
august/september 1996

G A M E D E V E L O P E R M A G A Z I N E

A
ctivision’s seen it all. It was one
of the first independent, third-
party developers on the original
Atari 2600 back in 1979, and
went on to produce titles for
Nintendo and Sega. It weath-
ered hard times with the car-
tridge market in the early ’80s,

and today its diverse action and adventure
games cover the Sony, Sega, and Nintendo
consoles as well as Intel and Macintosh.
This issue we look at one of their latest
efforts, a futuristic sports game called
HyperBlade which feels a lot like the 1975
James Caan classic, “Rollerball.”

Activision collaborated on Hyper-
Blade with WizBang!, a game develop-
ment firm out of Seattle, using a home-
grown development environment called
ADLIB. WizBang! created this ADLIB
development system, which let them cre-
ate and manipulate the behavior of objects
(such as your rollerblading opponents) at a
high level. The beauty of ADLIB is that it
lets creative but non-technical staff help
develop a game. It’s refreshing to see a
company abstracting game design to a
level where a wider range of people can
participate in game development.

HyperBlade isn’t your typical sports
game, but then again Activision seems to
revel in its unique line of games. For
instance, in their upcoming Blast Cham-
ber, you control a person trying to defuse
a time bomb strapped to his body. In
Interstate 76, another soon-to-be-
released title, Activision transplanted
their MechWarrior engine into a retro-
style ’70s car combat simulator (sort of a
“Dukes of Hazard” on ’roids). The com-
bination of far-out concepts and high
production value is one of the reasons the
company has been able to weather the
ups and downs of the fickle game market.
I asked Eric Johnson, Activision’s vice
president of marketing, why they pursue
wild concepts.

“Activision believes that the ‘me too’
strategy is not effective over the long haul.
Of course we’ve capitalized on sequels to
our past successes like Zork and Pitfall, but
we feel that if you’re going to develop
something new, develop something com-
pletely new,” Johnson said. “I’ve seen a lot
of Doom-style products, and there are
quite a few Myst and Command & Con-
quer wannabes coming out. But we don’t
think that’s a good strategy because it’s
usually the game that strikes first—the one
that has an amazing story, fantastic graph-
ics, or is a technological breakthrough—
that becomes the market leader. And when
you establish a lead over your competition
this way, it’s hard for your competitors to
catch up because the lead time to develop a
game is so damn long.”

Activision’s strategy is logical, consis-
tent, and intelligent. They milk cash cows
like Zork, MechWarrior, and Pitfall for
reliable returns while the company simulta-
neously explores new avenues. It works.

Going out on a conceptual limb with
a game has a downside though, as Johnson
explained: “We want to create break-
through titles, and we take risks to do so.
The challenge is communicating with the
public—that’s one of our biggest hurdles
on the marketing side. It’s not easy
explaining Blast Chamber to someone.”

Successful development collabora-
tions will continue to play a part in Activi-
sion’s future. Johnson explained that
Activision is continually on the lookout for
new WizBang!s to work with, and that
their business development unit continually
scours the country in search of companies
with innovative technologies and proven
track records. So if you have a fantastic
idea—and the talent and experience to
back it up—you may have found yourself a
potential publisher. Just remember: think
wild concepts. ■

Alex Dunne
Senior Editor

Wild at Heart

G A M E P L A N

6 GAME DEVELOPER • AUGUST/SEPTEMBER 1996

MGA EGAME

Editorial Director Larry O’Brien
gdmag@mfi.com

Senior Editor Alex Dunne
76702.1142@compuserve.com

Managing Editor Diane Anderson
dianderson@mfi.com

Editorial Assistant Jana Outlaw
joutlaw@mfi.com

Contributing Editors Barbara Hanscome
bhanscome@mfi.com

Chris Hecker
checker@bix.com

David Sieks
103302.301@compuserve.com

Web Site Manager Phil Keppeler
phil_keppeler@mfi.com

Editor-at-Large Alexander Antoniades
sander@mfi.com

Cover Photography Charles Ingram Photography

Publisher Veronica Costanza
Group Director Regina Starr Ridley
Special Projects Manager Nicole Freeman

76702.706@compuserve.com

Advertising Sales Staff

Western Regional Sales Manager

Steve Nikkola (415) 905-2256
snikkola@mfi.com

Western Account Manager

Barbara Wren (415) 356-3362
bwren@mfi.com

Promotions Manager/Eastern Regional Sales Manager

Holly Meintzer (212) 615-2275
hmeintzer@mfi.com

Marketing Manager Susan McDonald
Marketing Graphic Designer Azriel Hayes
Advertising Production Coordinator Denise Temple
Director of Production Andrew A. Mickus
Vice President/Circulation Jerry M. Okabe
Circulation Director Gina Oh
Associate Circulation Director Kathy Henry
Group Circulation Manager Mike Poplardo
Assistant Circulation Manager Jamai Deuberry
Newsstand Manager Debra Caris
Reprints Stella Valdez (916) 729-3633

Chairman of the Board Graham J.S. Wilson
Chairman/CEO Marshall W. Freeman
President/COO Thomas L. Kemp
Senior Vice President/CFO Warren “Andy” Ambrose
Senior Vice Presidents David Nussbaum, Darrell
Denny, Donald A. Pazour, Wini D. Ragus
Vice President/Production Andrew A. Mickus
Vice President/Circulation Jerry Okabe
Vice President/

Software Development Division Regina Starr Ridley

Miller Freeman
A United News & Media publication

http://www.mfi.com/gdmag

GAME DEVELOPER • AUGUST/SEPTEMBER 1996 9

Readers
Want Flames,
Believe It or Not

S E Z U !

FLAME ON!FLAME ON!

Dear Editor:

The article by David Sieks, “Where the
Sun Don’t Shine” (April/May 1996), was
great coverage of lighting and creating

mood. However, his article didn’t mention
anything about torchlight and other animat-
ed light forms caused by fire. Since I am cur-
rently working on a project that incorporates
this kind of lighting, I would like to find out
more about it. Do you have an idea of where
to look?

Thomas Buytaert
Via e-mail

David Sieks replies:
When first writing the article, I had considered
the issue of firelight. The problem I ran into is
that approaches vary from one 3D package to
the next, depending on the tools available.
Unfortunately, I haven’t seen very much writ-
ten on flames or torchlight that I can recom-
mend to you. One article that does come to
mind is “Fun With Flames,” a LightWave how-
to by Bill Arbanas in 3D Artist #17. It’s got a
lot of LightWave-specific detail, but many
techniques should also prove of more general
interest if you use another package.

There’s also a “Pyromania” CD-ROM of ani-
mated flames and explosions, though in a
quick look around here I wasn’t able to turn
up the company that offers it. I bet a web
search would help. I don’t know what soft-
ware you are using or what you have
attempted so far in the way of flame effects,
but the two chief effects you have to create
are the flames themselves and the light cast
by the flames. As far as the first item, you
probably don’t want to try to model a leaping
torch flame in 3D. Instead, try making a
short, looping 2D animation of a flame shape
surrounded by an alpha key color (so that the

negative space around the flame drops out).
You can use a yellow-to-orange gradient to
color the flames, but move the gradation
slightly up and down over the course of the
sequence so it doesn’t look too static. Apply
this flame sequence as an animated texture
map to a flat polygon in your 3D program.
Position this flame-painted polygon to face
your camera. Many 3D packages let you link
the two together so that even as the camera
moves, the polygon turns to face it.

As for the flickering light of the torch, you’ll
need to place one or—preferably—more
light sources on or very near the flame-paint-
ed polygon. Animate the intensity levels of
the lights so that their brightness increases
and diminishes and animate a color shift
back and forth between yellow and orangey-
red. Depending on how much your animated
fire map “leaps,” you may also want to ani-
mate a small range of movement for the
lights.

Multiple light sources, each shifting hue
(at a different rate) from yellow to orangey-
red, with animated intensity levels never
quite in sync, positioned slightly apart from
one another and all casting shadows should
give a really nice look. Of course, shadow-
casting is a real time-sink, so you have to
strike your own balance here.

If your flame is off camera and you just
need the effect of flickering light and leaping
shadows in your scene, it might be easier to
use an animated projection map in front of
your light source: make an abstract, looping
2D animation of yellows and oranges amidst
patterns of light and dark and project this
animated map onto your scene.

This is rather general, but I hope it’s been

some help. I’d be interested to hear of any

refinements or new tricks you come up with

as you continue with your project.

I HAVE A GREAT IDEA...I HAVE A GREAT IDEA...

Dear Editor:

In a not so recent Game Developer article
(“Let’s Get To The [Floating] Point,” Febru-
ary/March 1996), Chris Hecker derived

some equations for properly taking the floor
and mod of negative numbers. I just had an
idea which may speed up the method he
gave.

If you know that the number you want to
operate in is never going to be less than -A
where A is a positive integer, pick some inte-
ger B>A. Then, when you want to do a floor on
x, add in B, do the floor and mod with the
assurance that you are operating on a posi-
tive number, and then subtract B out of the
floor. For example (note I am modding with 1):

x = -2.3
B = 100
floor(100+-2.3) = floor (97.7) = 97
97.7 mod 1 = .7
then, subtract B from the floor
(97-100) = -3

This gets rid of the jumps needed when
checking for the positive and negative cases.

Tim DeBruine
Via e-mail

Chris Hecker replies:
That’s a good idea! I’ve also seen cases
where you can bias your entire coordinate sys-
tem until it’s positive to avoid the subtrac-
tion. This technique also works for the float-
ing-point conversion from another article.

http://www.gdmag.com

We Want Your Feedback!
Please direct all comments, questions, and
suggestions to the Game Developer web
site http://www.gdmag.com. Thanks!

Who’s
Connected?

B I T B L A S T S

D
eals are going down all around
town—between Ten and Netscape,
QSound and Sonic Foundry, Rendi-
tion and Intel.

Online Gaming
Multiplayer gaming over the Internet is
big business: Ten and Netscape have
teamed up. Ten’s front-end software
package will include Netscape Navigator’s
Web browser. Thus, Netscape gains dis-
tribution through hit games, and Ten
members get a web client. When Ten
launches the final version of its service, the
Netscape arrangement will take effect.
■ Ten

San Francisco, Calif.
(415) 778-3500
http://www.ten.net/

Sonic Youth
Sonic Foundry has teamed up with
QSound Labs to develop a new plug-in
for Sound Forge, the digital audio editor
for Windows. QTools/SF combines three
plug-in tools that add QSound Labs’s
patented audio technology to Sound
Forges’s palette of wave editing, modifica-
tion, and effects for PCs. The set features
static placement of mono sound files at a
user-selected location along a 180 arc in
front of the listener, processing of existing
stereo image creating a dramatically
widened 3D soundfield, and a high-defin-
ition sample rate converter.
■ Sonic Foundry

Madison, Wis.
(608) 256-3133
http://www.sfoundry.com
http://www.qsound.ca

Rendition, Intel, Microsoft
Rendition will support Intel’s Accelerated
Graphics Port (AGP) specification. The
announcement is a boost for the AGP
standard, which makes its debut in Pen-
tium Pro-based PCs sometime in 1997.

The AGP specification intends to
leapfrog existing 3D-graphics solutions by
offering four times the bandwidth for
graphics with real data throughput of over
500MB/second. The result, according to
Intel, will be a new level of realism, speed,
and detail for games. Rendition will sup-
port AGP in future versions of its Verite
3D graphics accelerator chip.

Verite’s architecture consists of a
flexible RISC core and pixel pipeline.
Rendition’s first-generation Verite chip
reaches consumers with the release of
Creative Labs’s 3D Blaster PCI.

The Verite chip served as the hard-
ware design reference platform for
Microsoft’s Direct3D API. Verite will
also bring real-time Direct3D acceleration
to the entire family of Direct3D, Win-
dows 95 based titles from Microsoft. Pric-
ing for the 3D Blaster PCI starts at $349.
■ Rendition

Mountain View, Calif.
(415) 335-5900
http://www.rendition.com

Mplaying
If you heard Brian Moriarty’s “The Point
Is” at the CGDC like I did, you’ve heard
of Mpath Interactive. Mpath announced
it garnered the support of 11 major soft-
ware developers for its upcoming Inter-
net gaming service, Mplayer. This list
includes game giants such as Accolade,

Blizzard Entertainment, Maxis, New
World Computing, and Strategic Simu-
lations and will provide Mplayer sub-
scribers with many new titles to use with
the service.

Mplayer’s advantage over competing
online gaming services is speed. Mpath’s
proprietary network architecture provides
low latency, allowing twitch-style and
other fast action games to be played over
the Internet. The company has also devel-
oped interactive voice features, which will
allow players to communicate with each
other as they play.
■ MPath

Cupertino, Calif.
(408) 342-8800
http://www.mpath.com

DimensionX
Dimension X released a beta version of
their Liquid Reality developers kit. It is
the first platform-independent implemen-
tation of VRML 2.0 and the only VRML
2.0 toolkit coded entirely in Java. Liquid
Reality with VRML 2.0 support is avail-
able on the Windows 95, Windows NT,
Solaris, and Linux platforms with Macin-
tosh and Pippin versions to follow.

Liquid Reality is integrated with the
Microsoft ActiveX and DirectX technolo-
gies. It also includes support for 3D
sound, compatibility with multiuser
servers, an open API, 250 classes to sup-
port 3D content creation, and Java classes
upon which developers can build a brand-
ed VRML 2.0 browser.
■ Dimension X

San Francisco, Calif.
(415) 243-0900
http://www.dimensionx.com

12 GAME DEVELOPER • AUGUST/SEPTEMBER 1996 http://www.gdmag.com

Diane Anderson

I
sure am glad my full-time job isn’t
reviewing compilers, because their
ubiquitous bugs and wacky user
interfaces would drive me insane.
However, evaluating compilers does
have its moments, like when I found
the following paragraph in the Wat-
com 10.6 compiler’s help file under

the heading, “What you should know
about optimization”:

“The C/C++ language contains fea-
tures which allow simpler compilers to
generate code of reasonable quality. Reg-

ister declarations and imbedding [sic]
assignments in expressions are two of the
ways that C allows the programmer to
“help” the compiler generate good quality
code. An important point about the Wat-
com C/C++ compiler is that it is not as
important (as it is with other compilers)
to “help” the compiler. In order to make
good decisions about code generation, the
Watcom C/C++ compiler uses modern
optimization techniques.”

Considering Watcom did around
the fourth worst overall in my simple per-

formance test, and did a bad job compil-
ing the texture mapper as well, it would
behoove the Watcom compiler writers to
refrain from reading their own help files
and get back to work on those “modern
optimization techniques.” Of course, I
shouldn’t single out Watcom for abuse
just because they handed me a convenient
passage in their help files. Just like my last
article “PowerPC Compilers: Still Not So
Hot” (Behind the Screen, June/July
1996), all the compilers this time around
deserve abuse, so let’s get to it.

The Contestants
This month, we’ll finish up my two-part
series on compiler optimizations. Last
issue, I evaluated a bunch of C++ com-
pilers for the Macintosh PowerPC plat-
form, and this time I’ll do the same for
the current crop of x86 compilers. I hesi-
tate to call these “reviews” since I’m not
completely evaluating every compiler fea-
ture or every possible optimization.
However, unlike most compiler review-
ers, I’m actually focusing on the compil-
er—you know, that tiny part of the
200MB Integrated Development Plat-
form and Suite of Accompanying Visual
Applications that actually generates the
computer code for your application. I’m
assuming that since you’re reading this
magazine you’re interested in fast code,
and the compiler’s the part of the above-
mentioned 200MB that generates (or, as
we’ll see, doesn’t generate) that fast code.

This month will be slightly more
than an x86 version of last issue’s col-
umn, however. I’ll quickly recap the test
results and then move on to what the
results from the two articles mean to
you as a performance-oriented game
programmer.

14 GAME DEVELOPER • AUGUST/SEPTEMBER 1996

More Compiler
Results, and What
To Do About It

B E H I N D T H E S C R E E N

http://www.gdmag.com

Figure 1. The Timing Results

I tested eight compilers this time
around: Microsoft Visual C++ 4.0, the
beta 4 of IBM’s VisualAge for C++ for
Windows V3.5, Borland C++ 5.0, Wat-
com C++ 10.6, Metaware C++ 3.32 for
OS/2, Metrowerks CodeWarrior 8 in
x86 cross-compilation mode, the Free
Software Foundation’s gcc 2.7.2 on
Linux, and Symantec C++ 7.2.

Table 1 shows the eight compilers
and their results on my test programs,
plus one extra row for both Microsoft
VC++ and gcc with different command-
line switches. I also included one extra
row for Borland using the Intel optimiz-
ing backend they supply, and just for
kicks I’ve included the results from the
Motorola PowerPC compiler from last
time. The timing numbers are in clock
cycles per iteration of the test loop, on
my 133Mhz Pentium. The PowerPC
results are on my 132Mhz PPC604, so

it’s a pretty fair comparison. I realized
after writing the last column that a table
full of numbers doesn’t exactly tell the
most interesting story, so Figure 1 is a
graph of Table 1.

