
T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E V O L 1 8 N O 4

A P R I L 2 0 1 1 I N S I D E : 1 0 T H A N N U A L S A L A R Y S U R V E Y

“In Firefall, we are creating a futuristic and fantastical world, but believability remains a
priority. If you cut corners when it comes to animation, you are betraying the vision of your
game. Morpheme lets us meet our high standards of quality while maintaining a very
efficient pipeline.”
Mark Kern, Founder and CEO of Red 5 Studios

www.naturalmotion.com

http://www.naturalmotion.com

www.gdmag.com 1

d E Pa R T m E N T S

	 2		 GAME	PLAN			By Brandon Sheffield [E D I T O R I A L]

Living Luminaries

	 4		 HEADS	UP	DISPLAY	 [N E w S]

G.A.N.G. Award winners, Vietnam curfews online games, and
IGF, Choice Award winners.

	
	29		 TOOL	BOX			By Tom Curtis [R E V I E w]

Report From The Show Floor: GDC 2011

	32		 THE	INNER	PRODUcT [P R O G R A M M I N G]

By Michael A. Carr, Noel Llopis, Anonymous Programmers
Programming Sins

	36		 PIXEL	PUSHER			By Steve Theodore	 [A R T]

The High Art of Games

	38		 DESIGN	Of	THE	TIMES			By Damion Schubert	 [D E S I G N]

A Player's Stories

	41		 AURAL	fIXATION			By Jesse Harlin	 [S O U N D]

Indie Audio Jonesing

	42	 THE	BUSINESS		By David Edery	 [B U S I N E S S]

Team Players

43		 GOOD	jOB!			By Brandon Sheffield	 [c A R E E R]

Tom Russo Q&A, Who Went Where, and New Studios

45		 EDUcATED		PLAY		By Jeffrey Fleming	 [E D U c A T I O N]

One Man Down's Solace

48		 ARRESTED	DEVELOPMENT			By Matthew Wasteland	 [H U M O R]

How To Annoy Your Producers!

P o S T m o R T E m

14 	 SUPER	MEAT	BOY
Super Meat Boy represents the work of two persons (plus a musician),
which went on to sell some 400,000 units on XBLA and PC worldwide.
Fighting through illness and fatigue, this is a story of success from a
team that urges you to "have fun" making your game.

By Edmund McMillen and Tommy Refenes

F E aT U R E S

7 	 10TH	ANNUAL	SALARY	SURVEY
Our popular survey is back, now in its 10th year of sharing the
average salaries of game developers worldwide across all disciplines
(though focusing on North America). Indies, for the second time, are
also reported herein.

By Ryan Newman and Brandon Sheffield

21 	 cREATOR	Of	wORLDS
Minecraft-like procedural terrain generation is an interesting subject,
but where to start? Joshua Tippetts poses that through combining
various functions, you can create a tweakable procedural world.

 By Joshua Tippetts

c
o

N
T

E
N

TS
.0

4
1

1
V
o

LU
m

E
 1

8
 N

U
m

B
E

R
 4

http://WWW.GDMAG.COM

GAME PLAN // BRANDON SHEFFIELD

GAME DEVELOPER | APRIL 20112

LIVING LUMINARIES
WHY DO WE HOLD UP SOME VETERAN GAME DEVELOPERS ABOVE OTHERS?

AT THIS YEAR’S GDC—THE 25th—
there were 11 postmortems of
vintage games from important
creators, all of them incredibly
inspiring. This prompted me to
think—why do we hold these folks
in such high regard? They deserve
to be looked upon with respect,
there’s no doubt in my mind. But
when you break it down, Toru
Iwatani created PAC-MAN, and that’s
pretty much it. Other luminaries
like Jordan Mechner (PRINCE OF
PERSIA) and ERIC CHAHI (ANOTHER
WORLD) continue to work on games,
but have few titles to their credit.

Why do we revere certain
people in the game industry? Is it
because of the high quality of the
games they created? Is it because
of how influential they were? Do
we color those past experiences
with our memories? All of these
are factors—but I think overall, our
reverence for these people has to
do with a pioneering spirit.

WILD, WILD WEST
» I think most of us in the
game industry have some sort
of predisposition to thoughts of
fantasy. To imagine, fantasize, and
dream is human. But as working
game developers, we actually make
these visions come to life in ways
that most people can only, well,
dream about. So to us, that fantasy
is closer at hand.

We idolize cowboys, samurai,
explorers, inventors, and astronauts
because they fulfill that need for
adventure and exploration we all
feel. I don’t know about everyone
else, but part of why I work on
games, and help to create worlds,
is because of an urge to explore. I
want to make my mark, and be the
first one to step onto that alien soil
and discover its secrets. Because
after all, no matter how carefully we
craft our games, there are always
secrets, little twists of the world
that we never anticipated.

MMOs, open-world games, and
sandboxes like LOVE and MINECRAFT
are fantasy generators. They

make us feel like the pioneers we
admire. Coming upon some area
you didn’t know existed feels like
you’re discovering the lost city
of Atlantis—if only for a moment.
Forging those worlds has a similar
feel, but most of us can’t do that
alone. We need a MINECRAFT to give
us the tools, or else we need a
team of artists behind us to create
the assets that bring our code to
visual life. Or as artists, you need
coders and designers to help craft
that universe.

We have become extremely
compartmentalized in our work,
which is to the benefit of the large-
scale games we create. Having
a dedicated writer has proved to
be very successful for certain
teams. Dedicated network coders
are hard to find, but an absolute
necessity for most persistently
online games. But sometimes
that compartmentalization can
diminish the feeling of creation
and exploration.

So we do hold up these
luminaries for their pioneering spirit,
but also for the fact they did nearly
everything themselves, before tools
to do so were even invented.

THE WILL TO CREATE
» Iwatani’s PAC-MAN was an
early effort in fooling players into
believing games had complex AI,
while also proving the power of
distinctive character combined
with tight control. Jordan Mechner
knew he wouldn’t be able to create
perfect animation with the tools
he had at his disposal at the time,
so he filmed his brother running
and jumping, then shrank the
data and made pixel versions that
have an incredible fluidity to them.
Eric Chahi pushed polygons on
early computers in an early stage,
and where assembly failed him,
constructed code language of his
own, to create a one of the most
cinematic games of the era.

Of course, it helps that all these
games were excellent examples
of what could be done with

technology and design innovation
in their respective eras. But I think
what really fascinates us is that
these creators managed to make
these innovative games largely
by themselves. The tools, designs,
and art techniques they needed
didn’t exist, so they willed them
into existence. These are persons
of vision, with the ability to back
that vision up with hard work and
provable results. And who wouldn’t
respect that?

The do-it-yourselfer will always
be someone to learn from, no matter
what his or her era of prominence.
But when they can continue those
ideas through to the future, and their
original pioneering ideas are still
applicable, you see that they’re not
just one-hit wonders. Sure, there are
those in the industry who happened
to hit on something at the right time,
and made an impact in their day,
but cease to retain relevance. I think
those are fewer and further between
than those who do something great
because that’s what’s in them, and
whether they move on to education
as Iwatani has, or continue to
pioneer fluid gameplay like Chahi
with his new game FROM DUST, their
ideas remain strikingly relevant.

This is what I’ve taken away from
the vintage postmortems at GDC.
What these fellows did back then
was amazing—but what they think
and do now is just as interesting.
Every time I’ve spoken to Eric Chahi
about modern game design, he’s
revealed to me something I wouldn’t
have thought of, even in genres he’s
never worked on.

We can aspire to greatness
ourselves, and this is part of
current the indie fervor, I believe. If
we apply what we know and try to
make something different on our
own—something that comes from
within—we could be presenting
our own vintage postmortems
at the 50th GDC. Would anyone
be surprised to see MINECRAFT’s
Markus Persson there?

—Brandon Sheffield
twitter: @necrosofty

United Business Media
303 Second Street, Suite 900, South Tower
San Francisco, CA 94107
t: 415.947.6000 f: 415.947.6090

W W W . U B M . C O M

SUBSCRIPTION SERVICES

FOR INFORMATION, ORDER QUESTIONS, AND
ADDRESS CHANGES
t: 800.250.2429 f: 847.763.9606
e: gamedeveloper@halldata.com

FOR DIGITAL SUBSCRIPTION INFORMATION
www.gdmag.com/digital

EDITORIAL

PUBLISHER
Simon Carless l scarless@gdmag.com
EDITOR-IN-CHIEF
Brandon Sheffield l bsheffield@gdmag.com
PRODUCTION EDITOR
Jeffrey Fleming l jfleming@gdmag.com
ART DIRECTOR
Joseph Mitch l jmitch@gdmag.com
PRODUCTION INTERN
Tom Curtis
CONTRIBUTING EDITORS
Jesse Harlin
Steve Theodore
Kim Pallister
Dave Cowling
Soren Johnson
Damion Schubert
ADVISORY BOARD
Hal Barwood Designer-at-Large
Mick West Independent
Brad Bulkley Neversoft
Clinton Keith Independent
Brenda Brathwaite Lolapps
Bijan Forutanpour Sony Online Entertainment
Mark DeLoura THQ
Carey Chico Independent

ADVERTISING SALES

GLOBAL SALES DIRECTOR
Aaron Murawski e: amurawski@think-services.com
t: 415.947.6227
MEDIA ACCOUNT MANAGER
John Malik Watson e: jmwatson@think-services.com
t: 415.947.6224
GLOBAL ACCOUNT MANAGER, RECRUITMENT
Gina Gross e: ggross@think-services.com
t: 415.947.6241
GLOBAL ACCOUNT MANAGER, EDUCATION
Rafael Vallin e: rvallin@think-services.com
t: 415.947.6223

ADVERTISING PRODUCTION

PRODUCTION MANAGER
Pete C. Scibilia e: peter.scibilia@ubm.com
t: 516-562-5134

REPRINTS

WRIGHT'S MEDIA
Ryan Pratt e: rpratt@wrightsreprints.com
t: 877.652.5295

AUDIENCE DEVELOPMENT

TYSON ASSOCIATES Elaine Tyson
e: Elaine@Tysonassociates.com
LIST RENTAL Merit Direct LLC
t: 914.368.1000

GAME DEVELOPER
MAGAZINE
WWW.GDMAG.COM

http://WWW.GDMAG.COM
mailto:gamedeveloper@halldata.com
http://www.gdmag.com/digital
mailto:scarless@gdmag.com
mailto:bsheffield@gdmag.com
mailto:jfleming@gdmag.com
mailto:jmitch@gdmag.com
mailto:amurawski@think-services.com
mailto:jmwatson@think-services.com
mailto:ggross@think-services.com
mailto:rvallin@think-services.com
mailto:peter.scibilia@ubm.com
http://rpratt@wrightsreprints.com
mailto:Elaine@Tysonassociates.com
http://WWW.UBM.COM

Studio: _________________ UR

CD: ______________________

AD: ______________________

Copy: ____________________

Acct: ____________________

Prod: _____________________

Docket: OMD-0003
Project: OMDC

Piece: Gamer

Ad Code:
Start Date:
FileName: OMD-0003 GD-03-07

Pub: Game Developer
Insertion#:
InsDate:
File Scale:
Trim: 7.75 x 10.5
Bleed: 8 x 10.75
Live: 6.75 x 9.5

Colours: 4/0

 C M Y K

PMS PMS PMS PMS
 000 000 000 000

Target:
 PMS PMS c-0,m-0
 000 000 y-0

Rev Date:
Rev By: UR
Rev #: 0
IR Date:
IR By: UR
IR #: 0

We’ve got it going
Ontario Media
Development Corporation

We’ve got it going

Our programs and initiatives are helping Ontario’s interactive digital media companies create a thriving industry,

a global audience and a wealth of opportunity. Be part of it. OMDC.on.ca

http://OMDC.on.ca

game developer | april 2011 4

ninth annual g.a.n.g. award winners announced
Game Developer’s Jesse Harlin wins “Best Article”

Audio of the Year
Red deAd Redemption
¬ Rockstar Games
¬ Composers: Bill Elm &

Woody Jackson; Lead
Audio Designer: Jeffrey R.
Whitcher; Audio Designers:
Steven von Kampen,
Christian Kjeldsen, Corey
Ross; Audio Programmers:
Corey Shay, Robert Katz

music of the Year
Red deAd Redemption
¬ Rockstar Games
¬ Bill Elm, Woody Jackson

Best Audio other:
HAlo: WAYpoint "tHe
RetuRn"
¬ 343 Industries/Microsoft

Game Studios
¬ Kristofor Mellroth, Senior

Audio Director, Microsoft
Game Studios; Paul Lipson,
Audio Director, Pyramind
Studios; Peter Steinbach,
Steve Heithecker, David
Earl, Michael Roache

Sound design of the Year
BAttlefield: BAd
CompAnY 2
¬ Electronic Arts/DICE
¬ Stefan Strandberg, Ben

Minto, David Mollerstedt,
Thomas Danke, Mari
Saastamoinen, Olof
Stromqvist

Best interactive Score
Red deAd Redemption
¬ Rockstar Games
¬ Bill Elm, Woody Jackson

Best Handheld Audio
monkeY iSlAnd 2
SpeCiAl edition:
leCHuCk'S Revenge
¬ LucasArts
¬ Tom Bible, Jesse Harlin,

Wilbert Roget II, Jeff Ball,
Dan Reynolds, Andrew
Aversa

Best Soundtrack Album
video gAmeS live -
level 2
¬ Tommy Tallarico, Jack Wall

Best original
instrumental:
"AtHenS HARBouR
CHASe" – JAmeS Bond
007: Blood Stone
¬ Activision
¬ Richard Jacques

Best Cinematic/Cutscene
Audio
StARCRAft ii: WingS
of liBeRtY
¬ Blizzard Entertainment
¬ Russell Brower, Paul

Menichini, David Farmer

Best use of licensed
music
BioSHoCk 2
¬ 2K Games/2K Marin
¬ Michael Kamper, Audio

Lead and the 2K Marin
Audio Team

Best original vocal - pop
"i'll tAke it All" - James
Bond 007: Blood stone
¬ Activision
¬ Dave Stewart

Best original vocal -
Choral
"invinCiBle" – WoRld of
WARCRAft: CAtAClYSm
¬ Blizzard Entertainment
¬ Music by Russell Brower,

Jason Hayes; Lyrics by
Derek Duke, Neal Acree

Best dialogue
Red deAd Redemption
¬ Rockstar Games
¬ Lead Audio: Matthew

Smith; Additional Dialogue
Editing: Will Morton, Allan
Walker, Jon McCavish;
Audio Designer: George
Williamson; Dialogue
Assistant: Lindsay
Robertson

Best game Audio Article,
publication or Broadcast
"tHe WeigHt of SilenCe
- HoW SilenCe CAn
indiCAte A CHARACteR'S
impoRtAnCe" – Game
Developer mAgAzine
¬ Jesse Harlin

Best use of multi-
Channel Surround in a
game
BAttlefield: BAd
CompAnY 2
¬ Electronic Arts/DICE
¬ Stefan Strandberg, Ben

Minto, David Mollerstedt,
Thomas Danke, Mari
Saastamoinen, Olof
Stromqvist

g.A.n.g. Recognition
Award
¬ Sumthing Else

Musicworks

g.A.n.g. distinguished
Service Award
¬ Dren McDonald, Jacquie

Shriver

Rookie of the Year Award
¬ Woody Jackson, Bill Elm

lifetime Achievement
Award
¬ Chris Huelsbeck

HeadS-Up diSplaY

\\\ The winners of the ninth annual Game Audio Network Guild awards have been announced, with Rockstar Games' Red dead Redemption and DICE's
Battlefield: Bad Company 2 taking home multiple awards. The awards, held at the recent GDC 2011, represent "the best audio in video games from 2010."
The final winners were chosen by a 70-person advisory committee, made up of members of the non-profit GANG organization.

Red dead Redemption was the big winner of the event, bagging the Audio of the Year, Music of the Year, Best Interactive Score, and Best Dialogue
awards. Battlefield: Bad Company 2 won two awards, while LucasArts' monkey island 2 speCial edition: leChuCk's Revenge, Blizzard's staRCRaft ii: Wings of
liBeRty and 2K Games' BioshoCk 2 took one award each.

Game Developer Magazine also won an award for Best Game Audio Article, Publication, or Broadcast for Jesse Harlin's "The Weight of Silence - How
Silence Can Indicate a Character's Importance," published in our December 2010 issue.

GANG president Paul Lipson said "The quality bar from 2010 was so high across the board, it was impossible to predict specific wins. With over 350
submissions this year, just making it to the final nomination process is something all the teams and publishers can be proud of.” – Mike Rose

vietnamese government puts curfew on online gaming
\\\ As of March 3, gamers in Vietnam
might be getting a bit more sleep.
A government ministry has asked
internet service providers to block
access to all online games between the
hours of 10 PM and 8 AM.

According to a report in Viet Nam
News, the Ministry of Information and
Communication is concerned about the
impact of online activity on the nation,
particularly when it comes to young

people and online games.
The government group will be

monitoring online game activities
during the prohibited hours and could
cancel services that allow people
to play, according to the ministry's
Deputy Minister, Le Nam Thang.

Service providers argue that the
access block is unfair to their customers
who've paid for access to entertainment,
and also have argued that it makes the

maintenance of online games more
difficult for the region's operators.

The report pegs Vietnam's number
of internet users at about 23 million,
or 23 percent of the total population.
Southeast Asia in general is a hotbed
for MMO growth; Pearl Research has
projected that the Vietnamese and
Indian online gaming populations
together will reach 25 million by 2014.

– Leigh Alexander

I GF W I N N E R S

Best Student Game

FRACT
RICHARD E FLANAGAN

Excellence in Design

DESKTOP DUNGEONS
CF DESIGN

Technical Excellence

AMNESIA: THE DARK DESCENT
FRICTIONAL GAMES

Best Mobile Game

HELSING'S FIRE
RATLOOP

Excellence in Visual Art

BIT.TRIP RUNNER
GAIJIN GAMES

Excellence in Audio

AMNESIA: THE DARK DESCENT
FRICTIONAL GAMES

Direct2Drive Vision Award

AMNESIA: THE DARK DESCENT
FRICTIONAL GAMES

Audience Award

MINECRAFT
MOJANG

IGF Nuovo Award

NIDHOGG
MESSHOF

Seumas McNally Grand Prize

MINECRAFT
MOJANG

G A M E D E V E LO P E R S C H O I C E
AWA R D W I N N E R S

Best Audio

RED DEAD REDEMPTION
ROCKSTAR GAMES

Best Debut Game

MINECRAFT
MOJANG

Best Writing:

MASS EFFECT 2
BIOWARE

Best Game Design

RED DEAD REDEMPTION
ROCKSTAR GAMES

Best Downloadable Game

MINECRAFT
MOJANG

Best Visual Art

LIMBO
PLAYDEAD STUDIOS

Best Technology

RED DEAD REDEMPTION
ROCKSTAR GAMES

Best Handheld Game

CUT THE ROPE
CHILLINGO

Innovation Award

MINECRAFT
MOJANG

Game of the Year

RED DEAD REDEMPTION
ROCKSTAR GAMES

igf, game developers choice
award winners announced
\\\ At the Independent Games Festival Awards and the Game Developers
Choice Awards at this year's GDC, Mojang's indie-hit MINECRAFT earned the
IGF's Seumas McNally Grand Prize, while Rockstar San Diego's RED DEAD
REDEMPTION took home the Choice award for Game of the Year.

At the IGF ceremony, MINECRAFT and Frictional Games' horror title AMNESIA:
THE DARK DESCENT collectively took home five of the event's ten awards, with
MINECRAFT winning the Audience award in addition the Grand Prize, while
AMNESIA won for Technical Excellence, Excellence in Audio, and was granted the
Direct2Drive Vision Award.

Rockstar Games' RED DEAD REDEMPTION was the biggest winner at the
Game Developers Choice Awards, taking home three additional awards for
Best Audio, Best Game Design, and Best Technology.

MINECRAFT took home awards in three categories: Best Debut Game,
Best Downloadable Game, and the Innovation Award, in addition to its
awards at the IGF.

WWW.GDMAG.COM 5

http://WWW.GDMAG.COM

W W W . E P I C G A M E S . C O M

STAN LEE
AND HOUSE OF
MOVES PICK UE3
Entertainment legend Stan Lee and Vicon House of
Moves (HOM) recently enlisted Unreal Engine 3 (UE3)
to create Lee’s new franchise, The Guardian Project. In a
special collaboration with the National Hockey League
(NHL), Lee and HOM crafted the world of the Guardians,
30 new hockey-based superheroes that made their
debut at the 58th Annual NHL All-Star Game. The
Guardians’ � rst appearance came in the form of a short
� lm that kicked o� a media blitz that is slated to include
an online video game, a computer-animated TV show
and a slew of merchandising.

HOM headed up development of the Guardians, relying
heavily on performance-capture technology to create
realistic characters that would work across a range of
media for television and online broadcast, stadium
displays and virtual reality experiences.

“We chose Unreal for its ease of use,” said Peter Krygowski,
director, HOM. “The learning curve to ramp up production
and � t it into our pipeline was minimal.”

Ease of use was particularly important to HOM since
it’s primarily a motion capture and animation shop,
without a huge infrastructure for handling the rendering
requirements for traditional high-end output.

Fortunately, Krygowski had been close to the video
game world for more than a decade, had plenty of
experience with a number of proprietary engines and
knew exactly what his team needed to successfully pull
o� The Guardian Project.

UE3 delivered the � exibility the team was looking for.

“We wrote several pieces of code to help generate custom
shaders and to be able to bring virtual cameras into and
out of the Unreal Engine for the purposes of this project,”
said Alberto Menache, HOM’s visual e� ects supervisor and
pipeline developer. “As a result, we had incredible creative
� exibility, and could render out 8,000 frames in a matter
of seconds–not to mention the savings in gear costs
without the need for a multi-CPU render farm.”

CG assets for the short � lm were built using Autodesk
Maya and Pixologic ZBrush, with Autodesk’s
MotionBuilder brought in to retarget animation and
navigate environments during motion capture sessions.

HOM captured stunts and poses for each of the 30 Guardian
superheroes at their 26,000 square feet of motion-capture
stages, out� tted with more than 200 Vicon T160 cameras
over nine days of mo-cap shooting. The project was
completed over six months with a creative team that started
at 10 and grew to 200 at the project’s peak.

“I can’t emphasize enough what an impact Unreal had on
this project,” said Krygowski. “The real-time lighting, ease
of use, ability to iterate quickly and near-time rendering
of � nal assets allowed us to accelerate an already
compressed delivery schedule. For the short � lm, we
needed to deliver a three-and-a-half minute animation
short in two and a half months, from start to � nish. It’s a
project that would normally have taken six months.”

The Guardian Project brought some unexpected drama,
in addition to the punishing timeline. Just 48 hours
before the � lm was set to premiere at the NHL All-Star
Game, an outside vendor delivered six shots that didn’t
� t with the video. But using Unreal, HOM was able to
revise, reanimate and re-render the shots. The team

made the changes, passed them through Unreal, and
composited the � nal animation in time for the � nal
piece. According to Krygowski, without Unreal this
wouldn’t have been an option.

Krygowski says he expects more Hollywood productions
to build Unreal into their pipelines, since it allows for
collapsed production time when necessary, while still
allowing for robust iteration. Plus, with Unreal the assets
are more easily shared between di� erent mediums, from
games to broadcast.

According to Brian Rausch, HOM’s vice president of
production, “you have to think down the road of the
possibility of extrapolating characters and environments
into game assets, or a television series, making sure
you can easily � ow the CG creative elements between
mediums. By building scenes in a game engine from the
start, our options are just much broader.”

Mark Rein
Epic Games, Inc.

ADVERTISEMENT

Canadian-born Mark Rein
is vice president and co-
founder of Epic Games based
in Cary, North Carolina.

Epic’s Unreal Engine 3
has won Game Developer
magazine’s Best Engine
Front Line Award � ve times
along with entry into the

Hall of Fame. UE3 has won three consecutive Develop
Industry Excellence Awards.

Epic is the creator of the mega-hit “Unreal” series of
games and the blockbuster “Gears of War” franchise.

Follow @MarkRein on Twitter.

BY Mark Rein
Epic Games, Inc.

UPCOMING

EPIC ATTENDED

EVENTS

E3 Expo
Los Angeles
June 7-9, 2011

East Coast
Game
Conference
Raleigh, NC
April 13-14, 2011

Casual
Connect
Seattle
Seattle, WA
July 19-21, 2011

Comic-Con
International
San Diego, CA
July 21-24, 2011

Please email: mrein@epicgames.com for appointments.

© 2011, Epic Games, Inc. Epic, the Epic Games logo, Gears of War, the Powered by Unreal Technology logo, Unreal, Unreal Engine, Unreal Kismet and Unreal Matinee are trademarks
or registered trademarks of Epic Game Games, Inc. in the United States and elsewhere. All other trademarks are the property of their respective owners. All rights reserved.

http://WWW.EPICGAMES.COM
mailto:mrein@epicgames.com

Ten years ago we began surveying employees ThroughouT The indusTry's various
disciplines regarding their salaries, including additional benefits and alternate sources
of revenue, employment status, and general position, thereby creating a snapshot
of the industry each year. We continue the tradition through to this, the 10th annual
Salary Survey from Game Developer.

This year’s big number is the rise in the average salary across all disciplines and experience
levels, with 2010's $5,244 gain having made for a strong rebound from the near $4,000 loss
in 2009, bringing the latest average above 2008. The number of respondents whose salaries
increased in 2010 was up across the board from 2009, with the biggest increase coming from
those in production, 73 percent of whom reported higher income than last year.

In addition, 47 percent of respondents agreed that there are more opportunities for
developers than ever before, and 73 percent said that the industry is still great to work in,
showing that there is plenty to be optimistic about as we head into 2011.

This year was one of proving for the social game space, and we believe that contributed
somewhat to the overall raise in salary across all disciplines. Meanwhile, the indie segment

has continued to rise in prominence, as a source of
opportunity and employment for those looking for a
different path, after making their mark on downloadable
and browser-based platforms. Last year, we included
indie developers and independent contractors in their
own listing, a practice we continued this year, though
with a slightly lower response.

A major takeaway from the comments section of
the survey reveals that while in general salaried
developers are making more money, independent
developers are a lot happier with their lot in life.

Those who lost their jobs this year may want to take
heed of those words and find out what it is they truly
want to do in games.

—Ryan Newman and Brandon Sheffield

www.gdmag.com 7

http://WWW.GDMAG.COM

GAME DEVELOPER | APRIL 2011 8

programmers A V E R A G E S A L A R Y

$85,733
PROGRAMMERS ARE THE BACKBONE OF THE INDUSTRY, AND THEIR
hard work is certainly rewarded, as the profession continues to be one
of the highest paid in the industry, though this year coders have been
eclipsed by producers in salary levels.

Overall, average programmer salaries increased some $5,000 over
2009, with gains pretty evenly split across disciplines. But entry level
programmers (those with less than three years' experience), saw an
overall drop of around $1,000.

Minor though that drop may be, this fall in salary combined with a
rise in the number of respondents in the entry-level categories is likely
an indicator that companies are hiring more fresh-faced computer
science graduates at lower pay rates than before.

Programmers in Canada fared better in 2010, earning $74,473 in
2010, up from $67,937 (USD) in 2009. European programmers also
saw a rise, earning $48,230 (USD) on average.

100K

90K

80K

70K

60K

50K

40K

30K

20K

10K

0K
<3 years 3–6 years >6 years

Programmer salaries per years experience and position
Programmer/Engineer Lead Programmer Technical Director

$5
3,

48
8

$5
4,

16
7

$7
4,

40
3

$8
1,

72
2

$9
9,

50
2

$1
08

,7
96

$1
26

,5
54

artists and
animators

A V E R A G E S A L A R Y

$71,354
THE AVERAGE SALARY FOR ARTISTS WAS UP ONLY SLIGHTLY FROM LAST
year, with the bulk of that increase coming from a bump in the
income for art directors.

However, increased earnings were not across the board, as artists,
animators, and leads all saw their average salaries drop. The exception
was artists and animators with three to six years of experience, who
saw a small increase from $61,121 to $61,667 in 2010. The biggest
decrease was found amongst lead artists and tech artists with over six
years of experience, with the average salary falling to $89,519 in 2010
from $97,206 in 2009.

Canadian artists found their salaries increasing on average by
$3,877, up to $63,277 (USD). The increase was largely found amongst
artists and animators, whose salaries increased from $50,565 in 2009
to $56,630 (USD) in 2010. European artists also found themselves
earning more, with an increase of $3,459 from 2009, bringing the
average salary up to $41,611 (USD).

100K

90K

80K

70K

60K

50K

40K

30K

20K

10K

0K
<3 years 3–6 years >6 years

Artist and Animator salaries per years experience and position
Artist and Animator Lead Artist/Tech Artist Art Director

$4
4,

64
3

$6
1,

66
7

$6
0,

88
7

$8
6,

56
3

$8
9,

51
9

$1
07

,2
06

 Percent Average
Gender Represented Salary

Male 96% $86,140
Female 4% $74,559

Percent receiving additional
income: 77%

Average additional income: $17,689

Type of additional compensation
received
Annual bonus51%
Pension/Employer contribution to
Retirement plan 49%
Profit sharing16%
Project/title bonus27%
Royalties ..12%
Stock options/equity37%

Percent receiving benefits: 94%

Type of benefits received
Medical .. 99%
Dental .. 93%
401K/Retirement 84%

ALL PROGRAMMERS AND ENGINEERS

YEARS EXPERIENCE IN THE INDUSTRY

GENDER STATS FOR PROGRAMMERS

 Percent Average
Gender Represented Salary

Male 89% $72,924
Female 11% $59,224

Percent receiving additional
income: 74%

Average additional income: $12,711

Type of additional compensation
received
Annual bonus 47%
Pension/Employer contribution to
Retirement plan 49%
Profit sharing16%
Project/title bonus 39%
Royalties ..16%
Stock options/equity 33%

Percent receiving benefits: 94%

Type of benefits received
Medical .. 99%
Dental .. 93%
401K/Retirement 80%

ALL ARTISTS AND ANIMATORS

YEARS EXPERIENCE IN THE INDUSTRY

GENDER STATS FOR ARTISTS

42%
> 6 yrs

$107,888

20%
<3 yrs

$55,426

38%
3–6 yrs
$76,413

41%
> 6 yrs

$91,723

17%
<3 yrs

$45,714

42%
3–6 yrs
$61,898

WWW.GDMAG.COM 9

game
designers

A V E R A G E S A L A R Y

$70,223
GAME DESIGNERS, CREATIVE DIRECTORS, AND WRITERS RECEIVED
a slight boost from last year. Leads and creative directors with less
three-to-six years of experience had an average increase of $5,083,
while those with over six years dropped from $101,810 in 2009 to
$95,652. This could potentially be an indicator of some higher-level
designers either leaving the industry, or moving up into management.

Overall, designers across all experience ranges saw little movement,
as design has been one of the most stable positions as far as
compensation throughout our survey. All told, 66 percent of those
surveyed reported at least a slight increase in pay from last year.

Designers working out of Canada experienced a decrease in pay,
with the average salary falling from $61,520 in 2009 to $58,319
(USD) in 2010. European designers also had lower incomes but
fared slightly better with an average salary of $41,250 (USD), down
$1,173 from 2009.

producers A V E R A G E S A L A R Y

$88,544
AFTER AN OVERALL AVERAGE SALARY DIP IN 2009, PRODUCERS
rebounded with an increase of $13,462. Seventy-three percent of
respondents reported an increase in their salary. This could be due to
the fact that over half our respondents reported having over six years
of experience, but also may indicate the shift toward social games,
which pay producers web 2.0 salaries. Executives, producers, and
project leads with over six years' experience all had marked increases:
$28,454 and $7,344 respectively.

Production also had the second-highest percentage of additional
compensation, at 83 percent, second only to business' 85 percent.

Canadian producers reported a significant decrease in salary, with
the average dropping from $87,130 in 2009 to $72,500 (USD) in 2010.
Producers in Europe had a slight increase in 2010 with an average of
$52,884 (USD) and 56 percent reporting a salary increase.

100K

90K

80K

70K

60K

50K

40K

30K

20K

10K

0K
<3 years 3–6 years >6 years

Game Designer salaries per years experience and position
Game Designer Creative Director/Lead Designer

$4
4,

75
8

$5
9,

31
2

$7
4,

25
0

$7
7,

06
5

$9
5,

65
2

100K

90K

80K

70K

60K

50K

40K

30K

20K

10K

0K
<3 years 3–6 years >6 years

Producer salaries per years experience and position
Associate Producer Producer/Project Lead Executive Producer

$4
2,

50
0

$5
4,

26
5

$7
6,

53
2

$6
0,

27
8

$1
02

,5
00

 Percent Average
Gender Represented Salary

Male 93% $72,924
Female 7% $59,224

Percent receiving additional
income: 75%

Average additional income: $14,259

Type of additional compensation
received
Annual bonus 42%
Pension/Employer contribution to
Retirement plan 40%
Profit sharing16%
Project/title bonus 34%
Royalties ..17%
Stock options/equity 35%

Percent receiving benefits: 96%

Type of benefits received
Medical .. 96%
Dental .. 92%
401K/Retirement 80%

ALL GAME DESIGNERS

YEARS EXPERIENCE IN THE INDUSTRY

GENDER STATS FOR DESIGNERS

 Percent Average
Gender Represented Salary

Male 83% $90,744
Female 17% $77,870

Percent receiving additional
income: 83%

Average additional income: $16,223

Type of additional compensation
received
Annual bonus61%
Pension/Employer contribution to
Retirement plan41%
Profit sharing13%
Project/title bonus32%
Royalties ..7%
Stock options/equity 42%

Percent receiving benefits: 96%

Type of benefits received
Medical ...97%
Dental .. 95%
401K/Retirement 85%

ALL PRODUCERS

YEARS EXPERIENCE IN THE INDUSTRY

GENDER STATS FOR PRODUCERS

42%
> 6 yrs

 $86,160

17%
<3 yrs

$46,214

41%
3–6 yrs
$62,554

$1
32

,0
65

54%
> 6 yrs

$106,395

11%
<3 yrs

$51,324

35%
3–6 yrs
$72,136

http://WWW.GDMAG.COM

GAME DEVELOPER | APRIL 2011 10

audio
professionals

A V E R A G E S A L A R Y

$68,088
OF THE AUDIO PROFESSIONALS SURVEYED, 15 PERCENT REPORTED
earning less than they did the previous year, the highest of any
discipline. There was a slight uptick in respondents this year, in
a category which typically has a low response rate due to the low
number of full-time audio professionals in games, but numbers are still
low, so it is difficult to gauge with absolute certainty.

Audio developers continue to be the least likely to receive additional
benefits, such as health insurance. However, they were the most
likely to receive royalties for their work, with the reported 25 percent
significantly higher than other disciplines, with game design coming in
second at 17 percent.

Canadian audio developers reported earning more in 2010, with the
average salary increasing from $61,250 to $68,571 (USD). European
audio developers reported an increase in average salary, up $6,111 to
$46,944, with 50 percent earning more in 2010.

qa testers A V E R A G E S A L A R Y

$49,009
HOME TO MANY ENTRY-LEVEL POSITIONS, QUALITY ASSURANCE
remains one of the lowest-paid disciplines. However, testers were
rewarded in 2010 with an increase in salary and benefits.

Many QA professionals are on contract, so the entire range may
not be represented here, and the fact that QA leads are the most
likely to be salaried could potentially explain the increase. Like
producers though, the bump could come from those working in the
web industries, with companies such as Zynga having long-hours QA
needs. Web developers in general tend to be paid a little better than
their counterparts in traditional video games.

Canadian testers did not benefit as much as those in the United
States with the average salary reporting as having dropped from
$39,375 to $37,857 (USD) in 2010. European testers benefited from an
increase of $7,722, bringing the average salary to $37,222 (USD).

Percent Average
Gender Represented Salary

Male 94% $70,469
Female 6% $30,000

Percent receiving additional
income: 82%

Average additional income: $7,570

Type of additional compensation
received
Annual bonus 50%
Pension/Employer contribution to
Retirement plan 46%
Profit sharing21%
Project/title bonus32%
Royalties ... 25%
Stock options/equity18%

Percent receiving benefits: 88%

Type of benefits received
Medical .. 100%
Dental .. 100%
401K/Retirement 80%

ALL AUDIO DEVELOPERS

YEARS EXPERIENCE IN THE INDUSTRY

GENDER STATS FOR AUDIO DEVELOPERS

100K

90K

80K

70K

60K

50K

40K

30K

20K

10K

0K
<3 years 3–6 years >6 years

Audio Developer salaries per years experience and position
Sound/Audio Designer/Engineer Sound/Audio Director

$4
1,

07
1

$6
0,

62
5

$7
8,

75
0

$1
05

,0
00

 Percent Average
Gender Represented Salary

Male 95% $48,200
Female 5% $62,500

Percent receiving additional
income: 73%

Average additional income: $7,824

Type of additional compensation
Received
Annual bonus 69%
Pension/Employer contribution to
Retirement plan 56%
Profit sharing16%
Project/title bonus19%
Royalties ..9%
Stock options/equity31%

Percent receiving benefits: 93%

Type of benefits received
Medical .. 95%
Dental .. 98%
401K/Retirement 90%

ALL QA TESTERS

YEARS EXPERIENCE IN THE INDUSTRY

GENDER STATS FOR QA TESTERS

100K

90K

80K

70K

60K

50K

40K

30K

20K

10K

0K
<3 years 3–6 years >6 years

QA Tester salaries per years experience and position
Tester QA Lead

$3
1,

25
0

$4
2,

50
0

$4
4,

83
3

$6
2,

50
0

35%
> 6 yrs

$88,333

24%
<3 yrs

$39,375 41%
3–6 yrs
$67,143

23%
<3 yrs

$36,136

31%
<6 yrs

$63,125

46%
3–6 yrs
$45,769

business and
legal people

A V E R A G E S A L A R Y

$106,452
THOSE SURVEYED IN THE BUSINESS AND LEGAL DISCIPLINES INCLUDE
chief executives and executive managers, community managers,
marketing, legal, human resources, IT, content acquisition and
licensing, and general administration staff.

Those in business were most likely to receive any additional
compensation (85 percent). Business not only had the highest average
salary, but it also led in average salary across all experience levels. Of
the disciplines surveyed, business also had the highest percentage of
those with six or more years of experience, at 55.6 percent. It seems as
though money always filters up.

The business, marketing, and legal arena is also where the second-
most women can be found, dwarfed only by production's 17%.

Canadian business personnel fared well with an increased average
salary of $85,312 (USD). Business persons in Europe also saw an
increase, up from $59,231 to $63,235 (USD) in 2010.

WWW.GDMAG.COM 11

Percent Average
Gender Represented Salary

Male 86% $110,849
Female 14% $80,556

Percent receiving additional
income: 85%

Average additional income: $28,972

Type of additional compensation
Received
Annual bonus 73%
Pension/Employer contribution to
Retirement plan 35%
Profit sharing23%
Project/title bonus17%
Royalties ..7%
Stock options/equity37%

Percent receiving benefits: 93%

Type of benefits received
Medical .. 100%
Dental .. 95%
401K/Retirement 76%

ALL BUSINESS AND LEGAL PEOPLE

YEARS EXPERIENCE IN THE INDUSTRY

GENDER STATS FOR BUSINESSPEOPLE

LAYOFFS
OF THE ALMOST 4,000 SURVEYED DEVELOPERS, 14 PERCENT HAD been
laid off at one point or another in 2010. That is a 5 percent decrease
from 2009's 19 percent, but it is still higher than 2008's 12 percent.

Fifty-two percent of those laid off were able to find employment
at a game studio or publisher, while 16 percent were unable to find
new jobs in the industry. More developers (23 percent) also found
themselves going into contracting and consulting in 2010, up from
17 percent in 2009. Thirteen percent went on to found or cofound a
company, up from 10 percent in 2009.

Developers also went into indie development in greater numbers
(19 percent), up from 16 percent in 2009. The increased amount of
developers going into independent and contract work combined is up 9
percent over 2009, another strong indicator in the rise of development
outside the traditional developer-and-publisher venue.

AVERAGE SALARY BY U.S. REGION
(across all levels of experience and disciplines)

TOP 5 STATES WITH HIGHEST AVERAGE SALARIES
(across all levels of experience, excluding states with low sample size)
 AVERAGE PERCENT WHO AVG. SALARY OF
 SALARY OWN HOMES HOMEOWNERS

 1 California $86,772 35% $108,061
 2 Washington $85,536 51% $103,343
 3 New Jersey $73,409 54% $79,167
 4 Virginia $92,000 58% $95,833
 5 Oregon $71,288 51% $94,265
 6 Maryland $74,583 39% $94,605
 7 Florida $57,500 33% $81,500
 8 Massachusetts $74,049 39% $90,081
 9 Illinois $70,288 53% $85,000
 10 Wisconsin $69,891 60% $80,714

AVERAGE SALARY BY U.S. REGION BY DISCIPLINE
 EAST MIDWEST SOUTH WEST

Programmer $77,630 $71,000 $68,636 $96,651
Art and Animation $62,756 $52,500 $62,692 $77,942
Game Design $67,125 $68,889 $58,032 $76,560
Production $80,900 $62,500 $69,444 $94,929
Audio $62,500 $85,000 $50,000 $73,636
QA $49,643 — $35,833 $47,167
Business $109,265 $106,667 $91,944 $111,645

AVERAGE SALARY FOR HOMEOWNERS
VS. NON-HOMEOWNERS BY U.S. REGION

 EAST MIDWEST SOUTH WEST

Homeowners $90,479 $82,917 $79,754 $103,917
Non-Homeowners $61,113 $54,625 $50,733 $71,365

 U.S. CANADA* EUROPE**

Programmer $85,733 $74,474 $48,231
Art and Animation $71,354 $63,278 $41,611
Game Design $70,223 $58,320 $41,250
Production $88,544 $72,500 $52,885
Audio $68,088 $68,571 $46,944
QA $49,009 $37,857 $37,222
Business $106,452 $85,313 $63,235

AVERAGE SALARIES IN THE U.S., CANADA,
AND EUROPE
(across all levels of experience, by discipline, given in USD)

56%
> 6 yrs

$131,786
28%
3–6 yrs
$81,528

16%
<3 yrs

$57,778

Midwest
$70,084

South
$64,554

East
$72,436West

$85,277

*Most Canadian respondents were from British Columbia, Quebec, and Ontario.
**Most European respondents were from the United Kingdom (26%), France
(15%), Germany (10%), Spain (9%), The Netherlands (5%), and Italy (5%).

http://WWW.GDMAG.COM

GAME DEVELOPER | APRIL 2011 12

AVERAGE SALARY BY EDUCATION LEVEL AND DISCIPLINE
(across all levels of experience)

PROGRAMMING ART DESIGN PRODUCTION AUDIO QA BUSINESS

High school/GED $93,929 — $67,500 — — $52,500 $119,167

Some College $94,457 $79,000 $71,667 $89,224 — $49,286 $111,750

Associates Degree $93,571 $73,654 $70,682 — — $49,643 $96,667

Bachelors Degree $80,908 $70,299 $68,772 $82,310 $64,250 $42,717 $101,379

Some Graduate $96,528 $80,577 $76,250 $110,313 — — $112,500

Masters Degree $92,703 $58,056 $74,352 $90,000 — — $131,563

Some Doctoral $78,750 — — — — — —

Doctoral Degree $102,500 — — — — — $84,167

NOW IN ITS TENTH YEAR,
the Game Developer Salary
Survey was conducted
in February 2011 for the
fiscal year January 1, 2010
through December 31,
2010 with the assistance
of Audience Insights. Email
invitations were sent to
Game Developer subscribers,
Game Developers Conference
attendees, and Gamasutra.
com members asking them
to participate in the survey.

We gathered 3,781
responses from developers
worldwide but not all
who participated in the
survey provided enough
compensation information
to be included in the final
report. We also excluded
salaries less than $10,000
and the salaries of students
and educators. The small
number of reported salaries
greater than $202,500
were excluded to prevent
their high numbers from
unnaturally skewing the
averages. We also excluded
records that were missing
key demographic and
classification numbers.

The survey primarily
includes U.S. compensation
but consolidated figures
from Canada and Europe
were included. The usable
sample reflected among
salaried employees in the
U.S. was 1,343, for Canada
276, and for Europe 404;
and 473 for indies and
independent contractors
who provided compensation
information worldwide.

The sample represented
in our salary survey can
be projected to the U.S.
game developer community
with a margin of error of
plus or minus 2.7% at a
95% confidence level. The
margin of error for salaried
employees in Canada is plus
or minus 5.9%, and is 4.9%
for Europe.

METHODOLOGY

THIS IS THE SECOND YEAR OF
our indie section, which includes
independent developers and
contractors. Of those segments
surveyed, it was independent
contractors (not part of a team)
who again find themselves at the
top of the pile.

Last year's average
compensation of $45,137 was
bested in 2010 by a significant
margin, with independent
contractors earning an average of
$55,493. Those who were members
of a team also fared better in 2010,
with an increase of over $6,000 for
an average of $26,780. Individual
developers were again at the
bottom, earning less in 2010 with
$11,379.

Of those surveyed, the majority
of respondents (52 percent) were
designers, while the majority
of independent contractors (26
percent) were involved in art. Of
those individual developers or
members of an indie team, 55
percent made under $500 from the
sale of their games in 2010.

Indie developers make money
from sources other than their
game, however. Eighteen percent of

individual or team members made
additional income from alternative
game-related revenue streams.
Of those, 16 percent made less
than $100, while 23 percent made
over $20,000. This additional
revenue came in the form of
promotions, non-game DLC content,
sponsorships, ads, awards, and
grants. Of those salaried and
independent contractors who
responded, 33 percent received an
annual bonus, 7 percent royalties,
and 10 percent profit sharing,
of which 25 percent made under
$1,000 while 3 percent made over
$100,000.

Interestingly, of almost 500
non-salaried respondents, 63
percent have never worked at a
traditional, salary-based game
developer.

JOB FUNCTIONS
For contractors, we asked
respondents to choose the
capacity in which they primarily
worked in 2010, but for indies, it's
a little more complex. Given the
"many hats" nature of small-scale
development, asking an indie
to choose just one discipline is
unreasonable. As such, the indie
chart should be read as "what
percentage of indies do at least
this job function," rather than
"how many indies do this job
exclusively."

THE INDIE REPORT

Art .. 41%
Audio 18%
Design 52%
Production 37%
Programming 40%
QA ... 31%

Art

Audio

Design

Production

Programming

QA

Writing/Scenario

Other

0% 5% 10% 15% 20% 25% 30%

26%

9%

11%

8%

15%

17%

6%

8%

CONTRACTORS BY JOB FUNCTION

INDIES BY JOB FUNCTION

AN EXTENDED VERSION OF THE 10TH ANNUAL GAME DEVELOPER
Salary Survey, including detailed data for year-over-year results since 2004,
will be made available for purchase through Game Developer Research, a
division of UBM's TechWeb Game Group. Visit www.gdmag.com/research for
more information. This detailed report, The Game Developer Salary Report:
2004—2010, will be available in April.

http://www.gdmag.com/research
http://Gamasutra.com
http://Gamasutra.com

WWW.GDMAG.COM 13

THE BAD

“
I'm getting frustrated
working at large studios that

are located in areas where the cost
of living is too high to live within less
than an hour of work. Commuting
time, high rent, and crunch make
it hard to focus on making a good
game. My company president had
the audacity to remind the dev team
we're not in this industry for a new
Benz. I wish I would have responded
that I am in it to hopefully provide
the best for my new born son while
doing what I personally love to do.”

“
I got laid off twice, moved
from California to Florida

and worked for a total of three
months. Not the best year for game
developers.”

“
It's a scary year. Big
publishers are trimming

good talent instead of just trimming
the fat. The new status quo seems to
be rolling over temporary full-time
contractors instead of hiring regular-
full-time employees. There is very
little that looks attractive about the
games industry from an employee's
point of view.”

“
Quality of life is still a huge
issue spanning the breadth

and width of the industry. I've
worked in both triple-A and social,
and nowhere have I truly felt like
‘my time’ was respected. Instead, I
was constantly barked at to spend
more hours working, more hours
producing, and more hours away
from my family and friends.”

“
The game industry is
shifting, becoming

polarized. Development seems to
be shifting away from the middle
as companies either invest in

cheap, fast mobile games or large,
expensive blockbusters. This is
creating a greater divide as entry-
level positions at smaller companies
aren't preparing developers for the
paradigms of larger studios.”

“
The industry is poorly
thought out and only

benefits the publishers. Constant
layoffs and no job security mean
the talent moves on into other
industries. How is anyone working
in the industry supposed to have a
life or a family if they are constantly
going from contract to contract in
between layoffs? You can't buy a

home/apartment for fear you have to
move to another city in order to find
work. If game companies actually
planned the productions out better,
there would be no layoffs—just a
transition into the next project.”

“
I've turned the corner and
realized that employers treat

their employees like garbage (and
this was before being laid off). You
are an expendable asset in terms
of your personal life and health.
If most game industry jobs were
properly advertised as an hourly
wage job, there would be no way a
self-respecting software engineer

would choose the game industry as
their career path.”

“
2010 was definitely the
toughest of the last 4 years

for my studio. We crunched at least
30 weeks at 12–16 hours per day
5–7 days a week, while our overall
compensation decreased 20% from
2009. We also did not receive any
merit increases or raises in 2010.
Our company also had layoffs in
2010.”

THE GOOD

“
2010 seemed to be the best
year yet for solo/small-team

indies working on what previously
would have been considered niche
or cult games. As a hobbyist, I've
found this past year extremely
encouraging –– my impression is
that it's never been more possible
to make a living from independent
games than it is right now. It's still
not easy, but it's clearly doable! App
stores, open digital distribution,
gamer disillusionment with AAA titles
––whatever it is that's changed, it's
led to a fantastic situation where
indulging in a passion for games
isn't equivalent to financial suicide.
Nice change, that.”

“
Despite overhanging
economic gloom (and thanks

in no small part to the arrival of new
markets/models/platforms), the
video game industry continues to
provide abundant opportunities for
success to passionate and dedicated
developers..”

“
I feel immensely grateful
to all of the brilliant and

interesting people I've worked with
and who enable me to continue to
make a living making games. The
game industry still feels like a fertile,
innovative place to be in 2010–2011
and I wouldn't want to be doing
anything else.”

“
With mobile gaming
exploding and new devices

like the 3DS and the NGP entering
the market, 2011 will be an exciting
year. Exceedingly high-quality
indie games will complement the
efforts by big developers who have
had ample time to work with the
consoles and learn the best way to
utilize the Xbox 360, PlayStation 3,
and Wii.”

“
2010 was the year of the
indie. There are now more

opportunities for indie developers
than ever before. Working for big
gaming is no longer the ultimate
career. There is no reason a
motivated person cannot make a
good living developing games on
their own.”

“
It's as rewarding a job as
it gets if you are a creative

type of person. Not every idea
makes it into even your own
games, but the ones that do, when
they succeed, are an amazing
reward! There is just nothing like it
anywhere else!”

We leave a space at the end of our survey in order for developers
to let us know what they think about the state of the industry,
especially as regards jobs, in their own words. We have included
a few of the notable anonymous responses from those who
allowed their comments to be shared.

http://WWW.GDMAG.COM

game developer | april 201114

WWW.GDMAG.COM 15

//// When I was in middle school I would draw up
designs for what I thought would be the ultimate video
game: full of blood, huge bosses, epic worlds, and a
story that would follow an immortal hero through hell,
the end of the world, and beyond.

Then I grew up... and not much changed.
SUPER MEAT BOY originated as a simple Flash prototype

that an online friend of mine (Jon McEntee) and I made
during our free time over the course of three weeks. I had
no idea it would become one of my most-played Flash
games, let alone spawn a full-fledged console game.

In 2008 I was contacted by Microsoft and Nintendo
about working on something for their download services.
Originally my first pitch to Microsoft was GISH 2, and

Nintendo was more interested in an expanded version of
AETHER, but the deciding factor was actually determined
by a chance friendship.

I met Tommy Refenes in 2008. I’ve worked with a
lot of programmers over the years, and my past artist/
programmer relationships were always a bit alien.
Working with Tommy felt a lot like hanging out with my
best friend in junior high, nerding out and going off on
tangents that would annoy just about everyone around
us. I knew right away that whatever we decided to work
on together would be fun, and this was how SUPER MEAT
BOY got made.

We just wanted to make something fun and have
fun making it. >>>

http://WWW.GDMAG.COM

Getting this console deal was basically our
one big break, our one shot to show everyone who
we were and what we could do. No pressure.

W h a t W e n t R i g h t

1 // Using oUR oWn engine and toolset
Tommy: When I tell most people that I made the
engine and tools myself, they usually ask, “Why did
you do that?” My friends over at FlashBang try to
cram Unity down my throat every single time I talk
to them, but I stand by the decision to make our own
tools and engine.

One huge reason is control. I’m sort of a control
freak when it comes to code, I like to understand
everything that’s going on in my codebase. That
way, if something breaks, I know exactly where
and how to fix it. Also, I got into games to program
games, not to script them. I enjoy all aspects
of game programming, from the engine to the
gameplay. Since we’re indie and can do what we
want, and since I had the skillset, I simply enjoyed
doing the engine.

Development of Super Meat Boy took 18 months
from the first line of engine code I wrote to the last
line of error messaging code I wrote before final
submission to XBLA certification. Personally, I think
that’s record time for a game made by two guys with
as much content as it has. I honestly feel the reason
we were able to do this is because I was so involved
with the code. When a bug would pop up, I could
track it down immediately no matter how low to the
hardware it was.

There weren’t many tools used with Super Meat

Boy. The in game level editor was invaluable because
it provided Edmund the ability to make levels with a
“what you see is what you get” mindset.

The only other tool we had was the Flash
Exporter I made. Basically it was a script that packed
all the flash symbols into one texture and exported
animation information with sound cues. This paid
for itself with the very first export of Meat Boy that
Ed did. We had sounds, animations, and everything
with one quick export that the engine could easily
manipulate and call when needed.

2 // the design enviRonment
Edmund: Very early on, both Tommy and myself
became a bit frustrated by the very rigid work
environment most developers told us we
needed to have in order to be taken seriously
and get things done.

I remember the day we got an email from
Nintendo asking for head shots and a developer
bio. It suddenly seemed so insane how serious
everyone takes an industry whose goal is
supposed to be entertainment.

Tommy and I went out that day in search of
the most ridiculous sweater vests we could find,
broke into Sears Photos and used their setup to
take what would become our team headshots
(see Pg. 18). I believe we also submitted some
totally ridiculous dev bio to Nintendo that was
printed in their press release alongside our
photo.

The point I’m trying to make is that everything
about our design environment was fun. It was
important for us to always enjoy what we were
doing, and let the love of our work come through

game developer | april 201116

in interviews, videos, conventions, and even the
game’s design.

Tommy and I bonded over the course of
development, and Super Meat Boy was an
expression of that. We had fun making this game
and didn’t hold those feelings back when it came
to the decisions we made. Super Meat Boy was a
schoolyard inside joke that just got out of hand. I
think one of the things that is most appealing about
SMB is anyone who plays video games gets to be in
on that joke.

3 // Back to Basics design innovation
Edmund: When Tommy and I talked about
attempting to remake the Mario formula, we didn’t
really discuss it publicly. Nothing could ever touch
Mario, and nothing has ever come close, but as a
designer I desperately wanted to at least try.

Super Meat Boy is Super Mario BroS. if Tommy
and I made it. If we had made a design doc, it would
have been as simple as that.

So looking at it from that perspective, we had
a very solid foundation design-wise, but video

games have changed a lot in the past 20 years.
Difficulty has kind of been thrown out the door
and replaced with accessibility over all else,
erasing any real challenge.

It was vital for us to bring back the difficulty
of the retro age, but also reinvent the idea of what
difficulty meant. Frustration was the biggest part
of retro difficulty and something we felt needed to
be removed at all costs in order to give the player
a sense of accomplishment without discouraging
them to the point of quitting.

At its core, this idea was quite basic: Remove
lives, reduce respawn time, keep the levels short
and keep the goal always in sight. On top of
these refinements, we added constant positive
feedback, and even death became something
to enjoy when you knew that upon completing
the level you would be rewarded with an epic
showing of all your past deaths. The replay
feature was a way to remind the player that they
were getting better through their own actions
and reinforce that feeling of accomplishment of
doing something difficult and succeeding.

4 // soundtrack
Edmund: Danny Baranowsky is an amazing
musician, but one of the reasons why I believe
his music was received so well in SMB lies in how
things worked behind the scenes.

From the start, I felt it was important that
Danny own the rights to all the music he made for
the game. It seemed logical that an artist would
put more into his work if he felt it was his and it
represented himself. We wanted Danny to receive
100 percent of the profits from his work, and it
only made sense that he would be that much more
personally invested in his work if this were the case.

Danny’s work comes from the kind of person
he is. It’s manic, obsessive, complex, and full of
life. These were all elements we wanted for the
SMB soundtrack, and making that happen was
as easy as allowing Danny to make music he was
proud of with little direction.

The SMB soundtrack was an amazing
addition to the game—it gets your heart rate up,
complements every aspect of its gameplay, and
stays with you for days. I believe the reason for this

www.gdmag.com 17

http://WWW.GDMAG.COM

game developer | april 201118

was respecting and trusting Danny as an artist and
simply letting him do what he does so well.

5 // Steam
Tommy: Steam is amazing. I can’t stress that
enough. The ability to quickly update within hours
of a bug popping up made the entire PC launch
much easier than it could have been if Steam had a
different system in place to update code.

Also, Steam listens to its developers. They
listened to us when it came to our suggestions
for how we should push the sale, and in return we
listened to them. Working with Steam never felt
like a publisher / developer relationship. It felt like
a mutual partnership to make the most money and
put the best game out there.

We love Steam.

w h a t w e n t w r o n g

1 // perSonal expenSeS
Edmund: It’s hard to say our personal expenses
were something that really went wrong, due to
the fact that it was a HUGE motivator to getting the
game done, but it was definitely an issue as we
moved into the last few months of development.

There was one point where I had emergency
gallbladder surgery that put me in the hole $50k due
to the fact that I couldn’t afford health insurance.

We had no real money at all, and even all
the comics we had printed for GDC and PAX were
attained through a barter system where my wife
would make plush toys to sell in the NewGrounds
store in exchange for the cost of printing.

Our situation was quite dire at several key
points of development, but I’ve been on the
poverty line for the past 10 years, so going
without wasn’t much of an issue, and honestly, we
had much bigger issues to worry about anyway.
Tommy: At one point I had negative $800 in the
bank. It’s bad when you go to a 7-Eleven to buy a
Coke Zero and get rejected. Turns out, each one of
those Coke Zeros cost me about $40.

2 // loSing Sight of wiiware
Tommy: When we initially announced Super Meat

Boy for WiiWare, we were planning 100 levels
at maximum, no cutscenes, and no unlockable
characters. We were planning on just doing a
straight port of the Flash game with a few extras
and nothing more. We obviously got carried away,
but I wouldn’t call it a bad thing because we made
the game we wanted to make. The bad part is we
couldn’t possibly do the game on the Wii.

As we were building the game and kept
adding more to it, it became clear that it would
be nearly impossible to fit within the size
limits of WiiWare. It was always in the back
of my mind to try to make sure we could, but
cutting down to 50MB meant removing a lot of

content that made the game what it is.
Edmund: Not releasing on the Wii still bothers me,
and I wish we could have done it. After WiiWare
became an impossibility, we looked into getting
SMB published on Wii retail, but sadly, there
wasn’t one publisher we talked to that saw the Wii
as a smart investment at this point in its life cycle.
So we closed the book on the Wii.

3 // pC launCh
Tommy: A two man team putting out a game on
several platforms is pretty tough. The PC launch
was a little rocky because of testing. I had what
I felt was a wide range of test machines. I had
range from our minimum specs (an Acer netbook)
to a beefy quadcore. I thought I had everything
covered; I had ATI cards and NVidia Cards. This
obviously wasn’t enough.

The day of PC launch we were inundated with
tons of bugs, crashes on startup and shut down,
and more. I think I answered about 2,000 emails
during the first few days of launch. I felt similar to
how I did during the crunch for the XBLA launch—
every time I would fix something, it seemed like
something else broke.

It was hard to go from the stress of XBLA launch
to the PC launch in the same month. It was a feeling
of accomplishment followed by an immediate
feeling of failure. For our next game we’ll do more
extensive PC testing, and probably actually farm it
out to a company that specializes in testing.

4 // laSt two monthS of CrunCh for xBla launCh
Edmund: In late August 2010, we got a phone call
from our producer at Microsoft, explaining that
there was going to be a fall promotion similar to
Summer of Arcade. At this point, we were about
four months from being done, but in order to
release during this promo, we needed to pass
certification in two.

The deadline seemed a bit impossible. We
were told if we didn’t make it into the fall promo,
we would have to push the game back until spring
or attempt to launch the game ourselves without
much support, and risk a sizable loss. Microsoft
explained that all games in the promo would get
an exclusive launch week, very high spotlight
advertising, reviews by Major Nelson, and face
time at PAX and other events. This promotion was
going to be called Game Feast.

tommy refenes (l)
edmund mcmillen (r)

At this point, both of us were going into the red
financially and felt like if we didn’t get into this fall
promotion, there was no hope for us. We couldn’t
push to spring, and releasing without Microsoft
support seemed like suicide, so we went all in and
attempted to do what would take any team four
months, within two. These two months were easily
the worst months of my life.

The pressure, workload, and overall stress of
development was extremely overwhelming. In
those two months, neither of us took a single day
off of work, working 10–12 hours a day everyday.
There was a point at the end of development where
I was getting less than five hours of sleep for
several weeks. I remember having a breakdown in
September where I actually thought I was stuck in
some nightmare where I was repeating the same
day over and over.
Tommy: Because we were so time compressed,
we were basically developing features during bug
checking, which meant every single time I turned
on the computer and checked the bug database,
the work I did the night before was pretty much
rendered irrelevant. I would work and fix 100
bugs in a night and get it down to 50, then wake
up the next morning and have 200 bugs to fix.
This lasted for weeks and weeks. I felt sick, angry,
and totally stressed. My parents were bringing
me dinner because I literally didn’t leave the
house for those two months. I remember just
saying to myself over and over, “Don’t die until
the game is done,” because it was a real concern
of mine. I felt miserable, my blood sugar was all
over the place, but I absolutely had to press on
and crush the bugs as they came up. I don’t know
if it made me stronger or not ... all I know is that
somehow I survived!
Edmund: I think both of us were trying to keep
from the other just how bad things were getting
to avoid stressing the other out any more then we
already were.

I had many nights where I would tell my wife
that I was done, that I didn’t want to make the
game anymore, that it wasn’t worth it, and that I
would gladly bow out and take the loss just to go
back to my normal life. She would “talk me off the
roof,” I’d go to sleep, wake up five hours later, and
repeat the same day again.

5 // XBLA LAUNCH
Edmund: Development was over, SUPER MEAT BOY

had taken home a few awards at PAX, and the
press was starting to focus their lights on us.
Many websites and magazines said SUPER MEAT

BOY was easily the hit of the Feast, and possibly
the next big indie hit, but the business side of
Microsoft wasn’t convinced.

We were told our price was too high, our
visuals too rough and simply not as eye catching
and flashy as the other Game Feast games COMIC

JUMPER and HYDROPHOBIA. Our hearts sank when
we were informed that we were projected to sell
as much if not less than HYDROPHOBIA, which would
be the second-highest grossing game of the Feast
in their minds.

This projection became that much more soul
crushing when HYDROPHOBIA launched and its
overall leaderboard had less than 10k players
in the first week. If Microsoft’s projections were
correct, we were fucked.

A week later, COMIC JUMPER launched with
a similar public reaction but slightly better
numbers— still very low for XBLA standards.
The Game Feast seemed to be a huge bomb, and
quite a few news sites were already writing it off
as a failure.

SUPER MEAT BOY launched Oct. 20th alongside
COSTUME QUEST. It was placed third on the spotlight
for four days. We never received any of the
promotional launch bonuses that the previous
Game Feast games had gotten (exclusive launch
week, #1 spotlight, and a review by Major Nelson)
but were told if we performed well in terms of
Metacritic score and sales, we would move up and
be more heavily advertised.

By day three of our launch, we had already
outperformed HYDROPHOBIA and COMIC JUMPER’s
launch weeks combined, our Metacritic was the
second-highest rated XBLA game of all time, and
the word of mouth was insane.

Our spotlight placement was gone by day five
and never came back. We never got a review by Major
Nelson nor did we get an explanation for why they
launched SMB alongside COSTUME QUEST, or for why,
even though we exceeded their expectations for
sales and score, we weren’t given the treatment we
were promised, even while they continued to heavily
promote other Game Feast titles like COMIC JUMPER.

In the end, we felt very confused and taken
advantage of. To this day we are still unsure of
why things went down the way they did. Was it
that Microsoft simply wanted to detach itself from

the Game Feast? Was it that they didn’t believe
we would perform as well as we did? Or was it just
horrible luck at the most competitive time of the
year for the video game industry?

Either way, by far the biggest mistake we
made during SMB’s development was killing
ourselves to get into a promotion we would gain
basically nothing from.

M E A T Y B I T S

Tommy: It’s hard to talk about any kind of
conclusion ... we aren’t done with it yet! We have
the editor, portal, and Mac version to finish. It’s
hard because it already feels like we are finished,
like we ran the race. But then someone asks, “Hey,
do you wanna do a whole other race?” and we’re
like, “Yeah, sure, that sounds like it could be fun.”
Edmund: Then you get there and you realize it’s
the same race, there’s no prize at the end, and at
this point you’ve lost control of your bowels.
Honestly, it was worth it to me because I got to
make this game with a friend. It’s as simple as
that. If I had made it with someone I wasn’t close
to or couldn’t joke around with, I would have had a
miserable time and regretted the whole thing.
Tommy: I feel overall, that the game was worth all
the stress. We went in as two guys with no games
under our belts and left with the fourth-highest-
rated PC game of 2010, sold over 400k copies
worldwide, and received over 15 game of the year
awards, which is a surreal thing to think about.
Edmund: It was an honor to make a game that we
put so much of ourselves into, and that so many
people appreciated. It’s nice to be living proof that
two college dropouts with no money can make a
multiplatform console game and come out the
other side with only minor head trauma.

E D M U N D M C M I L L E N draws stuff and designs things.

T O M M Y R E F E N E S programs and macs on the ladies.

DEVELOPER
Team Meat

NUMBER OF DEVELOPERS
1 Edmund, 1 Tommy, 1 Danny
LENGTH OF DEVELOPMENT

18 months
RELEASE DATE

October 20, 2010 (XBLA)
November 30, 2010 (Steam)

PLATFORM
XBOX 360

PC

WWW.GDMAG.COM 19

http://WWW.GDMAG.COM

Developers helping developers
www.igda.org/join

http://www.igda.org/join

www.gdmag.com 21

J o s h u a T i p p e T T s

With the runaWay success of the game Minecraft,
there has been a bit of a resurgence of interest in the
idea of procedurally generated worlds. the idea of a
very large/infinite sandbox world is very appealing.
unfortunately, once you get beyond simple random
numbers, procedural generation of a world isn’t
always the most approachable subject, and a lot
of people don’t know where to start. as with most
things, the best approach is to start simple and build
a complex model out of basic parts.

a theoretically infinite minecraftian world is
typically built up of easily managed chunks, and
there is no practical limit on the size of the grid of
chunks that can be generated on the X/Z plane. that
is to say, the world is only maybe 128 layers deep but
“infinitely” long and wide, limited by the precision of
the machine’s floating point types.

Doing a chunked approach like this enables you
to build your world in pieces, and to only build the
pieces you currently need to display or interact
with in your game. once generated, a chunk can
be saved to a file to be loaded the next time that
chunk is needed, rather than being generated from
scratch. the world save file would dynamically grow
as chunks are visited, taking up only as much disk
space as needed to remember the currently visited
world. to save disk space, you could save only the
parts of a chunk that were modified. then when
loading, you would generate the level from the
generator and apply the changes from the file to
bring it up to date.

this article is concerned with the task of
generating the initial geometry; first, a little
groundwork. >>>

http://WWW.GDMAG.COM

GAME DEVELOPER | APRIL 2011 22

Figure 1 Heightmap derived from 2D Perlin Noise.

Implicit vs. Explicit Methods
¶ An implicit procedural method is highly self-contained, expressible as a mathematical
abstraction. You call a function with a set of coordinates, and you get a result in return. The value of
the function at a given point or cell is not dependent upon or derived from any surrounding cells or
points; it is self-contained. An explicit method, on the other hand, is typically implemented across
large areas of the function at a time, and the value at a given point is usually highly dependent
upon the values of surrounding points. It is often not possible to simply evaluate one point of the
function; instead, an entire neighborhood must be evaluated.

An example of an explicit method would be using the Diamond Squares or Midpoint
Displacement algorithms to generate a fractal heightmap using an allocated array. A large buffer of
data is allocated, then iterated a number of times to generate the features for that particular area.
By nature, these algorithms can only generate a chunk of data, and cannot generate a single point
by itself. The size of the chunk produced also directly impacts the overall nature of the function.

An example of an implicit method would be using a Perlin noise function to generate a
heightmap. The values of the heightmap are drawn directly from a “pure” mathematical process,
rather than a process of iteration and filtration performed on a large array. There is no need to
store large blocks of data. You can simply call the function with any possible coordinate point and
obtain the value of the function at that point.

While on the face of it these techniques frequently produce similar results, their macro
behavior is completely different. For one thing, with an explicit terrain generation method it can
sometimes be difficult to ensure continuity across the borders between blocks of data.

An explicit method takes into account other points in the neighborhood of a point as long as
those points exist within the chunk. It does not take into account points outside the chunk. Thus,
it is possible for discontinuities or regularities to develop if we are generating a vast world, since
it is not possible to generate the entire world explicitly all at once; at least, not without some
highly expensive calculations and large-scale use of disk space. By subdividing the world into
chunks, we are creating discrete pieces of world that conceptually have no knowledge about their
neighbors, and possibly do not relate or correlate to them in any fashion. It is necessary to ensure
that chunks will align with one another in a meaningful and cohesive manner, and sometimes
this can be difficult to achieve using explicit methods, ofttimes requiring intricate hacks, kludges,
workarounds, and storage of unnecessary states.

In contrast, all of the form and feature of an implicit method is inherent to the inner workings
and nature of the function(s) upon which the method is founded—intimate knowledge of
neighboring chunks is not necessary in order for a chunk to build itself. In most cases, we can
simply store a simple random seed for our world and, as long as we do not change the underlying
generator, this seed can be used to fully reconstruct the world, or any segment thereof.

While both types of algorithms are typically used in a generation scheme of any complexity,
a large portion of the work can be done using implicit methods in a highly compact fashion. If we
hold to our goal of preferring implicit methods over explicit, the end result of our efforts, ideally, will
be a comprehensive set of functions governing every single cell in the world. We’ll have functions
that can tell us if a cell is stone, sand, dirt, is steeply inclined or flat, and so forth. The domain of
these functions will be limited only by the precision of the underlying floating point format. By using
double-precision floats we can achieve a domain so large as to be practically infinite in scope.

Functions
¶ Functions are the fundamental building blocks of our world. They come in a wide variety
of shapes and sizes, and we’ll be using Perlin noise fractal functions extensively, of course, as
integral parts of the process. We can also use functions to generate directional gradients, create
sharp edges or discontinuities, generate repeating patterns, and more. All these are potential tools
in our toolbox for the building of large and diverse worlds.

Mathematically, of course, a function is an abstract entity or process that associates an input
with some output. The same input will always produce the same output; in this manner, a function
is deterministic. In our case, all our functions will be of the three-dimensional variety, accepting
input of an (X,Y,Z) coordinate location representing a single cell in the world.

A function can be made as a composite of a number of other functions. They can operate on
the output of another function or set of functions, or they can transform the input to another
function or set of functions in some fashion. In this way, complex functions (equating to complex
worlds) can be built up, a piece at a time, from simpler building blocks.

Functions that are classed as generators do not take inputs. These include gradient generators,
fractal octave basis functions (value noise, gradient noise, simplex noise, white noise), and so
forth. They may have parameters that alter their behavior, but these are typically just scalar
values and not inputs obtained from other functional modules.

Functions that are classed as combiners,
modifiers, or transformers accept arbitrary numbers
of inputs, specified using a setSource()type of function
convention. Some functions accept only a single
source. Examples of these include Invert (multiplies
the source by -1), Bias (modifies the output using
a bias function), and MapToCurve (maps the source
output to a user-specified spline curve). Other types
accept a specified number of inputs greater than
1. Examples of these include Combiner (which can
Add, Subtract, Multiply, Max, Min, or Average a set of
inputs) and Turbulence (which distorts the domain of
a function input based on up to three other functions,
one per axis with each being optional).

Rather than build a function tree out of a
sequence of actual function calls and code, I will
adopt a notational scheme that demonstrates how
the module types are chained. Here is an example of
such a notation, expressed as a Lua table:

{name=”Fractal1”, type=”fractal”, fractal_
type=RIDGEDMULTI, fractal_basis=GRADIENT,
fractal_interpolation=QUINTIC, num_
octaves=8, frequency=2}

The above definition declares a fractal function of type
Ridged Multifractal, using Gradient noise as a basis
and quintic interpolation for smoothing, specified in 8
octaves with a frequency of 2. Another example:

{name=”Turbulence1”, type=”turbulence”,
main_source=”Fractal1”, x_axis_
source=”Fractal2”, x_power=0.5}

This table sets up a turbulence modifier that acts
upon our Fractal1 and uses a second fractal, Fractal2,
as the noise source for the X axis turbulence.

Expressing an entire module tree as a sequence
of Lua tables allows one to build the tree using
concise notation, and to then feed the sequence to a
parsing function that actually builds the module tree.

The Basic Terrain
¶ The world is going to be fundamentally split into
two basic types of area: Solid and Open. Open, of

course, is air, or empty space (or water, at a later
stage), whether above ground or deep in a cave.
Solid is anything of a solid nature: rock, dirt, sand,
and the like. So a good first step is to build a
function that will separate the land from the air.

The easy and obvious way to do this is to
represent the ground terrain as a heightmap,
derived directly from a 2D Perlin noise fractal
(see Figure 1).

Heightmaps are great; in effect encode
volume information (terrain) as a single value
per location (height). Heightmaps have been
used for a long time to represent terrain for a
number of reasons, such as efficient storage
space, rapid rendering of large areas with level of
detail, and easy terrain texturing. However, if you
look at games such as MINECRAFT, they are very
volumetric in nature. They have cliffs, overhangs,
caves, tunnels, and mines. You name it, it’s in
there. A traditional heightmap just doesn’t quite
cut it for a volumetric world. What is needed is a
function that operates in 3D space to determine
whether a given cell is solid or open, and even
what type of solid cell it should be.

A good basis for dividing Solid from Open is
a simple gradient function. This type of function
will assign a smooth gradient of values from
–1 to 1 along an axis defined by two arbitrary
endpoints. In this case, endpoints are chosen
to align the gradient along the Y axis. Points at

Y=1 output 1 and points at Y=0 output –1, as
below.

{name=”GroundGradient”,
type=”gradient”, y1=0, y2=1}

We can couple this function with a threshold
function that outputs –1 for anything less than
or equal to a threshold, and 1 for everything
greater than 0. The result is a function that
makes Solid everything in the space where
Y<=threshold. We can use a Select module to act
as this threshold function.

{name=”Constant1”, type=”constant”,
constant=1},
{name=”Constant0”, type=”constant”,
constant=0},{name=”ConstantNeg1”,
type=”constant”, constant=-1},
{name=”GroundGradient”,
type=”gradient”, y1=0,
y2=1},{name=”GroundBase”,
type=”select”, main_
source=”GroundGradient”,
low_source=”ConstantNeg1”, high_
source=”Constant1”, threshold=0.2,
falloff=0},

This particular bit of code works by creating
some constant sources that output a given

constant regardless of the input. Then we create
a selection function. A selection function will
select value from either its low source or its high
source, depending on the value output by its
third source, in this case the gradient function,
GroundGradient. If the value of the third (control)
source is less than a specified threshold,
the value of low source is output; otherwise,
the value of high source is output. A second
parameter, falloff, can be used to implement
a smoothing zone around the threshold, to
gradually ease from one function to the other.
In our case, we want a sharp divide between
ground and air, so set falloff to 0.

If we visualize a chunk made from this
function, setting any cell that is equal to
–1 to solid, we’ll get a flat plane. It’s a good
representation of a flat stretch of ground,
certainly, but it’s definitely not very interesting.
What we need to do is apply some more functions
to add surface features. To create these, let’s look
at the technique commonly called “turbulence.”

Turbulence, in the context of noise functions,
is simply a method for transforming the inputs
of a function based on the outputs of another
set of functions. To begin with, we will transform
the Y coordinate of the input of our baseline
function to create some basic hills and valleys.
To do so, we need another function to act as the
turbulence source.

A good place to start with this might be a
basic Perlin noise fractal, also known as an fBm
(fractional Brownian motion) fractal. fBm is the
type of fractal most commonly used for generating
heightmaps, and in this case it is going to act in a
very heightmap-ish manner, since we are going to
use it to adjust the value of Y passed to the baseline
function. The behavior of a fractal can be tweaked
in a number of different ways. First, a fractal is
composed of layers of noise functions of different
frequencies summed together. We can change the
number of layers using the s e t N u m O c t a v e s ()
function; with fewer octaves resulting in smoother,
less jagged noise; the more octaves we add, the
more detailed the noise becomes.

We can also modify the frequency of the
function. A higher frequency means that the
features of the function—the crests and troughs
of the wave, if you will—are closer together.
Lowering the frequency in effect spreads the
function out. In Figure 2 you can see a composite
of images showing the effect of increasing the
number of octaves of an fBm fractal (shown here
increasing horizontally) as well as increasing
the frequency of the function.

The first input of a turbulence function is
obtained from the output of the function to
perturb, in this case the thresholded gradient
function forming our ground plane. There is
also a set of inputs representing each axis
of the coordinate system, so we can have a
separate function perturb each of the X, Y and

WWW.GDMAG.COM 23

Figure 2 The effects of increasing the number
of octaves (horizontally) and the frequency
(vertically) of a Perlin noise function are shown.

http://WWW.GDMAG.COM

GAME DEVELOPER | APRIL 2011 24

Figure 3 Basic fBm
turbulence applied to the
ground plane gradient.

Figure 4 Terrain using a
lower number of octaves.

Figure 5 Terrain using a
higher number of octaves.

Figure 6 Terrain using a
lower frequency function.

Figure 7 Terrain using a
higher frequency function.

Figure 8 Terrain using a
lower turbulence power.

Z coordinates. In this case, we are only perturbing Y, so we’ll set the Y axis source to be our fBm
fractal.

A turbulence function operates by taking the output values of each of the axis sources, and using
those output values to modify the input coordinates to the main source function. The amount or
magnitude of variation is specifiable by using the setPower() method of the turbulence function.
The higher the value you set for power, the more the axis function will affect the corresponding
coordinate value. Let’s go ahead and set up our turbulence function, and set a few preliminary values
for our number of octaves, frequency, and power of turbulence, and see what we get.

{name=”GroundGradient”, type=”gradient”, y1=0, y2=1},
{name=”GroundShape”, type=”fractal”, fractal_type=”FBM”, basis_type=”GRADIENT”,
interp_type=”QUINTIC”, num_octaves=2, frequency=1.75},
{name=”GroundTurb”, type=”turbulence”, main_source=”GroundGradient”, y_axis_
source=”GroundShape”, y_power=0.30},
{name=”GroundBase”, type=”select”, main_source=”GroundTurb”, low_
source=”ConstantNeg1”, high_source=”Constant1”, threshold=0.2, falloff=0},

We first set up our gradient as before, only this time, before we apply the select function to split the
gradient range, we create a fractal, GroundShape, specifying a number of parameters to determine
the characteristics of the fractal function. All these parameters, of course, are tweakable.

In the code above, we set the number of octaves to 2. This results in a rather smooth function.
Adding more octaves contributes to a more chaotic, highly turbulent effect. We set the frequency to
give a good sample of the character of the function; changing the frequency changes the distribution
of features across the terrain. Finally, we set up the turbulence module, apply sources, and set
the power to 0.5 on the Y axis. By adjusting the power of the Y turbulence, we adjust the effect the
turbulence source fractal has upon the gradient basis function—a higher power results in a more
highly turbulent ground surface. In Figure 3 you can see what kind of ground surface we get from this.

We’re using a relatively low octave count to make the contours of our terrain smoother. We can
decrease or increase the octave count and see how it affects the output by making the terrain less
or more complex. In Figure 4, you can see the result of lowering the octave count. Contrast that
with Figure 5, in which the octave count is increased.

We could also modify the frequency of the function and see how it tightens the features or
spreads them out, as seen in Figure 6 (lower frequency) and Figure 7 (higher frequency).

You can see that the turbulence function is acting in a manner very similar to a heightmap,
raising the terrain in some places and lowering it in others. In Figure 7, though, you can see that our
approach is actually fundamentally different from a heightmap approach. In a typical heightmap,
entire vertical columns of terrain are displaced, but in our approach, each individual cell or unit
volume is individually displaced, allowing the formation of overhangs and other complex forms.
You can see it in action further in Figures 8 and 9. Figure 8 shows the effect of lowering the
turbulence strength, while Figure 9 shows the effects of increasing it.

The higher the power is, the more “frothy” the surface of the terrain becomes. Higher powers
can create an extremely convoluted and alien landscape; which, depending on your scenario, may
be exactly what you want. Turn up the turbulence power high enough, and you can end up with
floating rocks and islands, as you can see in Figure 8. Of course, if having a “frothy” surface is not
desirable, you can apply a domain transformation module that will clamp the Y coordinate to 0,
giving the turbulence function the same value for all values of Y. This forces a 3D function to act as
a 2D function, and will result in entire columns of terrain being displaced, just as with a traditional
heightmap. And of course, this function could be combined with other fully 3D functions using any
sequence of module chains, to allow for terrain as varied as you require.

Now, the beauty of composing functions out of combinations of other functions is that we can
drastically alter the behavior of the system merely by changing a few parameters, or by swapping
out one set of functions for another set. In this case, we can alter the character of the landscape
by changing the basic fractal type to another variety, for instance a ridged multi-fractal:

{name=”GroundShape”, type=”fractal”, fractal_type=RIDGEDMULTI, basis_type=GRADIENT,
interp_type=QUINTIC, num_octaves=2, frequency=1.75}

In Figure 10 you can see how drastic the results are, just from this simple change.

Caves and Tunnels
¶ I’ve watched plenty of MINECRAFT videos of people out tooling around the countryside, riding pigs
and chasing chickens, when all of a sudden the ground sort of opens up before them into a shadowed,

WWW.GDMAG.COM 25

mysterious tunnel twisting down into the depths. A
rolling landscape covered in hills and trees is great; an
enigmatic, dark cave to explore is the epitome of sheer
awesomeness.

All mystery and excitement aside, a cave is pretty
simple. It’s just an open space. Typically, from what I’ve
seen in MINECRAFT, the tunnels are relatively narrow
and long, with few large caverns or openings. I’m not
sure how MINECRAFT does it, but from where I sit, a
low-octave Ridged Multifractal with some tweaks just
might do the trick. However, it is going to take some
massaging to get it to look right.

To begin with, a basic Ridged Multifractal in two
dimensions with a single octave looks like Figure 11.

If we apply a threshold function to it, mapping
the function to either solid or open, we get a series
of contoured areas that sort of fit what we want.
Figure 12 shows the results of varying the threshold
parameter to obtain different cave configurations.

In 2D, this seems to work great, so let’s take a
look at Figure 13 to see what it’s like in 3D. That’s not
really what we want. In three dimensions, the Ridged
Multifractal doesn’t carve lines or tunnels or tubes
like you might expect. Rather, it carves a network of
curved surfaces or shells. However, what we can do is
set up another identical ridged noise source function,
give it a different seed, and multiply the two sources
together. This has the result of keeping the portions of
the shells wherever they intersect, and discarding the
rest of the areas.

Figure 9 Terrain using a
higher turbulence power.

Figure 10 Terrain using
Ridged Multifractal noise
as the turbulence source.

CONTINUED ON PAGE 26

http://WWW.GDMAG.COM

GAME DEVELOPER | APRIL 2011 26

{name=”CaveShape1”, type=”fractal”,
fractal_type=”RIDGEDMULTI”, basis_
type=”GRADIENT”, interp_type=”QUINTIC”,
num_octaves=1, frequency=2},
{name=”CaveBase1”, type=”select”,
main_source=”CaveShape1”,
low_source=”Constant0”, high_
source=”Constant1”, threshold=0.7,
falloff=0},
{name=”CaveShape2”, type=”fractal”,
fractal_type=”RIDGEDMULTI”, basis_
type=”GRADIENT”, interp_type=”QUINTIC”,
num_octaves=1, frequency=2, seed=1323},
{name=”CaveBase2”, type=”select”,
main_source=”CaveShape2”,
low_source=”Constant0”, high_
source=”Constant1”, threshold=0.7,
falloff=0},
{name=”CaveMult”, type=”combiner”,
combiner_type=”MULTIPLY”,
source_0=”CaveBase1”,
source_1=”CaveBase2”},

Now, take a look at Figure 14 to see the results. That’s
more like it. We have plenty of interconnected narrow
little tunnels to explore, as well as some areas where
the caves open up a bit into larger caverns. We can
play around with the various thresholds of the two
cave sources in order to tweak the thickness of the
caves. Note that the selection functions for the cave
networks output values of 0 or 1, rather than –1 or
1. This is because we are using the cave network as
a multiplicative source, used to “mask” off areas of
the final base function. We want the base function to
be open anywhere the cave function evaluates to 1,
and solid where it evaluates to 0.

This gives us the interconnected system of
tubes, but since we are using a 1-octave fractal for
the basis, the caves seem sort of weirdly smooth. We
can roughen them up by applying some turbulence.

{name=”CaveTurbX”, type=”fractal”, fractal_
type=”FBM”, basis_type=”GRADIENT”, interp_
type=”QUINTIC”, num_octaves=3, frequency=3,
seed=1001},
{name=”CaveTurbY”, type=”fractal”, fractal_
type=”FBM”, basis_type=”GRADIENT”, interp_
type=”QUINTIC”, num_octaves=3, frequency=3,
seed=1201},
{name=”CaveTurbZ”, type=”fractal”, fractal_
type=”FBM”, basis_type=”GRADIENT”, interp_
type=”QUINTIC”, num_octaves=3, frequency=3,
seed=1301},
{name=”CaveTurb”, type=”turbulence”,
main_source=”CaveMult”, x_axis_
source=”CaveTurbX”, y_axis_
source=”CaveTurbY”, z_axis_
source=”CaveTurbZ”, x_power=0.25,
y_power=0.25, z_power=0.25},

This time we are using three noise sources and
a turbulence function to perturb our multiplied

caves network. Each axis source is set
with a different seed. Rendering the
output of this on our cave network gives
us something similar to Figure 15. That
gives a nice, chunky, natural look to the
caves, eliminating the smooth curves
and lines and making it rougher and
more “cave-like.”

To wrap up the process, we need
to invert the cave function (since it
currently acts as a solid function where
the caves are; we need the caves to be
the open space, and the surrounding
function to be solid) and multiply it by
our ground function to get the final open/
solid function for our ground formation,
as below.

{name=”CaveInvert”, type=”scaleoffset”, source=”CaveTurb”, scale=-1, offset=1},
{name=”GroundCaveMult”, type=”combiner”, combiner_type=”MULTIPLY”,
source_0=”GroundBase”, source_1=”CaveInvert”},

Figure 16 shows the final result of multiplying our basic ground function by the inverted cave
function. Now we have a nice, hilly chunk of ground laced with a network of caves and cracks, ripe
for exploring.

As you can see, the full specification for the module is relatively simple: 18 different modules to
get a complex terrain. Of course, we can easily modify the way we do things at any step of the way. In
particular, the ground shape function should probably be tweaked a bit to provide more variety. If you
look at a topographical map of a section of the Earth’s landscape, you can see that the surface of the
ground is not homogenous. There are flat areas, hilly areas, areas of mesas and tabletop mountains,
deep canyons, steep mountains, and so forth. Our current implementation only uses one simple fBm
fractal to perturb the surface. To get more varied results, we could replace the fBm fractal with a more
complex tree using select functions, blend functions, and more in order to create a non-homogenous
function that could produce wildly different terrain types, from flat to hilly to mountainous.

We can also tweak the cave generator to produce more varied and intricate caves. A possible
tweak might be to add another fractal source that is scaled by the ground gradient, so that as
it draws nearer the surface it approaches zero. By tweaking the frequency of this, and adding a
thresholding function, then combining it with the cave network function using a combiner such
as Add or Max, we can add larger voids and caverns near the bottom of the world that scale down
and disappear nearer to the surface. We can fill these deep caverns with lava and demons to create
dangerous, hellish depths to test the player’s survival skills.

There’s still more we could do. Tying the ground shape gradient function to a curve could give us
layer types. The top three or four layers of the ground should be dirt, then stone meta-types all the way
down to the final layer, which should be unbreakable bedrock to keep us from digging through to the
Abyss. Further functions drawing off the ground gradient can define layers where mineral deposits
may occur, using the gradient to scale the likelihood of finding rarer minerals deeper down.

Procedural generation of worlds is a complex undertaking, but the complexity can be easily
handled by breaking the work down into smaller, more manageable tasks, and using simple
mathematical constructs and functions to build it up, layer upon layer, until the final result is a
complex, interesting, living and breathing world filled with variety and depth.

JOSHUA TIPPETTS has been an indie game developer for almost fifteen years. He currently lives in the mountains of

northern Wyoming. You can email him at vertexnormal@linuxmail.org.

Figure 11 Ridged Multifractal with 1 octave.

Figure 12 Changing the
threshold parameter

results in larger or
smaller cave systems.

CONTINUED FROM PAGE 25

mailto:vertexnormal@linuxmail.org

WWW.GDMAG.COM 27

L I S T I N G 1

The entire set of modules in Lua table form to generate the
function from this article.

minecraftlevel={

{name=”Constant1”, type=”constant”, constant=1},

{name=”Constant0”, type=”constant”, constant=0},

{name=”ConstantNeg1”, type=”constant”, constant=-1},

{name=”GroundGradient”, type=”gradient”, y1=0, y2=1},

{name=”GroundShape”, type=”fractal”, fractal_type=”FBM”, basis_

type=”GRADIENT”, interp_type=”QUINTIC”, num_octaves=2, frequency=1.75},

{name=”GroundTurb”, type=”turbulence”, main_source=”GroundGradient”,

y_axis_source=”GroundShape”, y_power=0.30},

{name=”GroundBase”, type=”select”, main_source=”GroundTurb”,

low_source=”ConstantNeg1”, high_source=”Constant1”, threshold=0.2,

falloff=0},

{name=”CaveShape1”, type=”fractal”, fractal_type=”RIDGEDMULTI”, basis_

type=”GRADIENT”, interp_type=”QUINTIC”, num_octaves=1, frequency=2},

{name=”CaveBase1”, type=”select”, main_source=”CaveShape1”,

low_source=”Constant0”, high_source=”Constant1”, threshold=0.7,

falloff=0},

{name=”CaveShape2”, type=”fractal”, fractal_type=”RIDGEDMULTI”, basis_

type=”GRADIENT”, interp_type=”QUINTIC”, num_octaves=1, frequency=2,

seed=1323},

{name=”CaveBase2”, type=”select”, main_source=”CaveShape2”,

low_source=”Constant0”, high_source=”Constant1”, threshold=0.7,

falloff=0},

{name=”CaveMult”, type=”combiner”, combiner_type=”MULTIPLY”,

source_0=”CaveBase1”, source_1=”CaveBase2”},

{name=”CaveTurbX”, type=”fractal”, fractal_type=”FBM”, basis_

type=”GRADIENT”, interp_type=”QUINTIC”, num_octaves=3, frequency=3,

seed=1001},

{name=”CaveTurbY”, type=”fractal”, fractal_type=”FBM”, basis_

type=”GRADIENT”, interp_type=”QUINTIC”, num_octaves=3, frequency=3,

seed=1201},

{name=”CaveTurbZ”, type=”fractal”, fractal_type=”FBM”, basis_

type=”GRADIENT”, interp_type=”QUINTIC”, num_octaves=3, frequency=3,

seed=1301},

{name=”CaveTurb”, type=”turbulence”, main_source=”CaveMult”,x_

axis_source=”CaveTurbX”, y_axis_source=”CaveTurbY”, z_axis_

source=”CaveTurbZ”, x_power=0.25, y_power=0.25, z_power=0.25},

{name=”CaveInvert”, type=”scaleoffset”, source=”CaveTurb”, scale=-1,

offset=1},

{name=”GroundCaveMult”, type=”combiner”, combiner_type=”MULTIPLY”,

source_0=”GroundBase”, source_1=”CaveInvert”} -- Map this function for

final output

}

Figure 13 3D representation of
thresholded Ridged Multifractal
function.

Figure 14 Result of multiplying two
thresholded Ridged Multifractal 3D
functions.

Figure 15 Cave function perturbed by
three axes of fractal noise.

Figure 16 Final result of combining the
ground and inverted cave functions via
multiplication.

http://WWW.GDMAG.COM

I G F M A I N C O M P E T I T I O N

» SEUMAS MCNALLY GRAND PRIZE

Minecraft, by Mojang

» EXCELLENCE IN VISUAL ART

BIT.TRIP RUNNER, by Gaijin Games

» EXCELLENCE IN AUDIO

Amnesia: The Dark Descent, by

Frictional Games

» EXCELLENCE IN DESIGN

Desktop Dungeons,

by QCF Design

» TECHNICAL EXCELLENCE

Amnesia: The Dark Descent,

by Frictional Games

» BEST MOBILE GAME

Helsing’s Fire, Ratloop

» AUDIENCE AWARD

Minecraft, by Mojang

» DIRECT2DRIVE VISION AWARD

Amnesia: The Dark Descent,

by Frictional Games

N U O V O A WA R D

» Nidhogg, by Messhof

I G F S T U D E N T S H O W C A S E

» BEST STUDENT GAME

FRACT, by University of Montreal

VIEW THIS YEAR’S FINALISTS AND WINNERS AT WWW.IGF.COM

CELEBRATING OVER 600 INNOVATIVE GAMES ACROSS THIS YEAR’S MAIN,
STUDENT, AND NUOVO AWARD COMPETITIONS

http://WWW.IGF.COM

TOOLBOX

WWW.GDMAG.COM 29

GAME DEVELOPERS CONFERENCE 2011
AT THE MILESTONE 25TH GAME DEVELOPERS CONFERENCE, THE MAJOR THEMES SEEMED TO BE THE CONVERGENCE OF GAME
PLATFORMS, AND THE INCREASING FOCUS ON SMALLER TEAMS AND MOBILE DEVICES. WE SPOKE WITH A NUMBER OF TOOLS AND
TECHNOLOGY INNOVATORS IN THESE SPACES TO SEE HOW THEY WOULD ADDRESS THE RAPIDLY CHANGING INDUSTRY.
 — Tom Curtis

R E P O R T F R O M T H E S H O W F L O O R

GAMESPY TECHNOLOGY

GameSpy Industries
www.poweredbygamespy.com

)))) GameSpy showcased a
number of new titles using the
company's suite of online services,
demonstrating what the tools
are capable of across multiple
platforms. Among the games on
display was Trendy Entertainment's
Dungeon DefenDers, the first
GameSpy-powered title for Android
devices, and also the first to
support cross-platform play with
the PC, PlayStation 3, Xbox 360,
and iOS. In addition to the platforms
already supported by GameSpy
Technology, the company revealed
plans to expand its services to
Sony's upcoming NGP hardware.

The company also announced
its GameSpy Open initiative,
which will make the company's
services available to start-up
and independent teams for free,
at least until their games start
making money. "For a long time
we've been focused on AAA
developers and publishers, but
we've never really been able to

work with developers on smaller-
scale titles, so to do that we
completely changed our licensing
model," explained GameSpy
Technology vice president Todd
Northcutt. Smaller developers
will pay for the service based
on their game's monthly active
user count, and as games rise or
decline in popularity, the fee for
using GameSpy tools will change
accordingly. "We don’t want to
turn anyone's game off—ever.
There will always be the lower level
and free tiers, so as your game
sunsets, people can still play and
the service will still operate. As a
developer, you might not be seeing
any new revenue from the game,
so you shouldn't have to pay for
the service," Northcutt added.

The company also showed
off a number of titles from the
indie teams that participated
in its recent Indie Open House
Program, where five teams worked
from the GameSpy offices in the
Bay Area to develop their games
in a collaborative environment.
Northcutt explained that the
company decided to offer these

teams some extra office space
in order to better understand
indie development and to give
indies some extra exposure and
experience. "We've learned a lot
from these indie teams," said
Northcutt, "We understand how a
team of 200 or so works, but it's
totally different when you look at a
three-to four-person team, where
everybody does everything." Based
on feedback from the teams in the
Indie Open House, the company
says it plans to further simplify its
cloud storage and other services
to better accommodate smaller
projects.

UNITY GAME DEVELOPMENT TOOL

Unity Technologies
www.unity3d.com

)))) In the midst of GDC, Unity
Technologies released the Unity
Android add-on for its development
platform, enabling developers to
port Unity-developed projects to
Android devices. Since Unity made
a pre-release version of Unity for
Android in 2010, developers have
shipped nearly 50 games for the
platform.

"Developers just want to get
their game out there," said Unity
COO Nicholas Francis. "We want
developers to be able to make their
game, and put it out where they
like. Personally, I want developers
to be able to switch platforms by
just re-programming their game's
controls and tweaking it a bit."

Francis noted that when
integrating new features into the
Unity engine, the company takes
note of what developers want
via an online voting system, and
even dedicates one day a week
at the Unity office to creative
experimentation in order to find
new ways to add features and
improve the overall package.

"At Unity, Fridays are dedicated
to working on whatever you want,
as long as it pushes the envelope,"
Francis explained, allowing Unity’s
employees to find new and perhaps
unexpected ways to make the Unity
platform more robust.

AUTODESK 2012 PRODUCT UPDATES,

PROJECT SKYLINE

Autodesk
www.autodesk.com

)))) Game tools firm Autodesk
discussed a slew of its upcoming
products at GDC, including 2012
versions of 3ds Max, Maya,
Softimage, the updated versions
of Autodesk Beast, HumanIK, and
Kynapse, as well as the company's
latest animation pipeline solution,
Project Skyline. For the latest
incarnation of its established
software suite, Autodesk worked to
improve interoperability between its
products to ensure that developers
could more easily transition from
one set of tools to another. Specific
changes include more homogenous
and robust f-curve editors across
3ds Max, Maya, Softimage, and
MotionBuilder, as well as a one-step
solution that transfers projects
between the various programs. The
company's middleware products,
which include HumanIK and
Kynapse, will offer support for NGP,
iOS, and Android, and will include
a number of changes related to
performance optimization.

The company also discussed
its recent acquisition of 2D UI
middleware provider Scaleform,
explaining how the partnership
will help Autodesk reach out to
2D game developers working on
mobile platforms. "In the mobile
space, you can kind of see where
things are going. You have things
like Unreal Engine running on iOS,
but not all developers are going

GDC 2011

http://www.poweredbygamespy.com
http://www.autodesk.com
http://www.unity3d.com
http://WWW.GDMAG.COM

TOOLBOX

GAME DEVELOPER | APRIL 201130

to transition to 3D development
overnight. We thought that
partnering with Scaleform would
help create a transition from 2D
development to 3D," said Marc
Stevens, vice president of Autodesk
Games. In order to help integrate
the Scaleform middleware into
the company's current lineup
of products, Autodesk hopes to
allow developers to view and
augment Flash movies in Maya,
for instance, so they can add
3D effects to games primarily
developed in 2D. As the mobile
space matures, Autodesk predicts
that 3D development will become
the norm, and the company's
integration of the Scaleform tools
will help incentivize teams to
start developing in 3D. "Working

in a 3D environment allows you
to make changes to 2D content a
bit easier, whereas it's harder to
make those customizations in a
2D environment. The question is,
will people have to do this to be
competitive from an efficiency
point of view, or will they have to do
it to create certain effects and the
like that can only be done in 3D?"
Stevens posed.

HAVOK AI, CLOTH, BEHAVIOR TOOLS

Havok
www.havok.com

)))) In the most recent update
to Havok AI, the popular physics
engine provider added a number
of new features primarily intended
to benefit MMO titles. Havok AI
now supports navigation in space
in addition to surface navigation,
allowing AI-controlled characters to

maneuver through game worlds via
flight, with pathfinding behaviors
to limit collisions and traffic jams.
Havok AI has been around for about
two years now, and our MMO clients
seem to like it a whole lot, and now
it has a number of features that
are MMO-specific," said Havok VP
of engineering Dave Gargan. In
order to best suit MMO titles, Havok
AI supports a large number of AI
controlled characters, and allows
for instancing as well as stitching
and streaming, so games can
stream in parts of the environment
while incorporating AI pathfinding
across the streamed sections.

 The latest update to Havok
cloth includes support for more
realistic hair, using simulated
layers rather than specific hair

strands. This means of rendering
hair allows developers to create
believable-looking characters
without putting too much strain on
modern hardware. The tool allows
developers to change the number
of hair layers to tweak fidelity
and performance, and sliders
control the length of these layers,
making the tool suitable for titles
that include detailed character
customization.

Havok also showcased
improvements to its behavior
tool, which helps artists author
runtime animations by helping
characters transition between
animations based on their position
in a game environment. Havok's
demo showed a character leaping
from ledges and finding cover,
transitioning between actions in
various ways depending on the
player's position in the game world.

Finally, Havok noted that it
has expanded its platform support
to iOS and Android, and is in the
process of extending to upcoming
platforms like Sony’s NGP and
Nintendo’s 3DS.

UNREAL ENGINE 3

Epic Games
www.epicgames.com

)))) In the latest incarnation of
Unreal Engine 3, Epic Games added
a number of new features to boost
the visual fidelity of future titles
that use the popular engine. The
new additions include improved
depth of field effects, image-
based reflections on surfaces,
and improved bloom. Several of
the engine's newest features
are available only on DirectX 11,
such as sub-surface scattering for
improved lighting and dynamic
tessellation and displacement.

To demonstrate the engine's
latest update, Epic showed a tech
demo, dubbed "Samaritan," running
on three off-the-shelf Nvidia GTX
580 graphics cards that they believe
could feasibly run on just a single
card, with enough optimization.

The tech demo also showed off
improved cloth simulation using
Nvidia's Apex framework, as well
as deferred shading and skeleton-
based motion blur, which can be
used to affect very specific parts
of a character, such as an arm in
mid-punch.

Epic's Mark Rein also confirmed
that Unreal Engine 3 is currently
in development for Mac, though
the company did not provide an
estimate regarding its release on
the platform.

PRIMESENSE GESTURE RECOGNITION

PrimeSense
www.primesense.com

)))) After working with Microsoft
to make the Kinect motion sensor
a reality, PrimeSense's goal at
this year's GDC was to teach
developers how to create intuitive
interfaces for the company's latest
depth cameras. In anticipation
of upcoming Smart TVs that will
support the PrimeSense hardware,
the company demonstrated how to
navigate simple television menus
using gesture control. Much like

menu navigation using Kinect,
users control an on-screen cursor
with their hand as they glide over
a number of on-screen buttons
for movie playback, on-demand
content, and more. While Kinect's
interface requires users to hold
their hand in place for several
seconds to select an option,
PrimeSense’s demo interface tends
toward users pushing forward to
make their selection without having
to wait.

Also at the booth were the
winners of the PrimeSense
Developer Challenge, a contest that
tasked entrants with creating a
functional web browser that uses
only gesture-based control, with
the winner earning a grand prize
of $20,000. The top entry, dubbed
SwimBrowser, tracks both hands,
allowing users to click links using a
distinct diving motion. The browser
was awarded first place because it
provided the most fluid and natural-
feeling interface. Other entries in
the contest included a browser
that displayed a virtual room with
floating navigation buttons in the
corner of the screen, and another
interface that relied on its own
version of sign language.

TRINIGY VISION ENGINE

Trinigy
www.trinigy.net

)))) After expanding its business
to include Europe, North America,
and Korea in 2010, Trinigy has
since turned its focus to expanding
platform support for the company's
Vision engine. Trinigy announced it
is working to add support for Sony's
NGP within the next few months,
followed by support for iOS a few
months later. "We decided to first
add support for the NGP because
the platform is interesting, and
because it's technically challenging,"
said Trinigy CEO Felix Roeker, "Sony
approached us at a very early stage,
and we wanted to be one of the very
first companies to get onto that
bandwagon, so that's the reason we
started with NGP. iOS and Android are
slightly less technically challenging
to program for than the NGP, and we
estimated it would take less time to
add support for them, so that's why
we started with our mobile versions
slightly later [than the NGP version]."

http://www.epicgames.com
http://www.trinigy.net
http://www.primesense.com
http://www.havok.com

WWW.GDMAG.COM 31

Trinigy also discussed
several new features that have
been added to the Vision engine,
including a new shadowing system
and particle system, as well as
preparations to launch networking
integration later this year. In
addition, the Vision engine now
includes a sample game with its
SDK to help developers determine
what they can accomplish with the
latest version.

INTEL SANDY BRIDGE PROCESSOR, SSDS,

DEVELOPER TOOLS

Intel
www.intel.com

)))) Intel's booth on the GDC show
floor dedicated much of its space to
showing off the company's Sandy
Bridge processors, which integrate
graphics performance directly
into the CPU, allowing for high-
performance gaming even without
a dedicated GPU. Nearly all of Intel's
demo machines ran on these new
processors, showing games like
Portal 2 and WorlD of Warcraft
running without a discreet video
card.

Alongside the Sandy Bridge
hardware, Intel highlighted
its newest solid-state drives,
emphasizing the advantages
they offer for PC gaming, such as
improved speeds for loading and
rendering content and decreased
texture pop-in.

As far as software tools, Intel
showed off version 4.0 of its
Graphics Performance Analyzer,
which allows developers to assess
performance and identify hardware
bottlenecks via a HUD overlay that
runs over their games. Intel also
demonstrated its Platform Analyzer,
which shows developers how much
processing time their game spends
managing elements such as HUDs
and character renders.

Intel's project management
lead, Roger Chandler, also
discussed how Intel's products
make the PC a viable platform for
big-budget developers and smaller
indie teams alike. "The PC is one
of the most innovative platforms
out there, and provides developers
with the most ways to monetize
their content," he explained. "We've
reached the point in the ecosystem
where digital distribution has

surpassed retail, opening up tons
of business models, and we want to
support that with our hardware."

WEBGL WORKING GROUP

Khronos Group
www.khronos.org

)))) Near the end of the show, the
not-for-profit industry consortium
Khronos Group announced the
final spec for the 1.0 version of the
WebGL API, which enables HTML5
web browsers to handle hardware
accelerated 3D graphics without
plug-ins. The WebGL working group
currently includes Mozilla, Google,
Apple, and Opera, and the API ships
with Chrome, and will ship with
Firefox 4 and other supported
browsers by the end of the year. The
WebGL API exists on top of OpenGL
ES, thereby applying its capabilities
to web-based content. "We think
this will help bootstrap Web GL
developers and get more and more
WebGL-based content on the web,"
explained Vladimir Vukicevic of
Mozilla.

Khronos demonstrated
how WebGL will benefit online
content using Google Body, which
creates 3D renders of the human
body alongside traditional HTML
HUD elements. "We think more
applications are heading toward
the web, since that will improve
the impact of their delivery, so
we want to make sure the web
has the capabilities that all those
applications need," said Vukicevic.

Khronos also aims to make
WebGL available on mobile devices,
a space which the group believes
will increasingly favor Android
handhelds in the coming months.
"I think history is in the process of
repeating itself," said Neil Trevett,
president of the Khronos group.
"You have Apple on one side, who
is successful but has complete
vertical control and a closed and
controlled business model, while
the other 90% of the industry
piles in on the other side. In the
desktop space, Apple takes up
a small fraction of the current
market share, even if they have
good margins. The other side of the
industry is traditionally more open
and allows developers to more
easily add value and innovate, and
I think Android fills that role in the

mobile space. I think we're headed
very quickly to an 80–20 split, with
Android taking 80 percent."

With the WebGL API, Khronos
hopes to give developers ample
control over their applications, and
give them a means of making their
projects available to anyone with an
HTML5-enabled web browser.

NVIDIA DEVELOPER TOOLS, MOBILE GPUS

Nvidia
www.nvidia.com

)))) GPU and chipset provider
Nvidia's booth showcased a wide
variety of developer tools, services,
and hardware. Among the company's
most recent projects is the Nvidia
3D Vision technology, which
adds 3D stereoscopic awareness
to games via a new driver. This
technology allows games to support
stereoscopic 3D even if developers
don't specifically integrate support
for the feature themselves.

In terms of its middleware and
developer tools, Nvidia revealed that
its PhysX technology will now ship

with products such as Autodesk's
3ds Max and Maya. The company
also showcased PhysX's Apex
framework, which helps artists
better integrate cloth animation into
their games.

True to its hardware origins,
their booth also showcased the
latest Tegra 2 series of mobile GPUs.
These dual-core processors are
now shipping with a host of tablets
and Android devices, and quad-core
versions of these chips now in
development. With this latest series
of mobile hardware, Nvidia hopes to
streamline the process of moving
games from PC to mobile platforms,
limiting the need to trim down
game content to suit less powerful
hardware.

In order to further improve
performance across all its
developer tools and hardware,
Nvidia says it aims to make
access to parallel processing
more general, and find ways to
keep more data in memory to
help developers switch between
applications far more quickly.

http://www.khronos.org
http://www.nvidia.com
http://www.intel.com
http://WWW.GDMAG.COM
http://WWW.UNITYWORKSHOP.COM

Common errors from down in the trenChes

Programming SinS
//////// From the very FirSt line oF code an engineer writeS, he or she starts to develop their personal list of “dos and don’ts”
that, even if they are never written down, have a tremendous effect on how we design and build our games. The list evolves and
changes over time –– we add to it, delete from it, and re-evaluate the lists of others. Experience is the driving force behind a lot
of the changes; in short, we make a mistake, and we learn from it. These game programming sins are essentially a number of dos
and don’ts with some recollections of how and why they came to be on this list.

michael a. carr

creating obFuScated code
» For those that don’t know me, one of my major flaws is that I simply
don’t remember everything. My brain, it would appear, is completely
incapable of storing all the facts and information I ask it to. Over the years,
I have used different methods to help me remember, all with varying
degrees of success. My current system is to write everything down. I carry
a black leather writing notebook with me, and I take lots of notes. I use a
P.D.A. for some things like contacts and mind maps, but when it comes to
making lists and notes, paper and pen have yet to be beaten.

One of the effects of this forgetfulness is that I couldn’t tell you the
intimate details of a function I wrote three weeks ago, let alone six months
or a year ago, without at least re-reading it and refreshing my memory. It’s
because of this that I consider obfuscated code a sin. This also fits nicely
with working in a team of programmers where someone might have to debug
and/or add new functionality to someone else’s code. The quicker it is to
understand, the easier it is for them to make the required modifications.

int m_MyMumIsBetterThanYours;

No it wasn’t a game about mums ... although I wonder if there is a game
there somewhere ...

bool m_BumCheeks;

Enough said.

float m_Saving;

Is this a flag to indicate saving, in which case why a float? Or is it a
percentage of save completed?

void * m_pAudioSample;

Not very useful. Wouldn’t SAudioSample * m_pTheWarCry; be more useful?

int CCharacter::GetLife(int y)

Nothing wrong with this function ... only why is there a variable passed
in? More importantly, y isn’t exactly very descriptive. Turns out this
function did indeed get the amount of life and return it; and while it was
there, it also updated the life value by applying the damage modifier
to the life counter, and also applied the adjustment of y. When this
function wasn’t called every tick, the whole life counter on the character
broke.

Abusing ternary operations. Consider the following code. (Remember that
this would normally be on a single line, so you would have to scroll to see
the entire line.)

if (CPhysicsManager::Instance().RayCast(m_Position + (CVector::Up
* METRES(2.0f)), m_Position - (CVector::Up * METRES(2.0f)),
&contact_data, pActor->GetPhysicsActor() ? pActor->FindRealActor()-
>GetPhysicsActor() : NULL, ePhysicsShape_Static))

Would you have spotted the use of ? and : inside the function parameter list?
Some coding standards I have worked with ban the use of ? and :

altogether, mainly because it’s easy to abuse. As you can see, it contributes
handily to the jumbled code in the example above. However, there are cases
where I consider them to be fair enough. That’s usually where the use is
obvious. For example:

m_Level = level_specified ? start_level : default_level;

result = a > b ? b : a;

Abbreviating English. There was a time when the length of our variable or
function names would have a significant effect on the performance of the
compiler. This has not been the case for a very long time, but some engineers
seem to like using shorthand.

int NmbrChars();

vs.

int GetNumberOfCharacters(void);

int m_LCnt;

vs.

int m_LifeCount;

English is my first spoken and written language, and I find it easier to read
code that says what it is in plain English.

not Failing graceFully
» The world would be a dull place if we all had the same thoughts, the same
ambitions, ideas, and methods of working. But there are some thoughts
and methods that should be discouraged whenever and wherever they are
encountered.

game developer | april 2011 32

THe iNNer prodUCT // miCHael a. Carr, Noel llopis, aNoNymoUs

www.gdmag.com 33

Working on a project that was just over halfway through its development
cycle, I was investigating why the game kept crashing whenever a specific
sound event was triggered. I quickly tracked the problem down to some
missing audio files, an easy fix. Still, it was the fact that a missing file was
causing the entire game to crash that got me looking a little more closely at
the sound manager. It turned out that the manager never validated its data;
even though a file had failed to load, it carried on processing the non-existent
sound data as though the file load had been successful.

Talking to the engineer who maintained the system, I thought he was
pulling my leg when he said he considered it acceptable behavior for the

code to crash when something goes wrong. After he repeated himself, I
realized that he was serious. From his perspective, the problem was the
missing data, not that the manager didn’t handle itself in a graceful fashion.

There are always going to be unexpected issues that arise, certainly
during development and very possibly after our games have shipped.
There might be a missing texture, a corrupt file, an out-of-range data
value, or even a lack of resources. We can and should make our code
as bulletproof as we possibly can. The game should be continuously
fighting to keep itself running. This makes the game experience more
stable for the player, and if something does go wrong, there should be

il
lu

st
ra

ti
on

 b
y

ju
an

 r
am

ir
ez

http://WWW.GDMAG.COM

fail-safes in place so that he or she will not even notice.
Here are three basic coding practices that I advocate as a minimum.

You might also recognize what I’m talking about as essentially being
“defensive programming.”

Pointers. Pointers are pointers because it’s possible they might
be NULL (otherwise they would have been references). Validate
pointers at least once before accessing them.

Validate Data. Sanity checking data can help prevent a lot of
issues. Clipping them to valid ranges means you are less likely
to have invalid calculations later on down the line.

Default State. Some data can’t be clipped or ignored, an
example might be a texture, in this scenario having a memory
resident fallback is a good solution. During development it
can be bright pink and yellow and stands out a mile while in
shipped mode it can be transparent.

IgnorIng Customer satIsfaCtIon
» During the early days of a very old project, I had added support for a
trigger box to the game’s editor. A few days later, a designer asked for a
trigger sphere in addition to the box. I was busy, I had a pile of other work to
do, and I didn’t think it was that important for the milestone. I explained that
I would add it to my list and implement it as soon as I could. Unfortunately, I
didn’t get to it soon enough; the designer announced to me the next day that
he had solved the problem and didn’t need my implementation anymore.

Have you ever stood on the edge of a very tall building and slowly
looked over the side? Remember how your stomach felt as you slowly
peeked over the edge? That was how I felt looking over the designer’s
shoulder at his solution. What I observed was a script that created 100
square trigger boxes, each rotated slightly more than the last. It made
a pretty spiral effect in the editor and took a huge chunk out of the CPU
when running in-game, but it worked exactly as he wanted it to.

This was a kick up my bum, and the designer got his sphere trigger
very quickly afterwards. Designers, like everyone else in the games
industry, are incredibly creative. The main thing about them in particular
is that they seem to get far too much enjoyment out of abusing game
systems. I consider it a sin to ignore any designer’s valid request. Failure
to pay attention to them might result in something creatively “ugly.”

fragmentIng memory
» During the development of many projects, there’s been a critical
moment when everything started falling apart. The game crashes
constantly, levels are broken, data builds take twice as long, the coffee
machine is out of order, and you’re supposed to be going to a family event
on the weekend, and you must desperately try to find the right moment to
tell your better half that you won’t be going. For me, this usually happens
around six weeks before the end of the project.

What is going wrong in these instances is varied, but I’ve noticed a
trend that usually revolves around the fragmentation of memory. There’s
nothing like spending time hunting down and defragmenting memory to
make you realize how many of these issues could have been prevented.

Temporary Buffers. Reading this simplified example, it might
seem obvious, but it happens more than I would expect. Having
looked over file histories, cases of memory fragmentation
seem to evolve over time when multiple engineers introduce
additional initialization between the allocation and de-allocation.
This has led me to consider temporary buffer allocations a sin—
at least until they have proved themselves trustworthy.

Function A
 Create a temporary buffer.
 Do something with the buffer.
 Call Function B.
 Finish processing the temporary buffer.
 Release the temporary buffer.

Function B
 Allocate non-temporary data.

The allocation in Function B might simply be the loading of a
file, creating a new entry in a link list, or allocation of a string.
The result however is identical; fragmented memory. There are
a number of ways to deal with this, not least of which is using
static memory, a unique heap, or even a scratch buffer.

Leaks. Okay, it makes sense that memory leaks cause
fragmentation. Luckily, with some good tracking tools, these
are usually easy to find and plug-up.

Keep It Simple. Each allocation should have one de-allocation
in a logical place. For example, if you allocate memory in the
Init function, you de-allocate it in the Deinit function. Some
engineers seem to think it’s fun to hide the de-allocator in
obscure parts of the code, or to have multiple de-allocate
commands for the same piece of memory. Keep it clean, keep
it simple!

noeL LLoPIs

Don’t synC anD LoaD
» Late in a console project, I took on the gargantuan task of reducing level
load times. They had been slowly creeping in throughout development
and were up to a minute and a half. The goal was to bring that down under
30 seconds.

There were some obvious things that I was going to tackle: parsing and
processing of text files, wild memory allocations, and so forth. Once I took
care of all the low-hanging fruit, things were better, but load times were
still way over a minute. Something was clearly wrong.

Curiously, the profile wasn’t showing any huge hotspots, yet we were
still spending over a minute loading levels. Where was all that time going?

After some more digging, I noticed that during the level load, we were
drawing a progress bar on the screen. The loading code wasn’t architected
from the beginning to be multithreaded, so instead, we would load one file,
update the progress bar, load another file, update the progress bar again,
and so on until all files were loaded. We had about 3,000 tiny files per level
(fortunately packed in a larger container file and laid out sequentially), so
that made it possible to update the progress bar in a smooth way.

Other than being a bit clumsy and not very elegant, there was nothing
horribly wrong with that approach. Except for one thing: the rendering code
drew the progress bar, and then did a present call with vertical sync on.
That meant that most of the time the console was waiting for vertical sync
instead of doing an actual load. Once I removed the vsync, loading times
went down to about 20 seconds!

Bonus: that weekend I went for a bike ride with a friend who is a game
developer at another nearby company. I told him about our vsync issue
and how they affected our loading times—we both got a good laugh out
of it. It turns out, when he went back to work, he checked out of curiosity
and they were doing the same thing, so he was also able to cut down their
loading times in half!

game developer | april 2011 34

THe iNNer prodUCT // miCHael a. Carr, Noel llopis, aNoNymoUs

www.gdmag.com 35

ANONYMOUS

CUt-ANd-pASte
» When programming something up, I often copy a line or more of code,
sometimes several. I then need to maintain both pieces of code identically.

What I should have done is move the code into its own function (or
template, or at a pinch, a macro). The reason I don’t is simply laziness. If I
have some code like

DrawLine(a-w,b-h);
DrawLine(a+w,b-h);
DrawLine(a+w,b+h);
DrawLine(a-w,b+h);

and I need to do it again for c and d, it’s really easy to just cut and paste,
and change the variables.

DrawLine(c-w,d-h);
DrawLine(c+w,d-h);
DrawLine(c+w,d+h);
DrawLine(c-w,d+h);

When really I should do:

void DrawSquare(float x, float y, float w, float h) {
DrawLine(c-w,d-h);
DrawLine(c+w,d-h);
DrawLine(c+w,d+h);
DrawLine(c-w,d+h);
}
DrawSquare(a,b,w,h);
DrawSquare(c,d,w,h);

It’s fewer characters of code, but it’s more typing, and I have to think about
it more. So I frequently go for the cut-and-paste “solution” first simply
because it gets me the result I want quicker. Both will work the first time,
but I pay for my sins, and usually end up having to refactor it away later,
sometimes after a few more needless duplications.

“priNtf” debUggiNg
» I’ve always found the most useful tool in debugging code has simply
been to print out various values and labels that indicate where in the
code we are, and what we are doing. I always feel a little guilty doing this,
knowing there’s a debugger with thousands of functions all designed to
help me debug, but all I use it for is to look at the call-stack when I crash.
It’s like having a toolbox with a thousand tools, and all I use is the hammer.

The problem with this is that the console output quickly gets cluttered
with pointless debug strings, and it becomes hard to spot the ones that
are important. So I’ve got to track down the code that’s spewing output,
which can be hard to do if it’s just something like printf(“%d\n”,x);.

Then, when I find the offending printf, I don’t want to remove it, as
it often took me several seconds to type and I might need it again in the
future. So I just comment it out. Eventually, I started writing my printfs as
if they were comments, so in a lazy kind of way, I documented something
about the code. Of course I’d rarely re-use a printf, and when I did, it
usually ended up needing re-writing anyway as the code would have been
refactored and variables would have been added or removed.

thOU ShAll NOt OvereNgiNeer
» This one is unfortunately so common that a lot of people might not
even think of it as a sin. It’s just the way things are done. In several of
my past projects, the whole company consisted of one team working on

a single game. Yet somehow, programmers were separated into game
programmers and core technology programmers.

The idea was that the core technology team would write all code as
reusable, game-independent libraries and tools that could be used in
any other project in the future. The game team would use those libraries
and then build any game-specific code they needed on top of them. Each
of them had their own leads, and, of course, each of them had slightly
different goals and preferences.

In practice, the division did more harm than good. The code the core
technology team produced was overly general (for projects that didn’t yet
exist), and didn’t solve the exact needs of the game team. It added extra
dependencies and delays, and made things that should have been very
simple much more complicated.

Was it worth it in the long term? Not at all. That code was used for
direct sequels, but new games never reused the libraries and tools.

The lesson we learned the hard way is that before you can write reusable
code, it first needs to solve the needs of a project. Or, put another way, there’s
no point to reusing code if it doesn’t do the right thing in the first place.

Making a game is hard enough. Now, I just concentrate on making the
best game we can. Later on, we can talk about extracting and refactoring
some existing code that might benefit another project, but never try to
predict and future-proof technology.

preMAtUre OptiMizAtiON iS the rOOt Of All evil ... Or iS it?
» It began on a project a long time ago, in a galaxy far away ... OK, maybe not
that far away but still quite a few years ago. I was a fresh college graduate and
a bit wet behind the ears, with a brain full of computer science goodness.

Throughout the whole project, I kept pushing optimizations off until the
end. “We aren’t going to need that,” and, “We’ll just optimize the hot spots
on the profiler,” I kept repeating to my co-workers. So work went on, and
performance never became a priority.

Every so often, the frame rate would tank because of some new feature
that was just introduced, so we would fix that to make it playable again, but
just barely. Frame rates were around 10–15 FPS for most of the project.

Then the day finally came. We were in beta and we had to bring frame
rate up. I fired up the profiler and ... there it was! A big hot spot. I optimized it,
proudly ran some benchmarks again, and noticed I saved half a millisecond.
Not bad. I repeated it a few times, but curiously, the profiler soon reported
a rather worrisome flat graph. Apparently, there was no single place in the
code that was accounting for more than 0.05 percent of the frame time.
What was going on? That’s not what they taught in university!

It turns out our bottleneck wasn’t CPU cycles so much as it was cache
misses. And because of our lovely, heavy object-oriented design, we had
constant pointer dereferencing and traversing graphs all over memory.

We managed to gain some performance back by changing some lists
to contiguous arrays and doing some prefetching, but overall, it was very
difficult to meet the performance requirements we wanted for the game.

Lesson learned: there are some things that are better thought of from
the beginning, and memory layout and cache coherency is one of those.
Don’t paint yourself into a corner by waiting until the last minute to start
thinking of them.

thOU ShAlt NOt...
» These are just a handful of sins, and there are certainly a lot more. But at
one point in our careers, most of us in the programming field have committed
almost all of them. If we hadn’t, we wouldn’t have learned our lessons!

MiChAel A. CArr has been an engineer in the games industry for over twenty years,

publishing titles on all platforms from the 8-bit Amstrad CPC to the latest gaming consoles.

NOel llOpiS has been making games for just about every major platform in the last

twelve years. He's now a one-man band making iPhone and iPad games.

ANONYMOUS developer is anonymous.

http://WWW.GDMAG.COM

pixel pusher // steve theodore

game developer | april 2011 36

the high art of games
do game artists warrant recognition for individual achievements?

in case you haven't heard, the
venerable Smithsonian Institution in
Washington, D.C. will be hosting an
exhibition on video game art for the
next six months. Curated by game
archivist Chris Melissinos, with the
advice of a panel of familiar industry
names, the exhibition is intended
to celebrate games as "as one of
the most expressive, dynamic, and
powerful canvases of expression in
the past century."

What to say about this milestone
in the history of our medium? First
and foremost, "Take that, Ebert!" And
Jack Thompson, Judge Limbaugh,
and all the old fogies who can't tell
the difference between GalaGa and
Red dead Redemption. We're legit!

It's pretty funny that this
recognition has taken so long.
Those interminable debates about
"are games art?" always start from
something that everybody agrees
must be art, whether it’s War and
Peace, the Mona Lisa, or Citizen Kane.
But somehow, they always ended up
holding us up to standards that other
media have long since abandoned.
It's been more than a hundred years
since Marcel Duchamp undermined
the whole “art/not art” distinction by
hanging bicycle parts and urinals in
Paris galleries. For at least the last

50 years the academic and high-art
worlds have agreed that the only
objective test of whether something
is “art” is whether somebody has
hung it up in a gallery. So now,
games can finally take their place
alongside paintings, sculptures,
Campbell’s Soup cans, and sharks in
formaldehyde in the pantheon of art.
Congratulations, folks!

Treating games as an art form
is old news. It's interesting to note,
though, that when the show opens,
the stars will be games and game
designers, not pixel pushers like us.
The great paradox of our business
is the fact that our most modern
of art forms is almost medieval
in its approach to creativity. The
popular idea of the “artist” as a gifted
individual with a unique vision is
an invention of the Renaissance.
The cathedrals, frescoes, and
manuscripts of the Middle Ages were
created by artists who labored in
anonymity, and the same is true for
most of us. We labor communally,
like monks illuminating manuscripts
(granted, monks with too much
caffeine and pizza in their monastery
–– but still). Very few people, even
among the most rabid fans of our
games, will ever be able to identify
the work of individual artists.

There are exceptions, of course.
ArenaNet, for example, has built
a very powerful identity for its
concept artists so that names like
Daniel Dociu and Kekai Kotaki are
familiar to Guild WaRs fans, and
also to readers of the Fantasy/SciFi
award book Spectrum. Communities
like ConceptArt.Org and DeviantArt
have their named stars. The Ballistic
press books have done a lot to
popularize the work of individual CG
artists, including game artists like
Jan-Bart van Beek of Guerilla. And,
of course, there are the marketing
books from the "Art of ..." genre that
provide artists a chance to speak
directly for themselves.

Despite this small number of
celebrity names, most of us are
just credit list fodder. It's probably
significant that most of the “name”
artists in the business are concept
artists, as reviewers, critics, and
audiences can easily slot a creator of
beautiful paintings into a traditional
understanding of what it means to
be an artist. The rest of us tend to
contribute to our games in ways
that are harder for the uninitiated to
comprehend. If you're a character
rigger, a shader artist, or you do the
complex magic that makes your
game’s vehicles drivable, it's a lot

harder for a journalist or a fan to
understand or appreciate your work.
Behind all of that is the industry's
high rate of churn. With so few people
staying beyond a tenth anniversary
in games (see the last year's Salary
Survey, April 2010, for details), we
don't have a strong sense of our own
history or traditions.

The Smithsonian exhibit is the
highest profile effort to help us
create a shared history of games
and the people who make them.
It's not the only one, of course,
and John Andersen's Gamasutra
series on games preservation (see
References) illustrates in great
detail how hard it is to create the
institutions that keep a tradition
alive. [Editor’s note: One of the best
preservation efforts is undertaken
by the Strong Museum of Play.] If
it's difficult with games, it's almost
impossible to trace the history of
individual game creators, outside
the handful of star designers. The
games may remain but the people
who make them come and go—
anonymously, for the most part.

studio system
» The best analogy for our
contributions is, of course, film
and TV show crews. We labor
behind the scenes and our names
scroll by during the credits, but
only the hardcore fans know the
names below the title. The trade
crafts associated with film and
stage production are closer to our
collective kind of “art” than the
traditional starving-genius-in-a-loft
idea, so it's interesting to see how
they've evolved ways of recognizing
individual and group effort. Now that
games get some uncontroversial
cultural recognition, what about
individual game artists?

The capstone of the film and
stage worlds’ approaches to
recognition isn't museums, it's
awards: including the Oscars, Tonys,

EtErnal Sonata (360,Ps3)

http://ConceptArt.Org

www.gdmag.com 37

and a bevy of less famous honors.
These are typically put together
by an industry group, such as the
Academy of Motion Picture Arts
and Sciences (which runs the
Oscars). Earning an award can be
the highlight of a career—even fairly
secretive disciplines that don't
get much public attention relish a
moment in the spotlight.

Of course, we have our own
awards. The Game Developers Choice
awards are our closest approach
to an Oscar-like seal of approval.
Likewise, the round of “historical”
postmortems at this year's GDC was
an important step toward anchoring
today’s games in a historical context.
But, as always, the focus is more on
the games than the individuals who
make them. Despite all the social
prominence games have earned
over the last decade, you're still a lot
likelier to know a minor sitcom actor
from the 1990s than the name of the
modeler behind John Marston or the
animator who gave life to Epic MickEy.

you animated what, now?
» Does this matter? We still get to
make games, after all, and we get
vicarious bragging rights through
our part in the games we make. Isn't
that enough compensation? The thrill
of hanging around Best Buy on a
release day to watch people snap up
your baby is certainly hard to forget
(although, in this era of direct digital
distribution it's also getting rarer).

It's not exactly the same thing
as individual recognition, though.
After you've shipped a couple of
titles, you become resigned to the
fact that nobody outside your team

will ever really understand the
things you contributed. The hidden
dramas and covert heroism that
every game goes through on its way
to shipping are never going to be
appreciated, not even by the small
band of fellow game artists who
might really understand them.

Obviously, this doesn't do
much for our tortured artistic egos.
However, the anonymity we work
under also has other, more concrete
consequences. Official recognition,
awards, and other public honors
don't just make you feel better: they
enhance your bargaining power, and
make you a more valuable asset to
a team. It would be very handy to
be able to tell a potential employer
that you've gotten the equivalent of
an Oscar. A team seeking publisher
funding would love to be able to trot
out a list of awards that proved their
maturity and effectiveness.

Every established business
finds ways to respect individual
contributions. Call them Oscars,
testimonials, or "employee of the
month" parking spots, these pats
on the back reflect a very basic
human instinct. When you're just
starting out in games, the rush of
going off to work making monsters,
animating talking animals, or
detailing out lavish historical
settings is enough to keep you
going. When you've shipped a few
titles and are starting to look at
the long arc of your career, though,
you may start to wonder where it
all ends up. If management or art
direction don't appeal to you, it's
hard to imagine what comes next.
Is it surprising that so many people

drop out of the industry after eight
to ten years?

If we did do a better job of
recognizing individual contributors,
we might do a better job of retaining
veteran talent. There are a lot of
people in Hollywood, on Broadway,
and in the music business who
shape their careers around the
recognition of their peers. To be the
world's tightest film editor or most
sought after session musician, for
however long, is not the same thing
as achieving red-carpet stardom, but
it is a significant achievement. Such
accomplishments are the kind of
thing that helps you feel like the work
is worth more than just a paycheck.
One thing everybody in the games
business should understand is the
importance of positive feedback.
As the people who gave the world
Achievement mongering, we should
do a little better for ourselves.

recognition from within
» Creating a system that actually
does recognize all of us down in
the trenches is not easy. Creating
the showy side of the setup is hard
enough. Veteran Oscar watchers
know how much politicking goes
on behind the scenes, and how a
popular title carries undue weight
even in the technical awards.
Excellent individual work in a
sub-par game is going to be hard
to spot, and it's hard to separate
appreciation of discrete pieces from
your feelings about the gameplay
as a whole. It's easy, though, to get
involved in the nomination process
for the GDC Choice Awards (via www.
gamechoiceawards.com), so there's

no excuse for not making your
views heard.

The other side of building up our
collective sense of achievement
is community building. Unlike
Broadway, Hollywood, or even
Nashville, our business is
geographically scattered, and
doesn't have the common fabric of
a union to tie it together socially and
professionally. That means it’s up
to us to create the communities we
want to be part of. Get involved with
IGDA SIGs or other groups like TechArt.
org, ConceptArt.org, and CgTalk.com
that cater to people in your specialty,
to help create a community that
fosters talent and shares knowledge.
Go to GDC, particularly to small
forums, like the art roundtables,
where you can help create a common
conversation about the realities of
our fledgling art form. Most of all,
pay attention to your teammates.
Appreciate their individual
contributions the way you'd like to
have your own work appreciated.
That's how it all really starts.

Steve theodore has been pushing pixels for

more than a dozen years. His credits include

Mech coMMander, half-life, TeaM forTress,

counTer-sTrike, and halo 3. He's been a

modeler, animator, and technical artist,

as well as a frequent speaker at industry

conferences. He’s currently the technical art

director at Seattle's Undead Labs.

r e f e r e n c e S

"where gameS go to Sleep: the game

preServation criSiS," by John Andersen,

Gamasutra, 2007: www.gamasutra.com/

view/feature/6271/where_games_go_to_

sleep_the_game_.php

Microsurgeon, Dragon Warrior ii, chrono
Trigger, VirTua racing, and gears of War 3

illustrating the art of games through the ages.

http://www.gamechoiceawards.com
http://WWW.GDMAG.COM
http://www.gamasutra.com/view/feature/6271/where_games_go_to_sleep_the_game_.php
http://www.gamasutra.com/view/feature/6271/where_games_go_to_sleep_the_game_.php
http://www.gamasutra.com/view/feature/6271/where_games_go_to_sleep_the_game_.php
http://www.gamechoiceawards.com
http://CgTalk.com
http://TechArt.org
http://ConceptArt.org

game developer | april 2011 38

A PlAyer’s stories
Gameplay narrative is often the most important story in the Game

in my Previous two columns, i discussed
how designers could craft and integrate stories
into their game. Narrative can take many forms
in games, ranging in practice from the backstory
paragraph that serves as context for many titles,
to the branching, integrated stories found in
story-based games like Dragon age. There is one
additional kind of storytelling to be found in and
around interactive media: the stories players
themselves choose to tell.

Much like developer-created narratives,
players’ stories can take a dizzying number
of forms. Players stories might be inclined to
borrow, mesh, and interweave with the game’s
narrative—or they may choose to ignore it in
favor of their own narrative. Further, the stories
could be entirely mechanical—about game rules
rather than game fiction—or even purely social,
in the case of multiplayer gaming.

While these stories vary in many respects,
they all have one thing in common: they are the
player’s own. They star his own (and his friends’)

imagination and events. When the designer’s
narratives have to compete with these stories
for attention and brainspaces, he faces an uphill
battle. Rather than fear or fight these narratives,
the designer should look for how to integrate and
leverage them.

PlAying within the lines
» One way that a player can contribute their
own narratives is when the game has rules
designed to allow them to do so, contributing
to the narrative within the confines of the
game rules. The classic example of this is,
of course, tabletop roleplaying games such
as Dungeons & Dragons, which has been

often described by enthusiasts as communal
storytelling. The players' options are limited
primarily by their own imaginations, which
are often desperately being reined in by a
dungeon master who is trying to get them
back on track and into the front door of the
dungeon he spent all night designing.

It should come as no surprise that tabletop
gaming experiences vary wildly from group to
group, with the quality of the storytelling within
based on how the imaginations of the party
members interact. I hear a lot about pen-and-
paper groups forming and dissolving in my circle
of friends. I can usually pick out the ones that will
meet more than once. A telltale sign is whether
the participants feel obligated to post updates to
their Facebook feed, because the stories that are
arising are compelling enough for them to want
to share.

rolePlAying in mmos
» Given that many massively multiplayer

games have their roots
in RPG design and offer
virtual worlds in which
players can live their
virtual lives, roleplaying
servers and guilds
exist in almost every
MUD and massively
multiplayer game,
with mixed success. A
sizable minority wants
to roleplay in MMOs,
but some surprising
obstacles emerge.

Shortly after the
launch of Ultima online, players started to form
roleplaying guilds fully composed of elves. The
problem was, according to the lore at the time,
there were no elves in the Ultima universe, so the
mere existence of these guilds was upsetting to
the roleplaying purists. Fundamentally, you had a
clash of imagination.

In a tabletop game, you have a gamemaster
in order to arbitrate these clashes. In many of the
freeware text MUDs, MUSHes, and MOOs with a
roleplaying focus, the people running the games
help to manage the shared illusion. However,
this issue is harder to manage with paying
customers, and doesn’t scale once you get to
truly large MMO populations.

The second odd problem is that the definition
of roleplaying varies from player to player, and
even more frustratingly, the devotion to full-time
roleplaying tends to degrade over time. Players
play these games a lot, and it is very hard for
them to maintain a barrier between their real self
and their avatar, especially if they really connect
with friends and guildmates online and want
or need to relate real-life feelings, problems, or
triumphs. As such, the quality of roleplaying on an
RP shard tends to erode, day by day, as players
exercise their need to connect with friends, and
their persona more and more becomes a mix of
their virtual identity and their real one.

In the current state of things, the designer
should help players who want to roleplay find
each other, and more importantly, find those
with compatible shared fantasies. Help the
players who want to roleplay as elves find
each other, and let guildmasters take the
responsibility for maintaining consistency (at
least internally). However, finding better ways to
foster and encourage better roleplay is an area of
opportunity for the enterprising MMO designer.

sims: the ultimAte storyteller’s gAme
» True roleplaying games like D&D are
considered to be the geekiest of geek
hobbies, and yet to find a computer game that
truly captures the spirit and imagination of
roleplaying, you need to go to the most casual
friendly game on the best-seller’s list: the SimS.

Dismissed by many hardcore gamers as a
toilet cleaning simulation, this virtual dollhouse
is indeed a hotbed for player stories, and the
design has been crafted that way. The rules are
kept light, and the players are granted relatively
easy access to whatever items, architectural
elements, and character appearances they
might want. Later sequels also give players
easy access to tools to take screenshots and
movies, add captions, and upload them to
the community—and so they did, uploading
thousands of diaries and stories up to the
net. Like all player-created content, a few are
excellent, some are good, and most are very,
very bad, and there’s a design challenge in being
sure browsers find the good stuff. But all of them
represent a true level of player investment into
not just the SimS, but the culture and community
that surrounds it.

design of the times // damion schubert

The SimS 3.

Browsing through the stories, it quickly
becomes clear that they do not come purely from
the players’ imaginations. In many cases, it is clear
that these stories are writing about events that
occurred to their Sims over the course of gameplay:
“Mary started to flirt with the firefighter, and to
her surprise, the firefighter started to flirt back.”
This is not a story straight from the mind of the
player. It is closer to being a diary of the player’s
experimentations within the game, and how the
Sim chooses to respond. And it is wildly successful,
largely because The SimS is so broad and open-
ended that the player can continually be surprised
by the results of his actions.

The SToryTelling in MechanicS
» You don’t need designer narrative at all to
get players to share stories about the games
they are playing. You just need interesting game
mechanics. Indeed, one only has to look online to
find reports about Chess, Scrabble, and Magic the
Gathering tournaments that have rapt readership.
The storytelling is all mechanics: she left her queen
exposed; he dropped the Q on the double letter
score but left access to the triple-word; the magic
player was going to die in one turn, but topdecked
(i.e. drew) the one card that could save him.

We had piles of lore in Shadowbane, all of
which we were very proud of, but the stories we
put on our website that were the most gripping
were the guild reports of city sieges from “in
the trenches.” They gave a real sense of what
it was like to take part in the front, with full
blow-by-blow accounts of bravado, logistics,
war, desperation, treachery, triumph, and
defeat. Little or no mention was made of the real
backstory; it was all ancillary to the real action.

MechanicS going Viral
» The nice thing about the Shadowbane war
reports was they had an immense ability
to go viral. While the exact mechanics of a
Shadowbane city siege were somewhat obtuse
and hard to grasp, the general basics were not

too far removed from real life — build catapults,
amass some armies, and have at it — which
allowed them to inflame the imagination. Stories
are easier to tell, and have better resonance,
when non-players can easily grasp the gist of it.

If the mechanics are not immediately
evocative, then you depend on the listener
knowing the rules for him to have any
appreciation for the story. If you tried to tell me
about your epic Go match, I’d be utterly baffled.
I don’t know the mechanics, and thus probably
lack any appreciation for the subtleties of your
position to understand what the big deal was
about. This tends to be true of many games,
especially board games, where the rules are
abstract or the competition relatively indirect.

 Two such games are Kingsburg and Agricola.
These are fantastic, top-rated board games, but
describing a closely fought match is very difficult
to do due to the nature of the rules and backdrop.
By comparison, Pandemic leaves the players with
great stories of being trapped in Asia when a viral
outbreak wipes out the Eastern Seaboard and loses
the game with one turn to go. Here, the narrative
backdrop the game uses isn’t wasted but it creates
a player narrative interweaved with the game’s
backdrop, making it tangible, easy to grasp, and
evocative to non-players.

Figuring out how to let players communicate
to non-players can be a big win. Blizzard went to
great lengths to compress the size of STarcrafT
2 replays so that watching a shared movie of a
high level STarcrafT 2 match essentially tells a
story for fans of the eSport. These replays can
also give the player more context and details to
their story: for example, the replay at the end of
the original civilizaTion, for example, showed what
was happening to the other players beneath the
fog of war, which helped flesh out the details of the
player’s triumphs and travails.

DraMa iS coMpeTing conTenT
» In any multiplayer setting, but especially in
MMOs, there is one potential source of incredibly

powerful narratives that the designer has very
limited control over. This is a type of narrative that
arises when other players group and interact with
each other. Sometimes these interactions are
positive—becoming smitten, for example—but
often they’re negative. One obvious manifestation
of this that many have encountered is guild drama.

Put simply, if your guild’s best healer is
cybering the guildmaster’s girlfriend and gets
caught, well, at that point, any narrative that the
game tries to provide is fighting an uphill battle to
get any kind of attention.

One part of the magic of multiplayer is that
other players are, in fact, content. The designer
should encourage interactions between players,
especially positive ones, but he should also be
mindful that a player’s attention is limited, and in a
multiplayer environment, he is prone to distraction
at unexpected times from unexpected directions.
An amount of designer narrative that is wholly
appropriate and well paced in a single-player game
might prove to be overwhelming when combined
with the additional stimuli of a multiplayer
environment.

eMbracing player STorieS
» Designer narratives are important to a game,
though this is truer in some cases more so than
others. In story-driven games, especially, these
narratives are vital, and a designer’s first instinct
is to keep the player on the rails to ensure that
they experience his story, in the right way.

But emergent stories can be as powerful
as the handcrafted stories designers create—
sometimes even more so. Even though they
frequently lack the quality or polish that is
wrapped around the designer’s narratives, the
personal investment that the player has in these
stories is difficult to compete with. The designer
is well advised to ensure that these player-driven
narratives have room to breathe, especially in
multiplayer environments.

Designer narratives and player stories can,
and should, coexist. A story that is completely
rigid and on rails misses out on all of the magic
that comes with the interactive entertainment
medium. On the other hand, depending entirely
on players for your story is effectively hoping
all your players serendipitously stumble upon
greatness on their own. The designer narrative
should be the backbone of the experience, but
we should also recognize that player storytelling
within or about a game can take the experience
to a whole new level.

DaMion SchuberT is the lead systems designer of Star

WarS: the Old republic at BioWare Austin. He has spent

nearly a decade working on the design of games, with

experience on Meridian59 and ShadOWbane as well as

other virtual worlds. Damion also is responsible for Zen of

Design, a blog devoted to game design issues. Email him at

dschubert@gdmag.com.

www.gdmag.com 39

starcraft II.

mailto:dschubert@gdmag.com
http://WWW.GDMAG.COM

E3 Expo is a trade event and only qualified industry professionals may attend.
No one under 17 will be admitted, including infants. Visit www.E3Expo.com for registration guidelines.

© 2011 ENTERTAINMENT SOFTWARE ASSOCIATION

W W W .E3EXPO.COM

JUNE 7-9, 2011

EXPERIENCE ALL THAT E3 EXPO

HAS TO OFFER BY REGISTERING

TODAY AT WWW.E3EXPO.COM.

E3 Expo is the preeminent global
trade event for computer and video
games. It’s all about the innovation,
creativity, business, and imagination
of the most compelling sector of
the entertainment industry.

http://WWW.E3EXPO.COM
http://WWW.E3EXPO.COM
http://www.E3Expo.com

jesse harlin // aural fixation

www.gdmag.com 41

IndIe AudIo JonesIng
Adventures on the new Frontier oF Audio

WhIle mAJor publIshers And
developers are seeing layoffs and
economic contraction, the app
market is thriving on both the iOS
and Android platforms. Fueling
this boom in handheld gaming are
hundreds of independent developers
who have found the smaller, faster
pace of development a boon to their
ability to quickly create, publish,
and sell. These are relatively new
companies with small teams,
members of which may be spread
across the globe. Already, though,
indie games like Rovio’s Angry Birds
are responsible for seismic shifts in
distribution, design, and the make-
up of game audiences.

To get a sense of how these
companies are handling the process
of audio content creation, I spoke to
a number of developers, all of whom
have had games in the iTunes Top 20
charts within the last month.

ForTune And glorY
» The first thing that becomes
clear when talking to indie
developers about audio design is
that they’re not working from a
standardized playbook. Like many
aspects of their development
process, they’re writing the rules as
they go along. Audio professionals
working with indie developers need
to be flexible enough to work within
a variety of different corporate
structures, pay schemes, and
milestone schedules. For Moscow-
based ZeptoLab, developer of Cut
the rope, contractors are brought
onboard once the game is well into
development. “Usually, we start
working with audio once we’ve
reached the Alpha milestone,”
says Semyon Voinov, Zeptolab’s
Creative Director. “At that time we
have a playable game with all major
features implemented.” Once Alpha
is reached, audio professionals are
brought onboard in a traditional full
buy-out model.

For South Carolina developer
Thunder Game Works, audio
contractors are equal partners in
the game’s development. “To be as
successful as we have been, we
provided each of our members with
a portion of the revenues earned for
the games, which encourages them
to give it their best, as their own
success depends on how well they
do,” explains trenChes developer
Kris Jones. “Audio is no exception
as it is critical in helping portray an
emotion that we want the player to
experience.”

For those hiring external
contractors, talent seems to often
come from their local areas; but not
all developers are hiring external
contractors. Some teams have audio
duties performed in-house, usually a
double-duty task akin to the earliest
days of game development. For
Toronto’s Get Set Games, Inc., artist
Nick Coombe is also the company’s
resident audio guru. According to
Coombe, “Audio plays a big part in
the overall experience of our games,
so audio production kicks off even at
the earliest stages of development.”
For the iPhone’s MegA JuMp, Coombe
and his team approached “game
design holistically; each element—
from game design and feel, to
artwork and visual effects, to sound
effects and music—works with and
enhances the other aspects of the
game to create the full experience,
so audio is never an afterthought.”

Still others like skyBurger
developer NimbleBit find the
availability of online sound
effect marketplaces to fill all
of their needs and tackle audio
development themselves through
sites like SoundDogs.com or
SoundRangers.com.

The neXT CrusAde
» These aren’t large developers
trying to figure out how to shrink
a triple-A console game down to

a touch screen. These are small
teams fully embracing touch
screen development and the
specific quirks of the smartphone
platform. They’re scrappy,
imaginative, and dedicated to
creatively getting as much audio
into their games as possible.

“The only real limitation we are
always considering while creating
iOS games is game package size,”
explains Cut the rope’s Voinov.
“There’s a 20MB limit on the
AppStore for applications which can

be downloaded through the cell
networks, and that doesn’t allow
us to insert a lot of audio content.”
Nick Coombe adds, “The platforms
we use to develop—Cocos2D and
Cocos Denshion for audio—handle
a variety of formats, which we
experimented with before settling
on AAC for both effects and music,
which gives us the compression
we need and the quality we want
without having to resort to low
sample rates or mono samples.”

Despite challenges like small
download packages and a tendency
for mobile gamers to turn the
sound off, it’s also clear that the
developers I spoke with all regard
audio a fundamental element to
their games. I asked Kris Jones
if the Thunder Game Works team

felt restricted by the smartphone
platform’s limitations. “Quite the
opposite,” he explained. “The iPhone
platform allows for streamlined
integration of audio. In trenChes,
we’ve even allowed players to
speak with each other over chat
during a multiplayer match. A
benefit to the iDevices is that
players can mute in-game music
and play music from their own
library to suit their mood,” a feature
still not standardized across PC and
console games.

With so many Apps vying for
attention, smart indie developers
are searching for every memorable
hook they can get, and audio is
part of that strategy. Says Voinov,
“In the early days of the AppStore,
you could find some very simple
applications which play funny
sounds doing very well at the top
of the charts. We noticed that, and
in Cut the rope came up with the
idea of using a fart-like sound for
the air cushion elements spread
across levels. That worked out well.
We regularly read positive reviews
mentioning this small trick.”

Jesse hArlIn has been composing music

for games since 1999. He is currently the

staff composer for LucasArts.You can email

him at jharlin@gdmag.com.

Il
lu

sT
rA

TI
on

 b
Y

Ju
An

 r
Am

Ir
ez

http://SoundDogs.com
http://SoundRangers.com
mailto:jharlin@gdmag.com
http://WWW.GDMAG.COM

HEADS-UP DISPLAY

gAmE DEvELoPEr | APrIL 201142

As I mentIoned In my prevIous
column, my company, Spry Fox,
currently has several original free-
to-play games in development,
not including ports of our existing
IP. Each game is being produced
by wholly separate teams that
are geographically dispersed,
using different technologies and
tools, under different contractual
arrangements. And each team is
compensated entirely via their
future royalty; none are being paid
cash in advance.

While we won’t know for a while
to come whether our development
strategy has been wise or flawed,
we’ve already learned a great deal
about the ideal composition of
small, geographically-dispersed
development teams. Some of our
active teams have exceeded our
expectations in terms of game
quality and development time,
while some are significantly behind
where we expected them to be by
now. A few of the characteristics
shared (or not) by the high-
performing and slower groups may
be obvious to you, but some may
surprise you.

ChArACterIstICs of hIgh-
performIng teAms
» Communicating clearly
and frequently. Our teams
with a predisposition toward
communicating more rather
than less are getting much more
accomplished. We’ve found that
it’s hard for a small team to over-
communicate (as opposed to
a huge team, which can easily
become bogged down by too much
pointless communication). But it’s
very easy for a small team to grind
to a halt when a solitary, isolated
member encounters difficulties of
any kind.

Takeaway: To some extent,
communication risks can be
minimized by scheduling regular
meetings, encouraging a social
atmosphere, and so on, but in a
distributed environment there’s

only so much you can do. If
someone on your team is a hermit
or lone wolf, you may be in trouble.
You need team players who can
communicate.

Iterating rapidly. It’s common
knowledge that rapid iteration is
the key to “finding the fun” in any
game development project aspiring
to originality. However, our view on
this has become relatively radical;
we shoot for daily iteration. We’ve
found that iteration times of even
just a week (speedy for most larger
studios) will severely hamper the
progress of our projects. Iteration
times of two weeks or more usually
signal that a project is in severe
jeopardy. There are exceptions to
every rule (for example, sometimes
it may be necessary to invest in
technical infrastructure, which will
temporarily slow down iteration)
but in general we’ve found fast
iteration to be vital to team success
and morale.

Takeaway: It’s everyone’s
responsibility to ensure that
development is progressing in such
a manner as to permit rapid iteration.
Don’t allow the team to commit to a
development path littered with the
kinds of technical challenges that
might cripple the iterative cycle.
And don’t allow the team to become
mired in the unexpected challenges
that will inevitably arise despite
your best efforts; find a creative
way to work around them or change
your design as necessary. Forward
momentum is a small team’s best
friend.

Committed and reliable. Another
characteristic of strong teams
is that their members tend to be
comfortable negotiating reasonable
commitments and generally follow
through on those commitments.
While this should be obvious to
anyone, the extent of its importance
cannot be understated. We’ve found
reliability to be the single biggest
predictor of a team’s success—far
above intelligence, passion, or
experience in importance. A small

team with a single unreliable
member is in greater jeopardy than
a team lacking all the other positive
characteristics noted in this list.

Takeaway: Reliability is one of
the most difficult characteristics to
screen for in an interview. One of
the major benefits of working with
someone as a contractor, as opposed
to full-time hire, is that you learn
from experience just how reliable
(or not) they are before making
any major commitments to them.
But whether you’re working with
contractors or employees, helping
people resolve the issues that make
them unreliable—or gracefully
parting ways with those who can’t
be helped—will be one of your most
important challenges as a studio
manager.

thIngs A hIgh-performIng
teAm does not need
» Willingness to work long hours
or to crunch. Not one of our high-
performing teams has resorted
to working unusually long hours
for any period of time. We have
already shipped four games
without ever crunching, and
this year we’ll ship several more
without ever crunching. In fact, we
have just one team that has ever
engaged in anything even remotely
resembling crunch; ironically and
not coincidentally, doing so did not
appear to actually move the project
forward significantly. The phrase
“work smarter, not harder” may be
a Dilbert punchline, but in the game
development world we need to hear
it more often.

Shared location. As noted earlier,
we work with people all over the
world, from South America, to Europe,
to Japan, to Australia. All our teams
are composed of individuals who
live nowhere near each other. What
we’ve found is that a team with the
positive traits noted earlier can easily
overcome any challenge presented
by such geographical dispersion.

Passion. Our industry is
obsessed with the stereotype of

the passionate indie, willing to work
himself (or herself) to death in
pursuit of a vision. But what we’ve
found is that there’s a base-level of
passion that almost everyone we
encounter shares (why else would
you even be in this industry?),
and exceeding that base-level of
passion simply isn’t necessary.
Extreme passion, more often than
not, seems to get in the way of
compromise; specifically, the kinds
of compromise that enable a team to
function properly.

WrAppIng up
» It’s worth noting that the bar for
team composition goes up when
you switch from developing single
player content to F2P games with a
real backend. The first four games
launched by Spry Fox were all of
the former type, and our transition
to the latter has not been painless.
We’ve found that even the simplest
server-backed games can be
exponentially more challenging to
develop, especially when the team
lacks some of the fundamental traits
noted earlier.

Bottom line: When you transition
from developing single player
games to social or multiplayer
games, and/or when your teams are
geographically dispersed, character
traits and team dynamics that were
previously minor annoyances can
suddenly become fatal. Watch out for
poor reliability, poor communication,
and slow iteration: These things will
guarantee that your game does not
ship in a reasonable state of quality
and/or within a reasonable period of
time.

dAvId edery is the manager of the

consulting firm Fuzbi and CEO of the Spry Fox

game development studio. He is also an IGDA

board member and a research affiliate of

the MIT Comparative Media Studies Program.

He was the portfolio manager for Microsoft’s

Xbox Live Arcade service and is the co-author

of Changing the Game: How Video Games are

Transforming the Future of Business.

teAm plAyers
what your small, distributed teams do and don't need

THE BUSInESS // DAvID EDErY

WWW.GDMAG.COM 43

GOOD JOB

WWW.GDMAG.COM 43

Hired someone interesting? Let us know at editors@gdmag.com!

H I R I N G N E W S A N D I N T E R V I E W S

¤ BioWare Austin's VP and co-general manager
Gordon Walton is leaving the studio to take
on an executive producer role at social game
developer Playdom.

¤ GamesAnalytics, a datamining and
monetization firm targeting online games,
announced that Activision co-founder Alan
Miller has joined the company as a strategic
advisor and director of its North American
operations.

¤ Disney Interactive Studios' former
director of game design Frederic Markus,
most recently credited for his work on EPIC
MICKEY, has taken a new position as the studio
creative director for LucasArts.

¤ After leaving Capcom, former producer
Ben Judd is now heading a new Japanese
base of operations for talent agency Digital
Development Management.

¤ Longtime industry veteran Brenda
Brathwaite has left Ravenwood Fair studio
LOLApps to join her longtime colleagues, John
Romero, Robert Sirotek and Tom Hall, at Loot
Drop, their new social gaming studio.

¤ id Software's digital distribution general
manager Steve Nix has left the DOOM and
QUAKE developer for major U.S. game retailer
GameStop

new studios

whowentwhere

¤ Activision recently unveiled its newest
owned studio, Beachhead, which will be
tasked with creating all of the company's new
digital initiatives for the CALL OF DUTY brand,
including online community, content and
services initiatives.

¤ Germany-headquartered Idea Fabrik quietly
purchased the HeroEngine development
platform and technology from Simutronics late
in 2010, and now the company has founded
a new game development studio in northern
Virginia called Second Star Interactive.

¤ Video game designer and industry veteran
Don Daglow recently revealed Daglow
Entertainment, LLCa studio focused primarily
on Facebook and mobile titles.

FROM RUSSO WITH LOVE
EX-NEXT GENERATION EDITOR MOVES TO BIZ DEV

Tom Russo spent over a dozen years as a journalist, working at companies such as
G4, and the seminal Next Generation magazine. Transitioning out of journalism, he
spent three years as a consultant, before finally settling into a full-time position as
a business developer at Foundation 9.

PH
OT

O
 B

Y
LY

D
IA

 C
H

EN

BRANDON SHEFFIELD: You were a journalist
for a very long time, with stints in
consulting—what made you decide to move
to the studio side?
TOM RUSSO: Three years of consulting
provided an opportunity to leverage what I had
learned as a 15-year student of the industry,
and gave me visibility into the inner workings
of the variety of publishers and companies
I worked with. But ultimately, I felt the need
to be part of something bigger. I was already
very familiar with Foundation 9 from my
former Next Generation magazine colleague
Chris Charla, who had been with Foundation
9 for about 10 years. Having seen how the
company had grown, I knew the pace would
be more akin to a publishing environment,
with lots going on at once, but offer the benefit
of being closer to the products in a creative
development environment.

Game developers are, without question,
my favorite people in the world. As a former
member of the enthusiast media, it's been
a pleasure to try to shed some light on their
brilliance. However, I have a lot of friends
on the publishing side as well. As a game
industry journalist, you become a student of
both publishers and developers. Leveraging
my relationships and understanding of both
sides felt like the best use of my talents. Why
work for one studio when you can work for
six? And the team at Foundation 9 has been
incredibly welcoming and supportive.

BS: Foundation 9 has a lot of studios and
moving parts. How do you approach that as
a business developer?
TR: You really can't do business development
for "Foundation 9" per se, it's really all about
the six studios—Griptonite, Sumo Digital,
Double Helix, ImaginEngine, Pipeworks, and
Backbone. Ultimately, it's up to each studio to
decide what projects make the most sense for
them, and our group works to create options
for them. Being a business developer here is
really about putting the right studio with the
right proposals in front of the right content
providers. The goal is to make everyone
happy, and as cliché as it sounds, to create
"win-win" scenarios. I've had the pleasure of
meeting and working with a ton of people in

this industry, and I
love it; there are so
many great people
in this business. I
try to approach it
from a very positive
place—ultimately
publishers and
developers want the
same things.

It's been fascinating
because business development
is really one of the few areas
of the game industry that is particularly
guarded from journalists, at least in my
experience working at enthusiast outlets.
In my first week with Foundation 9, I was
exposed to proposals, milestone schedules,
and so forth—things that you’d never see as
a journalist.

BS: Following from that, do you have to
learn each company’s strengths, focus, and
history? Is there a learning curve there?
TR: Absolutely, each studio is unique, with
its own strengths in designing for different
hardware platforms, genres, and games for
different audiences. For example, Griptonite
already has a great lead on 3DS with three
titles in development there. Backbone has
been a huge provider of content for XBLA.
Not everyone knows that Double Helix was
formerly Shiny and The Collective, and they
are now a combined powerhouse that is going
to ship the forthcoming Green Lantern game
in time for the movie.

I just met all the studio heads in person
at GDC, and got to see them in action. From
my experience as a journalist, the best game
developers have told me time and again that
their games are passion projects. While we
do a lot of “work for hire” at Foundation 9, our
studio heads are definitely passionate. They
presented some compelling new IP at GDC
this year and received some very positive
feedback. So even in the short time I've been
here, it's been incredibly rewarding to help
facilitate these opportunities. Beyond that,
we have some companywide initiatives that
involve every studio that are very exciting,
you'll need to stay tuned for more on that.

for "Foundation 9" per se, it's really all about
the six studios—Griptonite, Sumo Digital,
Double Helix, ImaginEngine, Pipeworks, and
Backbone. Ultimately, it's up to each studio to
decide what projects make the most sense for
them, and our group works to create options
for them. Being a business developer here is

their games are passion projects. While we

decide what projects make the most sense for
do a lot of “work for hire” at Foundation 9, our
studio heads are definitely passionate. They
presented some compelling new IP at GDC

for "Foundation 9" per se, it's really all about

Backbone. Ultimately, it's up to each studio to
decide what projects make the most sense for decide what projects make the most sense for
them, and our group works to create options them, and our group works to create options them, and our group works to create options them, and our group works to create options them, and our group works to create options them, and our group works to create options them, and our group works to create options
for them. Being a business developer here is
really about putting the right studio with the
right proposals in front of the right content
providers. The goal is to make everyone
happy, and as cliché as it sounds, to create
"win-win" scenarios. I've had the pleasure of

this year and received some very positive
feedback. So even in the short time I've been
here, it's been incredibly rewarding to help

for them. Being a business developer here is for them. Being a business developer here is
really about putting the right studio with the
for them. Being a business developer here is for them. Being a business developer here is for them. Being a business developer here is
really about putting the right studio with the really about putting the right studio with the
right proposals in front of the right content
providers. The goal is to make everyone

feedback. So even in the short time I've been really about putting the right studio with the really about putting the right studio with the
right proposals in front of the right content
providers. The goal is to make everyone
happy, and as cliché as it sounds, to create
"win-win" scenarios. I've had the pleasure of
meeting and working with a ton of people in

really about putting the right studio with the really about putting the right studio with the
right proposals in front of the right content

"win-win" scenarios. I've had the pleasure of "win-win" scenarios. I've had the pleasure of
meeting and working with a ton of people in

facilitate these opportunities. Beyond that,

mailto:editors@gdmag.com
http://WWW.GDMAG.COM

http://WWW.NEVERSOFT.COM/SITE/HIRING.HTML

S T U D E N T g a m E P R O F I L E S

EducatEd Play!

www.gdmag.com 45

Jeffrey fleming: The bullet
patterns in Solace are really
lovely. Were you able to use any
libraries, or were they coded
from scratch?
JORDaN HEmENway: At the
beginning of the project, we
sought help from a DigiPen
alumnus who had worked with
bullet hell-styled games in the
past. With help and suggestions,
Dan Rosas wrote a library of
behaviors that could be chained
together using an action-list
method. Most of the patterns
resulted from a visual idea that
Dan would think up, like the
raindrops falling. He would then
tweak the calculations and timing
until we had something visually
interesting while still playable
in-game.

Jf: in Solace, music is
generated from the action on
the screen. What methods did
you use to ensure that the
result was musical rather than
cacophonous?
JH: One of the most challenging
things for us in developing Solace
was finding ways to keep the
music sounding pleasant while
using a bit of randomness and
repetition.

We started off by keeping all
sounds triggered by the player
and enemies on beat, and we
used basic music principles
like picking a specific scale and
selecting certain notes from it. For
many instruments, like the piano
in Denial or the synth instrument
in Bargaining, picking random
notes from a bank worked well at
any time with background layers.

However, other instruments,
like the guitar in Anger, didn’t
sound correct since guitars don’t
usually lend themselves well to
random notes. Instead, for those
cases we used a straightforward

progression that was broken up
into several tiny pieces for each
bullet. It took a lot of iteration to
figure out what made sense to
the ear. For example, we ended
up going through at least seven
versions of the Anger level to get
the music into its current state.

Jf: Solace was your sophomore
project at DigiPen. Does the One
man Down team stick together
for the next year's project or do
you all join new teams?
JH: Yes, it is true that Solace was
a sophomore project, but that
is a bit misleading. The game
was a project started by three
sophomore programmers, but we
were able to snag our artist, Jami
Lukins, to do all the art for the
game despite her being a senior
at the time. She is now happily
graduated and employed.

As far as the programmers are
concerned, I joined a team with
other friends. We are currently
developing an open-world
exploration game. Robert Francis
and Dan made a team together
and have been working on a
music-based platformer along
with their team of artists and
other programmers. Shortly into
the spring semester, Dan took an
internship at the Seattle-based
game studio Fuelcell. So sadly,
the team is split in four directions
working on their own separate
projects, but who knows what the
future might bring?

Jf: Where did the idea to
incorporate the five stages of
grief into Solace come from? it’s
an odd but interesting framework
for a shooter-style game.
JH: During the early stages
of the production of Solace,
Robert Francis, our technical
director, lost his twin brother.
The team name “One Man Down”

came from the fact Robert was
missing from the Engine Proof
milestone presentation due to
this tragedy. Robert’s loss had
affected the whole team, and he
says he wouldn’t have been able
to continue that school year if it
hadn’t been for the support from
his teammates, and the game
giving him something to focus on.

We entered the second
semester and Dan came up with
the dynamic music mechanic we
now have in the game, and when
we were deciding on the artistic
direction, overall theme, and scope
of the game, the five stages of
grief just seemed to be the perfect
match. If you wait until the end of
the credits, there’s a dedication to
Robert’s twin brother, Nathan.

Jf: Bullet hell shooters are
typically extremely challenging
and for the hardcore only. What
did you do in Solace’s design
to make it more accessible for
players but still retain the visual
intensity of bullet hell?
JH: While we were planning Solace,
we talked about difficulty and how
the general style of a bullet hell
shooter can lend itself to difficult
gameplay. After looking at our
options we decided that we would
try lightening the overall difficulty
so that more casual players could

survive long enough to see the
beautiful bullet patterns.

We attempted to keep things
simple, eliminating the HUD
and displaying all important
information on the player. We were
also much more forgiving to our
players, allowing them to take
multiple hits before losing the level.
In keeping with our simple design,
we decided not to add bombs or
other power-ups during gameplay.
Doing so would have required
some form of HUD, taking away
from the elegant design.

Jf: What was the biggest
challenge in developing Solace?
JH: Overall, the hardest part
about making Solace was trying
to express an abstract emotional

component during each stage
through the gameplay.

Some stages lent themselves to
fairly straightforward interpretation,
like Anger and Depression, making
it easier to represent visually
and audibly. Stages like Denial
and Bargaining however, left us
thinking how a musical instrument,
bullet patterns, or even color could
represent such a concept or feeling.
In the end it was definitely our most
interesting challenge, and one we
have learned a lot from.

—Jeffrey Fleming

SOLAcE
A bullet hell shooter is An unlikely forum for exploring kübler-ross’ five stAges of grief, but in their gAme Solace, the one mAn Down teAm At
Digipen hAs founD new expressive possibilities in the genre. we spoke with Solace proDucer JorDAn hemenwAy to finD out how the 2010 pAx 10 AnD
2011 igf stuDent showcAse winner cAme together.

h t t p : / / s o l a c e g a m e . c o m

http://solacegame.com
http://WWW.GDMAG.COM

>>
GE

T
ED

UC
AT

ED

46 A P R I L 2 0 1 1 | G A M E D E V E L O P E R

GDP GE LHP TEMPLATE_GD 306 MKT.V5 3/11/11 10:45 AM Page 54

http://vfs.com/enemies
http://mdm.gnwc.ca

©
 2

01
1

Fu
ll

Sa
il,

 In
c.

Game Art
Bachelor’s Degree Program
Campus & Online

Game Development
Bachelor’s Degree Program
Campus

Game Design
Master’s Degree Program
Campus

Game Design
Bachelor’s Degree Program
Online

fullsail.edu
Winter Park, FL

nää°ÓÓÈ°ÇÈÓxÊÊUÊÊÎÎääÊ1��ÛiÀÃ�ÌÞÊ	�Õ�iÛ>À`
���>�V�>�Ê>�`Ê>Û>��>L�iÊÌ�ÊÌ��ÃiÊÜ��ÊμÕ>��vÞÊÊUÊÊ
>ÀiiÀÊ`iÛi��«	i�ÌÊ>ÃÃ�ÃÌ>�Vi

�VVÀi`�Ìi`Ê1��ÛiÀÃ�ÌÞ]Ê�

-

Campus Degrees

Master’s

�ÌiÀÌ>���i�ÌÊ	ÕÃ��iÃÃÊ

 �>�iÊ�iÃ�}�

Bachelor’s

��«ÕÌiÀÊ����>Ì���

��}�Ì>�Ê�ÀÌÃÊEÊ�iÃ�}�

�ÌiÀÌ>���i�ÌÊ	ÕÃ��iÃÃÊ

����

 �>�iÊ�ÀÌ
 �>�iÊ�iÛi��«�i�Ì
�ÕÃ�VÊ	ÕÃ��iÃÃ

,iV�À`��}Ê�ÀÌÃ

-��ÜÊ*À�`ÕVÌ���

7iLÊ�iÃ�}�ÊEÊ�iÛi��«�i�Ì

Associate’s

�À>«��VÊ�iÃ�}�

,iV�À`��}Ê�}��iiÀ��}

Online Degrees

Master’s

Ài>Ì�ÛiÊ7À�Ì��}

`ÕV>Ì���Ê�i`�>Ê�iÃ�}�ÊEÊ/iV�����}Þ

�ÌiÀÌ>���i�ÌÊ	ÕÃ��iÃÃÊ

��ÌiÀ�iÌÊ�>À�iÌ��}Ê

�i`�>Ê�iÃ�}�

 iÜÊ�i`�>Ê��ÕÀ�>��Ã�

Bachelor’s

��«ÕÌiÀÊ����>Ì���

Ài>Ì�ÛiÊ7À�Ì��}Êv�ÀÊ�ÌiÀÌ>���i�Ì

��}�Ì>�Ê
��i�>Ì�}À>«�Þ

�ÌiÀÌ>���i�ÌÊ	ÕÃ��iÃÃ

 �>�iÊ�ÀÌ
 �>�iÊ�iÃ�}�
�À>«��VÊ�iÃ�}�

��ÌiÀ�iÌÊ�>À�iÌ��}

��L��iÊ�iÛi��«�i�Ì

�ÕÃ�VÊ	ÕÃ��iÃÃ

�ÕÃ�VÊ*À�`ÕVÌ���

-«�ÀÌÃÊ�>À�iÌ��}ÊEÊ�i`�>

7iLÊ�iÃ�}�ÊEÊ�iÛi��«�i�Ì

Epic Games .6

Full Sail Real World Education 47

IDG World Expo . 40

IGDA . 20

Masters of Digital Media . 46

NaturalMotion . C2

Ontario Media Development Corporation3

Neversoft Entertainment . 44

Rad Game Tools . C4

Unity Workshop . 31

Vancouver Film School . 46

COMPANY NAME PAGE COMPANY NAME PAGE

ADVERTISER INDEX

gd Game Developer (ISSN 1073-922X) is published monthly by United Business Media LLC, 303 Second Street, Suite 900 South, South
Tower, San Francisco, CA 94107, (415) 947-6000. Please direct advertising and editorial inquiries to this address. Canadian Registered for
GST as United Business Media LLC, GST No. R13288078, Customer No. 2116057, Agreement No. 40011901. SUBSCRIPTION RATES: Subscrip-
tion rate for the U.S. is $49.95 for twelve issues. Countries outside the U.S. must be prepaid in U.S. funds drawn on a U.S. bank or via credit
card. Canada/Mexico: $69.95; all other countries: $99.95 (issues shipped via air delivery). Periodical postage paid at San Francisco, CA
and additional mailing offices. POSTMASTER: Send address changes to Game Developer, P.O. Box 1274, Skokie, IL 60076-8274. CUSTOMER
SERVICE: For subscription orders and changes of address, call toll-free in the U.S. (800) 250-2429 or fax (847) 647-5972. All other countries
call (1) (847) 647-5928 or fax (1) (847) 647-5972. Send payments to gd Game Developer, P.O. Box 1274, Skokie, IL 60076-8274. Call toll-free in
the U.S./Canada (800) 444-4881 or fax (785) 838-7566. All other countries call (1) (785) 841-1631 or fax (1) (785) 841-2624. Please remember
to indicate gd Game Developer on any correspondence. All content, copyright gd Game Developer magazine/United Business Media LLC,
unless otherwise indicated. Don’t steal any of it.

>> GET EDUCATED

47W W W . G D M A G . C O M

http://fullsail.edu
http://WWW.GDMAG.COM

ARRESTED DEVELOPMENT // MATTHEW WASTELAND

gAME DEVELOPER | APRiL 201148

Phase one
» Say, “More producers, huh?”
every time a new producer is hired.
Joke about whether they can get
you a coffee. Ask them to send out
a meeting request for you. Tell the
long, convoluted story about the
producer you had at your last job
who was useless, and an alcoholic
to boot.

Question the value of
production methods to the game
development process. Question
the value of schedules. Question
the value of producers. Talk about
how Valve and Insomniac have no

producers, and don’t they do pretty
well? Talk about how back in the
day teams used to be smaller, not
like these huge teams we have
today, and how those were the
good old days. Back when there
were no producers. Talk about how
everything is better at the game
studio across town.

Phase two
» Don’t do your work. Do your work,
but don’t tell them you’ve done it. Do
work that’s not the work you agreed
to do in the meeting. Get blocked
and don’t tell anyone. Get blocked

and tell the programmer, the tech
artist, the animator, the environment
artist, and the community manager,
but not the producer. Do your work
but don’t check it in. When asked
about it say, “Oh, that? It’s been
done for ages. I just haven’t checked
it in.” Then continue to not check it
in. When you do finally check it in,
make passive-aggressive check-
in comments like “not my idea,”
“whee!,” or “asdfasdf;.”

Come into work late every day.
Come into work sporadically. Work
from home and promise you’ll “be
on e-mail all day,” then don’t answer
e-mails. Go to lunch with the guys at
noon and come back drunk at 3 PM.
Estimate that you need just a couple
more days every couple days. Look
unconcerned about deadlines. Ask,
“When’s the next milestone again?”
Then ask, “And what was I supposed
to deliver for that milestone again?”
Tell the producers not to worry and
that everything will be fine.

Over-participate in networking
events in your area, even the
one the community college is
holding about Web 2.0 startups.
Over-participate on forums about
game development, or games, or
geek culture. Over-participate on
the team spam alias. Send funny
.gifs and cat memes in response
to every e-mail you get, ever.
Send spam-style e-mails to the
full team list. Argue about politics
and religion in long threads with
your co-workers. Look up various
historical events on Wikipedia to
bolster those arguments. Tab out
of World of Warcraft anytime
someone walks behind you. Have
BitTorrent running behind your
main Maya window. Run an mp3
server on the lighting farm. File
share your porn directory.

Phase three
» Be on a different page. Drill up. Get
mushy. Talk about the beginning of
the day. Say, “You know what? These
Gantt charts are actually completely
worthless.” Say, “Well, you’re the
producer, so why don’t you figure
it out? I’m going back to my desk.”
Estimate in 20-day chunks. Estimate
in 10-minute chunks. Say you can’t
estimate anything because the
future is impossible to know and all
predictions are doomed to failure.

Complain about the crunch food
supplier of the evening. Say “Woo,
pizza again!” in as sarcastic a voice
as possible. After the food arrives,
mention you are vegetarian. After
the vegetarian food arrives, mention
you are vegan. Ask for a lactose-
free, gluten-free crunch meal option.
Initiate crunch food eating contests.
Accidentally drop the quart-sized
styrofoam container of guacamole
on the break room floor. Drop the
quart-sized styrofoam container of
mustard on the carpet.

Tell your producers your back
hurts because of your chair and ask
whether you can get a different one.
Ask for one of those kneeling chairs.
Ask for one of those standing desks.
Say it’s too cold because you’re next
to a vent. Say it’s too hot because
of your computers and dev kits.
Say you are chilly when the person
who shares the desk with you is
sweating uncomfortably. Ask for
different lighting conditions around
your desk than everyone else’s. Ask
for a different gym membership
deal than the one you currently
don’t use, and then never use the
new one when you get it.

Final Phase
» Brainstorm new ideas in the
scoping meeting. Don’t make
decisions. Change things back to
the way they were after changing
them away from what they were in
order to “test out a theory.” Bring up
the idea that you “reserve the right”
to reverse it the other way again
later. Say it doesn’t matter what we
pick anyway, because the fans will
eat it up no matter what we do.

Question choices that were
made a long time ago. Bring up old
points of contention and mention
you were never “fully on board”
with what was decided back then.
Keep trying to steer the game back
toward the direction everyone
agreed they weren’t going to follow.
Two years into an action game
project, say “Seriously, though,
does it have to be an action game?
I’ve got some great ideas for some
turn-based mechanics ...”

matthew wasteland writes about games

and game development at his blog, Magical

Wasteland (www.magicalwasteland.com).

annoy your
Producers!
tired oF those Pesky Producers bossing you around and
trying to make you more “eFFicient?” hate meetings? this
simPle guide will keeP your Producers just as unhaPPy
as you are!

illustration by juan ramirez

http://www.magicalwasteland.com

Supported by

Game Developers Conference™ Europe
August 15–17, 2011 | Cologne Congress-Centrum Ost | Cologne, Germany

Visit www.gdceurope.com for more information.

Conference™ Europe

http://www.gdceurope.com

http://www.radgametools.com

	Contents
	POSTMORTEM
	SUPER MEAT BOY

	FEATURES
	10TH ANNUAL SALARY SURVEY
	CREATOR OF WORLDS

	DEPARTMENTS
	EDITORIAL - GAME PLAN
	NEWS - HEADS UP DISPLAY
	REVIEW - TOOL BOX
	PROGRAMMING - THE INNER PRODUCT
	ART - PIXEL PUSHER
	DESIGN - DESIGN OF THE TIMES
	SOUND - AURAL FIXATION
	BUSINESS - THE BUSINESS
	CAREER - GOOD JOB!
	EDUCATION - EDUCATED PLAY
	HUMOR - ARRESTED DEVELOPMENT

