
P o s t m o r t e m : S o n y o n l i n e e n t e r ta i n m e n t ’ S F r e e r e a l m S

vol17no4APRIL2010

t h e L e A d I n g g A m e I n d u s t R y m A g A z I n e

C

M

Y

CM

MY

CY

CMY

K

sf_gd_feb10.pdf 1 2/17/2010 1:22:21 PM

http://www.scaleform.com/ui

WWW.GDMAG.COM 1
COVER ART: GREGORY WRIGHT

CONTENTS.0410
VOLUME 17 NUMBER 4

D E PA R T M E N T S

 2 GAME PLAN By Brandon Sheffield [E D I T O R I A L]

Ethical Choices

 4 HEADS UP DISPLAY [N E W S]

Indie Fund details, IGDA board elections, and 2600 MAGIC.

 36 TOOL BOX By Michael Greenhut [R E V I E W]

FlashDevelop 3.0.6

38 THE INNER PRODUCT By Jari Komppa [P R O G R A M M I N G]

Porting From DOS To Windows

42 PIXEL PUSHER By Steve Theodore [A R T]

 Going Solo

 44 DESIGN OF THE TIMES By Damion Schubert [D E S I G N]

The Truth of Consequences

46 AURAL FIXATION By Vincent Diamante [S O U N D]

Subversive Audio Design

48 GOOD JOB! [C A R E E R]

Richard Garriott interview and new studios.

52 EDUCATED PLAY [E D U C A T I O N]

Focus on UCF's GALACTIC ARMS RACE

56 ARRESTED DEVELOPMENT By Matthew Wasteland [H U M O R]

The Genius Game Designer

P O S T M O R T E M

20 SONY ONLINE ENTERTAINMENT'S FREE REALMS
Despite years of experience building MMOs, SOE found itself in uncharted
territory when it decided to create a kid-friendly, casual virtual world. Old
assumptions had to be cast aside and new methodologies adopted to
create a game that young players would take to heart.
By Laralyn McWilliams

F E AT U R E S

7 9TH ANNUAL GAME DEVELOPER SALARY SURVEY
How much is your job worth? For our annual survey we crunched the
numbers across discipline, experience, gender, and region, as well as
new stats for the independent developer sector.
By Brandon Sheffield and Jeffrey Fleming

14 THE THREADS THAT BIND US
Current languages in use by game programmers were not created
with multithreaded concurrency in mind. Erlang, a language built
from the ground up for concurrency by the telecommunications
industry, may offer a solution.
By Nicholas Vining

28 INTERVIEW: DAVID CRANE
As one of the original Gang of Four who left Atari to form Activision,
David Crane helped lay the foundation for the game industry that we
know today. We caught up with the die-hard coder and found him at
work on iPhone development.
By Brandon Sheffield

33 LESSONS FROM DOOM
DOOM has an enduring legacy in the game industry. Here, BIOSHOCK 2's
Jean-Paul LeBreton looks at the venerable title to see what lessons it
can teach modern game designers.
By Jean-Paul LeBreton

http://WWW.GDMAG.COM

GAME PLAN // BRANDON SHEFFIELD

HEADLINE
DEK

Think Services, 600 Harrison St., 6th Fl.,
San Francisco, CA 94107
t: 415.947.6000 f: 415.947.6090

 www.gdmag.com

W W W . U B M . C O MGAME DEVELOPER | APRIL 20102

ETHICAL CHOICES
MAKING DECISIONS MATTER IN "MORALITY"-ORIENTED GAMES

SOMETHING SOREN JOHNSON
wrote in his March design column
re-ignited a spark that’s been
smoldering in my brain for some
time now. Most ethical choices in
games are not much of a choice
at all.

He was discussing BIOSHOCK,
and how you’re given the option
of harvesting the innocent(ish)
Little Sisters for their Adam, which
is used as currency in the game,
or saving them, for which you get
much less Adam. But after saving
a few Little Sisters, you get a huge
package of Adam, worth about
what you would’ve gotten if you’d
harvested them. Thus, your reward
is simply deferred, and the choice
ultimately isn’t an ethical one, it’s
“do I want to be a jerk.”

Many games that pose different
ethical choices have this problem.
One of the worst offenders for me
was INFAMOUS. The story simply did
not support ethical choices being
made. The world of INFAMOUS takes
place in a quarantined city. The first
choice you’re presented comes
when some food is airdropped
in—you can choose to harm the
other citizens and take all the food
for yourself, or only take what you
need, and share with them, risking
going hungry later.

The trouble is, food is not a
currency, it does not determine
health, and it has no bearing on the
actual world of play. In this case,
there is nothing to the question
but “do you want to be mean to
these people.” There’s no upside for
you, no tradeoff. The next ethics
scenario boils down to “I can help
these people get away from the
guards (who are bullying them
senselessly) or let them die.” In
INFAMOUS, these “moral” choices are
simply a means to an end—they
break up the skill tree by only
allowing “good” players certain
skills, and “evil” players other
skills. It also changes the attitude
of the anonymous populace toward
you, and which NPCs you can

get missions from. It only affects
gameplay to the extent of choosing
one of two paths. Ultimately the
choices are hollow.

I CHOO-CHOO-CHOOSE YOU
» I truly believe that if one is going
to present choices or issues in
games as ethical, those choices
have to matter in the game world.
But I get antsy when games
present me with choices that
clearly open one door while closing
another, as I want to see all of the
game’s content, since I’m unlikely
to go through it multiple times
(Damion Schubert talks about this
in his column on page 44).

As an example, in DRAGON AGE
you have the option of siding with
the golems or a rogue blacksmith
in a particular scenario. Depending
on who you go with, you will either
get a squad of golems to command
in your final battle, or the one golem
in your party will leave forever
(which is a ballsy move, incidentally,
considering that character is DLC).
This kind of choice makes me very
uncomfortable, because I want to do
what’s going to be best for my one
playthrough, and weighing those
odds is very difficult, given that
there are unknown variables (not
having fought the final battle yet, I
didn’t know if I needed golems).

METHODS OF CHOICE
» DRAGON AGE and MASS EFFECT
have similar but subtly different
ways of representing your moral
choices, but both do it directly with
numbers, which is controversial,
as there are no “renegade points”
in real life. In MASS EFFECT, you get
points in one column or the other
for your actions being good or
evil, so to speak. In DRAGON AGE,
members of your party will approve
or disapprove of your actions
depending on how the characters
are designed. They will also react to
your decision with dialog.

I far prefer the latter method.
DRAGON AGE poses your choices as

affecting your teammates’ opinions
of you, and if their opinion is low
enough, they will leave the party.
In MASS EFFECT, while characters
may approve or disapprove, it has
much less in-game relevance.
Furthermore, DRAGON AGE’s choices
are one-to-one. Your character
speaks exactly what you select.
In MASS EFFECT, you choose a
summary of what your character
will say in dialog, choosing the
top option for “good,” middle for
“neutral,” and bottom for “evil.”
The simplistic approach is far less
interesting than the larger case of
party approval.

A third solution can be found
in FALLOUT 3. There, the choices
you make in dialog certainly
change how characters react to
you, and it does fall into the trap
of “say something nice” versus
“be a jerk just because,” but the
more important choices are in
what you do, not what you say. You
have the option of blowing up the
first town you come to, Megaton,
by detonating a bomb there. A
suspicious fellow urges you to,
offering promises of riches and the
key to the elite Tenpenny Towers
if you do. The choice here is clear,
but not intimidating. If you choose
to blow up the town, most of the
quests and shops are still available
to you in a different form. If you
choose not to, you still get to visit
Tenpenny Towers later, albeit in an
antagonistic way. Shoot a resident
of a town and expect the rest to
turn on you. Steal from them, and
expect the same. It’s simple, but it
works as immediate feedback for a
clearly moral choice.

I think moral choices are
incredibly interesting territory for
games, but they really do need to
be integrated into the gameplay
and story both. You can’t just tell
a player these choices affect the
world, or that they’re important. You
have to show that as true, and you
have to make them believe it.

—Brandon Sheffield

SUBSCRIPTION SERVICES

FOR INFORMATION, ORDER QUESTIONS, AND
ADDRESS CHANGES
t: 800.250.2429 f: 847.763.9606
e: gamedeveloper@halldata.com

EDITORIAL

PUBLISHER
Simon Carless l scarless@gdmag.com
EDITOR-IN-CHIEF
Brandon Sheffield l bsheffield@gdmag.com
PRODUCTION EDITOR
Jeffrey Fleming l jfleming@gdmag.com
ART DIRECTOR
Joseph Mitch l jmitch@gdmag.com
CONTRIBUTING EDITORS
Jesse Harlin
Steve Theodore
Daniel Nelson
Soren Johnson
Damion Schubert
ADVISORY BOARD
Hal Barwood Designer-at-Large
Mick West Independent
Brad Bulkley Neversoft
Clinton Keith Independent
Bijan Forutanpour Sony Online Entertainment
Mark DeLoura Independent
Carey Chico Pandemic Studios

ADVERTISING SALES

GLOBAL SALES DIRECTOR
Aaron Murawski e: amurawski@think-services.com
t: 415.947.6227
MEDIA ACCOUNT MANAGER
John Malik Watson e: jmwatson@think-services.com
t: 415.947.6224
GLOBAL ACCOUNT MANAGER, RECRUITMENT
Gina Gross e: ggross@think-services.com
t: 415.947.6241
GLOBAL ACCOUNT MANAGER, EDUCATION
Rafael Vallin e: rvallin@think-services.com
t: 415.947.6223

ADVERTISING PRODUCTION

PRODUCTION MANAGER
Pete C. Scibilia e: peter.scibilia@ubm.com
t: 516-562-5134

REPRINTS

WRIGHT'S REPRINTS
Ryan Pratt e: rpratt@wrightsreprints.com
t: 877.652.5295

THINK SERVICES

CEO UBM THINK SERVICES Philip Chapnick
GROUP DIRECTOR Kathy Schoback
CREATIVE DIRECTOR Cliff Scorso
CHIEF INFORMATION OFFICER Anthony Adams

AUDIENCE DEVELOPMENT

TYSON ASSOCIATES Elaine Tyson
e: tysonassoc@aol.com
LIST RENTAL Merit Direct LLC t: 914.368.1000

MARKETING

MARKETING SPECIALIST Mellisa Andrade
e: mandrade@think-services.com

UBM TECHNOLOGY MANAGEMENT

CHIEF EXECUTIVE OFFICER David Levin
CHIEF OPERATING OFFICER Scott Mozarsky
CHIEF FINANCIAL OFFICER David Wein
CORPORATE SENIOR VP SALES Anne Marie Miller
SENIOR VP, STRATEGIC DEV. AND BUSINESS ADMIN. Pat Nohilly
SENIOR VP, MANUFACTURING Marie Myers

http://www.gdmag.com
mailto:gamedeveloper@halldata.com
mailto:scarless@gdmag.com
mailto:bsheffield@gdmag.com
mailto:jfleming@gdmag.com
mailto:jmitch@gdmag.com
mailto:jmwatson@think-services.com
mailto:ggross@think-services.com
mailto:rvallin@think-services.com
mailto:peter.scibilia@ubm.com
mailto:tysonassoc@aol.com
mailto:mandrade@think-services.com
mailto:amurawski@think-services.com
mailto:rpratt@wrightsreprints.com

LEO BURNETT U.S.A.
A DIVISION OF LEO BURNETT COMPANY, INC.

 Ad/ID No. XNJD9297 – Job No. 610-NNWDYAP0001 – Nintendo Wario Ware “DIY” Magazine Ad – 4C – FP – (T 7.75" x 10.5") – 2010

132009d_9297_NIN_DIYAd_a06.indd

Printed in the U.S.A.

Nintendo • Wario Ware “DIY” Magazine Ad • Full-Page • 4C • Game Pro/GameDeveloper • #XNJD9297

132009d_9297_NIN_DIYAd_a08.indd

LeoBurnett/Nintendo/132009

Nintendo Wario Ware DIY Ads

PM: Sabbe

Operator: EZ 03/03/10_4:30pm STUDIONEDIGITAL

The Wario™ Award celebrates your creativity. Create your own games, compete

with others and have the chance to win a trip to the exclusive Nintendo E3 Media

Briefi ng in L.A. You can enter by creating and submitting a microgame with the new

WarioWare™: D.I.Y. game, or by submitting a microgame design concept via the website.

Challenge your creativity and learn more at www.WarioWareDIY.com

YOU CAN WIN THE WARIO™ AWARD!

©
 2
0
0
9
-2
0
1
0
 N
in
te
n
d
o
 C
o
-d
e
ve
lo
p
e
d
 b
y
IN
T
E
L
L
IG
E
N
T
 S
Y
S
T
E
M
S
.
W
a
rio
W
a
re
 a
n
d
 N
in
te
n
d
o
 D
S
 a
re
 t
ra
d
e
m
a
rk
s
 o
f
N
in
te
n
d
o
.
©
 2
0
1
0
 N
in
te
n
d
o
.

™

NO PURCHASE NECESSARY. PURCHASE WILL NOT INCREASE YOUR CHANCES OF WINNING. Open to legal residents of the 50 U.S., D.C. and Canada (except Quebec). Must be legally
able to travel to Los Angeles, CA. VOID WHERE PROHIBITED. Entry deadline: 5/16/10. Grand Prize includes airfare, two-night hotel stay and admission to 2010 Nintendo Media Briefi ng at E3
on June 15, 2010, for two persons (ARV: U.S. $2,500). Odds of winning depend on the number and quality of entries received. Only one entry per person is permitted. Restrictions apply. For
complete details (including judging criteria and how to submit a microgame design instead of a microgame to enter), see Offi cial Rules at www.WarioWareDIY.com/TheWarios. Sponsor: Nintendo
of America Inc., 4820 150th Ave NE, Redmond, WA 98052.

1
0
.5

"
T
ri

m

7.75" Trim

1
0
.7

5
"

B
le

e
d

8.25" Bleed

9
.5

"
L
iv

e

6.75" Live

Scale: 1" = 1"

http://www.wariowarediy.com
http://www.wariowarediy.com
http://www.WarioWareDIY.com/TheWarios

HEADS-UP DISPLAY

gAmE DEvELoPEr | APrIL 20104

Independent game stars lIke
the World of Goo creators, Braid’s
Jonathan Blow, and floWer’s Kellee
Santiago have revealed Indie Fund,
an “angel”-style funding source for
indie game makers.

According to the Fund’s
official website (www.indie-fund.
com), “Indie Fund is a brand new
funding source for independent
developers, created by a group
of successful indies looking to
encourage the next generation of
game developers.”

The Fund was established
“as a serious alternative to the
traditional publisher funding
model,” and its aim is to support
the growth of games as a medium
by helping indie developers get
financially independent and stay
financially independent.

The current list of investors
backing Indie Fund includes some
of the most successful independent
game creators of the last few years,
including Ron Carmel and Kyle
Gabler (World of Goo), Jonathan
Blow (Braid), Kellee Santiago
(floWer), Nathan Vella (Critter
CrunCh), Matthew Wegner (off-road
VeloCiraptor Safari), and Aaron
Isaksen (armadillo Gold ruSh).

“Indie Fund is managed and
fully funded by the seven of us.
We put in enough money to fund a
few games a year for two or three
years. If things go well and it looks
like the indie scene can take in
a larger investment and put it to
good use, we will raise another
round, probably bringing in external
investors as well,” Ron Carmel said.

The Indie Fund has already
backed a number of independent
game projects, and will be
announcing the name of them
soon. “Actual funding has already
begun, and we’re also at various
stages of discussing funding
with several indie teams. This all
happened through word of mouth
within the indie community, but
we will soon have a more open
process for developers to apply for
funding,” Carmel added.

Speaking at the 2010 Game
Developers Conference Independent
Gaming Summit, Ron Carmel
elaborated further on the Indie Fund’s
mission. Calling the relationships
between indies and publishers
“a system that never worked” he
examined why independent game
developers need an alternative to
traditional publishing models. “How

do we do for funding what Valve did
for digital distribution? The answer,
we hope, is Indie Fund,” Carmel said.

The Indie Fund aims to create a
transparent distribution process.
Stories of indies being pushed
around by publishers results from
no transparency in the process,
said Carmel. “With the process that
we’re planning, it’s going to be a lot
shorter than the regular approval
cycle for publishers.”

The fund's investors also feel
that publicly available deal terms
are important so that developers
can comparison-shop, he said.
Indie Fund isn’t revealing its terms
yet until it is sure the model works,
but transparency will be a must.

The fund will also offer
developers a single point of
contact. A personal relationship
helps avoid conflict of interest and
simplifies the process.

A focus will be on flexible
development. “Anybody who’s
been in the game industry for
more than a year or two realizes
that when you start working on
a game, you don’t necessarily
know how it’s going to end up,”
he said. The process requires
experimentation and iteration, so

the old methodology of coming up
with big design documents ahead
of time, with milestones attached
that risk employee pay, ends up
causing developers stress and
ultimately risks game quality.

Under the Indie Fund model, the
developer submits periodic builds
to the fund along with a change
list, so the game can be evaluated
based on where it was last time it
was evaluated, “not on where we
think it should be,” said Carmel.
This approach “respects the
game design process as it should
happen,” he added.

Importantly, Indie Fund will not
seek IP ownership. “We want the
developer to own the IP and for the
developer to be master of their own
destiny,” Carmel said. This means
no IP control either. "We don’t want
to tell you how to make your game,”
he stated. “If we provide funding
for a game, then that’s a vote of
confidence in the team that they
have a vision and that they can
execute it,” he said. “If I know better
than you what’s right for your
game, then we probably shouldn’t
be funding your game.”

— Leigh Alexander and
Simon Carless

IndIe FUND
ANNoUNCeD

World of Goo by Indie Fund members ron Carmel and kyle gabler.

http://www.indie-fund.com
http://www.indie-fund.com

www.gdmag.com 5

DaviD Crane’s reCently
released iPhone application
2600 Magic is the first
in his Technical Wizardry
series of documentary-
style apps that will take
players behind the scenes
in the creation of iconic
Atari 2600 titles. Detailing
long-hidden programming
techniques, his fascinating
series offers an interactive
glimpse into a bygone era
from one of the originators.
We spoke with Crane at the
D.I.C.E. Summit 2010 where
he was on hand to accept
the Academy of Interactive
Arts & Sciences first
Pioneer Award.

Brandon Sheffield: Why
did you decide to create
2600 Magic as an app?
Why not simply write
a book?
DaviD Crane: You know,
it was very simple. This
Pioneer Award got me
thinking, “Oh, I’m the

old guy now. Am I going
to die soon and all this
lore will be lost?” And I
was just thinking, “What
things were so magical
about the technology and
the tricks that we used
that people today might
find appropriate?”

There have been
books written. A lot of the
information on 2600 Magic,
for example; four hours
of research on Google will
save you 99 cents. I mean,
all that information is there.
But I thought that I wanted
to put some of these very
esoteric techniques into
print somewhere.

So dragsTer Magic,
which is the second title,
was really supposed to
be the first. I said, “I can’t
put that out without at
least providing some sort
of background, you know,
a little primer.” And so,
2600 Magic. There’s a free
version. If you don’t know

anything about the 2600,
you can find out if these
techniques are going to be
interesting to you before
you pay for the full version.
But really, the series starts
at dragsTer Magic. So, the
question is “Would a book
be more appropriate?” I
thought it would be nice
to be able to do animated
figures, because it’s an
animated medium.

Also, I could go to the
trouble of trying to find a
publisher that’s interested
in publishing this—but then
I said, “Wait a minute, I am
a publisher. I’m an iPhone
publisher!” So I figured I’d
publish it on the iPhone.
And it’s not going to be a
million-seller. It’s just kind
of quirky stuff that people
who think this way will find
to be really interesting.

BS: i definitely found it
very interesting, and i
don’t have that kind of

brain really, but it’s neat
what someone whose
brain work this way
can do with this kind of
constrained hardware.
DC: And the stuff we had

to go through just to put a
single object on the screen.

BS: right. i’ve always
been really interested in
people pushing hardware
to the limits.
DC: Well, I pimped the
book Racing the Beam in,
I think, dragsTer Magic

because it’s a fabulous
way of looking at it. What
those guys were doing
is they were looking at
how the console that a
game is designed for

affects the game that is
being designed. And that
book is book number one
in what they call their
console series about
games being designed for
a particular console and its
constraints, and how they
affect the game design.

—Brandon Sheffield

2600 MaGiC

iGDa ELECTIONS
Four new MeMbers joineD
the board of directors of the
International Game Developers
Association during the group’s
most recent election, and one
incumbent retained his seat,
organizers announced.

Incoming board members
Wendy Despain, David Edery,
Darius Kazemi, and Jane Pinckard
will now serve as directors for
three-year terms. Coray Seifert
successfully defended his seat for
another three years.

Seven other existing board
members are still partially through
their own three-year terms that
began in 2008 and 2009, while

another three—Erin Hoffman,
Rodney Gibbs, and Brian Robbins—
received their seats through
special appointments, and will
serve through September 2011.

Of the new board members,
Despain is a writer and designer
with the consultancy firm
International Hobo, and was

recently credited on the MMO
carToon neTWork Universe:
FUsionFall. Edery formerly served
as worldwide games portfolio
manager for Xbox Live Arcade,
and currently runs the design
consultancy Fuzbi.

In addition, Kazemi is a former
metrics analyst for developer
Turbine, and now operates metrics
firm Orbus Gameworks. Pinckard
works in business development for
Foundation 9 Entertainment, and is
also known for her former career in
game journalism.

Finally, Seifert is a game
designer at THQ subsidiary Kaos
Studios, developer of FronTlines:

FUel oF War, and has previously
held numerous other design roles.

According to the IGDA, this
latest election drew a membership
voter turnout of more than
10 percent, and the slate of
candidates was the largest in the
organization’s history.

This year’s elections drew an
uncommon amount of attention,
in part due to highly publicized
affairs involving the resignation of
board member Tim Langdell, who
was embroiled in litigation-fueled
controversy, and debate over the
role of the IGDA in industry quality
of life concerns.

—Chris Remo

FusionFall.

http://www.gdmag.com

http://e3expo.com
http://www.e3expo.com

Welcome to the 9th annual Salary Survey from Game Developer! We’ve Shaken it up
a bit this year, splitting out indies and independent contractors into their own separate listings
(see page 12), allowing for an even greater focus on a burgeoning area of the industry, while
making our salary results even more streamlined.

The big number for the year, the average game developer salary across all disciplines and all
levels of experience, is $75,573. That’s down almost $4k from last year’s number, and probably
gets closer to reaching the actual average than we’ve gotten before. Making accurate predictions
from these numbers is difficult, as they are voluntarily submitted, and who wouldn’t want to
pad their salary in a survey so they could point to what they should be making? That said, there
are some interesting demographics here, from the disparity in salary for those who can afford
homes, to the relative unimportance of education to pay rates.

2009 was a tough year, with record layoffs, but also record sales, which sends mixed
messages. It also saw the rise of the Facebook and social media game, and the proven viability of
the Apple's App Store. We asked developers several questions to gauge their thoughts about the
current state of the industry, and learned some interesting things.

For example, only 13 percent of developers feel that there were more jobs in 2009
compared to 2008. A slightly higher group, but still not a majority, felt that the game industry

was improving (33 percent). And larger still was the
group that felt there were more opportunities for game
developers than ever before (38 percent). It should be
noted that in this category 36 percent were neutral.

In spite of all the ups and downs of the year, only 9
percent felt that the game industry was no longer a good
place to work, with the grand majority still feeling like
this is the industry for them. Interested in hearing more
specifics? See page 13 of this survey for some choice
words from the developers surveyed.

Use this information wisely—now is probably not the
best time to thunk down the survey in front of your boss
and demand a raise. By all accounts, that intern you’ve
been training is ready to take your spot at half the cost!
Here’s to a bright 2010!

—Brandon Sheffield and Jeffrey Fleming

www.gdmag.com 7

http://www.gdmag.com

game developer | aprIl 2010 8

programmers A v e r A g e s A l A r y

$80,320
Programming talent drives the game industry, and as a grouP
coders generally enjoy the highest salary among the major disciplines
(excepting Business). However, this year saw a decline in the average
compensation, down from last year’s $85,024.

Still, the overall pay prospects are good. Junior programmers with
three or less years of experience earned an average of $54,975 in
2009 and experienced coders with more than six years on the job were
paid an average salary of $109,567.

Programmers working in Canada earned an average of $67,937
(USD) in 2009, which is slightly up from last year, while European
coders were somewhat down from the previous year, earning $46,198
(USD) on average.

100K

90K

80K

70K

60K

50K

40K

30K

20K

10K

0K
<3 years 3–6 years >6 years

Programmer salaries per years experience and position
Programmer/Engineer Lead Programmer Technical Director

$5
4,

61
8

$5
9,

77
3

$7
4,

66
5

$8
0,

30
0

$1
05

,7
29

$1
07

,9
17

$1
21

,7
50

artists and
animators

A v e r A g e s A l A r y

$71,071
salaries for visual artists were uP $1,539 over last year’s
average. Although in general compensation was stable, 14% of the
artists surveyed reported a pay increase over the past year, which is
the highest percentage out of the creative disciplines.

The bulk of our artists surveyed have been in the business for three
years or more, and at the top end their salaries were almost double that of
entry level game artists (this could also mean that many low-level artists
are on contract). The industry values talented art directors and lead/
technical artists—across all experience levels these advanced disciplines
earned a yearly average of $94,000 and $83,000 respectively.

$59,400 (USD) was the mean for Canadian artists, a salary that
was also up slightly from last year. European artists brought home
$38,152 (USD), down more than $5,000 from the previous year.

100K

90K

80K

70K

60K

50K

40K

30K

20K

10K

0K
<3 years 3–6 years >6 years

Artist and Animator salaries per years experience and position
Artist and Animator Lead Artist/Tech Artist Art Director

$4
5,

11
4

$6
1,

12
1

$6
5,

90
9

$9
0,

53
6

$9
7,

20
6

$1
04

,8
53

38%
> 6 yrs

$109,567

31%
<3 yrs

$54,975

31%
3–6 yrs

$76,060

 Percent average
gender represented salary

Male 95% $80,128
Female 5% $84,062

Percent receiving additional
income: 78%

average additional income: $15,937

type of additional compensation
received
Annual bonus 49%
Pension/Employer contribution to
Retirement plan 47%
Profit sharing19%
Project/title bonus 29%
Royalties ..16%
Stock options/equity32%

Percent receiving benefits: 92%

type of benefits received
Medical .. 98%
Dental .. 93%
401K/Retirement 80%

all Programmers and engineers

years exPerience in the industry

gender stats for Programmers

 Percent average
gender represented salary

Male 92% $72,500
Female 8% $51,071

Percent receiving additional
income: 77%

average additional income: $12,217

type of additional compensation
received
Annual bonus 46%
Pension/Employer contribution to
Retirement plan 43%
Profit sharing13%
Project/title bonus32%
Royalties ..17%
Stock options/equity 28%

Percent receiving benefits: 94%

type of benefits received
Medical .. 99%
Dental .. 94%
401K/Retirement81%

all artists and animators

years exPerience in the industry

gender stats for artists

36%
> 6 yrs

$96,487

26%
<3 yrs

$45,200

38%
3–6 yrs
$62,253

game
designers

A v e r A g e s A l A r y

$69,266
In our survey, game desIgn encompasses a range of jobs
including creative directors, designers, and writers. The field as a whole
enjoyed a boost of almost $2,000 over last year’s average salary.

Predictably, creative directors/lead designers were well
compensated, earning an average of $90,640 per year, while game
designers working in the trenches brought in $61,859 for the year.
Game writers reported making almost as much as non-lead game
designers ($61,786 on average), although our sample size for writers
was low.

Canadian game designers in general earned $61,520 (USD) this
past year. Designers working in Europe reported earning $42,423
(USD), which is up almost $2,000 over last year’s survey.

producers A v e r A g e s A l A r y

$75,082
The overall salary for The producTIon dIscIplIne Is down
$7,823 from last year’s average. The majority of our production
respondents had three or more years of experience and 48.8% had
been working in the industry for six or more years—the highest
percentage out of all of the disciplines.

Of the creative disciplines production had the highest
percentage of female respondents. According to the data, women
were paid an average of $4,814 less than their male coworkers in
the production field.

In Canada, producers brought in an average of $87,130 (USD) for
2009 and European producers made an average of $52,125 (USD) for
the year.

www.gdmag.com 9

100K

90K

80K

70K

60K

50K

40K

30K

20K

10K

0K
<3 years 3–6 years >6 years

game Designer salaries per years experience and position
Game Designer Creative Director/Lead Designer

$4
5,

20
8

$5
9,

61
9

$6
9,

16
7

$7
7,

50
0

$1
01

,8
10

100K

90K

80K

70K

60K

50K

40K

30K

20K

10K

0K
<3 years 3–6 years >6 years

Producer salaries per years experience and position
Associate Producer Producer/Project Lead Executive Producer

$4
3,

83
3

$5
3,

75
0

$7
4,

72
2

$6
5,

00
0

$9
5,

05
8

$1
03

,6
11

$5
7,

50
0

$9
0,

00
0

 percent average
gender represented salary

Male 92% $69,790
Female 8% $62,500

percent receiving additional
income: 72%

average additional income: $12,485

Type of additional compensation
received
Annual bonus 40%
Pension/Employer contribution to
Retirement plan 47%
Profit sharing15%
Project/title bonus 34%
Royalties ..12%
Stock options/equity 35%

percent receiving benefits: 96%

Type of benefits received
Medical .. 99%
Dental ...97%
401K/Retirement 80%

all game desIgners

years experIence In The IndusTry

gender sTaTs for desIgners

41%
> 6 yrs

 $86,912

17%
<3 yrs

$46,019

42%
 3–6 yrs
$61,319

 percent average
gender represented salary

Male 82% $75,950
Female 18% $71,136

percent receiving additional
income: 77%

average additional income: $14,565

Type of additional compensation
received
Annual bonus 53%
Pension/Employer contribution to
Retirement plan 42%
Profit sharing12%
Project/title bonus 26%
Royalties ..11%
Stock options/equity 34%

percent receiving benefits: 96%

Type of benefits received
Medical ...97%
Dental .. 93%
401K/Retirement81%

all producers

years experIence In The IndusTry

gender sTaTs for producers

49%
> 6 yrs

$92,333

17%
<3 yrs

$42,000

34%
3–6 yrs
$66,190

http://www.gdmag.com

game developer | aprIl 2010 10

audio
developers

A v e r A g e s A l A r y

$82,045
If the game Industry ever moves toward a hollywood
production model (see Steve Theodore’s March 2010 Pixel Pusher column)
we may have an early glimpse of what that could mean for salaries and
benefits by looking at the largely independent Audio Developers field.

Those working with audio, which include directors, composers, and
designers, reported earning $3,878 more per year on average than they
did last survey. Interestingly, while audio developers were among the least
likely to receive additional compensation (excepting QA) for their work,
the average additional income for those that did was among the highest
($15,875) in the creative disciplines, particularly with regard to royalties.

Canadian audio developers earned on average $61,250 (USD) up
from last year’s $58,929 (USD). Audio developers working in Europe
reported a yearly average of $40,833 (USD), down a bit from the
previous year’s $42,955 (USD).

qa testers A v e r A g e s A l A r y

$37,905
QualIty assurance has the lowest barrIer to entry of all the
disciplines and accordingly has the lowest pay and least benefits.
As a result, turnover is high and the position is often seen as a
stepping stone to other areas of game development rather than a
career itself.

The QA discipline, which includes entry-level testers as well as
more experienced leads, averaged a salary of $37,905 overall, down
$1,666 from last year. Testers with less than three years experience
on the job reported earning an average of $24,000 annually, while
experienced leads that had been in the business for six or more years
reported earning $67,500 on average.

QA workers based in Canada earned an average of $39,375 (USD)
per year and those working in Europe brought in $29,500 (USD).

 Percent average
gender represented salary

Male 88% $81,184
Female 12% $87,500

Percent receiving additional
income: 71%

average additional income: $15,875

type of additional compensation
received
Annual bonus 53%
Pension/Employer contribution to
Retirement plan 47%
Profit sharing 20%
Project/title bonus 40%
Royalties ..27%
Stock options/equity27%

Percent receiving benefits: 86%

type of benefits received
Medical .. 100%
Dental .. 89%
401K/Retirement 83%

all audIo develoPers

years exPerIence In the Industry

gender stats for audIo develoPers

100K

90K

80K

70K

60K

50K

40K

30K

20K

10K

0K
<3 years 3–6 years >6 years

Audio Developer salaries per years experience and position
Sound/Audio Designer/Engineer Sound/Audio Director

$3
7,

50
0

$8
1,

66
7

$7
5,

83
3

$8
7,

50
0

33%
> 6 yrs

$86,875

38%
<3 yrs

$59,643

29%
3–6 yrs
$98,929

 Percent average
gender represented salary

Male 89% $37,803
Female 11% $38,750

Percent receiving additional
income: 59%

average additional income: $5,841

type of additional compensation
received
Annual bonus 45%
Pension/Employer contribution to
Retirement plan 55%
Profit sharing10%
Project/title bonus 20%
Royalties ..0%
Stock options/equity 20%

Percent receiving benefits: 79%

type of benefits received
Medical .. 100%
Dental .. 90%
401K/Retirement77%

all Qa testers

years exPerIence In the Industry

gender stats for Qa testers

100K

90K

80K

70K

60K

50K

40K

30K

20K

10K

0K
<3 years 3–6 years >6 years

QA Tester salaries per years experience and position
Tester QA Lead

$2
4,

00
0 $4

7,
50

0

$3
3,

33
3

$3
8,

33
3

$6
7,

50
0

13%
> 6 yrs

$62,500

40%
<3 yrs

$30,714

47%
3–6 yrs
$36,667

business and
legal people

A v e r A g e s A l A r y

$96,408
Our survey Of the Business and LegaL discipLine LOOked at
a wide range of positions including chief executives and executive
managers, community managers, marketing, legal, human resources,
IT, content acquisition and licensing, and general administration staff.

Overall, the average salary for the business sector was $96,408,
down $5,735 from last year. Still, those working on the business side
are the most likely (89%) to receive additional compensation and enjoy
the highest average amount of additional income ($17,807). They are
also some of the more experienced workers in the game industry with
only 16.9% having been on the job less than three years.

Examining the various job titles revealed considerable variation in
yearly salaries. Executive managers earned quite a bit more than the
mean, bringing in an average of $129,167 annually. Marketing and PR
positions averaged $83,804 and human resources earned $71,136.

Looking at the salary for business-oriented personnel in general for
Canada revealed an average of $58,929 (USD) while Europe averaged
$59,231 (USD).

www.gdmag.com 11

 percent average
gender represented salary

Male 75% $100,192
Female 25% $85,227

percent receiving additional
income: 89%

average additional income: $17,807

type of additional compensation
received
Annual bonus 64%
Pension/Employer contribution to
Retirement plan 30%
Profit sharing 29%
Project/title bonus18%
Royalties ..11%
Stock options/equity41%

percent receiving benefits: 91%

type of benefits received
Medical ...97%
Dental .. 91%
401K/Retirement 78%

aLL Business and LegaL peOpLe

years experience in the industry

gender stats fOr BusinesspeOpLe

45%
> 6 yrs

$123,526

17%
<3 yrs

$65,833

38%
3–6 yrs
$78,258

LayOffs
fOr the secOnd year, we asked Our surveyed deveLOpers
whether they lost their jobs at any time during the last year. The
number is up from the previous period. In 2008, 12% of those surveyed
lost their jobs. In 2009, that number climbed to 19%.

Of those who were laid off, 46% found new employment at a game studio
or publisher, 17% moved into contract or consulting work, 10% founded a
new company, and 16% went into indie development. Unfortunately, 25%
were unable to find new work in the game industry.

One particularly interesting statistic is the rather large number of
people moving to independent development. Last year, consulting
and indie moves combined comprised about 24% of what laid-off
developers did with their time. This year, that combined number
climbs to 33%, indicating the increased viability of independent game
development or working on a game-by-game basis.

average saLary By u.s. regiOn
(across all levels of experience and disciplines)

Midwest
$65,158

south
$61,180

east
$63,847

west
$77,593

tOp 5 states with highest average saLaries
(across all levels of experience, excluding states with low sample size)
 average percent whO avg. saLary Of
 saLary Own hOMes hOMeOwners

 1 california $80,557 31% $107,370
 2 washington $73,981 41% $93,728
 3 new york $64,167 20% $77,500
 4 florida $60,357 38% $70,395
 5 texas $60,326 43% $70,245

average saLary By u.s. regiOn By discipLine

 east Midwest sOuth west

programmer $63,198 $71,154 $64,542 $91,805
art and animation $62,500 $54,265 $60,521 $80,196
game design $67,262 $75,682 $56,842 $73,840
production $68,250 $41,389 $71,167 $81,474
audio $70,833 $87,500 $50,000 $98,000
Qa $36,250 — $28,214 $41,591
Business $87,885 $122,500 $89,868 $99,265

average saLary fOr hOMeOwners
vs. nOn-hOMeOwners By u.s. regiOn

 east Midwest sOuth west

homeowners $82,500 $82,244 $73,776 $99,108
non-homeowners $52,266 $47,361 $49,493 $63,717

 u.s. canada eurOpe

art and animation $71,071 $59.400 $38,152
programmer $80,320 $67,937 $46,198
game design $69,266 $61,520 $42,423
audio $82,045 $61,250 $40,833
production $75,082 $87,130 $52,125
Qa $37,905 $39,375 $29,500
Business $96,408 $58,929 $59,231

average saLaries in the u.s., canada,
and eurOpe
(across all levels of experience, by discipline, given in USD)

http://www.gdmag.com

GAME DEVELOPER | APRIL 2010 12

AVERAGE SALARY BY EDUCATION LEVEL AND DISCIPLINE
(across all levels of experience)

 ART PROGRAMMING DESIGN AUDIO PRODUCTION QA BUSINESS

High School Diploma or GED $74,167 $79,375 $56,136 $114,167 - $35,000 $72,500
Some College $101,310 $98,500 $79,929 $140,000 $78,833 $28,056 $75,833
Technical Certifi cation $52,500 $79,167 $80,000 $87,500 $52,500 - $82,500
Associates Degree $69,000 $68,409 $67,500 $60,000 $60,833 $40,000 $65,000
Bachelors Degree $66,492 $76,383 $67,767 $72,045 $70,643 $40,119 $96,429
Some Graduate $93,500 $91,923 $68,611 $117,500 $91,875 $30,000 $110,500
Masters Degree $68,816 $78,013 $63,750 $32,500 $88,125 $97,500 $102,976
Some Doctoral - $111,786 $57,500 - $127,500 - -
Doctoral Degree - $77,500 - - - - $110,833
Some Post-Doctoral - - - - $107,500 - -
Post-Doctoral Degree - - - - - - $167,500

NOW IN ITS NINTH YEAR,
the Game Developer Salary
Survey was conducted in
February 2010 for the fiscal
year January 1, 2009 through
December 31, 2009, with
the assistance of Audience
Insights. Email invitations
were sent to Game Developer
subscribers, Game Developers
Conference attendees, and
Gamasutra.com members
asking them to participate in
the annual survey.

We gathered 4,050
responses from developers
worldwide but not all
who participated in the
survey provided enough
compensation information
to be included in the final
report. We also excluded
salaries less than $10,000
and the salaries of students
and educators. The small
number of reported salaries
greater than $202,500
were excluded to prevent
their high numbers from
unnaturally skewing the
averages. We also excluded
records that were missing
key demographic and
classification numbers.

The survey primarily
includes U.S. compensation
but consolidated figures
from Canada and Europe
were included separately.
The usable sample reflected
among salaried employees
in the U.S. was 1,014, for
Canada 275, and for Europe
378; and 605 for indies and
independent contractors
who provided compensation
information worldwide.

The sample represented
in our salary survey can
be projected to the U.S.
game developer community
with a margin of error of
plus or minus 3.06% at a
95% confidence level. The
margin of error for salaried
employees in Canada is plus
or minus 5.9%, and is 5.0%
for Europe.

METHODOLOGY

AS A NEW PART OF OUR SURVEY,
we have included new data on
independent developers and
independent contractors (meaning
those who are not part of a contract
development team, such as an
art outsourcer).

Of those who match the above
description, 40% identified as an
independent contractor, 30.4% were
members of an indie team, and
29.6% said they were an individual
indie developer.

So how much did these people
make? Independent contractors
fared the best, with an average
compensation of $45,137. Among full-
on team-based indie developers, the
average was less than half, at $20,
248. Individual indie developers fared
the worst, making a scant $11,638.

Not all indie developers make
their money exclusively through
game development though. To
that end, we also inquired about
revenue from related merchandise,
such as t-shirts, comics, toys, and
the like. Less than 10% of our indie
respondents made extra money
through those means, and of
those, 23% made less than $100 on
their extra promotions. 21% made

between $100 and $1,000, 21%
made between $1,000 and $5,000.
18% made between $5,000 and
$20,000, and a rather surprising
16% of indies involved with non-
game merchandising made over
$20,000 on their extra ventures.

We also asked the entire group,
both indies and contractors, whether
they had ever worked at a traditional
salary-based game developer, and
a very large number had not—68%,
in fact. This is significant especially
when you consider the fact that
almost 27% of our respondents
identified as a non-salaried game
developer. That 68% of that larger

number have not worked at a
traditional game developer before
indicates that the roads to game
development are clearing again, and
that the traditional story of having
to work up from QA perhaps applies
less than it did in the past.

JOB FUNCTIONS
Indies are often necessarily a one-
stop shop for all aspects of game
development, so rather than ask
them what one element of game
development they were responsible
for, we asked them to check all
boxes that apply. So read the indie
chart as “75% of indies worked
on at least design.” In the case
of contractors, we asked them to
choose only one area in which they
made the majority of their money.

THE INDIE REPORT

Art .. 48%
Audio 26%
Design 75%
Production 53%
Programming 66%
QA ... 50%
Sound 26%

Art

Audio

Design

Production

Programming

QA

Writing/Scenario

Other

0% 5% 10% 15% 20% 25% 30%

29%

10%

9%

4%

11%

21%

2%

10%

CONTRACTORS BY JOB FUNCTION

INDIES BY JOB FUNCTION

AN EXTENDED VERSION OF THE 9TH ANNUAL GAME DEVELOPER
Salary Survey, including detailed data for year-over-year results
since 2004, will be made available for purchase through Game
Developer Research, a division of United Business Media, LLC.
Visit www.gdmag.com/research. This detailed report, The Game
Developer Salary Report: 2004—2009 will be available in April.

http://www.gdmag.com/research
http://Gamasutra.com

www.gdmag.com 13

T H E B A D

“
2009 was a mixed bag for
the industry. Even though

software sales remained relatively
strong, development studios were
being shuttered at an alarming
rate. I feel this is due to the industry
reaching a saturation point prior to
the recent economic recession. Now
I feel there are way more applicants
than there are jobs to fill, and larger
studios are taking advantage by
making low-ball offers to new hires
and neglecting the wellbeing of their
development employees to improve
their bottom lines. I’m sure this
occurs in many other industries,
but unless things turn around soon,
the high cost of game development
and the high retail prices of games
will make for fewer and fewer
studios taking chances on “riskier”
projects, thus stunting the growth of
the industry.”

“
2009 has been a
good year for smaller,

independent developers and
very bad one for publishers and
publisher-owned developers.”

“
There’s a lot of movement
in the future toward social/

broad reach games with new
business models, and they’re
coming faster than most anticipate.
A large percentage of the industry
is still ignoring the appeal of these
types of games and there needs to
be a better awareness of why they
work. Not everyone needs to work
on these types of games but their
systems could be brought more
into the mainstream titles.”

“
As a recent graduate
of DigiPen Institute of

technology in 2009 I am becoming
more jaded by the game industry.
As many friends of mine have gone
to work for many game companies
in the Seattle area, I have witnessed
the systematic exploitation
of young, extremely talented,
extremely driven artists. Of course,

there are some game companies
that do treat their employees well,
but the majority of what I have seen
is disgraceful. Increasingly, “perma-
lancers” are becoming all the rage.
Companies abuse the contract
system in order to get cheap labor
from talented artists while at the
same time denying them full-time

benefits such as health and dental
insurance plans. It hurts me to see
my friends always worrying that
their contract won’t be renewed at
the time of review and to see their
spirits slowly breaking under the
pressure that type of employment
puts on people. This treatment of
artists is a race to the bottom. I no
longer feel that the people at the top
in these game companies care for
the wellbeing of the artists under
their roof. The priorities seem to
be aligning toward the bottom line
and profit margins rather than the
greater good. In the end you will
have a generation of alienated and
hurt artists, and let’s not forget,
human beings. Would I buy the
next great game if I know that it
was developed with the blood and
sweat of overworked and exploited
artists? Certainly not.”

“
The game industry has
become highly volatile for

established industry veterans.
Companies are laying off full time
employees as soon as the game is
ready to ship, and they often chop
their higher paid senior staff first
instead of last. This practice used
to be applied to contractors first,

temp employees second, and then
the senior staff when there were
none left to cut.

Now, once your project is
completed, all bets are off. And
those kids fresh out of school
that you spent the last few years
training? They will either be laid off
and you will have to train another
new batch of students from scratch,
or one of them will be given your job.
Seniority? Forget about it.

This destabilizing practice of
dumping seasoned talent is leading
many to become cynical about
working in the industry beyond
their 30s. Additionally, with the
constant reduction of long-term
gigs, artists, game designers,
and engineers frequently have to
move to other states or even other
countries to continue to eke out a
gig-to-gig living. Game designers are
becoming nomads or guns for hire.

If you are 24 years old, single,
don’t own a house and don’t have
a family, then this rolling stone
lifestyle is probably very doable
and may even sound fun. But if
you are married, your spouse has
a local job, your kids are in school,
and you have local friends and
family, this lifestyle can be very
disruptive and is not sustainable.”

T H E G O O D

“
2009 was a great year
for some absolutely

monumental titles such as
Uncharted 2, Modern Warfare 2,
plus refreshing indie games such as
PixelJUnk Shooter and MachinariUM,
which really pushed the boundaries
of playability and visual style,
raising the bar for the future of
gaming. Some wonderful titles on
the iPhone too, such as canabalt,
MiniSqUadron, and GeodefenSe. All
in all, 2009 was a pinnacle year,
with some eagerly anticipated titles,
and previews for the coming year.”

“
The return to more small
casual and social games

means it's a great time to be a

designer ... lots of opportunities to
exercise innovation and creativity!
Reminds me of my early days in the
arcade industry.”

“
2009 was a year of major
transition. The last time I

can remember seeing this much
change was in the late ‘80s to early
‘90s. The direct-to-consumer digital
revolution is definitely upon us—
how we choose our next steps will
be critical to long term success”

“
I think the trend to Indie
success stories has

been inspiring for many young
designers, artists, programmers,
and sound designers alike. This
has been uplifting and I hope it
continues. People are showing that
new markets can be created out
of ingenuity and a good product
without the aid of big money and
major ad campaigns.

I am happy that the online
market has embraced the ‘free
to play, fee to upgrade’ mantra
with gusto. It is in the hands of
the developers now to make sure
not to squander their trust. It is
vital that this give and take isn’t
abused. Customers will run to
other markets the second they
feel cheated. It would then take
a concerted effort to bring those
clients back into the fold. ‘Premium
content’ has to mean just that.”

“
While there were a lot of
jobs lost during 2009, I am

confident that the industry will
move forward and that the market
will grow. I also believe with all the
emerging technologies that there
are now many more opportunities
for game developers within and
around the games industry that
extend to fields like animation,
computer graphics, interactive web
applications, and so forth. Just
because people are losing jobs in
the industry does not mean that
they have nowhere else to turn, by
any means.”

In order to hear what developers are truly saying about the economy right now,
we allowed space at the end of our survey for direct comments. We include
some more notable responses here.

http://www.gdmag.com

GAME DEVELOPER | APRIL 201014

N I C H O L A S V I N I N G

Adapting Lessons from Erlang

Adapting Lessons from Erlang

for Multithreaded C++

for Multithreaded C++

EVERYBODY AGREES: MULTITHREADED DEVELOPMENT IS A MISERABLE
experience. Anybody who has tried it will have at least one horror story
about the race condition that they just couldn’t find, or the crash bug that
stopped the game from shipping on time. We have all gotten comfortable
thinking about our programs as a set of sequential single-core operations,
and as soon as we try to deviate from this model, our brains—not used
to the rigors of concurrency—start hurting. Everybody also agrees:
multithreaded development is the way of the future. The free lunch is over,
and with multiprocessor machines in the marketplace and modern consoles
requiring us to embrace this paradigm, we must adapt if we want to fully
exploit the possibilities of the next generation of hardware.

Trying to successfully write concurrent code with our feeble intellects
requires us to either accept race conditions, or to think outside the box. In
many ways, the threads-and-mutexes model of programming is wrong for
concurrent development; in his lecture at the Symposium on Principles
of Programming Languages in 2006, Tim Sweeney noted that “manual
synchronization (shared state concurrency) is hopelessly intractable.”
Other models for concurrent programming exist, and we need to start
looking at them.

The programming language Erlang was originally developed by telecom
giant Ericsson during the late '80s, and was released as open source
in 1998. In spite of its age, Erlang offers a few creative solutions to the
concurrency conundrum. Telecoms have used it for years to handle the
problem of massively concurrent programming for systems with cores that
number in the thousands. More recently, social networking sites such as
Facebook and del.ici.ous have used Erlang to help build scalable systems
for delivering web content. Erlang works very, very well across thousands
of cores. How well does it work for us, and what can it teach us about how to
program for multiple cores without losing our minds?

