 32 bits of pre-
cision to handle polygon sorting. I
haven’t tried one of these boards out
yet, so it’s tough to say how that will
compare with traditional Z-buffering.

Color Buffer

W e’ve seen the 16-bit color buffer
become the standard for con-

sumer hardware this year, but it has
problems. Anyone who has rendered a
scene with smooth gradients has wit-
nessed the banding problems associated
with 16-bit graphics. But a hidden prob-
lem is the one associated with multipass
rendering. As fill rates increase and two-
pass texturing becomes more common,
alpha blending will be used more and
more. With only 16 bits of color preci-
sion, severe quantization errors can
occur. An increase to 24 bits for color
reduces this effect tremendously.

Another problem with 16-bit color
buffers is that there is nowhere to store
alpha information per pixel. This means
that in order to render alpha-blended
scenes correctly, the polygons need to
be drawn in the correct order. All alpha-
blend textures must be drawn after any
polygons behind them. Two passes
through your polygon database are
sometimes necessary to get this order
correct. If several alpha-blended textures
overdraw each other, those polygons
must be sorted in order to be drawn cor-
rectly. By storing 8 bits of alpha in the
32-bit color buffer, these considerations
are eliminated.

There is good news on this front as
well. The S3 Savage 3D and NEC PVRSG
cards allow a 24-bit color buffer, and the
Nvidia TNT and Matrox G200 cards sup-
port 32-bit buffers with full 8-bit alpha
buffering. Figures 1A and 1B demon-
strate the difference between a 16-bit
image with 1 bit of alpha and a full 24-
bit image with 8 bits alpha, both on the
Nvidia RIVA 128.

Image Quality

B ilinear filtering is now the norm
for 3D accelerated hardware. The

Voodoo2, Matrox G200, and S3 Savage
3D all add single-pass trilinear filtering.
The Nvidia TNT and NEC PVRSG add
anisotropic filtering for even better
image quality and less texture distor-
tion in polygons viewed at an angle. All
these cards now support per-pixel MIP-
mapping. Lack of per-pixel MIP-map-
ping was the most noticeable graphics
problem with the Nvidia RIVA 128, and
thankfully, the TNT corrects this.

The display resolutions are also going
up. Game developers can really start to
consider much greater resolutions.
Cards were displaying accelerated
images at as high as 1,600×1,200 in 32
bits of color.

Texture Compression

A GP has allowed greater access to
texture memory then ever before,

but it’s still not as fast as storing textures
in chip VRAM. In order to maximize the
number of textures that can stay in
VRAM, some hardware cards have cho-
sen to implement hardware texture
decompression. Both the Voodoo2 and
the Matrox G200 cards support forms of
hardware texture decompression. S3
supports a texture decompression
method that has been accepted for use
in Microsoft’s DirectX. However, it’s
unclear to me how this would become a
standard, as S3 is seeking a patent on
the technique. I don’t see any great
incentive for any other hardware com-
pany to support their standard. As a
developer trying to make everything

work on every card, I would hate to see
each card manufacturer implement a
completely different compression
method. Unfortunately, right now,
that’s the way things are shaping up.

Texture Restrictions

I t seems that restrictions on the size
of textures may soon be a thing of

the past. Both the Nvidia TNT and S3
Savage 3D support textures up to
2,048×2,048 textures with no size
restrictions. Is anyone else out there
starting to think real-time film resolu-
tion? I know I am.

Multitexture Support

Q UAKE has started everyone think-
ing quite a bit about multipass

rendering. Hardware companies are tak-
ing this very seriously. They’re squeez-
ing out the maximum fill rate possible
from their chips in order to handle the
overdraw necessary for multipass.

The 3Dfx Voodoo2 was first out of the
gate supporting two-pass rendering of a
single polygon in hardware. By allowing
two textures to be combined in one
pass, not only does it eliminate vertex
transformations, but it also effectively
doubles its fill rate. These calculations
are actually done internally in 32-bit
precision, eliminating the quantization
errors that can occur when textures are
blended in a 16-bit color buffer.

The Nvidia TNT is the second con-
sumer card to announce two-pass ren-
dering, with an even faster fill rate than
the Voodoo2. This, combined with its
deeper color buffer, should allow the

G R A P H I C C O N T E N T

G A M E D E V E L O P E R A U G U S T 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

10

F I G U R E S 1 A A N D 1 B . A demonstration of the difference between a 16-bit

image with 1 bit of alpha (1A), and a full 24-bit image with 8 bits of alpha (1B)

both on the Nvidia RIVA 128.

creation of tremendously compelling
images.

DirectX 6, which was released the
week of the CGDC in beta form, con-
tains API support for multitexture ren-
dering. Developers can detect if the
hardware supports rendering of multi-
ple textures in a single pass. You can see
a sample image of multitexture render-
ing in action in Figure 2.

As multipass rendering in consumer
hardware becomes common, developers
can start to exploit the rendering possi-
bilities. Multipass rendering can make a
difference in your application. Take a
look at the images in Figure 3A and
Figure 3B. Figure 3A is a scene lit with-
out shadow maps and Figure 3B shows
the maps applied. The resulting change
of mood in this scene dramatically
changes the player’s experience. Look
forward to effects such as shadow maps,
environment maps, and detail textures
showing up all over the place. DirectX 6
even supports what they Microsoft
terms “bump mapping” by using multi-
pass techniques. This green light from
Microsoft has caused all the hardware
vendors to add “Hardware Bump
Mapping” to their product sheets. I’m
sure this technique is nothing like what
Jim Blinn had in mind when he coined
the term in 1978. Still, this “embossed
texture mapping” is quite effective. You

can see a sample 3Dfx demo of the tech-
nique in Figure 4.

Programming API

B oth Direct 3D and OpenGL were
visible all over the place at the

CGDC. Questions regarding card man-
ufacturers’ support for OpenGL were
clearly addressed by all the drivers
shown, either through a mini client
driver (MCD) or full installable client
driver (ICD). I can only hope that these
drivers will put an end to the constant
discussion of Direct3D vs. OpenGL in
the development community. It seems
that, finally, the choice is completely
up to the developer, at least until
Fahrenheit rears its ugly head again.

Geometry Acceleration

A ll of the next-generation 3D accel-
erators are moving what is called

triangle setup into hardware. These are
the triangle calculations that the card
must make before applying the texture.
The addition of full triangle setup has
improved speed quite a bit, however,
the cards still rely on the on-board CPU
to handle geometry and lighting pro-
cessing.

In order to speed this up, geometry
and lighting will need to move to hard-
ware as well. We saw our first glimpse
of this happening at the show. While
it’s not a consumer card, the 3Dlabs
GLINT GMX board demonstrated the
complete OpenGL pipeline accelerated
in hardware. The board handled full-
view frustrum clipping, 16 dynamic
light sources, and support for all
OpenGL rendering primitives com-
pletely in hardware.

This method of allowing a coproces-
sor to handle all the transformation
and lighting calculations is fairly con-
troversial in PC programming circles.
Questions linger about the need for a
general lighting model or the transfor-
mation speed in the era of ever-expand-
ing CPU performance. However, the
concept of a transformation and light-
ing coprocessor is familiar ground for
PlayStation developers. Certainly, the
option is attractive assuming the price
drops into the consumer’s grasp.

The other benefit of committing the
transformation and lighting model to
hardware is that it opens the door to a
true Phong shading model and bump
mapping in 3D accelerators. These
effects require that the hardware have
the camera matrix and light informa-
tion. The 3Dlabs GMX really addresses
none of these issues, but certainly
opens the door to the possibility. It
should make us all consider what it is
we want from the next generation of
3D hardware. Which brings me to...

The Software

N ow that SIGGRAPH is here again,
it will be interesting to see how

SIGGRAPH compares to the CGDC.
This year’s game conference really
pushed the envelope with discussions
of new computer graphics technology.
The freedom brought by the new wave
of hardware will provide an unprece-
dented amount of bandwidth in games
for new techniques. It really seemed to
me that the theme of the CGDC, at
least from a technology standpoint, was
scalability — providing the richest,
most realistic experience possible on all
levels of end-user hardware.

G R A P H I C C O N T E N T

G A M E D E V E L O P E R A U G U S T 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

12

F I G U R E 2 . Multitexture rendering in

action with DirectX 6.

F I G U R E 4 . Embossed texture map-

ping from the 3Dfx Voodoo2.

F I G U R E S 3 A A N D 3 B . 3A is a scene lit without shadow maps, 3B has shadow

maps applied, both on Nvidia TNT.

Why is this necessary? Well, hard-
ware is moving ahead so quickly, games
cannot keep up. Consumers are buying
new hardware to run the latest games,
and there’s no way for them to make
the experience any better. 3D games are
running on today’s hardware at as high
as 1,600×1,200 screen resolution, in 32-
bit color, with all features turned on at
60 frames per second or more. This
means that the game has failed at being
able to provide a better experience for
players on these new systems. It’s not
enough to run the game at higher reso-
lution and color depth at faster frame
rates. Games should be customizable to
the point that they can drag any hard-
ware down to its knees. This is what
will give a game legs to stay on the cut-
ting edge through more than one hard-
ware production cycle.

So how do we do this in a real-time
3D game? Scalability. First of all, you
need to represent your 3D models in
such a way that they can scale to the
hardware dynamically. The concept of
level of detailing (LOD) in 3D models
has been around for a while. Many of
the games out there today have mod-
els in several LODs to aid performance.
But to make the game truly scaleable,
you need many levels of detail. In
order to avoid the popping effect
(when models change from one LOD
to another), it’s necessary either to
blend between models, or to provide a
form of continuous level of detail. The
game community seems to accept this
concept. At the CGDC, there were at
least five sessions on forms of continu-
ous LOD generation of 3D models.
They seemed to fall into one of two
camps — multiresolution modeling or
higher-level primitives.
MULTIRESOLUTION MODELING. With mul-

tiresolution modeling, a mesh is made
in the highest resolution and is algo-
rithmically reduced as needed to the
desired level. The work Microsoft has
been doing in progressive meshes, led
by Hughes Hoppe, has brought this
technology to the attention of game
developers. At the CGDC, Stephen
Junkins of Intel gave a very good talk.
He spoke about another method for cre-
ating these meshes based on the work
of Michael Garland and Paul Heckbert.
Intel has teamed up with
MetaCreations to define an open file
format for multiresolution models. It’s
unclear to me what they mean by

“open” exactly, but a standard format
that could be used by tool vendors, as
well as developers, would be very help-
ful. MetaCreations was also demon-
strating a tool that could be used to cre-
ate these models. You can see a sample
of several LODs generated from this
tool in Figures 5A, 5B, and 5C.

In my opinion, the biggest drawback
to this technique is the lack of artistic
control as the algorithm reduces the
mesh. This leads to a situation where,
given the same polygon budget, a talent-
ed modeler can create a much better
low-polygon mesh than the algorithm
can generate. However, it seems to me
that these routines can be modified to
allow artistic guidance in the tools. I will
explore this idea more in a future issue.

HIGHER LEVEL PRIMITIVES. The other big
area of discussion was “Is it time to
abandon polygons?” That is, in order to
create truly scaleable environments, is
it necessary to create these worlds and
objects out of a higher form of primi-
tive? Several sessions were devoted to
the topic of creating worlds with
NURBS and other surfaces, and then
converting these to polygons (tessellat-
ing) at run-time to the desired LOD.
Michael “Sax” Persson of Shiny dis-
cussed a method of converting a polyg-
onal character to a collection of primi-
tive cylinders for MESSIAH. Creating
models of higher-level primitives that

can be quickly converted to polygons is
tricky. This is clearly an active area for
research in the game industry, and I
will be looking into these techniques,
as well as many others, in the coming
months.

Enjoy SIGGRAPH, and we’ll get back
to coding some of this new technology
next month. ■

h t t p : / / w w w . g d m a g . c o m A U G U S T 1 9 9 8 G A M E D E V E L O P E R

13

For information on the 3D cards men-
tioned, contact the manufacturers.
www.3dfx.com

www.metastream.com

www.nvidia.com

www.powervr.com

www.s3.com

www.real3d.com

www.matrox.com

www.3dlabs.com

For software scalability information check
out:
www.metacreations.com

www.shiny.com

http://www.research.microsoft.com/re

search/graphics/hoppe/

Michael Garland’s web page at
http://www.cs.cmu.edu/~garland

Paul Heckbert’s web page at
http://www.cs.cmu.edu/afs/cs/user/p

h/www/heckbert.html

FF OO RR FF UU RR TT HH EE RR II NN FF OO

F I G U R E S 5 A , 5 B , A N D 5 C . High, medium, and low LOD models generated

with the MetaCreations tool.

It’s not enough to run the game at higher res-
olution and color depth at faster frame rates.
Games should be customizable to the point
that they can drag any hardware down to its
knees...

If you didn’t read last month’s column, this one may be
tough slogging for you — that’s why there’s a review sidebar
(“What is Texture Blending?”). Once we’re prepared, we’ll
start with a technical introduction to texture blending proce-
dure in OpenGL, then work through the OpenGL 1.2 specifi-
cation itself, line by line. After that, we’ll tackle some exam-
ples, and finish with some applications for all of this
knowledge.

Texture Blending in OpenGL Simplified

I n general, textures are blended in three steps: fetching
the textures to blend, setting the blending method, and

causing the blended texture to draw. Simple, right? Here’s a
little more detail about how the blending method is con-
trolled in OpenGL. First, grab a pixel from each of the two
textures we’re going to blend. Add the two pixels after multi-
plying each one by its own translucency. Then put the
resulting pixel on the screen.

The second step is where the real
action is. We artists want to know how
the blending method is controlled, and
how the math works inside it. The play-
ers are the two input pixels (named ssoouurrccee
and ddeessttiinnaattiioonn), their personal factors
(named ssffaaccttoorr and ddffaaccttoorr), and an out-
put pixel. Here’s the Sacred Blend
Formula that relates these:

oouuttppuutt__ppiixxeell == ssoouurrccee ** ssffaaccttoorr ++ ddeessttiinnaattiioonn **

ddffaaccttoorr

What’s sacred about this formula? Aside
from the fact that it’s part of the OpenGL
1.2 specification, the magic is speed. If
you’re working on a hardware-accelerated
3D game, the 3D accelerator chip can cal-
culate this formula. Hardware calculation
means that you can use the Sacred Blend
Formula all over the place without slow-
ing down the game. However, the calcu-
lation is being done in hardware, so it’s
essentially hard-wired, and so unlike
most formulas, we can’t simplify it.

We must use all the players in the for-
mula because they’re hard-wired, but we

can work around them by making them useless. For exam-
ple, if we want to add but not multiply, we set ssffaaccttoorr and
ddffaaccttoorr to 1. We want to do that during an additive blend, for
example. Say we have a light gray pixel (80 percent white)
and a dark gray pixel (10 percent white), and we want to
additive blend them. In this case, we set ssffaaccttoorr and ddffaaccttoorr to
1, and then run the formula:

oouuttppuutt__ppiixxeell == 8800%% ** 11 ++ 1100%% ** 11

oouuttppuutt__ppiixxeell == 8800%% ++ 1100%%

oouuttppuutt__ppiixxeell == 9900%%

Wow, that was easy! No problem! Let’s do a multiply
blend. For this, we want to eliminate certain terms and mul-
tiply pixel values.

oouuttppuutt__ppiixxeell == 8800%% ** 1100%% ++ 1100%% ** 00

oouuttppuutt__ppiixxeell == 8800%% ** 1100%%

oouuttppuutt__ppiixxeell == 88%%

b y J o s h W h i t eA R T I S T ’ S V I E W

G A M E D E V E L O P E R A U G U S T 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

14

Josh White runs Vector Graphics, a real-time 3D art production company. He wrote
Designing 3D Graphics (Wiley Computer Publishing, 1996), he has spoken at the
CGDC, and he cofounded the CGA, an open association of computer game artists.
You can reach him at column@vectorg.com.

Advanced Texture Blending

T his month, we artists aren’t going to mess around with vague analogies —

no, we’re going to get to the heart of the matter. If we’re going to claim to

be experts, we must sneak onto the programmers’ turf, climb down into

the mechanical heart of the beast, and grasp the 3D API specification itself.

T exture blending is

the combination of

two textures on a

3D model. QUAKE

lighting, translucent textures,

glowing light-sabers — these

are all uses for texture blends.

Figure 1 is my standard exam-

ple of texture blending.

As last month’s column

explained, blending is best

understood by looking at what

happens to a single pixel. For each pixel in an alpha blend, the computer checks if the

alpha channel is white. If so, it outputs the pixel from the foreground bitmap. If not, it

discards the foreground pixel and doesn’t output anything, which leaves the back-

ground pixel unchanged.

What is Texture Blending?

F I G U R E 1 . Texture blending combines two

bitmaps.

Devious, eh? We used the second pixel’s value (10 per-
cent) where the ssffaaccttoorr went before. Now that we’re feeling
cocky, let’s jump into the deepest end we can find.

ggllBBlleennddFFuunncc Explained

T he function ggllBBlleennddFFuunncc is at the heart of texture blend-
ing. If you can understand exactly how it works, then

you can understand the lowest level of texture blending pro-
gramming. Now we’ll tour the OpenGL 1.2 specification.
The first line reads

vvooiidd ggllBBlleennddFFuunncc((GGLLeennuumm ssffaaccttoorr,, GGLLeennuumm ddffaaccttoorr))

If you’ve never seen C code, you’ll be confused by that
line. The word vvooiidd means that the function doesn’t return
anything; it just runs without reporting back. The stuff in
parentheses tells us that the function takes two inputs, ssffaacc--
ttoorr and ddffaaccttoorr. The word GGLLeennuumm before ssffaaccttoorr and ddffaaccttoorr
means that they are a type of data called “enumerated.”

Here’s how the OpenGL 1.2 specification describes this
function:

ggllBBlleennddFFuunncc defines the operation of blending when it is
enabled. ssffaaccttoorr specifies which of nine methods is used
to scale the source color components. ddffaaccttoorr specifies
which of eight methods is used to scale the destination
color components.

Note that this passage has introduced some interesting
terminology. “Scale” means modifying a color’s RGB values.
If it had said “scaling down,” it would have meant darken-
ing the color.
WHAT IS ENUMERATION? Enumerated means an ordered list of
names. For example, eennuumm ccoolloorr == ((rreedd,, ggrreeeenn,, bblluuee)) could
define color to be one of three color-names. Enumerated
data types aren’t really smart; they’re just dumb lists. If we
set ccoolloorr==rreedd,, there wouldn’t be any connection between
the word “red” and RGB 1,0,0; it just stored as the first
item in the enumerated list. So why not just store a num-
ber instead of a name? Names provide clarity in coding.
Enumerated data types are there for the convenience of the
coders.