The Test
To test the x86 compilers, I used the
same simple product of a three-by-three
matrix and an array of three element
vectors that I used on the PowerPC
compilers. Listing 1 shows the first
attempt at the code and corresponds to
the first column of Table 1. As you
move across the table, each column rep-
resents a new optimization I applied to
the base code in an attempt to coax rea-
sonable output from the compilers. The
compilers did pretty poorly on Listing 1;
most were two to three times slower on
it than on their fastest code, which was
usually attained on the function in List-

GAME DEVELOPER • AUGUST/SEPTEMBER 1996 15http://www.gdmag.com

Chris Hecker finishes

up his two-part

series on compiler

optimizations and

interprets what the

test results mean

to you as a

performance-oriented

game programmer.

Chris Hecker

Note: For source code and optimizations, refer to the June/July 1996 issue.

MSCV (no aliasing)
MSVC
IBM
Watcom
Borland
Borland w/Intel
Symantec
GNU gcc unroll
GNU gcc no unroll
Metaware
CodeWarrior x86
Motorola PPC

105.9
106.1

86
136.4
181.1
75.9

239.7
67.2

127.6
65.1

309.3
34.5

116.3
116.5
81.9

161.4
224.9
99.7

263.8
87.4

166.9
74.8

331.3
47.4

Listing
1

Opt.
2

111.7
112.1
85.7

146.4
245.2

145
214.3
95.5

182.6
72.4

400.3
39.5

Opt.
3

42.1
42.8
85.8
81.9

153.1
47.7

172.5
57.4
75.7
72.6

230.9
33.2

Opt.
4

36.3
47.1
64.5
69.5
91.9
46.4

130.2
62.3
59.6
51.9

147.7
30.8

Opt.
5

36.3
44.4
59.6
65.6
98.1
35.4
129
59.3
52.6
66.4

155.8
20.6

Listing
2

45.6
46.4
45.6
79.6

108.84
37.5

111.9
51.6

53
53.9

137.9
15.5

Opt.
7

Table 1. The Timing Results

ing 2 and whose results are recorded in
the fifth column.

I’m not going to explain the differ-
ent test programs in detail because I cov-
ered that last time. For the complete story
and an explanation of the weird variable
names in Listing 2, pick up the June/July
1996 issue. The final column of Table 1
shows the results of applying the opti-
mization mentioned in the last paragraph
of that article to Listing 2.

In brief, the same criticism I leveled
on the PowerPC compilers applies to the
x86 compilers: you have to spoon-feed
them already optimized code to get rea-
sonable results.

The biggest difference between the
PowerPC compilers and x86 compilers is
that while you can coax a bad PowerPC
optimizer (such as Symantec’s PowerPC
compiler) into producing almost-optimal
code, the same was not true of the bad
x86 optimizers (such as Symantec, Bor-
land, and CodeWarrior). I believe gener-
ating good PowerPC floating-point code
is relatively straightforward compared to
generating good x86—and especially
Pentium—floating-point code. The
wackiness of the Pentium Floating-Point
Unit (FPU), with its FXCHes, stack-based
operands, and stalls, makes optimizing
difficult for the x86 compilers. Of course,
you’ll notice the difference in cycle counts
between the PowerPC and x86 tests. My
132Mhz PPC604 is twice as fast as my
133Mhz Pentium at running this code.
The speed difference is due to the flat
register-based, floating-point architecture
of the PowerPC, combined with a qua-

ternary multiply-accumulate instruction.
“Quaternary” instructions have four
operands (d = a * b + c in the case of a
multiply-accumulate); contrast this with
the pathetic stack-based binary x86
instructions, where the compiler is forced
to constantly move operands around, and
you can see why there’s a huge difference.
Too bad about that annoying market
share thing, huh?

It’s always a good idea to try to cal-
culate the optimal cycle count for your
functions to see what kind of performance
improvements are possible, so let’s do that
for the x86 and the PowerPC. We’ll
ignore loop overhead and any stalls and
assume maximum throughput for this
estimate to give ourselves a lower bound.

For the x86, my estimate for the
minimum clock cycles to do our matrix
multiply is 30 cycles: 9 multiplies at an
optimistic 1 cycle each, 6 additions also at
1 cycle each, 3 stores at 2 cycles each, and
9 loads for the source vector because the
binary x86 instructions don’t let you keep
an untouched copy of it in registers. For
the PowerPC, we can load the whole
matrix into registers before we start, so I
count 15 cycles: 3 loads, 9 multiply-addi-
tions, and 3 stores. Both estimates are
close to the best times we achieved, so we
can be pretty sure we’re not missing any-
thing major in our analysis.

I suppose, if forced to pick a winner,
I’d choose the Microsoft compiler. It
seemed to do what it was told most of the
time, so if you give it highly optimized
code it does an okay job. The Borland
compiler with the Intel backend did okay

as well, but its quality seemed slightly
more random (note the spike in Figure
1). I should also note the Intel backend
wouldn’t compile my texture mapper cor-
rectly, while Borland without the Intel
backend compiled it correctly but gener-
ated the code quality you’d expect from
Borland’s position on Figure 1. The IBM
and the Metaware compilers were the
most consistent of the bunch, meaning
they did better than most on the unopti-
mized functions, as in Listing 1. To me,
this indicates both compilers recognize
optimization opportunities at a high level
but can’t generate tight x86 machine code
at the low level. Watcom was the most
disappointing of the bunch, simply
because the conventional wisdom says
Watcom generates great code. I didn’t see
great code from Watcom in my tests.

The main point here is that you can-
not expect the compiler to do much work
for you beyond a rote translation of the
code you write into native machine code.
(With the incredible code generation
bugs I’ve found, you sometimes can’t even
expect this.) If you write a loop that does
one simple thing and you express it with
10 inefficient operations, the compiler
will faithfully translate all ten operations
for you, performance be damned.

With that in mind, let’s discuss the
kinds of optimizations you should be able
to expect from the compiler but currently
have to perform yourself.

Transformers, More
Than Meets The Eye
When a compiler optimizes your program
it (supposedly) does work at a number of
different levels. At the lowest levels, it
obviously needs to generate the fastest
instruction sequence for a given atomic
high-level language operation: a C addi-
tion of two integers shouldn’t turn into
much more than a machine code addition
with a possible load or store. At a higher
level, the compiler puts your code
through a series of program transforma-
tions which turn the code you wrote into
something more amenable to the lower-
level code generator. These transforma-
tions aren’t algorithmic changes. For
example, the compiler won’t change your
O(n2) bubble sort to an O(n log n) quick-

16 GAME DEVELOPER • AUGUST/SEPTEMBER 1996

B E H I N D T H E S C R E E N

http://www.gdmag.com

void TransformVectors0(float *pDestVectors,
float const (*pMatrix)[3],
float const *pSourceVectors, int NumberOfVectors)
{

int Counter, i, j;
for(Counter = 0;Counter < NumberOfVectors;Counter++) {

for(i = 0;i < 3;i++) {
float Value = 0.0f;
for(j = 0;j < 3;j++) {

Value += pMatrix[i][j] * pSourceVectors[j];
}
*pDestVectors++ = Value;

}
pSourceVectors += 3;

}
}

Listing 1. The Initial Code

sort; that part is up to you (and algorithm
changes are still the most important part
of optimizing with the sole exception of
profiling your application to make sure
you know where to optimize). There are a
number of these transformations available
to the compiler, but we’ll discuss what I
think are the five most important ones:
alias analysis, code motion, common
subexpression elimination, strength
reduction, and loop unrolling. You can
perform these transformations on your
code better than the current crop of com-
pilers, once you know how they work.

Alias Analysis
As we’ve seen in previous articles,
memory is slow compared to registers,
so it would be really nice if the compiler
could keep all your active variables in
registers and operate on them there. If
it could do this, it wouldn’t have to
keep touching memory to reload every-
thing after every store. With pointers,

however, it’s not that simple. If your
code performs reads and writes through
two pointers, the compiler needs to
decide whether one pointer can point to
the same object as the other, a phenom-
enon called pointer aliasing. For exam-
ple, think about what would happen in
Listing 1 if pDestVectors pointed into
the middle of pMatrix; it certainly
wouldn’t behave the same as Listing 2.
According to the ANSI standard, the
compiler needs to be pretty conservative
and assume the worst for pointers to
variables of the same type. So, one of
the first transformations I made to List-
ing 1 was to use local temporary vari-
ables to make explicit to the compiler
where I could alias pointers. The com-
piler knows a write to a temporary can-
not affect anything else if you’ve never
taken the address of the temporary. I
initially declared a temporary array (as
you saw in the previous issue), so I
didn’t have to unroll the matrix multi-

ply loop, but none of the compilers used
this temporary array to eliminate spuri-
ous reloads. Apparently today’s compil-
ers can’t do alias analysis on arrays. I
also looked for a compiler switch to
make the compiler assume I wasn’t
aliasing pointers. Most compilers have
these switches, and I turned them on
when I found them.

Table 1 contains results for the
Microsoft compiler both with and with-
out the “assume no aliasing” switch
turned on, and you can see the switch
makes a big difference on Listing 2.
From looking at the disassembly, it
looks like the speed increase is due to
the compiler now having the ability to
move the stores to pDestVectors around
to better schedule the code. It didn’t
have this freedom when it had to
assume writes to the destination could
be writing into one of its source
operands. However, you can also see it
makes little difference on the unopti-

18 GAME DEVELOPER • AUGUST/SEPTEMBER 1996 http://www.gdmag.com

mized code; it would be hard to make
that code any slower.

On the other hand, you don’t nec-
essarily want to copy all of your active
variables into temporaries, as I found
out the hard way. The final column in
Table 1 shows the results of code that
copies the entire matrix into tempo-
raries before entering the loop. On the
PowerPC, you can see this gave me a
25% speedup because the compiler
could copy the matrix into registers and
reduce the number of loads in the inner
loop. On the x86, however, most com-
pilers slowed down on this code because
they actually implemented the copies to
temporaries. This behavior is related to
alias analysis, I believe. If the matrix is
in stack-based temporaries in the source
code, the compiler needs to prevent
writes through pDestVectors from
changing the matrix elements, so it
makes a copy of the matrix in the gen-
erated machine code. The PowerPC

compiler didn’t have to do this because
it knows pDestVectors can never point
into the floating-point registers, where
it’s keeping the matrix. The x86 com-
pilers couldn’t put the matrix in the
floating-point registers, so they needed
to copy it. This is a particularly bad
example, because it means our C level
optimizations aren’t portable across
machines: the PowerPC version got
faster while the x86 versions got slower
on the same code.

As an aside, I wish the ANSI C++
standard would loosen up their require-
ments for compilers to support pointer
aliasing so pointers to const could be
assumed to not be aliased by pointers to
non-const in a function. However, I’m
sure this would break a ton of code that
relies on aliasing, so it’s not likely to hap-
pen. I’d say this code is poorly written
and deserves to be broken, but aliasing is
a complex issue and I might be missing a
legitimate use of it.

Code Motion
When you move loop invariants out of
the loop, you’re performing code motion.
A loop invariant is something that doesn’t
change during the life of the loop, so it
makes sense to calculate it once outside
the loop and store it rather than calculate
it every time. Code motion can also mean
rearranging code so that it pipelines better
or accesses memory sequentially for better
memory bandwidth.

Common
Subexpression Elimination
A common subexpression is an operation
that appears multiple times in your code.
For example, if you compute x + y in two
places, and neither x nor y can change
between those two places, then x + y is a
common subexpression. Usually it’s faster
to compute the expression once and store
its result than to compute the result mul-
tiple times. Of course, there’s an excep-
tion to every rule, especially in these days

B E H I N D T H E S C R E E N

20 GAME DEVELOPER • AUGUST/SEPTEMBER 1996 http://www.gdmag.com

of wicked fast processors and slow memo-
ry systems. Computing something and
caching it might be slower than just com-
puting it multiple times. Time your code,
as always. By the way, I’ve seen the
acronym “CSE” applied to both Com-
mon SubExpression and Common
Subexpression Elimination.

Strength Reduction
The classic example of strength reduc-
tion is turning a multiply or divide by a
power-of-2 into a shift. I’m not sure why
it’s called strength reduction, but the
basic idea is to convert an expensive
operation into a cheap one or a series of
cheap ones. Taking the classic example a
step farther, you can break up more
complicated multiplies into simpler ones
(for example, x * 6 = x * 2 + x * 4), which
can again be strength-reduced to some
shifts and adds. Some architectures
might further benefit from strength-
reducing shifts by 1 to an addition.
Another subtle but powerful example of
strength reduction is a Bresenham line
drawer, or any kind of forward differenc-
ing algorithm. These algorithms convert
linear or even arbitrary degree polynomi-
al equation evaluations into a bunch of
additions by computing the forward dif-
ferences outside the loop.

Replacing a divide with a multiplica-
tion by the reciprocal is an optimization
that could arguably be called strength
reduction, but it could also be considered
an example of a related transformation
called algebraic identification. You can
guess from the name what that means.

Loop Unrolling
Finally, we come to everyone’s favorite
optimization—loop unrolling. Here, we
try to mitigate some loop overhead and
perhaps open up possibilities for pipelin-
ing by duplicating the loop body and
reducing the loop count to compensate.
Of course, you have to deal with some
setup issues if your loop count doesn’t
divide evenly by your unroll count.

I got another large speedup in our
test code by unrolling the loop in Listing
1 on my way to Listing 2, and this
speedup was particularly surprising
because it’s a no-brainer. Alias analysis

and code motion are hard. Unrolling a
loop is basically a cut-and-paste
operation.

The biggest thing to watch out for
when unrolling a loop, besides the setup
overhead mentioned above, is code bloat.
You can actually make your unrolled code
slower by causing it to be so big that it
doesn’t fit in the cache or kicks other
important code or data out of the cache.
Jumps aren’t as expensive as they used to
be, so amortizing the loop overhead isn’t a
big win since there’s less overhead to
amortize. Jumps on the Pentium, for
example, are only a half cycle under the
right circumstances. Cache misses are a
lot more than a half cycle.

The gcc compiler supplies a com-
mand-line switch to force unrolling, so I
used it in the row labeled “GNU gcc
unroll.” As you can see, it’s not always
faster than the gcc without unrolling.

Final Output
If you want to learn more about compiler
technology, the bible is Compilers: Princi-
ples, Techniques and Tools, by Alfred V.
Aho, Ravi Sethi, and Jeffrey D. Ullman
(Addison-Wesley 1986), affectionately
called “The Dragon Book” because the
cover illustration is a dragon bearing the
words “Complexity of Compiler Design”

being trounced by a knight with a sword
that says, “LALR Parser Generator.” I
agree its goofy, but it’s a classic.

You should also spend time on the
web; there’s tons of compiler information
out there. For example, http://www.
nullstone.com/htmls/category.htm has a
series of 40 understandable examples of
program transformations. For some
aggressive compiler optimizations on a
supercomputer compiler, check out
http://www.astro.ku.dk/~aake/optimize/
options.html. It covers optimizations that
don’t even preserve the original meaning
of the code, which we didn’t get into.

I would be remiss if I didn’t mention
that my friend Mike Phillip of Motorola
actually managed to equal my final opti-
mization using only compiler switches
and Listing 1; you’ll remember I men-
tioned Mike at the end of the last article.
He ran the code through KAP twice with
the no alias switch and then through the
Motorola PowerPC compiler. It just goes
to show you that knowledge of how
something works (in this case Mike’s
knowledge of how the compiler worked)
is always a good thing. ■

Don’t believe the hype—Chris Hecker
can use all the help he can get at
checker@bix.com or gdmag@mfi.com.

GAME DEVELOPER • AUGUST/SEPTEMBER 1996 21

oid TransformVectors5(float *pDestVectors,
const float (*pMatrix)[3],
const float *pSourceVectors, int NumberOfVectors)
{

int Counter;
float Value;
float _Krr1;
float _Krr2;

for (Counter = 0; Counter<NumberOfVectors; Counter++) {
_Krr1 = pMatrix[0][0] * pSourceVectors[0];
_Krr2 = pMatrix[1][0] * pSourceVectors[0];
Value = pMatrix[2][0] * pSourceVectors[0];
_Krr1 += pMatrix[0][1] * pSourceVectors[1];
_Krr2 += pMatrix[1][1] * pSourceVectors[1];
Value += pMatrix[2][1] * pSourceVectors[1];
_Krr1 += pMatrix[0][2] * pSourceVectors[2];
_Krr2 += pMatrix[1][2] * pSourceVectors[2];
Value += pMatrix[2][2] * pSourceVectors[2];

*pDestVectors++ = _Krr1;
*pDestVectors++ = _Krr2;
*pDestVectors++ = Value;
pSourceVectors += 3;

}
}

Listing 2. The Optimized Code

http://www.gdmag.com

Bringing Life
to HyperBlade

A N A T O M Y O F A G A M E

G
ame developers have rushed
headlong into the third
dimension producing increas-
ingly realistic and immersive
graphical environments. But,
as everyone is quickly discov-
ering, this additional dimen-
sion has presented more than

an incremental challenge to overall
game design. Meanwhile, players’
expectations have soared as they contin-
ue to invest in newer and more powerful
platforms. But what are those challenges
and expectations? In this article, we’ll
discuss two elements of 3D game design
that were addressed in the development
of HyperBlade:
1. Fluid and responsive character behavior
2. Interactive cinematography.