G E T T I N G O N M E S S A G E
» To begin, let’s look at Erlang directly, as it’s a language designed for
concurrency. Erlang’s creator, Joe Armstrong, designed the language
around four fundamental tenets based on life in the real world: the world
is concurrent, things in the world don’t share data, things in the world
communicate with messages, and things in the world will often fail. Every
design decision in Erlang stems from these four tenets; the language is fully
designed from the ground up to embrace concurrency rather than simply
supporting it.

The first thing that you must understand about Erlang is that it’s a
functional programming language. As such, it has no concept of state, and
it has no concept of mutable data. This stems from tenet number two of
Armstrong’s design philosophy: with no mutable data, and with no concept
of state, we are encouraged to work in a way that promotes concurrency.
To understand the difference between a functional programming language
and a procedural one, consider the following Erlang routine to calculate a
factorial:

factorial(0)->1;

factorial(N)->N*factorial(N-1).

The idea of using recursion instead of a for loop or other procedural data
structure is at the core of functional programming, and it may make your
head hurt until you get used to it. Even more mind-boggling is the idea that
Erlang variables are write-once. For instance, we can write:

Foo = 2.

or even:

Foo = Bar * Baz.

but because the variable Foo is already assigned, we cannot write:

Foo = 2, Foo = Foo * Foo.

This has some relevance to our concurrency issues: by not having any state,

it becomes impossible to share it. When you can create a variable, Erlang
lets you assign a value to it once, and only once. At that point, it becomes
fixed. Erlang is not a pure functional programming language, in the sense
that it is possible to produce what is known as a side effect; my experience
has shown that spending 80 percent of your time doing functional
programming and 20 percent of your time pretending that you’re writing
1980s-era BASIC code seems to work well.

Spawning a process in Erlang is as easy as one function call:

Pid = spawn(Module, Function, Arguments).

People create Erlang processes willy-nilly; it’s a regular occurrence. Compare
this to our standard programming practices in C++, in which creating
a thread requires planning, a specific reason to do so, and at least two
meetings with your project’s lead programmer. To an Erlang developer, the
C++ notion of threading can be compared to an object-oriented programming
language in which we can create objects, but only about five of them.
The problem isn’t object-oriented programming; the problem is that our
language’s implementation of objects is terrible.

Erlang's main strength, as far as we are concerned, is in how the
language itself helps us program concurrently. Rather than having
threads communicate with each other via shared data, Erlang processes
communicate with each other via an asynchronous message-passing
architecture. The process ID, returned by the spawn() routine, is used as a
reference point for such communication. This model encourages the creation
of many smaller, isolated processes. Each process then communicates
via message-passing with other processes that it needs to talk to, and all
concurrency issues are resolved by the message-passing architecture.
Erlang processes are so-called “green” threads, in that they are scheduled
internally by the Erlang virtual machine; however, Erlang itself will
distribute your program across multiple cores—in fact, it will distribute your
program across multiple computers and multiple instances of the Erlang
interpreter. This little miracle is achieved thanks to a quirk of the Erlang
message passing system, which internally uses sockets (yes, sockets) to
communicate between instances of the Erlang VM on separate threads.

Note that Erlang threads cannot share data between themselves. The
language simply does not allow two threads to have access to the same
chunk of memory. How well does this work in practice? Surprisingly well.
When you spawn a new process, you simply pass it whatever information
it needs to take care of business in the list of arguments. This is not always
suitable for some tasks—in particular, those tasks where you really want
shared data (for instance, compressing a texture)—but programming
without shared data is surprisingly palatable once you complete the mental
gymnastics necessary to do so. If you need to send further data around, you
simply send it over as a message to the thread that needs it; it then makes
a local copy of the data. Memory requirements do not balloon as much as
you might expect. This is partly because functional programming languages
discourage the acquisition of data and state anyway, so we don’t have much
of it to spread around in the first place.

E R L A N G I N G A M E S
» Is Erlang suitable for your application? If you are writing an MMORPG or
some other application that requires scaling across a large server-based
architecture, Erlang is ideal. It comes with Mnesia, one of the most powerful
databases in the world, and it scales like crazy. (To the best of this author’s
knowledge, the only shipping MMORPG to actually use Erlang for its backend
was VENDETTA ONLINE.) It also comes with a generational copying garbage
collector, which is an essential item for any garbage collected scripting
language designed for real-time operation.

For writing an actual video game, and not just a server, Erlang may not be
quite the right tool. Erlang’s socket-based interprocess communication, which
does allow it to scale easily across multiple machines, may not be the most
optimal tool for a single machine with less than ten cores. Shared memory
access—albeit shared memory access handled by the Erlang VM—might be
more promising, but it’s not part of Erlang’s mission statement. Provided that
you are willing to learn it, Erlang may also be suitable for conditions where

WWW.GDMAG.COM 15

http://WWW.GDMAG.COM

GAME DEVELOPER | APRIL 201016

your project requires multi-core support, but where you do not have the programming manpower
to spend time and energy debugging a traditional shared-data style language. In this case, it may
be a good idea to write anything that is highly procedural in a C++ extension to Erlang, shove that
in its own thread, and then use Erlang for all the tasks that do need to be efficiently parallelized. The
trade-off of reduced efficiency on a project that ships versus 100 percent efficiency on a product
that never ships is one that I am completely willing to accept.

The main problem with mixing Erlang and C is that the Erlang-to-C binding library is fairly
immature. It certainly can be done, but it is not the most pleasant prospect. The C++ part of your
program wants to think in terms of objects and function calls, whereas the Erlang part of your
program simply wants to throw messages into a void and be done with it. Writing physics or
rendering code that gets controlled by a single event passing mechanism—a rather large one, at
that—is not my idea of a good time. Still, it’s worth a thought.

P A G I N G D O C T O R G R E E N T H R E A D
» For those of us who want to stick to C++ and not work with Erlang at all, the question
remains: How can we use the ideas behind Erlang in C++? Can we produce a massively-threaded
application in C++? Well, yes and no. We are stuck with OS-level threads, which are generally
considered very “heavy” by Erlang programmers, and we have no functional programming and
no language support. Language support, in my mind, is the big issue; without language support,
a sufficiently determined programmer can always screw something up and make hash of a
beautifully designed multithreaded application. We have to roll our own process-based message-
passing system, which C++ people, for some reason, usually refer to as an actor-based system
to distinguish OS-level processes from green processes.

Let’s consider what an actor in this system needs to do. It needs to have a message-passing
queue, meaning that other actors (in other threads) can write to it and we can read from it. It
needs to live in its own thread, and we need a way of making sure that every actor in a given
thread gets its chance to parse messages. We’ll need to develop a thread-safe queuing operation,
and we’ll need to use whatever C++ features we can in order to make sure we don’t accidentally
get too clever for our own good. Since we don’t know what a given actor might look like, we will
separate the code to handle the actor mechanisms from the actual functionality of a given
actor. My preferred approach is to use a template, but your mileage may vary. Using a template
allows us to add some degree of security to our actor. By making the instance of any given actor
class private, we can ensure nothing can access the class except through the methods that
the templates allow. What we cannot stop is the actor class performing operations outside of
itself that are not thread-safe. The best we can do is try to be self-disciplined and ensure that
we never, ever, put something in a global space that will be accessed by multiple processes. A
determined programmer who decides to make a global variable in C++ without a mutex and then
has multiple green threads accessing it simultaneously can still make trouble. This is where the
safety of Erlang’s internal language support for concurrency comes in handy.

To support messaging in a “green thread,” each actor needs to have a queue for incoming
messages. Because this is the main structure where threads may interact with other threads, we
need this queue to be thread-safe. Fortunately, thread-safe queues are well understood. What
we would really like is for our queue to be lock-free, but the absence of atomic operations in C++
makes this a somewhat difficult prospect. The new C++0x standard proposes an atomic keyword
which would be useful, but unfortunately we don’t have this yet. Instead, we must resort to
using the Win32-specific function InterlockedCompareExchangedPointer() to do our dirty work
for us, or, alternately, override the compiler’s judgment and write some assembly code. (Brrrr.)

To give you an idea of the difficulties of lock-free programming, consider what happened
in 2008 in programming publication Dr. Dobb’s Journal: a respected developer produced an
implementation of a lock-free queue in a magazine article. Herb Sutter spent the next three issues
analyzing why it didn't work and how to fix it. Accordingly, I have lifted Sutter’s implementation
more or less verbatim; his was written to the C++0x standard, so I have simply removed his use of
the atomic keyword and replaced it with the appropriate Win32-specific calls. Note, however, that
InterlockedCompareExchangePointer() and InterlockedExchangePointer() just wrap a couple of

assembly functions; if you don’t like using them, write
the assembly code yourself. In this implementation,
writing and reading are lock-free operations, but because
we may have multiple threads sending messages to the
same actor, we need to use a traditional mutex operation
to handle the possibility of multiple threads writing to the
queue. Under our Erlang-esque assumptions, messaging
is asynchronous; we don’t care what order stuff gets
written to the queue in, as long as it gets there.

To actually transmit messages, there are a number
of options, again. In the interest of simplicity, I have
used the Boost::any<> template class from the
superb Boost library. (I have also used their mutexes
and threading library, but this is more a matter of
convenience than anything else.) Feel free to use
whatever message-passing scheme you feel works
best for you; I envision a design in my head where
different sorts of actors send each other different sorts
of messages, and the any<> template is as good a tool
to accomplish this as any. The last thing that we need
to do is to determine how to handle the processing
of messages. If we were running interpreted code on
a virtual machine, we would be able to simply trade
off between processes as our whims demand it.
Unfortunately, we can’t do that with C++, and we have

How fast is Erlang compared to other lan-
guages? If you look at the Great Language
Shootout (see Resources) you will see
that Erlang's speed is a mixed bag, to put it
mildly. For instance, if you compare Erlang's
performance to Python, the former outper-
forms the latter on a number of tasks (most
of the math-flavored tests) and does not
handle other things nearly as well (various
tasks to do with regexes, for instance).
But it certainly appears to be more than
fast enough for games—provided that you
are prepared to accept the fact that any
interpreted language will be slower than its
compiled equivalent.

It is worth noting that these tests do not
tell the whole story; they are not always
designed well, and do not always emphasize
a programming language's true strengths
when it comes to speed and efficiency. Read
the results for yourself, and be sure to look at
the Language Shootout maintainer's notes on
why, exactly, you shouldn't believe any of the
tests that they wrote.

a note on performance

http://www.trinigy.net
http://www.sneakpeek8.com

GAME DEVELOPER | APRIL 201018

to resort to another queue. Specifically, we create one thread per processor that we wish to
distribute tasks to, and these threads then pull actors off of a giant queue. This queue needs a
read mutex and a write mutex. While our queue will allow for simultaneous reading and writing, it
really just means that we have to have two mutexes instead of one. Still, this means that adding
things to the queue of processes to be parsed will not lock threads trying to figure out what to
do next—we will simply have to take what we can. (Again, proper support for atomic types or a
different lock-free queue implementation, might help matters.)

I N S E A R C H O F C O N C U R R E N C Y
» The sample code accompanying this article includes my implementation of an actor-based
system for multithreaded processes. It is designed to provide support for an Erlang-type
green-threaded system where processes (animation or gameplay logic, for instance) can be
dispatched across multiple independent processes. Note that the code is thread-safe only if you
obey the Erlang-style convention that no data is shared between processes. Every process must
be passed a copy of the data that it requires through its creation process. As it stands, the code
makes life very difficult for you to do otherwise—you would have to add new global variables
outside of the classes, and then use them to directly bypass class security. You will also need to
have Boost installed in order to run it.

The sample program can be found online at www.gdmag.com/resources/code.htm. It
contains a sample program that shows how we might use this approach to concurrency in a
video game. Here, two types of tasks are being performed: some characters move around in a
map, and some particle systems are animated. Each particle system, and each character, is its
own actor. They communicate with each other, with the renderer, and with the map, by message
passing. This is a trivial sample, but it demonstrates that it is possible for us to use a message-
passing, actor based system with no shared data in a real world example.

In the end, how close does our system come to achieving Erlang’s simplicity? All things
considered, I’m pleased with the result. We can send anything we like as a message, provided
that we know how to successfully any_cast<> it to something that we can accept. (If we get a
bad message, we can catch the exception and then process it.) We can create new actors and
add them to the actor queue any time we please. Creating a new green thread is as simple as
creating a new instance of the actor class we wish to use, wrapped by the ActorTemplate<>
class, and throwing it at the ActorManager singleton to be added to the queuing mechanism. We
have some guarantee that deadlock will be handled semi-gracefully—if two actors are waiting
on messages from each other, the system will continue to operate without their involvement.
Better yet, the code to accomplish all this is fairly small, weighing in at two reasonably small
header files. This style of concurrent programming is elegant in its simplicity, and this is
reflected in the simplicity of the code.

Another disadvantage of C++ here is figuring out which process owns which data, and as
such, which process is responsible for its own cleanup. Ideally, any data that is used by an actor
should be deleted by that actor, but enforcing that is not easy. Just keep track of who owns
what, obey all sensible and sane memory-handling precautions, and life will be fine. (Easier said
than done!)

It’s worth taking a minute to examine this actor-based approach to “microthreading,” as
implemented by libraries such as Intel’s TBB library and John Ratcliff’s Jobswarm. Using a
process-based architecture versus a job-based architecture is partly a matter of perspective.
In a library such as Jobswarm, sequential tasks are parallelized by splitting them into “jobs.”
In this approach, everything is considered to be a process. The disadvantage of a job-based
model is that it encourages laziness. We break tasks down into jobs when it is easy to do
so, but we are still thinking as though we are operating with only one thread. When things
do not parallelize well with a jobs model, we simply don't parallelize them—instead, we
shove all these difficult things into our main thread and do them in a way that makes us feel
comfortable. In the Erlang model, concurrency is something that is treated as a first-class
citizen. Everything is concurrent, because being concurrent is always easier than not being
concurrent. The cost of producing another actor is seen as free, so we produce as many

actors as we need. That said, there are still areas
where a job-based approach will win. For instance, any
task where the existence of a common block of shared
memory used in a read-only-fashion is a good idea.
It may also be easier to schedule job priorities than
it is to schedule actor priorities; in fact, most Erlang
concurrency experts advise you not to mess with the
priority of a process, for fear of gumming up the whole
works.

Our implementation of the Erlang concurrency
model in C++ fails to capture many of the attractive
advantages of the Erlang language, but it does show
that we can exploit some of the paradigms and ideas
that Erlang uses. We lack language mechanisms to
encourage defensive programming, and we lack the
advantages of functional programming in reducing
state that must be shared between processes. Maybe
one day we will all be using Erlang, or a language
similar to Erlang, and will laugh when we consider how
we once used C++. It’s not that far-fetched—I can still
remember when we wrote everything in assembly
language. We shifted to C (and eventually C++) when
processing power became high enough that we could
take advantage of it; now, we have multiple processors.
It may be time for the paradigm to shift again.

NICHOLAS VINING is the technical director at Gaslamp Games, a

small independent game developer that specializes in oddball

entertainment and boutique technology development. He has not

slept in ten years; other people with similar sleeping habits are

encouraged to email him at mordred@icculus.org.

resources
Erlang Home Page
http://ftp.sunet.se/pub/lang/erlang

Erlang Programming: A Concurrent Approach to
Software Development by Francesco Cesarini and
Simon Thompson (O'Reilly Press)

Great Language Shootout
http://shoutout.alioth.debian.org

"Writing Lock-Free Code: A Corrected Queue"
by Herb Sutter
www.drdobbs.com/cpp/210604448 on 2010/03/01

Intel's TBB library
www.threadingbuildingblocks.org

John Ratcliff's Jobswarm
http://code.google.com/p/jobswarm
www.codesuppository.blogspot.com

Tim Sweeney's Talk
www.cs.princeton.edu/%7Edpw/popl/06/Tim-POPL.ppt

http://www.gdmag.com/resources/code.htm
mailto:mordred@icculus.org
http://ftp.sunet.se/pub/lang/erlang
http://shoutout.alioth.debian.org
http://www.drdobbs.com/cpp/210604448
http://www.threadingbuildingblocks.org
http://code.google.com/p/jobswarm
http://www.codesuppository.blogspot.com
http://www.cs.princeton.edu/%7Edpw/popl/06/Tim-POPL.ppt

Game Developers Conference™ Canada

May 6–7, 2010
Vancouver Convention Centre | Vancouver, BC

Visit www.GDC-Canada.com for more information

Learn. Network. Inspire.

http://www.GDC-Canada.com

game developer | april 201020

Free realms isn’t just a new virtual world For kids. For us, it was a big experiment—
we took a genre, a team, and a company in new directions. From the start, it was the open road.
We had an original IP, a new engine, and a largely untapped target audience. In a relatively short
development cycle, we created a virtual world that raised the quality bar for the “free-to-play”
space. We devised a combination of microtransaction and subscription model, along with the
combination of browser-based services with streaming assets in a stand-alone 3D client.

Developing Free realms was consistently challenging and demanding for everyone associated
with the project. At its peak, we had over 150 people on the development team, and at least that
many folks working in support departments. Effectively guiding and managing that many people
is a challenge in itself ... but Free realms also launched with 15 job classes and more than 10
different mechanics, all of which had unique minigames, reward sets, quest lines, and progression
paths. Almost all the systems and content were developed in the last 1.5 years of development.

This wasn’t a small game SOE developed on the side while we focused on our other “real”
games. Free realms was a big bet for the company and for the team.

w h a t w e n t r i g h t
1) experienced team leadership. Although development of Free realms started in 2005 with a white paper by
SOE President John Smedley, it struggled to get traction. In 2006, SOE added senior leadership staff to the project,
and it immediately began to move forward. Every director on the team that launched Free realms had 12+ years
of game development experience. As the team grew, we brought in leads to help manage the tasks and the team.

Each lead had 6–10 years of experience shipping MMOs,
RPGs, and console titles.

This track record was vital both to making big
decisions at the foundation of the project, and to small,
quick decisions as we developed the game. For example,
there was an initial debate over player run speed and
potential speed boosts from potions or wearables. Our
technical director (Jamey Ryan) drew on his years of
work on everQuest to point out that the maximum player
speed would increase over the years, because a boost in
movement speed is one of the most valued benefits you
can give players in an MMO. If we set the speed too high

early on, it would become unmanageably quick over the years—and more importantly, players would move faster
than our streaming technology could hand them assets.

Balance of experience was important. While the senior producer (Andy Sites) and art director (Rosie Rappaport)
worked on the original everQuest, the lead designer (Stephen Bokkes) and I (creative director) came from a console/
PC development background, and had made several successful games for kids. The mix of mileage and the cross-
section of skills created the right kind of environment for production-oriented decision making and selective, careful
innovation. For an online game of its quality and size, Free realms was developed quickly and it went to beta within
three months of the original target date.

2) embedded resources From other departments. During the development of Free realms, we took a unique
approach to creating our new IP, game, and service. The team absorbed key members from other departments
into the development team as dedicated resources. At one point, the Free realms team included members of
SOE’s marketing, customer service, community manager, web presence, and platform groups. They sat with the
development team, attended our meetings, and were instrumental in Free realms’ smooth and successful launch.

l a r a l y n m c w i l l i a m s

www.gdmag.com 21

http://www.gdmag.com

game developer | april 201022

The integration of marketing is a great example
of this approach. Kids are savvy consumers, and
they’re inundated with high-quality advertising
and marketing for toys, games, movies, and
television. Not only is it a crowded marketplace
for free-to-play virtual worlds—it’s a crowded
marketplace inside of every kid’s head. We needed
to make sure Free realms was memorable, that
it stood out among similar products, and that its
first impression was on par with top advertising for
toys and movies.

The marketing and development teams worked
hard to coordinate our efforts very early into the
project. While there was always tension over
elements like branding and logos, we recognized
those debates as a part of the creative process
that would make us stronger as a team. Every
piece of marketing material—from trade show
booth art, to television ads, to viral marketing Flash
games—passed through the development team for
approval. In addition, the Free realms art director
worked closely with marketing to make sure
everything “felt like Free realms.”

When you look at the marketing and
advertising for Free realms and then at the actual
game, you’ll see a consistent look and feel that’s
rare in game development. That carried through to
other products like the Free realms Trading Card
Game and the Station Cash cards sold at retail.

3) Integrated scrum partway through
development. Traditional wisdom states that
you should never change horses mid-stream. But
what if your horse can’t swim?

The Free realms team used a traditional
waterfall approach for over half the game’s
development. It was working about as well
as it usually works in a complex scope, large
team environment. With only about a year left
in development we decided to move to agile
development and start using scrum with a team of
80 people. We sent all the leads and key personnel
to scrum training, asked those team members to
train everyone else, and then made the leap.

From the start, there was a marked improve-
ment in team morale and communication. Although

there were (and still are) a few holdouts who gripe
about the daily meetings, everyone recognized
that the game was making more progress in less
time than it had before we started agile develop-
ment. Over time, we modified some of the more
traditional scrum elements as we added team
members and features, but we maintained the
heart of scrum: daily meetings, user stories going
into a backlog maintained and championed by a
product owner, and increased scrum group respon-
sibility and ownership.

Sense of ownership is key to understanding
the impact scrum can have on a large team. When
you have so many different people working in
parallel, it’s easy for each individual to lose his
sense of purpose—he starts to feel like a cog in a
machine. You could definitely see that “just doing
my job” feeling in parts of the Free realms team
before we used scrum. Many people on the team
didn’t understand the big picture, had no idea
what other parts of the team were developing, or
had lost some of the entrepreneurial spirit that
started Free realms off so strongly.

Scrum brought with it daily meetings and
bi-weekly sprint reviews where we saw what
everyone else had developed. Those meetings

were inspirational when we saw fantastic work
from other teams, and embarrassing when one
group’s work wasn’t quite up to par. The team
morale woke up and the quality of the game
improved along with productivity.

4) strong company-wIde backIng. Free
realms didn’t just come from its development
and marketing teams—it came from all of SOE.
Although SOE has studios in six different locations
(San Diego, Austin, Seattle, Denver, Tucson, and
Taipei, Taiwan), we interacted with and obtained
assistance from almost every studio and every
department. Since the first time we showed “the
new Free realms” at SOE’s internal town hall 2006
meeting (a gathering of employees from all SOE
offices), we felt like we had a tremendous set of
teammates helping us get to the finish line.

Part of that support came from departments
being jointly responsible for running Free realms
as a live service, like operations, platform,
customer service, and community. Additional
support came from unexpected sources just
when it was needed. Other teams offered
seasoned employees to help relieve our team
members during the final months’ push to launch.

Many SOE San Diego folks brought their kids in afternoons and weekends for usability tests and feedback. Company-
wide playtests were instituted, and employees in different time zones found ways to participate and post to the
internal forums during our beta testing. Busy studio heads and creative directors of all the studios took time to play
and send detailed feedback and offers of help as well.

This sounds like a lot of inner-circle cheerleading, but the point is that Free realms would not have shipped on time
or at such high quality if we hadn’t had the support of the entire company behind it. Most game development today
happens in studios with more than one title and more than one team. Those teams usually run separately and have
“healthy” competition over resources, marketing spend, and attention from company decision-makers. Now that
I’ve experienced what happens when you work as a team instead of competing, I can say without hesitation
that more companies should find ways to bring all their experience and resources to bear for every project,
and foster an atmosphere where everyone works hard to make sure every team succeeds. It’s a night-and-
day difference, both in terms of company atmosphere and the end result for the game itself.

5) constant usability testing. The only thing worse than building a complex machine in
the dark is when that machine is designed for tiny little hands and your big grown-up hands
can’t even work or fit the controls. We desperately needed to watch kids play our game! For
the first half of development, we used traditional focus testing every 4–6 months and asked
employees to bring their kids in to test when they could. We got decent feedback, and we were
really grateful to have it.

Then we built the SOE Usability Lab. From the start, it had a massive effect on the quality and
playability of the game. The Usability Lab has several play stations, each with two cameras (one on the player’s
face and one on the mouse/keyboard) and a capture feed from the screen. A moderator takes notes and the kids
answer surveys. You can also view the session live from a viewing room or review the captures later across the
company intranet.

The first few sessions proved the value of direct information from our target audience. After that, we
booked out the usability lab with sessions 3–5 days a week. Having the facilities on site meant the kids
could test in our internal development environment. It also meant we could test a feature on day 1, and
incorporate changes based on the feedback for subsequent testing on day 2.

I can’t overstate the importance of watching your target demographic play the game, especially if the
development team isn’t a part of that demographic. We encouraged team members to attend usability
sessions, even to the point of responding to off-target designs by saying, “Go to tomorrow’s usability
test and you’ll change your mind.” Having friends and family test your game from the start is valuable. If
you have the opportunity to create even a single station usability lab, take that step and you’ll reap the
benefits almost immediately.

W h a t W e n t W R o n g
1) staffed the team befoRe the engine and tools WeRe Ready. We rebooted Free realms in late
2006, and although it was controversial and extremely challenging, that decision and the resulting core
architecture from our technical director and his team were a large contributor to the game’s success.
The reboot included shifting to a brand new engine and streaming tech. When I say new, I mean
completely new—at least from the perspective of folks who worked on the client-side of development.

While the reboot was essential, Free realms already had a decent-sized team (about 40 people). Only
about 10 of those were programmers—the rest were artists, designers, and production staff. We had to
plan the look and feel of the game, and write the systems and world/lore documents ... but the workload
wasn’t large enough to keep that many people productive for that many months while waiting for tech.

On top of that, engine and tools development took longer than anticipated because we were
tackling so many new technologies (like content streaming). That meant we started to get the
planned influx of staffing when the tools were still rudimentary and shaky—and before we had
done any real iteration on key features and concepts. We focused 75 percent of our attention on
art tools because the art department was the largest, and their content took the longest to make.
It was the right decision, but the result was a very short amount of actual development time on
the minigames and content with largely untried design tools and features that had no significant
previous iteration.

All of that is what you would expect to happen when you staff a project too early, but there’s
a significant secondary effect that shouldn’t get lost in the shuffle: the impact on morale. A
game development team thrives on building things, not talking about building things. If you
have experienced staff who are successful in their roles, these are people who ship games.
It’s what they do and who they are. Spending that long in pre-production and not being
able to make anything they could consider “final” took a tremendous toll on team spirit. If
you have the “luxury” of long pre-production cycles, schedule regular, playable, “we’re
up a creek if we miss this milestone” deliverables or you can watch team
momentum spiral down the drain.

www.gdmag.com 23

http://www.gdmag.com

2) Too many key feaTures were finished Too
laTe. The mismatch of tool readiness and team
size meant that many features and elements
of the game came in later than we anticipated.
For example, the back-end for microtransactions
(both from the development team and from the
support team) came online within a month of the
start of internal beta ... and we weren’t able to test
it in any environment other than our live alpha
server. Also, we’d been making mock-ups for the
monetization UI for months, but once we had
the technology, we scrapped all that work and
re-designed it to suit what the system actually
needed. We also discovered that the tools for item
creation on the Station Cash Marketplace were
almost unusable in a production environment,
with no option for mass item creation in Excel or
directly to the database.

These kinds of last-minute development
surprises had two main negative effects. First,
it meant the team’s attention was critically
divided when it needed the most focus. Elements
like avatar customization with the final assets,
itemization, and the marketplace are vital to
the success of the product, yet we were not
able to complete them until very close to the
start of alpha. That meant some of the features
that needed the most time to bake in QA came
online when QA was swamped with checking a
hundred NPCs, a thousand quests, and dozens
of minigames. Itemization alone could have
consumed the efforts of our entire QA team for
a full month ... but it was first testable at a time
when we couldn’t afford to dedicate that many
testing resources to a single feature.

Second, it meant we had the least usability,
iteration, and bug-fixing time on some of our most
important player-facing features. Just like the QA
team’s attention was divided, the Free realms
team’s attention was spread across the game as a

whole. Although we dedicated entire scrum
teams to particular features, those teams
struggled to get the support they needed
from team management and support
groups. Firefighters can only put out so
many fires a day; and our whole world
was on fire at the same time.

You can see the result of this
when you compare Free realms now
to the original launch product. Check
out the marketplace now versus the
marketplace at launch in Figure 1.

These improvements and additions
weren’t the result of some big light
bulb turning on in our heads; they were
the result of having user feedback
and iteration time. Ninety percent
of the information that led to these
changes came from testing in our
own usability lab and not from the
live player base. If those features
had been available for proper
focus and usability testing before
launch, we would have improved
them earlier, and without a
doubt we would have seen a
significant increase in the
game’s revenue during the
first year.

3) underesTimaTed The need for iTeraTion on
back-end feaTures. The effect a lack of iteration
time has on elements like user interface or items is
clear—but what about character login protocols?
Chat filters? Web profile updating? Change
management and migration across development,
test, and live environments? Localization and live
string updating? Item stack counts?

The trickle-down effect of the engine reboot
meant that we were always robbing Peter to pay

Paul. It seemed like the right choice to
get back-end features out of the way

ASAP and focus on player-facing features
as much as possible. So although we

spent the time and effort to develop
the new engine, and then to develop

Free realms’ core features on top
of that, we didn’t schedule enough
time for those systems to go

through test and iteration time before
we started using them.

That had two effects on the game.
First, it meant we shipped our beta with
more back-end and systems bugs than
we would have liked. Free realms had a

great, stable launch, but that came at the
expense of a large team of people actively
addressing new bugs 24-7 for months. A

large number of those bugs were in core
systems and tech, which distracted us from
the player-facing bugs.

Second and more importantly, the lack
of back-end iteration time meant we didn’t
have the opportunity to find the kinds of bugs
that only occur with accumulated data and a
combination of attributes. For example, there
were bugs that only occurred when a character
with a certain number of items crossed
(invisible) zone lines with a pet following him. If

we’d had the time to iterate on back-end systems,
we could have discovered and addressed that bug
earlier in the process (in addition to addressing
some related data storage size issues that ended up
affecting other areas of the game).

4) lack of daTa reporTing aT launch. For a
variety of reasons, our plans for robust player
data logging and reporting didn’t work out. The
result: we went the first 3–4 months after launch
without the ability to easily consolidate and
consider data about what Free realms players
were doing. We had reporting for specific parts of
the process (like creating an account on the web)
and data from logs we could manually sort and
aggregate into reports (a very time-consuming
process), but nothing simple, clear, and quick.

If you work in the online space, you know
how important it is to have accurate and timely
player data. If you don’t, imagine trying to give
docking instructions to astronauts when all
your control panels and monitors have gone
completely dark and you’re doing the trajectory
calculations with a notepad and calculator. You
may get the right data, but it will be critically
(and in some cases, fatally) delayed.

We tried to take advantage of opportunities
to outsource the data reporting, but the game
team should have always felt—and taken—
responsibility for data logging and reporting. It’s
our game—we know the development structure
and the goals better than anyone. In the heat
of the last six months of development, we were

g
a

m
e

 d
a

T
a

game developer | april 201024

publisher
Sony Online Entertainment

deVeloper
Sony Online Entertainment

number of deVelopers
Approximately 150+ at peak

lengTh of deVelopmenT
4 years total, including 1 year of pre-
production

release daTe April 28, 2009

Technology
Kynapse, Scaleform, Miles Sound System,
Enterprise DB

sofTware
Microsoft Developer's Studio, C++, Maya,

Flash, Illustrator, Photoshop, DreamCoder,

Active Perl

number of VirTual iTems
60,000 and growing

number of regisTered players
 8,000,000 and growing

Top fiVe mosT popular iTems in
markeTplace life To daTe
1 Free realms Digital Booster Pack

2 Pipsqueak (Penguin Pet)

3 Skeletal Hoodie

4 Munchy (Dino Pet)

5 Humongous Health Potion

plaTform PC, Online

relieved that we might be able to set a part of that burden aside to focus on
other tasks. Instead, we should have taken the time to ensure we’d have the
logging-and-reporting structure we needed.

One of the biggest pieces of advice I can give to teams who are just
starting to create their virtual world, MMO, or online service is to build in data
reporting and logging now. Build it before you even have a client. You can get
great and useful information from your reporting system before you have a
single player. Even beyond the fact that you’ll get useful data, consider this:
When you’re six months from launch and you’re looking at an unfinished
housing system, combat that needs a re-design, items that need a tinting
system, tools for CS that haven’t been started yet, and an E3 demo that has
to be hands-on for the floor in eight weeks, do you really think you’re going
to stop working on any of those to dedicate your most experienced coders to
writing robust server logging code and automated Excel reports?

5) Struggled to make the Shift from traditional mmo development
to caSual virtual world development. SOE is a flagship studio for MMO
development. EvErQuEst is going into its 11th year as a live service. We have an
unprecedented depth of experience in online world design and development.

That’s also a lot of history and habit to overcome when you try to make
something new. Even with a huge amount of team enthusiasm for the
concept, phenomenal support from the entire company, our seasoned leads
and directors, we struggled as a company to overcome all our ideas and
preconceptions about the way an online game “has to work.”

You get a mixed message from the launch version of FrEE rEalms. At its
heart, FrEE rEalms is about doing what you want when you want to do it, in
the way you want to do it. Don’t like playing a Medic? Try a Ninja! Not into
combat? Level up as a Miner by playing a match 3 game! The core of FrEE
rEalms works, and focus/usability tests along with player data show us that
when our target audience gets to that core, they have a great time.

Unfortunately that tasty “do anything you want” core is surrounded by
elements that, while normal in other games, in FrEE rEalms become MMO
detritus. Want to buy a specific item? Wander around the 3D world until you
happen upon the only guy who sells it. Feel like leveling up? Then go find some
quests and finish them because that’s where the XP is (not in the minigames

www.gdmag.com 25

figure 1 shows the evolution of the Free realms marketplace from launch (top) to its
current iteration (bottom).

http://www.gdmag.com

game developer | april 201026

themselves). Can’t find the location of a battle? Well, hover over every icon on
the atlas until the tooltips reveal it, and then put on your walking shoes.

Still, Free realms got rid of a lot of the work and tedium that comes with
playing many MMOs. When you defeat an enemy, everyone in your group
gets the reward. You can teleport to any city in the world or directly to a
friend just by clicking on the atlas, and you don’t have to use a calculator to
figure out what pair of pants to wear.

We didn’t go far enough down that path though, and similar to important
features not having enough focus, the ongoing attempts to overcome our strong
MMO background are obvious in the changes we’ve made to Free realms after
launch. We took baby steps for sure. First, the Take Me There button would
automatically run your character to a destination in between major cities. A
couple months later, we let you teleport directly to any activity on the atlas.
Most recently, we added the Game Guide which lets you start an activity without
having to move to its location, along with the Coin Shop which lets you buy items

for coins without having to visit a vendor. We’ll get there, and we’re learning along
the way, but we’d have a stronger, more cohesive game (and higher revenue for
the first year) if we’d stayed closer to our conceptual goal.

W h a t D O E S N ' t K I L L Y O U M a K E S Y O U S t R O N G E R
» It’s easy to look back at the development of this ambitious, experimental,
and challenging project to see how our choices worked out. As I write this, Free
realms just celebrated the milestone of nine million registered players, and
our uniques, retention, and revenue have been trending steadily upward.

It’s also easy to see how the lessons learned on Free realms changed our
development processes. The Free realms engine and technology is being used
for two unannounced games in development here at SOE, and team members
from Free realms seeded both those teams. Those new teams have started
not just with knowledge and experience, but also with a solid engine and tools.
The improvements and additions they make to the code base and systems will
be added into the core for the benefit of other teams. We saw what happened
when you have a team waiting for technology, so we’re committed to giving
every team room to iterate on gameplay as quickly as possible.

You can also see the influence of Free realms in our other games. For
example, both everQuest and everQuest II added a welcome screen to
advertise new features and items for sale in the marketplace (see Figure 2).
Our streaming technology is also being used very successfully to stream
content for a small download trial version of everQuest II.

We still do usability testing on Free realms three days a week. We make
a tweak, look at the player data, then tweak it again. We share that data with
other teams and work together to broaden the market for online games. We
know nine million players is just scratching the surface! By far, that’s the
biggest “what went right” we could have imagined. We’ve learned how much
we still have to learn.

LaRaLYN McWILLIaMS was creative director for Free realms, and previously worked on Full

spectrum Warrior, as well as two film-licensed games for boys. She is currently working as

the senior producer on an unannounced project for SOE.

FIGURE 2 shows the welcome screen for Free realms that announces new features and new
items for sale.

STEAMWORKS INTEGRATION NOW AVAILABLE TO

UNREAL ENGINE 3 LICENSEES

DID WE MENTION IT’S FREE?

Epic and Valve are teaming up to deliver Valve’s

Steamworks suite of services to anyone who’s licensed

Unreal Engine 3 for use in its products, free of any

additional fees.

Everybody knows what

an awesome distribution

network Valve has

created with Steam.

The Steamworks suite

provides developers with

the tools to make their

games closely integrated

with the cool features

offered on Steam. We’re

excited to be able to offer

Steamworks integration

to our customers as a

standard part of Unreal Engine

3, free of charge. We’re big fans of Steam and our

games have been very successful on the platform so

it was a no-brainer to bring Steamworks and

Unreal together.

“Unreal is one of the most widely used engines in the

industry, period, and it’s been behind the scenes on

some of the very best games created over the past

10 years, on all kinds of platforms,” said Gabe Newell,

co-founder and president of Valve. “It’s an honor to

have Steamworks included in the technology offered

to all Unreal Engine 3 licensees. It’s hard to think of any

community of developers who could get more from all

the services that come with Steamworks.”

Steamworks is a complete suite of publishing and

development tools that offers PC game developers and

publishers access to the game features and services

available through Steam. These include product key

authentication, copy protection, auto-updating, social

networking, matchmaking, anti-cheat technology

and more. The features and services available in

Steamworks are offered free of charge and may be

used for both electronic and tangible versions of

games. For more information on Steam, please visit

www.steamgames.com.

AUTODESK’S FBX MAKES IMPORTING 3D CONTENT

INTO UNREAL ENGINE 3 A ONE-CLICK PROCESS

Importing 3D content is now just one click away.

Autodesk and Epic are now providing greater

connectivity between Autodesk’s art creation and

animation tools and Epic’s Unreal Engine 3, using

Autodesk FBX data interchange technology. Autodesk

FBX 2011 offers a faster, more streamlined workflow

for transferring content

created in Autodesk

Maya 2011 and Autodesk

3ds Max 2011 software

into Unreal Engine 3 –

boosting production

efficiency and preserving

creative intent.

The streamlined

interchange of 3D assets

between Autodesk art

creation tools and Unreal

Engine 3 is the result of

a long-standing, productive

relationship between Autodesk and Epic.

The Autodesk FBX file format is a robust standard for

rich 3D data exchange within the games community.

With this streamlined workflow, FBX should be the

first choice for developers using our powerful Unreal

Engine 3 when it comes to transferring art from

Autodesk software.

New for Unreal Engine 3 licensees and Unreal

Development Kit (UDK) users is an FBX importer that

enables game developers to import FBX files created

in Maya or 3ds Max directly into the Unreal Editor.

The importer automatically breaks files down into

assets in the Unreal Editor, such as level of detail (LOD)

information, animations, character meshes, character

rigs and models. In addition, if a 3D model is updated

in 3ds Max or Maya, a new FBX file can simply be

imported into the Unreal Editor where the assets will

be automatically refreshed.

Marc Stevens, vice president of Autodesk Games,

said, “We’re really excited about our collaboration

with Epic Games. We’ve teamed up to provide greater

connectivity between art creation tools, animation

tools and middleware from Autodesk, and Epic’s Unreal

Engine. This is made possible through advances in

Autodesk FBX data interchange technology and better

integration of our middleware into the Unreal Engine.

In short, our combined efforts are aimed at giving

game developers a faster, easier, more streamlined

workflow that boosts production efficiency and

preserves their creative intent.”

Canadian-born Mark Rein is

vice president and co-founder

of Epic Games based in Cary,

North Carolina.

Epic’s Unreal Engine 3 won

Game Developer magazine’s

Best Engine Front Line Award

for three consecutive years,

and it is also the current Hall of

Fame inductee.

Epic’s internally developed

titles include the 2006

Game of the Year “Gears of

War” for Xbox 360 and PC;

“Unreal Tournament 3” for

PC, PlayStation 3 and Xbox

360; and “Gears of War 2” for

Xbox 360.

Upcoming Epic

Attended Events:

Triangle Game Conference

Raleigh, NC

April 7-8, 2010

E3 2010

Los Angeles, CA

June 15-17, 2010

Please email:

mrein@epicgames.com

for appointments.

For UE3 licensing inquiries email:

licensing@epicgames.com

For Epic job information visit:

www.epicgames.com/epic_jobs.html

W W W . E P I C G A M E S . C O M

Unreal Technology News
by Mark Rein, Epic Games, Inc.

Epic, Epic Games, the Epic Games logo, Gears of War, Gears of War 2, Unreal, Unreal Development Kit, Unreal Engine, Unreal Technology, Unreal Tournament, the Powered by Unreal Technology logo, and the Circle-U logo are trademarks or registered

trademarks of Epic Games, Inc. in the United States of America and elsewhere. Other brands or product names are the trademarks of their respective owners.

Advertisement

Maya’s Unreal FBX Exporter

mailto:mrein@epicgames.com
mailto:licensing@epicgames.com
http://www.epicgames.com/epic_jobs.html
http://WWW.EPICGAMES.COM
http://www.steamgames.com

B R A N D O N S H E F F I E L D

BRANDON SHEFFIELD: I would
like to start by talking in general
about the mindset during the 2600
and Intellivision era. Obviously,
everyone was in a one-man show.
Where were these people coming
from? There wasn’t really training
necessarily, right?
DAVID CRANE: Yeah, in what I call
the good old days, one man, one
project. It was kind of interesting that
the people who could do that came
from a number of different walks of
life. At Atari, for example, just if you
look at the four of us who ended up
starting Activision, two were trained
as electronic engineers, which helped
us understand the hardware, and
we came at it from that direction.
Two were trained as computer
science majors. And Larry Kaplan
went to Berkeley, you know, which
was not a hotbed of engineering. He
learned computer science there. So,
everybody came at it from a different
direction, but it didn’t take too long
for you to see whether the person
had both the technical skills and the
creative skills to be able to do all this.
It is very much a left brain, right brain
thing. There are a lot of computer
nerds who can be very, very technical,
and there are a lot of very creative
people. These days, they would
simply gravitate toward their specialty
and be part of a team, but back then,
it was kind of rare to have people who
had both capabilities. If we set out to
try to find one, it’s not an easy thing

to do. You would have someone who’s
very much interested in this kind of
thing and throw them in the fire, and
find out if they could do it.

BS: Where did the innovations in
the 2600 hardware come from,
considering that it was designed
to do very little? How were people
figuring out that there was more
you could do with it?
DC: Well, what was really interesting
about the 2600 is, yes, it was
designed to play TANK and PONG.
And to do that, there were two
players and two missiles for TANK
and a ball object for PONG, [in which
case] the player objects became
the paddles in PONG. And they made
it cartridge programmable, where
you could remove the cartridge, just
so they could sell two cartridges,
TANK and PONG. And even at that, the

hardware was too expensive. There
was too much stuff going on in the
chip. So, they went through a value-
engineering period where they
removed as much as they could
from the circuit design and put
the onus on the software and the
microprocessor to do those things
that otherwise they would have put
in the hardware. Because they had
to have a microprocessor and they
had to have a video chip, but the
more they put in the video chip, the
more expensive the hardware cost,
so they stripped it out.

The beauty of that is if the
microprocessor and its associated
program have more and more
control over what happens on the
TV screen, and it’s the program that
is removed when the cartridge is
exchanged, you’re basically having
much more power over the video
because the video chip was stripped
down. So, the serendipity there
was just a wonderful thing. The
reason the 2600 could do so many
different kinds of games is because
it couldn’t do anything very well at
all, but the microprocessor program
could control video. If you know how
the thing works, there’s no bitmap,
there’s no objects ... Really, there are
no objects! There are 8 bits for each
project, and if you change them every
scanline, you can make them look
different. That was a premise going
in. You knew that you were going
to have to change every scanline

going in to make a game display, so
it wasn’t too difficult to say, “If I have
to change it every time, let’s change
it this way, let’s change it that way,
let’s try this, and let’s try that.” A lot
of experimentation gave you all those
different kinds of game displays.

BS: What language were you using?
DC: It was all written in Assembly
language with a microprocessor.

BS: I always like to ask people who
have been around their thoughts
on the crash and why.
DC: The video game crash of 1980...
Was it 3, 4? I don’t even know.

BS: 1983, I believe.
DC: It was very interesting because we
should have seen it coming. Basically,
it was a very simple combination
of events. Activision was extremely
successful as a third-party developer
of video game software. And then
there was Imagic, which was another
group of people that we had trained
at Atari—they were the younger guys
that we had trained—and they as a
group looked at Activision’s success
and said, “We’re going to do this.” And
with two companies clearly showing
success, the venture capitalists came
in, and they said, “Well, we want a
piece of that.” In one six-month period
between two CESes—there used to
be two a year—in the one six-month
period, 30 new game companies
showed up.

B R A N D O N S H E F F I E L D

BRANDON SHEFFIELD: I would
like to start by talking in general
about the mindset during the 2600
and Intellivision era. Obviously,
everyone was in a one-man show.
Where were these people coming
from? There wasn’t really training
necessarily, right?
DAVID CRANE: Yeah, in what I call
the good old days, one man, one
project. It was kind of interesting that
the people who could do that came
from a number of different walks of
life. At Atari, for example, just if you
look at the four of us who ended up
starting Activision, two were trained
as electronic engineers, which helped
us understand the hardware, and
we came at it from that direction.
Two were trained as computer
science majors. And Larry Kaplan
went to Berkeley, you know, which
was not a hotbed of engineering. He
learned computer science there. So,
everybody came at it from a different
direction, but it didn’t take too long
for you to see whether the person
had both the technical skills and the
creative skills to be able to do all this.
It is very much a left brain, right brain
thing. There are a lot of computer
nerds who can be very, very technical,
and there are a lot of very creative
people. These days, they would
simply gravitate toward their specialty
and be part of a team, but back then,
it was kind of rare to have people who
had both capabilities. If we set out to
try to find one, it’s not an easy thing

to do. You would have someone who’s
very much interested in this kind of
thing and throw them in the fire, and
find out if they could do it.

BS: Where did the innovations in
the 2600 hardware come from,
considering that it was designed
to do very little? How were people
figuring out that there was more
you could do with it?
DC: Well, what was really interesting
about the 2600 is, yes, it was
designed to play TANK and PONG.
And to do that, there were two
players and two missiles for TANK

and a ball object for PONG, [in which
case] the player objects became
the paddles in PONG. And they made
it cartridge programmable, where
you could remove the cartridge, just
so they could sell two cartridges,
TANK and PONG. And even at that, the

hardware was too expensive. There
was too much stuff going on in the
chip. So, they went through a value-
engineering period where they
removed as much as they could
from the circuit design and put
the onus on the software and the
microprocessor to do those things
that otherwise they would have put
in the hardware. Because they had
to have a microprocessor and they
had to have a video chip, but the
more they put in the video chip, the
more expensive the hardware cost,
so they stripped it out.

The beauty of that is if the
microprocessor and its associated
program have more and more
control over what happens on the
TV screen, and it’s the program that
is removed when the cartridge is
exchanged, you’re basically having
much more power over the video
because the video chip was stripped
down. So, the serendipity there
was just a wonderful thing. The
reason the 2600 could do so many
different kinds of games is because
it couldn’t do anything very well at
all, but the microprocessor program
could control video. If you know how
the thing works, there’s no bitmap,
there’s no objects ... Really, there are
no objects! There are 8 bits for each
project, and if you change them every
scanline, you can make them look
different. That was a premise going
in. You knew that you were going
to have to change every scanline

going in to make a game display, so
it wasn’t too difficult to say, “If I have
to change it every time, let’s change
it this way, let’s change it that way,
let’s try this, and let’s try that.” A lot
of experimentation gave you all those
different kinds of game displays.

BS: What language were you using?
DC: It was all written in Assembly
language with a microprocessor.

BS: I always like to ask people who
have been around their thoughts
on the crash and why.
DC: The video game crash of 1980...
Was it 3, 4? I don’t even know.

BS: 1983, I believe.
DC: It was very interesting because we
should have seen it coming. Basically,
it was a very simple combination
of events. Activision was extremely
successful as a third-party developer
of video game software. And then
there was Imagic, which was another
group of people that we had trained
at Atari—they were the younger guys
that we had trained—and they as a
group looked at Activision’s success
and said, “We’re going to do this.” And
with two companies clearly showing
success, the venture capitalists came
in, and they said, “Well, we want a
piece of that.” In one six-month period
between two CESes—there used to
be two a year—in the one six-month
period, 30 new game companies
showed up.

DAVID CRANE IS ONE OF THE STEALTHIER LEGENDS OF THE GAME INDUSTRY. He doesn’t make a lot of noise, or push big blockbuster
releases. What Crane has done over the years is quietly innovate, bringing new concepts to bear decade after decade. His biggest
successes were in the golden age, with FREEWAY, PITFALL, and PITFALL II moving big numbers in the early '80s—some of the first
successful products from Activision, which he helped form in 1979.

PITFALL is considered by many to be the first action platformer, and its influence can be felt as far as the TOMB RAIDER and
UNCHARTED franchises. In 1985, Crane, along with designer Rich Gold, created LITTLE COMPUTER PEOPLE, a life simulator which had
no small amount of influence on THE SIMS series. Crane left Activision the next year to form Absolute Entertainment, where he
created the venerable BOY AND HIS BLOB for the NES. In the '90s, he helped code the infamous NIGHT TRAP interactive movie for Digital
Pictures, one of the more lawsuit-afflicted games of the era.

In the late '90s, Crane and his partner Garry Kitchen formed Skyworks Interactive, creating the first major advergaming portal
in Candystand. Now, he’s moved on to the iPhone platform with his new company AppStar Games, creating small, bite-sized games,
which has been his passion since the early days. Indeed, though he has not been at the forefront of the HD era like some of his
contemporaries, Crane has never stopped questioning the nature of games, or the industry. And that is what we explore today.

GAME DEVELOPER | APRIL 201028

BS: Wow.
DC: They hadn’t been there in the
previous one. When we saw those,
you know, we had gravitated to the
top of Atari in game design, and the
second group, the Imagic group,
was right up there as well, but all of
these new companies had no game
design talent. Where do you get it?

And it takes a while to develop
that, to create a new group of guys,
and instead they were just hiring
programmers off the street. So,
we saw that, and we looked at the
games, and we said, “You know, none
of these companies are going to be
around a year from now. They’re all
going to lose their shirts.” And we
didn’t take the intuitive leap one step
further and say, “And when they do,
there’s going to be a crash in the
video game business.” It was very
simple. What happened was those
venture capitalists put a couple
million dollars into each of those 30
companies, they developed three or
four games that nobody wanted to
buy, and they built their first run of
cartridges, and they went out to sell
them, and they didn’t sell.

No money, the company closes.
Now there’s a warehouse full of
games. And some enterprising—
we’ll call them the bottom-feeders—
came rolling in and said, “I’ll tell you
what, I’ll give you $3 each for those
$30 cartridges.” And they took them
to retailers and said, “I’m going to
sell them to you for $4, and you can
sell them for $5.” There’s a lot of
good margin there if you really think
about it, because they have no cost
of goods. In those days, you would
walk into a Toys "R" Us or KB Toys,
and right in front was this huge
barrel full of video games, and they
were $5 each.

That Christmas, dad walked in
with his Christmas gift list from his
kids. “I want Activision’s latest this,
and I want all these latest games.”
And he sees this barrel and says,
“I was going to spend $40 on a
new game. I can get eight games

for that same $40, and I will be the
hero come Christmas time.” So, in
that Christmas, the sale of frontline
brand new games went to zero,
and there were 20 million of those
cartridges, the $5 cartridges, that
flooded the market. And until those
all sold through, you weren’t going
to sell a $40 game again.

BS: I suppose not. A lot of guys
that were part of that one-man
show situation are coming back
around to a more social or casual
game-oriented platform. Richard
Garriott is doing it, and Richard
Woita (QUADRUN). And you’re doing
iPhone. A lot of guys are making
that kind of transition.
DC: Well, I think if you actually follow
any of those people in the last 25
years since that crash, they haven’t
been doing nothing. They’ve been
doing pretty much the same thing. I
mean, I continue to make games with
that small footprint because then I
can program every line of code and
I can control everything. I’ve been
involved in big projects, and I like the
smaller projects. They’re just more fun
for me with my skills. But now that
they’re becoming more trendy and
more publicized, the social gaming
and the casual gaming, now you start
to hear about the work that the people
have been doing the past 25 years.
It’s not like they just disappeared and
they’re, you know, re-emerging.

BS: Right, I didn’t mean to indicate
that they were gone and coming
back, but perhaps it’s more that
there’s a larger focus on it now.
Like Garriott, for instance, is in fact
coming back to that because before
he was just going bigger and bigger.
DC: Well, those of us who did that
really loved it. Again, if you could
control every line of code, if you
could control every detail, you can
make the game that you want to
make. On the big projects, the people
who could do it in the 2600 days are
very valuable because it’s ... George

Lucas, Steve Spielberg—I mean, they
could sit behind the camera if they
had to and make the right shot. They
can direct, they can produce, they
can do all those things. Now, it’s not
cost-effective for them to do that
themselves, so in a big team, they
would be the director or the producer,
depending on what their interest
is, and they would have specialists
in every field—the cameramen,
the sound guys, whatever. With big
projects, it’s exactly the same way.
Someone who has proven that they
can do it all themselves is really good
at directing. I should say in most
cases they’re really good at directing.
If they don’t have any people skills in
all, then they have that problem.

BS: And then they’re back to a one-
man show!

DC: That’s right. But, you know, in
general, that’s the case. So, the people
you talked about who have gone into
the big projects but now are coming
back to the small projects, it’s because
those are much more fun. They clearly
loved it back then. They’re going to
love it now, you know.

BS: What language are you
programming in now?
DC: I’m working on the iPhone so I
program in Objective C. I recently
did a tally and came up with 15
computer languages that I’ve done
video games in.

BS: Wow. What would you say is
the best of them? I’ve heard some
people saying that C is no longer
appropriate for game development.
DC: You know, I ... You use the

BS: Wow.
DC: They hadn’t been there in the
previous one. When we saw those,
you know, we had gravitated to the
top of Atari in game design, and the
second group, the Imagic group,
was right up there as well, but all of
these new companies had no game
design talent. Where do you get it?

And it takes a while to develop
that, to create a new group of guys,
and instead they were just hiring
programmers off the street. So,
we saw that, and we looked at the
games, and we said, “You know, none
of these companies are going to be
around a year from now. They’re all
going to lose their shirts.” And we
didn’t take the intuitive leap one step
further and say, “And when they do,
there’s going to be a crash in the
video game business.” It was very
simple. What happened was those
venture capitalists put a couple
million dollars into each of those 30
companies, they developed three or
four games that nobody wanted to
buy, and they built their first run of
cartridges, and they went out to sell
them, and they didn’t sell.

No money, the company closes.
Now there’s a warehouse full of
games. And some enterprising—
we’ll call them the bottom-feeders—
came rolling in and said, “I’ll tell you
what, I’ll give you $3 each for those
$30 cartridges.” And they took them
to retailers and said, “I’m going to
sell them to you for $4, and you can
sell them for $5.” There’s a lot of
good margin there if you really think
about it, because they have no cost
of goods. In those days, you would
walk into a Toys "R" Us or KB Toys,
and right in front was this huge
barrel full of video games, and they
were $5 each.

That Christmas, dad walked in
with his Christmas gift list from his
kids. “I want Activision’s latest this,
and I want all these latest games.”
And he sees this barrel and says,
“I was going to spend $40 on a
new game. I can get eight games

for that same $40, and I will be the
hero come Christmas time.” So, in
that Christmas, the sale of frontline
brand new games went to zero,
and there were 20 million of those
cartridges, the $5 cartridges, that
flooded the market. And until those
all sold through, you weren’t going
to sell a $40 game again.

BS: I suppose not. A lot of guys
that were part of that one-man
show situation are coming back
around to a more social or casual
game-oriented platform. Richard
Garriott is doing it, and Richard
Woita (QUADRUN). And you’re doing
iPhone. A lot of guys are making
that kind of transition.
DC: Well, I think if you actually follow
any of those people in the last 25
years since that crash, they haven’t
been doing nothing. They’ve been
doing pretty much the same thing. I
mean, I continue to make games with
that small footprint because then I
can program every line of code and
I can control everything. I’ve been
involved in big projects, and I like the
smaller projects. They’re just more fun
for me with my skills. But now that
they’re becoming more trendy and
more publicized, the social gaming
and the casual gaming, now you start
to hear about the work that the people
have been doing the past 25 years.
It’s not like they just disappeared and
they’re, you know, re-emerging.

BS: Right, I didn’t mean to indicate
that they were gone and coming
back, but perhaps it’s more that
there’s a larger focus on it now.
Like Garriott, for instance, is in fact
coming back to that because before
he was just going bigger and bigger.
DC: Well, those of us who did that
really loved it. Again, if you could
control every line of code, if you
could control every detail, you can
make the game that you want to
make. On the big projects, the people
who could do it in the 2600 days are
very valuable because it’s ... George

Lucas, Steve Spielberg—I mean, they
could sit behind the camera if they
had to and make the right shot. They
can direct, they can produce, they
can do all those things. Now, it’s not
cost-effective for them to do that
themselves, so in a big team, they
would be the director or the producer,
depending on what their interest
is, and they would have specialists
in every field—the cameramen,
the sound guys, whatever. With big
projects, it’s exactly the same way.
Someone who has proven that they
can do it all themselves is really good
at directing. I should say in most
cases they’re really good at directing.
If they don’t have any people skills in
all, then they have that problem.

BS: And then they’re back to a one-
man show!

DC: That’s right. But, you know, in
general, that’s the case. So, the people
you talked about who have gone into
the big projects but now are coming
back to the small projects, it’s because
those are much more fun. They clearly
loved it back then. They’re going to
love it now, you know.

BS: What language are you
programming in now?
DC: I’m working on the iPhone so I
program in Objective C. I recently
did a tally and came up with 15
computer languages that I’ve done
video games in.

BS: Wow. What would you say is
the best of them? I’ve heard some
people saying that C is no longer
appropriate for game development.
DC: You know, I ... You use the

PITFALL II: LOST CAVERNS (TOP), DRAGSTER (BOTTOM).

I N T E R V I E W B Y B R A N D O N S H E F F I E L D

WWW.GDMAG.COM 29

http://www.gdmag.com

language for the platform you’re
working on really. Whatever the
best tools are that exist for it. And,
you know, for those of us who can
program, if you can program in
three different languages, you can
program in 50. So there are people
that have their favorites, and they
don’t like a particular integrated
development environment for a
particular language or a particular
system and would like it to go in a
different direction. A lot of that is
just grumbling.

BS: What do you think about the
current proliferation of tools from
the lower side like Game Maker and
ActionScript libraries for Flash,
or even larger things like Unreal
Engine 3 there that can enable you
to do a lot quite simply. Possibly,
people could become one-man
shows again without as much skill
necessarily as in the past.
DC: I think middleware and engines
are great. Some of the most
creative and brilliant guys gravitate
in that direction because they can

really make a difference. You know,
there’s a little bit of god complex
in anything we do. I mean, we
basically create the world. [laughs]
There is no gravity until we tell it
there’s gravity. And the same with
all the physical laws. Like I said,
the best people tend to gravitate
to those. There are some fabulous
pieces of middleware and systems
out there. I’m not sure that really...
If your question implies that it’s
going to make it easier for some
people to do that without also kind
of understanding those things
and almost having those skills, it
is almost, like 95 percent of the
time, as complicated to use some
of those tools as to write them.
But the specialists have gone into
it and done it so much better and
so much cleaner. You still have to
know how to use that kind of stuff.
I mean, you really have to think in
3D to do a 3D game.

BS: Yeah. I’ve been wondering if
the kind of removal of some of the
technical constraints ... obviously,

constraints are different and much
more complicated with a PlayStation
3 or even an iPhone than they were
with the 2600. But with the 2600,
you really had to like smash your
head against it to make it work. I
wonder how removal of technical
constraints changes design.
DC: It actually makes it
more difficult.

BS: Oh yeah?
DC: If you sit down with a blank
sheet of paper and say I can do
anything in the world, it really
makes it tough to say, “Well, where
do I start?” The 2600, for me, I would
sometimes in between games fiddle
for a couple weeks, and I would
experiment with the hardware and
say, “Oh, here’s a cool new thing I
can do with it.” And as soon as I see
that, it leads me in a direction, and I
say, “Alright, I’m going to do a video
game based on this cool technique
I found. It’s always been more
difficult when you have absolutely
no constraints to decide, “Where
am I going with the next game?”

Sometimes, there’s an inspiration.
FREEWAY was ... At CES, I’m in the
bus going to CES, and some guy
is trying to run across ten lines of
traffic on Lake Shore Drive. You’ll see
an inspiration, and if at that point,
that was the game you were going
to do, the limitations of the machine
are not an issue. But when you’re
sitting there, if you haven’t gotten an
inspiration yet, it is very difficult.

BS: I was talking to Don Daglow
about something similar—he was a
big Intellivision guy—and for him,
it was more like, “You know, you
can make a game about anything
you thought was cool at that time.”
You'd say, “You know what I like?
Jet skis! Time for a video game.”
DC: Right, yeah.

BS: But it’s interesting to hear
that it could also come from the
technical side. When you don’t
have ideas, where do you try to
get them from? Are you ever in a
situation where you feel like, “I
need to do something right now. I
need an idea”?
DC: Well, I think they’re coming
to me every few days. Even if I’m
in the middle of another project, I
will see something, and I just kind
of store it away, not consciously.
And then you reach this point
where you’re thinking about the
next project, it helps if you can
brainstorm. I work with my partner
Garry Kitchen. We work together
really well. We get together, and
just a couple weeks ago, we were
walking down the street walking
his dog and talking about this
actually. And we were just saying,
“You know, the thing I talked about
a few weeks ago? I got to figure
out a way to use such and such in
a game.” So, then we’ll chat about it
a little bit. “Yeah, that’s something
that’s worth more thought.” Then
you think about it and you work
it out. It’s just kind of an ongoing
process, but quite often, the sparks

FREEWAY.

GAME DEVELOPER | APRIL 201030

are sitting there from a month ago,
two months ago, or six months ago,
but you’re so busy and embedded
in game development until you
release, that they just sit there and
they don’t percolate until later.

BS: I wonder if consistently doing,
I don’t want to say simpler, but like
immediate gratification-type games,
if that builds up a library of ability
in that genre because I see some
people trying to make what we would
now call a casual game coming from
a more hardcore mindset. And they
can’t help but layer in features and
put more stuff in there.
DC: More than that, the best casual
games have a gameplay mechanic.
There’s something about them that’s
interesting—how you’re moving
something around or how you’re
interacting with things on the screen.
The big story games are more
... They’re real world. The person
writing the story game could be
writing a movie with the exact same
skills. When you’re trying to find
something that’s fun to do, it’s more
like toy design. I mean, who would
have thought that putting a ball on
a piece of elastic and attaching it to
a paddle would be something that
was fun. But that became a fun play
mechanic, and it became a toy. The
slinky, hula-hoop, whatever. It’s a
way of thinking about, “Here’s a fun
that you can do electronically.”

BS: So, you’re pretty much talking
about mechanics design versus
like experiential design. You’re not
necessarily creating this world so
much as creating a game around
something that’s innately fun to do.
DC: That’s generally true. I mean, in
the old days, there would be both.
But right now, a casual game with
a story, it’s kind of ... It kind of falls
in between since you can, on your
console or whatever, play such
spectacular stories and live them.

BS: How often, or in fact can you ever

recycle these mechanics? Because
with a 30-some-odd-year career, as
you’ve had ... someone like me may
remember all those games, but not
everybody will have experienced all
those mechanics before. Do you feel
like you can revisit them?
DC: Occasionally. You know, you
will specifically say, “That was just
one of the most fun games, and
it wasn’t a really common play
mechanic.” And you’ll say, “Well,
how can I re-capture that same
fun in something that’s more up
to date?” But more often, the
experience of 30-some-odd-years
comes into play in the middle
of a project because there are a
thousand decisions that you make
that are gameplay-related while
making a game. The one thing that
I’m personally proud of is I’ll be in
the middle of a project and I will
have something on the screen and
I will say, “How do I make this fun?”
And five minutes later, I’ve got a
great idea. It’s just something that I
do really well. You know, I code that,
which might take a day or two, and
then I’m playing it, and I say, “Yup. I
was right. That’s fun.”

BS: In the early days, there
wasn’t so much playtesting or
focus testing really. I wonder if
that breeds a different mindset,
because nowadays there’s like
aggressive playtesting against
user opinion and “can people
even understand this?” I mean,
obviously we’re talking about
simpler mechanics with a casual
game, but do you think it’s
different when you’re relying on
your own intuition?
DC: Yeah. It was always that way. The
way we thought about it was that we
were our own target market, so we
were our own focus group. We had a
design group where we would kibitz
about each other’s games, and so all
our combined experience was going
into one game. And if it wasn’t fun
for all of us, it never hit the market. It

never saw the light of day. So, we were
focus testing with a very core group,
but it just happened, in the Activision
days, that we had pretty wide ranges
of interests. So, we represented a
good portion of the population, which
is why millions of people seemed to
like the games that we liked.

BS: As you advance in years, do
you feel that you are still making
games for you or that you need to
make games for someone else?
DC: I’m still making games for me.
It’s interesting because the target
market is aging as well. And so it’s
pretty easy to hit the market even
in my advancing years, as you put
it. [laughs]

BS: [laughs] Sorry! I mean, in fact,
like the biggest market for casual
games is women over 40 and all
that. I wonder if in fact it might
make you better at designing for
the market.
DC: Well, it’s probably a mistake
to say that the biggest market for
casual games is women over 40.
The biggest increase in the market
brought about casual games was to
bring women in, but you would be
amazed at the 18-to 25-year olds
who love casual games. They just
also play the hardcore games when
they have the time. A lot of the work
that we’ve done over the years for
games on websites and other things
that I’ve been doing for the last 20
years, whenever we do the analysis,
we find out that most of the people
that are playing them between 9
and 5 are from the office on the T1.
And that age group is, you know, 20
to 50 and a lot of men.

BS: That’s interesting. I have a
friend who works for a casual game
company, and they have one of the
biggest portals. Their numbers are
absolutely skewed toward women
over 40. It’s a very large percentage
of their market, and I mean, who
would have predicted the rise of the

Spot the Difference genre?
DC: Yeah, exactly.

BS: That’s crazy. I would never
think that was a game.
DC: And the match 3 games. Just
all of those. It brought in a whole
new market segment. And there are
companies that really focus on those.
But I think the best thing is it brought
them into saying, “I’m comfortable
playing a game on the computer.” So,
you can give them a casual game. You
give them 30 seconds or two minutes
of enjoyment, well, they’re waiting in
line at the bank.

BS: I have often felt that many of
the best games, from the smallest
to the largest, are those that have a
specific vision led by a personality.
Games that are created by people
who make games for themselves,
those wind up resonating with me
in a different way than something
that’s designed for everyone,
because I can see some auteurship
and I can see some kind of intent.
DC: What you’re seeing is ... It’s the
way in which all the details work
together. You have thousands of
decisions that have to be made
to make a game, and if those
thousands of decisions can all be
made in one brain, than they all
interoperate perfectly. If they’re
made by 15 people, and you try to
come back together and combine
them by committee, you don’t get
the same vision. That’s really why
guys who did in the old days, the
guys who are able to keep all the
details of a single game in their mind
at one time, if they are the driving
force vision behind a game of any
size, it will be much more consistent.
I mean, you have to have that world
or that level over there dealing with
what this one over here implies. It’s
difficult, but you’ll find those games
that could theoretically have one
guy’s name on them even if there’s
a hundred people. They will be much
more self-consistent.

WWW.GDMAG.COM 31

http://WWW.GDMAG.COM

Game Developers Conference® Europe

August 16–18, 2010
Cologne Congress Center East | Cologne, Germany

Visit www.GDCEurope.com for more information

Game Developers Conference® Europe

Supported by

GDC Europe returns to Cologne in 2010

http://www.GDCEurope.com

A R T I C L E B Y J E A N - P A U L L E B R E T O N

I L L U S T R A T I O N S B Y D E R E K Y U

A HIGH-MINDED GOAL LIKE EXPANDING
the boundaries of the medium doesn’t
always mean forging ahead in crazy
unknown directions. Sometimes it means
examining lost evolutionary lines in game
design—picking up ideas that were aban-
doned long ago and seeing if there’s any
new life in them. The game I keep coming
back to in this regard is DOOM. Not the
2004 reboot, but “Classic DOOM:” DOOM 1
and 2, FINAL DOOM, the MASTER LEVELS and
its vast universe of user-made content.
What can this series teach us today?

 In 1993, the message DOOM sent to the
video game world was something like “use
cutting edge technology to make some-
thing dark, edgy, and violent.” The world
has changed so much since then that very
little of that original impact comes through
to players today—the industry has argu-
ably gone on to master the techno-fueled
ultra-violence that DOOM put forth. Here’s
what I’ve found after many years of enjoy-
ing the game and digging ever deeper into
its design. »

WWW.GDMAG.COM 33

http://WWW.GDMAG.COM

D O O M F E E L S MOR E LIK E F IR S T P E R S ON
R O B OT R O N T H A N A MODE R N F P S
When you play DOOM today, it doesn’t feel much like
you’re controlling a human or moving through real
spaces. Try this though: press the TAB key, type
IDDT twice, and pretend you’re playing GEOMETRY
WARS. The moving triangles are your enemies
(see Figure 1). This is what DOOM’s designers
were working from in 1993. Back then, the idea
of a first-person shooter was barely established.
Their closest models for many mechanics were 2D
shooters like ROBOTRON, BERSERK, and TEMPEST. This
approach echoes throughout DOOM’s design. Any
semblance of realism in the FPS genre wouldn’t
appear for another few years, and many of DOOM’s
decisions were made simply on the basis of being
good for abstract shooter gameplay.

Partly thanks to this, many parts of DOOM’s
“game feel” still compare favorably with modern
twitch games. Enemy speeds and patterns are
very finely tuned, weapon design is strongly
orthogonal, player movement has a nice friction
to it, and level design elucidates all of this. QUAKE
3 is still considered the pinnacle of arcade-style
FPS movement and feel, and that lineage starts
with DOOM—even some of the code is similar.

D O O M I S A B O U T “ M A N E U V E R A B I LI T Y
A S D E F E N S E ”
In almost every modern FPS, the player moves
fairly slowly, and a huge proportion of enemies are
equipped with instant-hit attacks: pistols, machine
guns, sniper rifles, and the like. This usually puts
the player in the role of “damage sponge”—they’re
intended to soak up a certain amount of damage
from mostly unavoidable enemy attacks, then seek
cover and heal up. HALO’s recharging shield makes
this mechanic quite explicit—by default, you’re
exposed to damage and will die, while seeking
cover halts that and completes the basic cycle of
any combat.

Contrast all this with Doom Guy, who runs at
about 50 scale miles per hour—nonsensically fast

by modern standards. Most of DOOM’s enemies
don’t have instant-hit projectile attacks, and
most of the ones that do (the lowly trooper and
sergeant) are quite weak. Every other enemy
projectile takes time to reach its target, and would
look comical in a more realistic visual presentation.

Because the player moves so quickly in
DOOM, and because most enemy attacks can be
avoided, the player can avoid a significant amount
of damage simply by moving. A skilled player
can often deal with large numbers of enemies
and come out with hardly a scratch (see Figure
2). This creates an experience that’s quite rare
in modern FPS— a feeling that you are powerful
because you are agile, not because you’re a tank.
This frees up DOOM’s encounters to feature huge
numbers of enemies, to vary scenarios by mixing
in different proportions of threats, and to have
huge, sprawling, often non-linear spaces that the
player can traverse easily. There’s nothing quite
like it today.

D O O M H A S A M O R E VA R I E D B E S T I A R Y
T H A N M O S T M O D E R N F P S E S
In many modern FPS titles, the design of every
enemy the player faces is sampled from a fairly
narrow tactical spectrum—soldier with machine
gun, soldier with shotgun, zombie with melee
attack. DOOM, on the other hand, has a huge
range of monster sizes, speeds, strengths, and
movement/attack patterns. Former humans and
Imps are slow-moving, ranged fodder. Hell Barons
are large, tank-like threats. Flying enemies
range from the small, charging Lost Soul to the
tough, fireball-belching Cacodemon. Revenants
and Mancubi launch homing and spread-fire
projectiles respectively, and the three boss-class
monsters are each very dangerous in different
ways. Some enemies can be stunned by weapon
fire more easily than others.

Such diversity creates a large but simple-to-
understand toolset that allows for level design
to combine with architecture to create a huge

variety of combat setups. One tough guy with a
lot of fodder means the player has to do crowd
control while focusing on the real threat. Lots of
flying enemies make the player seek low cover
and choke points. Enemies with strong melee in
tight spaces make the player dance and really
exploit the stun properties of their weapons.
This versatility of the core design makes life
easier and more fun for the level designer, and
thus the player.

D O O M WA S A B S T R A C T I N WAY S T H AT
E M P O W E R E D I T S L E V E L D E S I GN
While some of DOOM’s levels have a very thin
fiction via their title (e.g. “Hangar”) and general
texturing theme, if you actually explore them,
you will find they only resemble real locations
in the loosest sense possible. This is precisely
what allowed DOOM’s level design to present a
wide variety of interesting tactical setups. Level
designers didn’t have to worry about whether a
change made something look less like a hangar
or a barracks, just whether it was better for
gameplay. This was especially critical for a style
of game that was just finding its feet in 1993.

As the march of technology has allowed
ever-higher graphical fidelity, virtually every FPS
since DOOM has attempted greater and greater
direct representation with its environments.
While games like SYSTEM SHOCK began to show
that a real sense of place can be a huge draw
in itself, designers of such games will always
have to manage the tension between compelling
fiction and optimal function, unless they are
willing to go all out and have the kind of weird,

FIGURE 1 DOOM's map-view reveals that
the game's design is rooted in classic

2D shooters such as ROBOTRON.

FIGURE 2 Players have the edge in
speed and maneuverability over
large swarms of enemies.

DOOM User-Generated Maps
www.doomworld.com/idgames

Oblige Random DOOM Level Generator
http://oblige.sourceforge.net

resources

GAME DEVELOPER | APRIL 201034

http://www.doomworld.com/idgames
http://oblige.sourceforge.net

abstract spaces DOOM has (see Figure 3). I would
love to see more modern games break with this
conventional wisdom and see where it leads, if
only in an indie or experimental context.

D O O M E N A B L E D A R E V O L U T I O N I N
PL AY E R- GE N E R AT E D C O N T E N T
Although advanced for its day, DOOM’s technology
was still simple enough and its content low-fidelity
enough that a huge mod community coalesced
around it to produce an unparalleled number of
levels, mods, total conversions, and other add-ons.
This, combined with the fact that the player base
was so focused on a single game, means we’ll
probably never see something like it again. The
lesson for future games might be this: make your
technology extremely simple, easy to modify; ship
it with a diverse enough pool of content that people
can extend it to create a variety of settings and
styles, and promote the sharing of this content as
a way to add value to your game.

Many PC games have gotten all that right but
failed to attract a huge community because of the
content fidelity issue. The barriers to entry facing
someone who wants to make a mod for UNREAL
TOURNAMENT 3 today are vastly higher than those
facing a DOOM modder. You can rough out a DOOM
map in a few hours and finish it in a few days,
while that same amount of time might produce
a single texture for a modern game. Again, this is

something we could branch out from if we lost our
fixation on technology and high-fidelity visuals.

Another unique side effect of DOOM’s
simplicity is that its design principles can be
synthesized and expressed procedurally. Level
generators for more modern games have been
attempted and abandoned, while the Oblige
random level generator actually creates a decent
DOOM level with proper combat and resource
balance, key gating, and architectural themes.

DOOM is one of many classics whose less-
obvious qualities are seldom revisited.

DOOM’s impact has faded, and its
precise recipe for success is unlikely
to be replicated. Nevertheless, the
game industry has become quite adept
at mimicking its superficial qualities.
We, as creators, owe it to ourselves to
look at DOOM and other classics of comparable
depth—M.U.L.E., ULTIMA IV, and STAR CONTROL II are a
few examples I would offer—to trace less-traveled
paths of analysis in search of deeper truths.

Sometimes we must look to the past for
guidance. Other times we must strive to forget it
entirely. In the balance of both, we will find much
to learn about making the games of tomorrow.

JP LEBRETON works at 2K Marin and was lead level designer

on BIOSHOCK 2. He thinks too much about games and enjoys

making strange things.

WWW.GDMAG.COM 35

FIGURE 3 DOOM's environments are often
abstract and have very little relation to

real-world architecture.

http://WWW.GDMAG.COM

TOOLBOX

game deveLOper | apriL 201036

It’s possIble that some Flash
developers long for the days of
punch cards. They may think finding
a line or two of code in a haystack
of ActionScript class files is as
much fun as an Easter egg hunt.
They might even relish opening one
file after the other in Notepad and
scanning every line. If you’re one of
those coders for whom the journey is
more important than the destination,
read no further. If, on the other hand,
you’ve used swear words in trace
statements to vent your frustration
at not being able to find what you’re
looking for, the open source code
editor FlashDevelop may be just the
tool for you.

To begin with, here are some
of the nitty-gritty tech specs of
FlashDevelop: it supports a variety
of formats and highlighting—AS2,
AS3, XML, MXML, XHTML, CSS, and
PHP. It allows for automatic JavaDoc
creation from methods and it allows
multibyte character encoding. To
run it, you will need Flash Player 9
ActiveX runtime and, if you're using
Flex, Java 1.6 runtime. FlashDevelop
is a Windows .Net 2.0 application
and is compatible with Mac OS/Linux
using virtualization software. One
gigabyte of RAM should be enough,
although there’s some suggestion

that it’ll run on 512k without the Flex
compiler SDK.

KeepIng It Clean
» When you look at a class file
in FlashDevelop, you’ll first notice
the colors. Comments are green,
variable and function declarations
are blue, quoted material is red, and
the “meat” of the code is in black.
You’ll then notice how well-spaced
and sectioned off the code is, with

indents and brackets in all the right
places. FlashDevelop spaces your
code for you—all you have to do is
put a function name here, a bracket
there, and hit Enter. Finally, you’ll
notice my favorite part of this visual
feast—the humble but visible dotted
lines that connect opening brackets
to closing brackets, eliminating the
frustration of trying to keep track
of your eleven nested for loops
that span eight hundred lines. Even

a chronic slob like myself would
have to be pretty talented to make
FlashDevelop code look messy.

For the avid don’t-do-it-yourselfer,
FlashDevelop is a dream come true.
If you’re sick of typing “package
this, public that” every time you
write a new class file, it will do this
for you. Just go to the File menu and
tell it whether you’re making an AS2
or AS3 class, and you’ll see a brand
new page open up with all the boring

headers in place. Once you start
typing the real work, FlashDevelop’s
code completion features give a
new meaning to creature comforts.
If you don’t like hammering out for
loops, while loops, if statements
and the like, the Code Snippets
menu under the Tools menu will take
care of this. Too bad FlashDevelop
doesn’t feature automated code
refactoring. If only it could type your
comments for you, too ...

FIndIng Your WaY
» That “Project” window to the right
of your code isn’t as silent or deadly
as it looks; it’s one of your better
allies in the war against chaos. If
you’re a professional ActionScript
developer, chances are you’ll be
navigating through directories of
code that are more intricate than the
New York subway system. If your
company uses FlashDevelop, that’s
no problem—you’ll have a project file
in the root directory you can open
that will display a list of your relevant
files in the aforementioned Project
window, complete with a mock-up of
the directory structure. Instead of

having to go back and forth to the File
menu every time you want to open
a new file, click on any one of the file
names in the Project window and it’ll
open in the main window.

Your code’s .fla file can also be
included in this bundle, so when
you hit Ctrl-Enter from within
FlashDevelop, the Flash IDE will do
its thing. Sadly, there are a couple of
drawbacks to this Project explorer:
you can’t seem to work on multiple

projects at once, and depending on
how rambunctious you’ve been with
switching between CS3 and CS4, it
will occasionally get confused about
which version of Flash to open and
execute your .fla with.

For those of you who need
your whitespace, code collapsing
is another neat feature of
FlashDevelop. Those little plus/
minus boxes next to the line
numbers will fold up the guts of
your functions or comments and
represent them with thin black
lines. Should you decide to do a
search for something that happens
to be collapsed, the item will
automatically make itself visible,
though you’ll have to collapse the
list again when you’re done.

needle In a haYstaCK
» Possibly the most useful feature
of FlashDevelop is “Find And Replace
In Files.” Consider this scenario:
It’s your first day on the job, and
you’re told to change the physics of
an existing pinball game for a very
impatient client. The game has a few
dozen class files with a thousand

If you’re a relatively new ActionScript programmer who
has yet to try a real coding environment, the sooner you
break the shackles of the standard Flash IDE’s vanilla
ActionScripting environment, the better.

FlashdeVelop 3.0.6
review by michael greenhut

¤ stats www.flashdevelop.org

¤ prICe Free (Open Source under mit license)

¤ sYstem reQuIrements microsoft windows. Flash Player 9 activeX
runtime required by the browser control and Java 1.6 runtime required if
using the Flex SDK.

¤ pros
1 excellent code completion/generation ai.
2 the layout of the Project explorer.
3 the ability to find and replace text across multiple files.

¤ Cons
1 Only being able to see one project at a time.
2 having to refactor code without any extra help.
3 a less than perfect .fla testing mechanism.

Flashdevelop 3.0.6

http://www.flashdevelop.org

www.gdmag.com 37

lines of code in each one. It’s written
by someone from a different time
zone, and you have until tomorrow
to figure it out. If only you could find
the exact spot in the code where the
ball makes a hitTest, you’d be off
to a good start. With just the bare
Flash IDE at your disposal, you’re
in for a long night and a few more
white hairs.

With FlashDevelop, you need
only hit Ctrl+I to bring up a menu
that will let you search for specific
bits of text across every single
file in the game. Type “ball” or

“hitTestObject” (or whatever
you think is relevant), and at the
bottom of your screen you’ll see a
list of files and line numbers where
this text appears with a snapshot
of the text itself. Click on any one
of them and you’ll be whisked right
to the point of interest. This feature
has saved my life, or at least my
job, more times than I can possibly
keep track of.

ActionScript in the Age of
flAShDevelop
» It’s hard to remember life before

FlashDevelop, and you’ll wonder
how you ever survived without it.
If you’re an experienced coder, you
might compare it to something
like Eclipse, which I find a bit more
confusing and less proficient at
formatting code. If you’re a relatively
new ActionScript programmer
who has yet to try a real coding
environment, the sooner you
break the shackles of the standard
Flash IDE’s vanilla ActionScripting
environment, the better.

FlashDevelop is also free and
open source, so you can save

your money for that CS4 bundle
you’ve been wanting, and you don’t
need a whole lot of experience to
use it (though experience getting
frustrated with the Flash IDE
does help). Mika Palmu, Philippe
Elsass, and Nick Farina created
FlashDevelop. You can find it at
www.flashdevelop.org.

MichAel greenhut lives in Mamaroneck,

NY, and is currently a Flash game

developer at Arkadium in Manhattan. He

likes to write science fiction and fantasy in

his spare time.

gDeBugger verSion 5.5
gr A p hi c r e M e D y

www.gremedy.com

Graphic Remedy has
released version 5.5 of its
gDEBugger tool for Windows,
Linux, Mac OS X and iPhone.
gDEBugger is a debugger,
profiler, and memory
analyzer for optimizing
OpenGL, OpenGL ES, and
OpenCL-based applications.
This version introduces AMD
GPU performance counter
integration which displays
AMD graphic hardware and
driver performance counters
in gDEBugger’s Performance
Graph and Performance
Dashboard views, allowing
developers to optimize
their application over AMD
graphics hardware. AMD
Performance counters are
available on Windows when
using the ATI Radeon HD
2000 series or newer with
Catalyst 9.12 or newer.

rAknet JoinS pS3
toolS AnD MiDDlewAre
progrAM
J e n k i n S S o f t wA r e

www.raknet.net

Online middleware provider
RakNet announced that its
open source network game
engine now offers support
for the PlayStation Network

family of services, including
online matchmaking, audio/
video chat, and title user
storage. RakNet is a C++
game networking engine
designed for ease of use
and performance. Features
include object replication,
remote procedure
calls, patching, secure
connections, voice chat, and
real-time SQL logging.

gAMeBryo lightSpeeD
AnD SiMplygon
integrAtion
D o n yA l A B S

www.donyalabs.com

Donya Labs announced
the product integration
between Emergent Game
Technologies’ game
development engine
Gamebryo LightSpeed and
Donya’s 3D optimization/
reduction solution Simplygon.

Donya Labs promises
that developers who
license both Simplygon
and Emergent’s LightSpeed
will be able to speed up
production by automating
the creation and setup of all
level of detail (LOD) objects
in a game, and also achieve
more visually optimal LODs
for both static and dynamic
objects. Select features in
Simplygon include polygon-
mesh reduction to specified

pixel resolution or absolute
distances; preservation
of all critical features of
the original 3D data for
both static and animated
objects; generation of
decimation history for
runtime purposes such
as geomorphing; and
unique remeshing and
repair functions including
generation of 2-manifold
meshes, topology
reduction, and removal of
interior objects.

This new integration
with LightSpeed allows
automatic simplification
of meshes for the creation
of LODs and the addition
of scenegraph nodes for
switching between them,
the batch optimization of 3D
assets, optional settings for
control of reduction quality,
and AutoLOD methods.

xAitcontrol 3.0
x A i t M e n t

www.xaitment.com

AI game tool provider
xaitment has released
xaitControl 3.0, a graphical
modeling AI game tool that
now includes an innovative
graphical live debugger
for creating and modeling
hierarchical finite state
machines. The tool allows
users to set breakpoints

and make live changes to
variables and states during
runtime. Its graphical user
interface gives designers
and non-programmers
alike the ability to visually
create complex hierarchical
probabilistic finite state
machines. In addition to AI
development, xaitControl can
be used to implement game
logic and control animation.
Xaitment also offers a
suite of AI tools called the
BrainPack that provides
developers with automatic
navigation mesh generation,
pathfinding, movement,
behavior modeling, and
advanced decision-making
tools.

MASSive 4.0 releASeD
M A S S i v e S o f t wA r e

www.massivesoftware.com

Massive Software, developer
of 3D animation software
for AI-driven characters, has
released Massive 4.0. Massive
incorporates procedural
animation and AI to give
artists the ability to create
and direct CG characters
such as humanoids, birds,
and animals, as well as
moving objects that deliver
realistic and emotive virtual
performances. Massive’s
“Agents” are 3D characters
that have a fuzzy logic AI

brain and the natural senses
of sight, sound, and touch
enable them to interpret and
react autonomously to the
world around them.

V-Ray rendering engine
support has been added
for scenes requiring highly
realistic lighting. Massive
generates .vrscene files
for the main render files,
terrain, and agent archive
files. It also automatically
generates shader dialog
parameters for V-Ray
material plug-ins and V-Ray
materials, giving users
the freedom to assign any
available default or custom
plug-ins and materials.

Stadium placement
has been made easier with
the addition of rows and
columns to the polygon
generator, which allow for
locators to be placed in rows
and columns in any shape.
The polygon generator also
offers a stagger parameter
which can be used to offset
rows laterally.

Massive also features
Brain Node improvements
that allow for the control of
delay time and filter width
in the output node with
other nodes in the brain,
using new options to select
between “latch,” “delay,” and
“filter” as destinations for
alternative inputs.

p r o d u c t n e w s

http://www.gremedy.com
http://www.donyalabs.com
http://www.xaitment.com
http://www.massivesoftware.com
http://www.raknet.net
http://www.gdmag.com
http://www.flashdevelop.org

THE INNER PRODUCT // JaRI KOmPPa

gamE DEvElOPER | aPRIl 201038

Porting From DoS
to WinDoWS
Step By Step through Death Rally'S Journey to the new MillenniuM

Max Payne/alan Wake creator remeDy'S toP DoWn combat racing game
Death Rally was released for DOS computers in 1996, and although it does run
under the open source DOSBox emulator, it doesn’t run very well. I felt that Death
Rally was still a good game and wanted to get it into a playable form again.

So last May I got an idea, and thought, "What the heck, let’s go for it." I
sent an email to Remedy Entertainment, volunteering to make Death Rally
open source. I didn’t expect a reply; at the most, I expected a polite “no.”
Much to my pleasant surprise, I got a “maybe.”

After a couple weeks of legal checking, we agreed that while an open
source release would not necessarily be possible, we could probably work
something out. And so it came to be that in July, I downloaded the source
package for evaluation.

The first task would be to take a cursory glance at the material and see
if the project was actually possible. I expect some of you to wonder whether
there was any funny code. Sure there was. Take a peek at any large project
you’ve done as a teenager over a decade ago and see if there’s any funny
code in there. I couldn’t find anything truly “daily wtf”-worthy, though, and
what I did find wasn’t anything a few days' worth of refactoring wouldn’t fix.

Instead of refactoring, I took an archaeologist's approach—I made
minimal changes and marked my transgressions clearly in the source code.

Starting blockS
» The source software platform was DOS, Watcom C, and some Dos4GW-
style DOS extender. The extender basically meant you could use more than

640k of memory, and would not need any weird
code for data larger than 64k.

The game displayed in VESA 640x480 and
MCGA 320x200 graphics modes, all with 8-bit
palettes; there was no true color anywhere. There
were also some per-frame palette change tricks
that emulators have trouble with.

The source code was mostly pure C with a
couple dozen inline assembly functions. There
were a few missing subsystems, specifically audio
and networking, which would have to be replaced
completely anyway, as well as one file for which
the source code was lost and only a compiled
object was available.

getting it to comPile
» First order of the day: get the game to compile. I
started a Visual Studio project, imported all source
files, and checked what the compiler would say.

The Visual Studio and Watcom compilers
disagree on several points, which is hardly
surprising as the Watcom version used was about
a decade older than the Visual Studio I used.

One of the obvious things is that Watcom
considers chars to be unsigned, while MSVC sees them as signed by
default. There’s a compile option in MSVC for this, but in order to avoid
confusion further down the line, I opted to do some search-and-replace
operations to designate all chars unsigned (except for those that were
explicitly set to be otherwise).

MSVC is also much pickier about types, so I got lots and lots of warnings,
and even errors in some cases. Most of these were relatively simple to fix—
some typecasts here, a prototype added there, sprinkle some parentheses
around. One rather tricky bit was where Watcom and MSVC disagreed slightly
on requesting the address of an array, so I had to manually patch things up
in a few hundred places.

After fixing a truckload of small errors and warnings, and stubbing all
assembly functions as well as other missing symbols, I ended up with about
90 functions that needed rewriting.

no more HarDWare acceSS
» In DOS, there’s not much of an operating system in your way. You could,
and in many cases you must, access hardware features directly. For
instance, graphical video memory was mapped to the real-mode segment
0xa000. This segment was usually (if not always) mapped to the direct
address 0xa0000 in DOS extenders.

Higher-resolution VESA modes could be accessed most commonly in
banks through the above segment. If you wanted to access more of the
memory, you used some interface to switch memory banks, and then

HTTP://WWW.GDMAG.COM/DIGITAL

Game Developer magazine’s 6 month and 1 year Digital Edition

 subscriptions give you new issues delivered promptly, full

 searchable access to more than 50 back issues, plus downloadable

 PDF versions, easy access from any web browser, and more!

 Subscribe today!

A C C E S S I T I N R E A L T I M E

http://WWW.GDMAG.COM/DIGITAL

THE INNER PRODUCT // JaRI KOmPPa

gamE DEvElOPER | aPRIl 201040

accessed the same segment again. Thus, the applications set a graphics
mode (and possibly segment) and accessed the video memory directly.

I solved this by allocating a frame buffer big enough for 640x480 and
creating a global variable called g0xa0000, replacing all direct addresses with
said pointer. The pointer would be updated to the beginning of the frame
buffer on mode init and to different offsets based on the bank switch calls.

Other video features were accessible through hardware I/O ports. The
most important were the vertical retrace check and palette access. These I
replaced with completely separate functions.

Data I/O
» That one object file with no source code happened to house decompression
functions for the game data. I disassembled it and wound up with about five
hundred lines of assembly, which, from a cursory glance, did not look like
the output of a compiler. Not completely inspired to reverse engineer the
code at this point, I took a shortcut to more interesting things by using
the object file to make a DOS application (using OpenWatcom) which
decompressed all the game’s data files, and wrote a simple hack to access
the decompressed files instead. This was clearly not a final solution, but it
allowed me to progress.

There were some small problems with this approach. Audio files were in a
differently encrypted format, and some of the game’s small animations were
handled differently in the decompressor with parts of the data compiled into
the executable instead of the data file.

I made a note that while the cutscenes were also compressed, the source
code for the decompressor was in C. So if both compression algorithms were
written by the same person, the algorithms might also be similar.

A few days (and a dozen rewritten inline assembly functions) later, I

came to the realization that I had to get that decompression function to
work. Strange bugs and crashes had started to crop up, most likely caused
by bad or completely missing data not produced by my temporary hack.

Trying to find another easy way out, I compared the characteristics of
the code with known compression algorithms, discarding most of them
due to the requirement of overly large lookup tables or code complexity.
The source code to Info-ZIP is invaluable for these kinds of things, as it
implements most common compression algorithms, not only the ones
found in modern ZIP formats. In the end, it was clear this was a proprietary
algorithm, so I really did have to dive in.

I spent a couple days poring over the code and trying to re-implement
what it does in C. Once I understood what the assembly code was doing, I
took another glance at the section that decompresses the cutscenes and
realized it’s almost the same—except for some additional encryption. I made
a variant of that code and the data problems went away.

With that bit done, I took a look at the audio files which had an additional
layer of encryption. At this point, my Remedy contact, Markus Mäki,
commented, “Who on Earth has been encrypting all these things and why?”
Luckily, the source code to decrypt the audio files was found.

applIcatIOn FramewOrk
» The way applications work in DOS is somewhat different from what most
people are used to these days. Control was entirely in the application’s
hands. There wasn’t any multiprocessing to worry about, and you could
pretty much depend on the characteristics of the de-facto VGA standard. If
there were problems, users were expected to manually play around with
system configuration text files.

Since the whole game was vertical retrace-synced (at VGA 70Hz), it
made sense to place the OS message pump and graphics output into the
vertical retrace check function. This worked beautifully, except for places
where the game did not bother to wait for retrace (such as simply showing
something on-screen and then waiting for a key in a busy loop). No retrace
check, no message pump, no keys pressed. Adding the retrace checks to the
loops naturally fixed the issue.

// Copy image to screen
memcpy((char*)0xA0000, myImage, 64000);

 //Wait for key press

 getch();

Copy data directly to video memory and busy wait for a key—perfectly legal
in the DOS era.

The game also utilized a timer interrupt that ran in sync with the
video refresh rate. I did not bother trying to make a separate thread to
make it run exactly at 70Hz, and simply called the interrupt routine at
approximately 70Hz in my message pump code. One positive side effect
of this approach was that the per-frame palette-change tricks worked
automatically.

I also wrote some placeholder keyboard handling code, which much
to my surprise, worked directly. Apparently, the SDL scan codes match
whatever DOS had, or came close enough.

cOnnectIng the DOts
» Instead of converting one inline assembly format to another, I rewrote
all the functions in C. I think the result was actually not slower, as compiler
optimization technology has improved a lot and the original assembly was
written with original Pentiums (or worse) in mind.

Most of the assembly functions were little things, like rectangle copy
or bit mask matching, and did not take too much effort to write. First the
menus, then the in-game graphics started to come into view. This part was

Death Rally in its original DOs version (top) and ported windows version (bottom).

www.gdmag.com 41

pure joy—not so different from eating pistachio nuts: each bite takes a little
effort, but has a huge payoff. I always wanted just one more, making it very
difficult to call it a day.

One final piece of assembly was the polygon filler. In this area, I opted
not to faithfully reproduce the original code, but wrote a software rasterizer
from scratch, so if you see the polygon filler glitch, that’s probably my fault.

It had been about three weeks and the game was playable. Still no sound
and tons of small things to do, but playable.

Audio
» Next up was audio. The game used Scream Tracker 3 S3M modules for
music and FastTracker 2 XM modules for sound effects. Why both were not
in the more advanced XM format, I do not know. Maybe XM for sound effects
was a later addition, or maybe the composer preferred the S3M format.
Music was relatively easy to handle, except for a small glitch where the
replacement audio system was optimizing things a bit too much.

The game used a trick that was common in those days, where you
place several looping songs into one module and instruct the replay
routine to switch between the songs by jumping to a certain order number.
The songs in question had some empty orders between songs, and these
got optimized out, messing up the sub-song order numbers. Luckily, the
order list was easy to read from the S3M directly, so I could make simple
translation tables from optimized to original and back. The sound effects,
however, took a lot more effort.

After several false starts, including writing a complete XM module
loader, I took the open source XM player minifmod and made some severe
modifications to it in order to use it as the sound effects library. The original
sound library had a notion of “pitch” that wasn’t in Hertz, but in something
related to the notes. I had to invent an algorithm that approximated the
conversion from the original “pitch” to a relative note. While the result is
probably not exactly the same, it kind of feels right.

GrAphics
» I started off with the idea that since the original game used two graphics
modes, I might do the same. Unfortunately, the 320x200 mode did not
work out, so I opted to only use one graphics mode— 640x480 with a
simple scaler for the 320x200 mode. The bad side of this decision was
that the aspect ratio for the 320x200 mode was wrong. I could have spent
a long time making some kind of weaving algorithm to turn 640x400 into
640x480, but opted to just add black bars at the top and bottom instead.

This got the graphics going quickly. In testing, however, we found that
some non-4:3 aspect ratio LCD screens stretched the image, and for dual-
screen systems, switching to full-screen 640x480 moved all the other
windows in an irritating manner.

Near the end, I figured it would be best to use OpenGL to scale the frame
buffer to screen at desktop resolution. This would solve several issues,
including the 320x200 screen mode aspect ratio. In high enough target

resolution, the 320x200 looks pretty authentic when using point-sample
texture lookup. I was originally wary of this approach because of possible
performance concerns on low-end 3D hardware, but testing on some low-
end Intel chipset mini-laptops cleared these issues.

Implementing the OpenGL blitter was easy, but it uncovered a nasty
issue. While I was running in software, the display update was not synced
to the display refresh rate. With OpenGL, it was. The game’s internal clock
was fixed to the 70Hz VGA refresh rate, which I was faking. The way I
implemented the vertical retrace meant that whenever the application even
asks about the retrace—not only when it was waiting for retrace—we’d do
the message pump and the display would update (up to 70Hz, anyway).

The in-game graphics were requesting information about the retrace
about 50 times per frame in the worst case. Different aspects of the game
world were asking which frame we were on for animation timing purposes.
While doing the message pump, we had no idea whether we would have a
new screen to show or not. As a result, we spent a few milliseconds here,
a few milliseconds there, and suddenly had to wait for display refresh,
wasting a dozen milliseconds and so on, until the game was crawling at
about 1Hz.

In order to solve this, I made two changes. First, whenever the code
asked about the retrace, I’d increment the “current frame” value by one and
return that, instead of jumping to the correct real-world time value I was
doing originally. The exception was, if we had already caught up with the
real world, in which case, the current value was returned. This solved the
slowdown issue everywhere else except in-game.

I added a hack for this: a flag which disables the display update. I set this
flag on for all other parts of the game loop except when actually waiting for
vertical retrace.

rAlly crossed
» And so the port was done. One major part which was unfortunately left
out was the multiplayer networking, as it would have required a non-trivial
rewrite. Apart from a few cosmetic changes, the game is the same as its
original DOS counterpart: you now exit to the OS instead of DOS—I also added
a few additional delay loops where loading times have become insignificant
and other little touches like that.

pitfAlls
» By now, you may have noticed that all the issues I faced with the
porting have to do with technologies that have changed, and in most cases,
improved with time.

Apart from the speed, memory protection, and compiler issues
mentioned earlier, there’s one more thing that has also changed with time:
quality requirements.

Back then, PCs were not even as standard as they are now. There was no
process memory protection, and in general, it was okay for programs to do
all sorts of funny things. Sometimes they crashed, and this was considered
acceptable within reason. After all, some PCs were more stable than others.
Still, these bugs haven’t gone away, and you may have to add in some
additional bug-hunting time for your modern port.

Luckily for me, the Death Rally codebase was pretty stable. Still, I spent
some time hunting bugs that occurred rarely, and in some cases, never
appeared on my development system. A few crash cases were due to my
own misunderstanding of some of what was happening in the source; some
were actual bugs in the original code, but they were all more or less simple
to fix or work around.

Death Rally was released as freeware for Windows and can be downloaded
from www.death-rally.com. I hope you enjoy it as much as I have!

JAri KomppA is a demoscene veteran, most known for his work on the X-Forge cross-

platform mobile game engine from (now defunct) Fathammer. He's not working in the games

industry at the moment, but daydreams about getting back one day.

oriGinAl specs
DOS (w/extender)
Watcom C
MCGA 320x200x8
VESA 640x480x8
60-plus MHz CPU
8 MB RAM

new specs
Win32
MSVC7.1
16 or 24-bit color
in various resolutions
1-plus GHz CPU(s)
1-plus GB RAM

project at a glance

http://www.death-rally.com
http://www.gdmag.com

pixel pusher // steve theodore

GoinG Solo
'Cause FreelanCing isn't Free

ArtiStS Are not AlwAyS the moSt SociAble creAtureS. A lot of uS
become artists because we want to say something personal—we’re
happier taking the show-stopping solos than sawing away anonymously
in the back of the orchestra. Setting your own rules and working your way
appeals to lots of folks, but artists—with their individualistic approach to
work and style—are particularly given to fantasizing that they’d do better
as freelancers. Who wouldn’t prefer a constant stream of new projects to
spending four years noodling on the details of a single IP? Who wouldn’t
want to earn an elite reputation instead of laboring in anonymity? And who
wouldn’t want to work when, where, and how they like?

Whether you dream of being a high-priced, globe-trotting gun for hire or
of founding the next Massive Black—or, for that matter, if you’re just waiting
for the job market to thaw and need to pay the bills—freelancing can be a
bracing challenge with rewards that are way beyond a paycheck and a sliver
of profit sharing every three years. Unfortunately, freelancing is not for
everyone. Working solo demands a lot more than simply setting
keyframes in your jammies. No matter how good your art
chops are, you’ll have a tough time as a freelancer if
you don’t develop the right mindset. So this month
we’re going to highlight some things you need
to know before you break up the band and
embark on a solo career.

Studio trAckS
» Lots of freelancers choose independence
because they love the freedom to set their
own hours and work from home. It’s easy
to think working from home is like Nirvana
while you're sitting in rush hour traffic or
microwaving another crunch-time burrito.
It eliminates the frustration and expenses of
commuting; it lets you run to the grocery store
or pick up the kids from school as needed, and
it helps focus your energy on making art instead
of meetings, paperwork, and office politics.

Unfortunately, working from home is not for
everyone. Even introverts who love to pull on the
headphones and hunker down in their cubes can find
they need the camaraderie of a team. Sure, solitary
confinement might seem like a great thing when you’ve
got a deadline coming up and your cube-mates won’t
shut up about last night’s Jersey Shore—but even so,
only your fellow artists really know where you’re
coming from. Roommates and family can’t share
your frustrations, give art critiques, or help you
with technical advice. Whether it’s social
contact or professional support
you need, working alone can
be demoralizing and
dehumanizing.

Successful freelancers don’t work reclusively for both psychological and
business reasons. You probably won’t lug your quad-core workstation and
Wacom tablet down to the local Starbucks every day, but regular lunches
with friends and former colleagues can give you the human contact you
need to stay sane. Spending time with other folks in games is also the most
important way to hear about new business. IGDA meetings, Max/Maya
user groups, and industry social events are great places to find business
contacts and to enjoy the tribal pleasures of socializing. Freelancers can’t
survive as hermits—whether the isolation drives you crazy, or you just
miss out on good jobs because you’re moping at home in your underwear,
solitude is a dangerous trap for a soloist.

GArAGe bAndS
» Nobody likes to commute, but running your real life and your work life in
the same physical space can exacerbate our perennial problems with work/

life balance. When “the office” is right downstairs in the den, it's way too
easy for deadline anxiety or artistic perfectionism to prey on

your nerves at any hour of the day or night. Your work, your
health, and your personal life will all suffer if you don’t

disengage the gears once in a while, but this takes a
serious effort of will.

There’s an emblematic example—a story
about Rene Magritte, the surrealist painter.

Every weekday, he would get up and dress
for work in a suit and tie. He’d leave the house
and head off to a local cafe where he took his
morning breakfast and read the paper. Then he
would walk around the block and report to his
studio (a.k.a. his living room) by the back door.
At 4:45 pm, he’d change back into his suit, leave
by the back door again, and head back around
the block to the front door, where he’d enter
as punctually as any commuter coming home

from the evening train.
You might not want to go that far (it’s tough

to buy a decent bowler hat these days), but if
you can’t build an effective firewall between your

two lives, working at home can be brutal. If you’re
sneaking downstairs to tweak UV placements at 3
in the morning, or if you can’t meet your deadline

because you’re trying to babysit and paint
textures at the same time, you may need to look

at moving your workspace out of the house.
Office co-ops can provide an affordable way

to set up shop and they also provide
some human contact during the

working day. Some of these
"rent-a-desk" setups

come with serious
broadband,

game developer | april 201042

www.gdmag.com 43

printers, fax machines, and even shared
receptionists and meeting rooms (which can be
useful when you’re first forging a relationship
with a new client). For many people, the
structure and discipline of having a dedicated
workspace is well worth the money.

One-Man Band?
» Office space isn’t the only expense you’ll need
to plan for. Freelancing forces you to balance
costs and benefits all the time. Going solo makes
you responsible for your own logistics, from
maintaining the company network to paying
for garbage collection. Running your own show
involves a lot of small-scale tasks that are hard
to enjoy, but impossible to ignore. Freelancers
need to think hard about which tasks they take
on themselves and which need to be outsourced.
Your work time is your most valuable asset:
deciding when and where to spend it is the key to
success. Don’t fall into the trap of seeing only the
dollar costs of critical services.

For example, you’ll need a webpage to
advertise your services and show your portfolio.
If you’re a professional 3D artist, you’re
certainly smart enough to learn how to set up
a site. But how many hours a week can you
spare for learning new web software, applying
security patches, and keeping your server up
and running? Are you going to be sufficiently
thorough about backups? Will your ISP bills go
up if one of your animations gets downloaded
a thousand times in a month? Each of these
questions can be dealt with individually, but
time spent on secondary tasks isn’t being spent
on your real job—building kickass content that
keeps your customers coming back.

By all means, do save money by doing simple
jobs yourself, but get professionals to help with
anything that you’re not sure you can do well.
The rule of thumb should be that the more critical
the mission, the more likely you should be to
pay for it. Designing business cards, for example,
is something most artists can handle easily. A
legal work agreement, on the other hand, is too
important to make up as you go along. Here’s
a quick rundown of some non-artistic but very
important services you may need to shop for if
you’re planning on freelancing.

» Internet servIces Most of your business
will come from personal contacts (that’s why
you need to eat out all the time!), but a good
site is critical to making sure that you appear
professional in the eyes of potential new
clients. Don’t point new customers to a personal
site with family photos or blog-tastic rants;
keep your freelancing site focused on what
possible clients want to see: your work and
your work history. You’ll look like a flake if your
site isn’t always up and always in a presentable
state. If you can’t guarantee those things

yourself, you should be ready to pay a hosting
outfit to manage the site for you.

» It When freelancing is your “real job,” you
must be well insured against data loss with
good backups and a reliable setup. You don’t
look like a pro if you’re losing vital work to
crashes, viruses, or simple disorganization.
Frequent backups of your portfolio, work
software, and current jobs are a pain in the
butt, but they are essential for survival—you
need top-notch protection in place before your
kid downloads a virus-laden screensaver and
nukes your machine! If you have any doubts
about your abilities to administer your network,
fight viruses, and handle backups, buy some
peace of mind from an IT consultant or virtual
networking service like Mozy, JungleDisk, or
CrashPlan. This isn’t an area where gambling
makes sense.

» sOurce cOntrOl Backup is great for disaster
prevention, but it’s also handy to have your own
source control setup. Knowing you can roll back
to an earlier check in frees you up to experiment
safely. It also prevents you from filling your
hard drive with hundreds of confusingly named
files. You’ll forget the difference between
Fire_dragon_05_final.mb and Fire_dragon_
final_final.mb much faster than you can
imagine. Don’t get caught overwriting good work
or sending the wrong file to the client. Instead,
set up a Perforce or Subversion server for
yourself. Subversion is freeware, and Perforce
is free for one or two users. If you’re worried
about maintaining the server yourself, there
are Subversion hosting services like Beanstalk
(http://beanstalkapp.com) on the web.

» tax and legal Being your own boss makes
you liable for all sorts of paperwork and taxes
you don’t need to worry about as an employee.
Be sure to do your homework on local business
regulations and taxes. If you’ve never owned a
business before, you’ll be unpleasantly surprised
at the amount of busywork involved. Because the
rules vary so much from place to place, it’s not a
good idea to try to navigate them on your own—
at least, not as a first-timer. Local business
groups and governments usually have webpages
and real-life seminars on how to get started
in your area. The Graphic Artists Guild (www.
graphicartistsguild.org) doesn’t deal directly
with game art, but does offer good advice for
creative freelancers in general. While you aren’t
legally required to incorporate to do business on
your own, you should go over the pros and cons
with a lawyer—the differences in your taxes and
legal protections can be very significant.

On the plus side, running your own shop
lets you claim tax deductions on a lot of your
business expenses, including computers,

software, phone, and broadband service.
However, the rules for deciding what is
deductible are complex and the record keeping
involved is significant. It’s hard to over-estimate
the value of a good accountant, particularly
one who specializes in helping self-employed
professionals; between finding tax advantages
and keeping you out of trouble with Big Brother,
a good CPA is the freelancer's best friend.
One useful trick that simplifies end-of-year
accounting is to get a separate credit card
for your business—it’s an easy way to keep
business and personal spending strictly
separate and well documented. But seriously,
find a small business accountant!

swan sOng?
» Whew. If you started this article thinking that
“firing your boss” would be liberating, this long
list of mundane concerns might sound like a
downer. Don’t be discouraged—these concerns
are just the cost of doing business for yourself.
They won’t kill you—they’ll make you stronger.
Becoming a freelancer makes you responsible
for a lot of things you don’t learn in art school, or
even as a veteran line artist. Living and working
without the safety net of a 9–5 job is a great
adventure: the work, the risks, the freedom,
and the potential rewards are all amplified.
Freelancing isn’t for everybody, but paying
attention to the foundations makes it a lot easier
to survive and prosper. The sooner this stuff is
out of the way, the sooner you can step into the
spotlight and take your solo.

steve theOdOre has been pushing pixels for more than

a dozen years. His credits include Mech coMMander, half-

life, TeaM forTress, counTer-sTrike, and halo 3. He's been

a modeler, animator, and technical artist, as well as a

frequent speaker at industry conferences. He’s currently

a consultant helping game studios perfect their art tools

and pipelines.

http://beanstalkapp.com
http://www.graphicartistsguild.org
http://www.gdmag.com
http://www.graphicartistsguild.org

game developer | april 201044

Bill Belichick is regarded By many footBall fans as a Brilliant
tactical coach, but in November of last year, he made a decision that is
debated to this very day.

His Patriots were up by six against their hated rivals, the Colts, when
his team faced fourth and two at their own 28 yard line with two minutes
left. Most coaches in this situation would automatically punt. Going for the
fourth down and failing would give the Colts’ Peyton Manning, one of the top
quarterbacks in the game, a short field of 30 yards to score a touchdown
and win the game. Punting would make him travel at least 70. The Patriots
went for it. They failed, and then lost the game.

After the game, Belichick was defensive. He argued that going for it had
high odds of success, and getting the first down would have effectively won the
game. On the flip side, the Patriots’ defensive line was exhausted, and Manning
was cutting through it like butter—in that particular situation, the difference
between 30 yards and 70 was relatively insubstantial. He argued that the
upside was infinite and the consequences of failure weren’t all that different
from punting. If he’d succeeded, people would have called him a genius.

Balancing failure and rewards
» The relative chance of failure compared to the upside of success is what
made Belichick’s dilemma the fodder of debate for months after the game.
Key decisions in the best games provide well-balanced decisions like this
to the player. If the balance is askew, the experience can be weakened.
Consider, for example, the myriad Facebook poker games where players have
a near-infinite supply of fake cash. Since players face no real risk for their
bets, they constantly make monster bets with abandon, making it almost
impossible for purists to bet and bluff in a realistic way.

As designers, we create the carrots and the sticks that drive players

through our simulation. Most designers typically think first about the
carrots—the rewards and bennies that encourage players to pursue "good
behavior," but equally important are the consequences of failure and tough
decisions. It’s the consequences that give these decisions real weight; they
provide the emotional lift for the greatest rewards.

Sometimes, these choices are fairly black and white. In BioShock, the
player is given the choice to harvest or save the "Little Sisters" (young girls
who provide the psychic energy that unlocks the player’s latent power).
Harvesting the sisters feels horrific but grants the player more power than
saving them. The ratio of sisters saved to harvested determines what game
ending you will see. Saving the sisters makes for a harder game experience in
the short term, but the player receives gifts that nearly equalize the difference,
and provide a much more rewarding ending. In short, the path of evil is the
path to quick power, but the path of good has greater long-term gains.

the Behavior you incentivize
» Economists are fond of saying that you get the behavior you incentivize.
One commonly cited fact from real life is that mandatory seat belt laws have
resulted in an increase in pedestrian deaths. One consequence of wearing a
seat belt is that the driver himself is safer, which allows him to drive faster
and more recklessly.

As designers, we must be careful of the behavior we incentivize—
it is dangerously easy to penalize good behavior, or reward activities that
actively destroy the player’s own game experience. If you make a game
where jumping is faster than running, players will jump everywhere they go,
no matter how silly it looks.

Sometimes, the consequences of a design decision are more insidious
than they seem at first glance. It may make sense for quest decisions to

design of the times // damion schubert

while death can come quickly in Demon's
souls, its long-term consequences can be
minimized by careful players, allowing them
to fully explore the limits of the game world.

Encouraging PlayErs to go For it

the truth of consequences

www.gdmag.com 45

affect the player, but consider that if you immediately slap an alignment
penalty on a player as soon as he dares talk to the roguish thief hiding
from the city guard, you’re punishing him for trying to play your story,
and teaching him that some of your content is best bypassed if he wants
to take a lawful path. Writers need to be careful of how and where they
structure these key choices, and how they ensure that completionist
players have an avenue to experience the whole game without trashing
their characters.

Facebook games like Zynga’s Mafia Wars and VaMpire Wars also create
some incidental bizarre behavior. Success in these games often depends
on the player having a large number of friends also playing these games—
frustrating for players with few friends, and unnerving for those who are
uncertain they want to badger their friends into joining them in their little
vampire gaming fetish.

The developers saw spamming friends as an advertising opportunity,
but these players saw it as a negative consequence. As a result, many
devotees of these games set up alternate Facebook profiles, joining groups
of like-minded “fake” friends in order to game the system without polluting
their real friends list. Whether Facebook or Zynga sees this as something
that negatively impacts them remains to be seen.

Being Too HarsH
» Over the years, most games have become less punitive to failure.
Massively multiplayer games are no exception. Back in the days of text
MUDs, death frequently meant the loss of a level’s worth of experience. By
comparison, eVerQuest’s penalty was only one-tenth of that—and of course,
it seemed ridiculously benign. Ten years later, penalties have been reduced
to the point where death is little more than a minor inconvenience.

Some hardcore players long for the old days, and some armchair
designers even push the idea of permanent death as a way to create
more tense and dangerous online worlds. What these designers lose
track of is how these penalties affect the risks that players are willing
to take. Most designers want players that take big risks, try odd and
unusual things, players that will test the limits of the simulation to
discover emergent gameplay. It’s here that the experiential magic of
interactive fiction really shines.

Some players crave harsh penalties, of course. They like to play
Diablo 2 on Hardcore mode or DeMon's souls, where the tension of ultimate
failure provides an emotional edge, and minimizing the risk of failure is
a key strategic decision in the game. Make no mistake, though, this is a
hardcore game direction.

However, if the penalties are too harsh players won’t take chances. They’ll
seek out lesser challenges. In MMOs, they’ll hunt below their level, avoid
grouping with strangers and not show up for player vs. player situations in
which they are clearly the underdog. In short, they’ll bore themselves to death,
and then blame you, the designer. Correctly, I might add.

HigH risks, HigH rewards
» There exists in baseball a huge subculture of fans that specialize
in the statistical examination of the sport. Devotees of the science of
sabermetrics attempt to upend any number of common conceptions of
baseball. One of these misconceptions is that attempting to steal a base
is ever a good idea. Statistically, the consequences of failing to steal a
base (losing one of your precious 27 outs) almost always outweighs the
potential benefit.

Despite this, managers still try to steal bases. The interesting thing
is that, despite the fact that it's usually a terrible idea mathematically, it
genuinely makes for a more entertaining baseball game. The apparent risk
vs. reward does not match the actual risk vs. reward (which, fortunately,
results in managers making decisions that make for better television).

As designers, it’s important that the risks a player takes have rewards
that correspond to their penalty—or at least feel like it. It’s okay to have high-

risk choices for the player, but the rewards have to provide an emotional
high that matches.

These high-risk, high-reward choices are excellent ways to provide
an additional layer of gameplay for more advanced players. Killing 10
players with your bare hands is, for many players, worth the achievement.
Attempting to throw an opponent out of the ring in soul Calibur is hard to
pull off, but completely worth your opponent’s humiliation if you execute it.
Rocket jumping in Quake to the perfect sniping place is worth occasionally
blowing yourself up or shooting yourself into the lava.

The important thing about these high-risk, high-reward choices is in fact
the element of choice—they’re alternatives. Making these optional gaming
avenues leaves a safer, more predictable path for more casual, less-skilled
players. Perhaps just as importantly, though, they provide a way for your
more dedicated gamers to demonstrate and declare mastery over the game.

Unclear conseqUences
» Any first-year psychology student will tell you that the best way for
rewards and punishment to work as a modifier of behavior is to ensure that
the consequences are swift and directly related to an action. Whacking your
puppy on the nose with a newspaper won’t work unless you catch her in the
act of piddling on the rug. While game players are a bit more self-aware than
the average pup, designers can make their games much more powerful by
making the consequences of failure explicit.

In the early days of MMO development, designers theorized about
a virtual ecology. In this model, the virtual dragons would feast upon
electronic sheep. If no sheep existed in their hunting area, the dragon would
have no choice but to seek food in the village where players live. The moral of
the story is to not destroy your own ecosystem.

The problem is the average player’s inability to see the whole system.
He doesn’t know that killing sheep makes the dragon relocate—he may not
even know that there were ever sheep around at all. All he knows is that he
was one-shot by a dragon while trying to sell his gear to a vendor in newbie
village. The idea that another person he's never met could kill him by making
mutton chops half a mile away doesn't feel particularly fair.

This is a difficult problem, but not an insolvable one. MMOs with
complicated realm vs. realm combat such as eVe online and WarhaMMer: age
of reCkoning use political maps to show players’ land control, giving them
a global view of the actions of the community. WorlD War ii online goes
further—that game’s website allows players to see a history of how the front
of the war has shifted over time.

Big, Bold cHoices
» Interactive games are at their best when players learn by doing. For this
to work, though, players need a clear cause-and-effect for their actions.
Subtlety here is often wasted. Give players a choice between two relatively
minor stat penalties, and he will be left wondering if it was the right choice—
or whether the choice made any difference at all. In games like Dragon age:
origins and Mass effeCt, however, the big choices are black and white. He
doesn’t wonder if he made the right or wrong choice—he knows, as the
consequences of his actions have big, bold effects on the game world.

Too often, though, subtlety is lost within the noise of the simulation. Some
may decry this lack of subtlety of consequences, but I think that most players
approach games coming from a real world where their choices often have no
visible impact, or where the risks are simply too high for them to follow their
hearts. Providing an avenue for experimentation and release is one of the things
games do exceptionally well. Making the games that best provide this for the
player requires a well-designed carrot—and an equally well-designed stick.

damion scHUBerT is the lead combat designer of Star WarS: the Old republic at BioWare

Austin. He has spent nearly a decade working on the design of games, with experience on

Meridian59 and ShadOWbane as well as other virtual worlds. Damion is also responsible for

Zen of Design, a blog devoted to game design issues.

THe TrUTH of conseqUences

http://www.gdmag.com

AURAL FIXATION // VINCENT DIAMANTE

GAME DEVELOPER | APRIL 201046

SUBVERSIVE AUDIO DESIGN
USING AUDIO TO INFLUENCE GAME DESIGNERS’ CHOICES

YOU FIND YOURSELF WITH A
game in front of you, tasked
with its sound. Suddenly you
realize—the game design
could be much better!
Mechanics or art, character
designs or level layouts,
you can see just what the
game needs! Immediately,
you doff your “audio guy”
hat, don a super hero cape
and run off from your audio
workstation to alert the
designers about how they’re
doing their jobs wrong!

Or maybe you don't need
to be so dramatic. If you're a
company guy doing in-house
audio design, you might
already be part of a process
that allows you to have input
into the game design, and
it's just a matter of exercising
that ability. As an artist, you
have the ability to influence
people with your work in
some very subtle ways.

For some, it's as easy
as walking across the office
to the lead designer to give
them your piece on the
latest build. Early in my
career, I found that doing
that early and often in the
game process was at once
a great way of fostering the
collaborative spirit within the
team and a fine individual
morale booster.

THE OVERT APPROACH
» Nowadays, wikis are
the preferred method for
keeping a central design
document accessible to
the whole team. Sure, you
might still be trying to avoid
writing an audio function
spec, but it might be worth
the time to contribute to
the game design wiki with
some side notes on the

game components you've
observed. Or perhaps you
just want to quietly assert
your opinion on the current
state of the game.

Regardless, you do need
to strike a balance in terms of
how you present yourself. It
is far too easy to be received
as berating the design lead
for his decisions, or passive
aggressive, leaving notes in a
rarely read wiki for someone
to just wander across.

Sometimes a casual
remark on an individual game
system is enough to get the
designers' brains churning.
Similarly, letting someone
know you've made an update
on the wiki can actually draw
their interest. (Or maybe
they'll just be surprised that
someone is still using the
design wiki!)

Sometimes though,
saying your piece on the
game design isn't enough to
bring around the powers that
be to your way of thinking.
Or perhaps your working
situation isn't quite as I’ve
described above. As audio
guys, we can convince them
by working our preferred
medium.

THE SUBVERSIVE
APPROACH
» For a long time, artists
have enjoyed some sway
over game design. At this
very moment, artists
throughout the world
are telling their leads,
“Look at this awesome
weapon I designed!” and
subsequently changing the
direction of the game. (See
GOD OF WAR's chain sword.)
I say audio people have the
potential for their work to

exert similar influence.
Let's say you have a

platforming character action
that needs a sound. Attack,
jump, collect, defend, or the
like. If you design an action
sound that is cool, and
iconic enough, you might
find designers scrambling
to change their level layouts
to feature that action and
sound more often.

What if you think this
theoretical game is going
on the wrong path? Let's
say that right now, this
platforming action game
makes it easy for players to
brute force their way through
the stages, mindlessly
attacking individual drone
after individual drone until
there are no more to destroy.
But perhaps your gaming
background is a bit different,
and you’ve an affinity for
chaining systems and
combos, and you'd like to
have the game use some
of the techniques found in
twitch action games like
BANGAI-O.

No, you probably don't
want to suddenly turn this
platforming action game into
a scrolling shooter, but you
do want the player to move
in an elegant way, dancing
around the enemies, letting
them flirt with successfully
hitting you before you let
loose a single well-placed
attack that vanquishes
them all.

If you simply say this
to a designer, he might look
at you incredulously before
dismissing the notion as
too difficult to deal with.
Ideally, you would have a
prototype that shows the
designer that this could be

an interesting battle strategy
worth encouraging through
the game design. If you can't
do that, though, working that
perspective on the game
through the audio design can
be just as effective. In this
scenario, getting the designer
to realize that strategy could
be as simple as:

 » Tweaking the attack sound
to be more negative or less
overtly positive sounding
(perhaps making it sound
more similar to enemy
noises than the player's),

 » Tweaking the movement
sounds (running, jumping,
etc.) to be more obviously
interesting (perhaps with
more musical content, or
giving it a subtly shinier mix),

 » Creating a highly interactive
sound for the collection of
the enemies' reward drops
so that multiple collection
sounds simultaneously
are geometrically or even
exponentially more rewarding
than individual sounds.

After updating the build with
the new sounds, you might
find that people in the office
are playing the game in a
different way. As gamers,
we naturally allow all the
feedback in the game to
tell us how it is we should
play the game. Here, you've
designed the sounds in an
attempt to have them dictate
to the developers how the
game should be played. It
can be a subtle effect, and
it might take a while for
the change to take place,
but good developers will
eventually listen to what
the game is telling them. If
you notice a change in their
playstyle, this is when you
can propose your new idea.

You are the conduit
through which the game
“speaks.” You can let your
voice be heard.

VINCENT DIAMANTE is a music

composer and educator in the

Los Angeles area. He penned the

score for ThatGameCompany’s

FLOWER and currently teaches at the

Interactive Media Division at USC.

Email him at diamante@gmail.com.

BANGAI-O's combo-heavy mechanics might play well in a platforming
game—but how do you convince designers when it's so visually
intimidating?

mailto:diamante@gmail.com

IrvIne, CalIfornIa I austIn, texas I velIzy, franCe I Cork, Ireland

sInGaPore I shanGhaI, ChIna I taIPeI, taIwan I seoul, south korea

sao Paulo, BrazIl I Buenos aIres, arGentIna I MexICo CIty, MexICo

jobs.blizzard.com

©2010 Blizzard Entertainment, Inc. All rights reserved. World of Warcaft, Diablo, StarCraft and Blizzard Entertainment are trademarks
or registered trademarks of Blizzard Entertainment, Inc., in the US and/or other countries.

we are actively recruiting across all disciplines for the following locations:

®
®®

http://jobs.blizzard.com

game developer | april 201048

good JoB! Hired someone interesting? Let us know at editors@gdmag.com!

From Space to Face new studios

H i r i n g n e w s a n d i n t e r v i e w s

Tecmo veteran Tomonobu Itagaki
of DeaD or alive and NiNja
GaiDeN fame has formed a new
company, Valhalla Game Studios.
According to Famitsu Magazine,
Itakagi’s new house has already
reached 50 staff members.

Former Volition technical
designer Luke Schneider has
started a one-man indie studio
in Radiangames, where he
plans to release (roughly) one
game on the XBL Indie Games
platform per month, beginning
with twinstick shooter
raDiaNGames joyjoy.

Former Havok founders Steven
Collins and Hugh Reynolds have
formed Kore, which develops
Lua-compatible virtual machines
for developers.

Wii-focused studio Judobaby
has just been announced, with
a number of industry vets at
the helm, including president
and CEO Dan Mueller, formerly
of Bottlerocket, art director Ben
Harrison, previously at Crystal
Dynamics, and design lead
David Ralston, who has games
like PaPerboy and ramPart to
his credit.

CCP Games, developer of the
spacefaring MMORPG eve
oNliNe, opened a new UK studio,
which is at work on “current and
future” console projects.

Korean MMO company Bluehole
Studio has formed a new Seattle
subsidiary called En Masse
Entertainment that will focus on
localizing and marketing online
games to Western audiences.

Senior Rockstar Leeds
developers Lee Hutchinson
and Matt Shepcar have left the
company to start their own
independent studio, Double 11,
to focus on smaller projects, like
iPhone games.

Ultima creator garriott
discusses his new
social games venture
Portalarium now that
he's left nCsoft and
returned from his
space travels.

Brandon sHeffield:
What made you
decide to target the
Facebook market?
riCHard garriott: The
target is not specifically
Facebook; the target is
really the explosively
growing market,
what I’ll broadly call
the casual and social
network players. I look
at it and go, I feel like
I’ve lived through three
major shifts in the
game industry. Number
one is, of course, the
beginning of the game
industry! I was lucky
enough to be one of
the first developers of
games, so with that

came great opportunity
and revolutions.

The second one was
the emergence of online
gaming. I would argue
that Ultima Online was
a major stepping stone
in convincing people
that online gaming was
relevant. At the time,
I was trying to get it
going, no one supported
it. It was very hard to
get going, but when
it finally shipped, it
wound up making ten
times the revenue of
all the previous Ultimas
combined. That has
now, for the last decade,
been by far the biggest
growth area for gaming
overall. I mean, you look
at things like WOrld Of
Warcraft, and it’s now
10-to-100 times bigger
than Ultima Online.

If you look at this
new casual and/or
social media area of

gaming, a lot of people
still either poo-poo it or
don’t understand it, yet
the number of players
on these games is
dramatically in excess of
even things like WOrld Of
Warcraft. The amount of
money flow on this side
of the fence is already
dramatically in excess
of almost anything
any game developer
has ever developed
and still people in this
industry have the same
mentality they did with
online gaming before
all the models were
proven—“Oh, the quality
levels aren’t there yet"
or "the types of games
aren’t interesting to me
yet.” And I say yeah,
it’s true that it may not
be now, but I assure
you it will be, and very
soon. It’s one of these
coming juggernauts
that you need to learn
to understand and
participate in the
evolution of, or get
left behind.

Bs: I think there’s a lot
of reluctance based
on the fact that a lot
of developers make
the kinds of games
they want to play, and
your FarmVilles and
suchlike are not going
to fill that need.
rg: I agree! I don’t play
farmVille personally. But
I can tell you that as an
avid gamer, almost 100
percent of my gaming has
been done on the iPhone.
I’ve tried every portable
platform that’s existed
and none of them were
particularly good. Finally,

we have a platform where
lighter mobile games
are compelling, even
to a hardcore gamer.
What’s important to the
users is not the games
themselves, it’s their
friends. So the first thing
you have to realize is their
friendship, their networks
and their friends, that is
the dominant activity. So
to find them, you have to
go into that community.
Then, when you decide
that you want to present
them with something
that’s entertaining, you
have to be able to let
them share that content,
maybe send you a link.
You have to be able to try
it out for yourself with no
cost, never having to go to
a retail store, never sitting
with a long download,
never with an instruction
manual or a tutorial—you
have to be able to just sit
down and play it.

In my mind, every
online game we’ve ever
made to date would
be a better game if I
could pick it up for free,
if I could download it
immediately, if I could
launch it without any
installs, et cetera. So the
things the new market is
demanding are actually
a benefit to every game
we’ve already made
in history. And as you
make these games, a lot
of them will come along
for the ride. A lot of them
will become immersed in
gaming and want to play
more. Either way, it’s
going to be very market
expanding, and the
quality is going to go up
very quickly.

riCHard garriott joins tHe soCial network market

mailto:editors@gdmag.com

http://5thcell.com/jobs

http://www.gameloft.com
http://www.gameloft.com

http://gearboxsoftware.com/jobs

The sTudenT-builT game
Galactic arms race is the
intriguing result of ongoing
work from the Evolutionary
Complexity Research Group
(EPlex) at the University of
Central Florida. Starting with
the basic idea of an online
multiplayer space shooter,
Galactic arms race adds a
unique wrinkle to the com-
petitive formula by featur-
ing particle-based weapons
that evolve into novel con-
figurations during play.

We contacted Kenneth
Stanley, the team’s faculty
advisor, to find out more
about the automatic content
generation driving Galactic
arms race.

Jeffrey Fleming: Can you
tell me a bit about the team
that worked on Galactic
arms race (GAR)?
Kenneth stanley: The
team reflects the origin
of the game inside a
research group at the
University of Central Florida.
I supervised the project
as its faculty supervisor
and my Ph.D. student Erin
Hastings took the lead in
software development and
technology integration. The
project required integrating
novel AI technology
developed for the project

into the game. The rest of
the team was rounded out
by volunteers who were
mostly undergraduate
students interested in
gaining experience working
on a game. Overall, the
project represents a major
volunteer and educational
effort driven by people’s
passions, with little
financial support.

JF: What tools did the team
use to create GAR?
KS: GAR is made in XNA.
It also uses NEAT and
something called “NEAT
Particles,” which is a
technology developed
before GAR to allow NEAT to
evolve particle systems.

JF: What is the idea behind
the NEAT algorithm?
Ks: NEAT stands for
NeuroEvolution of
Augmenting Topologies.
I invented NEAT at the
University of Texas at
Austin when I was a Ph.D.
student working with my
advisor Risto Miikkulainen.
As its name implies, it
evolves artificial neural
networks, which are kind
of like little artificial brains.
The innovative aspect of
NEAT is that the brains it
evolves actually get bigger

as evolution progresses,
which is what the word
“augmenting” means in its
name. In simple terms, the
implication is that behaviors
can become smarter and
more complex over time.

NEAT is the core of the
algorithm that evolves the
weapons in GAR. Actually,
for GAR we introduced
a variant of NEAT called
cgNEAT, which stands for
“content-generating NEAT.”
Believe it or not, a neural
network evolved by cgNEAT
drives every particle in
every weapon in GAR. So
the neural networks are
actually controlling the way
weapons behave. Because
the weapons are evolving
through NEAT, their behavior
can become more complex
and intricate over time.

JF: How does cgNEAT
decide which weapon to
evolve in GAR and which
are dead-ends?
Ks: The way cgNEAT works
in GAR is that it tracks which
weapons people like by
observing which ones are
fired the most. Those that
are popular become the
“parents” of new weapons
that are spawned in the
galaxy. Thus the question
of which weapons evolve
is answered by which
weapons people like. If
people like them, cgNEAT
makes new variations of
them and spawns them in
the galaxy.

JF: Are the evolved
weapons specific to a
single instance of the
online game or are they
part of a persistent world?
Ks: In multiplayer mode,
the evolved weapons are

stored on the server, so
they generally persist as
long as the server. In that
sense, they are part of a
persistent world for each
server. So the interesting
situation is created in which
evolution can continue over
months or years.

JF: Is the neural network
very processor intensive?
Ks: In GAR, every single
particle from every evolved
weapon is controlled by a
neural network and even
when there are ten people on
the screen at the same time
all firing different weapons
at once over a network, GAR
players will not experience
any slowdown. So from that
perspective, today’s CPUs
are more than capable of
handling many simultaneous
neural networks being
activated at the same time.
Neural networks tend to be
compact and require only a
few floating-point operations,
so they can often be less
computationally expensive
than more traditional control
schemes. However, of course,
if neural networks are
allowed to grow very large,
they can start to be more

expensive. Yet that size is well
beyond what is needed for
the type of control in GAR or
many other games.

JF: How difficult was it to
integrate online play into
the game?
Ks: Integrating online play
was a challenge because
we had to get the system
to perform evolution over
the Internet, which means
that genomes and fitness
information literally have
to be sent back and forth
through messages over the
network. There is not much
precedent for a real-time
Internet-based evolutionary
system like that. For
example, if a player flies into
your view with a weapon
you’ve never seen before,
the neural network for that
weapon must be transmitted
to your computer right away
so that the other player’s
weapon looks the same
to you as it does to the
other player. However, once
the proper information is
set up to transmit to the
right places, the overall
evolutionary algorithm
works seamlessly and is not
hard to manage.

game developer | april 201052

edUCaTed plaY!

Galactic Arms Race

Galactic arms race
http://gar.eecs.ucf.edu

evolutionary Complexity
Research group at uCF
http://eplex.cs.ucf.edu/publications/2009/hastings.
ieeetciaig09.html

google groups: Procedural Content generation
http://groups.google.com/group/proceduralcontent

search-based Procedural Content generation
http://julian.togelius.com/Togelius2010Searchbased.pdf

Evolving thE ShootEr

e d u C a T i O n n e W s a n d s T u d e n T P R O F i l e s

resources

http://gar.eecs.ucf.edu
http://eplex.cs.ucf.edu/publications/2009/hastings.ieeetciaig09.html
http://eplex.cs.ucf.edu/publications/2009/hastings.ieeetciaig09.html
http://groups.google.com/group/proceduralcontent
http://julian.togelius.com/Togelius2010Searchbased.pdf

©
 2

01
0

Fu
ll

S
a

il,
 I

n
c

.

Game Art
Bachelor’s Degree Program

Campus & Online

Game Development
Bachelor’s Degree Program

Campus

Game Design
Master’s Degree Program

Campus

Game Design
Bachelor’s Degree Program

Online

fullsail.edu

Winter Park, FL

800.226.7625 • 3300 University Boulevard

Financial aid available to those who qualify • Career development assistance

Accredited University, ACCSC

Campus Degrees

Master’s

Entertainment Business

 Game Design

Bachelor’s

Computer Animation

Digital Arts & Design

Entertainment Business

Film

Game Art

 Game Development

Music Business

Recording Arts

Show Production

Web Design & Development

Associate’s

Graphic Design

Recording Engineering

Online Degrees

Master’s

Creative Writing

Education Media
Design & Technology

Entertainment Business

Entertainment Business:
with a Sports Management

Elective Track

Internet Marketing

Media Design

Bachelor’s

Computer Animation

Entertainment Business

Game Art

 Game Design

Graphic Design

Internet Marketing

Music Business

Music Production

Web Design & Development

>> GET EDUCATED

53A P R I L 2 0 1 0 | G A M E D E V E L O P E R

GDP GE RHP TEMPLATE 3/3/10 10:12 AM Page 44

http://fullsail.edu
mailto:alison_robb@gnwc.ca
http://mdm.gnwc.ca

Find out more.
vfs.com/enemies

Game Design at VFS shows you how
to make more enemies, better levels,
and tighter industry connections.

In one intense year, you design and develop

great games, present them to industry pros,

and do it all in Vancouver, BC, Canada,

a leading hub of game development.

Our grads’ recent credits include Prototype,

Mass Effect 2, and Dawn of War II. The LA

Times named VFS a top school “most favored

by video game industry recruiters.”

“The staff at VFS provided a foot in the door
that gave me an opportunity to prove myself.”

ARMANDO TROISI | GAME DESIGN GRADUATE
LEAD CINEMATIC DESIGNER, MASS EFFECT 2

V
F
S
 s

tu
d
e
n
t w

o
rk

 b
y
 Ju

lia
n
n
a
 K

o
la

k
is

GAME DEVELOPERS
CONFERENCE™

CANADA
Vancouver Convention Centre,
Vancouver, BC

www.gdc-canada.com

AUGUST 16–18, 2010

GAME DEVELOPERS
CONFERENCE™

EUROPE
Cologne Congress Center East,
Cologne, Germany

www.gdceurope.com

OCTOBER 5–8, 2010

GAME DEVELOPERS
CONFERENCE®

ONLINE
Austin Convention Center,
Austin, TX

www.gdcaustin.com

DECEMBER 5–7, 2010

GAME DEVELOPERS
CONFERENCE™

CHINA
Shanghai International
Convention Center,
Shanghai, China

www.gdcchina.com

FEBRUARY 28–MARCH 4, 2011

GAME DEVELOPERS
CONFERENCE® 2011
Moscone Center,
San Francisco, CA

www.gdconf.com

MAY 6–7, 2010

For updates and more information on our events visit www.tsgamegroup.com

>>
GE

T
ED

UC
AT

ED

54 A P R I L 2 0 1 0 | G A M E D E V E L O P E R

GDP GE LHP TEMPLATE 3/9/10 10:47 AM Page 54

http://vfs.com/enemies
http://www.gdcaustin.com
http://www.gdc-canada.com
http://www.gdcchina.com
http://www.gdceurope.com
http://www.gdconf.com
http://www.tsgamegroup.com

5th Cell . 49

Blizzard Entertainment . 47

E3 Expo . 6

Epic Games . 27

Full Sail Real World Education . 53

Gameloft . 50

Gearbox Software . 51

Havok . C3

Masters of Digital Media Program . 53

Nintendo of America . 3

Rad Game Tools . C4

Scaleform . C2

Trinigy . 17

University of Advancing Technology . 55

Vancouver Film School . 54

COMPANY NAME PAGE

ADVERTISER INDEX

Game Developer (ISSN 1073-922X) is published monthly by United Business Media LLC, 600 Harrison St., 6th Fl., San Francisco, CA 94107,
(415) 947-6000. Please direct advertising and editorial inquiries to this address. Canadian Registered for GST as United Business Media
LLC, GST No. R13288078, Customer No. 2116057, Agreement No. 40011901. SUBSCRIPTION RATES: Subscription rate for the U.S. is $49.95 for
twelve issues. Countries outside the U.S. must be prepaid in U.S. funds drawn on a U.S. bank or via credit card. Canada/Mexico: $69.95;
all other countries: $99.95 (issues shipped via air delivery). Periodical postage paid at San Francisco, CA and additional mailing offices.
POSTMASTER: Send address changes to Game Developer, P.O. Box 1274, Skokie, IL 60076-8274. CUSTOMER SERVICE: For subscription orders
and changes of address, call toll-free in the U.S. (800) 250-2429 or fax (847) 647-5972. All other countries call (1) (847) 647-5928 or fax (1)
(847) 647-5972. Send payments to Game Developer, P.O. Box 1274, Skokie, IL 60076-8274. For back issues write to Game Developer, 4601
W. 6th St. Suite B, Lawrence, KS 66049. Call toll-free in the U.S./Canada (800) 444-4881 or fax (785) 838-7566. All other countries call (1)
(785) 841-1631 or fax (1) (785) 841-2624. Please remember to indicate Game Developer on any correspondence. All content, copyright Game

Developer magazine/United Business Media LLC, unless otherwise indicated. Don’t steal any of it.

A P R I L 2 0 1 0 | G A M E D E V E L O P E R 55

DNA Genetics (OC)

www.uat.edu > 877.UAT.GEEK

ADVANCING COMPUTER SCIENCE > ARTIFICIAL LIFE >
PROGRAMMING > DIGITAL MEDIA > DIGITAL VIDEO >
ENTERPRISE SOFTWARE DEVELOPMENT > NETWORK

ENGINEERING > NETWORK SECURITY > OPEN SOURCE
TECHNOLOGIES > ROBOTICS & EMBEDDED SYSTEMS >

TECHNOLOGY FORENSICS > VIRTUAL MODELING &
DESIGN > WEB & SOCIAL MEDIA TECHNOLOGIES

GAME ART & ANIMATION
GAME DESIGN

GAME PRODUCTION AND MANAGEMENT
GAME PROGRAMMING

SERIOUS GAME & SIMULATION

[IT’S IN YOUR GENETICS]

[GEEKED AT BIRTH]

You can talk the talk.
Can you walk the walk?

Here’s a chance to prove it.
Please geek responsibly.

>> GET EDUCATED

GDP GE RHP AD INDEX TEMPLATE 3/11/10 9:44 AM Page 55

http://www.uat.edu
http://www.gamasutra.com/jobs

GAME DEVELOPER | APRIL 201056

ARRESTED DEVELOPMENT // MATTHEW WASTELAND

Dear Design Log,
One of our testers came up to
me today and said, “Remind me
why we have the fireballs in this
game?”

This guy obviously has a lot
to learn, especially if he wants to
be a designer like me. It’s obvious
that fireballs not only look cool,
they’re an important part of any
game that takes itself seriously.
What awesome game can you
think of that doesn't have some
kind of fire-based attack in it?
Correct. There isn't any.

After further argument, he said
there was no “use” for it—fireballs
damage enemies the same as the
sword. So I decided I would add
doors that only open when you
throw fireballs at them. That’ll be a
good reason to have a fireball spell.

—The Genius Game Designer

I was just playing WORLD OF
WARCRAFT when I was struck by
a flash of inspiration: our game
should have EPIC BATTLES.
Working on the e-mail to send to
the rest of the team now.

—The Genius Game Designer

Tomorrow will be the first playtest
session where we put this creation
in front of the unwashed masses. I
don’t understand what the point of
this is, but I guess the publishers
wouldn’t know brilliance unless
other people told them about it. It
sucks that I’m supposed to take
it seriously, though—they just
invite people in off the street!
How will rabble like that be able
to recognize my art, let alone
appreciate it? It’s ridiculous.

I asked the studio head why
they couldn’t recruit playtesters
who actually understood the kind
of game I’m making here. If we
got some of the people who post
a lot on the forums on my official
website, for example, I think we’d
get much, much better results.

It isn’t easy being a genius
game designer.

Dear Design Log,
Today I upped the damage on the
Sword of Cutting. But then it made
the enemies too easy, so I raised
their HP, too.

—The Genius Game Designer

Big meeting today to discuss what
we should do if the player doesn’t
time his or her Spell Ring correctly.
In order to really encourage them
to get it right, I proposed having
the spell damage the player
instead of the enemy, take control
away for 30 seconds while they
stagger around, and add the
failure to a permanent “number
of times failed” statistic that gets
uploaded to an online leaderboard
(“loserboard,” as I like to call it).

Some of the other guys were
wondering if that was too much,
but if there aren’t consequences,
it doesn’t matter, right? Plus, it’s
hilarious.

—The Genius Game Designer

Dear Design Log,
Just dealt with a bunch of playtest
feedback.

Some people said it was
unclear how to actually enter
the Temple of Sorrows, so I put
in a request for the sound guys
to record a line of your sidekick
saying, “Come on, we have to get
in!” which will repeat every 10
seconds. The urgency will prompt
players to figure it out faster.

There’s a lot of misunderstand-
ing about the use of fireballs,
even though the loading screen
with all of the controller mappings
CLEARLY states that fireballs are
used to open doors, not harm
enemies. Players are so stupid!
Anyway, I’ve now got some help
text set to pop up any time the
user hasn’t cast a fireball for more

than 30 seconds that says “Press
X to shoot fireball.”

I was upset with the
player's comments about being
“unengaged” with the story, so I
put in more detail as to why the
Chogoth Empire blockaded the
Council of Riversong in 523 Q.F.
and the resulting outcry from the
Keepers in some unskippable
scrolling text at the beginning
of the campaign. That will really
inspire players to rally to the
Baldonian cause!

—The Genius Game Designer

Time’s running out. I’ve got to
put the finishing touches on
this gameplay masterpiece
I’m creating. The EPIC BATTLES
that I wanted never really came
through even though, I wrote an
e-mail about it a long time ago. I
think I’ll quadruple the number
of enemies throughout the game
and increase the rate at which
they cast spells at the player to
once every couple of ticks.

Yeah, so, the lead programmer
yelled at me for trying to make
our game better. Whatever. It’s
his fault the lame engine can’t
handle the awesomeness. Going
to go complain to the studio head
tomorrow.

Dear Design Log,
Well, the reviews are in. I’m pretty
proud of what I did, but the game
didn’t score well because of the
bad tech we have and the fact that
the sound guys didn’t make the
spell effects loud enough. I need
to find a place that appreciates
my talent!

—The Genius Game Designer

MATTHEW WASTELAND writes about

games and game development at

his blog, Magical Wasteland (www.

magicalwasteland.com).

THE GENIUS GAME DESIGNER
CAUTION!! GENIUS AT WORK!!!!

http://www.magicalwasteland.com
http://www.magicalwasteland.com

http://www.havok.com

http://www.radgametools.com

	Contents
	Postmortem
	Sony Online Entertainment's Free Realms

	Features
	9th Annual Game Developer Salary Survey
	The Threads That Bind Us
	Interview: David Crane
	Lessons from Doom

	Departments
	Editorial
	Game Plan

	News
	Heads Up Display

	Review
	Tool Box

	Programming
	The Inner Product

	Art
	Pixel Pusher

	Design
	Design of the Times

	Sound
	Aural Fixation

	Career
	Good Job!

	Education
	Educated Play

	Humor
	Arrested Development