So what are these possible enumerated types? Here’s what
the specification says:

ssffaaccttoorr:: Specifies how the red, green, blue, and alpha
source-blending factors are computed. Nine symbolic
constants are accepted: GGLL__ZZEERROO,, GGLL__OONNEE,, GGLL__DDSSTT__CCOOLLOORR,,

GGLL__OONNEE__MMIINNUUSS__DDSSTT__CCOOLLOORR,, GGLL__SSRRCC__AALLPPHHAA,, GGLL__OONNEE__MMIINNUUSS__SSRRCC__AALLPPHHAA,,

GGLL__DDSSTT__AALLPPHHAA,, GGLL__OONNEE__MMIINNUUSS__DDSSTT__AALLPPHHAA,, and GGLL__SSRRCC__AALLPPHHAA__SSAATTUU--

RRAATTEE..

So, it says that alpha is being treated like a fourth color
channel. That’s interesting, because it’s not quite how I
expect artists to conceptualize alpha channels. To me, an
alpha channel is more like a separate image that is associated
with the colored image rather than a fourth color. This is
important because it points out a difference in artistic think-
ing that is happening at the code level. Artists should be

involved in designing this techie stuff so that they have
input on the architecture in which they work.

For ddffaaccttoorr,, the same types are listed, except that
GGLL__SSRRCC__AALLPPHHAA__SSAATTUURRAATTEE isn’t included. It’s an interesting list, and
we can guess a few meanings just from the names, but it’s
not definitive. Let’s keep going with the specification.

[There are] eleven possible methods... Each method
defines four scale factors, one each for red, green, blue,
and alpha. In the table and in subsequent equations,
source and destination color components are referred to
as ((RRss,, GGss,, BBss,, AAss)) and ((RRdd,, GGdd,, BBdd,, AAdd))..

Note that color components are like what we call “chan-
nels” in Photoshop. That wasn’t so bad, right? Don’t worry,
it gets harder:

They are understood to have integer values between zero
and ((kkRR,, kkGG,, kkBB,, kkAA)), where kkssuubbcc == 22^̂mmssuubbcc -- 11 aanndd ((mmRR,, mmGG,,
mmBB,, mmAA)) is the number of red, green, blue, and alpha bit-
planes.

Wow, that’s a heck of an explanation there. It’s as precise
as you can get in English, but it leaves a bit to be desired if
you’re not a coder. Translated to casual English, it means
that each color is a number between 0 and a maximum. The
maximum depends on the color depth of the pixel.
WHAT’S COLOR DEPTH? Color depth refers to the idea that an
image has a thickness or depth, measured in bits. More bits
mean more accurate colors in the picture (and more memory
used). Here are some examples: if we have 32-bit color, we’ve
got 8 bits for red, green, blue, and alpha. With 8 bits for red,
we can have 255 unique values, from 0 to 255 (as opposed to
-127 to 128 or something weirder). Here’s another example:
if we’re working in 16-bit color, we could have 4 bits for each
channel, which is known as 4444. With 4444 color, we have
16 separate alpha values that range from 0 (fully opaque) to
15 (fully transparent). There’s another kind of 16-bit color
called 5551, which gives 5 bits for each color channel, but
only 1 bit for alpha. So if we had 5551 16-bit color, our red
channel would have 32 possible values (0-31), but our alpha
could only have two possible values, 0 and 1.

Now I’m sure you’re wondering, what about 8-bit color?
It’s special because 8 bits would only allow 2 bits (four colors)
per channel, it uses a palette or index system instead of sim-
ply storing the RGB values. In fact, it’s so special that blend-
ing can’t handle it at all. The specification says so in the
notes section: “Blending affects only RGB rendering. It is
ignored by color index renderers.”

Still following along? We’re getting to the good part here.

PPaarraammeetteerr ((ffRR ,, ffGG ,, ffBB ,, ffAA))

GGLL__ZZEERROO ((00,, 00,, 00,, 00))

GGLL__OONNEE ((11,, 11,, 11,, 11))

As you probably guessed, GGLL__ZZEERROO and GGLL__OONNEE are simply the
minimum and maximum values. You can think of GGLL__ZZEERROO as
a fully transparent, black pixel, and GGLL__OONNEE as a completely
opaque, white pixel. You detail-obsessed people should note
that these values range from 0 to 1, not 0 to 255.

A R T I S T ’ S V I E W

G A M E D E V E L O P E R A U G U S T 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

16

GGLL__SSRRCC__CCOOLLOORR ((RRss // kkRR ,, GGss // kkGG ,, BBss // kkBB ,, AAss // kkAA))

O.K., here’s a real one to study. What the heck is that line
of gibberish? Being artists, we’ll start with some guessing.
First, we’d guess about the name. SSRRCC__CCOOLLOORR probably means
source color, right? Let’s see. RRss is the red channel of the
source image. kkRR is the maximum value for red. If we divide
them, we get the red channel converted to a number
between 0 and 1. For example, let’s say we had a blue-purple
24-bit pixel with a 50 percent alpha. Its RGBA channels are
16, 0, 255, and 128. If we divide the red channel, 16, by its
maximum value, 255, we get 0.0625 for red. Green is obvi-
ously zero, and blue is 1, and alpha is 0.5. So GGLL__SSRRCC__CCOOLLOORR
would give (0.0625, 0, 1, 0.5) for our pixel. What a boring
function, huh? All it does is translate our pixel’s values into
a 0 to 1 range. The color hasn’t changed. Just you wait; it
gets trickier.

GGLL__OONNEE__MMIINNUUSS__SSRRCC__CCOOLLOORR ((11,, 11,, 11,, 11)) --

((RRss // kkRR ,, GGss // kkGG ,, BBss // kkBB ,, AAss // kkAA))

This one’s a little more interesting. It inverts the pixel,
including the alpha channel. You can see that the second
component is the same as GGLL__SSRRCC__CCOOLLOORR, so we have the RGBA
in a 0 to 1 range, and then we subtract each value from 1.
For example, our blue pixel’s RGBA of 16, 0, 255, 128 gets
converted to (0.0625, 0, 1, 0.5) as before. Then we subtract
each part from 1 to get an inverted color: 1 - 0.0625 = 0.9375
for red, 1 - 0 = 1 for green, 1 - 1 = 0 for blue, and 1 - 0.5 = 0.5
for alpha. The result is (0.9375, 1, 0, 0.5), which is a lovely
shade of yellow.

In this example, the alpha channel didn’t happen to
change, but normally we would find that opaque objects
become transparent as well as opposite colors. This is weird
from an artist’s point of view; when we think “invert,” we’re
usually thinking of color, not visibility. Again, I say this is
an argument for artist involvement in low-level architecture
design.

GGLL__DDSSTT__CCOOLLOORR ((RRdd // kkRR ,, GGdd // kkGG ,, BBdd // kkBB ,, AAdd // kkAA))

GGLL__OONNEE__MMIINNUUSS__DDSSTT__CCOOLLOORR ((11,, 11,, 11,, 11)) --

((RRdd // kkRR ,, GGdd // kkGG ,, BBdd // kkBB ,, AAdd // kkAA))

These two functions, GGLL__DDSSTT__CCOOLLOORR aanndd GGLL__OONNEE__MMIINNUUSS__DDSSTT__CCOOLLOORR
are the same as above, but for the destination pixel. Does it
seem strange to distinguish source and destination so care-
fully? You might wonder, “Why not just have
GGLL__OONNEE__MMIINNUUSS__CCOOLLOORR and forget about separating source and des-
tination?” The answer is that we have more control if we can
identify which pixel gets inverted.

GGLL__SSRRCC__AALLPPHHAA ((AAss // kkAA ,, AAss // kkAA ,, AAss // kkAA ,, AAss // kkAA))

This function turns the alpha channel into a grayscale
bitmap by copying the scaled alpha channel ((AAss // kkAA)) into
RGB.

GGLL__OONNEE__MMIINNUUSS__SSRRCC__AALLPPHHAA ((11,, 11,, 11,, 11)) --

((AAss // kkAA ,, AAss // kkAA ,, AAss // kkAA ,, AAss // kkAA))

GGLL__DDSSTT__AALLPPHHAA ((AAdd // kkAA ,, AAdd // kkAA ,, AAdd // kkAA ,, AAdd // kkAA))

GGLL__OONNEE__MMIINNUUSS__DDSSTT__AALLPPHHAA ((11,, 11,, 11,, 11)) --

((AAdd // kkAA ,, AAdd // kkAA ,, AAdd // kkAA ,, AAdd // kkAA))

These three give us the variations on GGLL__SSRRCC__AALLPPHHAA, an
inverted version, and the destination-alpha equivalents.

GGLL__SSRRCC__AALLPPHHAA__SSAATTUURRAATTEE ((ii,, ii,, ii,, 11))

ii == mmiinn ((AAss ,, kkAA -- AAdd)) // kkAA

Now this is the tricky one. Remember that it isn’t avail-
able as a destination blend; it’s only possible for the source
pixel. This function overwrites alpha to solid opaque, then
puts ii, which is some funky formula that seems to use alpha
values, in RGB.

O.K., let’s start deep inside ii:: kkAA -- AAdd is the maximum
alpha minus the destination alpha, which is essentially
inverting the destination alpha. The function mmiinn(()) returns
the smaller of its two inputs. One input is the inverted desti-
nation alpha, and the other is source alpha. The final divi-
sion scales that to 0 to 1. So we’re getting the smaller of the
source or inverted destination, scaled 0 to 1.

We conclude that SSRRCC__AALLPPHHAA__SSAATTUURRAATTEE is used to convert an
alpha channel to a grayscale, using the brightest alpha avail-
able, but we still don’t know what the heck it’s for. We’ll
need more context to determine that.

I’ll spare you the accuracy issues that the specification
describes next. Instead, we arrive at a far more interesting
section: Examples.

Examples

N ow we get to apply some of this hard-earned knowl-
edge. Under the Specification’s Examples section, we

find this little passage:

Transparency is best implemented using blend function
(GGLL__SSRRCC__AALLPPHHAA,, GGLL__OONNEE__MMIINNUUSS__SSRRCC__AALLPPHHAA) with primitives sorted
from farthest to nearest. Note that this transparency cal-
culation does not require the presence of alpha bitplanes
in the frame buffer.

Recall the Sacred Blend formula we saw in the beginning
of the article:

oouuttppuutt__ppiixxeell == ssoouurrccee ** ssffaaccttoorr ++ ddeessttiinnaattiioonn ** ddffaaccttoorr

This means that the specification is recommending that
we do transparency blending like this:

oouuttppuutt__ppiixxeell == ssoouurrccee ** SSRRCC__AALLPPHHAA ++ ddeessttiinnaattiioonn ** OONNEE__MMIINNUUSS__SSRRCC__AALLPPHHAA

Let’s use our familiar example of a blue pixel with RGBA
channels are 16, 0, 255, and 128, and let’s blend it onto a
gray background (RGBA 128, 128, 128, 255). So we know the
source and destination, but what about the factors? We fig-
ure them out, just as we did earlier in this column. We saw
that SSRRCC__AALLPPHHAA is calculated by the formula

SSRRCC__AALLPPHHAA == ((AAss // kkAA ,, AAss // kkAA ,, AAss // kkAA ,, AAss // kkAA))

Plugging in our blue pixel’s alpha value for AAss and using

A R T I S T ’ S V I E W

G A M E D E V E L O P E R A U G U S T 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

18

the maximum possible alpha value for kkAA, we get:

SSRRCC__AALLPPHHAA == ((112288//225555,, 112288//225555,, 112288//225555,, 112288//225555))

Dividing out the result gives us a reassuringly understand-
able answer: 50 percent for everything.

SSRRCC__AALLPPHHAA == ((00..55,, 00..55,, 00..55,, 00..55))

We’ve got one factor done, so let’s do the second one.

OONNEE__MMIINNUUSS__SSRRCC__AALLPPHHAA == ((11,, 11,, 11,, 11)) --

((AAss // kkAA ,, AAss // kkAA ,, AAss // kkAA ,, AAss // kkAA))

Recall that this is simply SSRRCC__AALLPPHHAA subtracted from 1. We’ve
already figured out that SSRRCC__AALLPPHHAA is 0.5, so we see that 1 - 0.5
= 0.5. In other words, OONNEE__MMIINNUUSS__SSRRCC__AALLPPHHAA happens to be the
same as SSRRCC__AALLPPHHAA:

OONNEE__MMIINNUUSS__SSRRCC__AALLPPHHAA == ((00..55,, 00..55,, 00..55,, 00..55))

Now we have all the players in the Sacred Formula. With
these values, we’re ready to hit the calculator.

oouuttppuutt__ppiixxeell == ((1166,, 00,, 225555,, 112288)) ** ((00..55,, 00..55,, 00..55,, 00..55)) ++

((112288,, 112288,, 112288,, 112288)) ** ((00..55,, 00..55,, 00..55,, 00..55))

oouuttppuutt__ppiixxeell == ((88,, 00,, 112288,, 6644)) ++ ((6644,, 6644,, 6644,, 6644))

oouuttppuutt__ppiixxeell == ((7722,, 6644,, 119922,, 112288))

Testing the Results.

W ow, we got an answer! Now we get to the hard ques-
tion: is it a meaningful answer? How would we know

if we screwed some of that math up? This stage is critical to
cementing our knowledge of the process. Our answer is just
a random number unless we believe in it. So how do we test
it? Here are two ways.

First, we reality-check with an artist’s eye. In general, what
would you expect blue blended on a gray background to
look like? I would expect it to be gray-blue, at about the
same brightness, but less saturation, compared to the origi-
nal blue color. After we make our prediction, we compare it
to our calculated result by opening a paint program and
actually creating an image filled with the calculated RGB
value. Yes, the color is reasonably similar to our prediction.

Second , we’ll perform the actual blend process in a paint
program. To do this, we create a new image filled with our
original blue color, then paste it over a second gray image
with 50 percent transparency (see
Figure 2).

We observe the result by using the
color eyedropper tool and looking at
the resulting RGB values. When I did
this, I got RGB of (28 percent, 25 per-
cent, 75 percent). If we normalize our
calculated RGB pixel, we get
Red: 72/255 = 0.282
Green: 64/255 = 0.25
Blue: 192/255 = 0.75
Alpha: 128/255 = 0.50

That means our RGB values would be (28 percent, 25 per-
cent, and 75 percent). Once again, we’ve double-checked our
calculation and found that we’re on target.

Obviously, you don’t need to hand-check every pixel you
blend, but if you truly understand what you’re doing, you
would be able to check any point, work through the math,
and predict the results.

All this double-checking is very important when you start
experimenting with more complicated blending than a sim-
ple 50 percent blend. Unless you understand and predict
your results from blending, you’re just guessing, and you
won’t be able to control your
medium.

Getting Creative

N ow that you have all the basic tools to play with blend-
ing, you’re ready to mess with innovative combina-

tions. Here’s how to do it. Plug various factors such as
GGLL__SSRRCC__AALLPPHHAA into the Sacred Formula and figure out what the
results would be. Here is an additional example, taken from
a recent project I worked on:

ggllBBlleennddFFuunncc((GGLL__ZZEERROO,, GGLL__SSRRCC__AALLPPHHAA));; //// MMoonnoocchhrroommee lliigghhttmmaappss

That formula gives us this:

oouuttppuutt__ppiixxeell == ((ssoouurrccee ** 00 ++ ddeessttiinnaattiioonn ** SSRRCC__AALLPPHHAA))

oouuttppuutt__ppiixxeell == ddeessttiinnaattiioonn ** SSRRCC__AALLPPHHAA

This simply darkens the destination pixel by the alpha
channel of the source. The RGB values in the source are
ignored. Sounds useless, but it could allow you to hide a
lightmap inside a texture that doesn’t need its alpha. You
could ignore the alpha and apply it as a normal texture,
then blend its alpha as a lightmap on a different surface.

Granted, it’s not easy to figure out a really cool new appli-
cation, but if you do, it should be fairly simple to implement
because you’re using existing systems.

Now I know you’re not going to be satisfied until we
address that strange factor SSRRCC__AALLPPHHAA__SSAATTUURRAATTEE. What’s it for?
Anti-aliasing, apparently. Here’s what the OpenGL 1.2 speci-
fication says about it:

Polygon antialiasing is optimized using blend function
((GGLL__SSRRCC__AALLPPHHAA__SSAATTUURRAATTEE,, GGLL__OONNEE)) with polygons sorted from
nearest to farthest.. Destination alpha bitplanes, which
must be present for this blend function to operate cor-

G A M E D E V E L O P E R A U G U S T 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

20

A R T I S T ’ S V I E W

F I G U R E 2 . Double-checking a simple texture blend.

21

rectly, store the accumulated coverage.

What’s All This For?

A s you sneak back out of the belly of the beast with the
knowledge safely stowed in your head and huddle in

your nice artistic hobbit-holes, you may find yourself won-
dering, Why the heck did I bother? What can I do with this
newfound knowledge?

For me, the most important reason to grasp this stuff is so
I truly understand how my medium, real-time 3D, works. By
knowing what’s going on at a low level, I gain intuition and
insight into once-mysterious problems and occurrences that
I encounter. It makes my troubleshooting guesswork much
more accurate.

Second, it’s a power thing. I find the thought of creating
my own blend modes very inspirational, and get a little
wound up when I realize that I could suggest some new
blend mode to my programmer, and thus actually advance
the artistic front into that foreign ground of technicalities a
little farther .
PREDICTING OVERFLOW. Last month, we discussed the problem of
RGB limits or overflow. Pixels have a maximum brightness
(100 percent) and a minimum brightness (0 percent). If we
attempt to assign a value higher than the maximum, it’s
truncated to the maximum. This is designed into the
OpenGL blending functions, as the specification states, “All
scale factors have range [0,1].”

We concluded that when our pixels overflow, we lose
data. There’s nothing wrong with that. As long as we under-
stand why it’s happening, we shouldn’t feel reluctant to
have blend overflow, but few artists are aware of it.

Overflow isn’t just a problem for additive (and its corol-
lary, underflow for subtractive) blending. It can happen dur-
ing the math for any of the blend modes. In fact, it’s a more
subtle problem for other modes because calculating the
overflow isn’t as simple as simply adding RGB values.

To understand and predict overflow with more complicat-
ed blending modes, we follow the same process: pick a single
pixel, run the calculations (we added the RGB values in our
example last month), and see if the resulting RGB values are
within the 0 to 100 percent range. Of course, to do that,
we’ll need to know what the math is behind these blend
modes. This column gave you artists the tools to actually do
that yourself. ■

h t t p : / / w w w . g d m a g . c o m A U G U S T 1 9 9 8 G A M E D E V E L O P E R

SGI's OpenGL WWW Center
http://www.sgi.com/Technology/OpenGL/

The OpenGL 1.2 Specification
ftp://sgigate.sgi.com/pub/opengl/doc/opengl1.2

/opengl1.2.pdf

The OpenGL Site
http://www.opengl.org

FF OO RR FF UU RR TT HH EE RR II NN FF OO

and platform issues really came to the
fore. Part of this transitional period was
fueled by the decline of the 16-bit con-
soles, the inability of 3DO and other
console wanna-bes to make an impact
on the market, and the uncertainty sur-
rounding Sony’s and Sega’s next-gener-
ation platforms. During the same peri-
od, the industry was witnessing
heightened consumer interest in the
home PC, fueled in part by the promise
of multimedia. Today, Nintendo and
Sony tower over the console industry to
such a degree that support for either
platform is more of a business decision,
often dictated by the developer’s and
publisher’s relationships with either
giant. The home PC market has flour-
ished to the point that its high-end seg-
ment, the hardcore games enthusiast, is
nearly the sole motivator of power sys-
tems purchases. The game development
community is now in the driving seat,
and platform issues tend to be more
technical and resource-bound than
anything to do with the fear of support-
ing a target machine that may not have
an audience somewhere down the line

The platform has stabilized conceptu-
ally, although the vicissitudes of the PC
hardware market still make for interest-
ing research. Do I support 3D accelerat-
ed-only products? Do I go for MMX?
Some might think that’s about all there
is to ask about the state of the enter-
tainment platform.

Not exactly. The economics of the
console and PC markets are worlds
apart, and as a result of continued
growth in both businesses, game devel-
opers are likely to face even more
aggressive courting by the hardware
and publishing powers-that-be.

Everyone wants content, and while the
best content makes its mark across a
number of platforms, the pressure to
put all your eggs in one basket is going
to increase as platform vendors jockey
for position by paying for exclusivity in
some form or another (Figure 1).

This jockeying for position is going
to take place at a macro level between
the likes of Nintendo, Sony, Sega, and
erstwhile allies and competitors Intel
and Microsoft. Throw into the mix the
desire of companies such as NEC and
3Dfx to create a 3D graphics standard,

and you’re pretty much up to your eye-
balls in conflicting sentiments as to
what constitutes a platform. Is DirectX
a platform, or 3Dfx, or Sega’s upcoming
Dreamcast, which is based on Windows
CE?

To make matters worse, the numbers
for platform markets match up fairly
well — in other words, you aren’t
going to worry so much about having
an installed base of users to target with
so few participants. Furthermore, it’s
worth noting that a PC games enthusi-
ast is also likely to be a console owner,

Trends in the

Entertainment Platform Market

T here was a time when game developers would agonize over how much of

their precious time should go into supporting the Macintosh or the PC,

and over deciding among Sega, Nintendo, and Atari. During the period

between 1992 and the end of 1994, the game market was in transition,

b y O m i d R a h m a tH A R D T A R G E T S

G A M E D E V E L O P E R A U G U S T 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

22

Omid Rahmat works for Doodah Marketing as a copywriter, consultant, tea boy, and
sole employee. He also writes regularly on the computer graphics and entertainment
markets for online and print publications. Contact him at omid@compuserve.com.

1997 1998 1999 2000

50,000

40,000

30,000

20,000

10,000

0

PC

Households

Online PC

Households

Console

& Gaming Devices

PC Gaming

Households

Online PC

Gaming Households

Source: IDC Research

F I G U R E 1 . The state of the entertainment platform.

while many general PC households,
which tend to be homes with children,
will also own alternative platforms
because families tend to demarcate
between the den PC and the television
in the kid’s room or the living room.
Unfortunately, most of the market
research on computing and game plat-
forms tends to look at absolutes in buy-
ing and usage patterns, approaching the
problem from a hardware point of view.
Microsoft, Intel, Sony, and Nintendo are
concerned with singular domination of
the entertainment platform, although
the reality is more abstract. Research on
how platforms coexist is sketchy at best.

The reason that it’s difficult to pin-
point or define the entertainment plat-
form in some meaningful way based on
the features of hardware or the support
for a particular vendor is due to the
way consumers perceive entertain-
ment. Most of us experience entertain-
ment, whether it’s interactive or pas-
sive. We are motivated by the
experiences and emotions that content
creates, and aren’t swayed by the
promise of a platform’s capabilities.
There’s a simpler way of looking at the
entertainment platform, and one that
will increasingly come to resonate with
vendors of consumer goods: developers
need to look at where and how people
spend their money on content.

Segmenting the Platform

T he segmentation of the entertain-
ment platform is an issue that most

platform vendors are loathe to deal
with, preferring to concentrate on how
their own platform can dominate a par-
ticular market. But as the stakes in
interactive entertainment increase, so
does the interest of vendors with the
clout and resources to define the mar-
ket. We can point to Sony’s entry into
the console business with PlayStation as
a good example of this. The following
platforms probably constitute the main
targets for the games industry today:
NINTENDO. It’s a mixed bag for Nintendo.
N64 gets all the press, but the Super
NES is still out there generating rev-
enues, and the Game Boy is about the
only significant hand-held product on
the market, taking in $125 million in
software sales alone in 1997 (Source:
NPD). The N64 is being outsold by the
PlayStation at a ratio of two-to-one in

the first half of 1998 due to the N64’s
lack of titles and more competitive
pricing by Sony. Nintendo’s reliance
on the more expensive cartridge stor-
age device keeps its prices high, but
developers for N64, of which there are
only a select few outside of Nintendo’s
home-grown talent, reap extraordinary
returns every time they release a title
due to the pent-up demand.
SONY. PlayStation has the platform
sales, internal and external title sup-
port, and the pricing. It doesn’t have a
MARIO counterpart, and the quality of
its titles is weighed down by their sheer
number. It’s also less expensive to be a
player in the PlayStation market. Sony
is probably the only real cross-platform
company in the business, having a
presence in the set-top arena with
WebTV, a console, and the Vaio PC
business, not to mention a host of digi-
tal television and consumer electronics
products. And if that wasn’t enough,
the company also owns a Hollywood

studio and is the brand to beat in the
platform business.
SEGA. Sega still makes the best arcade
systems around, and the Saturn has a
life of its own — just not much of one
in North America. In the pipeline is
Dreamcast, the Windows CE-based
next-generation console. With a
modem connection for the Saturn, and
the collaboration of Microsoft, Sega
hopes to put the game console into a
more legitimate multimedia entertain-
ment platform category — one of its
own making — and in anticipation of
potential rivals in the digital television
set-top box category.
WINDOWS. Developers wrestle with the
finer points of Windows technologies,
which never quite live up to expecta-
tions. But a high-end PC, with all the
3D trimmings, is about as good a game
experience as you’re going to get. Still,
the PC games industry suffers from a
highly fragmented distribution struc-
ture. The complex value chain stalls at

h t t p : / / w w w . g d m a g . c o m A U G U S T 1 9 9 8 G A M E D E V E L O P E R

23

1997 1998 1999 2000

$200

$190

$180

$170

$160

$150

$140

$130

$120

$110

$100

$90

$80

$70

$50

$40

$30

$20

$10

$0

TV Consumer

Online

General Interest &

Educational Software

Video

Games

Movies

P
e

r
p

e
rs

o
n

 s
p

e
n

d
in

g
 p

e
r

y
e

a
r

o
n

 e
n

te
rt

a
in

m
e

n
t

Source:

Veronis, Suhler

and Associates

F I G U R E 2 . Per person spending per year on entertainment. These figures

relate to activities. Video games refers to electronic gaming in general, but

not arcade. Consumer online refers to home Internet activity.

the store-client interface every time a
piece of software or hardware crashes
the precious family Quicken machine,
and there are no profits but for a very
select few vendors. To further add to
the confusion, 3D graphics vendors
such as 3Dfx are trying to carve out
their own subplatform category,
adding to the already bewildering array
of configurations in the market.
Fortunately for 3Dfx, game developers
have embraced the company’s
approach, probably out of frustration
at always having to target the lowest
common denominator in this market.
PC games enthusiasts have plenty of
money to spend on power systems (or
so it seems), and they like the bleeding
edge. All this favors the hardcore game
mentality of the industry, and fuels
intense technical rivalries between
game engine developers. Some might
say that today’s entertainment PC is
the platform that Carmack built.

Despite the existence of these plat-
forms, the entertainment platform for
games is only a small part of a much
bigger picture. Television, the movies,
the VCR, recorded music, and even
print are all, in their own ways, com-
peting entertainment platforms (see
Figure 2).

Consumer spending on entertain-
ment isn’t dramatically growing on a
year-to-year basis. It isn’t a double-digit
growth market. In fact, it varies and
generally keeps up with inflation, or
stays just ahead of it, depending on how
confident the mood of society is, or how
much of a need there may be for
escapism. People react emotionally to
content, and the measure of their reac-
tion is how they spend the finite pool of
cash that’s available for their leisure.

Counting the Pieces of the Pie

A s the game market continues to
mature, and as the technologies

that created the industry find their way
into the mainstream, the entertain-
ment platform is going to become so
segmented that only highly specialized
content will focus on only one seg-
ment of the market. The entertainment
platform is a heterogeneous environ-
ment of PCs, consoles, and possibly
set-top boxes, not to mention hand-
held gaming devices. The good news is
that games, despite having a smaller

overall audience than movies, for
example, get a significant per capita
spend. Compared to general software
sales, games software has a significant
presence in the industry.

The real threat to the platforms that
games support, at least traditional
games as we understand them today, is
from consumer online activity.
Consumer online activity is, in its own
way, interactive entertainment.
Granted, most online usage by con-
sumers is devoted to e-mail, news, and
information searches, but one can also
argue that online entertainment is still
a virgin environment, waiting to find
its own style and approach. Most of the
existing approaches to online enter-
tainment have involved environments
that are more comparable to television
than computer games. YOU DON’T
KNOW JACK is a classic example of a
popular game that has successfully
bridged the gap between populist game
show themes from television and the
more highly charged interactive envi-
ronment of computer games. Does it
succeed because of its obvious debt to
television? Perhaps, but it does show
how a smart developer can leverage
content within the heterogeneous
home environment.

Developers are only just beginning
to realize the clout they possess. As a
result, they may also be starting to get
an idea of how interactive entertain-
ment, and games in particular, fit into
the big picture. Console players often
grow up into PC games players. Online
activity is on the up, and its entertain-
ment potential remains largely
untapped. Also looming on the hori-
zon is the enigmatic Project X from VM
Labs. Project X aims to put a powerful
media processor, one capable of sup-
porting cutting-edge 3D games, into
consumer DVD players. If a solution
like Project X can successfully pene-
trate the same market as VCRs and TVs,
then counting seats is probably the last
thing any developer needs to do. If you
are a games enthusiast, and most devel-
opers tend to be games players as well,
you'll know a good gaming machine
when you see one. The trick is going to
be in courting people's entertainment
dollars — and not just the enthusiasts,
but anyone who might be interested in
games. Games in all their glory, and
diversity. It's a big challenge for the
industry. A very big challenge. ■

h t t p : / / w w w . g d m a g . c o m A U G U S T 1 9 9 8 G A M E D E V E L O P E R

Illustration by Robert Zammarchi

G A M E D E V E L O P E R A U G U S T 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

h t t p : / / w w w . g d m a g . c o m A U G U S T 1 9 9 8 G A M E D E V E L O P E R

27

Mel Guymon just finished work as art director on Zombie's SPEC OPS (Panasonic).With several years experience as an

animator, Mel's background includes work at Eidos, BioVision, and MSH Entertainment. Mel is currently working at

Surreal Software, where he is the art lead on DRAKKAN (Psygnosis).

luid, realistic character animation is becoming

the benchmark for today’s real-time games.

Games such as TOMB RAIDER, SOUL BLADE, and

VIRTUA FIGHTER 3 have raised the bar when it

comes to character motion.FF
B Y M E L G U Y M O N

As a result, today’s game players are more
savvy and expect better and more realistic
effects. Fortunately, the tools for attaining

this realism are becoming more capable,
sometimes on a monthly basis. As the
software gets better and better, the bar
will continue to rise, and it’s up to us
animators to meet, if not exceed, the
consumers’ expectations.
Accurately deciding which animation

tool to use early on can mean the differ-
ence between getting your product out by
its ship date and finding yourself hitting
the bricks as your team suddenly loses
funding after missing it’s fifth milestone
in a row. With personal experience in both

these categories, I can readily attest to the
fact that the human element must be
included when making this decision. If
your game has characters — humanoid or
otherwise — then it needs character anima-
tors (a touchy breed to be sure), who,
aside from needing the odd bit of food
tossed into their cubicles from time to
time, require little maintenance if
they’ve got a good pieceof software with
which to animate.

Three premiere character animation

tool vendors are releasing major product
upgrades this summer. These products
are Softimage’s Softimage|3D 3.8,
Alias|Wavefront’s Maya for Windows NT,
and Kinetix’s 3D Studio MAX 2.0 with
Character Studio 2.0. Clearly, there are
other tools that have just as devoted
followings as these, such as Lightwave,
Electric Image, and Nichimen, but due
to the fact that covering all of them
would consume most of a magazine’s
pages, this article focuses solely on these
three new releases, in the context of their
real-time 3D character animation facilities.

Each of the tools in this article was
evaluated on basic functionality in the
following categories:

Inverse Kinemation (IK)
Constraint-Based Animation
Classical Hand-Animation
Motion Curve Editing
Interface/Ease of Use
While this is by no means an all-

encompassing list, I hope it gives you
enough basic information to help towards
making an informed decision on which
tool to use. See “Terms and Definitions”
for detailed descriptions of these categories.

Kinetix 3D Studio MAX 2.0 with
Character Studio 2.0

Used as the weapon of choice in the
development of some of the indus-

try’s top games (such as TOMB RAIDER II,
BLADE RUNNER, and DIABLO II), Character
Studio is easily finding its niche within
the games industry. It’s the second
Windows NT release of the company’s
character animation system, which sup-
ports motion capture, editing, and
blending capabilities, plus traditional
keyframe animation capabilities. The
new version also has new skin deforma-
tion tools and Character Studio’s foot-
step-driven technique. The tool has the
ability to import motion capture files,
and it comes with 150 motion capture
files that you can edit and personalize.

Boasting over 100,000 users world-
wide, MAX itself is one of the least

expensive and most widespread anima-
tion tools used in the industry today. It
may be surprising then to find out that
it’s also one of the most functional
tools available and, with the addition
of the new version of Character Studio
2.0, offers just as much basic function-
ality as it’s more prestigious (and
expensive) cousins.

I queried various user groups on all
three platforms, and the feedback I got
on Character Studio (CS) was that, while
the interface left a lot to be desired,
hand and IK animation using Biped was
excellent. After trying out the new ver-
sion of the product, I tend to agree. I
think, however that the interface woes
stem more from the button frenzy
inherent to MAX, and less from any
problems with the CS interface.
MOTION FLOW MODE. Figure 1 shows the
new Motion Flow mode for CS2. I’ve
been waiting a long time for a tool

such as this, and it looks like CS2 has
finally come through. In Motion Flow
mode, .BIP files are combined using
velocity-interpolated transitions to cre-
ate longer character animation. First,
you add clips and reference them to
.BIP files in the Motion Flow Graph
dialog. You can then select these clips
to create a script in the Motion Flow
Script rollout, and use the Transition
Editor to adjust transitions between
.BIP files. Reminiscent of Power
Animator’s Metacycle function,
Motion Flow provides a truly user-
friendly interface for splicing together
different animations. The two windows
in the lower left-hand portion of the
screen let you load in individual
sequences and overlap the transitions
between them with variable parame-
ters. In the scene in Figure 1, the Biped
character is transitioning from a spin-
kick animation to a dance-step anima-

G A M E D E V E L O P E R A U G U S T 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

28

C H A R A C T E R A N I M A T I O N

CLASSIC HAND ANIMATION. While

IK- and constraint-

based sys-

tems offer

solutions to

most ani-

mation,

taking the

classic

approach

and animating individual

bones by hand can sometimes

give superior results. What

separates a good animator

from the rest of his or her

peers is the ability to combine

classical and IK animation to

generate nonrobotic motion.

Tweaking the motion by hand

is a tedious and time-consum-

ing process, and while a

smooth interface can easily

double an animator’s output, a

bad one can freeze the process

in it’s tracks. The ability to

easily manipulate bones and

set keyframes by hand, then,

is crucial in any good animat-

ing software.

MOTION-CURVE EDITING. Both

classical and

constraint-

based IK

animation

ultimately

generate

keyframes that

define the properties of an

object over time. Motion

curves can be generated for

everything from rotation,

translation, and scaling to

color, surface tension, and u,v

coordinates. With a good

curve editor, an experienced

animator can set keyframes on

the first pass and finish tweak-

ing the animation entirely by

hand using the resulting

motion curves. When using

motion capture, animators

work almost exclusively within

the curve editors; it’s safe to

say the your ability to use

motion capture is linked

directly to the functionality of

your curve editor. The bottom

line is that a good curve editor

is critical when it comes to

providing animators with a

smoothly flowing interface.

INVERSE KINEMATICS (IK).
Probably the most

important tool

available to ani-

mators today, IK

is a skeletal-

based system

that solves for

joint motion automat-

ically. For instance, if

you want to animate a charac-

ter’s hand to swing a sword,

you simply drag the characters

hand to the position you want,

and the IK system will solve

the joint motion of the fore-

arm, bicep, and shoulder

bones automatically. It’s actu-

ally as simple as it sounds,

and with a little preparation

setting up your skeletons, you

can get remarkably smooth

motion on the first pass. Even

so, raw IK data is always dis-

cernable from motion capture

simply due to the smooth

nature of the transitions the

software generates; many of

the subtleties of natural

motion are lost. However, IK

can get most of the work done

for you, allowing the animator

to spend his time tweaking the

motion to get a realistic, life-

like result.

CONSTRAINT-BASED ANIMATION.
Constraints

are inherent

to both clas-

sical and IK-

based ani-

mation. All

of us anima-

tors can

remember

the first walk cycle we ever

generated, and how frustrat-

ing it was to try to keep the

character’s feet from sliding

on the floor. Constraints

largely remove these

headaches; they can be used

to limit the rotation of a joint

(that is, prevent the elbow

joint of a human character

from bending backwards), or

to glue a characters feet to the

floor (preventing the “moon

walking” effect). Directional

constraints can be applied to

keep a character’s head point-

ing forward during a complex

attack sequence, or simply to

keep the character’s feet

pointing forward during a

walking loop. Coupled with a

good IK system, constraints

are probably the second most

important tool used by anima-

tors today.

Terms and Definitions

tion. The great thing about this is that
you get a visual representation of the
transition. As the time slider nears the
transition point, a red stick figure
appears, going through the motions for
the animation to which the character
is transitioning. By interactively edit-
ing the parameters for the transition,
you can easily tweak the overlap to
achieve a smooth result.

INVERSE KINEMATICS. Overall,
MAX 2.0 has a solid IK system.
I’ve always been a little put off
by the joint-dialog interface —
all that sliding up and down

with the mouse gets old really quickly.
But the ability to toggle IK off and on
with a button is definitely a plus.

Add in CS2’s functionality and it’s a
whole new ball game. CS2’s biped fea-
ture provides an extremely easy way to
set up a perfectly functional IK skele-
ton, with rotational constraints and
expressions, giving a realistic form and
balance to the skeleton. This means
that if you raise a the skeleton’s arm on
one side, CS2 automatically shifts the
weight of the other side of the body,
allowing it to assume a natural pose. As
a result, your skeleton’s setup is pretty
much done already, and it’s physically
accurate to boot. Although unfamiliar
with the product at first, I had no trou-
ble getting the hang of merging the
footstep-based biped skeleton with a
little hand-generated IK. Most of the

tweaking that I usually have to do to
get the correct form and balance was
done automatically.

CONSTRAINTS. There are good
and bad things to report on
this score. Again, the interface
is clunky and prohibitive, and

you are limited to only two types of
constraints: orientation and positional.
By definition, Biped’s footsteps act as
combination positional and orientation
constraints, allowing you the freedom
to choreograph the rest of the charac-
ter’s motion without worrying too
much about foot position or balance.

One nice facet of the program is the
ability to combine constraint-based IK
animation with the inherent dynamics
functionality in MAX. For instance, say
you’re creating a death sequence for
your character, and you want her to
crumple to the ground like a mari-
onette whose strings have just been
cut. You simply apply motion dynam-
ics to positional constraints set up on
the characters hands, hips, and head,
and your character drops like a rag
doll. You can even set it up so that the
hands and head bounce off the ground
a few times, which is excellent.

CLASSICAL HAND-ANIMATION. This
section deals largely with the
interface. If it’s easy to move,
rotate, and scale an object, it

should be easy to animate using these
same basic techniques. With MAX, I
found this to be the case, generally.
Swapping between the various view-
points was quick and painless, which is
key when you’re animating by hand.
Note that MAX is set up to run off the
mouse. It takes a little setting up, but
with the help of MAX’s keyboard
shortcuts, I was able to set up a decent
environment that made setting
keyframes by hand pretty seamless.

MOTION CURVE EDITING. MAX’s
Track View Editor provides
functionality comparable to

the Dopesheet in Softimage|3D and the
Action Windows in PowerAnimator.
You can easily toggle between display-
ing curves for single and multiple
objects, or simply display all animated
objects in the scene. Changing the
slope and inflection along a curve or at
a keyframe is a single mouse-click away,
and applying transformations such as
scale and translation to entire sets of
keyframes is straightforward. With
MAX, you can control object rotations

G A M E D E V E L O P E R A U G U S T 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

30

C H A R A C T E R A N I M A T I O N

F I G U R E 1 . Character Studio 2.0’s Motion Flow mode.

Kinetix
San Francisco, Calif.
(415) 547-2000
http://www.ktx.com

Recommend Hardware: Intel Pentium w/128MB RAM
Tested On: Intergraph TDZ 2000
Software Price as tested: $4,000
Pros: Humanoid animation with Character Studio 2.0 is a snap.
Cons: The quirky, icon-intensive interface can be really annoying. No three-button

mouse support.
Comments: Full functionality has finally been achieved in CS2, thanks to a combination

of good, basic animation tools, the added bonus of a physically correct skeleton, and
lots of little touches specifically tailored for character animators.

3D Studio MAX 2.0 with Character Studio 2.0

with several different controller types,
which generally change the behavior of
an object between keyframes and dur-
ing transition states. I was thoroughly
confused by this feature and ended up
setting my defaults to Euler rotation at
every step.

One thing MAX supplies that I
haven’t seen in other tools is the abili-
ty to interactively modify the function
curves as the animation is playing
back. I was able to make slight modifi-
cations to the position and slope of
several keys while the animation was
looping in real-time. No more starting
and stopping to view the resultant
modifications.

Alas, here again I found a good, solid
tool that’s been cluttered with a lot of
“neat” extras that aren’t necessarily very
useful. As you can see in Figure 2, there
are some thirty or so buttons just hav-
ing to do with the Track View mode,
and there are different keyboard short-
cuts for when the mouse is in the Track
View window and when it’s out of it.

Overall though, it appears as though
Kinetix’s intent was to avoid limiting
the animator choices of functionality;
and I think it achieved that. I couldn’t
come up with any single important
function that was missing from the
equation, and after awhile I got used to
most of the interface hang-ups that
were bothering me.

INTERFACE/EASE OF USE. This is
mostly a judgment call that
has to be made by individual

animators. When 3D Studio MAX first
came out, it was vastly different from
its ancestor, 3D Studio. The folks at
Kinetix decided to fill up the white
space in the interface with icons and
buttons, which, in my view, severely
clutter the working area. This is my
biggest bone to pick with Kinetix. By
abandoning the modular format of 3D
Studio (which, like Softimage, had sep-

arate modules
for modeling,
animation,
and texturing),
it tried to fit
everything
into one inter-
face. It’s inter-
esting to
observe that
while MAX
has aban-
doned the

modular format to allow every feature
to be animated, both Softimage and
Alias|Wavefront are migrating toward a
more modular format, providing a
cleaner, less cluttered workspace.

Another complaint I have with MAX
is the lack of three-button mouse sup-
port. In my mind, the mark of a truly
good interface is that you can keep
your hands largely in the same spots
on the keyboard and mouse without a
lot of dancing around. The interface
should disappear. Of all three plat-
forms, I found myself hunting and
pecking over the keyboard the most
with MAX, while the combination of
marking menus and hot keys in
Softimage|3D and Maya allowed me to
basically become one with the
machine. At some point, Kinetix will
realize that if you’re going to force the

user to rely so heavily on the mouse for
input, the logical step is to support a
three-button mouse.

Overall, MAX is useful. While curve
editing was surprisingly fluid despite
the button frenzy, I still found the
interface to be overly cluttered.

Softimage|3D 3.8

A lthough it’s probably used more
widely in the film industry than

by game developers, Softimage has gar-
nered a dedicated following in the
games industry. Psygnosis, LucasArts,
and Squaresoft are among the many
developers who have helped Softimage
entrench itself in the gaming world.

Softimage’s leadership in the field of
character animation is widely recog-
nized in the gaming industry. For the
past several years, the mantra of the
game developer has been, “Model in
Alias, animate in Soft.” An ever-
increasing number of users are staying
loyal to Softimage over time due to it’s
suite of solid animation and modeling
tools, which fill a niche greatly needed
in the gaming industry.

Of all the animation products on the
market, Softimage|3D was the newest
to me. However, it’s fast becoming my
weapon of choice for character anima-

G A M E D E V E L O P E R A U G U S T 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

32

C H A R A C T E R A N I M A T I O N

F I G U R E 3 . Softimage|3D’s Dopesheet and Animation Sequencer.

F I G U R E 2 . Track View Editor in MAX.

tion (narrowly winning over
PowerAnimator). The best part about
animating in Softimage|3D is probably
the most intangible. The interface sim-
ply feels right.
ANIMATION SEQUENCER. One of the new
features in version 3.8 is a high-level
interface for character animation
(Figure 3). It allows users to work with
groups of animations called “Actions,”
which can be managed independently.
You can define groups of Actions for
any character in a scene, then sequence
them together on a timeline, which
makes managing complex character
animation much easier. Similar in
function to CS2’s Motion Flow mode,
the Animation Sequence offers fewer
options with respect to transition and
overlap. In fact, at present, each Action
goes in to the Sequencer in a very lin-
ear fashion, without any overlap
allowed. But without a lot of extra fea-
tures, the interface stays clean, allow-
ing the work area to remain clear while
retaining the necessary functionality.

In addition to the Sequencer, audio
track support is now available in the
Dopesheet. Similar to the Audio Track
function available in 3D Studio MAX,
the tool displays a waveform for the
audio information, which can then be
synched up with character animation
to provide correct verbal cues in a
sequence.

INVERSE KINEMATICS. Soft-
image|3D’s character anima-
tion suite is built around a
fundamental IK system that is
as good as any on the market.

Although the solution solver is not as
versatile as Maya’s, here again, it’s sim-
plicity is it’s strength. Two basic flavors
are available, the 2D and 3D chains.
Skeletons can be composed of one or
both types, the main difference being
that where 3D chains provide IK solu-

tions based on any axis of orientation,
2D chains provide solutions generated
in a single plane of rotation. Because
much of the work in IK is training your
IK solver to keep only those solutions
that look natural, limiting the number
of solutions can help you arrive there
sooner. And, because the plane of rota-
tion for the 2D chain is itself animat-
able, it retains all of it’s functionality.

CONSTRAINTS. In conjunction
with Softimage|3D’s IK toolset,
users can select from myriad
constraints. Besides the normal

position, direction, and orientation
constraints, users can also constrain
bones to clusters or single points on a
mesh object. For instance, say you want
to animate a dragon, and you want his
shoulders and pelvis to remain rigid. By

creating the shoulder and pelvic joints
out of polygonal objects and constrain-
ing the bones in the legs to points on
these objects, you can get an amazing
effect. The result is a naturally pivoting
pelvic joint that mimics they way the
joint works in nature.

You can even assign multiple con-
straints of a given type to a single
object. Say you want the hips of your
bipedal character to always remain
equidistant between its two feet.
Previously, you would have had to
come up with an expression/equation
that defined the relationship between
the hips and the feet. Now you just
assign each foot as a constraint to the
hips, and the IK system automatically
keeps the hips positioned between the
feet. As with most features in
Softimage|3D, the constraint system
maintains the user-friendly tradition.

CLASSIC HAND-ANIMATION. It’s no
lie to say that when I sit down
to animate in Soft, I’m sitting
at a customizable workstation.

Soft’s swiftkeys allow pretty much
everything to become a hot key. It’s
remarkably easy to set up your combi-
nation of swiftkeys so that you can
keep one hand constantly on the
mouse and the other hand in the same
basic location on the keyboard. As in
PowerAnimator, I found the perspec-

G A M E D E V E L O P E R A U G U S T 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

34

C H A R A C T E R A N I M A T I O N

F I G U R E 4 . Function Curves and Schematic Views.

Softimage
Montreal, QB, Canada
(514) 845-1636
http://www.softimage.com

Recommend Hardware: Intel-based Pentium w/128MB of RAM
Tested On: Intergraph TDZ 2000
Software Price as tested: $7,500 for base package
Pros: Seamless, clean interface, solid IK, and basic animation tools.
Cons: Function curve editing is too simplistic, and some basic functionality is missing.
Comments: I feel this is still the best animating tool on the market for simple character

animation. It has just enough tools to get the job done, without any extra fluff.

Softimage|3D 3.8

tive window extremely useful for orbit-
ing around my characters from differ-
ent viewpoints, tweaking as I went. The
overall experience is very fluid. No
complaints here.

MOTION CURVE EDITING. The areas
I that felt were most lacking
were Softimage|3D’s Fcurve

(Figure 4, top center) and Dopesheet
(Figure 3, bottom center) windows.
You can readily display all or just the
selected function curves for any given
object or group of objects. Changing
the slop and inflection of a point is
done either with a procedural effect or
by moving the Bezier-like handles on
the keyframes themselves. Having cut
my teeth on PowerAnimator’s action
window, however, I often found myself
trying to delete keyframes on more
than one curve at a time, or trying to
scale the existing curves around a point
other than the origin. Neither of these
actions are possible in the Fcurve win-
dow. Some of this functionality exists
in the Dopesheet, but there remain a
few basic tools for curve manipulation
that Soft just doesn’t have.

INTERFACE/EASE OF USE. Look at
Figure 4; you’ll notice that
there are no icons. Softimage

hasn’t succumbed to the dreaded icon
mania that is so prevalent in today’s
windows-based applications. The last
thing you need to do at 2AM the night
before a milestone is to hunt around
your interface for obscure little buttons
to push. Hopefully, at that point you
can still read (at least phonetically), and
the buttons in Softimage|3D’s interface
will still be readable for what they do,
each one with its name clearly marked.

The schematic window (Figure 4, bot-
tom left) acts as a functional version of
PowerAnimator’s SBD window, allow-
ing you to view and alter parameters
associated with object hierarchies, con-
straints, and animation tracks. With a
fully operational skeleton in midse-
quence, this view tends to get a bit clut-
tered, but maybe that’s just a comment
on how an animator’s mind works.

Maybe Softimage is just lucky, or
maybe its developers are just good lis-
teners. Whatever the reason, they’ve
come up with an interface that works
well. The interface seemed to disappear
after just a few minutes working with
the tools, and there don’t seem to be
that many hurdles to jump over to get
to where you want to go. The bottom

line is that the work area feels right.
WHAT’S COMING IN SUMATRA. Sumatra is
Softimage’s next-generation 3D system
(Figure 5), which will include nonlin-
ear animation capabilities (NLA). NLA
will allow animators to seamlessly
blend animations independent of the
scene timeline. For example, you can
save out sequences for multiple anima-
tions and then paste them back in to
form a single sequence. What is
unique to NLA is that the animations
will be added together graphically,
allowing animators to easily view and
manipulate the transitions in the
curve editor. You’ll have the function-
ality of MAX’s Motion Flow Mode,
with the interface clarity of Soft-
image|3D’s Animation Sequencer.

According to Softimage, Sumatra will
be have a fully-threaded architecture,
which, while keeping the functional
cleanliness of the current modular for-
mat, will fully integrate modeling, ani-
mation, rendering, and compositing
onto a single workspace. This will put
Softimage|3D on the same plane with
MAX and Maya in the sense that you
won’t have to jump between modules
to model, texture, and animate.

I was hoping to get enough informa-
tion on Sumatra to be able to do a full
section about it. Unfortunately, my
timing was a little early. The people at

Softimage told me that Sumatra will
look and feel a bit different, will have
several added new features, but will not
lose any of the simple functionality
now enjoyed by current users.

As this article goes to print, Sumatra
is still several months from shipping.
Until that time, the much touted non-
linear editing and seamless animation
tools will have to wait. In the interim,
Softimage is releasing version
Softimage|3D 3.8 and Twister to pre-
pare their customers for the new ani-
mation environment.

Alias|Wavefront’s Maya NT.

A lias|Wavefront claims that in
Maya, virtually everything is ani-

matable; that any attribute of any
scene component can be used to drive
any other object’s attributes, including
position, rotation, scale, velocity,
color, transparency, and so on. With a
fully integrated working environment,
you can set keyframes, generate path
animation, and edit timing all in a sin-
gle shaded and texture-mapped view.

Clearly the migration of Alias’s prod-
ucts to the Windows NT platform is
indicative of something: either to take
advantage of the large Windows NT
user base or simply to grab a larger

G A M E D E V E L O P E R A U G U S T 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

36

C H A R A C T E R A N I M A T I O N

F I G U R E 5 . The Sumatra interface.

share of the lower-end markets. Alias
made a firm statement of commitment
to game developers when it announced
it’s intention to ship a native Windows
NT version of Maya. Full of new fea-
tures and sporting a look reminiscent
of an offspring of PowerAnimator and
3D Studio MAX, Maya NT appears
poised to take the game developer
world by storm.
MAYA EMBEDDED LANGUAGE (MEL). What
sets Maya apart from other tools in the
industry is its scripting language, MEL.
Here’s how it works: when you activate
the MEL Script window, every action
that you take generates a MEL script
equivalent in the window. Since the
entire program was written using MEL,
every action that you perform has a
MEL script equivalent. Say you perform
a series of actions over and over, and
now you want to create a button that
does the same thing. In Softimage|3D
or MAX, you’d have to learn MaxScript
or the appropriate SDK, or depend on a
programmer’s talents. With the MEL
Script window open, you simply per-
form your actions, grab the equivalent
script, and drag it onto your menu bar.

Maya automatically creates a button on
the menu bar that contains the equiva-
lent MEL script. Now all you have to do
to execute your stack of scripts is click
the button. It’s very simple. If you need
to modify your button’s MEL script, all
you have to do is drag the button into
the MEL Script window, and you’ve got
your original script back.

Compared to the poorly documented
and arcane MaxScript for 3D Studio
MAX, I found MEL to be far superior.
What it boils down to is this: while
Maya may not have every plug-in for
character animation that you need,
with MEL and a little patience, you can
create your own plug-ins.

INVERSE KINEMATICS. One of the
touted strong points of Maya
NT is its powerful, multiple
solution-based IK systems.
Part of a continued evolution

from the multi- and single-chain solu-
tions in the PowerAnimator series,
Maya boasts three different, config-
urable methods for arriving at an IK
solution. Newest to the group, and by
far my favorite, is the IK-Spline solu-
tion set. Basically, the user creates an

IK chain, and then constrains the
chain to a spline. As the spline is bent
and deformed, the IK chain bends and
deforms to keep up. It’s perfect for ani-
mating long tails and neck segments,
or for creating realistic motion in a
whip-like tentacle.

CONSTRAINTS. Maya ships with a
number of constraints for use
with its IK systems. Point,
Orientation, Aim, Scale,

Geometry, Normal, and Tangent are all
included. The real power comes in
when these are used in conjunction
with MEL. A major part of the design
philosophy for Maya was the tiered
user concept, in which a single experi-
enced user (Technical Director) gener-
ates a digital puppet using IK, con-
straints, and MEL. These digital
puppets can then be handed off to
more junior groups of animators, who
may not necessarily have the knowl-
edge or experience to generate the
required MEL scripts on their own.

CLASSIC HAND ANIMATION. Here
again I think it will take some
time for the interface to sink
in and become widely accept-

ed, as some of the basic functionality
has become buried under new features.
Still, the basic functionality is there.
The Channel Box has replaced the
PowerAnimator’s Object Info window,
displaying the properties, position,
scale, and rotation of a selected object.
When keyframes are set by hand, val-
ues are stored only for those objects in
the Channel Box. So, for example, if
you don’t want to generate keyframes
for an object’s position, you simply
remove the positional windows from
the Channel Box.

Alias|Wavefront boasts that in Maya ,
“Everything is a node, every node is
animatable, and every node can be
linked to every other node.” Say, for
example, you want to copy the rota-
tional information from one forearm to
another. You would simply go into the
dependency graph (Figure 6) and drag a
connector from the rotational node of
one forearm to the rotational node of
the arm that you want to animate. Now
both arms share identical animation.

Most of us can grasp that — it’s just
a modified version of cut and paste.
But what if you want to do a little
nonlinear editing, say to blend two
animations together to get a third
unique animation? Even this is possi-

G A M E D E V E L O P E R A U G U S T 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

38

C H A R A C T E R A N I M A T I O N

F I G U R E 6 . Dependency Graph.

Alias|Wavefront
Toronto, ON, Canada
(800) 447-2542
http://www.aw.sgi.com

Recommended hardware: Intel Pentium w/128mb RAM
Tested On: Intergraph TDZ 2000
Software Price as tested: $10,000 for base package
Pros: You can pretty much do everything with this program.
Cons: You can pretty much do everything with this program.
Comments: The new interface, Windows NT support, and some additional animation

features that PowerAnimator doesn’t have (such as a dopesheet, an interactive
schematic window, and MEL scripting) make the functionality of this product astound-
ing. All of this is partially overshadowed by the fact that to do the simple things, you
have to jump through too many hoops.

Maya NT

ble. When I asked if Maya had any
ability to blend animations, Brad
Clarkson in Alias|Wavefront’s Seattle
office had a handy suggestion. By
using the color blend utility node, you
can link the transformation node of
the first object to color 1 and the
transformation node of the second
object to color 2. The resulting output,
which is a blend of two colors and,
therefore, a blend of two transforms, is
input to the transform node of object
3. There you have it; an animation
that is the blended result of two com-
pletely separate animations.

Finally, Maya’s expression window
features a simple interface that even
nonprogrammers can understand. The

expressions allow you to link one
attribute to other attributes using MEL
scripts and mathematical expressions.

MOTION CURVE EDITING. The
PowerAnimator’s Action win-
dow has been replaced by the

Graph Editor (Figure 7, bottom center)
and Dopesheet (Figure 7, top right). The
Dopesheet can also globally edit
keyframes, making it fairly similar to
Softimage|3D’s Dopesheet. The remain-
ing functionality that was present in
PowerAnimator’s Action window has
been given to the Graph Editor. You can
make changes to attributes in the Graph
Editor and view the result in uneditable
animation curves. This is useful for
determining how attributes change

when driven by expressions, dynamics,
and set-driven key relationships.

INTERFACE/EASE OF USE. With
added functionality, you
inevitably get added complex-

ity. This often translates into a clut-
tered workspace. However, Maya has
striven to mitigate this complexity by
using a modular toolset format. An
additional display window, called the
Hypergraph, allows you to examine
and edit hierarchies, while the
Attribute Spreadsheet (Figure 8) allows
you to view and edit attributes for mul-
tiple nodes in a table layout.
Potentially one of the most useful
everyday tools, it’s great for comparing
or editing values across several nodes.

Clearly though, it’s the Maya
Embedded Language that makes the
user interface supremely customizable.
With the ability to completely cus-
tomize the work area and create their
own MEL-driven plug-ins, animators
will soon be writing their own games
without the need for programmers,
producers, game designers, or publish-
ers. (O.K., perhaps not, but the MEL
Script toolset is pretty amazing!)

Maya NT promises to revolutionize
the way we think of Alias worksta-
tions. With the potential for cus-
tomization and the ability to run on
both SGI and Windows NT platforms,
Maya is affirming Alias|Wavefront’s
commitment to support the gaming
industry, while at the same time main-
taining the options for ultra-high-end
graphics development.

Games such as FINAL FANTASY VII,
RESIDENT EVIL, and TOMB RAIDER

demonstrate the success of virtual envi-
ronments populated with real-time 3D
characters. As game developers try and
match or exceed the standards set by
these games, more and more powerful
tools are required. With the increased
capabilities of these three tools, in the
next 18 months we will likely see a
reduction in the time it takes to devel-
op better-looking, more complex char-
acter animation. ■

G A M E D E V E L O P E R A U G U S T 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

40

C H A R A C T E R A N I M A T I O N

F I G U R E 8 . Attribute Spreadsheet.

Thanks to Dan Kraus, David Free,
Hayley Reed, Bob Bennett, Tristan Ikuta,
Alex Dunne, Alex Walsh, Franca Miraglia,
Jo-Anne Panchak, Brad Clarkson, Martin
Preston, Olwen Nash, Lee Sullivan, and
Porl Perrot.

Acknowledgments

F I G U R E 7. Dopesheet and Graph Editor.

directly access texture maps stored in
system memory, bus and memory
usage — as well as bandwidth — are
still very limited. A solution to these
problems is texture map compression,
which greatly reduces not only the
amount of memory that a texture map
occupies, but also the bandwidth
required to fetch texture data.

S3 devised a compression scheme
specifically for texture maps, called
S3TC, which yields benefits readily visi-
ble to programmers while maintaining
the quality of artists’ creations (Figure
1). Microsoft recently licensed this tech-
nology and made it the basis of DirectX
6’s texture map compression. As such,

this compression format should have
broad hardware and software support.

Taking Advantage of Reduced
Memory and Bandwidth

T he speed at which texture data can
be accessed generally limits sus-

tained 3D fill rates, particularly when
high-quality filtering modes, such as
trilinear, are used. With a given memo-
ry or bus bandwidth, much more tex-
ture data can be read with compressed
textures. The effective bandwidth with
texture compression is the actual data
rate multiplied by the compression

ratio. So, for AGP-2x, where the maxi-
mum theoretical bandwidth is
512MB/s, the effective theoretical
bandwidth with six-to-one compres-
sion is 3.0GB/s. By boosting the sus-
tained fill rate, game performance can
be dramatically improved when textur-
ing directly from system memory over
AGP or when reading a texture out of
frame buffer memory. Of course, the
most obvious benefit to using com-
pressed textures is that they require less
storage space. This can be taken advan-
tage of in a number of ways.
BETTER TEXTURE RESOLUTION. Normally,
texture storage requirements strain the
limits of available memory. With tex-

G A M E D E V E L O P E R A U G U S T 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

42

C O M P R E S S I O NT E X T U R E

DirectX 6 Texture Map
Compression

b y D a n M c C a b e a n d J o h n B r o t h e r s

exture maps add visual detail to a scene without

increasing its geometric complexity. However, tex-

ture memory is a relatively scarce resource, forcing

game developers continually to tweak their software and art-

work to fit into the limited texture memory on the graphics

accelerator. Even with the availability of Intel’s Accelerated

Graphics Port (AGP), which lets the graphics accelerator TT
Dan McCabe has enjoyed working on computer graphics for the last 20 years. A significant portion of that time was spent at IBM
Research, where he worked on 3D rendering as well as dynamics simulation and the collision detection problem. Dan is currently a
3D architect with S3 Inc., where he is defining key aspects of the next several generations of 3D hardware. Although S3 is headquar-
tered in Santa Clara, Calif., Dan is based in S3’s Bellevue, Wash., office.
John Brothers is VP of architecture and software development at S3 and has been instrumental in the design and development of
S3's recently announced Savage3D accelerator for the past two years. He is now working on future high-end 3D graphics platforms
in development at S3 and is leading a great software group in putting out high performance, bug-free drivers.

ture compression, you can use higher-
resolution (larger) textures, as well as a
greater variety of textures at any given
time. Larger textures provide more sur-
face detail on objects and can prevent
the blurriness that’s often a conse-
quence of overstretching small texture
maps. Larger texture maps also allow
for much more detail than would be
possible without compression. And you
can increase the number of texture
maps in use at any one time, enabling
more varied scenes.

Because the rendering surface is usu-
ally stored in memory along with your
textures, you can also increase the reso-
lution of your rendering surface with
the additional memory made available
by compression. Needless to say, you
might not be able to increase your reso-
lution in all aspects simultaneously,
but having more memory available
gives you more flexibility and options
for improving your title.
MIP-MAP USE. Increased amounts of tex-
ture memory also make it easier to take
advantage of MIP-maps. While MIP-
maps require 30 percent more storage
to house the down-sampled MIP-levels,
texture compression easily frees up this
extra storage. Using correctly computed
MIP-maps, you can efficiently eliminate
aliasing artifacts that would otherwise
appear when mapping multiple texels
to one screen pixel. The correct way to
compute MIP-levels is with a low-pass
filter, normally a box filter. Computing
MIP-levels with point-sampling to get
“sharper images,” as one graphics chip
maker has recommended, completely
eliminates the intended benefit of MIP-
mapping, which is to do high-quality
texture antialiasing. Beware of comput-
ing MIP-levels with point sampling.

As discussed so far, texture compres-
sion can improve overall image quality
without impacting performance. In fact,
texture compression should actually
boost performance significantly. While
MIP-maps were mainly invented to
eliminate texture aliasing artifacts, they
also happen to increase the perfor-
mance of your rendering hardware quite
a bit. With MIP-mapping, texture fetch-
es are very localized. For that reason,
your renderer can use a much higher
percentage of data read to generate sub-
sequent pixels that will need texels from
the same area of the texture. Also,
because the texture fetches are localized,
your application can read data in larger

bursts with fewer page breaks in memo-
ry. Such an implementation increases
the effective bandwidth over the AGP
bus, system memory, or frame buffer —
if the texture happens to be there.
Without MIP-mapping, accesses to tex-
ture memory become random, wrecking
havoc on bus and memory efficiency.

Data bandwidth, particularly texture
read bandwidth, will often be the limit-
ing factor in achieving high, sustained
fill rates. Getting around these limiting
factors and achieving high, sustained
fill rates is what we’re all really after, as
high paper numbers don’t do much to
speed real applications.
TRIPLE-BUFFERED RENDERING. Texture com-
pression also frees up memory that you
can use for triple-buffering. If you're
double buffering to synchronize buffer
swaps with vertical retrace to avoid
tearing, you're probably aware of the
engine stalls that this method causes.
Triple buffering can eliminate these
engine stalls. Triple buffering can also
boost frame rates, especially as frame
rates increase and the cost of synchro-
nizing buffer swaps with vertical
retrace increases. While switching to
triple buffering can result in a 30 per-
cent frame rate increase, it does so at
the expense of increased frame buffer
requirements. But if you’ve compressed
the texture data, you should already

have this memory available.
IMPROVED SUSTAINED FILL RATE. The amount
of memory that your graphics engine
can transfer in a given unit of time is
bounded by system design. One of the
factors limiting sustained fill rates is
the speed at which textures can be
fetched from memory. Compressed
texture maps consume less bandwidth
(only 25 to 33 percent of the band-
width required for uncompressed data)
and therefore can be fetched faster. The
bottom line is that compressing texture
maps will result in faster rendering.

How It Works

S 3TC compresses textures to a fixed
size of 4 bits per texel for opaque

textures or 8 bits per texel for textures
requiring more than 1 bit of trans-
parency. An image rendered with com-
pressed textures is virtually indistin-
guishable from an image rendered with
the original uncompressed texture
maps. This image quality is the primary
reason Microsoft adopted S3TC as the
basis for DirectX’s texture compression.

The compression scheme breaks a tex-
ture map into 4×4 blocks of 16 pixels.
For texture maps with just 1 bit of trans-
parency or none, each texel is represent-
ed by a 2-bit index in a 4×4 bitmap, for

h t t p : / / w w w . g d m a g . c o m A U G U S T 1 9 9 8 G A M E D E V E L O P E R

43

Display

Frame

Buffer

Graphics

Chip

CPU

AGP

PCI

Chipset

System

Memory
Texture 1
Texture 2

Texture n

1 Compressed

textures require

1/6 amount

of memory

• Reduced memory

 requirements

• Permits storage of

 larger and more

 complex textures

Disk

Drive

Dramatically reduced

traffic on AGP bus

Increased performance

through on-the-fly texture

decompression

• Higher quality through

 more complex textures

3D games and

applications store

compressed

textures.

23

F I G U R E 1 . S3 Texture compression (S3TC) is the DirectX 6 standard.

a total of 32 bits. In addition to the
4×4×2 bitmap, each block has two 16-bit
colors in RGB565 format. From these
two explicitly encoded colors, S3TC
derives two additional colors, yielding a
four-color lookup table. The system
then uses these 2-bit indices to look up
the texel color in this table. In total, the
16 texels are encoded using 64 bits, for
an average of 4 bits per texel. The same
scheme can also support 1 bit of trans-
parency. When a 4×4 block includes
transparent texels, the two encoded col-
ors are swapped to indicate that the
block has just three colors — one of the
bitmap encodings (11) indicates a trans-
parent texel. The third color is derived
differently in this case. (Figure 2).

If your game makes uses of more
sophisticated transparency, you can
encode an additional 64 bits for trans-
parency information in each 4×4 block.
S3TC provides two mechanisms to
encode complex transparency effects: it
either explicitly encodes the 4 most sig-
nificant bits of each pixel in the alpha
channel in a 4-bit-per-pixel bitmap, or
it employs a linear interpolation
scheme similar to that used for color

encoding. With the explicitly encoded
variant, you can capture additional
transparency information by dithering
the alpha channel prior to truncating it
to 4 bits per pixel. One great thing
about this scheme is that the blocks are
completely self-contained and no addi-
tional data needs to be fetched to
decode the 16 texels in a block. No code
book, for example, is required, as in
vector quantization schemes. This
advantage is important, because having
to do two fetches to decode a texel is a
serious performance problem.
Additionally, you won’t need to hassle
with managing code books or palettes.

Simple Decoding Hardware

D ecoding compressed texture
blocks is a simple process and,

therefore, very inexpensive to imple-
ment in hardware. This simplicity
lends itself to very fast implementa-
tions and a straightforward approach
to replicating decoding logic in order
to decode multiple pixels in parallel.

S3TC’s simple decoding scheme is
able to achieve high-quality results by
computing a linear approximation of
the color space in a small block. Recall
Taylor series mathematics, which states
that any function can be adequately
approximated over a small interval by
the first two terms in the Taylor series:
the constant term and the linear term.
This is precisely what S3TC does in the
color space of the block.

Using S3TC Texture Compression

U sing S3TC texture compression in
your application is very simple as

it’s directly supported by DirectX 6.
Your artists create artwork using the
same tools that they’ve used in the
past. You perform a one-time compres-
sion as you create your distribution
medium. Then, when your software
run time loads the compressed texture
map, a simple modification of your
existing code suffices to load the com-
pressed texture.

Although decompressing the encod-
ed texture map is a simple matter, com-
pressing it properly is a complex task
that can be time consuming if you want
the maximum possible quality.
Therefore, you’ll most likely be com-

pressing your texture maps when you
create them (or at least, before you
place them on your distribution medi-
um). To assist you with this conversion,
S3 has made several compression tools
available on Game Developer magazine’s
web site. Even if you don’t use precom-
pressed textures in your application,
S3TC’s fast encoder can still deliver 95
percent of the expected image quality.

If you use Adobe Photoshop to create
or manipulate your artwork, you can use
the S3TC Photoshop plug-in (S3TC.8BI)
to extract compressed texture maps
seamlessly from that graphics tool. This
plug-in lets you open and save S3TC files
as if they were native to Photoshop. This
approach is the best one to take, espe-
cially if you’re using a relatively uncom-
mon image format for your textures.

On the other hand, if you’re using an
image editor other than Photoshop, you
can create and view S3TC texture map
files with our standalone utility,
S3TC.EXE. This utility accepts a number
of commonly used image formats, such
as .BMP, .JPG, .TIF, and .TGA. It also
allows you to create compressed texture
map files with or without MIP-maps.
With either the standalone utility or the
Photoshop plug-in, creating and viewing
a compressed texture map is straightfor-
ward and unobtrusive to your workflow.

If you don’t want to compress at
author time, you have several alterna-
tives. You can compress during your
game’s installation, when the game is
started, or when levels are loaded. These
alternatives are possible, because DirectX
6 will include an API to compress your
texture maps at run time. Bear in mind,
however, that run-time compression
isn’t as fast, so we encourage you to
compress off-line whenever possible.
Lastly, because Microsoft will have an
API to decompress textures very quickly
in software, there’s no danger of having
problems with hardware that doesn’t
have built-in decompression support.

Choosing the Optimal Compression
Level

S everal variants of S3TC are sup-
ported within DirectX 6, depend-

ing on the level of transparency sup-
port that your application needs. Each
of these formats has its own Four-
Character Code (FOURCC) that you
use to create the texture map surface.

G A M E D E V E L O P E R A U G U S T 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

44

T E X T U R E C O M P R E S S I O N

R G B

R G B

W00 W01 W02 W03

W10 W11 W12 W13

W20 W21 W22 W23

W30 W31 W32 W33

W00 W01 W02 W03

W10 W11 W12 W13

W20 W21 W22 W23

W30 W31 W32 W33

RGB 565 Extreme 0

RGB 565 Extreme 1

4x4 bitmap of 2-bit weights

F I G U R E 2 . A 4×4 pixel block encod-

ed as two 16-bit color extrema, and a

bitmap of 2-bit interpolation weights.

Microsoft has defined five new
FOURCCs. If your texture map is com-
pletely opaque, uses only 1 bit of alpha,
or uses color-key transparency, you
should be using FOURCC DXT1. This
format is the most compact representa-
tion of the new compressed texture map
formats. It lets you switch, at the block
level, between fully opaque blocks and
blocks with minimal transparency. Each
block of 16 pixels is encoded in 8 bytes
for an average of 4 bits per pixel.

If your texture maps have more com-
plex transparency effects, you can use
one of the DXT2, DXT3, DXT4, or
DXT5 formats. All of these formats use
an additional 8 bytes to encode trans-
parency information, for a total of 16
bytes per block or an average of 8 bits
per pixel. DXT2 and DXT3 explicitly
encode alpha information by capturing
the 4 most significant bits of the alpha
channel. Dithering on the alpha chan-
nel can also increase the effective num-
ber of bits that are represented. You
would use DXT2 when your trans-
parency has premultiplied alpha

(which Microsoft is advocating for the
latest release of DirectX) and DXT3 for
the more traditional nonpremultiplied
alpha representation. DXT4 and DXT5
represent the transparency channel
using a 3-bit linear-interpolation
scheme similar to that which encodes
color information. Again, use DXT4 for
premultiplied alpha and DXT5 for non-
premultiplied alpha. DXT1 is by far the
most useful format because it com-
presses down to 4 bits per texel and
provides excellent color resolution and
1 alpha bit. The entire texture map
must be classified by a single FOURCC
code. Allocating a compressed texture
map surface couldn’t be simpler — do
what you’ve been doing previously, but
use the new FOURCC code instead.

Helpful for Internet-based Games

T exture-map compression is useful
whenever memory size or band-

width are an issue (all the time). One
obvious application of this technology

is transferring texture maps or images
over the Internet. If you’re creating
VRML worlds for walkthroughs on the
Internet, you’ll want to use texture
maps to provide visual detail to the
objects. While the bandwidth of a local
graphics system is already a concern,
network bandwidth of Internet applica-
tions is an even more critical considera-
tion. Using compressed textures in your
VRML world will increase their user
friendliness and increase the acceptance
of VRML for your clients. And with
Microsoft’s Chrome project racing to
completion, you can expect to see more
mixing of 2D and 3D graphics on the
same web page for a unified look across
all graphics elements. Expect to benefit
from texture compression in this envi-
ronment as well.

Texture compression saves memory
and bandwidth, and you’ll find that
taking advantage of S3TC within
DirectX 6 is trivial. You can easily
implement its simple decoder in hard-
ware, so you’ll likely be seeing that
functionality on chips soon enough.
Regardless of the hardware support in
the short term, the support for fast
decompression built into the DirectX 6
API makes this format a reliable solu-
tion. It will work on all platforms
beginning with DirectX 6.

Sample Code

S ample code to load and use com-
pressed S3TC textures in DirectX is

presented in Listing 1. With that code,
you’ re locked and loaded. Use this tex-
ture surface anywhere within your
Direct3D game or application. Check
the S3TC web site for more information
about how to use S3TC in DirectX 6
and in the OpenGL S3TC extensions. ■

G A M E D E V E L O P E R A U G U S T 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

46

T E X T U R E C O M P R E S S I O N

Step 1: Load compressed texture from the file.

{{

DDDDSSUURRFFAACCEEDDEESSCC ddddssdd;;

DDWWOORRDD ddwwffiilleeccooddee,,ddwwBBooddyySSiizzee;;

BBYYTTEE** bbooddyy;;

FFIILLEE** FFpp==ffooppeenn((““tteesstt..ss33tt””,,””rrbb””));;

ffrreeaadd((&&ddwwffiilleeccooddee,,ssiizzeeooff((DDWWOORRDD)),,FFpp));; //// SSkkiipp tthhee ffiilleeccooddee

ffrreeaadd((&&ddddssdd,,ssiizzeeooff((DDDDSSUURRFFAACCEEDDEESSCC)),,FFpp));; //// LLooaaddeedd tthhee ssuurrffaaccee ddeessccrriippttoorr

ffrreeaadd((&&ddwwBBooddyySSiizzee,,ssiizzeeooff((DDWWOORRDD)),,FFpp));; //// GGeett tthhee ssiizzee ooff tthhee tteexxttuurree

bbooddyy == ((BBYYTTEE**))mmaalllloocc((ddwwBBooddyySSiizzee**ssiizzeeooff((BBYYTTEE))));; //// aallllooccaattee tteexxttuurree mmeemmoorryy

ffrreeaadd((bbooddyy,,ddwwBBooddyySSiizzee,,FFpp));; //// RReeaadd tthhee bbooddyy

}}

Step 2: Create the texture surface.

{{

LLPPDDIIRREECCTTDDRRAAWWSSUURRFFAACCEE llppddddss;;

//// AAssssuummee tthhaatt yyoouurr DDiirreeccttDDrraaww iinntteerrffaaccee iiss rreepprreesseenntteedd bbyy llppDDDD

llppDDDD-->>CCrreeaatteeSSuurrffaaccee((&&ddddssdd,,&&llppddddss,,NNUULLLL));; //// NNoott eexxaaccttllyy -- vveerriiffyy

//// FFaallllbbaacckk ssttrraatteeggyy ÐÐ

//// IIff CCrreeaatteeSSuurrffaaccee ffaaiillss dduuee ttoo llaacckk ooff vviiddeeoo mmeemmoorryy

//// OORR tthhee DDDDSSCCAAPPSS__NNOONNLLOOCCAALLVVIIDDMMEEMM ffllaagg ttoo ddddssdd..ddddssCCaappss..ddwwFFllaaggss

//// ccaallll CCrreeaatteeSSuurrffaaccee aaggaaiinn ttoo ccrreeaattee tthhee ssuurrffaaccee iinn AAGGPP mmeemmoorryy

}}

Step 3: Load the compressed data onto the texture surface.

{{

llppddddss-->>LLoocckk((NNUULLLL,,&&ddddssdd,,NNUULLLL,,NNUULLLL));;

mmeemmccppyy((ddddssdd..llppSSuurrffaaccee,,bbooddyy,,ddwwBBooddyySSiizzee));;

llppddddss-->>UUnnlloocckk(());;

}}

L I S T I N G 1 . Handling S3TC compressed textures.

S3 Inc.
http://www.s3.com

DirectX 6
http://www.microsoft.com/directx/

pavilion/default.asp

Intel’s AGP
http://developer.intel.com/pc-supp/

platform/agfxport/AGP_FAQ.HTM

FF OO RR FF UU RR TT HH EE RR II NN FF OO

to improve the quality of interaction in
other ways. According to the Motion
Factory, the missing ingredient is rich-
er, more realistic characters (Figure 1).

Think about what it would take to
create a computer simulation of your-
self. With readily available technology,
we could make an elaborate physical
model, and we could animate it con-
vincingly with motion capture data.
We could program the character to
pursue a goal and to respond to partic-
ular stimuli. If we’re good enough pro-
grammers, we could even convey a

fleeting illusion of intelligence, creativ-
ity, or sense of humor.

Now imagine inserting that character
into a simulation of a subway station at
rush hour. Will the illusion hold up? Of
course not. The environment is too
rich, the potential interactions too
plentiful. The difficulty of managing
characters forces us to set our games in
controlled environments — and by
doing so, we may be missing out on
some intriguing designs.

The Motion Factory’s first product,
officially called the Motivate Intelligent

Digital Actor System, makes it a
lot easier to build complex char-
acters. Motivate combines tech-
nologies used to control
mechanical robots with
advanced techniques for animat-
ing 3D models. Characters —
both player-controlled and inde-
pendent — can be assigned
high-level tasks, such as “walk to
the door”; the Motivate run-time
engine will sweat the details.

Although Motivate would be
useful for animated 2D titles,
this version works with 3D char-
acters only. Motivate doesn’t
limit you to humanoid or

bipedal characters, but if your characters
will roam freely in space, they won’t be
able to use the path generation feature;
real-time path planning is a difficult
computer science problem in just two
dimensions. I guess you could say that
Motivate works best with 2.5D titles.

Inside the Box

M otivate is a product that doesn’t
fit into a single niche. Its value

lies in four basic areas:
• Modeling behaviors using hierarchi-

cal finite-state machines (HFSMs).
This paradigm for defining player AI
is very robust and scales gracefully
from simple to complex behaviors.

• Editing jointed 3D models and
keyframe animations. Although
Motivate’s Actor and Skill Editors are
not its most unique feature, they are
very capable.

• Real-time motion synthesis. Besides
animating models with inverse kine-
matics (IK), Motivate can blend and
overlay animations, so characters can
move more realistically.

• Performing real-time collision detec-
tion and path generation. The path
generation allows actors to solve sim-
ple navigational problems on their
own, even under changing conditions.
The full package consists of the

Motivate run-time engine in redistrib-

G A M E D E V E L O P E R A U G U S T 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

48

R E V I E WP R O D U C T

Motivate 1.1: ItÕs About
Character

b y D a n T e v e n

e game developers are guilty of following a

content formula, encouraging an arms race in

hardware, and being obsessed with technical tricks.

And we’re in danger of burning out our audience.

Once stunning graphics are taken for granted, we’ll haveWW

Dan Teven inflicted DOS/4GW on the game industry. For the past four years, he’s
lived off nuts and berries while struggling to come up with an even better acronym.
He can be reached at dteven@ici.net.

F I G U R E 1 . A party scene created with the

Motivate authoring tool.

utable form; an authoring environ-
ment based on the engine; a Software
Development Kit with the expected
include files, class library, and sample
code; documentation; and two days of
hands-on training.

Plug-ins are used to support different
video and audio renderers, to import
geometry and motion data from differ-
ent file formats (Figure 2), and to
extend the scripting language that con-
trols the run-time engine. You’ll use
the SDK to control digital actors and
other Motivate classes from C++ code,
and also to write new plug-ins.

Motion Factory has a multi-user run-
time engine available, but I didn’t get a
chance to review it. Motivate should be
a good fit for multiplayer games
because you can use very concise com-
mands to direct actors.

According to Motion Factory, every-
one who buys the product goes through
the two-day training session. Not every-
one gets the same level of technical
support, however; buyers can purchase
three levels of technical support pack-
ages separately. Support personnel usu-
ally responded the same day to e-mail
and always had an answer for me.

Motivate is hardware-locked with
Hasp, so you have to attach a dongle to
your parallel port before the authoring
environment will start up. I hate copy
protection and hardware-lock schemes
because they always seem to create
more problems than they solve. Sure
enough, when I installed Motivate on
my NT 5.0 alpha, the Hasp drivers
crashed and left my system unbootable.
I never got around this incompatibility;
I used Motivate on Windows 98 instead.

Learning the Product

I got up to speed in the authoring
environment very quickly, in part

because of the training and in part
because the environment is genuinely
well-designed. Learning the SDK is no
different than learning any other class
library, so it takes time. There is a lot of
interesting sample code, including
examples of each type of plug-in.
Project files are included for Microsoft
Visual C++.

The documentation is in the midst
of being made more task-oriented. The
user’s guide appears to have made this
transition, and it’s excellent; the SDK

reference has not done so, and it’s mea-
ger. I would have liked a more thor-
ough overview of how the components
and classes in the system interact — or
at least a good index so I could be sure
I hadn’t missed something. I would
also have liked longer discussions of
error messages and of delivering a fin-
ished title using Motivate.

Behavior Modeling

F inite state machines are taught in
first-semester programming class-

es, so they’re not exactly break-
through technology. On the other
hand, using them for behavior model-
ing is clever, and Motion Factory has
succeeded in making them both prac-
tical and accessible.

FSMs are ideal for creating characters
that respond gracefully under all condi-
tions because they force the author to
plan for all possible combinations of
behavioral states and events. The draw-
backs to FSMs are that the number of
state/event combinations can get very
large and that their logic is fixed.
Hierarchical finite state machines, as
implemented by Motion Factory, are
FSMs in which states are allowed to
contain substates and procedural code
can be attached to state entry, exit, and
transitions (Figure 3). Also, states can

contain variables (which are also visible
to their substates). These properties
reduce the number of states in an HFSM
and allow it to adapt to changing envi-
ronments. For example, you can reuse
the same states for “hunting with the
bazooka” that you used for “hunting
with the rifle,” and the transition code
for the “fire” event can worry about
whether you have enough ammo left —
if you do, you can come back to the
same state, and if you don’t, you go
somewhere else. (If you hit another
actor with your shot, then its HFSM will
handle the event; Motivate executes
HFSMs for each actor simultaneously.)

HFSMs are created in the Behavior
Editor using a visual interface similar to
a flowchart (Figure 4). States are repre-
sented by rectangles, transitions by
arrows. The hierarchy of substates is
obvious because
rectangles can
contain other rec-
tangles. Clicking
on a state or a
transition lets
you edit its prop-
erties. Those
properties can
include procedur-
al code written in
Motivate’s script-
ing language,
Piccolo.

h t t p : / / w w w . g d m a g . c o m A U G U S T 1 9 9 8 G A M E D E V E L O P E R

49

F I G U R E 2 .
The Import Actor

dialog for 3D

Studio Models.

A space is just a container for

objects that can potentially interact. A

space might correspond to a room or a

level in your game.

Actors are the fundamental objects in a

space: almost everything that happens is

an actor “acting” in some way. Actors

have properties such as jointed, hierar-

chical geometric models, skills, and

behaviors. Some actors (sets or props, to

continue the stage metaphor) may have

no skills or behaviors.

Skills are short sequences of animation

describing an actor’s most basic move-

ments. Think of skills as a vocabulary; the

parts of speech are locomotion (for exam-

ple, go to), manipulation (grasp, touch,

and place), and gesture skills. These may

be combined in various ways to generate

sentences (complex movements). You

can also create compound skills involv-

ing more than one actor — for actions

that must be tightly choreographed.

Behaviors are the “intelligence” in

intelligent digital actors: goals, respons-

es to stimuli, states of mind, and so on.

Actually, they’re programs implemented

as hierarchical finite state machines.

Finite state machines (FSMs) are sys-

tems that can be in a fixed number of

distinct states and that can change to

different states only in accordance with

predefined events. Because the states

and state-to-state transitions are

defined ahead of time, FSMs are perfect-

ly predictable.

Inverse kinematics (IK) is a way of

interpolating between keyframes in an

animation. IK allows some of the nodes

in a jointed model to be constrained and

adjusts the positions of the others as

necessary.

A Motivate Glossary

Let’s go over a few quick definitions.

Piccolo is a typeless, garbage-collect-
ed language like JavaScript. The text
editor that’s built in for editing Piccolo
code is very basic, but it doesn’t need
to be more powerful, because most of
the Piccolo functions you’ll write will
be just a few lines long. Small func-
tions are also easy to debug, and there’s
an integrated debugger that’s more
than adequate.

Piccolo has hundreds of predefined
methods. You can view their return
values and parameter lists from a help
window, no in-depth information is
available within the environment.
Fortunately, the manuals are included
on the CD in Adobe Acrobat format.

In the Behavior Editor, you can
zoom in or out, so the user
interface scales up to handle big
HFSMs. However, the interface
isn’t as polished as those of the
Actor and Skill Editors. It tries to
cram too much information
onto the screen at once, so
you’ll have to do a lot of
scrolling in screen resolutions
less than 1,024×768. There
aren’t enough on-screen cues to
explain what all the toolbar but-
tons do, or what the elements of
an HFSM diagram mean; a
“What’s this?” tool would be
nice. And the few bugs I
encountered while testing the
product were in this area.

Despite these minor com-
plaints, the Behavior Editor is

good enough that you can build
HFSMs with hundreds of states and not
find yourself fighting with the tool. It’s
even good enough to be used by teams
in which the game designer isn’t a pro-
grammer. He or she could simply map
out the state diagram, leaving behind
comments that a programmer would
eventually translate into Piccolo.

Editing Models and Animations

M otivate is not a 3D modeling
tool, so you begin creating an

actor by importing a model created by
another package. Motivate accepts
.3DS, VRML, and .DXF file formats.

(You can use models in another format
if you use the SDK to write a plug-in for
that format.)

The models must be made of rigid
links; deformable meshes aren’t sup-
ported. The geometry must be segment-
ed, so that each body part to be animat-
ed is a distinct node. Still, you don’t
have to define the hierarchy in advance,
and you can specify the handedness of
the coordinate system at load time.
Motivate supports both single- and dou-
ble-sided polygons; perspective-correct-
ed, lit, and filtered textures; and opacity
maps, but not bump maps or highlights
(yet). Texture maps should be square
and a power of two in size.

After importing the model, you can
edit it. This step can include
resizing the model, defining
“up” and “forward” vectors,
setting pivot points, con-
straining joint movement,
and rearranging the hierarchy
— up to a point. You can
rearrange nodes, remove
them, paste in nodes from
another actor, merge two
nodes into one, or split an
actor into two, but you can’t
divide a single node into two.

The Actor Editor has two
windows, with a rendered
view in one and a hierarchy
graph in the other (Figure 5).
You can also use multiple
monitors. The user interface is
intuitive, with good use of

G A M E D E V E L O P E R A U G U S T 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

50

P R O D U C T R E V I E W

x1

x1�

x2

x2

y

y

y

y

y

y2

y2

X1/Y1

X1/Y2

X2/Y1

X2/Y2

Y1/X1

Y2/X2

Y1/X2

Y2/X2

x

x

x

x

x

y1

y1

X1

X2

Y1

Y2

y

x

x1 x2 y1 y2

F I G U R E 3 . Conventional (left) and hierarchical FSMs describing the same system.

F I G U R E 4 . The Behavior Editor, with a state entry action

shown in the Piccolo Editor.

context menus (right-click), keyboard
shortcuts, and the ability to work in
either window when it makes sense to
do so. Basic operations, such as selecting
an actor, are painless, even when the
actor is off screen, small, or obscured.

Selecting an actor causes a transform
manipulator to appear around it. The
manipulator can be resized indepen-
dently from the actor by pressing the
[Tab] key, which helps make the
manipulators unusually convenient to
use. You can drag an edge to rotate an
actor, or drag a handle (a “tab”) to
translate it. [Shift]+drag will scale the
actor proportionally;
[Ctrl]+[Shift]+drag will scale along just
the axis associated with the tab.

To create skills for an actor, you can
start from scratch, or you can import
data (3D Studio animations or
BioVision motion capture data). The
Skill Editor is another two-window
view (Figure 6). One window plots the
geometry nodes against a timeline; the
other lets you see the animation “live.”
The basic idea is that you drag the
geometry into an orientation you like,
associate it with a position on the time-
line, and save it as a keyframe. To see
the skill animated, just click the Play

button or drag the time cursor back
and forth to see what the actor looks
like at any instant.

Like the Actor Editor, the Skill Editor
is painless to use. I have next to no
experience animating 3D models, but
Motivate made it easy. My only com-
plaint about the process is that Motivate
doesn’t come with any libraries of pre-
built skills. A basic walk skill, for
instance, could be applied to any actor
that used a basic bipedal hierarchy.
Why should I have to create one from
scratch just to get a prototype working?

Motion Synthesis

O nce an actor has been assigned
enough skills, Motivate is able to

move the actor to account for chang-
ing goals and obstacles. This flexibility
requires motion synthesis, not just
motion playback. For example, if an
actor has a walk skill, and is directed to
go to a certain location, Motivate will
loop the walk animation until the actor
gets there; will adjust the animation if
the actor has to climb up a set of stairs,
making sure the feet touch the ground
properly; and will overlay other anima-
tions, such as “chew gum,” as needed.
If the actor is suddenly told to run in
another direction, Motivate will segue
smoothly from the walk to the run.

Although Motivate makes better use
of animation scripts than any other

off-the-shelf game engine, and real-
time IK is a powerful feature, it’s still
not a general solution to the problem
of motion synthesis. Real-time physics
simulation is the wave of the future; in
another year or two, we’ll start seeing
games in which joint movements are
computed dynamically instead of inter-
polated from keyframe data. Motivate
lets you drive its actors with your
dynamics engine, but it doesn’t have
one of its own.

Path Generation and Collision
Detection

M otivate’s path-generation capa-
bilities are another first for a

commercial game-authoring tool. The
run-time engine can determine an effi-
cient path to move an actor from point
A to point B along any surface defined
as a floor, avoiding both static and
moving obstacles. The path finding
seems smarter than that used by most
games I’m familiar with, but the algo-
rithms can take a fair amount of
processor power. The computation is
performed asynchronously to mini-
mize its effect on responsiveness.

Actors can also be sent from A to B
using a straight line, arc, projectile,
spline, or sampled point path.
Motivate uses these trajectories to pro-
vide a full complement of camera
manipulation commands — and uses

52

P R O D U C T R E V I E W

T o validate my conclusions

about Motivate, I spoke with

Red Orb Entertainment, one of

the few companies that has

publicly announced a licensing arrange-

ment with Motion Factory. PRINCE OF

PERSIA 3D is an adventure-action game

set in ninth century Persia; rich in story

line and character development, it should

be a good fit for intelligent digital actor

technology.

According to Peter Lipson, chief tech-

nologist for PRINCE OF PERSIA 3D, the team

members happiest about Motivate are

the animators. The lead animator was

already familiar with Lightwave and 3D

Studio MAX, but found Motivate easier to

use. Because of Motivate, the team has

been able to use animators without a lot

of experience.

The PRINCE OF PERSIA team uses NDL’s

NetImmerse engine for rendering and Red

Orb’s own code for world management.

They are not using Motivate’s behavior

management because they already had

their own stuff working when they

switched over. According to Lipson, the

biggest integration challenge was

hybridizing the collision detection code

(since both NetImmerse and Motivate

want to do collision detection). He called

the integration “no harder than it ought

to be.”

Red Orb says Motivate is of higher

quality than tools they could have devel-

oped in-house, and it was ready when

they needed it. In short, they’re very

happy with the product.

Reality Check

h t t p : / / w w w . g d m a g . c o m A U G U S T 1 9 9 8 G A M E D E V E L O P E R

F I G U R E 5 . Preparing to edit a joint

limit in the Actor Editor.

F I G U R E 6 . The Skill Editor playing

back a compound skill.

its path planner to prevent the cameras
from being blocked. Smart cameras are
a real plus, but they’re almost an after-
thought on Motivate’s long feature list.

For collision detection, Motivate uses
three different algorithms, depending
on the situation. Bounding volumes
are used most of the time, with trian-
gle-based checking used when very
accurate results are required, such as
when an actor moves along an irregu-
lar surface or uses a manipulation skill.
You can select a hybrid algorithm
(intermediate in speed and accuracy)
on a skill-by-skill basis.

Integration

M otivate’s diverse feature list
might make you a little nervous.

What if Motivate does too much, you
ask? What if it gets in the way of the
rendering code, or the physics engine,
or the support for that cool subcuta-
neous joystick you saw at the CGDC?

Motion Factory admits that it had
some integration problems with their
release 1.0, but it has worked hard to
open up its architecture since then. At
present (release 1.1.2), the SDK gives
you the control you’ll need to adapt
Motivate to your design: you can use
the class library to call Motivate from
your own application framework, and
you can extend the authoring environ-
ment by creating eight different types
of plug-ins.

The first type of plug-in is for video
rendering. There are standard plug-ins
for OpenGL, 3Dfx Glide, and
RenderWare, with a Direct3D plug-in
scheduled for this summer. The second
type is for sound, although
DirectSound3D is the only provided
option. You can also create plug-ins for
importing and exporting actors,
importing motion data, extending the
Piccolo language, editing custom prop-
erties, and registering callbacks for
important events.

Keep in mind that the plug-ins are
used to extend the authoring environ-
ment; you don’t need them in order to
utilize Motivate classes in your C++
code. If you use the SDK, your game
can keep control of the main loop and
treat Motivate like a fancy animation or
AI library. You don’t have to use every
feature, but the interdependencies
among the core components can be

slightly inconvenient. For instance, ani-
mation depends on Motivate’s collision
detection functions; collision detection
requires an up-to-date object database;
and therefore Motivate needs to know
about every object in the world, even
those you don’t intend to animate.

Performance

C ompared to the cost of rendering
3D scenes, Motivate’s CPU

requirements are modest. However, it
does need memory: the authoring
environment allocated 30MB just start-
ing up, and running a fairly basic demo
took another 7MB. There is no built-in
meter that tells you exactly how much
memory you’re using, so be prepared to
spend some time adding instruments
to your game to measure it. Version
1.5, to be released soon after you read
this, is expected to need less memory.

And Now, the Bad News

O verall, I am extremely impressed
with Motivate. The quality of the

product is topnotch. Its features are
genuinely useful for developing a large
class of games, and you won’t find
them in another off-the-shelf product.
It’s being used for real game develop-
ment, so it continues to improve (see
“Reality Check”). It’s fun to use.

The bad news: the price puts it out of
reach of all but the largest developers.

Motion Factory offers two licensing
models, each of which buys you ten
developer seats for $25,000 and
requires a royalty buyout of $25,000 to
ship a title. In one model, the ten
developer seats are for the entire devel-
opment cycle of one title, and in the
other, they’re for the life of a single
major version of Motivate. Which
model you choose depends on whether
you’re developing several titles at once.

I won’t say this product is over-
priced, because it would undoubtedly
cost several times as much to develop
an equivalent product from scratch,
but I could find a lot of other ways to
spend $50,000. Has anyone else
noticed that the acronym for Motivate
Intelligent Digital Actor System is
MIDAS?

If you’re weighing a Motivate license
against the cost of rolling your own,

remember that you’ll own whatever
you develop yourself. You may be able
to reuse your technology for several
titles; if you do a really good job, you
may be able to license it to others. On
the other hand, Motion Factory did a
really good job, and their solution is
ready now. Don’t forget that you’ll
spend considerable time developing
actors, skills, and behaviors; if Motivate
speeds up your character development,
it will pay for itself. ■

h t t p : / / w w w . g d m a g . c o m A U G U S T 1 9 9 8 G A M E D E V E L O P E R

53

Rating (out of five stars):
✪✪✪✪

The Motion Factory
Fremont, Calif. 94538
(510) 505-5151
Fax: (510) 505-5150
www.motion-factory.com

Price: $25,000 for the development kit,
which includes ten developer seats.
$25,000 when the title ships.

Software Requirements: Windows NT
4.0, Windows 95, or Windows 98.

Hardware Requirements: Pentium with
32MB RAM and SVGA; Pentium II with
64+MB and hardware-accelerated 3D
recommended; 40MB disk space.

Technical Support: Three tiers of sup-
port available, beginning at
$1,500/year.

Return Policy: 30-day free evaluation
period.

Pros:
1. Hierarchical finite state machine para-

digm works well for modeling charac-
ter behavior.

2. Powerful animation engine: real-time
inverse kinematics, motion blending,
and composition.

3. A powerful authoring environment
with a short learning curve.

Cons:
1. Price puts it out of reach of indepen-

dent game developers.
2. Fairly high memory requirements.
3. No library of prebuilt characters and

motions for prototyping.
Competitors: According to The Motion

Factory, the biggest competitor to this
product is the “Not Invented Here”
syndrome. There are many products
for 3D modeling and animation, such
as Kinetix’s Character Studio, but no
commercial alternatives for some of
the other features.

Motivate 1.1.2

he number of people who have

had, and continue to have, an

effect on the development of racing

simulations at Atari is somewhat mind

boggling. In March 1974, GRAN TRACK

10, Atari’s first driver, featured a shifter,

a wheel, a pedal, and sound. Other nota-

bles were NIGHT DRIVER and SPRINT 2 in

1976 (SPRINT 2 was a two-player game that

was followed up by the one-player SPRINT 1

in 1978). POLE POSITION in 1982 was actual-

ly licensed from Namco but built by Atari,

and was followed by POLE POSITION 2 in

1983. SUPER SPRINT in 1986 and FINAL LAP

in 1988 round out the list, leading up to

G A M E D E V E L O P E R A U G U S T 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

AtariÕs SAN FRANCISCO RUSH:
EXTREME RACING

TT
b y C a m e r o n P e t t y

P O S T M O R T E M

54

the introduction of HARD DRIVIN’ in February of 1989,
which was the first truly 3D driving simulation to be seen
in the arcade.

Rick Moncrief led the stalwart crew of designers that created
HARD DRIVIN’. Some of these designers were members of the
Society of Automotive Engineers. The result of these develop-
ment efforts, as history will attest, was a large contingent of
happily addicted arcade goers, who stayed that way through
the release of RACE DRIVIN’ in 1990 and even RACE DRIVIN’
PANORAMA (with multiple, wrap-around screens) in 1991. (An
entirely separate division of the company was formed to
adapt the driving model and market it as a police training
device. I’ve been told that the police forces in question report-
ed a marked increase in successful, first-time, high-speed pur-
suits due to the training program.)

Eventually, Moncrief and crew, apparently not satisfied
with the challenge of simulating a normal automobile,
decided that their next game should feature an automobile
that also had retractable glider wings. Get up enough speed
down a hill, pop your wings out, and take to the air. They
even had a little fan in the top of the cabinet to blow air at
you when you got AIRBORNE (the name of the game). The
team, known at that time as the Applied Research Group,
did a fine job in the simulation, and once you learned to
control it, it was loads of fun. But it suffered from two prob-
lems that proved fatal. First, it was too damn hard to fly (for
which it picked up the fond nickname “Flyin’ and Dyin”
and was the subject of many a late night lesson in crash
landing), and second, it missed out on a key trend in game
development at that time: texture mapping.

At almost the same time that AIRBORNE was being tested,
Atari’s two main Japanese competitors in the racing game
market, Sega and Namco, came out with their own entries
into the 3D racing realm. DAYTONA and RIDGE RACER both
stepped up the bar from the previous Japanese blit-based rac-
ing entries and featured resplendent visuals due mainly to
their use of this newly emergent technology. So AIRBORNE died
a quiet death, the Applied Research Group faded away, and
Moncrief and some team members left Atari to pursue a more
down to earth, but no less ambitious goal: creating a full-
fledged, motion-platform-packing, monster-audio-blasting,
driving simulation. The results can be seen now, or soon, in a
number of locations. Check out http://www.smsonline.com
for more up-to-date information.

I Left My Lunch in San Francisco

M eanwhile, back at Atari, gears shifted, and an internal
development effort began to play catch-up to supply

3D texture mapping hardware. Two sets of hardware grew
out of that effort — ZOID and TGS — neither of which ever
saw the light of day. In addition, the reigns of the Atari dri-
ving simulation effort were given to producer John Ray and
the “San Francisco Rush, or, I Left My Lunch in San
Francisco” project was initiated to restore Atari’s lost posi-
tion as the king of arcade racing simulations. This is about
where I came into the picture. I had just finished up work as
game designer and associate producer on PRIMAL RAGE, and I
was itching to get back into some 3D animation-oriented
work. After a few meetings, I was accepted onto the team as

associate producer and game designer. The core team origi-
nally consisted of Master Ray, a few members of the former
Applied Research Group programming staff, and some art
staff from another recently disbanded project called METAL

MANIAX, a TGS-based, futuristic destruction derby.
Marketing and sales were crying out for a DAYTONA-type
game, but the team was really looking to make its own mark.

We looked at DAYTONA carefully and tried to determine why
it was so much more successful than RIDGE RACER. We also
tried to learn from Eugene Jarvis’s CRUISIN’ USA, which sold a
whole lot of units for Williams by overcoming weaker graph-
ics with its pure fun factor and a dirt-floor price point. In the
end, though, SF RUSH was directly descended from HARD

DRIVIN’ and used a variation on the same physics model. This
model not only simulated the engine and its effect on the

h t t p : / / w w w . g d m a g . c o m A U G U S T 1 9 9 8 G A M E D E V E L O P E R

Cameron Petty has been alternately slaving and slacking at
Atari Games since he entered the games industry in 1992. He
was game designer and associate producer for both PRIMAL RAGE

and SF RUSH, and has immensely enjoyed seeing Atari Games
grow back into a cutting-edge endeavor. He's currently off in the
woods writing a sci-fi novel, but can almost always be reached
via his laptop at j.cameron.petty.91@alum.dartmouth.org

55

A latter day incarnation of the RUSH team, from top to bot-

tom left side, then top to bottom right side: John Ray,

Spencer Lindsay, John Geraci, Gunnar Madsen, Steve

Riesenberger, Cameron Petty, Kirk Young, and Alan Gray.

wheels and, thus, the tire patches, but it
also tracked the reciprocal forces back
up through the drive train. This model
led to some key audio developments
and enabled the sort of realistic force-
feedback steering that made HARD

DRIVIN’ famous in the first place.
RUSH took a long time to produce —

almost two and a half years. For the
programming and hardware staff,
much of that time was spent trying to
bring up a new hardware system and
create tools for it, or port between plat-
forms. Alan Gray led the programming
effort, focusing on the physics model.
In the latter months of the project,
John Geraci lent some key help with
drone AI, among other things. Jim
Petrick, Betsy Bennett, Forest Miller,
and Dave Shepperd also contributed to
the programming, and there were tools
contributions and assorted other
efforts from several programmers from
other in-house teams (Bruce Rogers,
Steve Bennetts, and Terry Farnham).
Pete Mokris designed a new, cost-
reduced force-feedback mechanism
that provided nearly the same perfor-
mance as that used for HARD DRIVIN’ at
a fraction of the cost. The hardware
team is too long to list, but Andrew
Dyer and Steve Correll at Williams in
Chicago made key contributions.

Positive Developments

S F RUSH is, without a doubt, the
most realistic simulation of San

Francisco that’s ever been done in a
game. That’s not to say that there was-
n’t a large dose of artistic license taken
in the layout of the tracks; after all, a

fun race definitely
takes precedence
over an authentic
simulation in the
arcade. Still, there
were a few key ele-
ments of the pro-
duction that stand
out as noteworthy
and contributed
to the success of
the game.

1.SOLID

CONSTRUCTION

TOOLS. The art staff
and the program-
ming staff worked

extensively with
folks at MultiGen. We needed a version
of their MultiGen II plug-in Road
Tools that generated a data structure
which could be adapted to work with
our driving model. As far as I know, the
folks in the Applied Technology Group
had built their tracks for HARD DRIVIN’
by placing each polygon individually
in 3D space. The scale and variety of
the worlds we envisioned for SF RUSH

would have made this approach pro-
hibitive, so Spencer Lindsay, who had
worked with MultiGen on METAL

MANIAX, pushed through the effort to
adapt Road Tools for our purposes.
MultiGen had developed real-time sim-
ulation databases for the military, so
the company’s tools were right up our
alley in terms of generating a data
structure optimized for real-time polyg-
onal display. At the time, MultiGen II
was one of few software packages avail-
able that let us view our texture-
mapped geometry in real time, almost
exactly the way it would appear in the
game. The art staff was using mainly
Indigo 2 workstations, which were
upgraded to the Indigo 2 Extreme at
some point, and one Onyx with a
Reality Engine graphics head on it.
Incidentally, this was before MultiGen
II ran on any platform other than
Silicon Graphics. Additionally, each of
the artists had a Macintosh Quadra
running Photoshop 3.0 and other utili-
ties, and a PC running 3D Studio R4,
both of which were used almost exclu-
sively for texture creation.

2.GOOD CHOICE OF SILICON. In 1995,
parent company Time Warner

sold Atari Games to WMS Industries.
This sale provided an tangential advan-
tage to ’s development. At the time,

Williams happened to be working with
3Dfx, a small start-up that had splin-
tered off from Silicon Graphics. In a
combined effort between Atari Games
and Williams, the 3Dfx graphics
chipset was integrated as a daughter
board into a proprietary development
system known as “Phoenix.” Later, the
3Dfx chipset was worked into a small-
er, less expensive board solution for
production. The 3Dfx chip gave us
access to a number of nifty tricks,
including vertex shading, two sets of
(animatable) texture coordinates, MIP-
mapping, and bilinear interpolation.

3.LOVE THOSE LODS. We made some of
the most extensive use of levels of

detail (LODs) in the game community
to date. RUSH was, and still is for that
matter, one of few games to create an
environment with a naturally expan-
sive feel. One of the art team’s man-
dates was to avoid having geometry
pop into existence out of a void, with-
out having to resort to a fog or other
obscuring artifact. We also wanted to
have reasonably detailed geometry
immediately surrounding the track,
however, which created a resource con-
flict. All of the textures in SF RUSH were
drawn directly from the city itself via a
perspective-correct lens on a 35mm
camera. Used in conjunction with a
scanner and Photoshop, this approach
gave a sense of gritty realism to the
environments. We wanted to have
flower bushes, trees, and window boxes
along the road as players jumped their
cars over the length of Lombard Street,
but we also wanted to let players see
out over Coit Tower to the Bay at the
same time. We wanted players to be
able to look down the entire length of
Market Street, but if they were to stop
and look down a side street, they
would see another vista, or at least an
alley. All this, while maintaining a
decent frame rate, which we defined as
30Hz, was no easy task. The solution,
we found, was to extensively exploit
the use of LODs.

MultiGen was once again the tool of
choice (and still is, for that matter, with
Creator) for its ability to implement
LODs, another concept that grew out of
the military simulation industry.
Everything in SF RUSH has multiple
LODs, and all of the LOD switch ranges
are finely tuned to create a sort of ani-
mated facade. Geometry is switching in
just around the corner and right under

G A M E D E V E L O P E R A U G U S T 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

56

P O S T M O R T E M

the player’s nose in SF RUSH, but they’re
unlikely ever to notice it, unless they
look very closely or someone points it
out to them. The fact that SF RUSH is a
racing game aided our efforts in achiev-
ing this effect. Following a race course
limits the number of routes that a play-
er is likely to take through the city,
which consequently limits the number
of angles/speeds at which you can
approach objects/locations in the game.
Also, we spent a lot of time rebuilding
sets of LODs that were too polygon
heavy, in order to maintain the frame
rate once the final hardware was avail-
able. In the end, an awful lot of hand
tuning and elbow grease was required
to get right, but I think we were able to
create a good sense of expansive spaces
without sacrificing too much detail.

4.SWEET, SWEET MUSIC. I’ve heard
reports that the musical selec-

tions for the consumer releases of
RUSH, which were taken directly from
the coin-op version, were not appreci-
ated by consumers. I have to apologize
to all the people who feel that way, but
we did that (almost) on purpose. The
entire team was of the opinion that the
most important thing for the game
aurally was quality of the sound effects
as opposed to the sound tracks. That
meant that the engine sound was para-
mount, closely followed by wind noise,
road rumble, a proper Doppler shift
effect for other cars, and reverb (for
tunnels and canyon-like city streets).
The sound tracks were relegated to
whatever time and resources remained
after implementing the effects, which
is why the music on an optional switch
in the cabinet, and the default setting
is no music at all.

The intricacy of
the driving model
made it possible to
create an engine
sound that was
true to life. The
torque and load
parameters from
the engine were
used to drive an
audio model that
then acted upon a
series of samples
taken from various
automotive
sources. In-house
audiophiles

Gunnar Madsen,
Chuck Peplinski, and Todd Modjeski
teamed up with contractor David
Riesner and the Atari Industrial Design
team (Mark Gruber, Ralph Perez, and
Pete Takaichi). They produced a quadra-
phonic sound system design for the cab-
inet, rounded out with a seat mounted
sub-woofer, that would do justice to the
game’s detailed audio effects.

The one thing that really puts the SF
RUSH experience over the top turned
out to be something we hadn’t antici-
pated: the audio. The audio, in combi-
nation with the rest of the elements of
the game, increases your level of
immersion in the experience. The
audio experience is very evident in the
game when you get air going over hills
and off jumps. The combination of the
realistic physics model and a full-
weight car going well over 100 MPH
makes for long jumps in which the car
seems to float. Perhaps due to these
intense physics, there was always a
sense of disconnection from the car
when it was jumping. Then we added
the road rumble, got the seat-mounted
sub-woofer working, and actually
linked the road rumble to the car’s
position on or off the ground. It’s an
extremely subtle effect, and is more felt
than it is heard, but when a player goes
over a jump and the grinding rumble
beneath him or her turns to a coarse
whooshing sound, it really sells the
fact that the car just went airborne.
The audio guys, naturally, wished they
had a better audio hardware with more
resources to put towards the audio
effort, but I think they did a fine job
with what they had, given our goals.

5.CENTRALIZED PLANNING. When I first
joined the team, design meetings

were being held in conjunction with
status meetings for the entire team and
weren’t particularly functional. I was
the new kid on the block, and despite
my best efforts, the meetings always
degenerated into separate groups.
Everyone argued and brainstormed
energetically, but never came to any
conclusions either. Can you say,
“Dilbert?”

This disorganization went on for a
bit until a certain key member of the
team threatened to be off about his
business if there wasn’t a change, and
at his suggestion a core design team
was formed. The core team was com-
posed of John Ray as producer, Alan
Gray as lead programmer, myself as
game designer, and the art lead,
whomever that happened to be at any
given time. I suppose it’s easy for me to
say, because I was included in it, but I
don’t think anything would have ever
gotten done if we hadn’t implemented
the core team design meetings. Also,
we made it clear that intelligent feed-
back and suggestions for alternate solu-
tions were more than welcome from
the rest of the team. We needed to
establish initial priorities, however,
and assign short-term tasks while start-
ing to map out what was going to be a
huge effort. To me, it was at this point
that we actually started making a
game, as opposed to developing the
underlying technologies that would
make a game possible.

Stumbling Blocks

I n spite of the fact that we finished
SF RUSH on time, and that we

achieved nearly all of the goals that we
set for ourselves, we did encounter
some significant hurdles. In general,
however, we were able to learn from
our mistakes, and we turned most of
these impediments into advantages.

1.MOVING HARDWARE TARGETS. The
development of the hardware pro-

gressed slower than we had anticipated,
and the hardware itself was slower than
we had hoped. Think about it: we were
building some of the first consumer-
level 3D hardware. The RUSH art effort,
in particular, faced the inevitable prob-
lem of trying to hit a moving target by
creating graphics for a hardware plat-
form that kept changing.

The production hardware came in

G A M E D E V E L O P E R A U G U S T 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

58

P O S T M O R T E M

G A M E D E V E L O P E R A U G U S T 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

60

P O S T M O R T E M

The original city map, with potential routes drawn in colored pencil

The following five images are a series showing the evolution of Track 3

A hand drawn route interpretation with topographical info for Track 3

61

h t t p : / / w w w . g d m a g . c o m A U G U S T 1 9 9 8 G A M E D E V E L O P E R

Just the road surface.

Half decorated

The final product.

The following three images show three top-down orthograph-

ic views of the track during production, with all objects show-

ing their highest LOD.

two flavors: “Seattle” was a single texture-memory
unit (TMU) version (used on MACE and GRETSKY 3D
HOCKEY), and “Flagstaff” was a two-TMU version of
that board that also included the Cage audio hard-
ware, a proprietary audio board that provided 16
channels of 16-bit sound. Switching hardware gears
in midproduction was a bit of a mixed blessing; we
had to port the physics model to the new platform
and revamp the art tool chain. In the end, however,
the new hardware turned out to be just what the
doctor ordered. Once the port was done, Alan Gray
was free to work on the game and underlying tech-
nologies, and the hardware effort, focused in
Chicago, was in hands that were devoted entirely to
that pursuit. At this point, we devised a new sched-
ule based on the availability of the new hardware,
which was six months away, and the crunch began.
We eventually met that schedule, thanks to some
serious help in the eleventh hour.

2.LEADERSHIP LACKING. The RUSH art effort suffered
from the art team’s lack of a strong leader.

Initially, this task fell to Michael Prittie because he
was the most senior of the group. Michael was a fine
artist/modeler/animator, but lacked the technical
background to lead a cutting-edge, real-time 3D
effort. Next in line was Spencer Lindsay, who was
definitely the technical art lead throughout the pro-
ject. At that point, however, Spencer wasn’t ready to
assume the duties of managing and scheduling the
rest of the art team. For a while, Michael and
Spencer tried to divide the lead duties between
them, which really didn’t work.

As a result of all this confusion, Rob Adams, who
was in charge of texture production and 2D work for
the game, was, for the most part, left to his own
devices. Rob was a talented artist, and he produced a
plethora of textures. However, there was minimal
organization of these textures into a library, much of
the modularity of the overall texture set had to be
rethought, and the project required a global color bal-
ancing. Rob wasn’t modeling worlds until late in the
project, and as a result, wasn’t properly aware of
some of the implications that our mapping methods
(for example, separating building tops and building
bottoms so that the textures could easily be com-
bined into a variety of buildings, or tailoring the
house and building bottoms to the predefined hill
angles that we were using to model the tracks) should
have had on his texture development. The discrepan-
cies between Rob’s work and our mapping efforts rep-
resented relatively small problems, but precluded
handy solutions to the daunting task of modeling
three-and-a-half-miles worth of city streets while try-
ing to avoid too much repetition. The lesson to be
learned from this set of circumstances, in my opin-
ion, is that everyone on an art team should do both
modeling and texturing, as the two are closely linked
in today’s 3D games. In fact, Rob’s texturing skills
improved when he began modeling in earnest, and
he turned out to be an excellent modeler as well, a
much-needed help in the latter stages of the game.

Eventually, towards the end of the
project, we decided that I should take
over as art director. I was brought onto
the team as game designer, but I had
just finished a blit-based game, so I was
initially discounted as a 3D artist. I
quickly became frustrated, though, at
designing tracks on paper and watching
over Spencer’s shoulder as he built the
road surface for the first track. With the
team’s permission, I began working the
night shift so that I could use the Onyx
to learn MultiGen II and proceeded to
model the road surface for the second
two tracks. When the track surfaces
were done and the game design was in
a fairly stable state, I went on to start
modeling scenery for the tracks as well.
At this point, I began to realize that the
texture library needed to be rethought,
and it was the resolution of this issue
that convinced the team to let me give
it a go as art director. This reorganiza-
tion was only a few months before the
end of the project. We were behind on
most fronts at that point, but we were
prepared to take a fresh look at things
and push through. Upper management
saw things differently, however, and so
the face of the art team changed again
in the eleventh hour, necessitating an
application of sheer labor towards
meeting a deadline.

3.CORPORATE CHAOS. Along with a
series of lay-offs in late 1996,

upper management at Atari eliminated
the position of Director of Animation,
formerly held by Tom Capizzi. They
also decided that since we were behind,
Tom should take over as art director for
the RUSH team. I’m sure Tom would be
the first to admit that he received his

direction on how the game should be
finished from myself and the other
RUSH artists, but I’m the first to admit
that the project could never have been
as polished a final product without
Tom’s help. Tom took care of the cabi-
net graphics, logos, and attract movies
(with Greg Allen and Brent Englund on
the video shoots), and furthermore put
together a subteam to finish up the
cars. Tom contracted Kirk Young and
chain-ganged Jeff Shears and Gene
Higashi from another team to finish
the car effort, while the rest of the art
team concentrated on finishing the
tracks and select screens. Tom also had
the dubious pleasure of inheriting a big
organizational and relational mess, and
I am eternally grateful to him for tak-
ing that mess off of my back just as I
was hunkering down to hoist it up; but
in the end, it all worked out.

4.THE GAME’S DIFFICULT LEARNING CURVE.
The biggest design flaw with RUSH

was that, despite our best efforts, its
learning curve was still a bit steep for a
portion of the arcade audience. Driving
a realistic car model through the streets
of San Francisco at extreme speeds is
just plain hard to do. We wanted play-
ers to be able to get good at it, but we
also wanted the casual player to be able
to play it and not be scared off. We
tried to address this problem in our
design with two major tactics. The first
was a smooth progression of the skill
level required for each of the tracks.
Players can drive Track 1 by just
putting a foot on the gas; a player in
the Beginner car can pretty much go
around the track without steering.
Which brings us to the second tactic:

the cars were divid-
ed into four classes,
going from the
Extreme, which is
the full simulation,
to the Beginner,
which has serious
training wheels,
with a smooth con-
tinuum between the
two. By the time a
player has mastered
Track 3, which actu-
ally requires braking
(or at least taking a
foot off the gas) to
get the best times
and can finish the
course without

crashing in the Extreme car, he or she
has spent a lot of time and a lot money
feeding his or her addiction.

The problem lay in the fact that too
many people chose the Extreme car
when they ought not to have done so.
A player can choose Track 3 and use
the Beginner car and still not have too
bad a time of it, but a beginner who
chooses the Extreme car on any of the
tracks is in for a rough ride. One of the
last revisions to the game featured
graphics and sound cues designed to
make players aware of the dangers of
the Extreme car. This tactic may have
helped somewhat, but John Ray con-
tends (and I agree), that we should
have put access to the Extreme car on a
secret button combination. Secret but-
ton combinations are commonplace
Easter eggs in arcade games these days,
and we used them for other player con-
figurable aspects of the game success-
fully. In the end, we decided, unwisely,
not to use one for access to the
Extreme car. If we had actually limited
access to the Extreme car, we probably
could have prevented a certain percent-
age of players from being scared off by
the difficulty of the game.

5.RUSHED DESIGN. The only other
major problem we had with the

design of the game was a lack of final
tuning. I was so busy scrambling to
build tracks that a few fine-tuning
issues slipped through the cracks,
despite an excellent testing crew. I’m
not going to elaborate on those, but
suffice it to say that it’s possible to
cheat a little in rare instances with the
initial release of the game, and the
drones can be kind of evil sometimes.

Pushing Boundaries

N ow, I don’t want you to get the
impression that the art effort on

SF RUSH was a complete fiasco. That was
decidedly not the case, and though it
may have been a sprawling mess some
of the time, it was successful in the end,
and we managed to push a couple of
boundaries along the way. Many ele-
ments contributed to the success of the
game design, but in the end, I think the
interplay of two main elements distin-
guish RUSH from other racing games of
its kind and create a unique experience.
The first is the combined sense of real-
ism gained from the realistic physics

G A M E D E V E L O P E R A U G U S T 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

62

P O S T M O R T E M

Finished Rush cabinets rolling off the line in Waukegan, Ill.

model, the force-feedback steer-
ing, the surround sound, and
all the little touches. The
strength of the car and the lay-
out of the tracks let players per-
form some incredible, decided-
ly unrealistic stunts. This style
of game play, combined with a
sense of tactile realism, creates
a positively surreal experience
that can be quite a rush, so to
speak.

Since SF RUSH was released in
December of 1996, sales of the
game have exceeded 10,000
units (a large number for a
deluxe, sit-down, coin-op
game), while sales of consumer ver-
sions of RUSH have topped the 500K
mark and continue to climb. We were
fortunate enough to have Ed Logg —
the man who created ASTEROIDS,
CENTIPEDE, and GAUNTLET, and convert-
ed WAYNE GRETZKY'S 3D HOCKEY to the
N64 — volunteer his team to do the
N64 port for Christmas 1997. The in-
house consumer RUSH team not only
made the sprawling beast run properly
under the N64s limited resources, but
also managed to add new graphics and

a portfolio of player adjustable effects
(wind, fog, and so on) and options
(tag, secret keys, and others). At the
same time, the coin-op team was work-
ing on an update to the arcade version
(SAN FRANCISCO RUSH: THE ROCK). This
release would feature new tracks, as
well as incorporating a new set of cars
that were done by some of the MACE

team artists (Jeremy Mattson, Patrice
Crawford, and Matt Harvey). The face
of the RUSH team changed once again
not long after the game went to pro-

duction. Steve Riesenberger,
Aaron Hightower, Rick
Gonzales, Garret Jost, and Brian
Davis have all joined the team,
and everyone but John Ray and
Spencer Lindsay have moved
on to different pastures. Both
the consumer and the
revamped coin-op RUSH teams
are currently hard at work on
two separate RUSH sequels.

Not long after the produc-
tion of the original game, I
moved on from the coin-op
RUSH team. Tom Capizzi had
already left the company to

join Rhythm and Hues in Los
Angeles, so Spencer Lindsay became art
director again for RUSH: THE ROCK.
Spencer had learned some valuable
lessons over the course of the project
— as we all had — and was well pre-
pared to take up the reigns. Mean-
while, I was off on vain attempt to
make something other than another
racing game. I obviously failed miser-
ably, as I’ve been working on nothing
but another racing game for the last
nine months. But that’s another
story… ■

64

P O S T M O R T E M

It’s a gutsy
move in a
chaotic,
often cut-
throat
indus-
try, and

it’s not for
the faint of

heart. As an
agent, I work

with a variety of
development groups,

both startup and veter-
an. Shopping your game

to publishers can be a
stressful, emotional process,

regardless of your level of expe-
rience, and particularly if it’s

your first attempt. Doing your
homework first will allow you to go

in prepared. I have a list of specific
tips that I like to pass on to game
developers who are contemplating
taking the plunge.
PUT TOGETHER A VIABLE TEAM. I know that
sounds vague and obvious, but you’d
be surprised. A designer and a former
tester do not a solid team make. Ideas
are a dime a dozen in the game business,
like film ideas in Hollywood. Without
strong technology and proven skills, your
development effort will hold little attrac-
tion for publishers. A viable team should
be skilled in programming, animation,
design, and project management. Without
any of these pieces, you put your chances of

getting a deal in serious jeopardy.
WRITE A DETAILED DESIGN SPEC. I cannot tell you how
thrilled I am when a developer comes to me
with a fleshed out design document; to a pub-
lisher, this shows you’re serious and have
thought the concept through. Publishers get
rather concerned when the developer seems to
be designing the game “off the cuff” during an
initial meeting. I recently met with one rather
enterprising developer who actually wrote a
technical design document, along with the
design spec, before meeting with the publishers.
DEVELOP A PROTOTYPE. A game concept, on its own,
means very little in this industry. Publishing
executives and agents are hit with loads of con-
cepts every week, and without technology to
back ideas up, your chances of landing that con-
tract are slim. Unless you just jumped ship from
the latest hit title, few publishers are willing to
risk the necessary millions on an unproven team
without a core technology. The best prototypes
are fully interactive, allowing the user to explore
a bit of what the game world is expected to look
like. The final game rarely resembles the proto-
type, but it gives publishers a feel for what the
core team is capable of putting together in a rel-
atively short period of time.
KNOW YOUR PUBLISHER. Set up meetings with only
the most appropriate publishers, so as not to
waste your time or theirs. In other words, it
makes little sense to begin your tour by pitch-
ing a PC game to a console-only publisher.
Likewise, some publishers are visibly boutique
in their title line-ups; it would be highly unlike-
ly for a publisher only interested in PC military
simulations to cut a deal on a 3D platformer for
the PlayStation.

b y S u s a n L e w i sS O A P B O X

Crossing the Chasm:

Tips for Startup Studios

S o you’ve decided to split and do your own thing

— you’ve gathered some industry cohorts and you

have a “great idea for a game.” Congratulations…

and I mean that.

Susan Lewis is an agent and the founder of ThinkBIG, which provides international representation to developers
and publishers in the game industry. Prior to ThinkBIG, Lewis spent several years specializing in executive and
technical search for the game industry. She is a Graduate of Brandeis University. Susan can be reached at
susan@thinkbigco.com or http://www.thinkbigco.com.

G A M E D E V E L O P E R A U G U S T 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

Continued on p. 71

Il
lu

s
tr

a
ti

o
n

 b
y

 R
ic

k
 E

b
e

rl
y

DO YOUR RESEARCH AND DEVELOP

A SOLID PITCH. Make it easy
for the product develop-
ment people to explain
your concept concisely
to the other executives
and marketing people.
Everyone hates to think
of their game as a “me
too” title but if market-
ing is going to predict
how the game will sell,
they need to compare it to
everything else out there.
Take GRAND THEFT AUTO, for
instance — indisputedly a
highly original game. Yet,
one might pitch it as
“MICRO MACHINES

meets A.P.B. meets
SYNDICATE WARS

(meets Quentin
Tarentino…).” LEGAL

CRIME could be pitched as
“GRAND THEFT AUTO meets
SIMCITY meets CAPITALISM.” ARMY MEN

equals “COMMAND & CONQUER meets
Toy Story.” You get the point. You might
think that your game is unlike anything
anyone has ever seen before, but when
you leave the meeting, the producer or
business development person you just
met with has to explain your game to
the rest of the company. Make it easy
for them. And be prepared to discuss
how comparable games have done in
the past and to predict how your game
will compete in the market that your
game will face 16+ months from now.
BUILDING A BRAND, SEQUELS. Very few pub-
lishers have succeeded in developing
major brands. Electronic Arts, Hasbro,
and Mattel have arguably been the
most successful in this endeavor, and
various publishers have succeeded in
churning out tremendously successful
sequel lines (the DOOM/QUAKE series,
MORTAL KOMBAT, and FINAL FANTASY, to
name a few). Most publishers are keen
to leverage the money they spend
developing version one into deriva-
tives, sequels, add-ons, and ports.
What is the long term potential of your
game, and how does the publisher gar-
ner long-term profits?
TELL THE TRUTH. Be honest when dis-
cussing how much time you’ll need to
develop your game, how much it will
realistically cost to complete, and how
long your team will take to ramp up to

begin the project. If you
make unrealistic guar-
antees, most publish-

ers will quickly recog-
nize this. And even if
you manage to con-

vince them to sign
the deal, nothing
prevents them
from backing out

later. Keeping a deal
can be more work than

getting one signed, particu-
larly if you’ve given the pub-

lisher unrealistic expectations
of your abilities.

FINANCIAL STABILITY. Publishers get
nervous when they know you’re
hanging on by a thread, financially.
This means that if you slip on a
milestone and they delay pay-
ment, they run the risk that
you’ll go out of business. If a
publisher has already put hun-
dreds of thousands of dollars

into a product, you have them
over a barrel. And don’t think of this as
a way to gain leverage; remember that
the publisher owns the game you’re
developing and can, in many cases, take
the project away from you and assign it
to a more dependable developer. Having
your staff and the equipment that you’ll
need in place makes you more attractive
to a publisher. If you come to them
without any company infrastructure in
place, they’ll know that a sizeable por-
tion of your budget will be going to set-
ting up your company (hiring, comput-
ers, furniture, and so on), and that the
publisher for your second project will
benefit from the money that could have
gone into the first.
UNDERSTAND THE RELATIONSHIP BETWEEN

DEVELOPER AND PUBLISHER. Understanding
deal structures and publisher-developer
dynamics keeps you from looking
naïve (and hence, vulnerable) to the
publisher. Know what a realistic devel-
opment budget is and understand that
this budget is an advance on royalties,
not a cost borne by the publisher; and
with that, know what a realistic royalty
structure is for a first-time developer.
Bear in mind that the developer does
not receive any back-end royalties until
the development budget has been
recouped by the publisher. The sad fact
is, depending on the advances that you
received to develop the game and the
royalty rate that you negotiated, it

would not be unheard of for your game
to have to sell in excess of 250,000 or
even 300,000 units before you received
any further money.
GET IN FRONT OF THE CHECK-SIGNER. This
point should be obvious, but locating
the bottom line at a publishing com-
pany is never easy (and sometimes
impossible) for a startup developer
with few or no connections. You want
to meet with the decision-maker or
someone close to them. It’s a painfully
subjective business, and if an inexperi-
enced submissions coordinator fails to
see the value in your game, the powers
that be will never see it. Again, these
are connections that take time to
develop, but when the opportunity to
pitch your game to the executives
rises, go for it and don’t be intimidat-
ed. If the game is as good as you think
it is, they should want to make the
time to meet with you.

Getting a publishing deal is a daunt-
ing task. As a startup company, be pre-
pared for a lot of rejection. In an indus-
try where typically only the top 20
games make money, where fewer than
10 percent of all games released sell
over 100,000 units, and where the aver-
age development budget has risen to
$1.5 to $2 million, publishers are
understandably cautious. Why is your
game going to hit the top 10? What dis-
tinguishes you from the hundreds of
other groups approaching each and
every publisher every month? Who is
your target audience? How can this be
leveraged into future titles? Why will
the consumer buy your game instead of
TOMB RAIDER 3, QUAKE 3, FINAL FANTASY

VIII, RESIDENT EVIL 3, MADDEN ’00, and
so on, and so on, and so on? Do not
take a meeting with a publisher if you
are unable to answer these questions. ■

71

S O A P B O X

Continued from p. 72

h t t p : / / w w w . g d m a g . c o m A U G U S T 1 9 9 8 G A M E D E V E L O P E R

	back:

