

YOUR GAMES. MORE PLACES.

YOUR GAMES. MORE PLACES.

MONETIZE YOUR GAMES ON TVS, TABLETS,

PHONES, PCS AND MACS WITH ONE BUILD.

 Millions of users worldwide

 Industry-leading cloud technology

 Free instant demos on any device

 VISIT ONLIVE.COM/DEVELOPER TO LEARN MORE

http://ONLIVE.COM/DEVELOPER

http://www.GDCVault.com

www.gdmag.com 1

P o S T m o R T E m

28 kingdoms of amalur: reckoning
Making an open-world role-playing game isn’t easy—especially if
your studio is used to developing strategy games instead. Despite
two acquisitions, senior management shuffles, and numerous false
starts, Big Huge Games turned out a big huge game indeed. This
postmortem explains how usability testing, production processes
that kept developers accountable, and a good relationship with
Electronic Arts made Kingdoms of AmAlur: recKoning happen. By
Mike Fridley

F E aT U R E S

7 11th annual salary survey
We’re back with our 11th annual game industry salary survey!
Whether you’re an indie developer, contractor, or a salaried
employee, we’ll help you find out how your earnings stack up
against the average, how Europe and Canada stack up against the
U.S.-based developers, and which development discipline brought
home the most bacon in 2011. By Patrick Miller

13 fire, blood, explosions
Creating effects for open world games is a significant challenge
PrototyPe 2? Senior rendering coder Keith O’Conor walks you how
the Radical Team built a particle effects system that made things
burn, bleed, and blow up even better than before. By Keith O’Conor

21 needs more blur
A good depth-of-field effect can help your player focus on the
important things in a cutscene. Serge Bernier explains how he
was able to reproduce the photographic “bokeh” effect with the
PlayStation 3’s SPU. By Serge Bernier

d E Pa R T m E N T S

2 game plan By Brandon Sheffield [e d i t o r i a l]

 Rest Assured

4 heads up display [n e w s]

Game concepts from fridge magnets, and a look at WaterMelon’s
Magical Game Factory pay-to-play crowdfunding system

35 tool box By Patrick Miller [r e v i e w]

The coolest tools and middleware on the GDC 2012 show floor

39 pixel pusher By Steve Theodore [a r t]

See the Light

42 design of the times By Soren Johnson [d e s i g n]

More Than Zero

45 the business By Kim Pallister [b u s i n e s s]

Me of Little Faith

46 the inner product By Jelle van der Beek [p r o g r a m m i n g]

13 Ways to be a Better Lead Programmer

49 good job By Brandon Sheffield [c a r e e r]

Q&A with Ben Sherman, who went where, and new studios

51 aural fixation By Damian Kastbauer [s o u n d]

Knowing a Thing or Two

52 gdc news By Staff [n e w s]

Independent Games Festival and Game Developers
Choice Award Winners

53 educated play By Tom Curtis [e d u c a t i o n]

nitronic rush

56 arrested development By Matthew Wasteland [h u m o r]

Quarterly Report

coNTENTS.0412
VoLUmE 19 NUmBER 4

http://www.gdmag.com

GAME PLAN // BRANDON SHEFFIELD

game developer | april 20122

UBM LLC.
303 Second Street, Suite 900, South Tower
San Francisco, CA 94107
t: 415.947.6000 f: 415.947.6090

W W W . U B M . C O M

SUBSCRIPTION SERVICES

FOR INFORMATION, ORDER QUESTIONS, AND
ADDRESS CHANGES
t: 800.250.2429 f: 847.763.9606
e: gamedeveloper@halldata.com
www.gdmag.com/contactus

EDITORIAL

PUBLISHER
Simon Carless e: scarless@gdmag.com
EDITOR-IN-CHIEF
Brandon Sheffield e: bsheffield@gdmag.com
EDITOR
Patrick Miller e: pmiller@gdmag.com
MANAGER, PRODUCTION

Dan Mallory e: dmallory@gdmag.com
ART DIRECTOR
Joseph Mitch e: jmitch@gdmag.com
DESIGNER
Cliff Scorso e: cliff.scorso@ubm.com
CONTRIBUTING WRITERS

Tom Curtis
Serge Bernier
Keith O'Conor
Mike Fridley
Jelle van der Beek
Steve Theodore
Soren Johnson
Damian Kastbauer
Kim Pallister
Matthew Wasteland
ADVISORY BOARD
Mick West Independent
Brad Bulkley Microsoft
Clinton Keith Independent
Brenda Brathwaite Loot Drop
Bijan Forutanpour Sony Online Entertainment
Mark DeLoura THQ
Carey Chico Globex Studios
Mike Acton Insomniac

ADVERTISING SALES

GLOBAL SALES DIRECTOR
Aaron Murawski e: amurawski@ubm.com
t: 415.947.6227
MEDIA ACCOUNT MANAGER
Jennifer Sulik e: jennifer.sulik@ubm.com
t: 415.947.6227
GLOBAL ACCOUNT MANAGER, RECRUITMENT
Gina Gross e: ggross@ubm.com
t: 415.947.6241
GLOBAL ACCOUNT MANAGER, EDUCATION
Rafael Vallin e: rvallin@ubm.com
t: 415.947.6223

ADVERTISING PRODUCTION

PRODUCTION MANAGER
Pete C. Scibilia e: peter.scibilia@ubm.com
t: 516-562-5134

REPRINTS

WRiGhT'S MeDiA
Jason Pampell e: jpampell@wrightsmedia.com
t: 877-652-5295

AUDIENCE DEVELOPMENT

AUDIENCE DEVELOPMENT MANAGER

Nancy Grant e: nancy.grant@ubm.com

LIST RENTAL

Peter Candito
Specialist Marketing Services
t: 631-787-3008 x 3020
e: petercan@SMS-Inc.com
ubm.sms-inc.com

game developer
magazine
www.gdmag.com

Maybe you’re an artist. Maybe
you’re a coder. Maybe you’re a
designer, or a producer. Maybe
you’re all of these. But chances
are, if you fit into one of those
categories, you have a career path
of some kind set before you. You can
become an effects lead–you can
move laterally and become a tech
artist. Learn some behaviors and
become an Ai-oriented designer.

Your QA team doesn’t have
a career path though. Quality
assurance is one of the most
important aspects of game
development, and all we encourage
our QA staff to do is move “up and
out” of the QA slog, if we inspire
them to move up at all. Many QA
professionals talk about “getting
out” and moving to the production
or design path. Don’t you want
good QA folks to keep doing QA?
Shouldn’t they enjoy and want
to start in their jobs? isn’t there
something wrong with this picture?

GET BONUS
» Your QA staff is your front line
of defense against bad reviews.
Obsidian creative director Chris
Avellone recently mentioned that
the company didn’t get a bonus
for Fallout New Vegas because the
game missed its Metacritic target of
85% by one percentage point. They
had to reduce staff as a result.

Game reviewers play a lot like
testers sometimes. They push
against boundaries, and find those
things you’re pretty sure nobody
will ever bother to do. They complete
quests in the wrong order. They jump
over a wall and trigger a cutscene
that wasn’t meant to happen for
hours. in short, they break your
game, then call it buggy. What does
that do to your Metacritic score?

Not all bugs can be prevented,
but with creative testing and enough
time (that’s the kicker!) you can get
most of the showstoppers. everyone
knows QA is important, but let’s
really think about that. is your QA
team inspired to think creatively,
and go that extra mile? Are they
treated like important members
of the team?

Most QA is hired from a pool of
fresh-faced kids who just want to
get into the industry any way they
can. They are passionate about
games, but aren’t sure how to
break in, so they take the QA route.
Maybe they’ve heard about game
designers who started as testers.
What they don’t want to do is stay
in QA forever. And why would they?
The hours are long, and the pay is
the lowest in the game industry, at
under $48,000 average across all
years of experience, almost $30k
under the next lowest discipline.
Many are hired on contract, at
low wages, then get let go when
a project is complete. Does this
sound like a job you’d want to
stay in? Or a job where you’d be
incentivized to think creatively? is
this job with a career path? if the
biggest incentive you’re given is
to become a lead and then move
to another department, how much
can you really care about working
in QA?

how many times have i heard
“the dev team” and “QA” spoken
of as though they’re different
things? in many companies there’s
a physical wall between “the
developers” and QA, if not an entire
building. QA is part of the dev team.
Why is there this mental space
between the two?

it’s a self-fulfilling prophecy. if
you think the QA kids are scrubs,
stop hiring scrubs. if you want
people other than scrubs to apply,
there needs to be a fundamentally
different way of thinking about
the entire department. if QA is
thought of as a viable career
path, and a truly important part
of game development, it won’t be
considered lower-tier, and your
games will get better, because
creative people will be thinking
about how to improve your games
and processes. At Valve, for
instance, everyone has specialties,
but everyone is a developer.
everyone plays the game all the
time, and thus everyone is QA.
That’s not so bad, is it? how can we
reach this level of integration in our
own companies?

QUALITY TIME
» The first thing to do is to change
the company culture and mind
space surrounding QA. invite QA
leads to important meetings.
Creative meetings! Make sure you,
or your leads, speak of QA with the
same respect you’d have for any
other discipline. Make sure your
entire team is speaking to everyone
else on the team, and regularly.

Next, offer an appealing career
path within QA. Certainly there
will be generalists that check
everything, and some general
leads. At the same time, QA
professionals that are interested in
music should essentially be part of
the sound team, working to develop
an audio map to test against, with
the power to implement changes.
Those with a tech bent should be
speaking regularly with the leads
in that area to monitor frame rates,
and suggest areas for reducing
load. And so on and so forth.

Finally, don’t lay them off when a
project completes! if you want loyal
employees, your company should be
hiring for the long term. You should
be recruiting QA professionals with
a variety of skills that can be applied
across the project, like you would in
any other discipline. Unless your team
is gigantic, you likely don’t hire an
artist who is only good at rigging. it’s a
specialty, sure, and you rely on them
for that. But when it’s time to do a bit
of modeling, or mocap cleanup, they
can be counted on. So too should it
be for your QA staff. if you really need
to ramp up and down our QA, use
external QA groups managed by your
permanent internal QA team. if you
think of any members of your team as
an expendable resource, they will not
do their best work for you.

This is only the start of the
discussion. QA is an incredibly
important pillar of game development,
and the industry as a whole does not
treat it accordingly. if you want to see
your next bonus, maybe it’s time to
change all that.

—Brandon Sheffield
twitter: @necrosofty

REST ASSURED
LET'S TaLk abOuT wHy Qa SuckS

http://www.gdmag.com
mailto:gamedeveloper@halldata.com
http://www.gdmag.com/contactus
mailto:scarless@gdmag.com
mailto:bsheffield@gdmag.com
mailto:pmiller@gdmag.com
mailto:dmallory@gdmag.com
mailto:jmitch@gdmag.com
mailto:cliff.scorso@ubm.com
mailto:wski@ubm.com
mailto:jennifer.sulik@ubm.com
mailto:ggross@ubm.com
mailto:rvallin@ubm.com
mailto:peter.scibilia@ubm.com
mailto:jpampell@wrightsmedia.com
mailto:nancy.grant@ubm.com
mailto:petercan@SMS-Inc.com
http://ubm.sms-inc.com
http://WWW.UBM.COM

DOWNLOAD INTEL® GRAPHICS
PERFORMANCE ANALYZERS FOR FREE
at www.intel.com/software/gpa

Intel® Graphics Performance Analyzers

(Intel® GPA) is a powerful graphics tool suite for

analyzing and optimizing your games, media, and

other graphics-intensive applications. With Intel®

GPA, you can conduct in-depth analysis from

the system level all the way down to individual

elements, allowing you to maximize the

performance of your applications.

Intel® GPA System Analyzer
Learn whether your game is CPU- or GPU-
bound. Quickly analyze game performance
and identify potential bottlenecks.

Intel® GPA Frame Analyzer
Optimize graphics performance through
deep frame analysis of elements at the
draw-call level.

Intel® GPA Platform Analyzer
Visualize performance of your
application’s tasks across the
CPU and GPU.

Copyright © 2012 Intel Corporation. All rights reserved. Intel, the Intel logo, are trademarks of Intel Corporation in the U.S. and other countries. *SOE, the SOE logo, Forge Light, and PlanetSide are trademarks or registered trademarks of
Sony Online Entertainment LLC. All other trademarks and trade names are properties of their respective owners. Image courtesy of Sony Online Entertainment. All rights reserved. † GPA refers to Graphics Performance Analyzers.

“ Using Intel ® Graphics Performance

 Analyzers is like having a great sniper on

 our team to guard our optimization needs.

 GPA helps identify potential threats to

PlanetSide 2’s frame rate so we are better

 able to focus on our overall mission:

 making PlanetSide 2’s epic gameplay

 shine on a massive scale.”

– RYAN ELAM,
 TECHNICAL DIRECTOR, PLANETSIDE 2
 SONY ONLINE ENTERTAINMENT

Register at www.planetside2.com

INTEL® GPA HELPS PLANETSIDE 2*
DEVELOPERS BOOST PERFORMANCE

Intel® GPA† Helps SOE Make
PlanetSide 2* Faster, Faster.

http://www.planetside2.com
http://www.intel.com/software/gpa
http://www.esrb.org

HEADS-UP DISPLAY

GAME DEVELOPER | APRIL 20124

From fridge magnets to concept art
\\\ GENERATING A NEW IP IS EASIER THAN YOU MIGHT THINK. AT LEAST, THAT’S THE TAKEAWAY FROM CREATIVE MARKETING THINK
TANK IAM8BIT’S SUPER MAGNETIC GAME-O-MATIC, WHICH GAVE GDC 2012 ATTENDEES A CHANCE TO PUT TOGETHER THEIR PITCHES
FOR NEW GAMES WITH OVERSIZED REFRIGERATOR WORD MAGNETS—AND GAVE THEM TO INDUSTRY ARTISTS FROM DOUBLE FINE
PRODUCTIONS, INSOMNIAC GAMES, BACKBONE ENTERTAINMENT, AND OTHER DEVELOPERS. CHECK OUT SOME OF OUR FAVORITES.

Highlights from iam8bit’s Super Magnetic Game-O-Matic at GDC 2012

TITLE: Tyler Perry’s 3D Dino Ninja Revolution GENRE: Rhythm
ARTIST: Levi Ryken (Double Fine Productions)

TITLE: Super Donut Whales GENRE: Arcade Real-Time Strategy
ARTIST: Derek Brand (Double Fine Productions)

TITLE: Prince of Jetpack Whales GENRE: Third-Person Adventure
ARTIST: Seth Forester (Backbone Entertainment)

TITLE: Mystery Sheriff Woman of Life GENRE: Social Sandbox MMO
ARTIST: Will Guy (Independent)

TITLE: Meat Gravity Tale 4D Space Edition GENRE: Last Cliched Epic Shooter
ARTIST: Greg Broadmore (Weta Workshop)

TITLE: A Toast with Robot Pickles GENRE: New 4D Prehistoric Mystery
Experience ARTIST: Kinman Chan (Independent)

WWW.GDMAG.COM 5

HEADS-UP DISPLAY

Buy a Vote, Make a Game

\\\ INDEPENDENT DEVELOPER
WATERMELON CO. MADE A SPLASH IN
2010 WITH PIER SOLAR AND THE GREAT
ARCHITECTS, A 16-BIT ROLE-PLAYING
GAME MADE FOR THE SEGA GENESIS
THIRTEEN YEARS AFTER THE CONSOLE
WAS DISCONTINUED. NOW IT'S DISRUPTING
THE BUSINESS ONCE AGAIN WITH A NEW
CROWDFUNDING SYSTEM CALLED THE
MAGICAL GAME FACTORY, WHICH LETS
DEVOTED FANS INFLUENCE WHAT THE
NEXT WATERMELON GAME WILL LOOK
LIKE—AND PAY FOR THE PRIVILEGE. WE
CAUGHT UP WITH WATERMELON’S TULIO
GONÇALVES AND GWÉNAËL GODDE TO SEE
HOW THE MAGICAL GAME FACTORY WAS
WORKING OUT FOR THEM.

How does the Magical Game Factory system
work?
Tulio Gonçalves: The Magical Game Factory (MGF
for short) is WM’s innovative way to crowd-
source game development. Our system is tied to
our e-commerce platform. Users can buy “gems”
as a virtual currency that allows them to invest
in a project. Once gems are invested it gives the
investor access to all active polls and scalers
that will define the game development. Your vote
has the weight of the gems you invested, so
more gems equals more decision power.

How much money are people donating?
T.G.: As of now, the system has been running
for less than a month and we already have
hundreds of investors. Some of them are
pretty generous.

How have the first few rounds gone? Is there
anything you’d like to change?
Gwénaël Godde: We got some interesting
results so far but it is indeed an experiment, as
the result is really dependent on the number of
people investing and their individual motivation.
So far everyone who participates seems very en-
thusiastic. One funny fact: Some people believed
that the comments posted by our members were
suspiciously “fake” because they were too posi-
tive. How great is that?

What kind of decisions are you exposing to the
audience? Are you worried that your contribu-
tors will end up forcing you into a game you
don’t want to make?
TG: The decision range varies according to the
project. The factory can run up to three projects
simultaneously, and as an example, Project SF
is already booted as an ARPG style, but Project
Y was booted entirely empty, so the investors
got to choose the platform, the genre/sub-genre,
and now the setting and languages. We read
every single comment and message, and that
influences us on what the next poll will be. Still,
WaterMelon keeps control of the game process,
considering the fact that we only put up options
that make sense for the poll. This way we can
avoid choices that could be offensive to some
people, for example.

Will contributors be receiving anything else in
exchange for their money besides influence in
the polls?
TG: Yes. To start, all gems invested become a
discount when the game is finished, and if you

invested enough gems, they’re automatically
converted into a game. So one may think of the
investment in a project as a pre-order with ben-
efits. Additionally, for all investors there will be a
special “Investor Edition” (we’re working on that
name) as an exclusive benefit for them.

For the first poll, the fans decided you’d make
a beat-‘em-up. How’d you decide which genres
to include?
TG: For genres we decided to include most of the
options available, without being too specific and
then, there was also a sub-genre (also not very
specific). It didn’t surprise me that beat-em-up
won the poll though, because it’s a genre with
thousands of fans worldwide but that has some-
how been forgotten since the rise of 3D consoles.

How did you come up with the idea for the MGF?
GG: We can’t make new old school games
without involving the fans, because it’s a niche
market and making it profitable is very, very
hard. We bring original content, and investment
needed for original content is absolutely huge.

The idea started long time ago, back in
2006 with the “posterity” version of PIER SOLAR
where people could pay a bit more to get
their name in the credits. That kind of thing is
common now, but I think we were early. Then,
in 2010, we wrote the final guidelines for the
Magical Game Factory. It’s interesting that
since then, crowdfunding has emerged as a big
thing for game development, but we’ve been
doing it since the beginning in a way that really
involved the fans.

We have noticed that public voting tends
to “blend” the choices available, thus making
games less innovative than they could be, and
voters can get frustrated when their preferred
choice doesn't win a poll. Our polls are a little
bit more complicated than they seem, since
we want to make a great game and keep
everyone happy.

Do you think other independent development
studios will adopt a similar system?
GG: We are very open to any collaboration
and widening our audience, though we did our
process. In our past experience, we’ve found
 that the good ideas that we all hear about rarely
come from their original inventors. But is the
Magical Game Factory a good idea? We have yet
to make it happen!

—PATRICK MILLER

Magical Game Factory merges crowdfunding with game design process

http://WWW.GDMAG.COM

ADVERTISEMENT

Since 1997, Japanese game development studio iNiS has
focused primarily on rhythm and music console games such
as Gitaroo Man, Elite Beat Agents, the Lips series and The Black
Eyed Peas Experience. But that last title for Ubisoft marked
the company’s � rst experience with Epic Games’ Unreal En-
gine 3 technology. Now, iNiS is using UE3 to develop � ve new
mobile projects, including In� nity Blade Cross (developed
in cooperation with DeNA and ChAIR Entertainment, only
available in Japan) and its most recent original project, Eden
to GREEEEN, a tower o� ense game developed for NVIDIA
Tegra 3-powered devices.

Game designer Keiichi Yano, director and vice president at
iNiS, said that The Black Eyed Peas Experience project started
its life as a � rst-party project with Microsoft Studios when
Kinect was in its prototype phase. It was Microsoft that
suggested the developer use Unreal Engine 3 to leverage
technology that would signi� cantly shorten the time to get
the � nal product to market.

The company’s transition to mobile game development was
a direct result of their involvement with UE3. While high-end
smartphones and tablets were still very new to Japan, they
were making an impressive impact on the market. That’s
when iNiS received a call from DeNA, the company behind
the Mobage platform.

“We were adding the � nal touches to The Black Eyed Peas
Experience and DeNA approached us to work on a game they
had just licensed, In� nity Blade,” said Yano. “They wanted a
studio with deep Unreal Engine 3 experience to handle the
creation of a free-to-play version that would run on their
social game platform. That game was In� nity Blade Cross, our
� rst foray into high-end smartphone game development.”

Yano said that UE3 allowed his team to rapidly prototype
ideas and get them to a graphically polished state quickly.

The process worked so well with Eden that the studio now
has � ve UE3 projects in development.

“Our in-house pipeline is now seriously geared towards
making UE3 sing, and it was no di� erent when creating Eden
to GREEEEN,” said Yano. “In a short time, we were able to get
the game running well on the latest NVIDIA Tegra devices,
including smartphones and tablets.

“The combination of a strong tech base and a powerful
chipset really allowed us to give Eden an ambience, an
atmosphere that we just couldn’t have achieved previously
on mobile devices. We have � re, wind, dust and shadows
from overhead clouds… a smorgasbord of e� ects. It’s nice
to be able to rely on proven tech and platforms to make Eden
come alive.”

iNiS plans to utilize the cross-platform capabilities of UE3
with Eden by releasing the game on Android, iOS, Windows,
Mac OSX and Flash. From a development standpoint, Yano
is extremely pleased to be able to create a base that can be
quickly ported to other platforms.

The studio makes extensive use of UE3 tools such as Matinee,
which Yano values as an ideal system to create cinematics
that blend seamlessly in and out of gameplay. “It’s very cool
that we can impact the cinematics in a way that emotionally
connects with the player,” said Yano. “Cascade is another
favorite, and we make heavy use of it to bring ambience to
the world of Eden.”

Additionally, when it comes to troubleshooting and research-
ing, the team found the Unreal Developer Network (UDN) to
be an indispensable tool. iNiS was able to work with other
developers, as well as Epic, to solve development challenges
and enhance productivity. Yano explains it was particularly
helpful when developing for Android, “It really helped to
be able to share ideas with others who had already gained
some knowledge and experience deploying UE3 games on
the platform.

With Eden to GREEEEN, Yano’s goal was to create a new

type of experience in a strategy game. While the game has
elements of tower defense, Japanese role-playing games,
turn-based strategy and Pixar movies all rolled into one, the
end result is something he calls “tower o� ense.” In addition
to his creative aims, Yano also sought to create this game for
the burgeoning free-to-play gaming space, opening up the
game experience to a wide audience across many platforms.

With its beautiful stylized graphics and vibrant backdrop,
Eden to GREEEEN looks unlike any other game currently avail-
able. With its humorous storyline of invading alien machines
trying to destroy an Eden defended by 18 unit types of
� owers, plants and trees, Eden to GREEEEN o� ers fast-paced
multiplayer gameplay and a never-ending challenge of
new maps. Powered by Unreal Engine 3, iNiS’s new game is
helping the game developer forge its way to the top of the
mobile development community, much as it did its rhythm-
based console games.

UPCOMING EPIC ATTENDED EVENTS

Please email licensing@epicgames.com for appointments

© 2012, Epic Games, Inc. Epic, Epic Games, Gears of War, Gears of War 3, Unreal, Unreal Development Kit, UDK, Unreal Engine, UE3, and Unreal Tournament are trademarks or registered trademarks of Epic Games, Inc. in the
United States of America and elsewhere. All other trademarks are the property of their respective owners.

W W W . U N R E A L . C O M
Canadian-born Mark Rein is vice
president and co-founder of Epic Games
based in Cary, NC. Epic’s Unreal Engine
3 has won Game Developer magazine’s
Best Engine Front Line Award eight
times, including entry into the Hall of
Fame. UE3 has won four consecutive
Develop Industry Excellence Awards. Epic

is the creator of the mega-hit “Unreal” series of games and the
blockbuster “Gears of War” franchise. Follow @MarkRein and
@UnrealEngine on Twitter.

INIS BREAKS NEW GROUND
IN MOBILE GAMING WITH
UNREAL ENGINE 3

Gadget Show Live
Birmingham, UK
April 10-15, 2012

East Coast Game Conference
Raleigh, NC
April 25 & 26, 2012

E3 Expo
Los Angeles, CA
June 5-7, 2012

http://WWW.UNREAL.COM
mailto:licensing@epicgames.com

www.gdmag.com 7

P a t r i c k M i l l e r

If we had to pick a theme for our eleventh annual Game
Developer magazine Salary Survey, it would be “cautious
optimism.” Compared to the general industry-wide downturn
we saw in 2009 (and the reasonable recovery in 2010), 2011
seems to have shaken off the boom-bust cycle in favor of
small-but-steady growth.

In case you’re new to the survey, we ask thousands of Game Developer
and Gamasutra readers to tell us what they made in the last year, asking a
slew of related questions along the way. From this group we learned that
the average salary across the entire game industry is $81,192, hovering
near the same level as 2010’s $80,817 reported average. What that number
doesn’t tell you is that the industry was significantly more stable this year
than it has been in the past several. 66 percent of survey respondents
made more money in 2011 than they did in 2010, compared to 56 percent
from 2010 to 2009. Only 13 percent of respondents were laid off in 2011,
compared to 14 percent in 2010 and 19 percent in 2009, and the folks that
were laid off were 6 percent more likely to find a new job elsewhere in the
games industry (58 percent, up from 52 percent in 2011).

Having a little more money and stability in turn made developers feel
more optimistic about their careers as well as the industry as a whole. 65
percent of developers said they felt “satisfied” or “extremely satisfied” with
their potential career path (up 4 percent from 2010), 34 percent believed
that there were more jobs in the industry than the year before (up 5
percent), and 54 percent felt that there were more opportunities for game
developers than before (up 7 percent).

Nevertheless, there’s still plenty of change going on. In the comments
section of the survey, developers weighed in (both positively and
negatively) on the ever-growing business of mobile and social games,
the increasing viability of free-to-play business models in the U.S. market,
and the maturing indie space. Indies in particular made a big step in
2011: Individual indie developers reported an average $23,549 in primary
compensation, more than double 2010’s $11,379, while members of
independent developer teams made an average of $38,239, up $11,459
from 2010’s $26,780. Those numbers might not look great to a senior
developer accustomed to triple-A salaries, but if you’re tired of working on
sequels or just looking to break in the industry, there are more avenues
available for you than ever before.

Perhaps the best takeaway from this year’s survey also came from the
comments: “People are beginning to realize that games are one of the few
legal ways to escape reality. Since people would rather live in the clouds
than face reality, we can expect more growth in the industry.”

http://WWW.GDMAG.COM

game developer | april 20128

Programmers are be in high demand, and their salaries have
continued to rise as well: Their average salary is up about $7,200. What’s
more, programmer salaries have increased across the experience
spectrum, with newer workers reporting a whopping $10,700 average
increase, compared to a $7,700 increase for people with 3–6 years, and a
$5,800 increase for people with over six years. Considering we had more
programmers respond to the survey than we did last year, it seems that
the industry simply can’t hire talented programmers fast enough.

Canadian developers didn’t see the same boom, though—their $74,970
(USD) average survey was only up about $500. European programmers
reported an average of $46,801 (USD), down about $1,400 from 2010.

While women were underrepresented even more than usual (2.9
percent in 2011, down from 4 percent in 2010), they did report an average
increase of about $8,800, compared their male counterparts’ $7,000
increase. However, the wage gap is still alive and well; the average female
programmer’s salary ($83,333) is nearly $10,000 lower than the average
male programmer’s ($93,263).

100K

90K

80K

70K

60K

50K

40K

30K

20K

10K

0K
<3 years 3–6 years >6 years

Programmer salaries per years experience and position
Programmer/Engineer Lead Programmer Technical Director

$6
5,

44
1

$7
7,

50
0

$8
0,

09
6

$9
0,

06
1

$1
02

,7
46

$1
19

,1
87

$1
35

,1
83

100K

90K

80K

70K

60K

50K

40K

30K

20K

10K

0K
<3 years 3–6 years >6 years

Artist and Animator salaries per years experience and position
Artist and Animator Lead Artist/Tech Artist Art Director

$4
6,

22
1

$5
8,

98
1

$7
2,

24
4

$9
2,

93
9

$9
3,

34
9

$1
18

,5
00

 Percent average
gender represented salary

Male 97% $93,263
Female 3% $83,333

Percent receiving additional
income: 83%

average additional income: $21,009

type of additional compensation
received
Annual bonus 46%
Pension/Employer contribution to
Retirement plan 38%
Profit sharing16%
Project/title bonus 20%
Royalties ..8%
Stock options/equity 35%

Percent receiving benefits: 94%

type of benefits received
Medical .. 84%
Dental .. 80%
401K/Retirement72%

all Programmers and engineers

Years exPerience in the industrY

gender stats for Programmers

 Percent average
gender represented salary

Male 87% $79,124
Female 13% $52,875

Percent receiving additional
income: 83%

average additional income: $16,163

type of additional compensation
received
Annual bonus 40%
Pension/Employer contribution to
Retirement plan 36%
Profit sharing11%
Project/title bonus 30%
Royalties ..14%
Stock options/equity 28%

Percent receiving benefits: 95%

type of benefits received
Medical .. 80%
Dental .. 76%
401K/Retirement 65%

all artists and animators

Years exPerience in the industrY

gender stats for artists

42%
> 6 yrs

$113,694

20%
<3 yrs

$66,116

38%
3–6 yrs
$84,124

41%
> 6 yrs

$97,833

17%
<3 yrs

$49,481

42%
3–6 yrs
$63,214

artists' and animators’ average salaries increased $4,400
over the previous average of $71,354. Artists with less than three years
of experience saw an average increase of $3,500, those with 3–6
years saw an increase of $1,300, and the over-six-years crowd saw an
average bump of $6,100. It’s worth pointing out that the largest gains
went to art directors and lead/technical artists, which bodes well for the
industry veterans and less so for the younger artists and animators.

Artists and animators in Canada received an average salary
of $66,651 (USD), up about $3,300. Artists in Europe didn’t fare
so well, however. Their $35,887 (USD) average salary fell about
$5,000 from 2010.

Women comprised 13 percent of our surveyed artist pool, up 2
percent, though their average salary ($52,875) actually decreased
about $6,800. Men in art and animation, on the other hand, made
$79,124 on average, which is up about $6,200 from 2010.

programmers A v e r A g e s A l A r y

$92,962
artists and
animators

A v e r A g e s A l A r y

$75,780

www.gdmag.com 9

Game desiGners, writers, and creative directors were paid
$73,386 on average in 2011, up $3,100. Game designers with
less than three years of experience received the biggest boost
($3,500), while the 3–6-year crowd made $2,000 more, and the
over-six-years designers only made an extra $500 or so. Creative
directors and lead designers with 3–6 years under their belts made
$2,600 less compared to 2010, while the over-six-years group
pulled in an extra $3,700.

Canadian game designers averaged $60,240 (USD), up about
$1,950 from 2010, while European game designers averaged $38,281
(USD), which is down about $3,000.

Female designers made up 10.9 percent percent of our designer
responses, compared to 7 percent from 2010, and their average salary
of $67,000 is up $2,850 from 2010. Male designers, on the other hand,
made an average of $74,180 in 2011—up $3,500 from 2010.

producers saw a $2,850 salary cut compared to 2010’s averaGe
salary of $88,554, though they still draw a higher salary than all other
departments except programming and business. Most of these cuts
were for producers with 3–6 years of experience, whose average salaries
fell about $4,900 from 2010, and producers with over six years, whose
salaries were cut by $3,300 on average. Producers with fewer than three
years of experience, on the other hand, made $3,600 more in 2011.

Canadian game producers averaged $71,500 in 2011, down $1,000
from 2010. European producers’ salaries increased $3,500 to $56,346.
Interestingly, producers in Europe are paid more than any other
department of game development in the region.

Women are well-represented in the production department this
year (16 percent), down 1 percent from 2010. Interestingly enough,
men absorbed most of the salary drop; their average salary dropped
from $90,744 to $87,119, while women producer’s salaries actually rose
slightly from $77,870 to $78,354.

100K

90K

80K

70K

60K

50K

40K

30K

20K

10K

0K
<3 years 3–6 years >6 years

Game Designer salaries per years experience and position
Game Designer Creative Director/Lead Designer

$4
8,

28
1

$6
1,

76
7

$7
0,

50
0

$7
7,7

00

$9
9,

33
1

100K

90K

80K

70K

60K

50K

40K

30K

20K

10K

0K
<3 years 3–6 years >6 years

Producer salaries per years experience and position
Associate Producer Producer/Project Lead Executive Producer

$5
8,

38
2

$5
6,

11
1

$6
8,

06
5

$5
7,7

94

$9
7,

50
0

 percent average
Gender represented salary

Male 89% $74,180
Female 11% $62,000

percent receiving additional
income: 79%

average additional income: $15,216

type of additional compensation
received
Annual bonus 35%
Pension/Employer contribution to
Retirement plan 34%
Profit sharing13%
Project/title bonus23%
Royalties ..10%
Stock options/equity31%

percent receiving benefits: 96%

type of benefits received
Medical .. 84%
Dental .. 80%
401K/Retirement 70%

all Game desiGners

years experience in the industry

Gender stats for desiGners

 percent average
Gender represented salary

Male 84% $87,119
Female 16% $78,354

percent receiving additional
income: 85%

average additional income: $19,050

type of additional compensation
received
Annual bonus 49%
Pension/Employer contribution to
Retirement plan37%
Profit sharing13%
Project/title bonus23%
Royalties ..6%
Stock options/equity37%

percent receiving benefits: 98%

type of benefits received
Medical ...61%
Dental .. 60%
401K/Retirement 54%

all producers

years experience in the industry

Gender stats for producers

41%
> 6 yrs

 $89,231

17%
<3 yrs

$50,375

42%
3–6 yrs
$62,104

$1
39

,3
75

54%
> 6 yrs

$67,265

11%
<3 yrs

$55,893

35%
3–6 yrs

$103,080

game
designers

A v e r A G e s A l A r y

$73,386
producers A v e r A G e s A l A r y

$85,687

$9
8,

68
0

http://WWW.GDMAG.COM

game developer | aprIl 201210

The average U.S.-baSed aUdio profeSSional’S reporTed Salary
in 2011 was $15,000 higher than 2010’s $68,088. However, we don’t
get nearly as many survey responses from audio professionals as
we do from any other discipline, making it hard to draw meaningful
conclusions. We did get about 30 percent more responses from audio
professionals than we did in 2010, though.

Of that $15,000 average increase, most of the gains went to the
veterans: sound/audio directors with over six years of experience
received $5,500 more than they did in 2010. Audio professionals
working in contract roles also made an extra $3,200 in 2010. Salaried
audio workers were the least likely to receive extra compensation for
their work out of any discipline, though the $9,875 they received is up
$2,200 from 2010.

Canada-based audio professionals received an average salary
of $67,955 in 2011, down $600 from 2010. Unfortunately, we didn’t
collect enough responses from European audio workers to make any
significant conclusions.

QUaliTy aSSUrance profeSSionalS (TeSTerS and Qa leadS)
are the lowest-paid profession in the game industry for yet another
year—and in 2011, they got paid an average of $1,100 less than they
did in 2010.

That average salary actually reflects the higher end of the QA
spectrum, because many entry-level QA employees are hired on a
contract basis, with salaried positions mostly given to QA leads. QA
contractors made an average of $27,065 in 2011, up about $4,150
from 2010.

Interestingly enough, average salaries for testers with less than
three years of experience rose about $6,200 from 2010, and QA leads
with 3—6 years of experience saw a $3,700 boost. The salary loss was
mostly felt by QA leads with over six years of experience, who took a hit
of about $7,200 in 2011.

Canadian QA professionals made an average of $43,125 (USD), up
$5,100 from 2010. European QA workers made $32,500 (USD), which
was about $6,750 less from 2010.

 percent average
gender represented Salary

Male 93% $83,963
Female 7% $72,500

percent receiving additional
income: 74%

average additional income: $9,875

Type of additional compensation
received
Annual bonus 40%
Pension/Employer contribution to
Retirement plan 47%
Profit sharing12%
Project/title bonus23%
Royalties ..9%
Stock options/equity 28%

percent receiving benefits: 90%

Type of benefits received
Medical ...79%
Dental ...79%
401K/Retirement 63%

all aUdio developerS

yearS experience in The indUSTry

gender STaTS for aUdio developerS

100K

90K

80K

70K

60K

50K

40K

30K

20K

10K

0K
<3 years 3–6 years >6 years

Audio Developer salaries per years experience and position
Sound/Audio Designer/Engineer Sound/Audio Director

$3
2,

50
0

$5
7,

88
5

$1
09

,5
00

$1
10

,5
00

 percent average
gender represented Salary

Male 87% $49,196
Female 13% $39,375

percent receiving additional
income: 77%

average additional income: $12,640

Type of additional compensation
received
Annual bonus 49%
Pension/Employer contribution to
Retirement plan 33%
Profit sharing7%
Project/title bonus16%
Royalties ..5%
Stock options/equity 30%

percent receiving benefits: 95%

Type of benefits received
Medical .. 68%
Dental .. 70%
401K/Retirement 64%

all Qa TeSTerS

yearS experience in The indUSTry

gender STaTS for Qa TeSTerS

100K

90K

80K

70K

60K

50K

40K

30K

20K

10K

0K
<3 years 3–6 years >6 years

QA Tester salaries per years experience and position
Tester QA Lead

$3
7,

50
0

$4
1,

07
1

$4
8,

38
2

$5
5,

19
2

35%
> 6 yrs

$108,690

24%
<3 yrs

$32,500 41%
3–6 yrs
$65,658

23%
<3 yrs

$37,500

31%
<6 yrs

$61,029

46%
3–6 yrs
$45,081

audio
professionals

A v e r A g e s A l A r y

$83,182
qa testers A v e r A g e s A l A r y

$47,910

www.gdmag.com 11

 Percent Average
Gender Represented Salary

Male 82% $108,402
Female 18% $73,534

Percent receiving additional
income: 82%

Average additional income: $24,874

Type of additional compensation
Received
Annual bonus 46%
Pension/Employer contribution to
Retirement plan 30%
Profit sharing19%
Project/title bonus15%
Royalties ..11%
Stock options/equity 44%

Percent receiving benefits: 95%

Type of benefits received
Medical .. 82%
Dental .. 78%
401K/Retirement 62%

ALL BUSINESS AND LEGAL PEOPLE

YEARS ExPERIENcE IN ThE INDUSTRY

GENDER STATS fOR BUSINESSPEOPLE

LAYOffS
JOBS IN ThE GAmE INDUSTRY APPEAR TO BE GETTING SLIGhTLY mORE
stable. Of 3,100 respondents, 13 percent had been laid off in 2011,
compared to 14 percent in 2010 and 19 percent in 2009.

From those people who were laid off, 58 percent found new
employment in the games industry, 19 percent went into contracting
or consulting, 10 percent founded a new company, 13 percent went into
independent games development, and 13 percent haven’t found new
game development work. (Note that for this survey question, multiple
responses were allowed.)

A significant amount of respondents reported being laid off and
rehired by the same company, either as a contractor, or as a salaried
employee with a different job title (but the same responsibilities).

Fewer laid-off developers opted to start their business, join an
independent studio, or go into contract work this year. This could be a
sign of a slowing bubble in the social and mobile sectors, which were
giving away massive amounts of cash in recent years.

TOP 10 STATES wITh hIGhEST AvERAGE SALARIES
(across all levels of experience, excluding states with low sample size)
 AvERAGE PERcENT whO AvG. SALARY Of
 SALARY OwN hOmES hOmEOwNERS

 1 california $93,696 32% $118,513
 2 washington $89,674 49% $108,479
 3 North carolina $82,500 61% $93,382
 4 Texas $79,017 49% $95,761
 5 massachusetts $78,567 44% $94,688
 6 maryland $75,521 44% $94,688
 7 Utah $74,722 70% $78,816
 8 Illinois $71,319 47% $84,167
 9 New York $69,697 29% $85,395
 10 florida $67,136 33% $90,000

AvERAGE SALARY BY U.S. REGION BY DIScIPLINE
 EAST mIDwEST SOUTh wEST

Programmer $84,167 $73,397 $82,740 $101,387
Art and Animation $64,235 $68,676 $71,818 $81,229
Game Design $69,575 $61,818 $52,616 $82,204
Production $77,813 $87,045 $68,889 $90,395
Audio $60,625 $55,00 $68,333 $97,885
QA $47,500 $44,167 $39,643 $49,545
Business $97,870 $87,500 $83,750 $108,056

AvERAGE SALARY fOR hOmEOwNERS
vS. NON-hOmEOwNERS BY U.S. REGION

 EAST mIDwEST SOUTh wEST

homeowners $93,662 $81,378 $89,415 $111,842
Non-homeowners $66,602 $58,777 $58,223 $79,148

 U.S. cANADA* EUROPE**

Programmer $84,124 $74,970 $46,801
Art and Animation $63,214 $66,651 $35,887
Game Design $62,104 $60,240 $38,281
Production $67,265 $71,500 $56,346
Audio $65,658 $67,955 $25,500
QA $45,081 $43,125 $32,500
Business $79,269 $100,938 $47,222

AvERAGE SALARIES IN ThE U.S., cANADA,
AND EUROPE
(across all levels of experience, by discipline, given in USD)

56%
> 6 yrs

$123,864
28%
3–6 yrs
$78,264

16%
<3 yrs

$71,818

midwest
$68,114

South
$69,484

East
$74,796west

$87,909

*Most Canadian respondents were from British Columbia, Quebec, and Ontario.
**Most European respondents were from the United Kingdom (24%), Germany
(12%), France (11%), Spain (9%), Poland (10%), Spain (6%). Sweden (5%).

business and
legal people

A v e r A g e s A l A r y

$102,160
ThE “BUSINESS AND LEGAL PEOPLE” cATEGORY INcLUDES chIEf
executives and executive managers, community managers, marketing,
legal, human resources, IT, content acquisition and licensing, and general
administration staff.

Business professionals received the highest average salary in the
industry ($102,160), as well as the most additional non-salary income
($24,874). However, both those numbers are actually down from 2010 by
$3,300 and $4,000, respectively.

Younger people on the business side made an average of $71,818 in
2011, $14,000 up from $57,778 in 2010. Business people with 3–6 years of
experience averaged $78,269 in 2011, down $3,200 from $81,528 in 2010,
while those with over six years in the industry made $123,864 in 2011, down
almost $8,000 from 131,786 in 2010.

Women were relatively well-represented in the business side of the
games industry, reaching 17.6 percent in 2011, which is 7.6 percent higher
than average across the entire industry this year, and 3.6 percent higher
than in 2010.

AvERAGE SALARY BY U.S. REGION
(across all levels of experience and disciplines)

http://WWW.GDMAG.COM

game developer | aprIl 201212

AVERAGE SALARY BY EducAtion LEVEL And diScipLinE
(across all levels of experience)

 pRoGRAmminG ARt dESiGn pRoduction Audio QA BuSinESS

High school/GEd — — $79,500 — — — —

Some college $104,907 $95,379 $77,500 $94,643 — $45,000 $113,250

Associates degree $93,676 $79,737 $69,583 — — — —

Bachelors degree $88,649 $71,680 $73,703 $81,685 $81,364 $49,667 $88,684

Some Graduate $105,109 $71,667 $59,423 $91,667 — — $106,731

masters degree $90,291 $59,868 $68,438 $90,870 — — $121,288

Some doctoral $93,864 — $67,500 $107,500 — — —

doctoral degree — — — — — — —

now in itS ELEVEntH YEAR,
the Game Developer Salary
Sur vey was conducted
in February 2012 for the
fiscal year January 1, 2011
th roug h Decem ber 31,
2011 with the assistance
of Audience Insights. Email
invitations were sent to
Game Developer subscribers,
G a m e D e v e l o p e r s
Conference attendees, and
Gamasutra.com members
asking them to participate in
the survey.

We gather e d 4,132
responses from developers
wor ld w ide bu t no t a l l
who par ticipated in the
sur vey provided enough
compensation information
to be included in the final
report. We also excluded
salaries of less than $10,000
and the salaries of students
and educators. The small
number of reported salaries
greater than $202,500
were included to prevent
their high numbers from
unnaturally skewing the
averages. We also excluded
records that were missing
ke y d emog r ap h i c a nd
classification numbers.

The sur vey primarily
includes U.S. compensation
but consolidated figures
from Canada and Europe
were included separately.
The usable sample reflected
among salaried employees
in the U.S. was 1,742, for
Canada 403, and for Europe
339; and 524 for indies and
independent contractors
who provided compensation
information worldwide.

The sample represented
in our salary survey can
be projected to the U.S.
game developer community
with a margin of error of
plus or minus 2.4% at a
95% confidence level. The
margin of error for salaried
employees in Canada is plus
or minus 5%, and is 5.4% for
Europe.

mEtHodoLoGY

tHiS iS tHE tHiRd YEAR wE’VE
collected data for our indie report,
where we sur vey individual
i n d e p e n d e n t d e v e l o p e r s ,
independent teams, and individual
contractors for their perspective
on the industry. Out of those three
groups, independent contractors
made the most, though both
individual indies and members of
indie teams pulled in significantly
more in 2011 than they did in 2010.

I ndependent contractor s
averaged $56,282 in 2011 (up
$800 from 2010), individual
independent developers averaged
$ 23 , 549 (up f rom $ 11, 379
i n 2010) , a nd mem ber s of
independent developer teams
averaged $38,239 (up from
$26,780 in 2010). As the indie
game community continues to
mature and grow financially, it
also seems to be consolidating
somewhat. Compared to 2010,
more independent developers
are working in teams rather than
going solo.

Ind ie games made a bit
more money in 2011, too. 48% of
independent developers made less
than $500 from the sale of their
game, down from 55% in 2010.
16% of independent developers
made over $60,000 from the sale
of their game in 2011, compared
to 8% in 2010. Meanwhile, non-
game revenue streams (non-
game DLC/additional content,
sponsorship or ad opportunities,
and awards/grants), remained
relatively hard to obtain—79%
didn’t receive any additional
income whatsoever (down 2%

from 2010). The developers that
did cash in through non-game
revenue streams generally didn’t
make a whole lot, either; 44%
made under $1,000, compared
to 35% from 2010. In general, it
appears that the developers who
are good at designing games
to take advantage of non-game
revenue streams are able to pull
in a decent amount; in both 2010

and 2011, 40% of developers with
these sources of income were able
to make over $5,000.

JoB FunctionS
While we survey both indie game
developers and contractors for their
job function in the game industry,
we structure the survey differently
to adjust for the difference between
the two sectors. Developing a
game in a small independent team
means most developers don’t have
completely specialized roles—
usually people are wearing multiple
hats, so asking an independent
games developer to only report one
discipline wouldn’t be completely
accurate. On the other hand, that’s
not the case for most contract
game developers. As such, the
indie chart should be read as
“what percentage of independent
developers do at least this job
function,” rather than “how many
independent developers do this job
exclusively.”

M o r e a n d m o r e i n d i e
developers are finding themselves
in roles involving design (59%, up
7%), programming (53%, up 13%),
QA (43%, up 12%), and production
(47%, up 10%), while art and
audio have declined slightly (40%
and 17%, each down 1% from
2010). Considering our number of
independent developer responses
overall were roughly equal, this
means independent developers
are wearing more hats than ever
before—a good indie team member
is someone who can code, test,
design, produce art, and manage a
production schedule.

t H E i n d i E R E p o R t
contRActoRS BY JoB Function

Art

Audio

design

production

programming

QA

writing/Scenario

other

26%

9%

11%

8%

15%

17%

6%

8%

Art .. 41%
Audio 18%
design 52%
production 37%
programming 40%
QA ... 31%

indiES BY JoB Function

pH
ot

o
co

uR
tE

SY
 o

F
GA

m
E

dE
VE

Lo
pE

RS
 c

on
FE

RE
nc

E

http://Gamasutra.com

www.gdmag.com 13

THE BAD

“
The attitude toward work
life balance is absolutely

terrible. It is not an honor to work
in games. Engineers are treated
like garbage, especially when
compared to the treatment they
can easily get outside of games.”

“
The desire for games
to be fun, creative, and

unique is slowly being diminished
by the never-ending need for
money, money which is best
acquired by making derivative
boring titles often seen in the
social games market. The game
industry is going the way of the
movie industry with constant
remakes and prequels and no new
innovation besides independents
who often give themselves too
much credit.”

“
The longer I work in the
industry, the less I can

relate to gamers. The vocal minority
is more annoying than ever.”

“
This is an industry I’ve at
times wanted to leave.

I’ve often come very close to it.
Because, plain and simple, it’s
not easy being a woman in this
industry. Thankfully I’ve recently

joined a company where my
gender isn’t used against me as
an argument to dismiss me, and
it’s been a really empowering
ex per ien ce. A l so, a lot of
companies are closing, many are
hiring. There’s always a job open
somewhere. But we need to stop
the firing of employees once a
game has shipped as a viable
'saving the company money'
measure, and we need to find
ways to welcome students within
our ranks better, as opposed to
always ask for only experienced
personnel, thus not giv ing
newcomers a chance to learn.”

“
I’m still surprised by how
much sexism/racism the

industry exhibits, and by how
difficult it is to change perspectives
on it. While the industry as a whole

is slowly improving, I frequently
find myself trying to explain to
coworkers why certain content—
however hilarious they find
it—might offend certain groups
of people. There still seems to
be a “boys’ club” atmosphere in
the office sometimes and many
women are put in the unenviable
and unfair position of political
correctness enforcer.”

“
It’s been a terrible year in
the U.K. There have been

hardly any new design positions,
and so many studios have closed.”

“
Audio designers in the
g a m e i n d u s t r y a r e

often treated as a disposable
resource, and the opportunities
for us, both inside and outside
the game industry, are incredibly
scarce, as sound is very much
misunderstood and undervalued
as a craft. There are bright
g l i m mer s, bu t we have to
really band together, speak up,
and make a lot of noise about
examples of great sound design to
help continue to validate our work.
Great games where audio plays
a prominent role like Bastion and
Portal 2 really help us to move
forward.”

“
The outsourcing of art
jobs has made this a

less than desirable position
for starting artists. Why spend
thousands of dollars on an art
degree, and countless hours
perfecting your skills, only to
come into a studio and do lackey
clean up on work received from
the outsourcers? A lot of talented
artists don’t even really create art
anymore, just mundane clean-up
tasks.”

THE gooD

“
I think the advent of
crowd-funding and self

publishing is going to see a huge
shift in the coming years in terms
of what games get made and who
makes them. Indie game studios
once again possess the tools and
funding necessary to retake the
game development industry much
like they did in the ‘80s and early
1990's.”

“
We’re at a big turning
p o i n t . T h e d i g i t a l

distribution model, along with the
explosion of mobile gaming, is
ushering in a new age of smaller
studios and quicker development

cycles. The age of triple A , 2–3
year games is coming to an end.”

“
We’re in a time of great
cha nge, no t on ly i n

business models and distribution
platforms, but also in ethics. I’m
optimistic for the future—more
people than ever are playing
games and when this recession
is over, we’re going to see some
incredible revenue across all
aspects of the industry.”

“
It seems that the industry
is on the precipice of

a creative revolution as SDKs
and self-publishing options are
getting more accessible, creative
direction will come less from the
publisher, who relies more on
proven methods, and more from
wild-eyed developers who would
rather experiment than replicate.”

“
Developers that have
been able to adapt to

the rise of social and mobile
gaming have done well despite
an overall economic decline in the
world. Mobile and social gaming
is exciting because it allows a
developer to focus on simple,
tight, and polished gameplay. In
that regard I feel the recent trend
is somewhat of a return to the
'golden age of games'.”

Don’T fEAr sociAl
gAmEs

“
There is a lot to learn
about game design and

how to appeal to a wide audience.
Think about the average time until
someone who has never played
a game before starts having fun
in your game–social games do
this better than most traditional
games. This is an incredible and
exciting thing. If some of the early
companies in social games were
unscrupulous, don’t let this keep
you from learning exciting lessons
from social gaming and let this
improve your own designs.”

“Video games!!!!!!!!”

In order to hear what developers are saying about the industry right now, we allowed space at the end of
our survey for direct comments. Here are some of the more notable responses.

li T E r A l s

PH
oT

o
co

Ur
TE

sY
 o

f
gA

m
E

DE
VE

lo
PE

rs
 c

on
fE

rE
nc

E

http://WWW.GDMAG.COM

©2012 MAGIC PIXEL GAMES, ALL RIGHTS RESERVED

VISIT US AT WWW.MAGICPIXELGAMES.COM

ENGINEERS, ARTISTS, DESIGNERS

WE’RE HIRING!

We craft original games.

We love what we do and we want your help.

http://WWW.MAGICPIXELGAMES.COM

K E I T H O ’ C O N O R

One hallmark of the PROTOTYPE universe is over-the-top open-world mayhem. We rely heavily on large amounts of
particle effects to create chaos, filling the environment with fire, blood, explosions, and weapon impact effects.
Sgt. James Heller (the main character) can go just about anywhere in the environment. He can run up the side of
a building, glide across rooftops, or even fly across the city in a hijacked helicopter. Because of this we need an
effects system that scales to support the hundreds of complex effects and thousands of particles that could be
visible at any one time. Here’s how we built upon the effects system developed at Radical for SCARFACE and HULK:
ULTIMATE DESTRUCTION by improving and adding features that would allow us to push the effects to the level we
needed for PROTOTYPE and PROTOTYPE 2.

WWW.GDMAG.COM 15

http://WWW.GDMAG.COM

GAME DEVELOPER | APRIL 2012 16

SIMULATING AND AUTHORING
PARTICLES

/// Our particle systems are composed entirely of a
component-based feature set. A feature describes
a single aspect of how each particle behaves
—like changing position according to gravity or
some other force, spinning around a pivot point,
animating UVs, changing size over time, and
so on. The effects artist can choose any set of
features to make a particular particle system, and
each chosen feature exposes a set of associated
attributes (such as velocity, weight or color) that
she can tweak and animate. This is all done in
Maya with the standard set of animation tools,
using the same simulation code as the runtime
compiled into a Maya plug-in to make sure Maya
and the game both behave consistently.

Once the artist is satisfied with the look
and behavior of a particle system in Maya, it is
exported as an effect that can be loaded in the
game. This effect is then scripted for gameplay
using our in-game editor, “The Gym," a complex
state machine editor that allows designers to
control every aspect of the game (see our GDC
2006 presentation for more details, Reference 1).
When scripting an effect to play in a particular
situation, the effects artist has access to an
additional set of controls: biases and overrides.
For each attribute that was added as part of a

feature, the effects artist can choose to bias
(multiply) the animated value, or to override it
completely. This allows a single loaded effect to
be used in a variety of situations. For example,
the artist can take a standard smoke effect and
make small, light, fast-moving smoke or large,
dense, black hanging smoke, just by biasing and
overriding attributes such as emission rate, color,
and velocity (see Figure 1 for an example).

Artists can use The Gym to tailor each
instance of that effect to match its use in-game
instead of authoring and loading many similar
versions of the same effect or using an identical
generic effect in multiple situations. This
reduces memory usage and improves the artist’s
workflow, allowing them to tune the effects
live with in-game lighting and animations. The
biases and overrides are also a major part of our
continuous level-of-detail system, which we’ll
describe later in this article.

Each particle system’s attributes are stored
as separate tightly packed arrays, such as the
positions of every particle, then the lifetimes,
then the velocities, and so on. This data-oriented
design ensures that the data is accessed in a
cache-efficient manner when it comes to updating
the simulation state every frame, which has a
huge impact on CPU performance when doing
particle simulation. This way, we take up only a
small percentage of the CPU’s time to simulate

thousands of particles with complex behaviors. It
also makes implementing an asynchronous SPU
on PS3 relatively straightforward, as updating
each feature means only the necessary attribute
arrays for that feature need to be DMA-ed up,
without any extraneous data.

Having the particles’ positions separated
has other performance benefits as well, such as
allowing for fast, cache-efficient camera-relative
sorting for correct alpha blended rendering. It
also enables other features, such as particles that
emit other particles by using the position output
attribute array of the simulation update as an input
to another system’s particle generation process.

REDUCING MEMORY USAGE
AND FRAGMENTATION

/// Having many short-lived particle effects
going off all the time (during intense combat
situations, for example) can start to fragment
your available memory. Fragmentation happens
when many small pieces of memory are allocated
and freed in essentially random order, leading to
a “Swiss cheese” effect that limits the amount
of contiguous free memory. In other words, the
total amount of free memory in the heap might be
enough for an effect, but that memory could be
scattered around the heap in chunks that are too
small to be actually usable. (For an introduction

WWW.GDMAG.COM 17

to fragmentation and memory allocators, check
out Steven Tovey’s great #AltDevBlogADay
article, Reference 2). Even though we use
a separate heap for particle allocations to localize
fragmentation, it is still a problem. Fortunately,
we have a few tricks to limit fragmentation—and
handle it when it becomes an issue.

Whenever possible, we use static segmented
memory pools (allocated at start-up) to avoid
both fragmentation and the cost of dynamic
allocations. The segments are sized to match the
structures most commonly used during particle
system allocations. Only once these pools are full
is it necessary to perform dynamic allocations,
which can happen during particularly heavy
combat moments or other situations where many
particle effects are being played at once.

Our effects system makes multiple memory
allocations when a single particle system is
being created. If any of these fail (because
of fragmentation, or because the heap is just
full), it means the effect cannot be created.
Instead of half-creating the effect and trying
to free any allocations already made (possibly
fragmenting the heap further), we perform a
single large allocation out of the effects heap. If
this succeeds, we go ahead and use that memory
for all the allocations. If it fails, we don’t even
attempt to initialize the effect, and it simply
doesn’t get played. This is obviously undesirable
from the player’s point of view, since an exploding
car looks really strange when no explosion
effect is played, so this is a last resort. Instead,
we try to ensure that the heap never gets full or
excessively fragmented in the first place.

Toward this end, one thing we do is partition
the effect into “stores,” based loosely on the class
of effect. We have stores for explosions, ambient
effects, bullet squibs, and a number of other
effect types. By segregating effects like this, we
can limit the number of effects of a particular type
that are in existence at any one time. This way,
our effects heap doesn’t fill up with hundreds of
blood-spatter effects, for example, thus denying
memory to any other type of effect. The stores
are structured as queues; when a store is full and
a new effect is played, the oldest effect in that
store gets evicted and moved to the “graveyard”
store (where old effects go to die). Their emission
rate is set to zero so no new particles can be
emitted, and they are given a certain amount of
time (typically only a few seconds) to fade out
and die, whereupon they are deleted.

Having effects partitioned into stores also allows
us to perform other optimizations based on the type
of effect. For example, we can assume that any
effect placed in the “squib” store is a small, short-
lived effect like sparks or a puff of smoke. Therefore,
when one of these effects is played at a position that
isn’t in the camera frustum, or is further away than
a certain distance, we simply don’t play the effect
at all, and nobody even notices. Another example is
fading away particles from effects in the “explosion”
store when they get too close to the camera, as they
will likely block the view of the action, and also be

very costly to render. When the player is surrounded
by legions of enemy soldiers, tanks, and helicopters
all trying to get a piece of him, these optimizations
can lead to significant savings.

We also cut our memory usage by instancing
effects. In our open-world setting, the same
effect is often played in multiple places—steam
from manhole covers and smoke from burning
buildings, for example. In these cases, we only
allocate and simulate one individual “parent”
effect, and we then place a “clone” of this parent
wherever that effect is played. Since only the
parent needs to generate and simulate particles,
and each clone only needs a small amount of
bookkeeping data, we can populate the world with
a large number of clones with a negligible impact
on memory and CPU usage. To combat visual
repetition, each clone can be rotated or tinted to
make it look slightly different.

MANAGING VERTEX BUFFER
MEMORY DEMANDS

/// Each particle system (cloned or not) needs
memory to store its vertex buffers in addition
to the memory required for simulation. As the
number of particles in a system can change
every frame due to new par ticles being
generated or old ones dying, the amount of
memory required for its vertex buffer varies
similarly. While we could simply allocate enough
space to store the maximum possible number
of vertices when the system is created, that
would be wasteful if only a few particles are
emitted for the majority of the effect’s duration.

Alternately, we could instead just perform per-
frame allocation in the effects heap, but creating
and destroying these buffers every frame adds
churn, increases the possibility of memory
fragmentation, and demands more processing
overhead for doing many dynamic allocations.

We instead use a dynamic vertex buffer heap,
out of which we allocate all vertex buffers that
are only needed for a single frame. Because the
particle vertices are built on the fly every frame
and don’t need to be persistent (besides being
double-buffered for the GPU), we can use a simple
linear allocator. This is an allocator that is cleared
every frame, and every allocation is simply
placed at the beginning of free memory. This
has a number of advantages; fragmentation is
completely eliminated, performing an allocation
is reduced to simple atomic pointer arithmetic,
and memory never needs to be freed—the “free
memory” pointer is just reset to point at the
beginning of the heap at each frame.

In addition, this heap doesn’t have to be limited
to the particle systems’ buffers. It is used by
any code that builds vertex buffers every frame,
including skins, motion trails, light reflection
cards, and so forth. With this large central heap, we
only ever pay for the memory of objects that are
actually being rendered, as any dynamic objects
that fail the visibility test don’t need any memory
for that frame. If we allocate memory for each
object from when it’s created until it’s destroyed
(even if you rarely actually see the object), we
use far more memory than we do by consolidating
vertex buffer allocations like this.

FINE-TUNING RENDERING
PERFORMANCE

/// It’s easy for effects to get out of control in
PROTOTYPE 2’s game world. Explosions, smoke,
blood sprays, fires, and squibs all go off regularly,

often all the same time. When this happens, the
large amount of pixels being blended into the
frame buffer slows the frame rate to a crawl.
So we had to dedicate a significant amount of
our effects tech to identifying and addressing
performance issues.

The original effect (left) and three
variations scripted with different biases
and overrides

FIGURE 1

http://WWW.GDMAG.COM

We decided to place this burden on the effects
artists. This is partly because they are the ones
who create the effects and therefore know all the
art and gameplay requirements. But we also do
this to deliberately make them responsible for
effects-related frame rate issues. Otherwise, we
found that they would often make something that
looks good but performs poorly, hoping it could be
optimized by the rendering team before we had to
ship. This sucks up far too much valuable time at
the end of the project, and usually, isn’t even
feasible. This shouldn’t really be surprising—at
this stage it should be standard practice in the
industry that artists understand and work within
performance constraints. But, when deadlines
loom and everyone is under pressure, it’s quite
tempting to just get it done and fix it later.

We found that the easier it is for artists to
quantify performance and recognize when they’re
doing something wrong, the more likely they are to
do it right the first time. We learned this the hard
way toward the end of PROTOTYPE when nearly
every one of the lowest frame rate situations was
due to the GPU time spent on effects. Once we gave
artists easily accessible performance information,
they were more than happy to take an active role in
performance tuning.

This feedback started as a simple percentage
that showed how much particle rendering cost
overall compared to the per-frame budget. It has
since been expanded to give the artists details on
each individual effect (see Figure 2). They can see
a list of all effects currently being played and how
much each one costs in terms of memory usage

and GPU load. For the GPU load, like the overall
budget percentage, we use simple occlusion
query counters to identify how many pixels each
effect writes to the screen. This can be a great
indicator of overdraw due to too many particles
or poor texture usage (resulting in a large number
of completely transparent pixels that cost time
but don’t contribute anything to the final image).
The artists can immediately see which effects
cost the most and where to concentrate their
optimization work. Other visualization modes are
also useful for investigating performance
issues, such as rendering a representation of the
amount of overdraw or displaying the wireframe
of a particular effect’s particles.

As is the case in rendering tech in general, the
more direct feedback we can give artists about
what they’re working on, the better they are able
to do their job and the better the game looks
overall—everybody wins!

USING EFFECT SCRIPTING
AND LODS TO BOOST
PERFORMANCE

/// Our effect scripting system was also built to
allow us to change an effect’s level of detail based
on the current rendering load, which became our
main method of optimizing effects. Given that
some effects can be visible from one end of the city
to another, we needed to be able to concentrate our
budget on the effects near the camera and change
LODs based on the current rendering load.

The LOD system is mainly based on the
attribute biases and overrides described
above. The effect artist can create an LOD that
changes the bias and overrides values of an On-screen effects performance feedback (Figure 2A) with accompanying tool-side per-effect information (Figure 2B).

FIGURE 2B

FIGURE 2A

GAME DEVELOPER | APRIL 2012 18

WWW.GDMAG.COM 19

effect at a certain distance. These values are
then interpolated between all LODs based on the
effect’s distance from the camera. For example,
the artist might choose to lower the emission rate
and increase the particle size of an effect when
it’s far away—this would reduce the amount of
overdraw while still maintaining a similar look,
but with less of the detail that would only be
noticed up close. The interpolation results in
a continuous LOD transition that doesn’t suffer
from any popping or other similar problems—
although they still have the option of switching
to a completely different effect at a certain
distance (with a cross-fade) or disabling the
effect altogether. While reducing GPU cost is the
main goal, these LODs usually end up saving both
memory and CPU time, too.

The other metric we use when choosing LOD
is the rendering cost of the previous frame’s
particles. This uses the same occlusion query
results as the statistics given to artists and is fed
back into the LOD system. If the previous frame
was relatively expensive, we don’t want to make
the current frame worse by spawning even more
expensive effects, so we instead play cheaper
LODs in an attempt to recover faster. The artist
has full control over what LOD to choose and at
what level of performance it should be used.

When the frame rate drops significantly
due to particles, it is often not because of one
expensive effect but due to many moderately
expensive effects all going off at the same time.
Any optimizations done in this regard must take
into account what other effects are playing.
For this we have “effect timers.” Using an effect
timer, we can check whether a particular effect
has already been played recently, and choose

to play different effects based on this. A prime
example is a big expensive explosion; we might
only want one big explosion to go off at a time,
and for any other simultaneous explosions to be
smaller less expensive ones. This often happens
when a missile is shot into the middle of traffic
and three or four cars explode at the same time—
one car will play a good looking effect, while the
other cars play smaller, cheaper ones. The visual
impact is similar, but at a much lower rendering
cost.

Although our effect scripting system is
meant mostly for optimization of rendering, it
has useful applications for gameplay too. For
example, when the player fires a tank shell into
the distance, we want a suitably impressive and
impactful explosion, but if the same explosion
were to play right in front of the camera when
the player is hit by an AI’s tank shell, the result

would likely blind the player for a few seconds
and completely block their view of the action.
This can be very frustrating in the middle of
combat, so in these situations we can use
different LODs to reduce the number of particles,
lower the opacity, and make the effect shorter
and smaller. Not only does this make PROTOTYPE 2
play better, it also uses a cheaper effect that has
a lower impact on framerate.

PARTICLE RENDERING

/// Even with our LOD and scripting system doing
its best, the mayhem of PROTOTYPE 2 means it is
still possible for particle effects to become too
expensive. When this happens, we take the more
extreme measure of switching to bucketed multi-
resolution rendering (as presented by Bungie’s
Chris Tchou at GDC 2011—see Reference 3). The

Figure 3A (Top): has improved colors over
Figure 3B (Bottom).

FIGURE 3A

FIGURE 3B

http://WWW.GDMAG.COM

GAME DEVELOPER | APRIL 201220

decision to switch to a lower resolution render
target (in our case half resolution—25% the
number of pixels) is also based on the previous
frame’s particle rendering cost. When it is low,
all particles render to the full resolution buffer.
This avoids having to do a relatively expensive
upsample of a lower resolution buffer, which in
simple scenes can be more expensive than just
rendering particles at full resolution.

Once performance slows to a certain level
and the upsample becomes the better option,
we switch certain effects to render to the lower
resolution buffer while the rest of the effects
stay at full resolution. In this case, the artists
need to choose which effects need to stay at full
resolution, usually small ones with high-frequency
textures that suffer the most from the drop in
resolution, such as sparks, blood, and fire. All other
effects drop to rendering at the lower resolution.
When even that results in too much GPU time, as
a last resort we switch to every effect rendering
into the lower resolution buffer, regardless of artist
preference. For the upsample, we chose a nearest-
depth filter (as used in BATMAN: ARKHAM ASYLUM—
see Reference 4), which we found to be cheaper
and better quality than a bilateral filter.

We wanted to keep the actual shader used
by the majority of our particles as inexpensive
as possible, so it’s relatively simple. We call it
the add-alpha shader, as it allows particles to
render either additively (for effects like sparks
or fire) or alpha-blended (for smoke) using the
same shader. Whether the shader is additive
or alpha-blended is determined by the alpha
channel of the particle’s vertex color. To do this

we pre-multiply the texture’s color and alpha
channels and use a particular blend function—
see Listing 1 for the relevant shader code.

This is not a new technique, but it's one that
is nonetheless central to our particle rendering;
particles from every effect that uses this shader
(and a shared texture atlas) can be merged
together, sorted, and drawn in the same draw call.
This eliminates the popping that would happen;
otherwise if two overlapping effects were drawn as
separate draw calls, there would be a visible pop
when the camera moves, and the order in which they
are drawn changes. The vertex alpha can also be
animated over time, so a particle can start its life as
additive but finish as alpha-blended, which is very
effective for explosions that start with a white-hot
bang and end with thick smoke that fades away.

You’ll also notice in the code listing that
there are two texture fetches. This is for simple
subframe interpolation of our texture animations,
which allows us to use fewer frames and still
produce a smoothly animating image.

LIGHTING PARTICLES
WITHOUT PIXEL SHADERS

/// IN PROTOTYPE 2, the world is split up into three
zones; green, yellow, and red. Each zone has
a distinct style and color palette, as well as
a few different times of day. Without lighting
and shadowing, particles look wrong in many
situations—too flat, too light or dark, and
sometimes just the wrong color (see Figure 3
for example). We realized they needed lighting
but didn’t want to add the expensive pixel shader

code in order to do per-pixel shadowing and image-
based lighting, as this would have vastly reduced
the number of particles that we could render.

Our solution was to do lighting per-vertex,
but as a pre-pass into an intermediate “particle
lighting” buffer. For each particle vertex, we
render the lighting contribution to a pixel in the
lighting buffer. This way we can use the pixel
shader to do lookups into the shadow buffer and
image-based lighting textures, using the same
lighting code as the rest of the game and avoiding
the performance pitfalls of vertex texture lookups
on some platforms.

This lighting buffer is then read in the
particle’s vertex shader and combined with the
vertex color, resulting in no extra instructions in
the pixel shader. The only concern here was the
performance of the vertex shader texture lookup
on some platforms, particularly the PS3 and some
earlier DX9 GPUs. In these cases we actually rebind
the particle lighting buffer as a vertex buffer and
just read from it as we would any other vertex
stream. This is trivial on the PS3 as we have full
control over how memory is viewed and accessed,
and for the DX9 GPUs that support it, we use the ATI
R2VB extension (as detailed in Reference 5).

PUTTING IT ALL TOGETHER

/// Particles are a significant part of bringing the
world of PROTOTYPE 2 to life. Various performance
management systems work together to deliver
effects without exceeding available resources.
Lighting and shadowing add a huge amount of visual
quality, and by doing it per-vertex, we are able to light
every particle in the world at considerably less cost
than we otherwise could have. And finally, one of the
most important aspects of effects tech development
is giving the artists the tools they need to do their job-
and to help us do ours. After all, they’re the ones that
make us all look good!

KEITH O’CONOR is a senior rendering coder at Radical

Entertainment in Vancouver, where he is currently working

hard to ship PROTOTYPE 2 , which will be out any moment now.

He can be reached at keith.oconor@gmail.com, and random

140-character thoughts can be found at @keithoconor.

[The author would like to acknowledge Kevin Loose and

Harold Westlund who authored many parts of the original

Radical particle effects systems.]

LISTING 1 ADD-ALPHA SHADER CODE

// Add-alpha pixel shader. To be used in conjunction
// with the blend factors {One, InverseSourceAlpha}

 float4 addalphaPS(
 float4 vertexColour : COLOR0,
 float2 uvFrame0 : TEXCOORD0,
 float2 uvFrame1 : TEXCOORD1,
 float subFrameStep : TEXCOORD2) : COLOR

{

// Fetch both texture frames and interpolate

 float4 frame0 = tex2D(FXAtlasSampler, uvFrame0);
 float4 frame1 = tex2D(FXAtlasSampler, uvFrame1);
 float4 tex = lerp(frame0, frame1, subFrameStep);

// Pre-multiply the texture alpha. For alpha-blended particles,
// this achieves the same effect as a SourceAlpha blend factor

 float3 preMultipliedColour = tex.rgb * tex.a;
 float3 colourOut = vertexColour.rgb * preMultipliedColour;

// The vertex alpha controls whether the particle is alpha
// blended or additive; 0 = additive, 1 = alpha blended,
// or an intermediate value for a mix of both

 float alphaOut = vertexColour.a * tex.a;
 return float4(colourOut, alphaOut);

}

REFERENCES

1: www.gdcvault.com/play/1013444/The-Gym-Where-
The-Incredible
2 : h t t p : / / a l td e v b l o ga da y . c o m / 2 011 / 02 / 12 /
alternatives-to-malloc-and-new
3: www.gdcvault.com/play/1014348/HALO-REACH-
Effects
4 : h t t p : / / d e v e l o p e r . d o w n l o a d . n v i d i a .
c o m / a s s e t s / g a m e d e v / f i l e s / s d k / 1 1 /
OpacityMappingSDKWhitePaper.pdf
5: http://developer.amd.com/media/gpu_assets/R2VB_
programming.pdf

mailto:keith.oconor@gmail.com
http://www.gdcvault.com/play/1013444/The-Gym-Where-The-Incredible
http://www.gdcvault.com/play/1013444/The-Gym-Where-The-Incredible
http://altdevblogaday.com/2011/02/12/alternatives-to-malloc-and-new
http://altdevblogaday.com/2011/02/12/alternatives-to-malloc-and-new
http://www.gdcvault.com/play/1014348/HALO-REACH-Effects
http://www.gdcvault.com/play/1014348/HALO-REACH-Effects
http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/OpacityMappingSDKWhitePaper.pdf
http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/OpacityMappingSDKWhitePaper.pdf
http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/OpacityMappingSDKWhitePaper.pdf
http://developer.amd.com/media/gpu_assets/R2VB_programming.pdf
http://developer.amd.com/media/gpu_assets/R2VB_programming.pdf

S E R G E B E R N I E R

Ever wanted your games to have that artsy, blurred depth-of-field effect during a cut scene? You know, the kind
where the bright points in the background look like slightly blurry circles, and nothing in the background has any
edges or details to distract from the focal point of the scene? That effect is called bokeh, a Japanese word meaning
“confused” or “dizzy,” and in this feature we’ll show you how to replicate that effect using the PlayStation 3’s SPUs
to analyze the frame buffer luminance and generate bokeh draw calls.

W h at I S Bok E h ?

/// To understand what the bokeh effect
is, we need to first understand depth of
field. Depth of field (DOF) is the distance
from the focal plane in which objects
appear in focus.

Depth of field is the distance between the nearest and
farthest objects in a scene that appear acceptably
sharp in an image.

Objects outside this region are considered
out of focus and will appear blurred. In film
or photography, depth of field is mainly a
characteristic of the lens and focus distances.
Note that objects gradually go from sharp to
blurry as they get further from the focal point.
Since focus is a gradient, we quantify the blur
amount with the size of the circle of confusion
(CoC). The bigger the CoC value for a particular
pixel, the more blur you apply to it. Conversely,

as the CoC value gets lower, the sharper that
pixel will look.

Many games use depth of field to focus
the player’s attention on a particular part of
the frame and reinforce the depth illusion in
the rendered image. Depth of field is especially
useful in cut scenes, which typically have
a more cinematographic feel, since it lets
a cinematic director strategically blur out
the background so the player will focus on a
particular character or object in the scene.

Typically, to create the in-game depth-of-
field lens effect, we blur a copy of the frame

buffer and interpolate between the blurred and
nonblurred version depending on the distance
of each pixel to the focal plane. For many years
the blurring technique we used was just a simple
Gaussian blur to approximate the lens effect.
Bokeh, however, creates a much more real, filmic
DOF effect. Typically, the bokeh effect will make
highlights or light sources blur out into discs or
disc-like shapes created by the number of iris
blades in the camera lens. The bokeh effect starts
with the lens aperture, or more precisely, the
aperture shape. On a real camera the quantity
of light passing through the lens is controlled by

www.gdmag.com 21

Variation of the CoC for a combination of subject distances. For a particular pixel, the CoC value will vary between [0,1]
and will indicate how focused or unfocused the pixel is. the blur amount, generally in pixel size, will be multiplied by the
CoC of the pixel to find the blur amount for a particular pixel in the frame buffer. the maximum blur value will be game-
driven, and the artists can tweak it to achieve the desired DoF effect.

http://WWW.GDMAG.COM

the aperture. A set of blades mounted into the
lens controls the light entering the camera.

 Aperture shape depending on the f-stop. We can see
now where the bokeh shape is coming from!

We can now see how the lens design affects the
shape of out-of-focus highlights. Typically, you
will have a nice circular bokeh shape with a fully
opened aperture. Some lens manufacturers
have iris blades with curved edges to make
the aperture more closely approximate a circle
rather than a polygon.

Bokeh example from a real camera.

B u i l d i n g B o k e h W i t h s p r i t e s

/// Sprite-based bokeh effects are
simple to understand and very flexible,
since the artist can modify them to
tweak the effect as desired. The main
idea is to take each pixel of the frame
buffer and analyze its luminance.
You can work with a downscaled
version of the frame buffer to improve
performance. This will introduce some
artifacts in the rendering of the bokeh
sprite, but I have found that the speed
gains make it worthwhile.

To analyze each pixel of the frame buffer, we
start with a filter kernel and use it to analyze

the pixels surrounding the current pixel. The
bigger the kernel size is, the more expensive
the luminance calculation is. In my tests I
decided to go with a simple case, so I set the
kernel size to 1, with a buffer downscaled
by a factor of 2. The result was quite good in
performance and quality.

Using the filter kernel, we calculate the
luminance for each pixel and simply spawn
a sprite at the pixel screen space position if
the luminance pixel is higher than a certain
threshold. This luminance threshold value can
be editable by the artist so they can adjust at
which luminance value the pixel will produce

a bokeh sprite when the pixel is out of focus.
Performing the threshold test on each pixel
will give you a list of pixels that will spawn a
bokeh sprite.

The last step is to calculate a proper scale
for the bokeh sprite. The scale typically has
a maximum size that artists can edit to their
preference. In this step, the depth value of the
pixel is used to determine how much the pixel
is out of focus. This represents the circle of
confusion mentioned earlier, and at its maximum
value, it represents a fully open aperture.

In short, you need to calculate how much
the pixel is out of focus and apply a pixel scale
to the 1x1 bokeh sprite that you will spawn.
The more the pixel is out of focus (remember
that in the DOF explanation a pixel is gradually
out of focus), the bigger the sprite will be
on screen. If the scale value is 20 pixels the
bokeh sprite spawned at a pixel fully out of
focus will be 20x20 pixels.

At the end of this process, you end up with
a list of sprites containing the X/Y screen space
position of the pixel, the Z linear value of the
pixel needed to depth-test the bokeh sprite in
the pixel shader, UV coordinates of the bokeh
texture, the CoC value of the pixel (needed to Aperture shape affecting out-of-focus detail in the image.

game developer | april 2012 22

F r A m e B u F F e r e x A m p l e W i t h A 5 x 5 p i x e l k e r n e l
u s e d t o c o m p u t e t h e A v e r A g e l u m i n A n c e o F t h e
p i x e l .

 luminance equations.

5x5 kernel example (below).

adjust the blending amount to preserve energy
conservation), and the color value of the pixel.

Depending on the platform you are
developing for, you can do this process with
different work units. On DX11, all this is realized
in the compute shader with the color and depth
buffer used as textures. On PS3, we don't have
this stage available, but we do have the SPUs.

L e t ’ s s P U i f y t hi s !

/// The PS3’s memory is divided between
main memory and video memory. Typical
pipelines have the main color buffer

placed in video memory for performance
and memory footprint reasons. Since
the SPUs like to work on buffers placed
in main memory (read/write mode), the
first step is to transfer the main color
buffer into main memory.

After the reality synthesizer (RSX) transfers
the color buffer to main memory, the SPU can
start analyzing the scan lines to find each
possible location where a bokeh sprite should
be spawned. Basically, SPUs will write sprite
information in a vertex buffer reserved in
main memory, and then the RSX will process
that information to display the bokeh sprites.
The SPU program then patches the draw call
previously reserved in the command buffer

and removes the Jump To Self (JTS). JTS are
used to synchronize the PPU and RSX on PS3.
During this process, we calculate the average
luminance of the color buffer needed in the
tone mapping step, allowing us to save the
Graphics Processing Unit (GPU) downscaling
steps to find the average luminance of the
color buffer.

The effect is very similar to the bokeh effect
shown in the Samarithan DX11 demo realized
by the Unreal engine team.

Let’s detail the different steps:
1> Transfer the color buffer to main
memory. You can transfer at full resolution
or half resolution depending on the quality
of the bokeh effect you want.

www.gdmag.com 23

Pentagonal bokeh on.

CoC across the frame buffer (left).
Bokeh shape texture (64x64) (right).

http://WWW.GDMAG.COM

game developer | xxxxx xxxx 24

2> Prepare n SPU jobs working on a
subsection of the color buffer to analyze
the pixel luminance.
3> Each SPU fills a vertex buffer with
the bokeh sprite information.
4> On the PPU, reserve space in the
command buffer for theset draw call.
Since the set draw call command on
PS3 has a variable size in the command
buffer depending on the number of
vertices, we must declare a maximum
number of vertices and reserve that
space in the command buffer. JTS
commands are inserted before each set
draw call so that the RSX waits until the
SPUs are done.
5> On the PPU we issue n draw calls
working on n vertex buffers depending
on the number of SPU jobs we decided

to spawn to process the frame buffer.
For example, if we decided to create
two SPU jobs, both jobs would work on
half of the frame buffer, and we would
need to issue on the PPU two draw
calls, each using their own vertex
buffer and patched by the SPU jobs.
6> On the SPUs, each bokeh job analyzes
the pixels and spawns a bokeh sprite
for each pixel passing the luminance
threshold, scaled by the CoC factor. The
scale is clamped to a maximum bokeh
scale size (in pixel space).
7> Each sprite is written in the vertex
buffer (x,y,z position in screen space,
UVs, and color) and the set draw call
is patched with the correct number of
vertices. The rest of the reserved space
is filled with NOPs, telling the RSX to go

to the next graphic command.
8> The SPU patches the JTS so RSX can
consume the graphic commands.
9> RSX draws each batch of bokeh
sprites using additive blending.
10> Depth test is done in the pixel
shader since we have the z position of
the sprite in the vertex buffer.
11> The blend amount is adjusted to
respect energy conservation for the
bokeh sprite.

W h at d oe s i t lo ok lik e d u r ing
a f r a m e ?

/// There are various ways to hide the
luminance analysis and bokeh draw
call generation steps done by the SPUs.
In my case, I decided to kick the RSX
transfer right after the blended objects.
This leaves enough time for the SPUs
to analyze the frame buffer and fill the
vertex buffer that the RSX will use to
display the bokeh sprites on top of the
frame buffer. The important thing to
remember is to be careful not to stall
the RSX.

As a bonus, since we’re doing the luminance
computation on the SPUs, we can have the total
frame luminance for free. Normally, a game will Bokeh effect time line example.

Circular bokeh on.

game developer | april 2012 24

www.gdmag.com 25

have some kind of luminance/tone mapping
adaptation of the frame buffer at the end of
the frame. Adaptation effects usually involve
the GPU by adding the work of doing a cascade
of downscale passes to find the average
luminance of the frame buffer. This obviously
has some cost on the GPU and can be removed
if you analyze the frame buffer on the SPUs.

T h e f in a l p r od u c T

/// We found the present metrics using
a half resolution 720p color buffer in
main memory. One SPU working on
a 640 by 360 pixel buffer took 2.8
milliseconds, while five SPUs working on
the same buffer took only 0.65ms. The
computations are done in a Structure
Of Array (SoA) manner, so four pixels
can be processed at once. However, the
SPU could certainly be more optimized
by better balancing the odd/even pipes
and reducing instruction latency.

On the RSX, the cost is totally dependent on
the number of bokeh sprites you decide to
spawn and the screen coverage each sprite has
(which is dependent on the bokeh maximum
scale in pixels). The process of transferring to
main memory with a draw call from a 1280 by
720 pixel surface to a 640 by 360 pixel surface

(untiled) took 0.44ms.
For testing the bokeh sprite draw calls,

I used a capture to show performance, but
remember that the number is dependent on the
number of sprites per SPU job and the bokeh
maximum scale.

The next image shows a test case to
analyze the cost of bokeh sprites on the RSX.

In total, the draw calls for the bokeh sprites
cost 0.56ms for 5660 vertices with a 10-pixel
maximum bokeh scale factor.

r o om for im p r o v e m e n T.

/// There you have it—a basic bokeh
effect on the PS3. It’s not perfect,
though. We’ll leave a list of possible
improvements as an exercise to
the reader. For starters, you could
optimize SPU code by distributing the
instructions evenly between the odd
and even SPU pipelines.

Also, you could try to remove or push the
vertex maximum number. One way would be to
spawn one SPU job working on the whole color
buffer and sort the bokeh sprites to use only
the brightest ones. You could also work with a
bigger kernel size to generate bokeh sprites.

Since the SPU computes the luminance for
each pixel, you could have the total luminance

of the color buffer without involving the RSX
(downsampling and reading the final target
on PPU). This could save the downsampling
step on the RSX if you have some sort of eye
adaptation post-process in your pipeline.

Finally, SPUs could write the bokeh sprite
directly in the frame buffer. Instead of writing to
the vertex buffer, SPUs calculate for each sprite
the 2D transfers representing lines contained
in the Bokeh sprites. The RSX would use this
buffer in additive blend mode to add it on top of
the frame buffer.

SeRGe BeRnIeR is a senior 3D programmer at THQ

Montreal who specializes in the PS3. He has worked on

Open SeaSOn (PS2), Teenage MuTanT ninja TurTleS (PS2),

Surf'S up (PS2), far Cry 2 (PS3), and far Cry 3, as

well as PS3-specific optimizations for HOMefrOnT. He is

currently working on an unannounced title.

circular bokeh off.

www.gdmag.com 25

Wire frame view of the bokeh sprite draw calls.

http://WWW.GDMAG.COM

jobs.blizzard.com I ur.blizzard.com

® ® ®

Follow us on twitter: @blizzardcareers

http://jobs.blizzard.com
http://ur.blizzard.com

©2012 Blizzard Entertainment, Inc. All rights reserved. World of Warcaft, Diablo, StarCraft and Blizzard Entertainment are trademarks
or registered trademarks of Blizzard Entertainment, Inc., in the US and/or other countries.

Do you have the passion to create and
the will to forge great games?

If you seek challenge, inspiration, and strive for
excellence then this is the company for you!

We are actively recruiting across
the following disciplines:

ART/ANIMATION I AUDIO/SOUND I BUSINESS INTELLIGENCE

COMMUNITY DEVELOPMENT I CORPORATE ADMINISTRATION

FINANCE/ACCOUNTING I GAME DESIGN I HUMAN RESOURCES

INFORMATION TECHNOLOGY I LOCALIZATION I MARKETING

OPERATIONS I PRODUCTION I PROGRAMMING

 PUBLIC RELATIONS I QUALITY ASSURANCE I WEB DESIGN

WRITING/EDITING

For more information regarding our opportunities,
 please visit:

jobs.blizzard.com I ur.blizzard.com

Follow us on twitter: @blizzardcareers

http://jobs.blizzard.com
http://ur.blizzard.com

game developer | april 2012 28

www.gdmag.com 29

M i k e F r i d l e y

Over five years agO, Big Huge games set Out tO cOmpletely cHange tHe type Of games we make. we switcHed
frOm making real-time strategy games tO rOle-playing games, and we started making games fOr cOnsOles in
additiOn tO pcs. we made tHese cHanges fOr several reasOns, and altHOugH prOfit was One Of tHOse reasOns,
it wasn’t tHe Only One. we wanted tO dO sOmetHing crazy. we wanted tO make a Big Open-wOrld rpg—pretty
mucH tHe craziest prOject we cOuld tHink Of sHOrt Of an mmO. But we’re all Big fans Of tHe genre and
tHOugHt we cOuld find Our nicHe in it, sO we started Our quest tO cOnvert tHe studiO intO an rpg HOuse.

At first, our RPG project was named “Crucible” and was being published by THQ. We were making great progress on it, and THQ
was happy enough with the progress that they purchased us outright; and we became an internal THQ studio. Around that time we
switched some of the key features of the game and renamed the project “Ascendant." We were part of the THQ network of studios
for a short period of time right up to the point that THQ started running out of money. Our big, juicy, unproven-in-the-genre studio
was a prime target for them to try to sell.

With literally days left on the “close the doors” timer at the studio, THQ sold us to Curt Schilling’s 38 Studios, which has R.A.
Salvatore as “creator of worlds." It became clear pretty quickly that we would need to change the universe and some of the game
features yet again to take advantage of Robert’s genius. We changed the project name to “Mercury," which later was given the final
shipping name of Kingdoms of AmAlur: recKoning. >>>

Publisher: EA Partners
developer: Big Huge

Games/38 Studios
Number of developers:

100-ish
length of development:

2.5 years
release date: 2/7/2012
Working Titles: Crucible,

Ascendant, Project Mercury
Platforms: Xbox 360, PS3, PC
Number of health insurance

carriers we went through
from beginning to end: 6

g a M e d a T a

http://WWW.GDMAG.COM

game developer | april 2012 30

For those keeping track at home, in five years
we were bought and sold twice and changed the
name and core features of the project three times.
Needless to say, it’s been a long, strange trip. The
rest of the postmortem will be restricted to the two
and a half years we spent working on Reckoning
rather than the two previous false starts.

what went right

1 / combat—RPGs don’t
have to have boRinG
fiGhts
Shortly after we came out of preproduction,
we took a long, hard look at the game we
were making and tried to figure out where we
were going to be better than the competition.
We figured that open-world RPG designs are
segmented into four basic quadrants: story,
character progression, exploration, and
combat.
 We discovered that it was easy to identify
the games leading the industry in story,
progression, and exploration, but there was
no clear title that does combat well while still
meeting the expectations of the player in the
other three quadrants. So we decided to go

all-in on combat and change our staffing plan
to really commit to making combat fun in an
open-world RPG.

The game wasn’t built solely around combat,
but it was definitely built with our flavor of
combat in mind. Everything from the minimum
size of a dungeon’s hallway to the number of
enemies we could handle onscreen at a time was
governed by the guideline that combat had to
remain awesome.

Two of the other things that went right
during development were direct results of this
focus on awesome combat, usability testing and
functional group seating.

2 / Usabilit y testinG—
e aRly and of ten
We made sure that getting feedback from real
players was high on our priority list from the very
beginning. Since we couldn’t just release work-in-
progress builds to the public and take surveys,
we did the next best thing and took advantage of
EA’s usability lab very early in the development
process. The lab at EA allowed us to pull in testers
from the general public and use them for highly
focused testing on systems or content that we
were currently developing. For example, if we had

the first pass of a crafting system in the game,
we could pull in a dozen or so players for a half
day and get some players feedback on whether
the interface was easy to navigate or whether
blacksmithing felt rewarding.

Since EA’s lab recorded videos of the wrap
-up sessions, we were also able to show our
team what the player thought of their part of the
game. If the attack chain you were working on
felt bad or the quest didn’t make any sense to
the normal player, the team that worked on those
areas of the game got to hear it straight from the
consumer’s mouth. That kind of direct feedback
from the player really helped us fine-tune the
combat system, and ultimately, the entire game.

3 / fUnctional GRoUPs—
sit tinG toGetheR Pays off
As part of our development philosophy, we have
cross-departmental teams working closely
together. A lot of studios do this, but until this
project we didn’t really push seating functional
groups of people together at BHG.

Some of that may have been because the
physical structure of the studio didn’t lend itself
to more than three people in an office, or it could
have been just old-school thinking that never
changed until it was forced to change. We did
eventually break down the walls (literally) and
start sitting larger functional groups together
in what we called “pits” around the office. For
example, the combat pit has animators and
designers all sitting side by side.

This way, an animator working on an attack
chain could be sitting just a few feet away from
the designer implementing and fiddling with it
in-game. They could easily look at each other’s
work and offer comments or critiques very quickly.

However, functional groups are less about
speeding up the feedback process and more
about forcing interaction. A lot of developers are
lazy about socializing or unaware of what is going
on outside their office, but when the people you
are directly working with are in your face all day,
you start to bond with them. A lot of our functional
groups became pretty tight-knit and hung out
after hours, really bonding as a group. That
translated into more and better communication in
their work and really increased the quality of the
end product.

4 / scRUm de veloPment
methodoloGy
Before preproduction started on Reckoning, Scrum
was starting to gain a lot of momentum in the game
development community. I don’t think that Scrum
is the only way that people should be developing
games these days, but after running pure Scrum
for the entire development of Reckoning, I’m a firm
believer in its methods.
 I won’t go in to the details of Agile development
here, but the basic element of Scrum that made it

www.gdmag.com 31

so successful at BHG is the ability for the individual
developer to estimate his or her own work.
 The old days are gone. You can’t expect
producers or leads to come up with a huge waterfall
of everything they thought would get done over
the next three years. In the game development
business, it’s insane to think you have any insight
into what your team will be doing one year from
now. You can set major milestones with hard dates,
but filling in all the details between those points is
an exercise in futility.

With a basic understanding of our time
metrics on content development, for example,
we were able to do some good old-fashioned
waterfall scheduling as well. But those waterfalls
were used only to illustrate to the team the pace
we’d need to maintain in order to complete the
scope of work in the time allotted. For example,
we could tell one of our environment artists
that he had three months to create all the base
pieces of a particular biome before he would
start taking time away from the next biome, but
we did not plan out any more detail than that. We
didn’t account for every tree, rock, and scrub in
that biome. The actual planning of what would
go in to that base set and how long it would
take, meanwhile, came from the sprint planning
sessions where the artist would come up with his
own tasks and time estimates.

Not only did Scrum allow us to plan better, but
it also gave the entire team a lot more ownership
and visibility over the game. If something came
up (and it always does in game development)

the team knew that not completing what they
had already committed to meant that it was in
danger of being cut. That resulted in lots of mini-
crunches throughout the entire life cycle of the
game instead of one humongous death march at
the end of development. The team would rather
work a little overtime than see something they
really wanted in the game get cut or be done

poorly. We still had some end-of-development
crunching, so Scrum isn’t a silver bullet, but it
definitely helped.

Scrum allows for that day-to-day accountability
that was missing for so long in game development.
You understand within 24 hours of a change what
is going on. More traditional development methods
wouldn’t catch those small losses of time for

We discovered
that it was easy to
identify the games

leading the industry
in story, progression,

and exploration but
there was no clear title

that did combat well
while still meeting

the expectations of
the player in the other

three quadrants.

http://WWW.GDMAG.COM

months, which would either force us into a huge
crunch at the end of development or make us cut
an entire system or group of content. Also, allowing
the entire team to add items to the product backlog
was a big win for us.

5 / E A PARTNERS—A GRE AT
RELATIONSHIP
Working with a large publisher often can be
challenging. Some publishers want to be
too involved in the day-to-day development
decisions. Other publishers will go to the opposite
extreme and remain silent milestone after
milestone until your game hits Alpha, at which
point they suddenly have issues with things that
have been final for months, like the art style or
specific gameplay systems. Fortunately, the
EAP production crew was neither of those types
of publishers. They gave excellent feedback
throughout the development cycle and did what
you really want from a publisher: They offered
excellent support where we needed it most.

During our first meeting with our EAP
producers, they showed up with a bunch of
PowerPoints outlining all the services we could
take advantage of during development—and take
advantage we did. That set the tone for the next
couple of years. Any time we had a bump in the
road, EAP was there asking what they could do
to help. Having options like that available to you
when you have an issue is a huge asset.

As they are probably largely unsung for their
efforts, I want to call out the major production
staff players over at EAP that were our go-to guys:
David Yee, Ben Smith, Craig Krstolic, and David
Luoto. You guys made a lot of big problems much
smaller. Thanks.

what went wrong

1 / PREPRODUCTION—
ENTIRELY TOO SHORT
Even though we had a lot of production time
during the false starts before RECKONING, our
preproduction time for RECKONING itself was
entirely too short. At the beginning of RECKONING,
we were in heavy pitch mode and our goal
became to get a publishing deal signed instead
of spending the time to figure out the normal
outputs you are looking for in the preproduction
phase of development. Once we signed a deal
with EAP, we needed to get into full production
quickly. Or so we thought.

What we should have done was make sure we
had defined everything that needed defining. We
had a basic scope of content, but we hadn’t done
much to understand the feature set or the game’s
major hook. We decided to go all-in on combat
fairly soon afterward, but the development
budget and schedule had already been set,
and so we weren’t able to anticipate how many
additional animators and designers we would

need to bring the combat system to life.
Our content pipelines weren’t fully fleshed

out, and we only had basic or less than basic
functionality of some of the tools we would
need to create that content. But given our tight
schedule and the mountain of content we had
to produce for this game, we jumped in to full
production with a lot of questions unanswered.
Needless to say, this is not ideal.

We also hadn’t really figured out the density of
our content (quests, reagents, dungeons, and so
on), which had long-term negative repercussions
for both design and production. We frankly made
“too much game,” and we probably wouldn’t have
(at least not to that extent) if we had more time in
preproduction to figure out the density question.

2 / TOOLS AND PIPELINES—
LAYING DOWN THE TRACK
WHEN THE TRAIN IS ON ITS WAY
As I mentioned above, we didn’t have a good
head start on the development of our tools and
pipelines early in development. We knew the
basics of what we wanted once we had a feature
set figured out for the game, and we knew
the type and quantity of content that we were
planning on making, but we really didn’t have a
clue how much tools work we needed to do.

A lot of the systems in the game were still very
much in the blueprinting stages where we weren’t
even sure how they would function in the final game.

GAME DEVELOPER | APRIL 2012 32

Caption

www.gdmag.com 33

The dialogue system is one example. We came out
of preproduction without giving much thought to
the dialogue system other than, “Yeah, we should
probably do that.” We didn’t nail down how we would
display dialogue and choices in-game and how
designers would enter that data in a tool.

This put a huge amount of pressure on our
tools programmers. They had to jump from tool to
tool getting functionality to a point where users
could actually use it right before they needed it.
In a lot of instances, our tools programmers had to
roll out a tool before it was fully functional or bug
free because of time constraints.

Obviously, this hurts content creation. Devs
would submit tool feature requests and not see
any movement on them for months (or ever, in
most cases) because the tools team had a ton of
other issues that were higher priority. It basically
meant the majority of our tools were functional
but woefully inefficient.

I’m truly amazed that the tools team did
as well as they did with such limited time and
manpower. For the most part they were able to
stay just ahead of the train, and we ended up with
a suite of tools that—while still a bit disjointed—
work pretty well. Things will only get better as we
ramp up into preproduction on our next project.

3 / Demos—too Damn many
of them
People who know me are probably expecting me to
go completely off the deep end and start bashing
marketing and PR right now, but I’m not going to do
it. I understand how hard their job is, and how that
job is fundamentally motivated by events that are
counter to the way developers like to work.

Developers, especially producers, like to
be proactive. We make schedules, and we plan
dependencies. That’s how stuff gets done. Sure,
problems pop up that we have to react to, but the
goal is to reduce those as much as possible.

Marketing and PR are by necessity much more
reactive in their work. If you sat down and tried to
formulate the next two years of a marketing plan
with the same level of detail that a development
schedule has, it would be full of every single
possibility that could arise while trying to sell
the game. A very small percentage of those
opportunities would be sure things. There are
some major milestones that can be planned well
in advance, such as E3, but you have to remain
flexible and opportunistic with a new IP to ensure
you follow through on opportunities as they open
up. Of course, that means that they’ll come to game
developers, say “We have this great opportunity,
but we’ll need a brand-new demo and 30 never-
before-seen screenshots by the end of the month,”
and drive us crazy. Being a brand-new IP, we were
aware we couldn’t get away with a single demo at
E3 and a few dozen screenshots and videos. We
knew we had to get our awareness up so people
would start paying attention to our game. Marketing

decided that the best way to do that was show the
press as many different things about the game as
possible over a very long period of time.

I’m trying to remember the number of demos
we had to create over the development cycle of
Reckoning, and I honestly end up losing count. Doing
a demo for us was a pretty major undertaking, like
it is for almost everyone in the business. You’re
basically taking content and systems that were
meant to be first or second pass at a certain point in
the schedule and bump it all up to shippable quality
long before it’s supposed to be shippable quality.
This results in a lot of work that is just thrown out
because the real content and the real systems end
up changing a few weeks or months later. And there
is nothing quite as frustrating as working overtime
on something that you know is just going to be
seen once and then thrown away.

The consumer demo was another hurdle to
overcome. There was no way we were going to be
able to complete work on the game and create a
downloadable demo in parallel. We just didn’t have
the time. In the end, we had to outsource the demo,
and they had to build something with old code and
not a lot of time. The result was a buggy experience,
but still an experience that a lot of fans enjoyed.

In the future, we’ll be sure to plan plenty of time
and budget for multiple press demos and work on a
better plan to either build the downloadable demo
ourselves or better support outsourcers.

4 / main quest—not
enough of it flesheD out
e arly enough
In Reckoning, a lot of the custom content work we
did focused on the main quest. There is a lot of
custom content throughout the entire game, but
we knew we really wanted to spend more of our
time on the main quest, as most players would
see the majority of that line. A big chunk of that
custom work was cinematics.

Our cinematic team is awesome but very
small. Much like most of our teams on the project,
they have to produce more content than would
normally be expected for a team that size. Not
locking down the major beats of the main quest
early really hurt the cinematics team.

Going from a storyboard to a finished
cinematic takes a long time. Once a cinematic
is finished, it is very costly to change. Because
we weren’t locked down on the major cinematic
moments in the game for so long, we ended up
having to cut several cinematics that we really
wanted to include. The cinematics we have in the
game are awesome, and we got all the major beats
that we wanted, but we definitely wanted more.

5/upper management
shuffle
I should probably give a little background on this
point before I get into the meat of the issue. When
we were purchased by 38 Studios, we retained

all of our senior management and development
staff. The BHG studio was reporting to 38 Studios
corporate, then based in Massachusetts.

In July 2010, about a year into the
development of Reckoning, five of the most
senior studio management team at BHG left the
company. This easily could have ended Reckoning
in a lot of different ways—the studio could have
closed, or the game itself could have become a
mess of unrecognizable trash. Luckily, that was
not the case. Several people in the BHG studio
stepped up to fill the leadership void so we could
continue to make the game you’ll see at release.

The culture of this studio is unlike anything
I’ve seen anywhere else. I don’t want to say we’re
a family, because that has become cliché. Curt
Schilling is fond of using sports metaphor; I’m more
fond of military ones. To me, what drives the folks
at BHG to do better and go that extra mile is our
loyalty to each other. To use a military metaphor,
it’s like fighting a war, but without all the courage
and killing. When you’re in the thick of battle, you
don’t fight a war for the general back at HQ. You
fight it because you don’t want to let down your
buddy next to you in the foxhole. We had other
motivations, like wanting our fans to have a great
game, but our day-to-day drive came from not
wanting to fail each other.

If anything, the senior-management shuffle
may have even increased the resolve of the studio
to finish this game. It ended up being yet another
obstacle that the fates threw at us, and we’d be
damned if we weren’t going to get past it and
make an awesome game.

ConClusion
I can’t possibly hope to cover in this article all the
things we did right and wrong on a project this
size. It was a huge undertaking to make a game of
this scope, and we learned a lot along the way. The
studio has definitely leveled up as a whole, and
we’ll be heading into our next project with a better
understanding of our game and with better tools
and pipelines to make that game.

In the end, any success that this new IP will
enjoy has largely been brought into being through
the force of will and talent of its developers. We
were understaffed and underfunded, but we simply
had too much personal skin in the game to let it
fail. The team that finished this game did it through
dedication to what we all believed could be the next
big single-player RPG franchise. I have never seen a
team with so much ownership of a game as this one.
Many nights were spent working on some minute
detail simply because that developer didn’t want to
let something that wasn’t perfect into their game.
That kind of passion is a rare commodity to find in a
handful of people—much less an entire studio—and
I can’t wait to see what we can accomplish next.

mike friDle y was executive producer, Kingdoms of

AmAlur: recKoning at Big Huge Games.

http://WWW.GDMAG.COM

http://www.e3expo.com
http://www.e3expo.com

TOOLBOX

www.gdmag.cOm 35

Tools RepoRT FRom The show FlooR:

This yeaR’s Game DevelopeRs ConFeRenCe show FlooR was paCkeD
wiTh Tools anD miDDlewaRe DevelopeRs CouRTinG TRiple a Develop-
eRs anD inDies on shoesTRinG buDGeTs alike. we invesTiGaTeD The new
pRoDuCTs on Display To Give you an inTRo To This yeaR's Tool spReaD.

Google Native
Client
GooGle Inc.

w w w . G o n a c l . c o m

/// Flash and JavaScript are nice
and all, but there’s nothing like C
or C++ for sheer speed, especially
for games. That’s what Google is
banking on with its emerging Native
Client (NaCl) browser technology,
which could bring some power to
web games.

Native Client is currently
built into the Google Chrome web
browser, and aims to let developers
build web applications that are
secure, sandboxed, and compatible
with multiple operating systems
like existing web apps, but speedy
enough to handle taxing graphics,
sound, and media playback
functions that you typically need to
do with native code. Imagine being
able to embed a C/C++ application
in a web page like you would a
Flash application, and you have the
basic idea.

Porting your game to Native
Client means your game is playable
on any platform capable of running
Google Chrome (well, except
Android): Mac, Windows, Linux,

and eventually Google Chrome OS.
Google would like you to sell your
apps or games through the Chrome
web store, but since Native Client
is an open source project, other
browser developers could develop
NaCl plug-ins that let you use your
apps there, too.

2011 indie hit Bastion is
probably the most notable game
built for Native Client at the
moment. While Bastion isn't terribly
demanding compared to a heavy-
hitter like Crysis 2, a world where
web games have the complexity of
Bastion at the base level, and Native
Client starts to make good sense.

Adobe Flash
Player 11.2 and
AIR 3.2
adobe SyStemS Inc.

G a m I n G . a d o b e . c o m

/// Adobe wants 2012 to be big
for Flash and games, and hopes
the new versions of Flash Player
and Adobe AIR (11.2 and 3.2,
respectively) might be the ones
to bring Flash in games to a higher
performance level.

The biggest addition to the
Flash/AIR set is Stage 3D, which

is what Adobe is calling a new
set of 2D/3D rendering APIs
that can take advantage of GPU
hardware acceleration to boost
performance by a claimed 1,000%.
In other words, Flash should now
be fast enough that Epic Games’
announcement last October about
building Unreal Engine 3 to support
Flash makes a lot more sense. If
that’s the kind of tech we can start
seeing Flash game developers work
with for 2012, this may significantly
change the environment for mobile
and social games, especially.

Prior to GDC 2012, Adobe
also announced that it would be
resuming work on Alchemy, the

Adobe Labs project from 2008 that
allows Flash developers to execute
secure C/C++ code within Flash at
runtime. If Alchemy materializes
in 2012, it could prove to be a
compelling challenger to Google’s
Native Client platform.

Autodesk
Gameware
autodeSk

g a m e w a r e . a u t o d e s k . c o m

/// You probably know Autodesk
best for its widely used content
creation tools, such as 3ds Max
and Maya. This year, Autodesk

unreal engine running in Flash.

P A T R I C K M I L L E R

http://WWW.GONACL.COM
http://GAMING.ADOBE.COM
http://GAMEWARE.AUTODESK.COM
http://WWW.GDMAG.COM

TOOLBOX

game deveLOper | apriL 201236

is going big with its middleware
applications, of which Cognition,
Population, and Scaleform were the
most notable at GDC 2012.

Cognition and Population
are the newest members
of the Autodesk Gameware
family; Autodesk acquired GRIP
Entertainment, developer of GRIP
Character Control System and GRIP
Digital Extra System in November
2011, and those two applications
became Cognition and Population,
respectively. Cognition is a visual
artificial intelligence tool that
lets designers build and debug AI
behavior trees, and Population is
used to help developers quickly
produce and direct “digital
extras”—background NPCs—in
Unreal Editor to make game worlds
feel more immersive.

Scaleform, Autodesk’s Flash-
based user interface development
tool, is nothing new to many game
developers, but its 4.1 update (due
in Spring) will make it a bit friendlier
to mobile game developers.
Autodesk noted that developer
GlobZ used Scaleform to port a
Flash game called TwinSpin over to
iOS wholesale. The developer says
Scaleform helped it stay under
the App Store’s size limit, bump
framerates up from 25 frames per
second to 60, and iterate faster by
speeding up the compiling process.

Also new to Scaleform 4.1 are
a revamped system profiling tool
(AMP) for tracking performance
issues, and full ActionScript
3 compatibility, which was
announced at GDC 2011, but not
fully implemented until version 4.1.

FMOD Studio
Firelight technologies

w w w . F m o d . o r g

/// Firelight Technologies is hoping
that its new FMOD Studio, an
overhaul of FMOD Designer 2010,
will be your go-to off-the-shelf
audio creation tool for high-end,

memory-efficient sound features.
Firelight’s big talking point for

FMOD Studio is the revamped user
interface, which wraps the music
editing, event editing, and mixing
desk features into a package
designed to be familiar to any
audio professional used to working
with professional digital audio
workstations.

On the show floor, Firelight had
one sound designer demonstrating
how a team’s audio specialist could
build a complex soundscape on his
own. With the event editing tool,
he could stitch together a sound
environment for a submarine and
test how it would change as the
character walks through different
areas, or as the submarine’s engine
speed or depth changes, and so on.
When it comes time to integrate that
audio into the game itself, Firelight
says all the coding team needs is
the name of the sound event and the
parameters it relies on.

Unfortunately, FMOD Studio
is still very much in development,
so you'll have to wait a bit before
you can work it into our projects;
Firelight was demonstrating a pre-
alpha build, but the full suite should
be shipping in Q2 2012.

Hansoft 6.7
hansoF t aB

w w w . h a n s o F t . s e

/// Hansoft came to GDC to show off
Hansoft 6.7, the latest version of its
project management system (last
updated in January 2012), which
is built around integrating multiple
production methodologies.

With Hansoft 6.7, though,
Hansoft is making a play for
smaller teams as well, by offering
a start-up license for teams of nine
people or smaller—presumably so
independent or student teams will
get hooked on Hansoft and pay
for the license if they get a larger
budget to work with.

Hansoft says one of its major
selling points is the relatively
friendly user interface, which
Hansoft will actually be changing
significantly in the next update,
though none of the representatives
commented on what would change.
The next update will also bring a

native iPhone app, though there’s
no official word about an iPad-
optimized version besides “We’re
hoping to make one.”

Simplygon 4.0
donya l aBs

w w w . d o n y a l a b S . c o m

/// No artist likes to spend her
time building level of detail (LOD)
models out of her fully textured,
delicately modeled work of art,
especially when there are a
million other models that need
building. That’s how Donya Labs
aims to sell Simplygon, its suite
of automated LOD-building tools
that cut polygons, rebuild low-poly
replacement meshes, and retexture
materials to try to save you time.

New to Simplygon 4.0 is
BoneLOD, a new tool that can
take skinned, rigged meshes and
simplify them by removing bones.
You can use BoneLOD to remove
an artist-specified number of
bones for an LOD, or simply have it
remove bones that don’t affect the
model’s skins.

Compared to some of the
other tools in this roundup,
Simplygon is much more specific,
but the company promises big
results—Donya Labs estimates
that automatic LOD generation can
save as many as four or five hours
of work per asset. Simplygon won’t
leave any polys unturned, either.
The company demonstrated a flyby
of an in-game scene before and
after running Simplygon, and the
“after” clip pulled off about two to
three times the frame rate with
one-third of the polygons.

xaitMap and
xaitControl
x aitment

w w w . x a i t m e n t . c o m

/// German artificial intelligence
middleware developer xaitment
(pronounced “excitement”) showed
off xaitMap and xaitControl, two
new products it hopes will make
your games smarter.

XaitMap is a pathfinding
development tool that allows
designers to script and tweak

a game character’s pathfinding
and movement routines. On
the show floor, xaitment reps
were demonstrating the newly
announced xaitMap Unity plug-in,
which integrates directly into the
Unity game engine. Within a few
minutes, the demonstrator had
defined a map’s static geometry,
selected a path for a patrolling
NPC to follow, and tested the NPC’s
behavior as its path got obstructed
by doors opening and closing and
bridges raising and lowering.

“Pathfinding is the entry-level
point,” said Mike Walsh, xaitment
CEO. “We want to make intelligent
character behavior. Give him
game logic. We want to make your
characters smarter.”

This is where they pitch
xaitControl, xaitment’s behavioral
modeling tool which lets designers
set up state machines to dictate
an NPC’s behavior in a visual flow
chart interface, introduce varying
levels of probability to randomize
behaviors between NPCs, and build
nested state machines to make
behaviors even more individual and
complicated. Designers can also
make changes to the AI behaviors,
test them without recompiling,
and view a very detailed debugger
report, which the company says
should make fine-tuning your AI
much easier.

modo 601
luxology

w w w . l u x o l o g y . c o m

/// Loyal modo users will
undoubtedly appreciate Luxology’s
version 601 update to its 3D
modeling and animation suite—
there are a whole bunch of new
features that the company hopes
will give it a competitive edge in
the next round of the eternal 3D
modeling software wars.

First up is the new set of tools
for retopology modeling. At the
show, an artist demonstrated
the Topology Pen, a combination
of multiple tools that he used to
“weld” points and edges together
very quickly to reduce the polygon
count. He started with a very
detailed model imported from
ZBrush that weighed in at about

http://WWW.FMOD.ORG
http://WWW.HANSOFT.SE
http://WWW.DONYALABS.COM
http://WWW.XAITMENT.COM
http://WWW.LUXOLOGY.COM

www.gdmag.com 37

TooLBoX

three million polygons, and with a
few minutes of flicking his pen here
and there, he ended up at a svelte
300. You’ll have to wait for our
full review to see how well those
claims stack up to our testing, but it
certainly looks promising.

modo 601 also includes an
update to the replicator feature,
which was first introduced in modo
501. modo 501’s replicator tool let
you replicate multiple instances of
a single object around a plane, but
you could only randomize the scale
and rotation, so if you were using
it to scatter some leaves around a
scene it wouldn’t necessarily look
natural. In modo 601, you can build
replicated objects with slightly
different animations and tweak
individual instances of a replicated
object slightly without having to
create a separate mesh, letting
you build more realistic replicated
objects.

Tools to watch
for in 2012
The most impactful tools and
services aren’t always the ones
with the biggest booth. Here are
some hidden gems from the floor.

Fabric EnginE
Fabric EnginE, inc.
www.Fabric-EnginE.com
/// Perhaps the best way to
think of Fabric Engine is as a
tool for building tools. At its
heart, it’s a browser plug-in that
allows developers working with
JavaScript (support for Ruby and
Python coming later this year) to
build applications that can take
advantage of multi-core CPUs
and GPUs and integrate C++ code
libraries from within a browser
window. Instead of rigging a model
in Maya, motion-capturing in
MotionBuilder, cleaning it up back
in Maya, and exporting it into your
game’s runtime, Fabric Engine
thinks you should be using its

platform to build your own tools
around your game engine itself to
avoid the back-and-forth between
several different third-party tools.

LivE DrivEr
imagE mEtrics
www.imagE-mEtrics.com
/// Imagine that as part of your
game’s new character creation
process, your player would use his
PC’s built-in webcam to automatically
map his basic facial features, track his
movements, and animate those facial
movements with his in-game avatar.
That's basically what Live Driver does.
Trash talking on Xbox LIVE will never
be the same.

FLEx 13
optitrack
www.optitrack.com
/// OptiTrack wants to bring motion
capture to the masses with the Flex
13, its new motion capture camera
that can capture 120 frames
per second at a 1.3-megapixel

resolution for only $1,000 per
camera. A thousand dollars might
not be cheap for a shoestring
indie budget, but it’s low enough
that small studios might decide to
invest in their own motion capture
rig instead of buying time in a high-
end studio or trying to do without.

graphics pErFormancE
anaLyzErs 2012
intEL
http://soFtwarE.intEL.com/
En-us/articLEs/gpa-Faq
/// If you’re building games for Intel
hardware, you’re probably already
used to the Graphics Performance
Analyzers (GPA) toolset, which
lets you read live performance
reports while your game is running
so you can find your performance
bottlenecks. New and notable to
GPA 2012 is an additional set of
diagnostic tools for Atom-powered
Android smartphones, which could
be a shot in the arm for Android
developers.

V
F
S
 S

T
U

D
E
N

T
 W

O
R

K
 B

Y
 B

R
E
N

D
A

N
 B

O
Y

D

VFS prepared me very well for the volume
and type of work that I do, and to produce
the kind of gameplay that I can be proud of.
DAVID BOWRING, GAME DESIGN GRADUATE
GAMEPLAY DESIGNER, SAINTS ROW: THE THIRD

http://WWW.FABRIC-ENGINE.COM
http://WWW.IMAGE-METRICS.COM
http://WWW.OPTITRACK.COM
http://SOFTWARE.INTEL.COM/EN-US/ARTICLES/GPA-FAQ
http://WWW.GDMAG.COM
http://SOFTWARE.INTEL.COM/EN-US/ARTICLES/GPA-FAQ
http://vfs.com/enemies

pixel pusher // steve theodore

www.gdmag.com 39

Some things still hold up, even
after a decade—a well-painted
texture or a cleanly built model
(polycounts aside) can still look
sweet. Tech-heavy elements such
as shaders, on the other hand,
don’t age so gracefully. The worst
offender is probably lighting, which
has seen a quiet revolution over

the last four or five years. The old-
fashioned yellow-blue-red-three-
point light rig looks pretty dated
in the modern era of spherical
harmonic lightmaps and real-time
ambient occlusion.

In the last couple of years, a
new gizmo has started cropping
up in the lighting artist’s gaffer

box. Image-based lighting, (IBL)
has a respectable history in offline
computer graphics, but it's just
starting to show up in game engines
today. Unreal’s DX 11 Samaritan
demo and Crysis 2 both use IBL
techniques, and now that they’ve
been battle tested—with such pretty
results, as you can see from the
accompanying figures there's a high
likelihood it's going to show up on an
LCD screen near you pretty soon.

As the name implies, IBL
uses images (or, more precisely
HDR environment maps) to
light a scene. The idea was
originally pioneered in the ‘90s
by researchers interested in
compositing virtual objects into real

photographs. Getting the geometry
in place wasn’t too hard—but
making the rendered images match
the ambience of the scene was
very tricky.

The secret turned out to be
those silver balls you occasionally
find sitting on a pillar in someone’s
garden (they seem to be particularly
popular with the folks who buy from
SkyMall.) By photographing one of
these balls in the midst of the scene,
you can extract a spherical reflection
map. Take the same photograph
several times at different exposures,
and you can create an HDR map that
captures the intensity and color of
incoming light from the whole scene.

What distinguishes IBL from
conventional environment mapping,
is what you do with the information
in environment textures. In the
familiar reflection map, every point
on your surface will be reflected out
into the reflection map to find the

SEE THE LIGHT
AN INTRODUCTION TO IMAGE-BASED LIGHTING

Nostalgia can be a real minefield in the digital age. It’s humbling to thumb through
the old portfolio and take a critical look at some of your favorites from back in the
day. Being proud of what you did in spite of the technical limitations is the tao of
the game artist. But let’s be honest: some of that stuff looks a little creaky 5, 10,
or (gulp) 15 years out.

FIGurE 1 This shot from Forza 4
highlights how well image based
lighting can tie specular, diffuse,

and ambient lighting together.

FIGurE 2 The key to image based lighting is the ability to control the glossiness of
materials. Note how the semi-gloss materials in the middle still show progressively less
defined reflections.

http://WWW.GDMAG.COM

pixel pusher // steve theodorepixel pusher // steve theodore

game developer | april 2012 40

pixel pusher // steve theodore

correct color. The classical reflection
look up, however, only works for
mirror-like surfaces though. This
is one of the reasons so many
seminal CG creations, like the early
Terminators or the water creature
in The Abyss, were highly reflective.
The special sauce in image-based
lighting is the way you grab colors
out of the environment. If you blur
the environment, the chrome-like
appearance starts to become more
and more like the kind of soft,
spherical harmonic lighting you
see in most games with modern
graphics (see FIGure 1).

Simply by dialing the precision
of the environment lookup, you can
produce appearances from classic
CG shiny down to realistically
varied diffuse lighting with a soft,
GI-like feel. Because both the soft
lighting and specular highlights are
coming from the same images, the
final result has a solid, physical feel
that’s hard to achieve with more
conventional techniques.

HDR
» There are two main ingredients
to the magic IBL formula. The
first is high dynamic range (HDr)
support, which you need to get
realistically strong highlights and
bloom. There’s no need for a silver
ball anymore—any method of
creating an environment cubemap,
including hand painting, will do,
so long as the cubemap is an HDr
image. Lack of HDr support was
what kept IBL out of real-time
graphics until Shader 3.0 debuted
in DX 9. The technique didn’t
really become practical until DX
10 offered support for 16 bits per
channel lighting. Now, with DX 11
offering HDr compression as well
as 32 bits per channel lighting,
near-future PC hardware and the
mythical next-gen consoles will
be even better positioned to use
image-based lighting.

The second ingredient is finding
the right way to get the right level
of blurriness in the environment
lookup. Fortunately, the details
are a problem for the graphics
engineers—but it's helpful to know
the basics. Doing the blurring
entirely in the graphics hardware
at runtime can be costly; you
need to grab a lot of pixels from

the hardware and then blend
them in a shader. For the shinier,
more specular end of things, you
can get some of the blurring from
lower mips. The very soft diffuse
lighting, on the other hand, is better
calculated offline as a separate pre-
blurred texture (see FIGure 2).

aRt siDe
» ultimately, the technical side
of IBL is just the combination of
HDr environment maps and a fast
method for doing blurry lookups.
The result can be interestingly
complex for such a simple and
comparatively cheap technique.

 The most obvious benefit IBL
offers the lighting artist is visual
complexity. If you’re used to
working with a single ambient light
value, whether from a lightmap or
(ouch!) a fixed shader parameter,
you’ll find that IBL provides a much
richer and more complex ambience.
For one thing, it’s directional—if
your environment has a brightly
lit sky, IBL objects will get a nice
top lighting that feels like global
illumination (see FIGure 3). IBL
also ties rendered objects into the
scene in a way that’s reminiscent
of radiosity, as the colors in the
reflection map are used to light
your foreground objects.

With all those colors flying
around, IBL is more realistic than
a boring old ambient coefficient.
But more than that, it’s just more
interesting to look at; it adds more
color and interest to areas in shadow
that usually get the short shrift.
Moreover, because it’s an image-
based technique, you can get into
the environment map textures and
edit them for special effects.

For example, you can add
color filters in Photoshop to subtly
or not-so-subtly bias the colors
in your map. This is great for
creating moodier color schemes,
and it’s also useful for pulling out
the forms in your models more
effectively. Adding a bit of color
contrast to different faces of your
environment map can make it
easier to differentiate the walls of
an interior and provide your players
some subtle navigational cues at
the same time (see FIGure 4).

More than anything else, IBL
shines literally—in specular lighting.

FiguRe 3 in the conventionally lit version of this image (top), all shadowed areas receive
the same flat lighting. Note how the window frames and doors have no visible relief. With
iBL (bottom) even areas in shadow have directional cues—and more variety of shades and
colors.

trying it out
/// If your engine doesn’t already support IBL, you can try it for free

by downloading either free version of either the UDK or CryEngine.
There’s also the Marmoset Toolbag from Monkey Studios, developers

of Darkest of Days, which is built around an IBL lighting preview
engine. Mental Ray supports IBL as well, but the practicalities are

different enough that the results don’t show you much about how the
technique works in real time.

pixel pusher // steve theodore

www.gdmag.com 41

pixel pusher // steve theodore

Instead of generic round photo
highlights, the environment map
produces highlights of any shape
and size (note the rectangular
highlights from the lit windows in
the Unreal DX 11 demo shot). The
shaped highlights help bring out
the contours in your objects, and
moreover, gracefully provide both
sharp, mirror-like reflections and
softer, more abstract lighting on
surfaces such as plastic, enamel,
or ceramics. These semi-gloss
surfaces frequently seem lifeless
in conventional renderings, but the
variety of colors and shapes in IBL
reflections can help. Finally, since
IBL maps provide light from every
direction, glancing reflections are a
natural side effect. The kind of rim
lighting that many games try to fake
with a fresnel effect arises naturally
from the technique in a way that
makes the standard edge glow seem
very flaky.

Because specularity is so
central to the IBL works, a good
IBL system should provide per-
pixel control over glossiness
in addition to typical specular
masking. Nothing sells the contrast
of different materials better
than seeing the varying size and
sharpness of highlights as they
travel over a surface. That’s always
the case, even for plain vanilla
Phong shading, but it’s truer than
ever when working with IBL.

There’s The rub!?
» Of course, veteran Pixel Pusher
readers are waiting for the inevitable
"of course..." The one where we
have to list the downsides to the
technological miracle of the month.
In the case of IBL, there’s really
only one important limitation, but
unfortunately it's pretty significant.
Like a skybox or a reflection map,
the lighting in an IBL setup is always
infinitely far away. Your IBL light
texture might have bright light on one
side and a shadow on the other, but
there’s no way to move your object
closer or farther from the light source.
The effect will vary by angle but never
by distance. This is why IBL may
look like radiosity for a given point in
space, but it doesn’t behave like it—
you can’t "step into the light, no matter
how far you walk.

Depending on your budget, you

might be able to work around this
limitation by blending between
different IBL lighting samples. The
interpolation is basically a straight
crossfade, so it only works when the
features in the different IBL textures
are lined up nicely. For example, you
could not use IBL blending to have a
character walk down a corridor with
a succession of bright lights, since
they would appear to fade up and
down rather than to move as the
character walked. On the other hand,
the trick works nicely if one sample
is near the mouth of a cave and
another is taken from the back —the
cross fade feels more or less like the
recession of the bright cave opening.
(see FIgUre 4)

There’s no doubt that the
static nature of IBL makes for
an interesting set of problems,
though they're also pretty familiar
to anybody who's had to deal with
things like environment-specific
reflection maps. There's a definite
memory/fidelity tradeoff, but the
results can be very worthwhile.
Perhaps just as importantly, seeing
familiar models and textures in the
richer and more complex ambience
of an IBL render makes you start
noticing (and resenting) some
of the limitations of our more
conventional rendering techniques.
After natural glancing specular and
soft shapely highlights, it’s hard to
go back to rimlight shaders and big

round Phong spots. It’s good to be
reminded of the limitation of our
standard shading models so we
don’t become complacent.

Of course, the way our
portfolios turn over so quickly,
and with all the pretty stuff those
art school kids crank out, it's
pretty hard to get complacent in
any case.

sTeve Theodore has been pushing pixels for

more than a dozen years. His credits include

Mech coMMander, half-life, TeaM forTress,

counTer-sTrike, and halo 3. He's been a

modeler, animator, and technical artist,

as well as a frequent speaker at industry

conferences. He’s currently the technical

art director at Seattle's Undead Labs.

Figure 4 ibL lighting is static—you can’t move
closer to the lights in an ibL environment.
however, you can fake some kinds of falloff—here
we have two ibL lights, one near the mouth of the
tunnel (which gets a lot of light because of it’s
position) and another farther back. Notice how well
this setup fakes radiosity—even though this image
has no bounce lighting of any kind.

http://WWW.GDMAG.COM

GAME DEVELOPER | XXXXX XXXX 42

MORE THAN ZERO
THE TROUBLE WITH ZERO-SUM MECHANICS IN COMPETITIVE MULTIPLAYER GAMES

DEFINING A ZERO-SUM GAME
MECHANIC
» A zero-sum game is one in which
the gains of any one player are
balanced out by the losses of all
other players, such as winning
a pot of chips after a hand of
poker. Using strict game theory
terminology, many competitive
games are not actually zero-sum.
Scoring a field goal in football, for
example, does not take three points
away from the other team.

However, more loosely speaking,
the phrase “zero-sum mechanics”
means that hurting one’s opponent
is as equally valuable as helping
oneself. In a typical RTS like
STARCRAFT, an early-game rush
strategy, which aims to destroy
the enemy’s economy as soon as
possible, is just as viable as a boom
strategy, which focuses on building
up one’s own economy. It doesn’t
matter how low-tech your army is
if you can quickly wipe out your
opponent’s worker units before his
high-tech production kicks in.

Whenever a game rewards
the player equally for hindering
the enemy as for strengthening
herself, the game has a zero-sum
mechanic. Most team sports
(basketball, soccer, football,
etc.) share this characteristic;
the defense, which prevents the
opposition from scoring, is just as
important as the offense, which
does the scoring.

Competitive games are firmly
rooted in this soil. Fighting games
balance protecting your own
health and taking away the health
of the opponent. Strategy games
encourage countering an enemy’s
plans and developing your own.

Shooters combine killing as many
enemies as possible while also
fulfilling some parallel goal, such as
capturing a flag or checkpoint.

THE ZERO PROBLEM
» The problem with zero-sum
mechanics is that they require a
negative experience for someone.
No one enjoys watching his
character get annihilated by a
devastating combo in STREET
FIGHTER, seeing his buildings
crumble in AGE OF EMPIRES, or dying
and respawning over and over
again in TEAM FORTRESS. One player’s
pleasure results from another
player’s pain.

Competitive games do not
require that another player must
suffer. Indeed, competitive games
are even possible without players
being able to affect one another
at all–consider parallel sports like
golf or bowling, for example, or
online games with asynchronous
leaderboards like BEJEWELED BLITZ
or BURNOUT PARADISE. Ultimately, it
is the designer that decides how
players will interact with each other
during play.

The most important distinction
is whether a player can lose his
current progress or if he can
only lose the ability to continue
progressing. If the player can lose
his current progress, the game
mechanics have a zero-sum feel
because losing your progress
is usually a painful experience
(and often a sure route to a loss).
In contrast, one of the defining
traits of the Eurogame movement
(epitomized by games like Ticket
to Ride and Settlers of Catan) is
eschewing such direct, zero-sum

player conflict in favor of limited,
indirect interaction that will not
destroy a player’s progress.

Take worker placement
Eurogames, such as Agricola and
Caylus, for example. Players take
turns choosing exclusive abilities,
and the competition emerges from
players jockeying for position to
determine who gets to grab the
best jobs first. If you know your
opponent needs food, you can
choose the food job for yourself to
seriously damage this opponent’s
fortunes. However, this tactic is
qualitatively different from actually
destroying an enemy’s farms
and killing his villagers in AGE OF
EMPIRES. In the former case, the
setback may only be temporary;
in the latter, the player suffers
a heavy emotional loss and has
little chance of recovery. In fact, a
player who spends too much time
trying to disrupt his opponents
in a game like Agricola can often
dig his own hole as each precious
action has significant opportunity
costs. In contrast, damaging an
opponent early on in an RTS has
little downside; wiping out another
player’s economy can actually buy
valuable time to grow one’s own
much larger.

Balancing a RTS game to not
reward destroying another player’s
economic base as soon as possible
is extremely hard. Indeed, RTS games
suffer heavily from a dominance
of zero-sum mechanics, which
encourage the rush. Many players
adopt “no-rushing” house rules to
manually rebalance the gameplay
away from destructive raids and
toward building up for the endgame.

Further, many RTS games end

with a whimper instead of a bang
because the end goal is usually
wiping out the enemy’s forces, which
means that the outcome is obvious
halfway through the match. In Ticket
to Ride, during which players race to
complete routes before running out
of pieces, the dramatic tension is not
a consistently rising slope but an arc
that rises and then falls. In contrast,
the dramatic tension of STARCRAFT is
an arc which rises and falls, and—
unfortunately—the downward side
of this arc is simply a sequence of
painful events for the loser.

However, zero-sum mechanics
need not be endemic to the RTS
genre. Consider economic games,
like the Anno series, or Railroad
Tycoon, or even M.U.L.E., in which
the primary goal is the acquisition
of wealth; because the players
are in a race to see who grows
the fastest, the games need not
encourage (or even allow) players
to attack one another.

Even military RTS games
can use alternative competitive
mechanics. WARCRAFT 3 introduced
the “creep”—neutral characters
who occupy the central area of
skirmish maps and who players
race to kill for the rewards and
experience points. I see no reason
why a new RTS couldn’t take this
mechanic a step further and make
the game focus solely on killing
creeps faster than your opponent.

REMOVING THE NEGATIVES
» Many competitive games solve
the zero-sum problem by severely
limiting interaction, so that players
can only affect each other under
certain circumstances. In MARIO
KART, for example, racers can only

DESIGN OF THE TIMES // SOREN JOHNSON

Zero-sum game mechanics seem to be the default choice when designing competitive multiplayer games. Most
fi rst-person shooters, real-time strategy games, and fi ghting games, are built around a core my-loss-is-your-
gain multiplayer model. However, there are many, many problems with this type of gameplay—particularly for
the losing player. Zero-sum mechanics are, at best, a powerful yet dangerous tool and, at worst, a wrongheaded
approach to game design that turns away many potential players.

MORE THAN ZERO

APRIL 2012

www.gdmag.com 43

shoot one another after picking
up limited-use shells from certain
locations; even then, players will
only get the most powerful shells
if they are trailing in the race.
Even in a cutthroat RTS, a player
can only attack after first building
a barracks, training troops, and
finally moving them into position.
If you are careful with how you
allow your players to interact with
each other, you can minimize the
negative emotions they experience.

We can see this by comparing
two games with similar themes
and rules and examining how
dramatically different they
feel depending on what sort of
interaction is allowed. For example,
Travian and EmpirEs & alliEs are
similar asynchronous strategy
games played over months of
real time, and are centered on
developing your military and
attacking your enemies. However,
an important difference separates
these two games, when you
consider what happens when
players invade each other’s cities.

In Travian, attacks are strictly
zero-sum; resources captured
by the attacker are taken from
the defender’s stockpile. In

EmpirEs & alliEs, however,
combat is actually positive-sum;
the resources captured by the
attacker are conjured from nothing.
Furthermore, while units that die in
Travian are removed from the game,
defending units in EmpirEs always
stay alive, even after a defeat.

EmpirEs quietly belies players’
expectations for combat (that a
victory requires a defeat) and this
design choice pays off by making
the game more accessible and less
emotionally draining. In contrast,
Travian uses the traditional
approach that one player’s gain
requires another player’s loss;
accordingly, this design choice
creates a nasty world full of brutish
players with short tempers.

Many designers instinctively
assume that conflict must be zero-
sum, but this prejudice may be
keeping their games from reaching
a larger audience. The emotions
players experience during a game
are real enough, so a mechanic that
requires at least some players to
suffer should be used carefully.

Adding the positives
» Sometimes, alternate solutions
are blindingly simple. In the board

game 7 Wonders, players compete
along multiple axes by earning
victory points for science, civics,
buildings, wealth, and military.
The default way to implement
military in such a game would be
to allow players who invest in an
army to attack other players’ units,
buildings, or resources. 7 Wonders,
however, employs a very different
approach.

The game is split into three
epochs, and at the end of each
epoch, players with the largest
armies receive positive points
while the other players receive
negative points. Furthermore, the
total point distribution is actually
positive-sum, so that losing combat
does not hurt a player as much
as winning combat helps. Since
a strong military cannot interfere
with your opponent’s ability
to progress and win with their
preferred axis, the military strategy
does not drown out all the others
and is appropriately balanced.

Indeed, the spirit of positive-
sum gameplay can benefit other
aspects of game design. puzzlE
QuEsT, for example, avoids a manual
save system by ensuring every
combat is positive-sum; players can

never lose an item during combat
and will always gain at least a little
gold and experience from each
battle. Thus, a player is always
better off after combat, whether
a win or a loss, so the game can
constantly auto-save into a single
slot. This feature, which would be
hardcore if paired with a traditional
zero-sum design, instead removes
the need for a load/save system,
which can be a barrier to entry for
new players, thereby expanding the
game’s potential reach.

Ultimately, zero-sum
mechanics are still a powerful
tool for game designers as they
can unlock primal emotions.
Sometimes, allowing players to
destroy each other is exactly
what a game needs. However,
not all conflict need be zero-sum,
especially since that design choice
has significant disadvantages.
Losers need not suffer so that
winners can triumph.

soren johnson was the co-designer

of Civilization 3 and the lead designer of

Civilization 4. He is a member of the GDC

Advisory Board, and his thoughts on game

design can be found at www.designer-

notes.com.

One of the
defining traits of the

Eurogame movement
(epitomized by

games like Ticket to
Ride and Settlers of

Catan) is eschewing
such direct, zero-

sum player conflict
in favor of limited,

indirect interaction
that will not destroy a

player’s progress. Catan Online WOrld.

http://www.designer-notes.com
http://www.designer-notes.com
http://WWW.GDMAG.COM

http://www.gdconf.com

WWW.GDMAG.COM 45

THE BUSINESS // KIM PALLISTER

ME OF LITTLE FAITH
SURE CHANGE IS CONSTANT...BUT WHAT IF WHAT'S CHANGING IS THE RULES?

/// I agree to a point that this model describes
the effect at work in the market. I also agree
that mobile devices meet gaming needs for
most would-be portable console buyers, so
that market is in danger. I disagree that mobile
devices will be able to equal even the current
generation of home consoles in performance—
screenshots of tablet games may look close to
console titles, but play those games for a few
minutes and you’ll see they’re limited compared
to any triple-A game.

So it seems I don’t disagree with the “what”
or “how” in Cousins' argument, just the “when.”
And it was in looking at the question of “when”
that I realized Christensen’s model breaks, and
in the process came to lose faith in some of my
fundamental beliefs about the rules that govern
how the industry functions. In order to explain
myself, I have to first explain a pair of other
theories, both coined by Geoffrey Moore.

Moore is known for his “Chasm Theory” (see
Figure 2), in which he built upon the Technology
Adoption Life Cycle developed by Everett Rogers
that explains how technologies come to market.
Rogers’s life cycle describes how innovators
create new technologies, then early adopters
pick them up, and then they finally move into
the mainstream. Moore observed that there is a
“chasm” between early adoption and mainstream
acceptance, and many innovations (like the Apple
Newton and the Laserdisc) never made the leap.

The second theory is from Moore’s book
Inside the Tornado, where he describes a
strategy for crossing the chasm with a deep
vertical integration of a technology that “just
works” by a single vendor. The triumph of the
iPod over other early MP3 players would be a
textbook example.

According to Moore, once the mainstream has
adopted a technology, the vertically integrated
model begins to lose its luster. As consumers
demand choice in features, price, performance,
colors, and so on, the market for a technology
will shift to a horizontally structured open market
in which numerous vendors compete. PCs are a
classic example, as are automobiles.

In this model, an open market
innovates, then a single vertically,
integrated solution emerges to push one
of these innovations into the mainstream,
and then the horizontal vendors re-emerge
to spin the now-mainstream product into
a few different versions to cater to the
demand for variety. One can see variations
of this model in the rise of 3D games (from
the PC, to the PlayStation, to basically all
platforms) or Internet connected games
(from the PC, to the Xbox, then back to
evolve in the PC again in areas like social).

While my day job lies to the
“horizontal-favoring” side of the market,
I personally believe the model to be
symbiotic—both sides serve equally
important roles. Lately though, I’m not
as steadfast in my faith. For one thing, as
technologies grow more complex, the “flip
to horizontal” process takes longer. At the
same time, consumers have an insatiable
appetite for novelty and the vertically-
integrated players seem to be delivering
it in waves.

This may seem good for consumers
at first, but in the long run an imbalanced
symbiotic relationship can hurt everybody.
In this case, it means that the closed
verticals (console manufacturers) dictate
how developers innovate. Imagine trying to
convince Sony or Microsoft to try a Free-To-
Play game without the model first proving
that it works on the PC. Ultimately, I worry
that a single vendor innovating–rather than
a horizontal market of many vendors–may
innovate slowly or take a detour too far in the
wrong direction.

Back to Ben Cousins' talk: There are two
factors that could disrupt the game industry’s
current pattern. The first is whether the
industry will continue the same innovation
back-and-forth between open and closed
markets at the same rate we’ve seen over
the past two decades. This will determine the
slope of the "sustaining innovation" in Figure 1.

The second point is whether developers will
be free to build fantastic games that consumers
want to buy. This will determine the size of the
market at each level of requirements shown
in figure 1, as well as whether the "game
requirements" line themselves move up in large
steps. I believe strongly that developers have
the ability to do so, but only if not locked down
by rules from the platforms they develop on. I
also still believe that the market will continue
to evolve through the open/closed symbiosis...
though I sometimes have my fingers crossed.

KIM PALLISTER works at Intel doing game industry

forecasting and requirements planning. When not prepping

the world for super-cool hardware, he blogs at www.

kimpallister.com. His views in this column are his and do

not reflect those of his employer.

WHAT HAPPENS WHEN THE CONSOLE CYCLE AS WE KNOW IT SOON COME TO AN END? That was the theme of one of my favorite talks
at this year’s GDC—“When The Consoles Die, What Comes Next?” by Ben Cousins. Though I disagreed with the main conclusion,
he provoked a line of thinking that has shaken my faith in the current model of platform innovation. Cousins asserted that the
“good enough” gaming capabilities provided by phones and tablets were an example of Clayton Christensen’s model of “Disruptive
Innovation," and would grow to replace all dedicated-purpose gaming platforms (see Figure 1).

FIGURE 1: Disruptive Innovation and Dedicated Gaming
Platforms.

FIGURE 2: Technology Adoption Life Cycle and the
"chasm".

ME OF LITTLE FAITH

http://www.kimpallister.com
http://WWW.GDMAG.COM
http://www.kimpallister.com

GAME DEVELOPER | APRIL 201246

 HI R E T H E R I GH T P E O PL E

Building an effective team starts
with hiring the right people. They
need to form a solid team, together
with you as the lead.

1: Be on the lookout for young
talent.
Years ago, when we were still a
startup, we had no choice but to
hire recent graduates because
we didn’t have the funds or the
company image to attract senior
talent from the industry. This wasn’t
really a problem, though. When we
combined them with a handful of
industry veterans, they worked out
very well. Young people are often
flexible and eager to learn new
things, and they adapt and merge
easily into a company. Even though
we can now attract senior talent
with greater ease, we’ve begun to
doubt whether hiring expensive
seniors is more beneficial than
investing in young talent.

2: Communication skills are just
as important as technical skills.
A candidate with great technical skills
can’t help you if they cannot cooperate
with your team members, share your
knowledge, or communicate properly
with artists and designers. Above
anything, I believe game development
is about teamwork, and I value open-
mindedness, communication skills,
and teamwork as much as I value
technical expertise.

3: Keep your standards up.
Sometimes you will need to hire
a lot of people very quickly. It is
tempting to be less picky because
you need warm bodies to fill those
empty seats. Every hire is intended
as a long-term investment. Having
people in the team that are not up
to par is going to cost the company
much more in the long run than it
will benefit you in the short term.

4: An interview is not a tribute
to your awesomeness.
As an interviewer, you are playing
a home game—the interview is

in your company, you’re asking
the questions, and you’re sitting
across from someone who wants
to impress you enough to offer
them a job. Needless to say, you’re
in a pretty powerful situation, and
it may be tempting to ask difficult
questions and showcase all your
knowledge.

Not only can this be
intimidating, it doesn’t actually
help you find out whether the
candidate is competent enough
to meet your standards. I
personally realized I was asking
way too difficult questions
during my the interview
process. Once I toned down
the difficulty of the questions
so the candidates felt more at
ease, I found that I didn't have
to ask a hard question to find
out whether a potential hire is
competent enough. For example,
I started one interview with a
simple question (“Can you tell
me something about smart
pointers?”) and the interviewee
discussed all different kinds of
smart pointers (including pros
and cons and implementation
details). That was all the
information I needed to tell that
he was excellent with C++. For
all candidates I interviewed, the
top talent was spotted within
five minutes, and it had very
little to do with the difficulty
level of the question—it was
always about the response.

5: What you see is what you get.
In the beginning when I was
conducting interviews with
candidates, I thought that peculiar
behavior of those candidates during
the interviews would probably be the
result of being in an interview. After
all, people get nervous for interviews
and say silly things. I thought those
silly things would be much less
apparent once they were hired. I was
wrong. In practice, I have found the
interviews actually do give a good
impression of someone’s personality.

S H A P E T H E T E A M

6: Your company only gets one
first impression.
A new employee is like a blank
sheet of paper—you only have one
opportunity to write on it. Thier
first weeks are your opportunity
to teach employees the company’s
culture and workflow without
prejudice. Also, find the right
person from your team to mentor
your new hire properly, and you
can make sure they get off to a
good start with all the information
they need to do their job. For
example, if you teach a new
employee your company’s writing
style guide on the first day, he’ll be
able to pick up the new style faster
than he would if you sprung it on
him a few weeks down the line.

7: Performance reviews are key
Many of the candidates that you

13 WAYS TO BE A BETTER
LEAD PROGRAMMER
TIPS FOR HIRING, TRAINING, AND LEADING YOUR PROGRAMMING TEAM

Long, long ago, back when my coworkers and I were working on an Xbox game, we had a brilliant programmer working on our
rendering. Every day, he would come in early, say "Hello", put on his headphones, and would not say another word except Bye on
his way out. All was well until one Friday afternoon, when he said “Bye,” followed by “I’m leaving the company,” and we never saw
him again. Nobody had a clue how the code worked, we couldn’t even trace his whereabouts, and eventually all his code was thrown
out and the renderer was rewritten. (True story.) This is just one of many war stories that could have been avoided with the right
foresight. Read on for thirteen tips about hiring, training, and managing other programmers that just might save your game from
missing your ship date.

13 WAYS TO BE A BETTER
LEAD PROGRAMMER

THE INNER PRODUCT // JELLE VAN DER BEEK

www.gdmag.com 47

hire will be diamonds in the
rough, or they need to adapt to
the new company they work for.
In my opinion, the most effective
way to improve someone’s
performance is by having periodic
performance reviews. This is
especially true if the performance
score is tied to a raise. This is just
basic human behavior: If there
are little or no consequences
to either good or bad behavior,
people will hardly change.

8: When in doubt, don’t move
forward.
When someone’s contract expires,
be absolutely sure that you want
to continue with this person. Ask
yourself: “In a different company,
would I hire this person again if he
applied?” This question keeps the
discussion clean and objective.
If the answer is anything less
than an emphatic “Yes!” end the
working relationship. It’s a hard
decision, but it’s very important to
keep the team level up.

g u i d e t h e t e a m

9: Keep one step ahead of your
team.
“Bring me a stone," a man said
to his servant. When the servant
returned, the man said: “This is
the wrong stone. Bring me another
stone.” This is a classic example
of leading from behind—and it’s
a good way to waste your team’s
time. It’s your job to show your
team your vision and end goal. The
specifics of how to reach that end
goal, however, need to be figured
out together with the team,
especially for tasks that take
several weeks to complete.
I start by making sure I have
a good global idea of the task
at hand, even if it takes hours,
or days, to get there. I need to
have a clear big-picture image
of how our current task relates
to the other big-picture parts
of our technology. Next, I try to
come up with a basic starting
idea for completing the task and
throw that idea to the team, and
we work together to improve it.
That’s great! The initial idea is only
meant as a starting point for a
healthy discussion that keeps the

end goal clear.
The end result is always a

superior solution that is supported
by the team members and keeps
the technology coherent. All
you need to do from that point
onward is keep regular contact
with the team. There may be
small adjustments to the idea,
but it takes little time and effort
because you all started out on
the same page. The same can
be applied to more territories,
for example in the case of code
reviews. Code reviews happen
when someone already finished
a job—a job that he or she
takes pride in. Pointing out the
mistakes afterward does not feel
very rewarding for anyone. Try
communicating the important
code decisions early on. I have
found pair programming to be far
superior to code reviews, as I will
get to later as well.

10: Think about how you spend
your time.
 I divide my tasks into three major
categories: overhead (meetings
and updating plans), coaching,
and programming. I personally
try to aim roughly for a 40/30/30
division of my time across these.
Here’s why:

Overhead is important. As
a lead programmer, everybody
wants a piece of your time. You
will be asked to attend every
meeting in the company, and
your day will become very
fragmented, so make sure
you’re only in the meetings
you absolutely have to attend.
I have seen many managers
running from meeting to meeting,
with no time for the coaching
and programming/art/design
aspects of their job. That’s why
you need to keep your eye on
the ball yourself. Your primary
responsibility is (probably) not
to sit in meetings all day, and if
you’re never around to make the
calls on important issues, your
team members will get frustrated.

You need to be programming.
Personally speaking, to be a
successful lead programmer, I
am convinced that you need to
spend a serious amount of time
in programming yourself. How

can you give advice to the team
without good insight into the
work at hand? I see a general
pattern that managers lose their
credibility once they become too
disconnected from the actual work
at hand. Besides, technology is
shifting so fast, you need to keep
up with the knowledge of your
team members!

Your team needs your
coaching. The effectiveness of
your team degrades easily if
you’re not around to make the
important decisions.

11: Aim for collective code
ownership.
How often have you had one
person who knew everything
about a large part of the code?
What happens when they get
sick or leave? Producers need
the freedom to shift tasks
among people. For almost any
task, two or three people in the
team should be able to pick the
tasks up—not just for the safety
of the project, but also because
you should have multiple people
thinking with each other about
how to approach problems.
That’s where shared ownership
really shines.

Of course, I’m not saying
anything new—extreme
programming is all about those
issues. I am a big fan of pair
programming and we use this
extensively, particularly when
new core systems are being
designed. Even when people
leave the company, they don’t
leave a big gap behind. There’s
also more room for the producers
to plan our time, and far more
team collaboration. The main
problem with pair programming
is that you need to find people
who are good communicators
and open to these kind of
practices—which can only work
if your workflow matches your
hiring policy.

12: Create a safe and open
environment.
I had the pleasure of attending
Siggraph 2008, where Ed Catmull
did the keynote speech. He talked
about leadership at Pixar, and
it was extremely inspiring. He

talked about creating an open
environment, and how important
it was to share ideas and make
sure that the environment was
safe for everyone, so that nobody
would hold back. Make sure people
are comfortable, and that they are
sharing ideas, even if the ideas
aren’t finished. If people aren’t
harshly judged by intermediate
results, they open up and you get
the chance to think together about
the problem.

13: Avoid meeting rooms.
Any time a meeting is planned,
there’s overhead involved. I
habitually refill my cup of tea
before a meeting, and then I
find my notebook and walk to
the meeting room, sit down,
and wait for people. If there’s a
meeting planned in 10 minutes, I
fill up the time until the meeting
starts. So I avoid meeting rooms
whenever I can. If possible, I
solve issues at someone’s desk.
I fight to have the daily Scrum
standup by the team’s desks
that people only need to stand
up and sit down again. Also, a
personal signature of mine is to
have a big whiteboard on the wall.
Maybe it’s because I come from a
family of teachers, but somehow
there’s nothing like standing with
a couple of technicians in front of
a whiteboard, drawing schemes
together. You don’t have to meet
in the meeting room!

Follow your own lead. Now,
there are many roads to Rome,
and what I presented here is only
one such way. I personally enjoy
watching chef Gordon Ramsay
on TV. He has perhaps one of the
most radically different ways
to manage a team. He’s not just
hierarchical—he’s downright
rude. But the proof of his effective
leadership is his 13 Michelin
stars. Whatever the flavor, it’s
your job to make sure that work
is done well and on time while
minimizing company risks and
making people happy.

JELLE VANN DER BEEK has been in the game

industry for 15 years. He is now lead engine and

tools programmer at Vanguard Games and the

author of memory analysis tool Heap Inspector

(www.heapinspector.com)

http://www.heapinspector.com
http://WWW.GDMAG.COM

http://bit.ly/gdmag_iOS
http://gdmag.com/subscribe

Good JoB Hired someone interesting? Let us know at editors@gdmag.com!

H i r i n g n e w s a n d i n t e r v i e w s

game developer | april 201249

Com2Korea
Ben Sherman moveS from 505 GameS to Com2uS

whowentwhere

new studios

Brandon Sheffield: What has been the best
part of working abroad? The worst?
Ben Sherman: The best part of working
abroad has been the “abroad” part. Travel, new
experiences, consistently novel or unfamiliar
stimulation, and meeting people from wholly
different backgrounds has made the last half
year very pleasant. You end up missing out on
things like live-tweeting SXSW or arguing with
your peers over whether video games have
finally gone from “brain slime” to “art brain
slime,” but you gain new ways of attacking old
problems, interesting perspectives on creative
endeavors, new personality-building challenges
in getting people to buy into your vision,
surprise trips to Thailand, and soju hangovers.

The worst part of working abroad is a
low level hum of alienation that is constantly
with you. Korea is a very culturally and
ethnically homogenous place, so while Seoul
is very cosmopolitan and the people are very
polite, and—dare I say—glad to have me
around, I’ve more than once had a child cry at
the sight of me. Being The Other is hard, bro.

What would you say the main differences are
being a producer in the U.S. and in Korea?
Being an American producer/designer in Korea
is a bit like having social super powers. I am
impervious to (i.e. mostly oblivious of) certain
hierarchical mores, so I get more say than a lot
of my Korean peers. Often when it is polite to
shut up and accept what a superior wants to do,
I keep talking because I have not been brought
up to realize that I am not supposed to.

There are large cultural differences
between the United States and Korea in
expectations for creativity and professionalism.

In America, you are expected to have a loud
voice and push for your point of view; always
being on the border of politeness is okay
so long as you are vehemently arguing that
your design is superior to the other guy’s.
Koreans do not often get into passionate rip-
roaring arguments over the minutia of a UI
design because they have a much stronger
we’re-all-in-this-together ethic. Everybody’s
idea should be incorporated if possible.
Design by committee is held up as an ideal,
which is exactly the opposite of the American
ideal of the autocratic creative auteur.

What suggestions would you have for
someone who is looking at game dev in
another country?
Expect exactly the same sort of creative
challenges and professional challenges,
but expect the professional challenges to
have a very alien slant on them. You come
into the office and one of the artists has
a yellow exclamation point over his head.
“Sweet,” you think to yourself, “leg two of
the quest.” You right click on his face and he
says to you (in Korean, duh) “With the intent
of making the product better, I challenge you
to criticize my work without being allowed
to criticize my work because it would not
be professionally courteous.” This is not
an exaggeration. I have seen this happen. I
have seen one developer right-click another
developer’s face in real life and he is my
inspiration for becoming fluent in Korean.

I have found it effective in this
situation to physically mock up a prototype
showing how one concept, while not the
perfect solution, is preferable to another
concept. Sometimes translation is difficult.
Sometimes there are just huge cultural
differences. But having something to play
and realizing that it is more fun or easier
to use is about as close to robust scientific
method as you can get. Anybody looking
to do game development where they do
not have cultural mastery should learn
to program a computer. Without shared
language, prototyping is the modern
equivalent of painting on a cave wall before
the hunt.

P i C k i n G u P y o u r l i f e a n d m o v i n G t o a n o t h e r C o u n t r y i S a d a u n t i n G P r o S P e C t , B u t
t h a t ’ S e x a C t ly w h a t B e n S h e r m a n d i d , u P o n h i S m o v e f r o m B e i n G a u S - B a S e d P u B l i S h e r
P r o d u C e r a t 5 0 5 G a m e S t o a m o r e h a n d S - o n d e S i G n e r / P r o d u C e r h y B r i d a t k o r e a n
S m a r t P h o n e G a m e d e v e l o P e r C o m 2 u S

Bullfrog and Lionhead Studios co-founder
Peter Molyneux has announced that he
will leave Lionhead Studios once Fable:
The Journey is complete for a new game
company called 22 Cans, which was
recently founded by former Lionhead CTO
Tim Rance.

Phil Harrison has left his post as head of
Sony Worldwide Studios to join Microsoft
as the corporate vice president of its
Interactive Entertainment Business
in order to oversee its European game
development efforts.

Arjan Brussee, co-founder of Killzone
developer Guerilla Games, has left the
company to join DeaD Space developer EA
subsidiary Visceral Games.

ciTyVille lead designer Michael
McCormick left Zynga for San Francisco-
based social games startup Idle Games.
Idle Games was started in 2009 by
Playdom co-founder Rick Thompson, and
recently raised $10 million in its second
round of funding.

Bungie co-founder Alex Seropian has
started a core-focused mobile studio
called Industrial Toys, along with Brent
Pease (Bungie, DreamWorks Animation)
and Tim Harris (Seven Lights).

Tomb raiDer veterans Anna Marsh and
Sarah van Rompaey founded a new studio
called Lady Shotgun Games, and plan to
announce an iOS game as their debut title
in summer 2012.

EA Tiburon staffers Jerry Phaneuf (former
technical art director) and Volga Aksoy
(former lead software engineer) have
started a two-man development studio
aimed at the high-end PC gaming market
called PixelFoundry. PixelFoundry’s first
game is a space-based real-time strategy
game titled blacKSpace.

Fable creators Dene and Simon Carter,
along with fellow Lionhead Studios
members John McCormack, Guillaume
Portes, and Jeremie Texier, have formed a
new UK-based development studio called
Another Place Productions.

mailto:editors@gdmag.com

50 APRIL 2012 | GAME DEVELOPER

http://gdmag.com/subscribe
http://www.gamasutra.com

JESSE HARLIN // AURAL FIXATION

WWW.GDMAG.COM 51

RENAISSANCE, MAN
» Since the first game
programmers and electrical
engineers began probing
circuit boards in an attempt
to re-create realism through
sound, the task of game
audio has often ended up
in the hands of a solitary
figure wearing many hats:
game designer, programmer,
artist, and, finally, musician
and sound designer. As the
scope of games grew, each
discipline found different

ways to further specialize
in specific facets of the
field. Our industry began
to grow a broad range of
possible specialties enabling
passionate people to dig
deep and carve out a career
focusing on a single piece of
the interactive Fabergé egg
that is a video game.

But with the emergence
of casual/mobile/social
gaming came a renaissance
of single visionary
developers or small teams
who had to apply themselves
across multiple disciplines—
just like the good (or bad)

old days. As this new world
grows, we will see room
for people to create new
specialties focusing on new
ways of engaging the player
through their mobile device
or social networks. And the
cycle will continue.

KNOW YOUR ROLE
» So, is the job
market diversifying
or consolidating? The
answer is yes! Now is the
perfect time for anyone

entertaining a career (or a
career change) in games
to reach to the heart of
their desires and, to quote
Joseph Campbell, “Follow
your bliss.” There is a
place for your passion if
you believe in yourself
and are willing to work at
your dream, whether you
want to pursue a particular
specialty or learn how to
do it all. But it’s normal
to worry. Maybe you’re in
school wondering whether
there will be a job waiting
for you after graduation, or
you're stuck working a job

that doesn’t cultivate your
creative needs.

So, should you focus on
some obscure art that holds
a gravitational pull over your
particular pleasure? You
could specialize in creature
vocalizations, for example, or
script preparation, or physics
audio implementation,
or vehicle recording, or
chiptune composition,
interactive music editing,
branching dialogue systems
design, voice processing,
DSP programming, user
interface design for audio
tools—just to name a few. I
know people working within
these specific capacities
throughout the industry,
but you’ll never find these
jobs posted. The way you
get these jobs is by being
the one whose name is
synonymous with the
subject. To get there, you
need to dig deep into the well
of knowledge.

You’ll never know
everything, but it’s not
about knowing it all. It’s
about being involved in
the conversation and
contributing to the outcome
of something that you care
deeply about and satisfying
your inner geek in the
process. Find what it is that
you care deeply about and
start playing a role.

FORKS IN THE ROAD
» What happens if you find
yourself at the beginning
of the long road ahead and,
as Grandaddy put it in- “The
Group Who Couldn’t Say,"
“The sprinklers that come on

at 3 a.m. sound like crowds
of people asking you, ‘Are
you happy what you’re
doing?’” How do you find out
what you want to focus on
when you’re busy worried
about the path not taken?

The first thing you
do, is you do. You do
something, anything, and
everything that will put you
in a position to succeed
and fail, and then fail some
more until you succeed
at achieving some just-
out-of-sight goal that will
help you further down the
road. You’ll scrub through
forums seeking knowledge,
rubbing shoulders with your
fellow seekers of game-
audio insight. There will be
many along the way who
will offer their story and
regale you with tales of
battles long since past and
if you’re wise, you’ll listen
and learn from some of the
best that have gone before
you, because yesterday’s
triumph often comes back
around as tomorrow’s
solution.

THE SEA
» You may find you’re the
only person who cares
about the audio for a freshly
minted game idea, and
you’re ready to take on the
world. It hasn’t even dawned
on the rest of the team that
sound could be anything
more than squeaky bleeps
and rotund bloops. You’re
alone in a sea of potential,
with yourself to rely on for
everything coming out of
the speakers.

You strap on the headset
mic, vocalize some gnarly
waveforms, edit them into
shape, and drop some
science at the next online
team meet-up. With a little
convincing, the programmers
are onboard to wire things
in dynamically so they
react to player input in an
orchestrated symphony
of skronking interactivity.
Your advocacy for audio has
boosted your teammates’
expectations from a “few
well-placed sounds” to a
“breathing environment of
sonic density.”

Before you know it,
you’re investing all of your
time toward creating a style
guide and design document
for the ever-expanding scope
of audio. The content lists
are growing daily and you
wonder if you’ll ever find
the time to record half of
these sounds or design that
steampunk machinery—and
let’s not get started on the
systems you need to build
to enable them to play back
appropriately. If only you
knew someone who could
help out who knew a thing
or two about building a
steampunk soundscape,
perhaps.

And so the cycle
continues.
“Look out honey, 'cause I’m
using technology.” — Iggy
and the Stooges

DAMIAN KASTBAUER is freelance

technical sound design miscreant

who can be found expounding on

game audio at LostChocolateLab.

com and on twitter @LostLab.

The evolution and reinvention of modern game development constantly reminds me of '80s rock band
Ratt’s classic lyric: “Round and round, what comes around goes around." We’re seeing the game audio world
continually fragment and consolidate job titles and disciplines throughout the expansion and contraction of
development teams. In an effort to understand some of the ways things have changed, let’s take a fresh look at
how they’ve also managed to stay the same.

DAMIAN KASTBAUER // AURAL FIXATION

KNOWING A THING, OR TWOKNOWING A THING, OR TWO
CAREER FRAGMENTATION AT THE TURN OF THE GENERATION

http://WWW.GDMAG.COM
http://LostChocolateLab.com
http://LostChocolateLab.com

Ne w s aNd iNformatioN about the Game de velopers CoNfereNCe® serie s of e veNts www.GdCoNf.Com

GDC 2012 hits reCorD attenDanCe,
announCes 2013 Dates, awarD winners

game developer | aprIl 201252

the 2012 Game Developers Conference hosted a record-breaking 22,500 game industry professionals last week at the Moscone
Center in san Francisco, a 17 percent increase in attendance over the previous year’s event.

Following the success of the show, organizers have announced that GDC 2013 will return to the Moscone Convention Center
in san Francisco from Monday, March 25 to Friday, March 29, 2013, with a call for lecture submissions to open this summer.

GDC 2012 also hosted the 14th annual independent Games Festival and the 12th annual Game Developers Choice awards
(GDCas) on the evening of March 7th. Montreal-based developer Polytron Corporation earned the seumus Mcnally award for Best
independent Game at the iGF and the $30,000 grand prize with its unique perspective-shifting platformer, Fez. Meanwhile, at
the Game Developers Choice awards, Bethesda Game studios’s epic fantasy adventure game, The elder ScrollS V: Skyrim took
home Game of the Year.

best studeNt Game

Way
(Carnegie Mellon university,
entertainment technology
Center)

teChNiCal exCelleNCe

anTichamber
(alexander Bruce)

exCelleNCe iN desiGN

Spelunky
(Mossmouth)

best mobile Game

beaT Sneak bandiT
(simogo)

exCelleNCe iN visual art

dear eSTher
(thechineseroom)

exCelleNCe iN audio

boTanicula
(amanita Design)

audieNCe award

Frozen SynapSe
(Mode 7 Games)

miCrosoft xbla award

Super T.i.m.e. Force
(Capy)

Nuovo award

SToryTeller
(Daniel Benmergui)

seumas mCNally GraNd prize

Fez
(Polytron)

best audio

porTal 2
(Valve)

best debut

baSTion
(supergiant Games)

best Narrative

porTal 2
(Valve)

best visual arts

uncharTed 3
(naughty Dog)

best dowNloadable Game

baSTion
(supergiant Games)

best Game desiGN

porTal 2
(Valve)

best teChNoloGy

baTTleField 3
(DiCe)

best mobile haNdheld Game

SuperbroTherS: SWord &
SWorcery ep
(superbrothers and Capy)

iNNovatioN award

Johann SebaSTian JouST
(Die Gute Fabrik)

2012 pioNeer award

Dave theurer (miSSile command,
TempeST, and i, roboT)

Game of the year

The elder ScrollS V: Skyrim
(Bethesda)

lifetime aChievemeNt award

warren spector

Battlefield 3.

Portal 2.

http://WWW.GDCONF.COM

S T U D E N T g a m E P R O F I L E S

EducatEd Play!

Tom Curtis: What were some
of your biggest influences on
the project? I’m guessing Tron:
Legacy played a pretty big role?
Kyle Holdwick (executive
producer, gameplay
programming, obstacle logic):
Overall, we were definitely
inspired by a number of '90s
arcade racing games like Rush
and hydRo ThundeR. Visually,
we always wanted to go with a
futuristic cyber-based style, and
we certainly did look at Tron:
Legacy for reference. Musically,
we were influenced by retro
game music and the influx of the
modern electro house movement.

TC: The game is surprisingly full-
featured for a student project
(with achievements, multiple
modes, and so forth). What was
your strategy for implementing all
of these various systems on time?
Jordan Hemenway (audio
director, music composition,
sound design, web site
development): Scope was
definitely a challenge for the
team, but we did our best to
prioritize between needs and
wants. Oftentimes during
development it seemed like

there was a monumental
list of features waiting to be
implemented. Despite this, we
made sure the foundation for
new features and mechanics
was well laid for us to build
upon. Thanks to that, we ended
up being largely content-driven
during the last couple months of
development, adding as much
music, levels, and polish into the
game as we could.

KH: In many ways we took
the development of niTRonic
Rush day by day, allowing our
inspirations at the moment
to guide us. This allowed for
our design methodology to
be very flexible and natural.
When we would have a design
meeting, we would look at
what our playtesters wanted
and figure out what we wanted
to work on together. This
approach allowed for a number
of creative decisions to be
made by many different team
members throughout the entire
development cycle of the game.
Since our strategy was to be
self-driven, motivation was
usually high and finishing tasks
on time was easier.

TC: You worked on the game
for 17 months, correct? Is
that sort of development
cycle typical for other student
projects at DigiPen?
J H : Usually a DigiPen game project
takes two semesters (fall and
spring) with a possible additional
semester during the summer
to add polish for competitions.
Nitronic Rush’s development,
however, lasted five semesters in
total (from May 2010 to November
2011).

We actually started a
semester early to build tech for
a shared architecture called
Superdyne (used in another
game Kyle and I worked on called
Solstice), and due to teacher
encouragement we continued
the project through the end of
the year. It’s definitely atypical
for a DigiPen game, but with how
ambitious the design was I’m
glad we were able to see it to
the end.

TC: What were the biggest
challenges during development?
Andy Kibler (game designer,
level design): Physics is by far
one of the hardest elements of
a racing game. The car physics
have to be solid in order for
anything to happen on-screen.
Jason Nollan did a great job, and
it definitely shows.

JH: In terms of the overall team, I
agree that the physics and overall
car controls were probably the
most challenging problems we
had to solve. Otherwise, I’d say
that having a polished beginning
and ending to every piece of
the project was definitely a
challenge. Oftentimes we’d get
stuck working on the core part
of a level, menu, or story mode
arc while leaving the loose ends
unpolished until later on.

TC: If you were to go back and
do one thing differently on this
project, what would it be?
KH: If we were to go back and
change some things, we would
definitely add both competitive
and cooperative multiplayer to
the game. We would add more
vehicles with a broader range of
abilities. We would also add more
levels with more of an emphasis
on wall riding and flying.

AK: I should have made more
levels for the game. I know I made
quite a few, but I know I could
have made more!

JH: Fleshing out the story quite a
bit more would be have been really
interesting. Everyone had visions
of a fairly grandiose story early on
in development, but it wasn’t until
the very end that we created the
cutscenes and started laying out
the actual story within the game.
If we had more time, it would have
been great to spend some proper
time creating a more elaborate
story arc throughout the game’s
story mode.

NITRONIc RUSh
NitroNic rush is a bit of aN oddity wheN it comes to driviNg games. it’s Not about raciNg other drivers, but simply about makiNg it to the fiNish liNe iN oNe piece. the

game throws players iNto a vibraNt, Tron-like world where they must avoid traps, speed betweeN obstacles, aNd eveN use a set of deployable wiNgs to fly across

the track. the game’s uNique desigN aNd implemeNtatioN earNed it aN award at this year’s iNdie game challeNge, aNd aN hoNorable meNtioN at igf 2012. we chatted

with the digipeN studeNt team behiNd the project to learN about its productioN aNd eveNtual success.

h t t p : / / n i t r o n i c - r u s h . c o m

www.gdmag.com 53

Developer/Publisher: Team Nitronic
Release Date: 11/11/11
Platform: Windows PC
Number of Developers: 11
Length of Development: 17 months
Budget: $0
Lines of Code: 132,551
Fun fact:
Two members of Team Nitronic are
actually twin brothers, andrew
Nollan and Jason Nollan.

http://nitronic-rush.com
http://www.gdmag.com

©
 2

01
2

Fu
ll

Sa
il,

 L
LC

3300 University Boulevard • Winter Park, FL

Game Art

Game Design

DEGREE PROGRAMS IN:

800.226.7625

fullsail.edu

Game Development

Financial aid available for those who qualify • Career development assistance • Accredited University, ACCSC

To view detailed information regarding tuition, student outcomes, and related statistics,
please visit fullsail.edu/outcomes-and-statistics.

http://fullsail.edu/outcomes-and-statistics
http://fullsail.edu

Learn to create the future of games with an Associate’s Degree in Game

Create Game Art

*Length of program and start dates are dependent on course of study and degree option. For more information on our programs and their outcomes visit www.la� lm.edu/disclosures.
©2011 � e Los Angeles Film School. All rights reserved. � e term “� e Los Angeles Film School” and � e Los Angeles Film School logo are either service marks or registered service marks of � e Los Angeles Film School. Accredited by ACCSC©2011 � e Los Angeles Film School. All rights reserved. � e term “� e Los Angeles Film School” and � e Los Angeles Film School logo are either service marks or registered service marks of � e Los Angeles Film School. Accredited by ACCSC

Learn to create the future of games with an Associate’s Degree in Game

A.S. Degree in Game ProductionA.S. Degree inA.S. Degree inA.S. Degree in Game Production Game Production
Start Living The Dream!

800.406.7485

BLIZZARD ENTERTAINMENT26 & 27

E3 EXPO .34

EPIC GAMES . 6

FULL SAIL REAL WORLD EDUCATION 54

INTEL CORPORATION . 3

LOS ANGELES FILM SCHOOL .55

MAGIC PIXEL GAMES . 14

ONLIVE INC .C2

RAD GAME TOOLS .C4

VANCOUVER FILM SCHOOL .37

COMPANY NAME PAGE COMPANY NAME PAGE

ADVERTISER INDEX

gd Game Developer (ISSN 1073-922X) is published monthly by UBM LLC, 303 Second Street, Suite 900 South, South Tower, San Francisco,
CA 94107, (415) 947-6000. Please direct advertising and editorial inquiries to this address. Canadian Registered for GST as UBM LLC, GST No.
R13288078, Customer No. 2116057, Agreement No. 40011901. SUBSCRIPTION RATES: Subscription rate for the U.S. is $49.95 for twelve issues. Coun-
tries outside the U.S. must be prepaid in U.S. funds drawn on a U.S. bank or via credit card. Canada/Mexico: $59.95; all other countries: $69.95
(issues shipped via air delivery). Periodical postage paid at San Francisco, CA and additional mailing offices. POSTMASTER: Send address changes
to Game Developer, P.O. Box 1274, Skokie, IL 60076-8274. CUSTOMER SERVICE: For subscription orders and changes of address, call toll-free in
the U.S. (800) 250-2429 or fax (847) 647-5972. All other countries call (1) (847) 647-5928 or fax (1) (847) 647-5972. Send payments to gd Game
Developer, P.O. Box 1274, Skokie, IL 60076-8274. Call toll-free in the U.S./Canada (800) 444-4881 or fax (785) 838-7566. All other countries call (1)
(785) 841-1631 or fax (1) (785) 841-2624. Please remember to indicate gd Game Developer on any correspondence. All content, copyright gd Game
Developer magazine/UBM LLC, unless otherwise indicated. Don’t steal any of it.

>>
GET EDUCATED

55WWW.GDMAG.COM

http://www.lafilm.edu/disclosures
http://WWW.GDMAG.COM
http://www.designlafilm.com

ARRESTED DEVELOPMENT // MATTHEW WASTELAND

GAME DEVELOPER | XXXXX XXXX 56

QUARTERLY REPORT
PURSUANT TO SECTION 13 OR 15(D) OF THE SECURITIES EXCHANGE ACT OF 1934

K E E P I N G Y O U R D E V S I N L I N E
» Today, we’re going to discuss developers! You
know—those weird, difficult-to-control geeks
and nerds who actually create the games that
you sell in order to make money and have a
business.

First of all, let’s take a moment to ponder
those engines of profit for our companies
and agree with each other that they’re all
really flippin’ annoying! Always complaining
about your optional mandatory crunch time,
making noise about your brilliant marketing
spend decisions, and totally not meeting the
perfectly reasonable dates and budgets you
keep setting for them.

It’s a shame we need them around, but
much like the mold cultures that we tolerate in
order to eventually have fine wines and aromatic
cheeses, so too are game developers a slightly
icky but ultimately necessary part of what it
takes to rake in cash from your gamer audience.

That said, there are a lot of great techniques
you can use to keep your pesky crews happily
churning away on stuff to make you rich.

P R O M I S E T H E M R E W A R D S
» This is an easy one: Everyone will work hard
if they’re promised a beautiful, shining light at
the end of the tunnel. If you can spare the 10 or
15 minutes it takes to talk to your developers
once a year or so, remind them how amazing
and wonderful things are going to be after the
game (whatever game it is they’re making at
the moment) is done.

Of course, devs like to think they’re pretty
smart. They can do math and use computers
and so forth, so I’m sure at least one of them
will think they saw through the vagueness
of your words. What do you do if one of your
people asks for concrete information on what
those rewards will be?

This leads me to...

G A M I F Y Y O U R G A M E D E V E L O P E R S
» You pay your game designers to create
elaborate stages of badges, achievements,
and rewards that unlock as players stay loyal
to your branded experiences. As it turns out,
you can do the very same thing to your own
employees. Make ‘em stay at your company to
unlock tiers of revenue sharing, stock options,
and access to the executive bathroom (not
yours, of course—keep that one to yourself).

For as smart as these developers think
they are, somehow all the techniques of
gamification work just as well on them as they
do on your customers. Do what they do: Create

a reward schedule with smaller prizes (T-shirts,
cupcakes, or plastic goblets) more frequently
and larger prizes (their name on a piece of
metal somewhere in the studio) less frequently.
Do this enough and the real prize everyone
thought they were going for in the first place
will eventually fall by the wayside, fading into a
distant memory of a dream.

A N S W E R T H E I R Q U E S T I O N S (N O T
R E A L LY)
>>To create the impression that you are a
caring executive who listens to the concerns
of the team, you might open the floor of your
company meeting to questions once every
couple of years or so. Most people will ask

easy ones—“When’s the next company picnic,
because I can’t wait to hit Jared in the face
with a volleyball again, ha, ha, ha,” and the like.
But once again, some developers have to be
unnecessarily combative and unsportsmanlike
and will try to throw curveballs at you.

If some smartass works up the nerve to
ask a difficult question the next time you do a
company all-hands, it pays to be ready with a
good answer. Here’s a sample question:

“It just feels like we make
the same game over and
over. What about new IP or
incubating cool new game
concepts?”

And an answer: “We continually look at our
offerings in relation to the market to identify
and exploit what we believe could be viable
new initiatives to create entertaining new value
propositions for our customers. Since costs for
creating games have become so high in recent
times, our process of due diligence on new
intellectual properties must be consistently
balanced vis-à-vis our blah blah blah”— you
get the idea. You’re an executive—I bet you can
spout this all day without burning a calorie.

Another question: “Does our company have
a coherent strategy? Because from where I’m
sitting, I don’t see one.”

This is where you smile at the guy who
asked the question and IMPRINT FACE/VOICE
PATTERN INTO SUBDURAL IMPLANT. TRANSMIT
ENCRYPTED ID OF SOFT ASSET TO OVERWATCH
UNITS. MARK TARGET FOR TERMINATION
PROTOCOL ALPHA-7.

Oops, looks like it’s about time to wrap up...
See you next time!

I N C O N C L U S I O N
» Refer to the section titled Management’s
Discussion and Analysis of Financial Condition
and Results of Operations contained in Part II,
Item 7 of our annual report on Form 10-K for
the year ended December 31, 2011, for a more
complete discussion of our critical accounting
policies and estimates.

MATTHEW WASTELAND writes about games and game

development at his blog, Magical Wasteland (www.

magicalwasteland.com). Email him at mwasteland@

gdmag.com.

QUARTERLY REPORT
C A U T I O N A R Y S T A T E M E N T
This quarterly report on Form 10-Q contains, or incorporates
by reference, certain forward-looking statements within the
meaning of the Private Securities Litigation Reform Act of
1995. Such statements consist of any statement other than a
recitation of historical fact and include, but are not limited to....

Psst! Hey! Hey, you still with me? You are? Good! Now that
we got all the artists, designers, and other non businesspeople
to stop reading this, we can get started for real. Welcome to
your secret back-page column, video-game industry executive!
And our actual column title is:

APRIL 2012

http://www.magicalwasteland.com
mailto:mwasteland@gdmag.com
http://www.magicalwasteland.com
mailto:mwasteland@gdmag.com

http://www.gdceurope.com

http://www.radgametools.com

	Contents
	POSTMORTEM
	KINGDOMS OF AMALUR: RECKONING

	FEATURES
	11TH ANNUAL SALARY SURVEY
	FIRE, BLOOD, EXPLOSIONS
	NEEDS MORE BLUR

	DEPARTMENTS
	EDITORIAL- Game Plan
	NEWS- Heads Up Display
	REVIEW- Tool Box
	ART- Pixel Pusher
	DESIGN- Design of the Times
	BUSINESS- The Business
	PROGRAMMING- The Inner Product
	Career- Good Job
	Sound- Aural Fixation
	News- GDC News
	EDUCATION- Educated Play
	HUMOR- Arrested Development