As the two principals of WizBang!
Software Productions (the creators and
developers of HyperBlade), we have
worked extensively in the military simula-

tion and training systems industry and are
intimate with virtual reality technology
and the user experience it produces. As
contributors to the SIMNET project (an
R&D project for DARPA—Defense
Advanced Research Projects Agency—
that developed large scale distributed net-
work simulations for warfare training),
our software involved hundreds of partici-
pants engaged in war games on a com-
mon virtual battlefield. We observed sol-
diers training on our systems, spending
hours cooped up in M1 tanks and other
vehicle simulators playing out their roles
as part of a larger military force, attacking
or protecting a piece of rendered terrain.
Palms sweating, soldiers eventually
emerged from their fiberglass mockups,
victors or victims in a simulated turf war
that, after a time, became indistinguish-
able from reality.

As different as our game is from a
battlefield simulation, it’s that transcen-

dent experience
that we reached
for in HyperBlade.
What brought the
experience to the
brink of reality for
the trainees was
not the graphics—
they were modest
by today’s stan-
dards. Knowing
that the other
vehicles were con-
trolled by inde-
pendent beings
capable of think-
ing and reacting
unpredictably is
what made the

experience so compelling and engaging.
In fact, some of the forces were a mix of
real soldiers and automatons.

Populating HyperBlade with believ-
able virtual characters—interspersed with
real players in a network environment—
was therefore a major goal. An equally
important and related goal was to develop
an architecture and authoring approach
that would support many interactive
objects (or “entities”) without the accom-
panying geometric increase in complexity
at the authoring level. Providing an
authoring environment that would signif-
icantly reduce actual code development
and be accessible to nonprogrammers was
also a major requirement for our design.

Creating Character
and Object Behavior
HyperBlade was built using a develop-
ment system we call ADLIB (Authoring
and Design Language for Interactive
Behavior). With ADLIB, we could
approach the game design from the bot-
tom up as well as from the top down.
That is, we were able to add characters
and game objects incrementally, experi-
ment with behaviors and interactions,
and observe the overall effect on game
play.

The ADLIB system has three parts:
1. A language for describing characters’

behaviors and interactions
2. An authoring environment
3. A run-time system that executes these

descriptions.
The descriptions of characters and

their motivations are called Plans, and
Plans are capable of controlling, with
clarity and ease, virtually every aspect of a
3D virtual scene, including aspects

22 GAME DEVELOPER • AUGUST/SEPTEMBER 1996 http://www.gdmag.com

HyperBlade, the game WizBang! developed for Activision, is a
futuristic variation of roller hockey.

beyond character animation such as cam-
era work, context-sensitive input device
interpretation, adaptive music accompa-
niment, and placement and synchroniza-
tion of 3D audio environments.

The ADLIB Plan language is a
declarative, object-oriented language with
a extensible vocabulary that can describe,
at a very high level, the entities, circum-
stances, and interactions in the game—
everything such as characters, environ-
ments, obstacles, rooms, fighting
sequences, and animations (Listing 1
contains sample ADLIB code). A Plan
consists of a collection of Behavior decla-
rations and interactor declarations (which
determine how a character reacts in vari-
ous situations). So at its very simplest,
ADLIB can define a typical finite-state-
machine AI decision tree, where behav-
iors represent discrete states in the
machine and the interactions represent
discrete transitions. For example, if a
game were to contain a vending machine,
the initial behavior of that machine would
be to simply wait for someone to insert a
coin. The interaction of a coin insertion
would cause a transition to another
behavior which would tally the total value
of the coins inserted. When the tally is
sufficient to make a purchase, that inter-
action will cause a transition to a behavior
that waits for the customer to make his
selection, which interaction leads to a
behavior to make changes and so on.

ADLIB, however, supports richer
(and subtler) lifelike behavior than finite-
state machines. ADLIB Behaviors are
not discrete. Rather, they are composed
of numerous simultaneous Activities,
such as looking back to wave at a friend
while riding a bicycle. A change in a

Behavior is a merge of the Activities
comprising the new Behavior. Behavior
changes aren’t necessarily discrete, but
what the user sees may look more like a
blending of Activities.

The decisions to make behavioral
changes aren’t necessarily discrete ether.
An interaction such as a collision or a
message can invoke a decision function to
determine whether to change behaviors,
and if so, which behavior to change to.
These decision functions may consist of
simple if...then statements or invoke
neural networks or fuzzy logic. Although
these technologies are considered slow
and expensive, the decisions made in
response to a particular interaction are
typically very limited and specific. Fuzzy
technologies can therefore be used with-
out appreciably slowing down the game.

The Authoring Environment
ADLIB’s authoring environment is a
suite of tools that define, develop, and
maintain databases of models, anima-
tions, and the vocabulary for manipulat-
ing and interacting with them. Three-
dimensional models are imported in a
standard format output from leading
high-end modeling tools, such as
Alias/Wavefront or Softimage, and are
converted into a proprietary format
honed for real-time performance. Anoth-
er proprietary tool allows motion-cap-
tured animation segments or even just
keyframes to be viewed, assembled, and
seamlessly blended, with independent
speed and directional control for each
segment and transition. Right now,
authors type in the text of the language
in our production setting, but a goal is to
provide “smart editing” which will be

Stuart Rosen &
Robert Duisberg

GAME DEVELOPER • AUGUST/SEPTEMBER 1996 23http://www.gdmag.com

When WizBang!

needed a high-level

authoring tool to give

lifelike behavior to

skaters in Activision‘s

HyperBlade, it didn‘t

shop around for a

tool. It built it from

scratch.

syntax- and template-driven and contain
tools to test and check for plan complete-
ness and consistency.

An important feature of ADLIB
Plans is that behavioral specifications
that one would normally consider proce-
dural instructions (for example, “Pick up
the ball” or “Move to the goal”) have
effectively been recast as declarative data.
This means changes to the game don’t
require you to recompile your code.
Rather, the p-code compiler is integrated
into the game itself so that changes in
Plans can be made and tested immediate-
ly, without quitting the game. This rapid
turnaround makes our designers and
developers more productive.

Many libraries of activities, behav-
iors, interactions, and decision criteria are
being distilled out of this development
experience. The goal is to provide libraries
general enough to let even a hobbyist or
non-programmer assemble a credible,
interactive character. But, because serious
developers need to code unique character
behaviors at a low level, facilities are pro-
vided for defining new actions, decisions,
and messages. The framework of tem-
plates to develop these extensions consists
of structured script windows in a Hyper-
card-like authoring environment (with
the significant distinction that these code
elements run as compiled C++ rather than
interpreted Hyperscript).

Achieving Performance
The ADLIB run-time system is
designed for speed. Serious AI has a
well-earned reputation for being slow,
especially on a PC. However, events that

require some computational reasoning in
HyperBlade are localized and limited in
scope so they have a negligible impact on
frame rate. Other performance improve-
ments are achieved via several stages of
compilation:
1. The author’s high-level text is compiled

into a compact p-code representation.
2. This p-code description is used to con-

struct a network of linked objects rep-
resenting the current behaviors and
interactions when a character adopts a
given Plan.

3. Once a Plan has been instantiated,
there is a minimum of overhead in
switching and blending behaviors in
response events.

All this is expressed in the Plans in a
manner similar to the sample ADLIB
code shown below. Interactions are per-
ceived and processed in a running
ADLIB system at rates of several dozen
per second.

The fine granularity of interaction
is driven by the idea that perception is
the precursor to action. For example, if
you hit another skater on the way to the
goal, that is certainly an interaction. But
so is the message that skater receives
from the falling animation indicating
that he or she has taken a spill in the
thirty-fifth frame, which may cause that
player to slide to a halt, incur damage,
yelp, and message the team manager to
consider a substitution.

The performance provided by the
high levels of abstraction that ADLIB
supports are of paramount importance in
networked gaming where the bandwidth
limitation for communicating complex

behaviors and interactions is critical.
Consider what it might require to trans-
mit all the details of complex behavior
over a network. With our ADLIB sys-
tem, you send indices into duplicate plan
instruction streams on either side of the
network so behaviors are executed by the
local run-time engine and yet remain
completely in sync across the net.

We also see great potential for
ADLIB in client/server network applica-
tions and web sites that wish to support
interactive 3D. After downloading the
compact p-code representation of a Plan
quickly, a game can take advantage of
local behavior libraries in response to the
terse network packets which index inter-
actions and behaviors in the Plan.

Interactive Cinematography
Producing a dynamic, “intelligent” cam-
era to follow the action was a major chal-
lenge in the development of HyperBlade.
The over-the-shoulder view we wanted
as the primary viewing mode was partic-
ularly problematic. Contributing to this
challenge were the ellipsoidal play sur-
face, the players’ speed combined with
their turning and jumping capabilities,
high speed collisions, plus the need to
keep track of the Rok (game ball). In real
sports, it’s known that athletes rely heavi-
ly upon their peripheral vision, yet a
computer screen provides a relatively nar-
row field of vision so orienting yourself
and knowing where the action is on the
field can be difficult. A variety of camera
scanning modes were useful; they allow
the player to look for other objects (such
as teammates or the Rok) while keeping
the first person character in view.

The cameras are defined as ADLIB
objects and have their own sets of Plans
and Behaviors. We could easily change
the camera behavior based on certain
situations and events during game play.
It was easy to move the camera from
your player in a passing situation, to fol-
low the Rok in flight, and to ultimately
assume a position behind the player
receiving the pass.

Racing around the HyperBlade
drome at high speeds could, as you might
imagine, produce jolting or disorienting
camera affects, especially with in the

A N A T O M Y O F A G A M E

24 GAME DEVELOPER • AUGUST/SEPTEMBER 1996 http://www.gdmag.com

DECLARE_BEHAVIOR Named: “GoForTheGoal” BehaviorType: “GlideToTarget”
SET_BEHAVIOR_PARAM Target: “TheGoal”
SET_INTERACTION Message: “YerHit”

//Sent by the collision detection mechanism
RESPONSE
SetAnimation: “DoubleBackFlip”

//which has a trigger set at the 35th frame
SET_INTERACTION Message: “YerDown”

//Sent by the trigger in the previously set animation
RESPONSE
SetFriction: “High”a
SetUserControl: “Disabled”
PlaySoundType: “Yelp”
DecrementDamageBar: 20
SendMessage: “TeamManager” “ImDown” “MyDamageLevel”
ChangeToBehavior: “GetUp”

Listing 1. Sample ADLIB Code

over-the-shoulder view. We tried to
ameliorate this problem by tethering the
camera to the player using various situa-
tionally adjusted, parametric models of
bungees and springs. Nevertheless, with
the complete freedom of motion available
to the players, making it work for the
large number of camera situations took
months of tuning. During this tuning
phase, the rapid turnaround time provid-
ed by ADLIB plans and the ability of
non-programmers to modify camera plan
parameters (changing spring constants
and damping factors, for instance) proved
to be critical.

An often heard lament in the
industry is that Hollywood and the
game development communities simply
speak different languages and are con-
cerned with utterly different domains.
In other words, there’s a communication
gap. Storytellers often don’t appreciate
the engineering constraints technology
imposes upon production, and develop-
ers often don’t grasp aesthetic nuances
central to artistic imperative. Yet the
future dictates that the two worlds will
learn to speak to each other and learn to
work together. The ADLIB language
and authoring systems aspire to address
this need. Given today’s high produc-
tion costs of electronic entertainment,
any language or technology which can
significantly streamline the process of
communicating content into working
code should fill a real need and find
itself in demand. ■

Stuart Rosen and Robert Duisberg are
two principals of WizBang! Software Pro-
duction Inc. who created the original Hyper-
Blade game concept and developed it for
Activision. WizBang! demoed their Hyper-
Blade prototype to Activision at the Game
Developers conference two years ago.

Stuart worked for Atari in the early
1980s as a program manager. He also
worked in the military simulation industry
for 10 years.

Robert Duisberg holds doctorates in
Computer Science and Music Composition
and is a research assistant professor in the
School of Music at the University of Wash-
ington. He researches real-time gestural con-
trol and neural networks.

GAME DEVELOPER • AUGUST/SEPTEMBER 1996 25http://www.gdmag.com

Building a Scene
Using Retained
Mode Direct3D

D I R E C T 3 D

M
icrosoft’s new Direct3D
package comes in two fla-
vors—Immediate Mode
and Retained Mode (RM).
Immediate mode provides
down-to-the-bone access
to 3D accelerated graphics
hardware and is ideal for

developers who are tied to an existing
3D engine they want to port to Win-
dows. Retained Mode, on the other
hand, provides a higher level of services
and allows application developers to
create 3D scenes with varied lighting
effects. The Retained Mode engine
provides the rendering functions you
need to create fast and efficient 3D
Windows applications. This article will
give you a brief outline of the Retained
Mode engine and what you might do
with it.

Direct3D Retained Mode is a com-
plete 3D run-time rendering package
that runs very fast on Windows 95 and
will run on Windows NT in the near
future. The Retained Mode (RM) inter-
faces allow you to create 3D Windows
games that take full advantage of the
hardware acceleration features of your
target machine’s graphics card. Figure 1
shows where the RM engine fits into the
overall Direct3D architecture.

As you can see, the RM engine
plays a similar role to Microsoft’s
OpenGL engine. The primary differ-
ence between using the RM engine and
OpenGL is performance. OpenGL was
designed for very general use; RM was
designed for high-performance applica-
tions, such as games.

RM applications can run in either
a window or in full-screen mode. If a

game is run in a window, the current
screen mode determines the pixel for-
mat. If the user has a machine set up to
run in 256-color mode, then your game
also runs in that mode. RM supports 8-,
16-, 24-, and 32-bits-per-pixel modes,
so don’t worry whether your game will
run. If you elect to run the application
in full-screen mode, you gain several
advantages. In full-screen mode, you
can choose almost any screen mode you
like. If a game player is running in
1024-by-768-by-8 bpp when your
game is launched, it can switch to 320-
by-240-by-16 bpp if that’s what you
want. When the game is suspended or
terminated, the screen returns to its
original mode.

Your application can choose one of
two lighting modes. If performance is
your primary goal, then you can run in
mono mode (sometimes called ramp
mode). In mono mode, lights only have
grey levels, which helps speed up the
lighting computations. If you want higher
fidelity in your application, you can use
the RGB mode, which gives you full-
color lights. You can also choose to dither
the final rendered result for a slightly bet-
ter look on 8 and 16 bpp displays at the
expense of some performance.

Direct3D applications can be writ-
ten in either C or C++. However, writ-
ing your application in C++ is slightly
simpler because all the Direct3D inter-
faces are COM (Component Object
Model) based. If you haven’t used
COM interfaces before, you’ll have to
do a little homework to make sure you
understand how COM objects use ref-
erence counts to control their lifetimes
and how to use the QueryInterface func-

26 GAME DEVELOPER • AUGUST/SEPTEMBER 1996 http://www.gdmag.com

Win32 Application

Video Hardware

Windows
Graphics
Device

Interface
(GDI)

Device Independent
Bitmap (DIB) Engine

Windows Device
Driver Interface (DDI)

Direct3D
Retained Mode

Engine

Open GL
Engine

Hardware Emulation
Layer (HEL)

DirectDraw/Direct3D Immediate Mode Engine

DirectDraw and Direct3D Hardware
Abstraction Layer (HAL)

Figure 1. The Direct3D Architecture. Note that the Retained Mode engine sits above the
Immediate Mode engine and is therefore more abstracted.

tion to obtain an interface to a COM
object. For my work, I created simple
C++ classes that encapsulate the
Direct3D COM objects and provide a
more familiar environment. My C++
class wrappers handle all of the COM
interfaces, reference counting issues,
and so on—which leaves me free to get
on with creating the application.

Creating a Retained
Mode Application
Creating the initial scene for an RM
application roughly consists of these
steps:
1. Set up the window (although it may be

full screen).
2. Create the viewport and camera.
3. Set the background color or image.
4. Set the ambient light level and add

additional lights.
5. Add 3D shapes and sprites.
6. Set up motion parameters.
7. Update the scene regularly (such as

when the application is idle).
Let’s go through these steps and

look at what each does. There isn’t space
to look at all the code required, so you’ll
need to read through the sample code in
the Direct3D SDK (or the code from
my book samples once it’s published).
I’ve included some code fragments from
my own applications to give you a feel
for what the application code might look
like, but remember that the actual
Direct3D interface calls are mostly hid-
den in the implementation of my C++
classes.

Window Setup
Even if you want your game to run in a
full screen, you still need to create a win-

dow object. This prevents the Windows
GDI from interfering with what you’re
doing to the display. Once you have a
window, you can create the RM engine
interface. This can be done several ways
depending on how much control you
want over what gets created for the RM
engine to use. Whichever method you
use, you end up with a front buffer sur-
face, a back buffer surface, and a Z buffer
surface. If you’re running on an 8 bpp
display, then you also get a palette object.
If the application is running in a window
(rather than full-screen), then you also
get a clipper object which prevents the
RM engine from drawing outside the
window area.

You also need to choose the light-
ing model (RGB or mono) and how you
want solid objects filled and shaded. The
RM engine supports wire frames and
solid-filled objects. Fills can be done in a
variety of ways ranging from flat-unlit
solid color to Gouraud shading (a later
version will also support Phong shad-
ing). Most applications will probably
select the mono lighting model with
Gouraud shading. This combination
gives you the best performance with a
good degree of realism.

There is actually quite a lot of code
required to set up the initial configura-
tion. In the Direct3D SDK, the samples
directory provides this code. For my own
work, I created a C++ class (C3dWnd) that
lets me easily create a 3D scene in a win-
dow. Here’s a part of my startup code:

// Create the 3D window

if (!m_wnd3d.Create(this, IDC_3DWND)) {

return -1;

}

Nigel Thompson

GAME DEVELOPER • AUGUST/SEPTEMBER 1996 27http://www.gdmag.com

Microsoft‘s Direct3D

comes in two flavors:

Immediate Mode and

Retained Mode. In his

article, Nigel

Thompson takes you

through the develop-

ment of a scene using

the more abstracted

Retained Mode.

OK, so this oversimplifies things
significantly, but I’m sure you get the
point—once you have written the startup
code, you can just use it and forget it.

Once the various surfaces, palettes,
and so on have been created, you can for-
get about them because you don’t access
them directly. You make requests to the
RM engine, and it uses the surfaces to
draw your scene.

Creating the
Viewport and Camera
The viewport and camera components
determine how your scene looks from
the viewer’s point of view. You can use
either a simple orthographic projection
mode or the more common perspective
projection mode. You can alter the effec-
tive camera angle, the camera position,
and direction to get whatever view you
need. You can move the camera in a
scene like any other object, so it’s very
easy to fly through a scene by simply
moving the camera along a path. Figure
2 shows the viewing frustum that deter-
mines what is visible in a scene.

The camera angle determines where
the edges of the viewing frustum (trun-
cated pyramid) are. The front- and back-
clipping planes truncate the pyramid. The

area inside the truncated pyramid deter-
mines which objects will be visible in the
scene. Given a pointer to the viewport
interface, altering viewport parameters
can be as simple as this:

m_pIViewport->SetBack(rvBack);

m_pIViewport->SetFront(rvFront);

m_pIViewport->SetField(rvField); // cam-

era field of view

It’s tempting to set the back-clip-
ping plane at some huge value and the
front-clipping plane directly in front of
the camera position. If you do this, you’ll
find you occasionally get weird rendering
artifacts, because setting the front-clip-
ping plane right next to the camera
means all the Z-buffer math occurs in a
very small numerical range, which can
introduce math errors as the visibility of
object surfaces are being determined.
Keep the clipping planes close to your
objects to give a dynamic range for the
math. If you need to do a flying scene
where objects can get very close to the
camera, move the front-clipping plane
dynamically so that it stays just in front
of your front-most object.

The RM engine uses a left-handed
coordinate set with Y up, X to the right,

and Z into the screen (away from the
viewer). If you have a passion for a right-
handed coordinate set, you can apply a
simple transform to your right-handed
coordinates to make them work in RM’s
left-handed world.

Setting the Background
Backgrounds can consist of a simple flat
color or a texture map. If you use a tex-
ture map you need to be aware of two
things. First, the texture map will be
stretched to fit the shape of your win-
dow, so the aspect ratio might not be
what you intended if you let the user
resize the window to an arbitrary shape.
Second, texture maps can really eat up
palette entries on an 8 bpp system, so
texture maps are generally restricted to a
limited number of colors and shades of
those colors. You might need to experi-
ment with how you create your back-
grounds and how many shades you use
in a scene to get the best compromise
between your background and your other
scene objects.

I created a C++ class to handle all
the image functions I needed so that
adding a background to a scene can be as
simple as:

m_imgBkgnd.Load(IDB_BKGND);

m_pScene->SetBackground(&m_imgBkgnd);

In this case, the background image is
a Windows bitmap attached to the appli-
cation as a resource.

Setting the Lighting
Each scene has an ambient light level and
as many additional lights as you choose.
Each light you add slows down the scene;
some light types are expensive, so you
need to trade image fidelity for perfor-
mance again. The RM engine supports
lights that vary from a simple infinite dis-
tance source (like the sun) to spotlights
that have a bright center cone and a dim
outer cone. You can even set the attenua-
tion characteristics of some lights—but,
of course, more complexity in the math
means slower rendering.

You need to add at least a direc-
tional light (which has the lowest cost-
to-performance ratio) to your scene to

D I R E C T 3 D

28 GAME DEVELOPER • AUGUST/SEPTEMBER 1996 http://www.gdmag.com

Objects in this region
are visible

Back Clipping
Plane

Front Clipping Plane

Camera
Position

Camera Field of
View Angle

Figure 2. The Viewing Frustrum determines what can be seen.

get any 3D effect. Using only an ambi-
ent light produces a very flat scene.
Remember that colored lights require
the RGB lighting model, whereas the
mono lighting model only uses the
brightness of each light, not its actual
color. My applications generally use the
mono lighting model, and I use one
directional light source in addition to
the ambient lighting. Since lights are
regular objects in the 3D scene just like
any other object, they can have position
and direction—although the position or
direction of some light types doesn’t
affect how they illuminate a scene.
Directional lights, for example, have no
position—just a direction. The RM
engine does not generate shadows, but a
mechanism to simulate shadows using

flat dark objects is supported for special
cases.

Adding Shapes
The Direct3D RM engine does not cre-
ate 3D shapes. You create shapes either
by using a tool like AutoDesk’s 3D Stu-
dio and converting them to the
Direct3D file format (the SDK has a
conversion tool for 3D Studio shapes)
or by creating your own meshes from a

list of vertices. If you create your own
shapes, you can control exactly how
they look by applying color and texture
maps to individual faces or to the entire
object. You can determine how a single
texture map is applied to an object by
using different wraps. The RM engine
supports flat, cylindrical, spherical, and
chrome wraps. Chrome wraps give the
illusion of reflections from an object’s
surfaces.

GAME DEVELOPER • AUGUST/SEPTEMBER 1996 29http://www.gdmag.com

Figure 3. An example of an application
that uses a chrome wrap to simulate
reflections from an object.

Figure 4. The DirectX II SDK comes with
a Direct3D example called Twist, which
lets you tweak rendering options in real
time and see the impact on frame rate.

To define the mesh for an object,
you typically create two or three lists.
The first list contains all the vertices of
the object in model coordinates. So, for a
cube, you’d typically have 8 vertices. (I
say “typically” because there are a few
cases where you need to duplicate the
vertices in an object because of the way
texture maps are used.) The second list
describes the faces of the object in terms
of its vertices. All faces must be listed
with the vertices in clockwise order. The
third list is optional and consists of a set
of normals to be used with the vertices.
These normal vectors control how the
object will be shaded. The RM engine
includes a function to generate a set of
normals from the face descriptions if you
just want a smooth surface.

In practice, a 3D object consists of at
least two parts: a mesh and a frame. The
mesh is the set of vertices, texture maps,
and so on that describe what it looks like.
The frame is a mathematical transform
that determines how the object will be
placed in the scene. The RM engine
allows frames to have child frames so you
can set up a hierarchy of frames to
describe complex object systems. For
example, a tank can have a frame to
describe the overall object’s position and
direction with child frames that describe
the position and direction of it’s turret
and gun. In this way, you can control the
angle of the gun and rotation of the turret
relative to the body of the tank. If you
alter the tank’s frame to move the tank,
then you retain the relative positioning of
the gun and turret.

Setting Motion Parameters
The RM engine supports some simple
motion capabilities that can be applied
to any frame. The frame could describe
the position and orientation of an entire
object or group of objects, or the frame
might just describe the position of a
wheel on a car. Individual frames can be
set to rotate about a given axis and can
have a fixed linear velocity along a given
axis. These simple parameters can pro-
vide some elementary animation of
object parts, such as spinning a radar
antenna or orbiting moons around a
planet.

You can achieve more complex
movement in a variety of ways. The
RM engine supports animation
sequences using key points to determine
position and orientation. When the key
points have been set, the object can be
moved to any point interpolated along
the path defined by the key points. The
path can be set up to loop so the object
follows the path continuously.

You can, of course, move an object
yourself using the frame interface’s Set-
Position and SetOrientation functions
before the next scene is rendered. This
gives you complete flexibility in how
your object moves.

Updating the Scene
In many games, you’ll want to update
the scene as often as possible to give the
illusion of continuous movement. The
RM engine provides interface functions
to apply all the current motion parame-
ters to compute the next position for
each object and then to render the next
scene state to the back buffer. Your
code then flips the back and front
buffers to show the next scene and
starts work on the next one.

If you’re running in a window, then
you’ll most likely use the built-in Blt
function to copy the contents of the back
buffer to the front buffer. In full-screen
mode you’ll probably use the Flip func-
tion to swap the back and front buffers
for the fastest possible screen update.

Using 2D Sprites
The RM engine supports texture maps
with transparent areas for use as 2D
sprites (or “decals,” as the RM docu-
mentation calls them). Sprites can be a
very efficient way to create game charac-
ters in a 3D scene. They are much faster
to render than 3D mesh objects and
have the advantage of always appearing
to face the viewer—just right for those
bad guys.

You can combine all the phases
(different views) of a sprite into one
image strip and then use just a part of
the image strip as the active image.
This lets you load the entire set of
sprite images in one go and avoids hav-
ing lots of redundant headers wasting

memory. The RM engine tries to load
your texture maps into video memory
for the best possible performance.

Like 3D objects, sprites can be
moved around in a scene, so you can mix
sprites and 3D mesh objects to give the
best combination of performance and
realism.

Interacting with the User
Given a screen position, The RM
engine allows you to obtain a list of 3D
objects that lie directly behind that
position. The list is sorted in Z order so
you can find the object closest to the
viewer, which gives you a simple hit
testing mechanism. Once you have
determined which object has been hit,
you can go on to find which face of the
object was hit and the coordinates of
the point on the object where the hit
occurred. This might be overkill in your
average shoot-’em-up game, but it can
be used to implement sculpting or 3D
surface painting applications.

Selecting and moving objects is
something you need to do entirely for
yourself. The engine provides only the
hit detection mechanism—it’s up to you
to determine how your objects react to a
user’s attempts to drag them in a scene.

Microsoft’s Direct3D Retained
Mode interfaces provide you with a way
to implement a fast and efficient 3D
application for the Windows environ-
ment. By allowing you to run full-screen,
it gives you complete control over screen
resolution and pixel format while retain-
ing excellent portability. Now you have
no excuse not to port that 3D game to
Windows! ■

Nigel joined the multimedia group at
Microsoft in 1989 where he led the team
that created the Multimedia Extensions
for Windows. He went on to port the
extensions to NT and spent several years
writing for the Developer Network group
under the name Herman Rodent. Nigel
published his first book Animation Tech-
niques in Win32 in 1995. He has just
completed his second book for Microsoft
Press, which is entitled 3D Programming
in Windows 95.

D I R E C T 3 D

30 GAME DEVELOPER • AUGUST/SEPTEMBER 1996 http://www.gdmag.com

A Portrait of
DirectDraw

D I R E C T D R A W

D
irectDraw is the component
of the Windows 95 Game
SDK that bypasses the Win-
dows Graphics Device Inter-
face (GDI) and gives you
direct access to the video card
and video memory using a
well-defined set of methods.

In this article, I’ll to try to hit all the
important areas of DirectDraw and,
more importantly, show some code
samples.

DirectDraw provides a number of
benefits to game developers. It allows
you to change the resolution and color
depth of the display on the fly, draw
directly to the screen, copy from off-
screen DirectDraw surfaces to the dis-
play, and page flip an off-screen surface
to the display. Finally, DirectDraw takes
advantage of hardware-transparent bit-

blitters to provide fast transparent bit-
blitting with source and destination
color keys.

Here is the typical sequence of
events you step through using Direct-
Draw:
1. Acquire exclusive screen access.
2. Set up the desired display mode.
3. Get access to some working video

RAM and the display RAM.
4. Set up any desired color keys.
5. Draw on the working video RAM.
6. Move it to the display with a bitblit

or a page flip.

Creating a
DirectDraw Object
If you’re proficient with Microsoft’s
Component Object Model (COM), you
know that you normally use a COM
API and a COM CLSID to create a COM

object. However, to create the Direct-
Draw object you ought to use the
DirectDrawCreate() function, because it
wraps CoCreateInstance(). If you’re not
proficient with COM and don’t know
what a CLSID is, don’t worry: the
developers of DirectDraw have provided
APIs to do the work for you and return
the correct object pointers.

The DirectDrawCreate() function
takes a pointer to a DirectDraw object
pointer. If successful, it sets the pointer
to the newly created DirectDraw object
and returns DD_OK. Listing 1 shows a typ-
ical sequence of calls used to create a
DirectDraw object. Once we’ve got a
pointer to a DirectDraw object, we can
use it to create DirectDraw surfaces,
clippers, and palettes.

Determining Capabilities
and Setting the Display
Once you have created the DirectDraw
object, it’s a good idea to check the capa-
bilities of the DirectDraw display driver,
the hardware, and capabilities of the
DirectDraw Hardware Emulation Layer
(HEL). To do this, you use the IDirect-
Draw::GetCaps() interface, which returns
the capabilities in two DDCAPS structures.

Once you’ve verified that the hard-
ware or emulation layer can meet your
application’s requirements, you should
take exclusive control of the display,
especially if your application is a full
screen, non-Windows GUI game. To do
this, you use the IDirectDraw::SetCooper-
ativeLevel() interface and pass the
desired cooperative level in the third
parameter, dwFlags.

Four flags correspond to the various
display options that DirectDraw sup-

Figure 1. The Fox and Bear demo is an example of DirectDraw performance. This benchmark,
which is included with the DirectX II SDK, displays frame rates in various screen modes.

32 GAME DEVELOPER • AUGUST/SEPTEMBER 1996 http://www.gdmag.com

ports. First, the DDSCL_NORMAL flag indi-
cates that the application wants to share
the display with other applications and
operate as a normal windows applica-
tion. Second, the DDSCL_EXCLUSIVE flag
indicates that the application is request-
ing exclusive control of the display
screen. If DirectDraw has already granted
exclusive control of the screen to another
application, this call will fail with an error
code DDERR_EXCLUSIVEMODEALREADYSET. The
third flag, DDSCL_FULLSCREEN, indicates that
the application will be drawing the entire
screen, so that GDI may be safely ignored
by the DirectDraw display driver. (Note:
the DDSCL_FULLSCREEN flag requires the
DDSCL_EXCLUSIVE flag.) Finally, the
DDSCL_ALLOWMODEX requests that the appli-
cation be allowed to set mode X screen
resolutions of 320-by-240-by-8 and
320-by-200-by-8.

Once the cooperative level has
been set, check the current display
mode using the IDirectDraw::GetDis-
playMode() interface. This function takes

a pointer to a DDSURFACEDESC structure
and changes the appropriate members
to the preferred screen resolution and
pixel bit depth.

If the current display mode isn’t
correct, you can check the display
modes that the display adapter and its
DirectDraw driver support using the
IDirectDraw::EnumDisplayModes() inter-
face. This function takes a pointer to a
DDSURFACEDESC structure which describes
the types of surfaces to enumerate. Pass
a NULL for this parameter to enumerate
the supported display modes. Once
you’ve verified that your preferred dis-
play mode is supported, use the IDi-
rectDraw::SetDisplayMode() function to
change the current display mode. This
function takes a width, height, and
pixel depth in bits per pixel.

With the display set in the correct
mode, use the IDirectDraw::CreateSur-
face(), CreatePalette(), and CreateClip-
per() functions to create some Direct-
Draw objects. The CreateSurface()

DirectDraw lets you

access video cards

and video memory.

Using it, you can

speed up animation,

change color depth,

and alter resolution

on the fly.

Bob Provencher

GAME DEVELOPER • AUGUST/SEPTEMBER 1996 33http://www.gdmag.com

LPDIRECTDRAW pDirectDraw;
HRESULT hResult;
hResult = DirectDrawCreate(NULL, &pDirectDraw, NULL);
if (FAILED(hResult))

return FALSE;
DWORD dwFlags = DDSCL_EXCLUSIVE | DDSCL_FULLSCREEN | DDSCL_ALLOWMODEX;
if (bWindowed)

dwFlags = DDSCL_NORMAL;
hResult = pDirectDraw->SetCooperativeLevel(hWndMain, dwFlags);
if (FAILED(hResult))

return FALSE;
if (!bWindowed)
{

hResult = pDirectDraw->SetDisplayMode(nWidth, nHeight, 8);
if (FAILED(hResult))
return FALSE;

}

Listing 1. Creating the DirectDraw Object

interface gives access to the primary
surface and creates working off-screen
surfaces.

Before we go any further, I need
give you a quick definition two terms.
The term, “surface,” is a DirectDraw
term for an area of memory that repre-
sents a drawing area. A surface can be
the current video display, or it can be an
area of off-screen memory. A color key
is simply a color that you wish to treat
as transparent when bitblitting.

DirectDrawSurface Object
Let’s begin working with DirectDraw
surfaces. We first need to define the
DDSURFACEDESC structure, which describes
a DirectDraw surface. Listing 2 is the C
definition of DDSURFACEDESC. The defini-
tion shows the flags that you commonly
use to create the surface, such as dwSize,
dwFlags, dwHeight, and dwWidth. I recom-
mend checking the flags field to see if
the field you are interested in is valid.
During output, when examining a sur-
face description, you should check the
flags field to see if the field you are
interested in is valid.

To create a DirectDrawSurface
object you use the IDirectDraw::Cre-
ateSurface() interface, which takes
three parameters. The first is a pointer
to the DDSURFACEDESC structure which
describes the surface. The second is a
pointer to a DirectDrawSurface object,
which is set to the newly created surface
if the function succeeds. The final para-

meter is to support future COM aggrega-
tion features. For our purposes we will
pass NULL for this one.

You use IDirectDraw::CreateSur-
face() to access to the primary surface
(which represents the visible display
screen), to create off-screen surfaces
(for work areas or to hold sprites), or to
create a group of surfaces called com-
plex structures. An example of a com-
plex structure is the complex flipping
structure, which you create in order to
page flip using DirectDraw.

Listing 3 shows IDirectDraw::Cre-
ateSurface accessing the primary surface
and creating off-screen surfaces. In the
first section, a DirectDrawSurface object
is created. First we will fill in the size
field of the DDSURFACEDESC structure, to
tell DirectDraw what version of Direct-
Draw our application was written for.
Then we set the DDSD_CAPS bit to tell
DirectDraw to check the ddsCaps field
of the structure. You don’t need to set
any other bits, because the primary sur-
face already has a height and width, and
we can’t change it. Finally we set the
capabilities flag to indicate that we are
interested in creating a primary surface.

When we pass the address of the
surface description structure and the
DirectDrawSurface object to IDirect-
Draw::CreateSurface(), the function will
create a new surface for us and set the
surface pointer to the new surface if
successful. This function returns the
standard COM HRESULT return code.

The second part of Listing 3 shows
how to create an off-screen surface. For
this surface, you must set the DDSD_HEIGHT
and DDSD_WIDTH flags to tell DirectDraw
to check those fields to determine the
size of the surface you are creating. For
this surface, you also set the DDSD_CAPS bit
and set the ddsCaps.dwCaps field to
DDSCAPS_OFFSCREENPLAIN. Again, if suc-
cessful, the function sets the surface
pointer for you.

If you want to do page flipping in
your application, instead of creating the
various surfaces separately, you can cre-
ate them together in a complex flipping
structures as seen in Listing 4. Note
that DDSD_CAPS and DDSD_BACKBUFFERCOUNT
are set to indicate which fields in the
DDSURFACEDESC structure are valid—that
is, those fields you’ll be filling in. You
don’t set the height and width fields
because the height and width of the
various surfaces in a flipping structure
are the same size as the screen. In the
capabilities field, you set DDSCAPS_COM-
PLEX to indicate that you are creating a
structure of surfaces. Set DDSCAPS_FLIP to
indicate the type of complex structure
you’re creating, one that you’ll use for
page flipping.

Finally, you tell dwBackBufferCount
the number of back buffers you will need
in the flipping structure. I have specified
two back buffers in this example so that
I can write on the next back buffer, even
during a flip (when the front buffer and
the previous back buffer are busy).

Having filled out the structure, you
call the CreateSurface function and check
the return code. You then call the IDi-
rectDrawSurface::EnumAttachedSurfaces()

interface to get pointers to the back
buffers so you can draw on them.

Once a surface is created, it’s a good
idea to check the surface capabilities by
calling the IDirectDrawSurface::GetCaps()
interface. This function simply fills in a
DDSCAPS structure with the capability bits
of a surface. Another good idea is to get
a full description of the surface by calling
the IDirectDrawSurface::GetSurfaceDesc()
interface. This function fills a passed in
DDSURFACEDESC structure with the descrip-
tion of the surface object through which
the interface was called.

D I R E C T D R A W

34 GAME DEVELOPER • AUGUST/SEPTEMBER 1996 http://www.gdmag.com

{
DWORD dwSize; // size of the structure for version checking
DWORD dwFlags; // what fields are in use?
DWORD dwHeight; // height of the corresponding surface
DWORD dwWidth; // width of the surface
LONG lPitch; // bytes between scan lines
DWORD dwBackBufferCount; // number of back buffers attached
DWORD dwZBufferBitDepth; // pixel bit depth for Z buffer
DWORD dwAlphaBitDepth; // pixel bit depth for alpha channel
DWORD dwReserved; // reserved
LPVOID lpSurface; // pointer to the surface memory when locked
DDCOLORKEY ddckCKDestOverlay; // color key for destination overlays
DDCOLORKEY ddckCKDestBlt; // color key for destination blits
DDCOLORKEY ddckCKSrcOverlay; // color key for source overlays
DDCOLORKEY ddckCKSrcBlt; // color key for source blits
DDPIXELFORMAT ddpfPixelFormat; // format of the surfaces pixels
DDSCAPS ddsCaps; // capabilities of the surface

} DDSURFACEDESC;

Listing 2. The DDSURFACEDESC Structure typedef struct _DDSURFACEDESC

If you’re not going to be using full-
screen exclusive mode DirectDraw, you’ll
probably need to attach a DirectDrawClip-
per object to your surface. I won’t
describe the creation of this object in this
article, but be aware that you can create
DirectDrawClipper objects and attach
them to surfaces to do clipping for you.

If your DirectDraw application
expects a pixel depth of 8 bits, you’re
going to need a DirectDrawPalette object,
which describes a table of colors that
your application uses. You create a
DirectDrawPalette object with the IDi-
rectDraw::CreatePalette() interface, and
attach it to a surface with the IDirect-
DrawSurface::SetPalette() function. Usu-
ally, you will only have to attach a palette
to the primary surface.

Another useful IDirectDrawSurface
interface is SetColorKey(). As you might
expect, the SetColorKey() interface
defines a color key and the type of color
keying for a surface. This interface
accepts two parameters. The first is a
bit field that represents the types of
color keying that the color key will be
used for. The valid flags are DDCKEY_COLOR-
SPACE, DDCKEY_DESTBLT, and DDCKEY_SRCBLT.
The first flag indicates that the color
key specifies more than one color, or a
color space. The second and third flags
indicate whether the color key should be
used for destination or source blitting.

Lost Surfaces
If the display mode changes or another
application acquires exclusive cooperative
level, it is possible for all surfaces to lose
their display memory. The surface object
still exists, but the memory that it used
was reorganized and returned to the sys-
tem. When this happens, it’s up to you
to call the IDirectDrawSurface::Restore()
interface and to reconstruct what the
surface contained before it was lost.

When a surface is lost, all subse-
quent interface calls through that surface
will return DDERR_SURFACELOST. This can
make error checking quite complex,
requiring you to repeatedly check for this
error after every operation and attempt
to restore surfaces if they become lost.

Fortunately, there is a way to detect
a lost surface before you attempt to use

it, using the IDirectDrawSurface::IsLost()
interface. This function returns DD_OK if
the surface is not lost, or DDERR_SUR-
FACELOST if the surface has become lost.

Another set of useful functions
when working with surfaces are the IDi-
rectDrawSurface::GetDC() and ReleaseDC()
interfaces. The GetDC() interface returns
a GDI-compatible handle to a device
context, or HDC, for the surface. With
this HDC, you can write to the surface
using a GDI function or a TrueType
font, or load your bitmap sprites to off-
screen surfaces via the Windows Set-
DIBits() API. The GetDC() function does
an implicit lock, so unless you’ve created
the surface using the DDSCAPS_OWNDC capa-
bility, you probably shouldn’t leave it
locked for an extended period.

Listing 5 shows a sample applica-
tion using the GetDC() and ReleaseDC()
calls on a surface. In this example, we
use the GetDC() function to obtain an
HDC for the surface. Then, we use the
GDI functions PatBlt() and TextOut() to
white out and put some text on the
HDC and the working text surface, and
then blit the surface to the display.

The next pair of useful IDirectDraw-
Surface interfaces are the Lock() and
Unlock() pair. Lock() obtains a pointer to
a surface’s physical memory so that you
can directly draw either on a rectangular
portion or the entire surface. The Lock()
interface takes the following parameters:

a pointer to a Windows RECT structure
which specifies the portion of the surface
to lock, the address of the DDSURFACEDESC
structure through which the physical
memory pointer is returned, a flags field,
and an optional event handle to trigger
when the Lock() has been obtained.

Busy Surfaces
A DirectDraw surface can be busy for a
number of reasons. For example, sup-
pose the hardware is capable of an asyn-
chronous bitblit operation. After a bitblit
is requested, the function immediately
returns and does not wait for the blit to
be completed. Until the blit is completed
on this surface, subsequent operations
will return the error DDERR_SURFACEBUSY.
The primary surface will also be busy
during the vertical retrace blank and dur-
ing a page flip operation.

Fortunately, there are several ways to
wait for a Lock() when a surface is busy.
The first way is to pass the DDLOCK_WAIT
flag, which tells DirectDraw to return
from the Lock() call when the surface is
finally available. The second method uses
the DDLOCK_EVENT flag. DDLOCK_EVENT

instructs DirectDraw to signal an event
when the Lock() has been obtained, using
the WaitForSingleEvent() API.

The Unlock() function, which
unlocks a locked surface, takes one para-
meter: the memory address of the surface
that was returned when the lock

D I R E C T D R A W

36 GAME DEVELOPER • AUGUST/SEPTEMBER 1996 http://www.gdmag.com

LPDIRECTDRAWSURFACE pPrimarySurface;
LPDIRECTDRAWSURFACE pOffSurface;
DDSURFDESC ddPrimSurfDesc;
DDSURFDESC ddOffSurfDesc;
// Get access to the primary surface
ddPrimSurfDesc.dwSize = sizeof(DDSURFACEDESC);
ddPrimSurfDesc.dwFlags = DDSD_CAPS;
ddPrimSurfDesc.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;
hResult = pDirectDraw->CreateSurface(&ddPrimSurfDesc, &pPrimarySurface, NULL);
if (FAILED(hResult))

return FALSE;
// create an off-screen surface
ddOffSurfDesc.dwSize = sizeof(DDSURFACEDESC);
ddOffSurfDesc.dwFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH;
ddOffSurfDesc.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN;
ddOffSurfDesc.dwWidth = nWidth;
ddOffSurfDesc.dwHeight = nHeight;
hResult = pDirectDraw->CreateSurface(&ddOffSurfDesc, &pOffSurface, NULL);
if (FAILED(hResult))

return FALSE;

Listing 3. Creating Primary and Off-Screen Surfaces

occurred. This parameter is required
since you can independently lock any
number of non-overlapping rectangles
on a surface.

The final set of calls that we’ll use
with DirectDraw surfaces are Blt(), Blt-
Fast(), and Flip(). Both Blt() and Blt-
Fast() move rectangular areas from one
surface to another. Blt() accepts both
source and destination rectangles and
can do arbitrary stretching and shrink-
ing. Blt() also accepts some flags as
parameters and an optional DDBLTFX
structure. BltFast() is a streamlined ver-
sion of Blt(). It always attempts an asyn-
chronous Blt(), and it does not do any
stretching, shrinking, or clipping.

Finally, Flip() instructs the hard-
ware to perform a page flip on a com-
plex flipping structure. Flip() accepts
two parameters. The first specifies
which alternate buffer will become the
new front buffer, and the second is a
flags field.

Flipping operations are exceeding-
ly simple to implement with Direct-
Draw. Once the complex flipping struc-
ture has been created, you only need to
maintain a pointer to the first back

buffer and the root surface. When the
Flip() is performed on the root surface,
DirectDraw automatically shifts the
memory around so that the first back
buffer DirectDrawSurface object points to
the new first back buffer. In this way,
the first back buffer pointer is always
the next surface to be displayed. Listing
6 shows a sample application of Blt(),
BltFast(), and Flip().

In this example, a text surface is
copied to the background working sur-
face. Then, depending on whether the
application has been configured for page
flipping or not, the back buffer is blitted
or flipped to the front.

Terminating an Application
You’ve created your surfaces, palettes,
and clippers, your application has run,
and now it’s time to terminate. If you’ve
been page flipping, use the IDirect-
Draw::FlipToGDISurface() interface to
ensure that the GDI surface is the visi-
ble surface when your application ter-
minates. If you’ve changed the display
mode, use the IDirectDraw::RestoreDis-
playMode() interface to restore it (don’t
use the SetDisplayMode() function to

restore a display mode that you’ve saved
away yourself). Finally, use the IUn-
known::Release() function to decrease
the reference count of all the Direct-
Draw objects you’ve created. Once the
reference count reaches zero, COM will
destroy the objects and delete all of the
memory associated with them.

That covers the overall framework
of a typical DirectDraw application. You
now know enough to create a working
DirectDraw application. I’ve written a
sample application, TILETEST, that is
available on the Game Developer web site
and uses the various functions I’ve
described. TILETEST differs slightly in
the code samples shown above, in that
I’ve wrapped the various DirectDraw
COM objects into some C++ classes.
TILETEST also shows some techniques
for DirectDraw programming that I did
not cover in this article, particularly
debugging helpers and how to draw to a
window with DirectDraw. The point of
the sample is to show how to use Direct-
Draw; therefore, it isn’t particularly
speedy. If you’re so inclined, the
TILETEST TileFloor() function can be
optimized by doing the drawing manual-
ly, and possibly by using RLE decoding
of the DIBs to the surface. But I’ll leave
that as an exercise for you. ■

Bob Provencher is one of the principles
of Cog Interactive, a start-up game devel-
opment company dedicated to developing
real-time action and strategy games for
Windows 95 and the Internet. He can be
reached via e-mail at mail18080@pop.net.

D I R E C T D R A W

38 GAME DEVELOPER • AUGUST/SEPTEMBER 1996 http://www.gdmag.com

ddFlipSurfDesc.dwSize = sizeof(DDSURFACEDESC);
ddFlipSurfDesc.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;
ddFlipSurfDesc.ddsCaps.dwCaps = DDSCAPS_COMPLEX | DDSCAPS_FLIP | DDSCAPS_PRIMARYSURFACE;
ddFlipSurfDesc.dwBackBufferCount = 2;
hResult = pDirectDraw->CreateSurface(&ddFlipSurfDesc, &pFlipSurface, NULL);
if (FAILED(hResult))

return FALSE;
hResult = pFlipSurface->EnumAttachedSurfaces(NULL, EnumAttachedSurfacesCallback);
if (FAILED(hResult))

return FALSE;

Listing 4. Creating a Complex Flipping Structure

char*s = “Hello World.”;
HRESULT hResult;
HDC hDC;
hResult = pTextSurface->GetDC(&hDC);
if (FAILED(hResult))

return FALSE;
PatBlt(hDC, 0, 0, TEXT_WIDTH, TEXT_HEIGHT, WHITENESS);
TextOut(hDC, 0, 0, s, strlen(s));
hResult = pTextSurface->ReleaseDC(hDC);
if (FAILED(hResult))

return FALSE;

Listing 5. GetDC() and ReleaseDC()

hResult = pBackSurface->BltFast(0, 0, pTextSurface, NULL, DDBLTFAST_WAIT | DDBLT-
FAST_SRCCOLORKEY);
if (FAILED(hResult))

return FALSE;
if (bPageFlip)
{

hResult = pFlipSurface->Flip(NULL, DDFLIP_WAIT);
}
else
{

hResult = pFrontSurface->Blt(&rcDest, pBackSurface, &rcSrc, DDBLT_WAIT, NULL);
}

if (FAILED(hResult))
return FALSE;

Listing 6. Blt(), BltFast() and Flip()

Optimizing
CD-ROM Performance
under DOS/4GW

C D - R O M P R O G R A M M I N G

Y
ou’re building the coolest,
most realistic game with a
half hour of gorgeous full-
screen video and a phenome-
nal soundtrack featuring
famous voices. You’re using
the Watcom compiler, with
DOS/4GW, because you

want the game to run on both DOS and
Windows machines. There’s just one
problem: the video segments don’t play
smoothly on anything less than a 6X
CD-ROM drive.

Let’s look at some CD-ROM
quirks you should know about, no matter
which PC platform you’re targeting, and
how to read a CD-ROM drive efficiently
from a DOS/4GW program. Then we’ll
discuss two games that exemplify intelli-
gent use of a double-speed (2X) CD-
ROM drive: Rebel Assault II: The Hid-
den Empire from LucasArts Entertain-
ment, and Loadstar: The Legend of
Tully Bodine from Rocket Science.

CD-ROM Fundamentals
In most games that read data off a CD-
ROM in a continuous stream, the CD-
ROM drive’s data transfer rate will be
the biggest bottleneck.

Today, single-speed drives are
obsolete, and double-speed (2X) drives
are the norm. A 2X drive, at best, can
read 300K of data per second; a quad-
speed (4X) drive, 600K. Considering
that movie-quality video runs at 30
frames per second and 30 frames of
uncompressed, 640-by-480 pixel, 16-
bits-of-color video plus one second of
CD-quality audio require 18,176K per
second, today’s CD-ROM drives are
woefully inadequate for movie playback.

To beat the bandwidth problem, you’ll
have to cut a few corners.

To reduce your game’s data rate to
sustainable levels, you must sacrifice
some quality. For example:
• Compress the data.
• Play fewer video frames per second.
• Reduce the displayed resolution (per-

haps to 320-by-240 pixels or fewer).
• Use only 8 bits of color per pixel.
• Use lower-quality audio.

Some games copy data to the hard
disk, which is capable of a higher (but
still limiting) transfer rate. This tech-
nique works well for small amounts of
frequently accessed data, but it increases
the game’s hard-disk space requirements
and slows down the installation.

Even if your data rate is sustainably
low, you must ensure that it’s steady.
Otherwise, your video will skip, and your
sound will stutter. If you want to display
15 frames of video per second, you either
have to read and process each frame in
less than 1

/15 of a second or use a buffer to
smooth out spikes in the data rate.

If you read non-sequentially from
the disc, the data rate will drop to zero
whenever the laser moves to a new loca-
tion. In designing your game, you must
somehow work around this problem. It’s
possible to cover up the seeks by playing
previously buffered sound and video, but
you could also display a static screen
(text, for example) to distract the player.

CPU and the MPC Spec
You can guess the data rate of a drive just
by knowing if it’s rated 2X, 4X, or 6X.
Most 2X drives can deliver 300 ± 25K,
most 4X drives can deliver 600 ± 50K,
and so on. However, a few drives are

optimized for a particular access pattern:
they live up to their ratings when you use
DOS copy on them, but fail miserably
under the more demanding conditions of
gameplay. We’ve also seen drives that
didn’t live up to their rating because they
(or their controller cards) were defective.

Data rate isn’t the only considera-
tion in CD-ROM programming. After
reading the data, you need enough CPU
cycles left over to decompress it, display
the video, play the audio, and execute
your game’s logic. Unfortunately, the
percentage of CPU cycles consumed
varies among CD-ROM models, largely
due to the efficiency of the device drivers.
Some move the data from the drive’s
hardware buffer to system memory using
programmed I/O, while others use direct
memory access (DMA). Some drivers
transfer data a byte at a time, while oth-
ers wait for an interrupt that signals a full
sector is ready to be transferred.

Since DOS is inherently single-
threaded, drivers monopolize the CPU
even when they are simply waiting for a
hardware event. Both the “waiting” algo-
rithm and the “transfer” algorithm affect
how the CD-ROM will respond to your
efforts to reclaim spare CPU time.

A computer that meets the MPC II
specification is guaranteed to deliver
150K with at most a 40% CPU load,
while an MPC III computer (running
DOS) can deliver 550K at 40%. But
150K is too slow for most applications,
and MPC III systems are not yet com-
mon. Further, a drive’s rated CPU load is
a laboratory average. If you take over the
CPU at times which are inconvenient for
the CD-ROM driver, your mileage may
vary. Thus, for most uses, the MPC

40 GAME DEVELOPER • AUGUST/SEPTEMBER 1996 http://www.gdmag.com

specification serves only as a vague indi-
cator of probable system performance.

Expected Variation
The variance in CPU load is greatest
among 2X drives. The best drives
approach 300K using 10% of the CPU;
the worst suck down 90% of the CPU. A
game designed for a full 300K data rate
will starve to death on the poorer 2X
drives because it won’t have any proces-
sor time to spend on decompression,
output, and game logic. The practical
limit for a game intended to run on a 2X
drive is around 260K, while 225K is
common. CPU load is more consistent
among 4X systems. If your game needs a
4X drive, you can probably assume the
performance guaranteed by MPC III.

We’re not intending to embarrass
drive manufacturers in this article, but
Mitsumi deserves special recognition for
selling a ton of 2X drives with truly awful
device drivers. More than one best-sell-
ing game contains special workarounds
for Mitsumi drives. The drives are O.K.,
but the MTMCDAS.SYS driver is truly
brain-damaged. It synchronizes itself to
the drive with delay loops, and it doesn’t
check the drive status within the loops. If
you interrupt a delay loop (for example,
because you’re doing preemptive multi-
threading), the driver still ties up the
CPU by counting down to zero after you
switch back to it—even though the drive
could already be done with its operation.
The MTMCDAE.SYS driver is only
slightly better: it synchronizes itself to the
drive with an interrupt, but its interrupt
handler leaves interrupts disabled for so
long that other interrupts (timer, sound
card, threading) get missed.

Variation in Seek Times
If you want to avoid a noticeable delay
when you open a different file or jump
around within a file, you should buffer
up at least a half second of sound and
video to be played while the seek takes
place. MPC II guarantees an average
seek time of 400ms or less; MPC III
guarantees 400ms for a notebook com-
puter, 250ms for a desktop. Your code
should anticipate seeks that take longer
than these averages.

Seek times generally increase in
proportion to the distance the laser has
to move. Ironically, the worst seek times
we’ve seen on any 2X drive (up to 1 sec-
ond!) were for seeks of less than 256
sectors, because that particular drive
used a different algorithm for very short
seeks.

Some CD-ROM drives defer seeks
until they’re forced to actually read data.
This trick makes for faster servers, but it
can cause delays in your game if you’re
not prepared for it.

Programming Interfaces
Now that you know what you’re up
against, it’s time to get down to program-
ming. There are up to four different lay-
ers of system software between you and
the CD-ROM drive: DOS, MSCDEX,
the MS-DOS device driver provided by
the drive manufacturer, and possibly a
lower-level driver (for instance, a SCSI).

DOS affords the simplest program-
ming interface and one you already
know how to use. You can open a file on
the CD-ROM drive with a call to
fopen() and perform random-access
reads by combining calls to fseek() and
fread(). Although DOS is a real-mode

It pays to know

how to read a drive

efficiently from a

DOS/4GW program.

Rebal Assault II and

Loadstar show us

how to intelligently

use a double-speed

CD-ROM drive.

Dan Teven
and Vincent Lee

GAME DEVELOPER • AUGUST/SEPTEMBER 1996 41http://www.gdmag.com

interface, the protected-to-real-mode
translation is done automatically by
DOS/4GW.

DOS adds a little overhead to
every CD-ROM request, and the DOS
extender adds a little more. DOS/4GW
has to copy the data read by fread()
into extended memory, and it will
break any read of more than 8K into
multiple calls to DOS. You can’t elimi-
nate the DOS overhead. You can elimi-
nate DOS/4GW’s by allocating your
own buffer in low memory and associat-
ing that buffer with the file pointer for
the CD-ROM, like this:

FILE *fp;

// pointer to the file on CD-ROM

RealPtr p;

// see listing for RealPtr, AllocateLow

p = AllocateLow (16 * 1024);

// allocate 16K buffer in DOS memory

setvbuf (fp, p.ptr, _IOFBF, 16 * 1024);

The biggest remaining problem
with this scheme is that DOS reads are
synchronous; your program will have to
sit and wait for the read to complete.
Even if the CD-ROM drive has a low
CPU load, your program won’t be able to
reclaim those spare CPU cycles for any-
thing except its interrupt handlers.

The MSCDEX Interface
Since DOS calls MSCDEX when it’s
asked to read from or seek on a CD-
ROM drive, you might ask how the
MSCDEX interface is different. It’s
still a real-mode, synchronous inter-
face, but you ask MSCDEX to read
with INT 2Fh/AX=1508h instead of INT
21h/AH=3Fh.

More significantly, MSCDEX
deals with 2,048-byte sectors, not files.
When you open a file in DOS, DOS
calls MSCDEX to return the directory
entry structure for the path you specify.
This structure contains the sector loca-
tion and size of the file. If you know this
information beforehand, you can avoid
rereading the directory entry (and elimi-
nate an unnecessary seek or two).
MSCDEX always reads entire sectors,
so you must do your own buffering if
your request isn’t sector-aligned.

Driver Level and Below
The next rung down on the ladder is the
MS-DOS device driver, which is called
by MSCDEX according to a very stan-
dard protocol. Even though a driver may
be implemented in an idiosyncratic way,
certain functions are required if the driver
is to work with DOS. Hence, the device
driver interface is the lowest level at
which you can interact with a CD-ROM
drive without knowing what kind of drive
it is. Unfortunately, it’s yet another real-
mode, synchronous interface.

The device driver entry points are a
pair of real-mode functions in the same
code segment as the device driver header.
The offsets to those functions are con-
tained in the header. You make a far call
to the first function, called the strategy
routine, passing the address of a low
memory data block in ES:BX. You then
make a far call to the second function,
known as the interrupt routine, and the
driver performs the requested operation.
It’s a little tricky to set all this up from a
DOS/4GW program, but MSCDEX
provides a shortcut: put the data block
address in ES:BX, put a drive identifier in
CX, and issue real-mode INT 2Fh/AX=1510h.
You can find an example of this tech-
nique online at http://www.gdmag.com.

By talking directly to the driver, you
can bypass any disk caches and get the
most consistent performance with the
least overhead. You can also confuse the
higher-level system software, so your
game may not run correctly in a multi-
tasking environment. If you decide to
program to this level, it’s a good idea to
eject the disc at the end of your program
to reset the state of the drive.

There’s little to be gained from
going below the MS-DOS device driver
interface. Some device drivers might sup-
port asynchronous operation; some might
even be callable from protected mode.
Each one is different, and you’d have to
support them all to have a game worth
selling commercially.

Synchronous APIs
We’ve examined the sensible program-
ming interfaces for CD-ROMs and
found that, unfortunately, none of the
choices is asynchronous. How, then, do

we reclaim the spare CPU cycles, which
are currently being used to turbocharge
the wait loops in our device driver?

On some drives, we can improve the
situation considerably by reading small
blocks from the disc on a regular basis,
interleaving the reads with other work so
the CD-ROM drive’s internal buffer has
time to refill before the next read. In fact,
this technique is the key to getting rea-
sonable throughput from the MTMC-
DAS driver. You can try varying the size
of the blocks and the length of the delay
between them to find the sweet spot of a
drive, but you may not need to if you
aren’t after the highest possible data rate.

Not all drives perform well with
small reads. To maximize throughput on
most drives and reclaim seek time, we
need preemptive multithreading. Pre-
emptive multithreading is the only way to
reclaim the CPU (to, say, render a frame)
during one of those synchronous calls
into the CD-ROM driver.

The implementation of a multi-
threading system for DOS/4GW is
beyond the scope of this article, but com-
mercial libraries are available. Different
drives respond differently to different
access patterns, so you’ll need to experi-
ment with the thread duty cycle (percent-
age of time given to the CD-ROM dri-
ver), thread switch frequency (size of each
time slice), and the size of the blocks and
the length of the delay. Keep in mind
that many CD-ROM device drivers are
not reentrant, so only one thread in your
program should access the CD-ROM.

Case Study: Rebel Assault II
Rebel Assault II: The Hidden Empire
from LucasArts is the sequel to the
action-arcade game Rebel Assault. Set in
the Star Wars universe, it features 15
chapters of play and uses high-quality
cinematic video sequences to advance the
story and mood. The game play features
various flying, dodging, and shooting
sequences set in front of interactive
streamed backgrounds.

The minimum platform for Rebel II
is a 486/50 with a 2X CD-ROM drive.
To achieve acceptable performance and
image quality on this platform, LucasArts
wrote a custom animation system. This

C D - R O M P R O G R A M M I N G

42 GAME DEVELOPER • AUGUST/SEPTEMBER 1996 http://www.gdmag.com

GAME DEVELOPER • AUGUST/SEPTEMBER 1996 43http://www.gdmag.com

system, the INteractive Streamed ANima-
tion Engine (INSANE), is a collection of
code libraries designed primarily to com-
press and play back video sequences. The
system is modular, easily portable, and will
be used in a majority of LucasArts’s
upcoming titles.

In Rebel Assault II, noninteractive
sequences are 320-by-200 pixels, while
interactive sequences are rendered in 424-
by-260 resolution. Both use 8-bit, 256-
color imagery and appear full screen. For
higher-end machines, optional interpola-
tion up to 640-by-400 resolution is avail-
able. High resolution is more CPU-inten-
sive, so this may result in a slower frame
rate than low resolution, even on a moder-
ately-powered system. To account for this,
the system was designed to elegantly han-
dle a less-than-optimal frame rate.

Each frame of video typically consists
of 13K of video and 2K of audio. With a
data rate of 225K per second, this allows a
frame rate of 15fps. Due to the large quan-
tity of video generated for the game, it
would have been unreasonable to generate
multiple copies of the video streams, each
running at a different frame rate. Instead,
all video sequences are designed to run at
the machine’s maximum speed, capping
the rate at an optimal 15 frames per sec-
ond. For high-end systems, the extra CPU
time can be used to run in high resolution.

To account for possible synchroniza-
tion problems due to variable frame rates,
two approaches were taken. For sequences
without onscreen speech, music and sound
effects are linked to specific key frames and
designed to accomodate up to a 15% vari-
ance in frame rate. For sequences with on-
screen speech, rigid synchronization is
used. For these sequences, every other

frame of video can be optionally omitted,
saving decompression and display time and
allowing the animation engine to catch up
to lip-synched audio.

For some interactive sequences,
smooth branching must occur. To
achieve this, the system allows video seg-
ments to be interlaced into the data
stream and preloaded before a possible
branch point. When the branch point is
reached, the preloaded segment is played

to cover up the seek delay to the new
animation.

The INSANE library performs reads
through DOS for portability. To achieve
smooth, uninterrupted animation, it uses a
hybrid preemptive cooperative multitask-
ing system, in which data reads are per-
formed within a mainline DOS thread;
decompression and game logic run in time
slices granted via the timer interrupt.
Decompression time can vary from frame

Rebel Assault II combines gameplay and
breathtaking cinematic video.

to frame depending on the layers of
imagery and compression options used in
a particular frame. To achieve best overall
performance on all video sequences, the
system dynamically varies both CPU
time-slice allocation and decompression
frame rate based on CD-ROM read per-
formance and decompression time.

Case Study: Loadstar
Rocket Science’s game Loadstar: The
Legend of Tully Bodine is a fast-paced

arcade shooter set against a movie back-
drop. Loadstar has received accolades for
its speed and production values. Much of
the action takes place within a network of
tracks on the surface of the moon, and
players must simultaneously navigate this
maze, avoid damage to their ships, con-
serve power for shields, and shoot down
attacking gunships.

The programming of Loadstar was
guided by the following principles:
• The game should be playable on any

486/25 with a 2X drive but take full
advantage of faster machines. It should
play back as rapidly and smoothly as
possible, without the player having to
tweak it for his particular machine.

• The video images are 320-by-200 pix-
els, with a 256-color palette. For best
color reproduction, the palette is
updated on every frame.

• The narrative segments must play back
at 24 frames per second, for smooth-
ness. Some frame dropping is accept-

able. The interactive segments (which
are more expensive because of sprites
and sound effects) should play back at
24fps if possible, with 12fps being the
minimum acceptable rate.

• Video and audio must be perfectly
synchronized.

• Even though every branch in the maze
represents a jump to a new movie seg-
ment on the disc, there must be no
delays no matter which direction the
player goes.

To accomplish these ambitious
goals, Rocket Science developed a game
compiler that ensures related data is
grouped close together on the master
CD-ROM, that the data rate required
throughout the game is known, and that
the data rate stays almost constant. Rock-
et Science also spent considerable engi-
neering effort figuring out the fastest way
to read an arbitrary CD-ROM drive.

Loadstar profiles the machine it’s
running on and scales the size of the

44 GAME DEVELOPER • AUGUST/SEPTEMBER 1996

C D - R O M P R O G R A M M I N G

Loadstar’s game required smooth transi-
tions between video segments.

http://www.gdmag.com

video rectangle, the quality of the sound
effects, and several aspects of gameplay to
ensure that the game will play smoothly.
On machines with very slow CD-ROM
drives, it will select 12fps data streams
instead of the usual 24fps streams. It
always bypasses DOS and MSCDEX
because there’s no room for overhead
when your data rate is 260K.

Once it figures out the optimal
access pattern for a drive, Loadstar uses a
background thread to read data into a big
queue. The foreground thread empties
that queue, decompresses the data, super-
imposes sprites, and copies the composit-
ed data to another queue in video memo-
ry. The balance of time between the
threads is adjusted dynamically, based
upon the amount of data in both queues.

An interrupt handler synchronized
with vertical nondisplay empties the
video frame queue and updates the
palette. If a frame is ready before its pre-
determined time, the extra time is given

to the CD-ROM drive. If a frame is
ready late, it’s displayed as soon as possi-
ble, but the next frame is thrown away to
give the game a chance to catch up.

The background thread is also
responsible for seeks. Rocket Science’s
game compiler arranges the data stream
on the CD so the first half second of data
for every possible branch is read into
memory before the branch actually takes
place. Then, no matter which branch the
player takes, the action continues seam-
lessly until the laser reaches its new loca-
tion and a new block of data gets read.

The Need for Speed
Now you know how to make efficient use
of a CD-ROM. Remember: the easiest
way to speed up some models is to speed
up everything else. Getting a decent data
rate out of the Mitsumi FX001D, for
example, forces you to give up at least
70% of your CPU cycles. If the rest of
your game needs only 30% of the power

of a 486/25 or scales across a range of
processors, your job will be easier.

Protected-mode, multithread-aware
CD-ROM drivers are another advantage
Windows 95 and OS/2 have over DOS.
The MPC III specification guarantees
550K at just 7% of the CPU on those
operating systems. We look forward to
the day you can design a CD-ROM
game without worrying too much about
the low end of drive performance. ■

Vincent Lee is a project leader and
designer at LucasArts Entertainment. He
was project leader and lead programmer for
Rebel Assault and Rebel Assault II. He can
be reached via e-mail at gdmag@mfi.com.

Dan Teven specializes in 32-bit sys-
tems programming for extended DOS and
Windows 95. He has consulted on threading
and CD-ROM issues for numerous projects,
including Loadstar. He can be reached via e-
mail at gdmag@mfi.com.

GAME DEVELOPER • AUGUST/SEPTEMBER1996 45http://www.gdmag.com

Introduction to
Vector Math

P H Y S I C S A N D F O R C E

I
t was a warm, sunny Spring after-
noon. Birds were singing, and beau-
tiful flowers gently swayed in the
wind. My brother and I—both
under age ten at the time—really
didn’t care how it was outside; we
were spending our time inside the
house absorbed in a tough problem:

the entrance to our basement hideout had
been obscured by large, heavy boxes. To
us, the short hole that led beneath the
stairway was more than just a storage
facility—it was our top-secret hideout
where we could discuss our plans of sister
hijacking and such.

Despite repeated efforts on my part,
all I could do was dent the book-filled
boxes when I tried to move them, a situa-
tion I was sure Mother wouldn’t be too
proud of. My failure prompted me to call
my younger-but-larger brother Brian in
for help. In the process of our two-man
herculean effort, we discovered an inter-
esting principle which, although quite

new to us, was based upon well-known
geometric principles that were discovered
long before we were born. We discovered
that moving a square box forward can be
accomplished by applying force to an
opposite and adjacent side at 45˚ angles
(see Figure 1). The principles behind this
little trick not only helped us uncover our
hideout, they also have applications in
fields as diverse as aviation and computer
games. These principles revolve around
vectors and scalars in 3-space.

When describing a state or location,
we often resort to using a direction and a
magnitude. A magnitude can mean a
velocity, a distance, a force, or just about
anything that a single number can fully
represent. For example, it’s fairly common
to describe a location using a direction
(such as north or south) and a magnitude
(such as 37 miles). Accurately describing
how a box is being moved (as described in
Figure 1), the location of your nearest
supermarket, and the velocity and direc-
tion of a train all require the use of a mag-
nitude and a direction. For example, we
could describe a moving train using its
magnitude (which would take the form of
a distance or a velocity, whichever we pre-
ferred) and its direction (which direction
the train is moving). Describing all these
situations is so common that we might
not be surprised to find out there is a
mathematical name for the entity that
posesses both a direction and a magni-
tude: a vector. A vector is a directed line
segment whose magnitude is equal to its
length and whose direction is measured
by an angle (in two dimensions) or angles
(in three dimensions). If an object

requires only a single number to fully
describe its state (such as temperature,
where only a magnitude is necessary), it is
called a scalar.

You can visualize two- and three-
dimensional vectors, such as the vector
shown in Figure 2, by graphing them on a
piece of paper. Figure 2 shows two two-
dimensional vectors in which each vector
has a head and a tail. Vector tails are
always located at the origin of the coordi-
nate system, which for two-dimensional
vectors is the point (0,0), and which for
three-dimensional vectors is (0,0,0). The
head of the vector specifies its direction
and magnitude. By drawing a line from
the origin of the coordinate system to the
head of the vector, we obtain a line seg-
ment that visually represents both the
direction and the magnitude of the vector.

English is a rich and varied lan-
guage, carrying with it a number of words
imported from other languages. With all
its variety, you’d think it would be possi-
ble to describe almost everything using
everyday words and expressions—and
you’d be right. However, English can
often be overkill, especially when an ele-
gant and precise way exists to describe a
situation. Fortunately for our sakes (or
unfortunately, if you really hate math),
such a short-cut exists for vectors.

Vectors are always represented with
a single, upper-case letter, such as the let-
ter V. The magnitude of a vector is repre-
sented by |V|, where V is the vector. The
notation V = <a,b,c> is used for a three-
dimensional vector with its head at point
(a,b,c), where a is the distance along the x
axis of a Cartesian coordinate system, b is

Figure 1. A square box can be made
to move forward by applying force to
two of its sides.

46 GAME DEVELOPER • AUGUST/SEPTEMBER 1996 http://www.gdmag.com

Magnitude and

direction are both

important in

describing states and

locations. Vector

math is an important

concept that game

developers should

know about.

John De Goes

GAME DEVELOPER • AUGUST/SEPTEMBER 1996 47http://www.gdmag.com

the distance along the y axis, and c is the
distance along the z axis (the z coordinate
represents depth, of course). The vector
<1,0,0> has a magnitude of 1, with a
direction in the positive x direction, and it
is always called the unit vector i. The vec-
tor <0, 1, 0> is pointing in the positive y
direction and is called the unit vector j.
Finally, the vector <0, 0, 1> is pointing in
the positive z direction and is called the
unit vector k. Any vector can be written in
terms of unit vectors i, j, and k. For
instance, a vector with its head at point
(a,b,c) can be written: V = ai + bj + ck.
The magnitude of any vector V can be
found by using the Pythagorean Theorem
(a2 = b2 + c2), and the direction angle or
angles can be found by using trigometric
functions (more on this in a moment).

Vector Mathematics
Multiplication is defined for vectors, as is
addition. You can multiply a vector by a
scalar by multiplying all components of
the vector by the scalar. This operation

can be used to reverse the direction of a
vector (multiplication by -1) or to change
the length of a vector. Multiplying a vec-
tor by a scalar does not change the direc-
tion of the vector, only its magnitude.

You can multiply a vector by a vector
two ways, one is called the dot product,
the other the cross product. The dot prod-
uct of two vectors (written U • V, and
pronounced “U dot V”) is a useful scalar in
certain types of calculations involving
physics, forces, and orientations. In math-
ematical terms, this equation is written:

U • V = (Ui + Uj + Uk) • (Vi + Vj + Vk) =
Ui • Vi + Uj • Vj + Uk • Vk.

By performing a little algebraic
manipulation (and by using the Law of
Cosines), we can obtain the angle between
any two vectors with the equation:

(U • V)
ø = cos-1 –––––

(|U||V|)

Vector 1

5

4

3

2

1

-1

-9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9

Vector 2

Resultant

Figure 2. Force and direction are at work in these two vector representations of Figure 1.

P H Y S I C S A N D F O R C E

48 GAME DEVELOPER • AUGUST/SEPTEMBER 1996 http://www.gdmag.com

// Note: All functions are inlined for speed

#ifndef __VECTOR3D__
#define __VECTOR3D__
#include <Math.H>
#include <Stdio.H>
#include <Stdlib.H>
class Vector3D {
protected:

float i, j, k;
public:

// The constructors:
Vector3D () { (*this) = 0.0F; }
Vector3D (float Ni, float Nj, float Nk)

{
Set (Ni, Nj, Nk);
}

// Set/Get member functions to provide access to
// i, j and k:
void Set (float Ni, float Nj, float Nk)

{
i = Ni; j = Nj; k = Nk;
}

float Geti () { return i; }
float Getj () { return j; }
float Getk () { return k; }
// The following two functions return the magnitude of
// the vector:
operator float ()

{
float Mag = sqrt ((i * i) + (j * j) + (k * k));
return Mag;
}

float Mag ()
{
return float (*this);
}

// The following function returns the dot product of
// this vector and another:
float Dot (Vector3D &V)

{
float DP = (i * V.i) +

(j * V.j) +
(k * V.k);

return DP;
}

// The following function returns the angle
// (a <= 3.14 >= 0) between this vector and another (angle
// returned in radians):
float Angle (Vector3D &V)

{
float Rad = acos (this->Dot (V) /

(Mag () * V.Mag ()));
return Rad;
}

// The following function returns the cosine of the
// angle between this vector and another:
float CosTheta (Vector3D &V)

{
float CosA = this->Dot (V) / (Mag () * V.Mag ());
return CosA;
}

// The following operators are overloaded for common
// operations; some work with both scalars and vectors:
Vector3D &operator = (float Scalar)

{
i = j = k = Scalar;
return *this;
}

Vector3D operator + (Vector3D &V)

{
Vector3D R;
R.i = i + V.i;
R.j = j + V.j;
R.k = k + V.k;
return R;
}

Vector3D operator - (Vector3D &V)
{
Vector3D R;
R.i = i - V.i;
R.j = j - V.j;
R.k = k - V.k;
return R;
}

Vector3D &operator += (Vector3D &V)
{
i += V.i; j += V.j; k += V.k;
return *this;
}

Vector3D &operator -= (Vector3D &V)
{
i -= V.i; j -= V.j; k -= V.k;
return *this;
}

// The following functions calculate the cross-product
// of this vector and another:
Vector3D operator * (Vector3D &V)

{
Vector3D R;
R.i = (j * V.k) - (k * V.j);
R.j = (k * V.i) - (i * V.k);
R.k = (i * V.j) - (j * V.i);
return R;
}

Vector3D &operator *= (Vector3D &V)
{
float oi=i, oj=j, ok=k;
i = (oj * V.k) - (ok * V.j);
j = (ok * V.i) - (oi * V.k);
k = (oi * V.j) - (oj * V.i);
return *this;
}

// The following functions multiply a vector
// by a scalar:
Vector3D operator * (float Scalar)

{
Vector3D R;
R.i = i * Scalar;
R.j = j * Scalar;
R.k = k * Scalar;
return R;
}

Vector3D &operator *= (float Scalar)
{
i *= Scalar;
j *= Scalar;
k *= Scalar;
return *this;
}

// The following function normalizes a normal to
// a length of 1:
void Normalize ()

{
float OneOverDist = 1.0F / Mag ();
(*this) *= OneOverDist;
}

};
#endif

Listing 1. Vector .HPP (A Vector Object) Targeted to 32-bit OS

P H Y S I C S A N D F O R C E

50 GAME DEVELOPER • AUGUST/SEPTEMBER 1996 http://www.gdmag.com

Taking the cross product of two vec-
tors (written U x V, and pronounced “U
cross V”) produces a third vector perpen-
dicular to the plane formed by the two
vectors, or zero if the two vectors are par-
allel. We shall not examine the equation
for the cross product, but you can see it in
source form by examining Listing 1.

Adding two vectors results in a sin-
gle vector that has the same effect as a
combination of the two vectors; this

resulting vector is called, intuitively
enough, the resultant. (See Figure 3. If
you’re especially observant, you’ll notice it
describes the cause for the mysterious box
movement my brother and I discovered.)

To add two vectors, you add the
components of the first vector to the cor-
responding components of the second
vector (in Figure 3, you add (2,3) to (4,2)
to get (6,5)). To subtract one vector from
another, you multiply the vector to be

subtracted from the scalar -1 and then
add the vectors; this is called vector sub-
traction. You can calculate the vector
between any two points by subtracting
(via a vector subtraction) the head point
from the tail point. Finally, a vector
whose elements are zero is called a zero
vector; this vector has no direction or
magnitude and is often written as 0 (thus,
V + 0 = V).

Applying Vectors to
Polygons In Games
One important application of vectors lies
in describing the orientation of polygons,
as shown in Figure 4. Describing polygon
orientation using vectors allows you to
perform lightsourcing, backface culling,
and visible surface determination. You
can create a vector that describes the ori-
entation of a polygon (often referred to as
a surface normal) by taking the cross-
product of two adjacent, coplanar vectors.
These two vectors can be created by using
two adjacent polygon edges. For instance,
if a coplanar polygon has four points,
labeled A, B, C, and D, you can create
two vectors U = A - B and V = C - B for
use in the cross-product operation, which
will result in the surface normal.

Vectors can also be used in applica-
tions involving force and physics. For
instance, let’s suppose you’re creating a
game in which water crafts predominate,
and you want to calculate the effect the

Vector 1
5

4

3

2

1

-1

-1 1 2 3 4 5 6 7 8 9

Vector 2

Resultant

Figure 3. The addition of any two vec-
tors is called the resultant; the resul-
tant has the equivalent effect of the
two vectors.

current has on the crafts moving about
in the water. The water can be repre-
sented with a vector, as can the water
craft. Adding these vectors will give you
a vector that describes the true heading
of the water craft; indeed, you can even
factor water resistance into the vector by
multiplying the resultant by a scalar.
These same principles can easily be
extended to both aircraft and land craft,
where forces such as wind constantly
alter their heading and resist the move-
ment of all objects. The position and
speed of both the boat and the current
form two distinct vectors.

Vectors can be used for simulating
gravity (a gravity vector “pulls” on all
polygons), for collision detection
between a polygon and an object (by
calulating the angle between the polygon
and the object’s direction you can deter-
mine the “bounce” vector), reflection
mapping, ray-tracing, ray-casting, and
almost everything else related to the third

dimension, not to mention the important
uses vectors have in such roles as simulat-
ing torque, resistance, and exterior forces.

In my explanation of vector princi-
ples, I’ve resisted using source code. The
source code implements all the major
vector operations, and, because it’s writ-
ten in C++, the mathematical operators
have been overloaded so you can use
them as you would any other data type.
Therefore, I shall leave much of the
explanation of Listing 1 to my com-
ments contained therein. However, I
want to mention the overloaded multi-
plication operator in passing, simply
because seeing it may cause some confu-
sion. Defining the operation for the
multiplication operator gave me quite a
headache: I could have designed the
operator to perform a dot product,
which is in fact one way to multiply a
vector by a vector, or I could have
designed the operator to perform a
cross-product, another way of multiply-

ing one vector by another. I chose the
latter approach because the result was a
vector, adding the member function Dot
to perform a dot product.

In closing, I would like to recom-
mend the ninth edition of Calculus by
George B. Thomas and Ross L. Finney
(Addison Wesley, 1995) for readers
interested in the proofs behind the
equations presented in this article. Vec-
tors are a complex, advanced subject and
deserve entire chapters, but hopefully
this article and source code will help you
take the plunge into the wide and won-
derous world of vectors and scalars in
3D space. ■

Disgusted by the one or two flames he
received from his last article, John De Goes
requests further f lames be directed to
gdmag@mfi.com, with apologies to Larry
O’Brien, editorial director of Game
Developer.

GAME DEVELOPER • AUGUST/SEPTEMBER 1996 51http://www.gdmag.com

52 GAME DEVELOPER • AUGUST/SEPTEMBER 1996

A
utodesk’s 3D Studio has
brought high-end computer
graphics within reach of the
plebeian desktop personal
computer. Its rich feature set
has been augmented by the
availability of more than 250
funct iona l i ty-enhanc ing

IPAS routines (third-party plug-ins),
giving users a wide range of creative
tools and special effects modules to
choose from. This, combined with net-
work rendering capabilities on the
affordable PC platform, has made 3D
Studio a viable choice for the demand-
ing production environment. Countless
games ranging from Trilobyte’s 7th
Guest to The Daedelus Encounter by
Mechadeus have cited its use.

For the past three years, Auto-
desk’s Multimedia division, now
renamed Kinetix, has been crafting the
next step in the evolution of this popu-
lar 3D application. Marking a depar-
ture from the linear naming convention
that brought us through 3D Studio
Release 4, this past spring saw the
much anticipated unveiling of 3D Stu-
dio Max. As the software documenta-
tion advises veteran 3D Studio users,
this is not just an upgrade but an
entirely new program.

One major change is the switch
from DOS to Microsoft’s no-nonsense
Windows NT as the requisite operating
system. NT combines the user-friendly
(and almost universally familiar) Win-
dows operating system with undiluted
32-bit multitasking, multithreading
workstation-class power. Max has been
designed to take advantage of that
power with transparent support for

multiple processors and 3D hard-
ware acceleration.

Which is not to say that Max
requires a multiprocessor system or a
3D chipset. Its Adaptive Degradation
feature allows the user to specify a bal-
ance between on-screen graphics and
playback speed to maintain responsive
screen redraw rates for each system’s
particular capabilities. You can set each
viewport to display objects in anything
from solid shaded mode to simple
bounding boxes; you can customize
animation playback so that you can, if
needed, sacrifice realtime playback in
order to avoid dropping frames or can
insist on realtime playback at the
expense of dropped frames.

However, Max definitely does
demand a more serious hardware com-
mitment than its DOS-based precur-
sors. Minimum system requirements
for 3DS R4 called for a 386 CPU with
math coprocessor and 8MB RAM.
That was certainly a bare bones setup,
and saintly patience would be an addi-
tional requirement of anyone attempt-
ing to use 3DS on a 386 machine. The
bare bones requirement for Max is
much steeper, though: nothing less
than a 90Mhz Pentium with 32MB
RAM and 100MB of available hard-
disk space.

What Max really wants is every bit
of juice it can get, and a bag of chips.
For optimum performance, Kinetix
recommends RAM in the neighbor-
hood of “64-128MB or more” and
hard-disk swap space of “200-300MB
or more.” Mere mortals using more
mundane hardware configurations have
commented that Max performs notice-

Max Delivers
on NT Promise

With 3D Studio Max,

the PC platform‘s

familiar 3D workhorse

application makes

the move to a

new operating

system...and a new

level of sophistication.

David Sieks

A R T I S T ‘ S V I E W

http://www.gdmag.com

GAME DEVELOPER • AUGUST/SEPTEMBER 1996 53

ably slower than R4 on the same
machine. Though it will run on lesser
machines—for most of this review I
used a 90Mhz Pentium with 32MB, and
Kinetix has shown off their new baby
running well on a Pentium laptop with
48MB—a well-stocked multiprocessor
Pentium Pro with Glint chip driven
hardware acceleration seems to be the
ideal system for making serious use
of Max.

Kinetix isn’t apologizing for that.
Their stated goal with Max is to provide
a production-ready application for pro-
fessional 3D animators. Along with the
many improvements in the 3D Studio
interface and feature set, designing Max
for NT and “personal workstation” cal-
iber systems has enabled them to realize
that objective. With over 65,000 instal-
lations prior to the release of Max, 3D
Studio has long been numbered among
the big boys. It ’s really grown up
with Max.

Plug-Ins Unplugged
Professional game developers must be
prepared to invest in the equipment
needed to do the job, but I will allow a
slight sympathetic pang for those users
who despair of ponying up the dough
for an NT workstation. Generous stu-
dent discounts have long been a laudable
Autodesk policy and still are: while Max
retails for $3,495, the student price is
only $1,295. Not exactly a giveaway, but
along with the negligible system
requirements of previous versions, such
pricing enabled a lot of aspiring young
computer-artists-on-a-budget to get
their hands on the same pro-quality tool
being used to create graphics for their
favorite games. Many graphics pros
today probably owe their jobs in the
game industry to that early hands-on
experience. Even with PC prices drop-
ping, a minimally equipped NT work-
station carries about a $5,000 price tag,
which will likely put Max out of the
reach of many hobbyists and amateurs.

But save your tears for the folks
who kept the plug-in companies in busi-
ness. Over the years, a lot of great plug-
in modules came along to beef up 3D
Studio's features: things like particle

effects, lens flares and glows, metaball
modelers, and much more, many selling
for hundreds of dollars. Well, put ’em
away: they won’t work with Max.
Which is not to say that Max can’t use
plug-ins. It ’s actually specifically
designed to facilitate the integration of
new plug-in modules.

Kinetix will provide every registered
user with the Max Software Developer’s
Kit, enabling those so inclined to create
their own plug-ins (with Microsoft
Visual C++) that will fit seamlessly with
the Max interface and be as accessible as
its out-of-the-box features. If you’re
more interested in developing your own
games than your own graphics tools, rest
assured that most of the third-party
developers responsible for the old crop of
3D Studio plug-in modules are hard at
work making add-ons for Max. Digima-
tion—makers of the popular LenZFX
and Bones Pro IPAS routines for 3D
Studio—are even planning a plug-in that
will let you use your old DOS plug-ins.

Max has incorporated some of the
old 3D Studio IPAS routines as part of

its standard feature-set. Particle effects
that simulate rain, snow, drifting confet-
ti, or spray from a garden hose—all with
user-definable parameters—are part of
the basic Max package. Combined with
deflection, gravity, and wind routines,
these can be used to create a wide range
of realistic effects.

Also, Kinetix plans to release their
own plug-ins. Some are to be free, added
features for registered users—such as the
Combustion plug-in for fire and explo-
sion effects made available shortly follow-
ing the official release of Max, or a patch
planned for release this summer that will
enable the use of 32-bit Photoshop plug-
ins. Others will be optional extras, like
the hotly anticipated Character Studio,
which is to feature footstep-driven char-
acter animation and “muscle-bulging,
tendon-stretching, and vein-popping”
skeletal deformation capabilities.

Meet Max
Registered 3D Studio users had plenty of
incentive (namely limited-duration
upgrade offers) to make the move to

http://www.gdmag.com

The 3D Studio Max workspace, with toolbar at top and command panel (showing Display
option) to right. Multiple view panels can be selected by the user—here, the Track View is
opened across the top half of the view area to display function curves controlling object
movement. The camera view in the lower right has been set to display in solid shaded mode,
showing light color and specular highlights, updated interactively.

Max in the months following its
release. Therefore, I’m writing this arti-
cle for those who aren’t 3D Studio users
but wonder if Max is something you or
your company should be using. Well, I
don’t know. Why weren’t you using 3D
Studio?

Personally, I didn’t use previous
versions of 3D Studio as much as I
might have because I found the inter-
face and compartmentalized structure
awkward. Despite that, I did use the
program because of the wealth of fea-
tures it made available for 3D graphics
on the PC, but I never found working
in 3D Studio to be the fluid experience
the creative process demands. If you’re
familiar with DOS versions of 3D Stu-
dio, you will notice some similarities
between it and Max, but the latter really
is, as Kinetix says, a whole new
program.

One important step in a positive
direction is that all of Max’s features are
integrated in a single unified environ-
ment. Everything—from the creation of
two-dimensional shapes to modeling
and animating 3D objects, from tweak-
ing animation timelines to video post
compositing effects—takes place in the
same workspace. Many elements of the
interface can be customized to fit indi-
vidual work styles.

The view onto the 3D scene can
consist of a single large window or
up to four smaller windows. Any win-

dow can display perspective, camera,
or orthographic views, and the user can
easily toggle between full-screen and
multi-window configurations. Each
window can be configured on the fly
to display in wireframe or solid shaded
mode.

Commonly used tools, such as
Object Select, Move, Scale, and Rotate
are always present in the toolbar at the
top of the screen. Other tools appear in
a command panel to the right of the
screen. The command panel is arranged
by notebook-style divider tabs into
folders that group toolsets by function.
As you work, the information and avail-
able tools in the command panel are
automatically updated to correspond
with the currently selected object or
action: only what relates to the situation
at hand is presented. This is important
in helping to keep Max’s many features
and adjustable parameters from clutter-
ing up the screen.

Max contains such a large number
of features that even displaying them
selectively can overflow the command
panel. Kinetix, however, has managed
this cornucopia quite well. Some func-
tions are contained in collapsible rollout
areas in the command panel, so they
can be closed yet remain present when
not in use. Other tools are reached via a
More button, which indicates the avail-
ability of additional features. This may
sound reminiscent of the nested menus-

within-menus found in previous ver-
sions of 3D Studio, but I found this
new command panel far more user-
friendly. Best of all, the user chooses
which tool buttons appear onscreen and
which are relegated to the More file:
customized buttonsets can be created
and easily swapped. Customized key-
board shortcuts can also be created to
quickly invoke oft-used features.

A range of view manipulation
tools below the command panel lets
the user pan, rotate, or zoom in on an
area of detail in any window and zoom
back out with one mouse click so the
entire scene fits within the window.
Cameras placed in the scene can be
easily positioned and aimed by drag-
ging the mouse in the view window.
Also, lights and cameras can be “hid-
den” from sight: though still present in
the scene, they can’t be seen onscreen
with other objects, which can help
eliminate clutter in busy scenes. Actu-
ally, any object, or even a selected por-
tion of an object, can be hidden for the
same purpose.

The user selects objects for manip-
ulation by clicking on them or by
selecting them from a dropdown list.
This latter ability makes it much easier
to pick the item you want from a
crowded scene. Unfortunately, the
selection list is chronological, according
to the order in which objects were cre-
ated, rather than alphabetical, so find-

54 GAME DEVELOPER • AUGUST/SEPTEMBER 1996

A R T I S T ’ S V I E W

Terra Nova: Strike Force Centauri, the new title from Looking Glass Technologies, features numerous cut scenes blending live action video with
computer graphics sets and actors. By planning these scenes on the storyboard, artists were able to focus design and modeling efforts where they
were needed and not waste time on areas that would go unseen. The storyboard also proved useful on the set for staging actors around virtual
props that had not yet been created. Pictures courtesy Looking Glass Technologies Inc., Cambridge, Mass. Terra Nova, Looking Glass, and the dis-
tinctive logos are trademark of Looking Glass Technologies.

http://www.gdmag.com

Volumetric lighting adds atmosphere a la Ridley Scott.

ing an item in a long list of objects is
not very fast.

Many icons gracing the tool but-
tons are cryptic in their meaning. Even
when I knew what the tool was, some-
times I couldn’t quite determine the
significance of the icon. Obviously,
though, the tools become familiar with
use. New users can hold the mouse
pointer over a button momentarily to
cause a tooltip to pop up, identifying
its function. Max also features Win-
dows 95 standard online Help and the
traditional Autodesk heap o’ manuals.

The manuals are excellent, espe-
cially the tutorial manual, which pre-
sents 23 detailed lessons to introduce
the new user to Max’s wide-ranging
features. The tutorials are especially
successful because they not only show
how to use Max, in many areas they
attempt to familiarize the reader with
common pitfalls or misconceptions and
really explain how and why the program
works. This leads to a much deeper
appreciation and understanding of the
product than simply being led by the
nose through the sample exercises.

Modeling With Max
A plethora of cool modeling features
give the user great versatility in the cre-
ation of objects. Objects can be built
from geometric primitives, which can
be modified as polygonal meshes, sliced
and segmented, or smoothly molded by
Bezier patches. Faces, edges, and ver-
tices can be edited singly or in groups.
Boolean operators can fuse objects
together or subtract one object from
another. You can even create an object
completely by hand, placing vertices one
at a time. There are also many modifiers
with adjustable parameters to bend,
twist, taper, and otherwise abuse
objects.

For models to be used in real-time
3D graphics or for the sake of economy,
Max offers an Optimize modifier that
reduces polygon count interactively. You
can also delete and fuse edges selectively
to reduce geometry with complete con-
trol. Topology can also be animated
over time, so that an object can be com-
posed of simplified geometry until

greater definition is needed later in the
sequence.

One modeling feature crammed
with potential is the Displace modifier.
This creates a three-dimensional mesh
object from a bitmapped image: light
areas become 3D peaks, dark areas
become valleys. You can use this to cre-
ate anything from a landscape to a
detailed face and then use the Optimize
modifier to simplify its geometry to an
acceptable level.

Perhaps the most liberating aspect
of object creation in Max is the Modifi-
er Stack. In life, we make decisions, we
choose paths, and we rarely if ever get
to see how things might have been had
we chosen differently. The Modifier
Stack in 3D Studio Max stores each
object’s entire construction history, and
allows the user to go back to any point
in that history to make adjustments.
You can see what would have happened
had you applied a Bend to the object
before you performed a Boolean opera-
tion on it, instead of after.

Or suppose you sweat over a flying
logo animation for your new game and
at the next meeting everyone loves the
sequence but hates the title, and the
decision is made to change the name.
With the Modifier Stack, you can go
back to the creation parameters of the
very letters that make up the title and
change them for the new title. Every-
thing else in your animation will remain
the same. All you have to do is re-ren-
der the sequence to see the identical
animation featuring the new game title.
Playing “what if” has never been easier.

Move It, Max
Animation is easy to record and edit in
Max, and almost everything can be ani-
mated—from position, scale, and rota-
tion to material properties and geome-
try. You can check your work as you go
by playing back animation in the work-
space in solid shaded or wireframe
mode. Simply press the Play button and
watch it happen, or scrub through the
action at your own pace with the
time slider.

When you want to edit your ani-
mation, you open the Track View. This

lays out on a timeline all the animation
keys for the scene and can be opened
into the workspace just like a view win-
dow. On one level, the Track View is
similar to the Windows File Manager-
type hierarchical menu, so navigating
through the different objects and their
various animatable features is quite
intuitive.

To the right of the scene menu in
the Track View are the individual
tracks containing keys for all animated
features. At first, I found this difficult
to use because of the amount of space
between the list and the tracks them-
selves (it was often hard to match the
two up). But you can, I discovered,
drag the two as close together as you
wish, which makes the Track View
much easier to use. The ruler at the top
of the Track View can also be dragged
down to reference any track more
directly.

In the Track View, the user can
assign preset movement tangents to
adjust the pace of an animation profile:
to make a bouncing ball slow near the
top of its arc, for example. You can also
create custom Bezier tangents and use
control handles to affect the curve of
the animation profile interactively.

To help synchronize animation
with audio files, the Track View can
display wave forms, and Max can play a
.WAV file along with your animation
right there in the workspace.

Animation in Max can make use of
both forward and inverse kinematics,
allowing you different ways to link
objects that are to be moved in concert.
Adjustable joint parameters and friction
damping settings provide realistic limi-
tations to the linked objects’ range
of movement.

Another feature that might as well
be mentioned under the umbrella of
animation is what in Max are called
Space Warps. Space Warps are non-
rendering objects that act on other
objects in a scene, causing these objects
to ripple or deflect or even explode.
This is a great and very flexible way to
simulate physics within a scene. Max
Space Warps include Bomb, Deflector,
Displace, Gravity, Ripple, Wave, and

56 GAME DEVELOPER • AUGUST/SEPTEMBER 1996

A R T I S T ‘ S V I E W

http://www.gdmag.com

58 GAME DEVELOPER • AUGUST/SEPTEMBER 1996

A R T I S T ’ S V I E W

Wind, and the names alone give you a
good idea of their function.

Render, Max
Rendering is the payoff for all your hard
work, and Max has all the usual features
to bring your scene to life: animated
backgrounds, shadow maps or raytraced
shadows, and a versatile range of light
capabilities. Objects can be excluded
from the effect of lights, allowing very
selective lighting within the scene.
Lights can also be precisely positioned
by situating the specular highlight on
the target object, and spotlights can be
used to project images into a scene.

These are all good features that
most computer graphics artists are quite
used to, but it’s good to know they’re
there. On the neater side, a new Max
feature is volumetric lighting. This cre-
ates the effect of streaks or columns of
light in the air, like sunlight illuminat-
ing dust motes or a flashlight casting its
beam into the evening fog. It’s a very

sexy feature, sure to appeal to the Rid-
ley Scott in everyone, and I’ll go out on
a limb and predict that it will soon give
lens flares a run for their money as most
overused effect.

Max also has a range of atmos-
pheric fog effects you can add to your
scene. Layered fog creates a creepy,
low-lying pool of fog, while volume fog
creates wispy blankets of mist you can
blow around the scene with variable
wind strength settings. You can even fly
through wisps of volume fog in your
scene.

The Material Editor provides a
staggering array of options for adding
surface detail to objects in your scene.
This depth is not without its price—
there’s a lot of features for the user to
assimilate to make full use of the Mate-
rial Editor. If you’re like me, you’ll
spend some time wandering lost in its
intricacies, but you’re unlikely to feel
shortchanged by Max’s material map-
ping capabilities.

A video post feature is also inte-
grated with Max to facilitate editing
tasks, including compositing with alpha
channels, fades, wipes, and motion blur.
Max customers already using a profes-
sional editing tool will probably not be
inclined to abandon that for Video
Post, but it does provide good, built-in
functionality as part of the basic
package.

For the busy production environ-
ment, Max’s network rendering capabil-
ities are indispensable. Only one regis-
tered version of Max with its hardware
lock is needed to distribute large ren-
dering jobs over a network. The net-
work must be configured with the
TCP/IP protocol and each machine
must meet Max’s minimum system
requirements and be running NT. You
can also monitor progress or even initi-
ate a queue assignment from a remote
machine that is properly configured to
communicate with your network.

It’s A Max,
Max, Max, Max World
For more information and opinions,
you might check out the Kinetix forum
on Compuserve (“go kinetix”). This
forum is administered by Autodesk and
also serves as a good source for techni-
cal support, both from Kinetix staff and
other users...a group, I expect, which
will be growing very large indeed. ■

David Sieks is a contributing editor
to Game Developer. You can contact him
at gdmag@mfi.com.

http://www.gdmag.com

3D Studio MAX

3D Studio MAX for Windows NT
Autodesk Inc.
111 McInnis Pkwy.
San Rafael, Calif. 95903
Tel: (800) 879-4233
Web: http://www.ktx.com
Price: $3,495
System Requirements: 90 MHz Pentium PC,
Windows NT 3.51, 32MB RAM, 100MB swap
space, PCI or VLB graphics card, screen res-
olution of 800x600x256 colors, CD-ROM
drive.

	back:

