
APRIL 2003

G A M E D E V E L O P E R M A G A Z I N E

L E T T E R F R O M T H E E D I T O R

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief

Jennifer Olsen jolsen@cmp.com
Managing Editor

Everard Strong estrong@cmp.com
Production Editor

Olga Zundel ozundel@cmp.com
Product Review Editor

Daniel Huebner dan@gamasutra.com
Art Director

Audrey Welch awelch@cmp.com
Editor-At-Large

Chris Hecker checker@d6.com
Contributing Editors

Jonathan Blow jon@number-none.com
Hayden Duvall hayden@confounding-factor.com
Noah Falstein noah@theinspiracy.com

Advisory Board
Hal Barwood LucasArts
Ellen Guon Beeman Monolith
Andy Gavin Naughty Dog
Joby Otero Luxoflux
Dave Pottinger Ensemble Studios
George Sanger Big Fat Inc.
Harvey Smith Ion Storm
Paul Steed Microsoft

ADVERTISING SALES
Director of Sales/Associate Publisher

Michele Sweeney e: msweeney@cmp.com t: 415.947.6217

Senior Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 828.350.9392

Account Manager, Northern California & Southeast
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Account Manager, Recruitment
Raelene Maiben e: rmaiben@cmp.com t: 415.947.6225

Account Manager, Western Region & Asia
Craig Perreault e: cperreault@cmp.com t: 415.947.6223

Account Representative
Aaron Murawski e: amurawski@cmp.com t: 415.947.6227

ADVERTISING PRODUCTION
Vice President, Manufacturing Bill Amstutz

Advertising Production Coordinator Kevin Chanel

Reprints Cindy Zauss t: 909.698.1780

GAMA NETWORK MARKETING
Director of Marketing Greg Kerwin

Senior MarCom Manager Jennifer McLean

Marketing Coordinator Scott Lyon

CIRCULATION

Group Circulation Director Catherine Flynn

Circulation Manager Ron Escobar

Circulation Assistant Ian Hay

Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes

t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas

t: 650.513.4234 f: 650.513.4482 e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall

Executive Vice President & CFO John Day

Chief Operating Officer Steve Weitzner

Chief Information Officer Mike Mikos

President, Technology Solutions Group Robert Faletra

President, Healthcare Group Vicki Masseria

President, Electronics Group Jeff Patterson

President, Specialized Technologies Group Regina Starr Ridley

Senior Vice President, Global Sales & Marketing Bill Howard

Senior Vice President, HR & Communications Leah Landro

Vice President & General Counsel Sandra Grayson

Vice President, Creative Technologies Philip Chapnick

W W W . G A M A N E T W O R K . C O M

✎

O nline gaming has been

one of the Internet’s earli-

est and most persistent

success stories, in both

commercial and commu-

nity terms — the evolution of massively

multiplayer online games (MMOGs) from

their MUD ancestors added a new dimen-

sion to the potential of the medium. For

the second or third time in recent memory,

2003 was supposed to be The Year of the

MMOG, with high-profile launches of

THE SIMS ONLINE (in December 2002) and

STAR WARS GALAXIES (scheduled for later

this year) bringing subscription-based

gaming to the masses and — ideally —

commensurate manna to developers and

publishers. Arriving alongside these two

giants is a slew of smaller, more diverse

offerings that developers swear will see

the light of day this year, and whispers of

other big-name licensed titles to follow

next year and beyond.

But with TSO faltering after launch,

GALAXIES scaling back on launch fea-

tures, and both trying to retain their

licenses’ luster, the reality remains that

online game consumers can afford to be

fickle in the vast expanse of the online

marketplace, to the detriment of develop-

ers who dutifully trawl message boards

for feedback from fans on every conceiv-

able nuance of a game before and after

release. Certainly a strong emphasis on

customer service is the right approach for

developers to take for subscription-based

business models, but I hope developers

can maintain the line between providing

good customer service on the subscrip-

tion side, and avoiding the invariably

dull result of trying to please all of the

people all of the time on the design side.

It still takes a strong creative vision to

engage and retain players in any medium,

one that may not suit every potential

mainstream user. I wonder if that is what

has kept past successful MMOGs such as

EVERQUEST and ULTIMA ONLINE in niche

fantasy genres. Ultimately players judge

an online game’s community as much as

the game it surrounds; developers

increase the variables by throwing the

doors open wider. There remains a huge

payoff for whoever gets the equation to

balance out between a community’s

potential size and the members’ sense of

affinity that makes it a community in the

first place.

Baca watch. Last year, many of you

responded to my call (“So It’s Come to

This,” Game Plan, July 2002) to write to

your member of Congress and introduce

yourselves and your profession. Not with

any specific political agenda in mind, but

as a means to open a line of communica-

tion between your representative and a

part of his or her constituency that does-

n’t necessarily keep its hair-trigger finger

on the moral panic button, that also con-

tributes favorably to the local economy

while nurturing a nascent art form right

there in his or her district.

What prompted last year’s column was

Rep. Joe Baca’s (D-Calif.) Protect Our

Children from Video Game Sex and

Violence Act of 2002, which was ill-timed

on the heels of some other policy deci-

sions unfavorable to the current state of

game industry self-regulation. At the time

it was introduced last May, it seemed

likely Baca’s bill would simply languish in

committee and die, which it did in the

House Judiciary Subcommittee on Crime,

Terrorism, and Homeland Security.

At the time of this writing, Baca was

poised to reintroduce a new version of

last year’s bill into the new Congress,

which aims to criminalize retailers who

sell mature-rated games to minors. One

would be hard-pressed to find anyone

who thinks that children should buy

age-inappropriate games intended for

adult sensibilities, but we’re letting our-

selves be lumped in with pornography

(which is illegal under federal law to

peddle to minors, for understandable

reasons), not movies, television, music,

and other mainstream forms of enter-

tainment (which remain self-regulating).

It’s a harmful association that we need

to combat.

600 Harrison Street, San Francisco, CA 94107 t: 415.947.6000 f: 415.947.6090

4

Game Developer
is BPA approved

G A M E P L A N

Jennifer Olsen

Editor-In-Chief

M. M. Oh, Jeez

www.gdmag.com

Telling Stories

I wanted to share some ideas about

Heather Kelley’s “Narrative Games:

Finding Another Side to the Story”

(Soapbox, February 2003). I agree on

some of the main points but would like

to share an alternative viewpoint on

some others.

While I agree that narrative is very

powerful, I lean more toward the idea

that games can be powerful by being

generally expressive. For example, a

painting can be expressive. It can direct-

ly evoke emotions with no apparent

narrative. Consider MEDAL OF HONOR’s

first level, which is actually detached

from the main narrative. While it tells a

mini-narrative (soldiers storm the beach)

the power lies not so much in the narra-

tive (the story of soldiers storming the

beach has been told many times) but in

the raw emotional experience.

In the section called “Design for player

expression,” Kelley suggests that we create

tools that allow players to “inject them-

selves into the story, supporting a broader

freedom.” Another approach to drawing

the player into a game is taking control

away. Again, look at the first level of

MEDAL OF HONOR, considered by some to

be a most memorable moment in gaming.

Players have very little control over that

level. They cannot shoot the German

machine gunners, save their squadmates

as they are mowed down, or even run too

far left or right without stepping on a

mine. During the first half of that level,

players can only look around (the begin-

ning tram ride of HALF-LIFE is equally

non-interactive.) While it may seem coun-

terintuitive to take control from players,

the point of a narrative or other expres-

sive medium is to communicate ideas

between people. Sometimes achieving this

goal requires taking away some control

from players.

Another way to make a narrative

game easier to develop is to simply

shorten games. A movie expresses its

narrative successfully in two hours. A

short computer game usually runs at

least 10 hours. The idea that games

should last at least 10 hours forces us to

dilute the narrative with unnecessary

action sequences, puzzles, or other beta-

wave-type gameplay. Make games short-

er and charge less for them. To make

this economically reasonable, develop-

ment houses will have to invest once in

technology, then reuse the technology

for many short, expressive games. Doing

so will have the added benefit of helping

with cash flow problems (less develop-

ment time per title, more cash flow) and

reduce risk for publishers (publishers

can take a risk on a small, cheaper indie

game if they are also publishing 10

other small titles at the same time).

Also, we shouldn’t make replayability

a top-order goal. If our purpose is nar-

rative, it’s O.K. if the player only plays

through once. I’ve only seen a lot of my

favorite movies only once or twice. I

don’t need to play my favorite game

234,908 times.

Thank you for an informative article.

Alexander Jhin

via e-mail

Ratcheting up the Bar

I just read John Lally’s article “Giving

Life to RATCHET & CLANK: Complex

Character Animations” (February 2003).

To make a long story short, using proto-

typing and MEL makes sense. After read-

ing Lally’s article, I thought, “Insomniac

has just set the status quo for how other

game developers are going to create.”

Why doesn’t anybody else use logic when

innovating the next level?

I really enjoyed the description of the

use of use of prototyping, which as an

artist sounds like a dream tool to work

with. Thanks to Lally for disobeying

Grandma and using translation and

scaling commands.

Lally also mentions scripting facial

presets using MEL. Like the article states,

the intricate detail paid to facial expres-

sions was a key factor in my interactivity

with the characters.

Ian Johnston

via e-mail

Insomniac Inspiration

I just finished reading “Giving Life to

RATCHET & CLANK: Complex

Character Animations,” and I wanted to

thank John Lally for writing one of the

best articles I’ve read in the magazine.

I am currently setting up the charac-

ter animation pipeline for a startup

game development studio, and the arti-

cle has given me many ideas on what I

can do to streamline the process. Of

particular interest to me are the process-

es for animating walk animations and

setting up facial animation controls. It’ll

be interesting to see if I can simulate

those tools for my project.

Danny Ngan

via e-mail

a p r i l 2 0 0 3 | g a m e d e v e l o p e r6

S A Y S Y O U
A F O R U M F O R Y O U R P O I N T O F V I E W . G I V E U S Y O U R F E E D B A C K . . .C

C
Let us know what you think: send us e-

mail to editors@gdmag.com, or write to

Game Developer, 600 Harrison St.,

San Francisco, CA 94107

While I agree that narrative is very powerful, I
lean more toward the idea that games can be

powerful by being generally expressive.

3D file format forum launched. Intel recently

launched the CAD-3D for Games forum

on its site, www.intel.com, to aid discus-

sions about an open, standard file format

for 3D games. It will be hosted by Intel

Developer Services and be monitored and

moderated by the CAD-3D Working

Group. According to the group, there are

more 3D objects in the CAD world than

anywhere else, and it hopes to set a stan-

dard file format that will result in a

wider selection of objects for both game

developers and architects.

PC graphics hardware sales increased in Q4
2002. According to reports from Jon

Peddie Research, the PC graphics hard-

ware market increased by 13 percent from

Q3 to Q4 2002. JPR estimates that 53

million PC graphics devices were shipped

in that time period, with the largest slice

of the market going to Nvidia, who had

32 percent of the total unit shipments.

Intel was second in units, and ATI was

third. The growth of the hardware was

spread evenly between mobile and desk-

top graphics chips and between graphics

chips integrated with the motherboard

and discrete add-in graphics system.

Infogrames unloads MacSoft. Infogrames

recently sold MacSoft to Destineer, a pri-

vately held game developer and publisher

owned by Peter Tamte, who started

MacSoft in 1993.

Electronic Arts posts record results, consoli-
dates offices. Electronic Arts announced

revenues for fiscal Q3, which ended

December 31, hit a record $1.23 billion,

up 48 percent over last year. Net income

reached $250 million, up 89 percent

from 2001. According to the company,

this marks the first time a third-party

publisher has reported a billion dollars in

revenue in one quarter. EA said that 11

titles, including HARRY POTTER AND THE

CHAMBER OF SECRETS, FIFA SOCCER

2003, MEDAL OF HONOR: FRONTLINE,

LORD OF THE RINGS: THE TWO TOWERS,

and seven others sold more than one mil-

lion units during that quarter.

EA also announced it was consolidat-

ing offices, merging its Westwood Las

Vegas, Los Angeles, and Irvine offices

into one central Los Angeles location.

Games sales up, hardware revenue down.
The NPD Group released year-end 2002

sales numbers for the U.S. game hard-

ware, software, and accessories markets,

showing that the game industry generated

over $10 billion in sales, breaking 2001’s

record of $9.4 billion. Game software

sales grew by 21 percent, selling 15 per-

cent more units than in 2001. On the flip-

side, game hardware revenue declined

slightly, from $3.7 billion in 2001 to $3.5

billion in 2002. Unit volume was up,

though, by 10 percent.

Activision teams up with Dreamworks SKG.
Activision has joined Dreamworks SKG

in a multi-year, multi-property publishing

agreement. The deal grants Activision

exclusive interactive rights to a trio of

upcoming computer-animated motion

pictures: Sharkslayer, Madagascar, and

Over the Hedge, with Sharkslayer sched-

uled for a 2004 release. q

Send news items and product
releases to news@gdmag.com.

a p r i l 2 0 0 3 | g a m e d e v e l o p e r8

Titles such as HARRY POTTER AND THE CHAMBER OF

SECRETS helped Electronic Arts reach record
revenues in Q3.

TTHHEE TTOOOOLLBBOOXX
D E V E L O P M E N T S O F T W A R E , H A R D W A R E ,
A N D O T H E R S T U F F

Havok unleashed. Havok recently

released Havok 2, an updated physics

tool for game developers. The update

includes new character and vehicle kits,

and, according to the company, the new

version will offer up a tenfold speed

increase on target platforms. Other fea-

tures include toolchain integration amd

cross-platform support.

www.havok.com

Turbo Squid to be publisher and distributor.
Turbo Squid announced they will be

the exclusive distributor and publisher

for official Discreet 3DS Max plug-ins.

Their first plug-in through the deal

will be Cebas’s finalToon, a cartoon

and illustration tool that lets anima-

tors adjust line styles in realtime with-

out having to re-render scenes.

www.turbosquid.com

I N D U S T R Y W A T C H; K E E P I N G A N E Y E O N T H E G A M E B I Z | e v e r a r d s t r o n g

P
B U P C O M I N G E V E N T S

CCAALLEENNDDAARR
G A M E D E V E L O P E R S W O R L D

BELLA CENTER

Copenhagen, Denmark
May 8–10, 2003
Cost: variable
www.gd-world.com

E 3
LOS ANGELES CONVENTION CENTER

Los Angeles, Calif.
May 13–16, 2003
Cost: Free–$550
www.e3expo.com

W hen considering an

IDE, I look at

every feature and

every nuance; tools

are a very personal

agenda. Being a hardcore command line

user, I enjoy using a properly configured

makefile and build script, so what I want

is an IDE that will perform the exact same

actions, and have them be just as script-

able but presented in a more intuitive way

than obscure text commands.

I’ve used Metrowerks’ CodeWarrior

off and on since the earliest Apple Mac

days and on numerous projects for Game

Boy Advance, Gamecube, PSX, and

Playstation 2. For Playstation develop-

ment it was always the tool of last resort,

when you couldn’t get your regular tools

to talk to the DTL-2000.

Version 9 changes a lot of the underly-

ing architecture from earlier versions,

while leaving in place everything that is

familiar to people who use it on a day-

to-day basis.

CW9 is still showing its Mac roots, but

Metrowerks is slowly engulfing them with

its bigger goal: to create a unified host

development environment for an unde-

fined number of target platforms.

To achieve this goal, Metrowerks has

adopted a flexible, and copiously docu-

mented, plug-in architecture. Their philos-

ophy began appearing in earlier versions,

and 9.0 completes the transition. Almost

everything in the IDE, including the com-

piler, is a replaceable plug-in.

Seasoned developers want to see the

IDE perform on a familiar code base,

watch to see how it handles your pro-

ject’s unique issues. They realize that run-

of-the-mill publisher samples don’t really

exercise the toolset. They have questions:

What’s it doing? How is it doing it?

What are these options for?

There are a lot of Motorola 68K

options, and very few for the new ARM.

Also, the compiler only accepts inline

68K, even though it’s possible to generate

ARMlets, Palm’s crippling attempt at

exploiting the ARM.

Metrowerks has finally dropped

Constructor by shipping the eminently

usable PilRC resource editor. However,

realizing that some developers are still

using Constructor for projects under

development, it is installed and available

from the Windows Start Menu.

The IDE allows the import and export

of configuration data. Manipulating IDE

configurations via a script for a project is

a feature that’s extremely useful when

needed. CW9 also stores the configuration

data in easily parsed XML rather than an

obscure, undocumented, ever-changing

binary format.

The compiler generates code a little

slowly. I didn’t have time to perform

proper timings other than cursory experi-

mentation, but CodeWarrior takes longer

to output the same amount of code than

GCC for the same target CPU, with my

GCC system performing more intermedi-

ate work. And still, GCC is several sec-

onds faster. Looking over the assembly

output, CW9 generates more CPU

opcodes per source line, and uncapping

the frame sync on my project didn’t

prove anything conclusive.

CW9 ships with two flavors of version

control through plug-ins, VSS and CVS.

a p r i l 2 0 0 3 | g a m e d e v e l o p e r10

Metrowerks’ CodeWarrior 9
for Palm OS

by justin l loyd

XXT H E S K I N N Y O N N E W T O O L S
P R O D U C T R E V I E W S

J U S T I N L L O Y D | Justin has over 18 years of commercial game programming experi-
ence on almost every released platform.

CodeWarrior 9 for Palm OS is designed around a flexible plug-in architecture.

Whichever solution you require, you still

don’t move completely away from the

native toolset, the CW plug-in merely

allows the IDE to talk to the back-end

versioning system. CW9 can also integrate

with Perforce and ClearCase via plug-ins.

The usual way of developing for Palm

OS is to run your code on an emula-

tor/simulator, but the real world requires

you to download to hardware regularly.

Metrowerks has done its best by provid-

ing several ways to connect to the target.

This is where CodeWarrior shows its

strength. The integrated source level

debugger supports C or C++, with native

support for the Dragonball xZ 68K CPU

line. There is no debugging support for

either ARM assembly or ARMlets.

Connection is made via the Hotsync

cable utilising serial or USB. It’s not pos-

sible to debug all hardware configura-

tions, some devices do not allow remote

debugging, the list of which can be

found in the documentation. This

incomplete coverage poses a problem as

I’m currently developing an application

for the Sony NX70V and am unable to

debug either my GameCon peripheral or

the camera code. CW9 supports an

external debugger, such as Insight, run-

ning on top of GNU GDB.

CodeWarrior’s editor has always been

its biggest weakness, and version 9 does-

n’t improve on it much. The editor does

provide most of the expected features,

but half-heartedly. Code completion was

clunky at best, unable to tell you either

the parameters a function expects or the

members a class or structure has defined;

auto-indenting is primitive; syntax high-

lighting lacks sufficient granularity; brace

and bracket balancing generates annoy-

ing delays in the default configuration

and is fond of losing typed text; open

#include works if you highlight the entire

filename or just the base name, sans

extension, as long as you don’t have a

file with “multiple extensions,” for

instance “foo.bar.h”; there’s no “Delete

Line” capability in the text editor.

The comprehensive Palm OS SDK

documentation has been integrated in to

the IDE. The documentation is accessible

from the code editor, highlighting an API

call or structure name and pressing F1

brings up the appropriate help page. The

Metrowerks documentation covers a lot

of ground, including embedded C and

C++ usage.

CW9 includes the usual wizards for

generating new projects, useful for creat-

ing a simple application or shared library.

The documentation also includes compre-

hensive tutorials on using the wizards and

setting up projects.

The IDE integrates a “graphical” file

diff utility which is quite usable, generat-

ing the list of differences also in text.

One of CW9’s most powerful features

XP R O D U C T R E V I E W S

a p r i l 2 0 0 3 | g a m e d e v e l o p e r11

is its support for Windows Scripting

Host. Using any WSH 2.0 compatible

scripting language, such as VBScript,

you have automated control over the

IDE and compiler. Coupled with the new

command line features, this helps CW9

to integrate into a professional develop-

ment environment.

Along with the standard Palm SDKs,

Metrowerks ships Sony’s, plus sundry

others. It also includes the Palm Object

Library (POL), an MFC for Palm with-

out all the messiness. POL wraps the

API calls and structures in logical C++

classes, but how wise this decision is I

cannot say. I think the library needs

more maturity and real-world usage

before I would consider using it in a

commercial project.

DISCREET’S
CHARACTER STUDIO 4

by michael dean

C haracter Studio 4 is the latest

release of Discreet’s popular charac-

ter animation package for 3DS Max.

CS4 finally brings nonlinear animation

(NLA) to 3DS Max. The interface to the

NLA system is through the new Mixer;

the Mixer panel contains a track-editing

system similar to that found in the stan-

dard trackview, but the difference is that

animators can control the motion of

character bones (either all of them or a

subset), through clips, layers, transitions,

and weighting curves. While the inter-

face is a bit unfriendly and not intuitive

at first, it’s very powerful, and can be

creatively used to spawn a huge number

of animations out of just a handful.

Another new feature is the integration

of Biped data into the trackview.

Movement, rotation, scaling, and con-

trollers can all be applied to Biped

objects and modified using their new

standard curves in the trackview. Add-

itionally, Discreet has added an anima-

tion Workbench to the interface. The

Workbench is a version of the track-

view, enhanced to provide features only

available in Biped. These unique fea-

tures include the new motion analysis

tools, which can be used to scan over

animations and check for potential

problems such as motion spiking; fixes

to found problems can be applied auto-

matically, by hand, or completely

ignored. As with the Mixer interface, all

editing can be done while animation is

being played, for immediate feedback.

The crowd system is another major

new feature in CS4. Creating a crowd is

a lot like creating particle systems, com-

plete with influences, behaviors, and

physics. The “particles,” called

Delegates, control the characters of your

choice. The characters can be given a set

of standard behaviors, and can also be

given individuality and complex reac-

tions to their environment via the

Motion Flow network. Setting up this

network is a lot like scripting: you give

your characters several choices of which

animation to play when dropped into an

action/reaction environment.

A simple but welcome addition is a

more contoured and less intrusive Biped

skeleton. Animating while referencing the

improved skeleton is much easier than

with the old skeleton, as now you can

tell at a glance in which direction every-

thing is pointed. (The classic skeleton is

still available to those who want it.)

The copy/paste functionality has been

very much improved. Copying a pose or

a posture now results in a clip being

brought into a large clipboard (which

can be saved to be used on any charac-

ter), and displays each pose with a visu-

al thumbnail. Copying a pose no longer

overwrites the previously copied pose;

now you can choose poses to paste from

a simple list.

The Physique modifier has remained

largely unchanged. Whether that is a

good thing or not depends upon personal

preference.

CS4 still is best in its class in terms of

functionality, stability, and user-friendli-

ness. The addition of NLA alone is well

worth the price of admission ($995 plus

a seat of 3DS Max 5.1 for Windows

2000/XP), and gives animators a lot

more freedom and ability to create

unique motion sets with a minimum of

tedium and frustration. q

XXXXX | Character Studio 4
Discreet | www.discreet.com

Michael Dean is currently an artist at
Ion Storm in Austin, Tex.

XP R O D U C T R E V I E W S

a p r i l 2 0 0 3 | g a m e d e v e l o p e r12

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

CODE WARRIOR 9
FOR PALM OS XXX]

STATS
METROWERKS

Austin, Tex.
(800) 377-5416 or (512) 997-4700
www.metrowerks.com

PRICE
$399 for new users, $199 for upgrades

SYSTEM REQUIREMENTS
Intel Pentium or AMD K6 equivalent and
64MB of main memory, Windows
98/Me/2000/XP or NT 4.0 with SP6, CD-
ROM drive for installation, and 380MB of
free hard drive space.

PROS
1. Familiar environment when you move to

other target platforms.
2. Large amounts of documentation

including a well-documented plug-in
architecture.

3. Source level debugger supporting C,
C++, 68K, and ARM.

CONS
1. Incredibly primitive code editor.
2. More support for 68K than ARM.
3. Did I mention the incredibly primitive

code editor?

The Motion Mixer is the heart of the NLA sys-
tem. The red curve indicates the influence of
one clip over another in a given track.

I f you’re reading this while at the 2003

Game Developers Conference, you

may have had the chance to check out

the demoscene reel. It has proven so

popular over the last couple of confer-

ences that it’s been made a prominent part of

the newly installed Game Theatre this year.

Aaron Foo, currently a member of Sony

Computer Entertainment America’s R&D

group, has also been an active participant and

proselytizer of the demoscene movement, and

was nice enough to give Game Developer
answers to some questions we had about the

scene, its members, and how it’s affected the

game industry.

Game Developer: Describe, in brief, what the
demoscene is all about, its history, and your involvement in it.

Aaron Foo: The short answer: It’s a community of people fas-

cinated by computers, digital art, real-time graphics and design,

programming, 2D and 3D art, electronic music, and by people

who enjoy fiddling with data bits on some obscure piece of

hardware. The ultimate result of their tinkering is called a

demo, a stylish, usually abstract, real-time visual treat synchro-

nized to music. The demoscene has allowed many of its mem-

bers to find and develop skills that often lead to a professional

game development career.

The scene has been around forever, since people first started

fooling around with the code on early gaming consoles.

I’ve been involved in the scene for about 10 years now

(scary), and I still find time to participate in the Demoscene

Outreach Group.

GD: The demoscene is very popular over in Europe where they
host actual scener parties, but not in the United States. Why is
this? Do you see this tide changing?

AF: Touchy subject! This has been the center of many flame

wars over the years. Different people have different theories,

but I honestly think it’s a cultural and momentum thing. There

are plenty of people with the dedication and skills to make

demos here in the States, they just choose to apply those talents

to something else.

The first U.S. demo party in many years will occur in August

2003. Hopefully this will kick-start more demoscene activity in

the U.S.

GD: What can people expect from the demoscene reel at this
year’s Game Developers Conference?

AF: We’ll have a good mix of the latest intros (size

optimized), demos, wild demos (non-real-time), and a few

other completely crazy things thrown in. Ever wondered

what 80¥50 ASCII demos look like, or

what you can do with 128 bytes? You’re

going to find out.

GD: What role does the GDC play in the
demoscene’s ongoing development?

AF: Events like the GDC and SIGGRAPH

help show the raw talent of many people in the

scene, and give them a foothold to start a

career in the game development industry.

GD: There are different categories for projects
to be classified into. Which ones are the most
common?

AF: There’s a typical 4KB intro category,

but lately there’s been a surge in 256-byte

demos. I’ve also seen a few 128-byte demos

around too.

GD: What were the early days of the demoscene like? Has the
scene transformed along with the technology? If so, has it been for
the good?

AF: The scene has definitely transformed from those days of

people working on the Atari, VIC20, C64, the Amiga, PCs, and

consoles. I think the early days were the best. Before the Internet

we had a BBS to connect with each other, making it a lot more

local. Now sceners create on anything that has a processor and a

display device. Hopefully, the scene will never grow up, because

half the fun of it is creating something for no other reason than

the “cool” factor, to do it just because you can, and to impress

your peers. If the scene grows up, and becomes serious and com-

mercial, then it will most certainly die.

GD: What surprises you still about the scene and its members?
AF: How stubborn people are in sticking to prehistoric hard-

ware and platforms; people are still writing demos for the

Commodore 64.

GD: What are some of the lessons one can learn by being involved
in the demoscene?

AF: The most important thing the demoscene teaches is,

“Teach thyself.” Much of the scene is about being self-taught,

learning and exploring how to do things on your own, without

teachers, lectures, or reference books. This, I think, is the most

valuable skill you can gain in the demoscene. q

a p r i l 2 0 0 3 | g a m e d e v e l o p e r14

P R O F I L E S
T A L K I N G T O P E O P L E W H O M A K E A D I F F E R E N C E | e v e r a r d s t r o n g

Be a Part of the Scene
Aaron Foo Talks about the Demoscene

Sony’s Aaron Foo is a friend to the
demoscene on U.S. shores.

F O R M O R E I N F O R M AT I O N

The Demoscene Outreach Group: www.scene.org/dog
A showcase of 256-byte demos: www.256b.com
The Mind Candy DVD site: www.mindcandydvd.com/scene

L ast month I started building a

unified LOD system. My

intention is to create a general-

ized method of LOD manage-

ment that works for environ-

ments, objects, and characters. Traditional

LOD systems tend to be complicated and

can impose difficult constraints on mesh

topology or representation. To prevent such

impediments, I want to make the LOD sys-

tem as simple as possible.

I chose static mesh switching as the

underlying LOD method. Last month I

discussed the basic technique of generating

blocks at various levels of detail and

building seams between the blocks to prevent holes from

appearing in the world. But this technique alone is insufficient;

switching between static meshes will cause visible popping in

the rendered image, so I need to address that problem.

Preventing Popping

T here are three methods that are often used to prevent pop-

ping. I’ll call the first method “incremental transitioning.”

The idea behind incremental transitioning is to pop only small

subsets of a mesh each frame, in the hope that the small pops

will be nearly invisible. Continuous LOD and progressive mesh

systems employ this idea. However, as I treat all meshes as atom-

ic objects in my algorithm for maximum simplicity, incremental

transitioning is not possible here.

The second method is geomorphing, in which we move the

vertices slowly from their positions in the low-resolution shape to

their positions in the high-resolution shape (or vice versa). The

third method is color blending, whereby we draw the block at

both levels of detail and interpolate between the resulting colors.

Deciding between geomorphing and color blending, I chose

color blending. I’ll justify my decision later, but first I want to

talk about the basic implementation of the color blending tech-

nique. My later justification is necessary because color blending

may at first glance seem wacky and inefficient.

Color Blending: The Basic Idea

W ith color blending, we want to transition between LODs

by rendering each LOD individually, then blending the

output colors at each pixel. On DirectX 8–class hardware and

earlier systems, we would do this using alpha blending to cross-

fade between the meshes, while doing some tricks to ensure that

reasonable values end up in the Z-buffer.

Given DirectX 9 or above, with multiple render targets, color

blending becomes easy. So I’ll concentrate on the trickier imple-

mentation with DirectX 8 and earlier.

The basic method I use for the blending was recently reintro-

duced to me by Markus Giegl (see For More Information),

though I swear I saw it a while back in some publication like the

ACM Transactions on Graphics. We could imagine naively cross-

fading between the two LODs; this would involve drawing one

LOD with an alpha value of t, and the other with alpha 1 – t
(Figure 1a). Neither mesh would be completely opaque, so we’d

be able to see through the object to the background. That’s not a

workable solution.

Giegl proposes altering the cross-fading function so that one of

the meshes is always opaque (Figure 1b). We fade one mesh in,

and only once it becomes completely solid do we begin to fade

the other mesh out.

I do things differently from the way Giegl proposes in his

paper. When drawing the translucent mesh for any particular

block, I found that if I left the Z-buffer writes turned off,

unpleasant rendering artifacts occurred, since distant portions of

the translucent mesh often overwrote nearby portions. We could

solve this problem by sorting the triangles in the translucent mesh

w w w . g d m a g . c o m 17

J O N A T H A N B L O W I You can contact
Jonathan at jon@number-none.com. Rock
over London; rock on, Chicago. Bandini is
the word for fertilizer.

Unified Rendering LOD
Part 2

FIGURE 1A (left). The usual cross-fading alpha blend function; it is not suitable for use here,
since it doesn't result in the rendering of opaque terrain. FIGURE 1B (right). Blend function
modified to ensure that at least one block is opaque at all times.

j o n a t h a n b l o w I N N E R P R O D U C T

by distance, but that’s a very slow process. Instead, I render the

translucent mesh with Z-buffer writes enabled. Technically this is

still not correct, since self-occluded portions of the translucent

mesh may or may not be drawn. But on the whole, this incorrect-

ness is unobtrusive. Giegl’s paper suggests disabling Z-writes for

the translucent meshes, which I cannot believe produces good

results for nontrivial scenes.

It’s important that I render the translucent mesh after the

opaque mesh; otherwise the Z-fill from the transparent mesh

would prevent portions of the opaque mesh from being ren-

dered, creating big holes. This rendering order creates an

interesting problem. When the blend function in Figure 1b

switches which mesh is opaque, I need to change the order in

which the meshes are drawn. At first A is transparent and B is

opaque, so I draw B first, then A. Then A becomes opaque, so

I draw A first, then B. Interestingly, no consistent depth test

function can be used to prevent popping. Consider the pixels

of A and B that have the same Z values; that is, the quantized

intersection of A and B.

If we render the meshes with Z-accept set to <=, then these

intersection pixels will be filled by A immediately before the

switch, and filled by B immediately after the switch, causing a

pop. If the Z-accept is <, then the pixels where Z is equal will

show as B before the switch, and A afterward. To circumvent this

problem, I switch the Z function when I switch the mesh render-

ing order. Before the switch-over, I render with Z-accept on <=;

after the switch-over, I render with Z-accept on <. Thus the inter-

section pixels are always filled by A.

We will still have some Z-fighting after we have completed all

these steps, because we are rendering a lot of intersecting geome-

try. But in general the Z-fighting doesn’t look too bad, since the

LODs tend to be similar. On higher-end hardware, we can

increase the precision of the Z-buffer to mitigate this problem.

A terrain scene like Figure 2a will contain some blocks that are

transitioning between LODs, and some that are not. First, I ren-

der nontransitioning blocks as completely solid; these are very

fast, since we’re just doing vanilla static-mesh rendering (Figure

2b). Other blocks are either “fading in” (Figure 2c) or “fading

out” (Figure 2d); each of these types of blocks is rendered

translucently after the corresponding opaque mesh is drawn.

If we’re not careful about rendering order, we will have prob-

lems where we render a translucent block and then a solid block

behind it, causing pixels in the solid block to Z-fail. To prevent

this problem, we can render all the solid blocks first, and then

render the translucent blocks back-to-front.

You might think that color blending would be much slower

than geomorphing, since we are rendering more triangles for

transitioning objects, and rendering twice as many pixels. But as

I’m about to show, the vertex and pixel shaders for color blend-

ing are simpler and faster. As it turns out, the cost for geomorph-

ing can approach the cost of rendering geometry twice.

Geomorphing: The Basic Idea

The most straightforward way to perform geomorphing is to

interpolate the vertex positions every frame on the main

CPU, then send the resulting triangles to the graphics hardware.

This method results in slow rendering; to render quickly, we

want all the geometry to reside on the GPU.

With modern vertex shaders such as DirectX 9’s, we can inter-

polate the geometry directly on the hardware. To do this we must

store position data for both LODs in the data for each vertex,

because vertex shaders provide no way of associating separate

vertices. Then we use a global shader parameter to interpolate

between the positions.

This vertex shader will be longer and slower than a shader

that renders a non-geomorphed mesh. Hopefully, much of the

time we will be drawing non-geomorphed meshes, and we

only activate geomorphing during the short transition from

one LOD to another. So we will write two vertex shaders, a

a p r i l 2 0 0 3 | g a m e d e v e l o p e r18

I N N E R P R O D U C T

FIGURE 2A (top left). A simple terrain scene. FIGURE 2B (top right). The non-transitioning blocks of the scene are rendered once, opaque, with a
simple shader. FIGURE 2C (bottom left). The "fading-out" blocks (represented by the red line from Figure 1). FIGURE 2D (bottom right). The "fading-
in" blocks (represented by the green line from Figure 1). Note that 2b and 2c make a complementary set of blocks that together consist of the whole
terrain, so the total amount of duplicate rendering can be quantified by looking at Figure 2d.

A B

C D

slow one and a fast one.

That doesn’t sound so bad yet, but suppose we want to render

animated characters instead of static meshes. We need a third

vertex shader that performs skinning and such. But now, we also

need a fourth vertex shader that performs geomorphing on mesh-

es that are skinned.

In the end, we’ll end up writing twice as many vertex shaders

as we would in the absence of LOD. And don’t forget that we

need to maintain those shaders and handle their interactions with

the rest of the system throughout the development cycle. That’s

not nice. Combinatorial explosion in vertex and pixel shaders is

already a big problem, and geomorphing seems to exacerbate it.

The capability for branching and subroutines is being intro-

duced into vertex shaders, and this may help deal with the com-

binatorial explosions. But it’s too early to say for sure how speed

in real games will be affected, and thus whether the resulting

shaders will be useful overall.

Next I’ll look at the problems that can occur when these LOD

methods interact with other parts of the rendering system.

Texture Mapping and Shader LOD

A s geometry recedes into the distance, we will eventually

want to use lower-resolution textures for it. If the mesh is

made of several materials, we’ll also want to condense those into

a single material; otherwise, we will render only a small number

of triangles between each rendering state change, and that’s bad.

In general, at some level of detail we will want to change the

mesh’s texture maps and shaders. If we do this abruptly, we’ll see

obvious popping.

Geomorphing doesn’t help us here at all. If we want to tran-

sition smoothly between textures, we need to build some blend-

ing logic on top of geomorphing, making the system more com-

plicated. Since we perform pixel-color logic twice and blend,

our pixel shaders will slow down, perhaps to a speed compara-

ble to the color blending method. That makes sense, because

we’re performing a big piece of the color blending method in

addition to geomorphing.

The color blending method by itself, on the other hand, han-

dles texture and shader LOD automatically. We can use different

textures and texture coordinates and shaders for any of the levels

of detail; the LOD system just doesn’t care. It’s completely

unconstrained.

Normal Mapping

Suppose we are using normal mapping to approximate a

high-resolution mesh with lower-resolution meshes.

Ideally, we would like to decrease the resolution of our nor-

mal maps proportionally with distance from the camera, just

as with texture maps. But even if we give up that optimiza-

tion, there’s another problem that makes geomorphing

unfriendly to normal mapping.

When performing lighting computations, we transform the

normal maps by tangent frames defined at the vertices of the

mesh. When geomorphing, we need to smoothly interpolate these

tangent frames along with the vertex coordinates. Tangent frames

exist in a curved space, so interpolating them at high quality is

more expensive than the linear interpolations we use for position.

If the quality of the interpolation is too low, the results are ugly.

So our vertex shader becomes more expensive — perhaps more

expensive than the color blending method, which renders 1.25

times the number of triangles that geomorphing does, but with

simpler shaders. (This figure of 1.25 is representative of a height-

field-based scene; it will change in future articles.)

In stark contrast to the combination with geomorphing, nor-

mal mapping and color blending get along very well together.

The differing LODs can be covered with different normal maps

and parameterized arbitrarily. In fact, we could elect to eliminate

normal maps on the lower LOD entirely.

Stencil Shadows

One nice thing about geomorphing is that it’s possible to

implement stencil-buffer shadows without undue difficulty.

Because the geometry changes smoothly, shadow planes extruded

from the geometry change smoothly as well. That’s an advantage

over color blending.

Suppose we want to use stencil shadows with color blending

LOD. The simplest approach is to choose one of the rendered

LODs of each block to generate shadow volumes. But when the

level of detail for a block transitions, its shadows will change dis-

continuously. To avoid this, we would like to represent fractional

values in the stencil buffer that we could somehow use to inter-

polate the shadows. Unfortunately, the stencil buffer algorithm

doesn’t work that way.

For stencil shadows to work with color blending requires

DirectX 9–class hardware or above. We would use two different

render targets to generate two sets of stencil values, one for each

level of detail. Then, at each pixel of the visible scene geometry,

we compute a light attenuation factor by interpolating the results

from these two stencil buffers. This technique is nice because it is

highly orthogonal to our mesh representations and shaders. On a

DirectX 8 card, using this LOD technique would produce stencil

shadows that pop. But stencil shadows in general are most viable

on next-generation hardware, anyway.

Sample Code

In this month’s sample code (available for download from the

Game Developer web site at www.gdmag.com), you can move

around a simple terrain that has been cut into blocks. The color

blending method of LOD interpolation has been implemented to

prevent popping. q

w w w . g d m a g . c o m 19

F O R M O R E I N F O R M AT I O N
Giegl, Markus, and Michael Wimmer. “Unpopping: Solving the Image-

Space Blend Problem.”

www.cg.tuwien.ac.at/research/vr/unpopping/unpopping.pdf

T he video-

game

industry is

only really

a few

decades old. Ignoring

its vague origins in the

1960s, videogames

haven’t been around

for much more than 20

years in a meaningful,

mainstream kind of

way. Looking around

at developers (and here

I mean those that make

the games, not the suits

in big offices), most of

the workforce are in

their 20s; a growing

number are now in

their 30s, but very few

have seen their 40th

birthday or beyond.

The craft of game

development itself as

well as those who work

within it indicate an industry very much in

its infancy. It’s impossible to visualize the

changes that will occur 100 years from

now, but I can fully imagine that today’s

games will be viewed with both the

respect and the amusement with which we

now watch the earliest silent movies.

As pioneers at the forefront of an

emerging medium, we are in a privileged

position. We have relatively little baggage,

and our industry is constantly focused on

the future and how to deliver the best

gaming experience possible with our cur-

rent level of technology. As this technolo-

gy is always moving forward, the horizon

will always remain somewhere off in the

distance, and it is difficult to see a time

when this will not be the case.

Pause for a minute, however, and

remember that technology is only one

aspect of game development; a game is

the product of the expertise of many peo-

ple who combine their skills across a

number of disciplines. Technology may

dictate much about how a

game looks, sounds, and

feels, but it has no input as

to actual content. It may tell

me I can’t put more than six

characters on the screen at

once, but it won’t design or

animate them for me.

Technology may give me

the tools to create the game

world, but it will be of little

help when it comes to decid-

ing how that game world

should look. For this kind of

help, we can of course look

at other games, but perhaps

more sensibly, we can

choose to look outside the

game industry to see what

we can learn form the world

that exists independently of

our screens.

Just about every artist I

have ever worked with has

been able to cite a number

of people that have influ-

enced them. Looking at the work from

which others draw inspiration tells you

a great deal about how a person sees the

world. I’d like to list some areas I

believe can be of direct benefit to a

game artist, all of which have con-

tributed to my understanding of art,

both in and out of games.

w w w . g d m a g . c o m 20

H A Y D E N D U V A L L I Hayden started work in 1987, creating
airbrushed artwork for the games industry. Over the next eight years,
Hayden continued as a freelance artist and lectured in psychology at
Perth College in Scotland. Hayden now lives in Bristol, England, with
his wife, Leah, and their four children, where he is lead artist at
Confounding Factor.

Looking the Game

A R T I S T ’ S V I E W h a y d e n d u v a l l

Ill
us

tr
at

io
n

by
 S

te
ve

 M
un

da
y

Outside

Photography

P hotography is about getting a mes-

sage across visually, and while the

message can be as simple as the beauty

of a sunset, it can also be as emotionally

charged as images of the Holocaust.

With a successful photograph, all of the

component elements combine in a single

static image to have the artist’s desired

impact on the viewer.

A photographer works within a certain

frame, as does a game artist. While a

game is generally not static, and most

often takes place within a 3D space, there

is still the opportunity to create a visual

impact from setting a scene, balancing

light and dark, foreground and back-

ground, and focusing the player’s eye on

what is important (or what you want

them to think is important). Just as you

view most photographs from eye level,

gameplay takes place from the player’s

point of view, particularly in the case of a

first-person shooter. This perspective can

help maximize the visual quality of certain

areas that players encounter as they move

around the environment.

Sculpture

I think there is a case to be made for

the relevance of sculpture to the

game artist. Consider the process of box

modeling or subdivision surface model-

ing, where a shape is essentially fash-

ioned from a primitive volume.

Admittedly, in sculpture the removal of

material leads to the end result; adding

volume isn’t really what it’s about. In

principle, though, the idea of creating

form from a simple initial piece of mate-

rial (real or virtual) by refining shapes

first broadly, dealing with mass and

proportion, then later

adding detail and

other refinements, is

equally applicable

to both the sculp-

tor and the modeler.

Psychology

M any areas of psychol-

ogy are admittedly

dubious, but appreciating

some of the ways that the

human mind assembles the

information collected by the

senses to understand the world

can help us deliver a more effec-

tive game.

Today, most of the sensory

input from a videogame is visual,

followed by audio, with limited con-

troller vibration adding a small amount

A R T I S T ’ S V I E W

a p r i l 2 0 0 3 | g a m e d e v e l o p e r22

w w w . g d m a g . c o m 23

of tactile

feedback.

A game

artist nat-

urally has

direct access

to what play-

ers see and

therefore con-

trols the quality of

their experience to

a large extent. As

much research as has

gone into the human visual sys-

tem and how our mind decides

what our eyes are looking at, we can

gain much wisdom by researching the

subject of perception.

Memory also falls under the banner of

psychology. Certain game types require

the player to remember vital information,

or where certain locations are in relation

to each other. Studies into the way we

store and retrieve information can help us

with design decisions that enhance rather

than hinder a player’s experience.

Psychology also encompasses areas such

as body language, attraction, and facial

expression. Researching these fields of

study can add an extra dimension in the

areas of character design and animation,

helping to convey emotion more effective-

ly and making a character appealing (or

unappealing) to the player.

Industrial Design

One of the joys and sometimes diffi-

culties of being a game artist is that

from one project to the next (unless you

get stuck with never-ending sequels) you

can be called upon to create a vast spec-

trum of different worlds and character

types.

Sometimes your game might be pure

fantasy, giving you as much creative free-

dom as you could wish for, but it is fair

to say that often you will be working on

a game that’s set in the future. Regardless

of whether this future setting is recogniz-

able, or whether it’s one that is far

removed from what we know, you’ll like-

ly need to create a wide range of vehicles,

weapons, and hardware. An understand-

ing of industrial design can help you with

this process. We are lucky, in that func-

tionality within game design only has to

be the appearance of functionality, as no

one is ever going to have to make or use

a real version of anything we put on

screen. As a result, we can be a little

more inventive. However, taking our

imagination too far without any regard

for how things may need to work if they

were real often produces something that’s

not convincing to the player.

One area of interest under the umbrella

of industrial design is that of ergonomics.

Ergonomics derives its meaning from the

Greek word ergon, which translates as

work, and nomoi, which means natural

laws, and is the study of how human

characteristics can be integrated

with the design of devices or sys-

tems. In our modern world, this

kind of design is all around us.

With advancements in fabrication

techniques, miniaturization, and

new materials, we tend to see a

move away from objects whose

design is dictated by their function

and toward objects that are

designed with the comfort and aes-

thetic tastes of the user in mind.

If we are building a future

world for our game and hope to

make it feel believable to players,

an increased emphasis on

ergonomic design is one factor

that can help with this goal.

Looking at the design evolution

of anything from handguns to

aircraft can provide worthwhile

illustration of this kind of think-

ing, as it shows a clear progres-

sion of ideas and presents a solid

foundation from which to extrap-

olate future design possibilities.

Art History

O bviously the work of con-

temporary artists, particularly

those involved in fantasy and science-

fiction illustration, can be a direct

source of inspiration to those working

on games that cover similar territory.

But is there any value to be had in look-

ing farther afield at art that may seem

unconnected to games?

On the one hand, some of the extremi-

ties in modern art are a little too abstract

to be specifically relevant. The paint splat-

ters of Pollock, Picasso’s cubism, and the

wavy poplar trees of Van Gogh have plen-

ty to recommend them (not least their

multi-million-dollar price tags), but I don’t

quite see them having much of an impact

in the game industry.

However, take some time to consider

the landscapes of Constable, the sunsets

of Turner, and Rembrandt’s dramatic

use of chiaroscuro: the forms and colors

that are beginning to emerge in the next

generation of games, those which have

more room to maneuver visually, are

beginning to reflect some of these great

works. The richness of these paintings

can now serve as a more direct inspira-

tion to game artists. The way in which

artists have captured beauty and drama

on canvas over the centuries may be

radically different from that of a mod-

ern-day game artist, but the emotions

we are attempting to elicit are the same.

Only the context has changed.

For a more direct link to games, we can

look at the Art Nouveau movement from

the late 19th and early 20th centuries.

Stylistically, Art Nouveau has been used as

a point of departure in much of the design

work for science-fiction films and illustra-

tion for many years. Take away the Art

Nouveau influences from Star Wars or

Star Trek, for example, and you will be

left with a great deal of empty space.

The stylized organic forms of Art

Nouveau, coupled with geometric pat-

terning that emerged through the work

of designers such as Charles Rennie

Mackintosh, have been adapted

many times over the years to sym-

bolize a future design ethic. It

contains both order and chaos, as

well as a slight retro feel with

which we are now familiar.

Tromp l’oeil, a style of painting

that attempts to trick the observer

into thinking that the flat surface

of the image is in fact three-

dimensional in some way, has

been around for a very long time.

Traced back as far as the fifth

century B.C., tromp l’oeil grew in

popularity through the 17th and

18th centuries, and found a sig-

nificant resurgence in the last cen-

tury through the photorealist

movement. It is true that bump

and displacement mapping,

together with the increase in actu-

al geometry at game artists’ dis-

posal, have reduced the appear-

ance of fake depth through tex-

ture work. However, it remains

necessary (at least at present) to

effectively present the player with

the illusion of depth on what are

generally flat surfaces. Examining

how tromp l’oeil art uses light,

shadow, and perspective to produce the

appearance of depth is still valuable, as

most texture artists will need to use sim-

ilar techniques to make in-game surfaces

more interesting.

Keep Looking

W e as game artists must remember

the many areas that have some-

thing to offer us in the way of help and

inspiration. Games don’t exist in isolation.

Looking beyond the games that have been

released over the last year or so can pres-

ent creators with ideas that are fresh and

more interesting in a market that is

already crowded with 20 cloned versions

of every good idea. q

A R T I S T ’ S V I E W

a p r i l 2 0 0 3 | g a m e d e v e l o p e r24

Rembrandt’s use of chiaroscuro in such paintings as The
Prodigal Son can serve as inspiration for game artists looking
to expand their horizons.

W hen I got into

game audio I had

no idea what a

producer was, and

no one ever sat me

down to explain their role. Not only do

producers have to maintain a grip on the

dynamic game development process (and

the more forward-looking your design, the

more dynamic the process), but they also

have to be as intimately familiar as possi-

ble with everyone’s job.

Not knowing this, a lot of audio folks

assume that producers and their ilk are

the spawn of hell. They slash features

without discussion, they ignore quality as

a matter of course, and they ruthlessly

put down audio as taking a backseat to

graphics. Sometimes, this is true. I won’t

deny that, and I pity the poor souls who

have to work in such circumstances.

Most of the time, however, what looks

like demonic evil is really misconception

and ignorance on both sides. Producers

aren’t experts at audio, and audio folks

aren’t in the middle of the scheduling and

budget trenches. With this in mind, I

want to share learned several lessons

aimed at enhancing the audio profession-

al/producer relationship.

Lesson #1: Take initiative. Assume that

producers and project leads aren’t going

to walk into your studio or call you up

and politely say, “Make me as familiar as

possible with what you’re thinking the

audio should do for this game and how

you plan to do it. I have loads of time.”

Take the initiative to educate yourself

about the project, its needs, and your

team’s wants, and then bring forth the

result to the higher-ups. It’s not going to

happen by itself.

Lesson #2: Do your homework. Let’s

begin with your ideal situation on a

project: You’re burning with dreams of

192kHz, 32-bit interactive music, the

latest compression schemes, Lexicon-

quality dynamic reverb, and brilliant

multichannel 3D positioning, across all

platforms. You have visions of the most

intuitive and feature-filled of toolsets to

achieve these goals, summoned at a

whim by the programmers. The awards

recognizing your genius pop on to your

shelf from near and far. Back on planet

Earth, you actually need to think care-

fully about how to get to that audio

Fantasy Island, and few of us, including

myself, do this well.

Once again, communication and

research are key. Talk to your program-

ming leads. Talk to the producers about

goals, milestones, and deadlines. Talk to

the design leads about what will fit with

the game’s vision. Be realistic about

what will really help your title — 6.1

for a puzzle game? Subtle fading of

ambient tracks during a rip-roaring F-1

racing game? Come on. The more intel-

ligent your decisions are, the easier it

will be to convince the producer and

other leads that you can make the audio

for the game like a well-oiled machine,

with little maintenance. Once you’ve

carved your plan and presented it effi-

ciently to the producers, these gatekeep-

ers of your holy audio grail are far more

likely to lower the drawbridge to future

ventures, even riskier ones.

Let’s take another example: If you’re

pitching dynamic music to a producer,

you can’t just say, “It’ll sound better,”

and expect to get a positive response.

You need to be aware of exactly what

the music will do, and more importantly

how it will make the title you’re working

on shine. Will there be layered tracks?

Will those layered tracks really help your

sports title? Try creating a few examples

in your sequencer. Even though they may

not be real-time, you can show how the

music will interact outside of your brain.

If you find you need either more memory

or a bigger streaming buffer to handle

the additional data being controlled, in

addition to the logic that will govern

what the music does, you’ll need to out-

line this behavior for programmers and

producers alike. Will there be crossfad-

ing? This will also involve handling of

additional data, all of which takes time

(however little it may seem) to code, and

resources in the game-data pie chart,

which is split up between you, program-

ming, and art at the highest level.

Lesson #3: Don’t be afraid to ask ques-
tions. Too often people (once again this

includes me) are afraid that asking too

many questions will get them a swift

boot up the backside. This is hogwash.

Sure, if you’re moments away from a

deadline and there’s an issue that isn’t

resolved, asking too many questions as

opposed to taking action will probably

result in frustration. But especially in pre-

production, find out everything you need

to know based on your goal, and then

make your decision.

Keep all these lessons in mind the next

time you strike out upon the long road of

your next project, and the result can be

both better game audio and happier devel-

opers all around. q

A L E X A N D E R B R A N D O N | Alex is the audio director on
DEUS EX 2 at Ion Storm Austin and is gathering old game sound-
tracks for a massive compilation. He is also the membership direc-
tor for the Game Audio Network Guild (www.audiogang.org) and
is on the advisory board for DirectSound 9.

Ion Storm audio engineer Mark Lampert
presents his ideas to Bill Money, producer of
DEUS EX 2.

“The Interface”:
Making Peace with Your Producer

a l e x a n d e r b r a n d o n S O U N D P R I N C I P L E S

w w w . g d m a g . c o m 27

a p r i l 2 0 0 3 | g a m e d e v e l o p e r28

This month’s rule harks back to the
very first “Better by Design” column
(March 2002), which introduced the rule
“Provide Clear Short-Term Goals.” I
mentioned that the rule was trumped by
“Provide an Enticing Long-Term Goal,”
but did not explain in detail what that
meant — until now.

The Rule: Provide an Enticing Long-Term
Goal

Many (but not all) games

benefit by having an

ultimate goal that is

made clear to the player

fairly early on. Making

this goal enticing is one way to pull the

player into the game world and encour-

age passion.

The Rule’s domain. This rule applies

most strongly to story- and character-

based games, such as RPGs and action-

adventure games. Old standbys of this

type of goal involve “Save the world

from destruction,” or “Kill the evil wiz-

ard,” and, of course, the classic “Save

the world from destruction by killing the

evil wizard.” MMORPGs provide dozens

of long-term goals to keep players sub-

scribing for years. The rule is important

to strategy games and vehicle simulators

too, where the long-term goal may be to

build a civilization, win a war, or gain

critical promotions while pursing a per-

sonal career. The rule is not quite as

important for sports games or storyless

FPS games, where the implied long-term

goal of winning the match, race, or tour-

nament takes over. Finally, it applies only

weakly to puzzle games like TETRIS or

BEJEWELLED, where the long-term goal

can be as basic as “Get the high score.”

THE SIMS thrives without an explicit

long-term goal, but its very familiar real-

world setting and gameplay invites play-

ers to provide their own long-term goals.

Rules that it trumps. The rule does not

actually trump but rather augments

“Protect the Player’s Suspension of

Disbelief,” as the long-term goal is a

crucial way to draw players into a fic-

tional experience — which is precisely

why the domain of this rule is strongest

with styles of games that involve story

and characters.

Rules that it is trumped by. “Provide

Clear Short-Term Goals.” An enticing

long-term goal is not as important to the

player’s immersion and enjoyment of a

game as a clear short-term goal. The ele-

gant way to blend these two rules is to

start the player off with clear short-term

goals and let the long-term goal be

explained slowly on the side. Even better,

let the long-term goal grow organically

out of the progression of short-term goals.

This rule is also trumped by “Provide

Story Reversals,” a rule from narrative fic-

tion. The majority of novels and films

contain a reversal (often several) where

the protagonist’s initial goals change mid-

stream. Reversals propel the story along

by sending it off in a new direction before

the audience (or player) has a chance to

become bored with a predictable plot.

Examples and counterexamples. MAX

PAYNE begins with a very cinematic open-

ing, introducing us to the title character

and inviting us into his head as he finds

his family killed by criminals. This event

provides a strong pull for vengeance, as in

the “Now it’s personal!” parlance of

Hollywood. In fact an allied rule may well

be to “Make it personal,” to provide that

extra motivation to the player. It’s a cliché,

but only because it has repeatedly proven

to be effective.

Another example would be the story

line in the single-player campaign of

STARCRAFT, which provides clear short-

term goals (attack this Zerg before it

destroys your siege tank) within mid-term

goals (complete this scenario by establish-

ing a base), while slipping long-term goals

and reversals into the gameplay (get

revenge on the general who betrayed you,

save humanity from the Zerg menace).

Puzzle games, as I mentioned, do not

fall far into this rule’s domain, as they

are typically about as far from narrative

gaming as you can get, but it’s intriguing

to look into gaming’s distant past and see

the media hype and lip service that the

rudimentary cutscenes of MS. PAC-MAN

provided, or more intriguingly to see

how the old classic Macintosh game THE

FOOL’S ERRAND managed to unify a

group of disparate puzzles with an artful-

ly told story line.

Be careful to remember the word

“enticing” in this rule, and realize that

what entices one player may bore another.

One reason reversals can be so intriguing

in a story line is that the people who were

not very motivated by the first goal may

become swept up in the second.

Remember, the ultimate long-term goal

for game designers is to entrance and

entertain the player. More on that in an

upcoming column. q

“Save the World”

The opening of MAX PAYNE engages players
with the story early on.

n o a h f a l s t e i nB E T T E R B Y D E S I G N

N O A H F A L S T E I N | Noah is a 23-year veteran of the game

industry. His web site, www.theinspiracy.com, has a description of

The 400 Project, the basis for these columns. Also at that site is a

list of the game design rules collected so far, and tips on how to

use them. You can e-mail Noah at noah@theinspiracy.com.

Beyond

j o h n g i l l e s a n d c h r i s k l u gA R T D I R E C T I O N

a p r i l 2 0 0 3 | g a m e d e v e l o p e r30

TThhee
EEmmoottiioonnaall
HHeeaarrtt ooff
AArrtt DDiirreeccttiioonn

w w w . g d m a g . c o m 31

A s games begin to deliver

the visual quality of

movies and television

and also approximate

the visceral experience of

live theater, the demands made on the

game industry’s art directors grow.

Fortunately, the techniques employed by

art directors in other media can teach

art directors in games a trick or two

that will elevate the visual and artistic

quality in our industry.

Designers in traditional media mostly

approach their assignments, regardless

of what they might be, pretty much in

the same manner. They begin by search-

ing for the “emotional heart” of the

piece they are designing. Once they

determine what that is, they base their

design decisions upon it. They may be

designing sets, or lights, or costumes;

they may be working for the Rolling

Stones or for Dame Judith Anderson;

they may be working in the Metropoli-

tan Opera House on the Upper West

Side or at Soho rep on Mott Street in

lower Manhattan; the audience may be

convicts in a maximum security prison

or children in a park in San Diego.

These details influence many technical

considerations and often affect the

manner in which the design expresses

itself, but they rarely alter the design-

er’s search for the emotional heart of

the piece.

Are Games the Same?

W hen Chris worked in the pencil-

and-paper game business, regard-

less of what kind of game he was design-

ing (RPG, war game, parlor game, strate-

gy game), the graphic artists he worked

with proceeded with their job pretty

much as he had done while working as a

professional lighting designer. Whereas

they might have used the word “tone” to

express what we refer to in this article as

the emotional heart, they indeed searched

for it, and their graphic designs expressed

the tone for the game they all worked on.

Emotional centers of traditional dra-

matic pieces are easy to find; most scripts

are created with a theme in mind,

because writers tend to work that way.

Examples of possible emotional hearts of

well-known works are Star Wars (belief

in yourself can overcome all obstacles);

The Matrix (you are what you believe

yourself to be); Blade Runner (all life is

sacred, whether born of woman or man-

ufactured); Unforgiven (rational violence

leads to irrational violence); and The
Lord of the Rings (even the smallest per-

son can make a difference). However,

since dramatic work is subject to inter-

pretation (which is why one production

of Hamlet can look so different from

another), these examples may not match

exactly what an author thought the

theme was when he or she wrote the

screenplay. Rather, these interpretations

are our guesses at the theme from watch-

ing each piece.

However, after Chris began working in

the computer game business, and espe-

cially after graphics cards became capable

of displaying 3D graphics and higher-res-

olution textures, he observed that some

of the artists he worked with did not talk

about the emotional heart of the game,

nor did they seem interested in finding it.

These artists were most certainly con-

cerned with the design of the game. They

were all working toward making sure the

game looked its best. They all had great

pride in their work, all were very talent-

ed, and all approached their designs pro-

fessionally. But the only yardstick they

used to measure their success or failure

seemed to be how “cool” the graphics

looked. Whether their visuals were in

sync with the tone of the game design,

whether they supported the overall feel of

the game design, and whether they had

anything to do with the emotional con-

tent of the game design were sometimes

lost in the process. What was even more

disturbing was the fact these talented

artists never even discussed these issues.

These artists and designers were all tal-

ented, and their designs were often bril-

liant. It wasn’t that they wanted to avoid

these issues, as Chris discovered, but they

did not have the training to think in a

way that revolved around the emotional

heart of a work, nor did they have the

vocabulary to talk about such issues.

Chris couldn’t figure this out. How

had these artists been trained? What was

their thought process? How did they

organize their design? How did they find

a style or visual language for any game

they worked on? How did they know

what to include and, more importantly,

what to leave behind? How did they

determine what was “cool”?

The more Chris asked around, the

more he discovered a common thread.

These artists and designers had been

trained in various schools and worked

with many great teachers. Some were

self-taught. But none of them came from

J O H N G I L L E S A N D C H R I S K L U G | John and Chris are lucky enough to have
worked in both games and traditional media. Chris has been a professional game designer
for 22 years, and before that, a professional lighting designer in the arenas of theater,
opera, and rock and roll. John has been an art director and designer in theater, television,
and cinema for 23 years. The authors met in graduate school while studying theatrical
design at Carnegie Mellon University in Pittsburgh.

How Visual Design Processes
in Traditional Media Can Be
Used to Improve Visual
Design in Games

training in the dramatic arts of cinema,

TV, and theater. Both authors of this arti-

cle have been trained as designers in the-

ater, and it was clear to us that the more

games moved towards 3D environments

with high-resolution graphics and

increasingly humanlike avatars, the more

game settings became environments in

which virtual actors played out their sto-

ries against virtual sets. Games were

clearly beginning to deliver experiences

(MAX PAYNE, METAL GEAR SOLID, FINAL

FANTASY, MEDAL OF HONOR, DEUS EX)

that more closely mapped to those found

in the more traditional dramatic media.

We began to explore how the training we

had received in college and the traditions

developed in those arts could be applied

directly to game art direction.

We began by examining what differ-

ences and similarities existed among the

media. Was there anything in the very

essence of game art direction that argued

for throwing out the old methodologies?

How were the development processes dif-

ferent, and how were they the same?

Could game art direction learn anything

from the traditional media, or were they

such different beasts that learning one

from the other was a waste of time?

Art Cost vs. Capability

S ince the cost of games is increasing

seemingly without limit, art directors

have a responsibility to find development

methods that control those costs. We do

not have the easy excuse that movies

have, namely that the star actors are

charging exorbitant fees. Our costs are ris-

ing mainly because the quality of the visu-

als is getting better as hardware becomes

capable of displaying more photorealistic

images rendered in real time. The graphics

card makers aren’t going to slow their

advances in chip development, and so the

market will demand that visuals get better

and better in step with the newest hard-

ware. Simply put, the game industry needs

to get better at creating environments,

both to reduce development time and min-

imize manpower needs.

How do we do this? One way is to

understand the techniques that art direc-

tors have known for years in movies and

TV (where sets can only be built once),

and adapt and apply them to designing

our 3D environments. Avatars are nothing

more than actors in front of a set, after

all. Thus the lessons learned from cen-

turies of theater and decades of movies

and television set and costume design can

surely apply to 3D universes and the

avatars that inhabit those universes.

How Traditional Media
Are Generally Built

D id you ever wonder as you’re

watching the latest blockbuster

movie, “How did they come up with that

idea?” or, “Why did they do it that

way?” Unfortunately, just as often we

may ask, “What idiot thought that one

up?” The origin of all of these comments

leads back to the movie’s script. In TV,

movies, and theater, everything starts and

ends with the script. And in TV, movies,

and theater, the art directors turn to the

script to find the work’s emotional heart.

It is even more true in television and

theater than with movies. In television,

writers rule the world. They often get

billed as producers or executive produc-

ers, but those are just designations for the

main creative force on a show, who is

almost invariably the writer. Aaron

Sorkin gets billed as executive producer

on The West Wing and also gets writing

credit for the episodes he writes. And as

this past season’s failure Girls Club
proved, David E. Kelly can get any show

green-lit simply by the power of his

involvement. Both solitary authors. Singu-

lar visions.

In theater, the playwright is every-

thing. In fact, it is standard language in

the Dramatists Guild agreement that not

a single line of a play may be changed

without the playwright’s written consent.

All this explanation isn’t meant to glo-

rify writers; it’s to illustrate a major dif-

ference between the way settings are

designed in games as opposed to tradi-

tional media: a single author versus

authorship by committee. It is the design-

by-committee characteristic of game

development that hamstrings game art

directors from streamlining their process-

es and focusing their vision.

In order to help game art directors

overcome this challenge, we must ask

ourselves, Why does the game business

operate that way? What other game

development methodologies contribute to

this paradigm? And how does this make

the art director’s job impossible?

The Pyramid of
Development

C inema, television, theater, and game

development all share a develop-

ment pyramid, created and honed over

time as the businesses matured. In each

case, the pyramid’s height is the time it

takes from inception to delivery of prod-

uct to audience. The pyramid’s width is

the amount of dollars being spent at any

corresponding time of development.

A movie’s pyramid (Figure 1) is narrow

at the top and very broad at the bottom.

Since most of the production cost of a

movie happens while it is being shot and

in post, movie studios have learned that

they should take their time developing the

script. They came to know that the

stronger the script and the more thought

given to the script details, the more cost-

effective the actual shooting time would

a p r i l 2 0 0 3 | g a m e d e v e l o p e r32

DEUS EX is an example of a game that delivers
experiences closely mapped to those found in
traditional dramatic media.

A R T D I R E C T I O N

be. So, the development of the script can

take years, but the money spent during

those years is minimal, because it is the

work of a few individuals and mainly of

one person, the screenwriter. Only when

everyone has agreed on the script (which

is no simple task) does the real money get

spent (stars hired, sets built, and so on).

Cinema has a slow, cheap ramp-up and

then spends 80 percent of its money in a

very short period of time toward the base

of the pyramid.

Game development’s pyramid is very

different (Figure 2). While it is almost

always true that more money is spent at

the base of the pyramid than at the top,

the difference in width is not as great as

with film. This is because most games

update their engine technology for each

new title, and there is an enormous

amount of pressure to get the whole

team working as soon as possible. Often

game development studios have artists

and programmers sitting around with

nothing to do until the game design is

finished, and then they can rush off and

start banging away. It’s important to note

that almost all of these game developers

waiting to start are full-time employees,

while most of their equivalents in the

movie business are contractors. In that

business, the cost of labor doesn’t begin

until the script is ready. In games, the

cost does ramp up, but it is always burn-

ing at a relatively steady rate.

Hence the design of the average major

game title is done in a hurry, so as to get

the development team working as soon

as possible. Owing to this over-arching

priority, game designs do not get the

same time to gestate fully before con-

struction must start, which, in turn leads

often to half-baked ideas from which the

art director must then start designing.

More importantly, because time isn’t

taken at the beginning of the process,

parts of development teams can easily get

out-of-sync with each other regarding

what game they’re doing. Since time con-

straints ensure that the design document

often isn’t anything more than a bare-

bones outline when programming and art

direction starts, it is entirely possible, and

altogether common, that the designer will

realize in mid-stream that some parts of

this thing just don’t work with each other.

These and other well-known produc-

tion bottlenecks tend us toward our art

directors throwing darts at a target

called “cool,” because there is nothing

else of substance at which they can aim

at the time.

Taking Artistic Control

G iven what we know about the way

things are, it’s up to game art direc-

tors to develop techniques that will help

them develop and execute a clear artistic

vision within the limitations of game

development’s design-by-committee chaos.

First, and most important, as art direc-

tor insist you attend the earliest design

meetings. If you have to, agree to keep

quiet during them. While it is much bet-

ter if you can actively contribute to these

early discussions, the reality in many stu-

dios is that design staff can be a little ter-

ritorial. In those situations, beg, wheedle,

or cajole yourself into those meetings.

Most experienced producers or executive

producers will want you there, as they

will want you working on sketches and

concept art as soon as possible. To those

designers who are a little threatened, I

suggest that you convince them that

you’re not there to suggest or interrupt,

just to listen. If nothing works, well,

they’re going to have to tell you about

the game at some point, so be patient

and wait for them to spill the beans.

Once in these meetings, listen. Not so

much to what the game system is, but to

what feeling the design staff might be

trying to get at. Try to get at the core of

the game in as simplistic a way as possi-

ble. Is the game dark? Is it light? Is it

masculine? Feminine (unlikely with all

the testosterone pooled in the halls of

game development houses)? Fast? Slow?

Gritty? Polished? Hot? Cold? You get the

idea. If you can talk with a designer who

can think visually, try to get him or her

to talk about what he or she wants the

game to feel like. Often you’ll have to

search for what is really behind the

designer’s words, because he or she might

be the kind of designer who can only

think numerically or systemically. Be per-

sistent. Don’t let the discussion drill

down too deep; no specifics now, just

feelings. Good designers will be able to

communicate this way, and bad ones

won’t. If you can’t get much in the way

of volunteered information, try asking

questions that force the designer to make

choices, like, “Does the game feel dark

or light to you? Dirty or clean? Smooth

or rough?” Most designers will be able

to answer these questions.

w w w . g d m a g . c o m 33

FIGURE 1. A film’s cost pyramid. FIGURE 2. A game’s cost pyramid.

The odds are pretty good that while

the systems and environments may come

and go during the game’s development,

this core feeling the design team is going

for won’t change much. In fact, there is

a secret technique to keep yourself more

on track with the visual design than

most game designers will ever manage

because they won’t use this technique.

The game’s designers may stray and

fumble and go in six different directions,

but you’ll be working away right at the

core of the game.

This technique could be the most

important tool you’ll have as an art

director on any project. It will save your

soul, guide your hand, focus your

efforts, and even do your dishes. Chris

used it with every design he ever did in

professional theater, and John uses it as

well. Every working production designer

we know uses this technique in some

form. The technique is simply to pick a

single visual image to be your concept

for the piece. It has to be a visual image

of some kind: a painting, a still from a

movie, a photograph, a sculpture, a

physical item like a piece of kitchen

ware, a lamp, a pair of pants, some-

thing. The thing should have all the

qualities you need to guide your design:

line, form, color, and feeling. The item

you choose should evoke a feeling with-

in you.

How It Looks, How It
Feels

U sing the movie examples and their

emotional hearts given previously,

we could come up with the following

visual images: For Star Wars (belief in

yourself can overcome all obstacles), the

visual image could be a single white lily

growing out of a cracked obsidian vase.

For The Matrix (you are what you

believe yourself to be), a silvered mirror

encased in the cheapest black plastic

frame. Reflected in the mirror is Neo,

dressed in vibrant, bold colors. Standing

in front of the mirror is the actual Neo,

dressed in grays and muted earth tones.

For Blade Runner (all life is sacred) the

visual image might be the a unicorn, sil-

very mane flowing, strong and powerful,

running through a garbage heap. For

Unforgiven (rational violence leads to

irrational violence), it could be a square

wooden frame, artfully carved, symmetri-

cal in all ways. The frame sits inside an

iron carpenter’s vise, which presses on

the frame at two of its corners. This pres-

sure causes fractures and faults in the

frame’s joints and members. Splinters and

fragments of the frame drop off and fall

on the bleached desert sand. And for The
Lord of the Rings (even the smallest per-

son can make a difference), the visual

image could be a giant blood-red stone

sphere, ancient and worn, standing on

top of a tiny forest-green pebble. An

infant, clothed in a soft gray diaper but

nothing else, sits balanced at the apex of

the sphere. No matter which way the

infant leans, the sphere will tilt to that

side and fall off the pebble and roll in

that direction.

The issue isn’t whether these images

we just made up for these movies are

the best images in every case. What

we’re illustrating is that from those

images, the art director could begin to

make choices about line, color, size,

weight, and other design elements for

everything from the avatar’s clothing to

the buildings in the virtual world.

Once you have chosen this visual

metaphor, you use it to guide your

design so that everything going into the

game follows, supports, evokes, mirrors,

or complements this item you’ve chosen.

If some idea comes along that a member

of your staff is pitching, or an exec has

one of those brainstorms, run the idea

through the sifter of this image. If it

doesn’t match the style or feeling of this

image, it either has to get thrown out or

changed so that it does.

To show this might work, suppose

that in our Star Wars example, the pro-

ducer really wants to see the bad guys

dressed in red. But the image you’ve

chosen seems to indicate they would be

dressed simplistically, black and shiny

with sharp edges. Methods to reach a

compromise could include black shiny

armor with red piping on the sharp bits,

or red shiny armor with black undergar-

ments very visible beneath the pointy

armor. In other words, if your bosses

can’t be convinced by the brilliance of

what you have planned, try to reach a

middle ground where they can feel like

they’ve contributed but the image is still

reflected in the design.

a p r i l 2 0 0 3 | g a m e d e v e l o p e r34

One interpretation of the emotional heart of Clint Eastwood’s Unforgiven was that rational vio-
lence can lead to irrational violence.

A R T D I R E C T I O N

The Concept Image at
Work

A concept image can be used to great

effect with your art staff. If you

have picked an image that exists (such as

a painting or photograph), you can just

make copies and distribute them,

explaining how this single image should

be used to inspire their work. As visual

artists, we have always found this tech-

nique helps focus our efforts. The one

potentially dangerous question is whether

or not to share the image with producers,

publishers, and other decision-makers.

We suggest doing this with caution,

because the concept image isn’t the

design, and those who don’t work visual-

ly might not understand that. It is but the

anchor point for the design, and might

not appear to have anything to do super-

ficially or intellectually with the actual

game you’re working on.

This visual concept functions for an

artist like this: Let’s say you are a land-

scape artist. This visual concept is sort

of like saying that you intend your next

painting to be limited to a narrow

palette ranging from violet to blue-green.

The values will run from light to dark,

but the chroma will be limited to that

narrow range. This choice allows you to

focus and perfect the other issues at

hand: the subject, the composition, and

so on. To give another example, say

you’re going to do a painting with only

complementary colors. The point is to

use the image you’ve chosen to help you

sift what belongs in the game and what

does not. Art is, after all, about making

choices. All too often games tend to be

compilations of every good idea anyone

on the team ever came up with. Back in

our Star Wars example, someone might

present to you a proposed sketch for

Luke’s and Darth Vader’s costumes.

Using a very simplistic example, if

Luke’s costume is dark and angular

while Vader’s is light and flowing, it’s

clear that these costumes are in direct

opposition with the concept image.

Your image or concept must support

the core emotional heart of your game,

whether it comes from your own imagi-

nation or is chosen from existing images.

It should be a very personal image, one

that evokes emotion in you. The most

important thing is that you actively make

a choice, and not simply leave it in your

imagination. The more you understand

why you chose this image, the more

you’ll be able to access your own emo-

tional state during development and use

the image as a benchmark against which

all work will be measured. The art direc-

tion of Westwood’s EARTH & BEYOND,

which Chris worked on, called for a

bright color palette, despite some conven-

tional wisdom that futuristic sci-fi games

should be dark and gritty. Putting our

emotional selves into the color palette

selection, however, we believed that

mankind’s future isn’t dark and gritty but

bright and hopeful. A different develop-

ment group might view mankind’s future

in a different way, and their decisions

would be just as valid. The crucial thing

is just to decide, and to use your emo-

tions as part of that decision.

Physically passing your concept image

around to your art staff is one way to

unify design efforts, but in fact you don’t

have to tell anyone about the image. If

you have approval over artists’ work or

have the kind of relationship with them

where they run work past you during all

stages of development for your feedback,

you can get away with just being there

and using the image in your head to

guide their creative process. For example,

when you critique their early sketches,

you could simply communicate that their

direction is “too colorful” or “too angu-

lar,” thus gently nudging them in the

right direction. Most staff artists working

in the game industry, however, would

prefer and benefit from the direction that

a concrete image would provide them.

The single-concept technique is espe-

cially useful if some of the artwork is

a p r i l 2 0 0 3 | g a m e d e v e l o p e r36

A R T D I R E C T I O N

being developed off-site with a contrac-

tor. Assuming the image is strong and

clear, sharing the image with the contrac-

tor can be like having a clone of yourself

on-site with them.

All the World’s a
Stage, Real or Virtual

L et’s illustrate how Chris used this tech-

nique in a production he designed.

The play was Boesman and Lena by Athol

Fugard, produced by the New Jersey

Theater Forum in November 1978. The

main characters are migrant workers in

South Africa, living on the edge of exis-

tence. Although they love and support

each other, life has hardened them to the

point where it is very difficult for them to

show their softer side to each other. Life

has treated these two very harshly. Chris’s

emotional heart for the play was, “In an

environment where everything hurts, love

can still flourish.” The visual image was a

crocus trapped in broken piece of amber

and shards of a Coca-Cola bottle. The col-

ors of the glass were used in the light, the

sets, and the costumes (see photos). The

crocus was used for the color and angle of

the moonlight, which represented to the

characters their hopes for the future, as

well as relief from the unrelenting glare of

the daytime sun.

New York Times Arts reporter Robin

Pogrebin recently dissected the work of

John Lee Beatty, a brilliant Broadway set

designer as he was being inducted into

the Theater Hall of Fame (“Lush, Plush

Or Seedy: Sets Filled With Power,”

January 21, 2003). At one point this past

fall, Beatty had six shows running on

Broadway simultaneously, an astounding

achievement. Beatty is known for his inte-

riors, and he has described himself as the

designer of “the sofa and the staircase.”

What could be more mundane and repeti-

tive? We all know art staff who would

bristle at doing that kind of design, right?

But Beatty understands the secret of using

visual images and themes to get at the

emotional heart of the piece, and uses it

to bring his work to a higher level.

We strongly recommend reading the

entire article, but snippets reveal Beatty’s

use of the technique we’re talking about.

Beatty’s sets are “full of character,

because they are so much about the peo-

ple who inhabit them,” says director

Daniel Sullivan, as quoted by the Times.
The article cites how the Dinner at Eight
interior “has its own subversive elements,

like the dining table elegantly appointed

with silver and stemware that remains

suspended in darkness at the top of each

act and is never used. ‘Your average real-

istic designer wouldn’t think to have that

hanging like a guillotine above these ulti-

mately doomed people,’ said André

Bishop, artistic director of Lincoln

Center Theater. ‘It’s a brilliant abstrac-

tion.’” (You can probably guess some-

thing that might have been Beatty’s visual

image for this design.)

The article continues: “Beatty has visual

themes running through his productions.

There are no windows in the set for

Dinner at Eight because he said he want-

ed to convey a sense of ‘closed-off worlds,

people who have cocooned, the way peo-

ple live in Manhattan.’ Similarly, he used

black in every scene of a recent produc-

tion of Tartuffe so that ‘like the script,

there’s a little bit of nasty information’

throughout. ‘I am like an actor, an inter-

pretive artist,’ he said. ‘I express emotion

through scenery.’”

Our virtual worlds deserve the same

kind of emotional commitment. As games

become more expensive and time con-

suming to make, publishers will want to

entice audiences who have never played

games to give them a try. These new audi-

ences are used to having their scenery

designed by artists like John Beatty. Art

directors in the game industry are going

to compete directly against designers of

this caliber. Will we be ready? q

a p r i l 2 0 0 3 | g a m e d e v e l o p e r38

F O R M O R E I N F O R M AT I O N

Robert Edmund Jones. The Dramatic
Imagination. New York: Theatre Arts
Books, 1987.

Robin Pogrebin. “Lush, Plush Or Seedy:
Sets Filled With Power,” The New York
Times (January 21, 2003): p. E1.
Full article available from searchable
archives at www.nytimes.com.

Scenes from a production of Boesman and Lena, designed by Chris Klug. A crocus trapped in a broken piece of amber and a broken Coca-Cola bot-
tle served as inspiration for all aspects of set design and lighting.

A R T D I R E C T I O N

G A M E P L A Y C O N V E R S I O N

a p r i l 2 0 0 3 | g a m e d e v e l o p e r40

Converting
STAR WARS JEDI

KNIGHT II: JEDI OUTCAST

from PC to Xbox
and Gamecube

The Play’s
The Thing:

C ross-platform PC and con-
sole development is
becoming more common
as a way to reach a broad-

er audience and help underwrite the
increasing production costs of game
development. STAR WARS JEDI KNIGHT II:
JEDI OUTCAST used to be confined to PC,
a first-person shooter (FPS) developed
by Raven Software based on the QUAKE

3: TEAM ARENA engine. Like many PC
titles it was never planned to be a con-
sole product — in fact, the PC title was
released when the console develop-
ment was in the planning phases. The
goal was a simultaneous worldwide
release for Xbox and Gamecube (U.S.,
U.K., French, and German versions),
coinciding with the release of the Star
Wars Episode II DVD.

With a six-month development cycle
there was no shortage of late nights
and last-minute inspiration. Somehow

we had to cram a PC game with a
128MB RAM requirement, with

hundreds of megabytes of
textures, onto the

Gamecube (with 24MB
main memory and 16MB
ARAM) and Xbox (with a
relatively generous
64MB). The graphics
engine had to be rewrit-
ten for both Xbox and

Gamecube, and the assets
needed to be converted and

optimized to fit within console
constraints. The graphics them-

selves needed to be enhanced with
special effects and detail that would
take advantage of the specialized
capabilities of each platform. But all of
these efforts would have come to
nothing unless the game played as
well, if not better, on the console.
Going in, our mandate was that it had
to be a fun console experience, and
not feel like a substandard straight
port of a PC game.

T O B I S A U L N I E R | A struggling duck farmer,
Tobi spends her days and nights as the vice presi-
dent of product development for Vicarious Visions,
occasionally finding time to write up the cool stuff
we do on projects.

B R E T D U N H A M | Bret started in the games industry in
1999 by sticking his foot in the right door. When he's not
designing games, he can be found online playing FPS games
with his mouse and joystick.

K A R T H I K B A L A | CEO of Vicarious Visions since child-
hood, in his spare time Karthik is creating the design for
TERMINUS 2, which he swears is the last game he'll ever produce.

J E Z S H E R L O C K | An aspiring goat herder, Jez has been a
professional game developer for 15 years. Currently he herds
console programmers at Vicarious Visions.

tob i sau ln ier , bret dunham,

karth ik ba la , jez sher lock

w w w . g d m a g . c o m 41

The Console Experience

W hat characterizes a console game

versus a PC game? If you’re a

game developer, you probably immediately

think implementation: how to fit all that

PC goodness into the run-time memory,

storage space, and polygon-crunching con-

straints of console. If you’re a consumer

who’s juggling a library of games at home,

you probably start thinking of installation

details and minimum specs, where you’re

going to play the game (TV versus com-

puter station), and the genres characteristic

of each. In this article we focus on the

main boundary between the two camps —

the game experience itself. Console games

play differently from PC games.

The console experience is defined by

two dominant factors: the controller and

the player demographic. So even though

we might have the same game design,

assets, and underlying game code as the

PC version, the players’ experience

should and in fact needs to be fundamen-

tally different depending on what plat-

form they are playing on. Even with all

the technical hurdles, the most difficult

issue in moving a PC title to a console

platform is playability.

The Console Controller:
A Blunt Instrument

T he main difference between PC and

console controls center on the con-

sole’s lack of a mouse and keyboard.

For a first-person shooter like JEDI

KNIGHT II, the mouse-keyboard combi-

nation provides a rich array of options

for what is assumed to be a fairly

sophisticated player, one who is willing

to read instructions and memorize more

than a few keystrokes. This traditional

reliance on a complex input scheme has

traditionally made FPSes hard to get

right on consoles. The importance of

finding good mapping functions from

mouse and keyboard to the 14 to 18

buttons of a controller shouldn’t be

underestimated. But we found that

determining a suitable mapping scheme

only got us part way there. Even more

critical was introducing automated play-

er assistance such as auto-aim and auto-

level to compensate for the relatively

coarse control on a console. In cases

where even automated player assistance

wasn’t enough, we even went as far as

making level and AI modifications.

Map This!

M apping controls from PC to console

involves two separate issues. One is

just the obvious smaller number of but-

tons on the controller. The other is the

physical differences in how these buttons

are accessed and manipulated by the play-

er. In the end we found that the key to

finding good solutions to both of these

issues is to focus on what the player needs

to manage. One of the standards we used

for comparison was HALO, which we saw

as opening the door for FPSes on console.

HALO does a great job of simplifying what

the player needs to manage. With about

10 action buttons, the developers were

able to keep the learning curve low and

the gameplay fast. Having the wealth of

PC buttons available actually can work

against this goal of simplicity, since it is so

easy just to add more keys. In the end,

this complexity makes it harder for the

player to learn and memorize all of the

different options, even on the PC.

Back to the numbers problem. What

jumps out at anyone spending a few sec-

onds thinking about it, is that the con-

troller for a console has many fewer but-

tons (14 to 18) than the PC mouse and

keyboard combination (approximately 56

bindable keys for JEDI KNIGHT II). We had

to find the best way to translate the huge

variety of input variations used in the PC

title to the handful available on console.

This meant some hard choices, and plenty

of opportunity for debate. Controller map-

ping is a very tangible issue, so we weren’t

surprised that everyone had an opinion.

Something worth noting is that for a

conversion from PC to console, we

weren’t starting from a blank slate. Unlike

a new console game, where control map-

ping can also be a hot topic, doing a port

actually caused more difficulty than a new

design. For one thing, when at all possible

it was preferred that the same conventions

be used as the PC title. For instance, one

idea to simplify player tasks was to elimi-

nate the secondary fire for weapons (for

instance, the E11 rifle has a primary fire

that is a single shot and a secondary fire,

independently triggered, that is a burst

mode), and rebalance weapons according-

ly. Certainly there are pros and cons to

this solution, but that was viewed as

diverging too far from the PC version.

Working from a PC title adds the disad-

vantage of having a huge number of pre-

existing functions and mappings, each of

which someone has already grown to

love. It’s important to keep in mind that

we as game developers and PC game play-

ers probably appreciate the variety of cus-

tomization and input options more than

the typical console player. Furthermore,

the typical console player generally does-

n’t have the patience to wade through a

manual and take time learning the map-

ping. They expect the controls to be easy

to learn through simple trial-and-error.

P C S Y S T E M
R E Q U I R E M E N T S

CPU Pentium II 350MHz
(PIII recommended)

128MB RAM
OpenGL 16MB 3D accelerator
(GeForce, Radeon, etc.)
665MB hard drive space for installation,

additional space for swap file
and save games

16-bit sound card

C O N S O L E S Y S T E M
S P E C S

Memory: Xbox: 64MB RAM; Gamecube:
24MB main RAM plus 16MB ARAM
No HD on Gamecube, HD use on Xbox only

for save games
Small Gamecube memory card: 512K
Need fast loading time off disc
DirectX 8 rendering engine on Xbox;

Gamecube-specific API for rendering
on Gamecube (not OpenGL)

Console controller for input, not mouse
and keyboard

Controller configuration varies with platform
(number and placement of buttons).

Our approach was to identify which

functions were redundant or repeated in

the PC interface, and then simplify the

rest. We didn’t use a highly scientific

process for this — it was more a matter of

prototyping and testing to evaluate differ-

ent options as we went. We got ongoing

feedback and requests for changes from

player- and QA-testing at the publisher

and licensor, and we also heavily relied on

internal folks who were big FPS fans. This

latter group became important in tuning

the game to make sure it was a similar

level of difficulty on PC and console.

We also looked for conventions with

which players would be familiar. Since

established conventions used in console

platfomers are of little use for a FPS, we

studied other console FPS games to see

what other developers had done right

and where they went wrong.

An example of a function we just

removed completely was the snap-to-cen-

ter view function. On console this was

felt to be disorienting. Instead we used a

more subtle “auto-level” to shift the cam-

era back to center view as the player

moved forward. More about this later.

An example of combining functions

was the lightsaber style selection button

also being used as the lightsaber selection.

We got most of the way in the numbers

game just in rethinking the select function.

Compared to a typical console game, JEDI

OUTCAST has a huge number of items the

player needs to select between: weapons,

items, and force powers. These are all

mapped to different keys on the PC,

whereas on the controller we essentially

had the D-pad. We selected the D-pad

because in an FPS the digital control is ill-

suited to either moving or aiming.

Our first design involved using the up

and down buttons to toggle between three

“tumblers” on the HUD, representing a

row for each of the three categories,

weapons, force powers, and items. Then,

once the desired category was on-screen,

the left and right button could be used to

toggle the active selection to the next or

previous weapon, force power, or item.

Although this seemed intuitive to the

development team, even that degree of

overloading buttons proved too confusing

to players. The context of the left and

right buttons depended on what category

had been selected, and in the heat of bat-

tle players did not want to have to

remember which context they were in.

The solution was a scheme where the

Up button always mapped to Next Force

Power, the Down button mapped to Next

Item, and the Left and Right buttons

allowed Next and Previous weapon selec-

tions. Although this meant that the player

needed to traverse through the whole list

of force powers or items if they overshot,

the advantage was that they always got a

consistent response from the D-pad but-

tons. Although this particular solution

worked well for the first part of the

game, where quick weapon selection is

needed, it was not as well suited to the

second part of the game when the focus

turns to force powers.

Control Freak

C omplicating the mapping itself is the

fact that not all controllers are the

same (Figures 1 and 2). As for any cross-

platform title it was important for us to

find a control scheme that would translate

across different controllers. Things to con-

sider included the finger layout and some

of the subtle differences between buttons.

We had to tweak the controller sensitivity

differently for Xbox versus Gamecube in

order to get a similar feel on both.

Similarly, the shoulder buttons required

specific calibration. For instance, the Xbox

controller has only two trigger inputs,

compared with the Gamecube’s three. We

didn’t spend much time with the Xbox “S”

controller, mostly due to lack of time.

Although designing for the lowest com-

mon denominator can be frustrating at

times, we found unexpected advantages

a p r i l 2 0 0 3 | g a m e d e v e l o p e r42

G A M E P L A Y C O N V E R S I O N

FIGURE 1. Xbox controller input scheme. FIGURE 2. Gamecube controller input scheme.

through trying to find a simple, intuitive

interface. In our case, because the Game-

cube controller has three fewer buttons

than the Xbox, solving the control map-

ping was more difficult. However, because

of this necessity we discovered simpler

mappings for functions. In the end we

actually didn’t think we needed more but-

tons, since the number of things we had to

manage already was formidable.

The Xbox controller has three more

buttons than the Gamecube, and we’re

not about to let any go idle. We bridged

the gap between the two controllers by

saving one key on the core mapping by

using a context-sensitive “Use” button on

Gamecube (the “B” button). The use-

item-in-the-world function (such as open-

ing a door) and use-item-on-yourself

function (such as a health canister) were

combined into one context-sensitive Use

button. For example, if the player was

next to a door, a “Use” icon would

appear on the door, signifying that the

Use button would activate the door.

Although we could have applied this

function to both controllers, it was con-

fusing for some players; in the final stages

we left it in only for Gamecube (which

needed the extra button savings).

That left the Xbox black and white

buttons free to provide an oft requested

feature — the ability to map to the play-

er’s favorite weapon, force, or item.

Mapping is dynamic and can be reset b

simply holding down the hot swap key

for a few seconds. Although this was a

nice-to-have feature, it was not critical to

gameplay, so not a priority for fitting on

the Gamecube. Player testing will help us

better understand whether that cus-

tomization is utilized by console players.

You Want Me to Do
What?

A side from the numbers, we have to

consider basic ergonomics when

choosing what button to assign to what

function. Unlike a keyboard-mouse com-

bination, with a controller the player

does not have a lot of flexibility in how

to reach keys that are needed. Many

combinations or sequences of keys have

to be ruled out just from a physical

standpoint, in terms of finger reach and

flexibility. This was a constant struggle

with JEDI OUTCAST because the control is

complex — the gameplay requires three

attack buttons, one each for primary fire,

secondary fire, and force power. So the

player may need to move, turn, and fire

either the primary or secondary mode,

while also using a force power. (Easy for

a Jedi, maybe.) Maintaining comfortable

access to three attack buttons on the con-

troller became the dominant design con-

straint, just because of the number of fin-

gers required. A redesign of weapons to

eliminate the need for secondary fire

might be one future solution.

Beyond the main game mechanic, our

overall strategy here wasn’t exactly rocket

science: buttons close to the player’s fin-

gertips were used for frequently needed

functions, while those infrequently used

were assigned further away. This required

playing the game and learning it well

enough to determine what a player was

going to need to do more frequently. As

we learned the game better, our button

mappings were refined.

We went through several rounds of

testing controller mappings. When test-

ing them we paid careful attention to

what players accidentally hit or caused

to happen.

A Sticky Situation

O nce you have determined the ideal

controller map, the next gameplay

obstacle is the controller response, in par-

ticular the controller sticks. Controller

thumb-sticks do not allow for the degree

of precision that a mouse on a PC pro-

vides. The limited discrete settings for a

thumb-stick just can’t compare to the typ-

ical DPI resolution of a typical mouse. So

no matter your players’ skill, they will

never have the same fine-tuned aiming

control as they would have on PC. In

addition, the human thumb does not have

the same precision of control in the for-

ward-backward axis as it does side-to-

side, further limiting vertical control.

And then we have the different control

paradigm of a controller stick. Naviga-

tion via controller sticks can be disorient-

ing to players. For a PC mouse, when the

player stops moving the mouse, his or

her movement on screen stops. For a

controller stick the tilt of the stick deter-

mines the movement, so that if the player

wants to stop he or she needs to return

the stick to the neutral position. At best,

this characteristic introduces some inertia

in the control, as the player has to wait

for the stick to snap to neutral when he

or she wants to stop input. At worst it

can be counterintuitive, since unlike nor-

mal eye-hand coordination, movement

on screen is no longer directly related to

hand movement. In games with frequent

direction changes and the need to scan

the environment, the player can be left

confused about which way to turn the

stick to get the desired effect.

When working out a solution for these

inherent limitations, we kept in mind

that a player needs to be able to have

precise aiming when facing a target, and

a p r i l 2 0 0 3 | g a m e d e v e l o p e r44

Screenshots from STAR WARS JEDI KNIGHT II: JEDI OUTCAST. The one on the left is taken from the
Xbox version of the game, the one on the right from the Gamecube version.

G A M E P L A Y C O N V E R S I O N

quick 180-degree turning in other situa-

tions, such as turning to face an enemy

behind the player. Our motto when

designing the controls was “Give the

player what he wants, when he needs it.”

An immersive experience requires that

the player not have to struggle conscious-

ly with the control sticks. We wanted to

assist the player as subtly as possible, to

keep the game challenging but not frus-

trating. After studying other PC games

and the few FPS games on console, and

experimenting with alternatives, we

found three solutions that greatly simpli-

fy the learning curve for players: sensitiv-

ity adjustment, auto-level, and auto-aim.

Sensitivity Zone

S ensitivity adjustment as used in PC

games tunes the input device

(mouse) input rate, which has a dots-per-

inch to pixel ratio. Most PC FPS games

allow the user to adjust this so that the

game either responds more quickly or

less quickly to the user. For console

games we need to accomplish a similar

adjustment for the thumb-stick input.

We had identified the problem that the

player had to be able to have very fine-

tuned control when aiming, yet use the

same stick to quickly turn around to face

an enemy. Our solution was to use a

zone-based input to be able to provide

both ends of the control spectrum to the

player. Zone-based input is simple — the

response is adjusted for very precise turn-

ing when low input is used and ramped

up to radical turning when full input is

used. Although this is a classic control

scheme, we had to use an ad hoc process

to find the numbers that “felt” right

based on a lot of experimentation and

player testing. For instance we started

with a linear mapping of numbers that

was way too sluggish for turning. We

also started with an eight-zone system

(think of zones as concentric ovals ema-

nating from the thumbstick) but found

three zones worked just as well (and was

simpler for tweaking).

We figured out that we could cheat

some by taking into account what the

player was doing and then dynamically

adjusting the numbers. For instance if the

targeting reticule is activated (colored

red) then we assume the player is trying

to aim and lower the overall sensitivity.

The final system was a three zone sys-

tem where:

• Input while in the inner zone (barely

moved from center) lowered, approxi-

mately by 50 percent.

• Input in the middle zone was not

scaled.

• Input in the outer zone (thumbstick

pushed way over in some direction)

increased after a delay, approximately

by 45 percent.

The time delay buffers the input in

case the player accidentally flicks the

thumb-stick to the extreme outer edge.

Interestingly, we had to use different val-

ues for the time delay for Xbox (500 ms)

and Gamecube (250 ms), due to the dif-

ferent thumb-stick sensitivity. The modi-

fied stick input level was combined with

the player-set sensitivity (via the menu)

and converted to degrees per second

movement rate.

The final change we made to the con-

trol sensitivity was to have different sen-

sitivities for the X- and Y-axis move-

ment. Due to thumb movement limitia-

tions, players have difficulty looking up

or down quickly. This occurs when

players overcompensate for the lack of

flexibility and end up pushing the stick

in a diagonal direction. To minimize this

accidental movement, we made the X-

axis response greater than Y. Given the

natural motion range of the thumb, con-

troller sticks are much harder to control

in the Y-axis versus the X-axis, so this

modification was intended to compen-

sate for that effect.

Aim to Please

E ffective player assistance should be

subtle enough that players never feel

we are doing the aiming for them. Players

want and need to know they were skillful

enough to overcome the game’s challenges

and enemies, so allowing all the shots to

hit every time is a mistake because it

becomes obvious theyre being helped. We

learned this first-hand when our early pro-

totypes used too-accurate aiming, and

while it was momentarily thrilling to be

able to hit everything, it quickly became

boring. In this case there was already a

hit/miss record built into the game, so we

took the ad hoc approach of having a few

players at different skill levels play both

the PC and console versions and tuned the

auto-aim so that the ratio was approxi-

mately the same. This approach assumed

that the PC game balance was good.

The auto-aim implementation itself

was simply a matter of adjusting the pro-

jectile trajectory sufficiently to allow a

higher chance of striking the target at

which the player is aiming. In particular,

once the aiming reticule changes to red,

indicating that an enemy is in the player’s

sights, we lowered the horizontal sensi-

tivity, but not the vertical. This gave the

player enough additional fine control to

overcome any aiming problems caused

by the thumb-sticks, yet allowed for a

small percentage of shots to miss. The

benefit is that the player can turn quick-

ly, from victim to victim, and more easily

lock on toa character for a kill. The

ammunition’s trajectory could not go

outside the reticule in order to hit the

target, which would have made it obvi-

ous to players that they were getting a

helping hand. It is important to maintain

the illusion and feeling of controlling fire

in the gameplay experience.

The remaining weakness of this

approach is that AI enemies that move

quickly from side to side are harder to

hit, even with auto-aiming, because by

the time the fire reaches where they

were, they have moved. This has always

been the bane of auto-aiming. Rather

than try to implement predictions of

where the AI would moving to, we

a p r i l 2 0 0 3 | g a m e d e v e l o p e r46

TABLE 1. Three-zone input scheme for con-
sole controller thumb-sticks.

Zone Sensitivity
(pixels per second)

Inner Decrease

Middle One

Outer Increase

G A M E P L A Y C O N V E R S I O N

cheated a bit and just slowed down the

AI side-to-side movement. Overall we

think this made for more manageable AI

anyway, since in the PC version they

were very fast, probably better tuned to

the response time of a mouse.

We also made exceptions to auto-aim,

such as when the player used a sniper

gun, for obvious reasons. The sensitivity

was still lowered to allow a more accu-

rate aim, but the trajectory was not

adjusted. An example of an auto-aim fea-

ture considered but not selected was an

aim mode where targets are cycled

through. Although suitable for non-FPS

games where the player has limited aim-

ing control, in JEDI OUTCAST if you had

to stop long enough to use an aim mode,

you’d be dead. JEDI OUTCAST is definitely

a game where you need to move and aim

and fire at the same time.

Level with Me

T he auto-level feature automatically

recenters the camera as the player

moves forward, to help the player read-

just the camera to get the view they

need at that moment. This avoids

requiring them to try to adjust the cam-

era back towards center while also mov-

ing, and potentially firing a weapon and

so on. This function could become

annoying if it happened at the wrong

time, for instance while strafing or when

the targeting reticule is active (that is,

when targeting an enemy), so this is

another example of a feature that needs

to use some inference about what the

player is doing in order to be effective.

Auto-level is nothing new — it is used

by almost all FPSes in one form or

another. However, a main difference in

our implementation of it for the console

experience was to leave it on by default,

whereas most PC games would have it

off by default. We decided a more capa-

ble player could turn it off via the menu

system if they wanted more precise con-

trol. This decision was based on the

expected demographic being younger

and less skilled than the PC player.

A Balancing Act

A lthough control issues are the easi-

est way to screw up a console game,

and particularly a port of a PC title,

there are other seemingly minor details

that can make a huge difference in mak-

ing sure that a game plays like a true

console game rather than a PC game.

First, the more accurate control pro-

vided by a mouse-keyboard combination

means that the overall speed and diffi-

culty of the PC game is typically too

high for a player dealing with a console

controller. One example of how we

adjusted the difficulty to match the con-

troller was to slow down the enemy AI,

as mentioned previously, so enemies

don’t move faster laterally than a player

can target with a controller.

Another example of playability tuning

for consoles is to actually redesign levels

and AI placement to minimize the

amount of up-and-down looking

required of the player, which is awk-

ward on the thumb-stick. For instance,

it’s wise to eliminate extreme vertical

changes in the level, where a player

needs to look up and down more than

45 degrees to engage enemies or solve

puzzles. Where the PC player with a

mouse would have moderate difficulty

in such a situation, it is just frustrating

for the console player. Adjusting the lev-

els so that they require mostly horizon-

tal aiming is much more satisfying to

the console player. In our case we had

limited ability to change the level geom-

etry beyond what was needed to fit the

assets on Gamecube, however we

accomplished the same result by remov-

ing AI in those elevations.

One area that worked really well on

console was the use of the thumb-stick

for third-person lightsaber mode.

Perhaps because the attitude and physi-

cal control of a lightsaber is similar to a

thumb-stick, this was the one area

where it was actually easier to control

with the console controller. A lightsaber

is an ideal case for controllers not only

in the types of movements the weapon

uses, but also in that a high degree of

precision is not needed to be deadly.

Conclusion

L ooking back on the process of con-

verting STAR WARS JEDI KNIGHT II:

JEDI KNIGHT OUTCAST from PC to con-

soles, we can credit much of our success

to our approach of planning parallel

efforts in some areas and then choosing

which worked best. We did this mainly

because with a six-month development

cycle we didn’t permit for a learning

curve, but in the end it made us a lot

more efficient. Software folks will recog-

nize this as the spiral lifecycle of develop-

ment, where rapid prototypes are used to

retire biggest risk areas first. We avoided

rushing down just one path, which saved

our bacon a couple of times when we hit

unexpected dead ends. Many of these

were technical in nature — creative

approaches to squeezing the assets down

to console size that just couldn’t be eval-

uated any other way but trying them on

the assets. Amazingly, we got it done on

time, and hit every milestone on plan.

Game reviews and feedback are saying

that our console version plays well and it

has a good “console feel” to it, which

obviously was not part of the original PC

title. Needless to say, this experience has

led to even more ideas to try out next

time. As the console audience continues

to mature, we can expect to see a contin-

ued trend toward FPS games on console.

We hope to be involved earlier in the

process next time, so that decisions made

during the original game development

can take into account impact on both PC

and console playability. q

a p r i l 2 0 0 3 | g a m e d e v e l o p e r48

G A M E P L A Y C O N V E R S I O N

No matter which console the game is played
on, the user can still execute moves like this.

BATTLE
ENGINE

AQUILA

b e n c a r t e rP O S T M O R T E M

B ATTLE ENGINE AQUILA, Lost Toys’ second

game, was built around the desire to cre-

ate a “next-generation” shoot-’em-up

game combining the core playability of

titles such as 1942 and RADIANT

SILVERGUN with cutting-edge technology and graphics. The

concept behind BATTLE ENGINE AQUILA’s take on the genre

was simple — instead of following the current trend of

having a lone player battle against incredible odds, why

not re-create those epic action scenes seen in films such as

Starship Troopers and Saving Private Ryan? The player is

not a lone soldier, but part of a vast fighting force —

albeit one which is doomed to fail without the support of

the players’ vehicle, the Battle Engine Aquila.

From the outset, it was clear that BATTLE ENGINE

AQUILA would be an ambitious project. The original

design called for massive battles between hundreds of

individual units, all controlled by their own AI and

able to react to anything the player did (ruling out

any extensive scripting). The player would have the

freedom to roam throughout the battlefield and

interact with everything that was happening.

Effectively, we would be creating a complex, large-

scale RTS game engine, and then attempting to provide

FPS-style gameplay and graphics to match.

MOHO (released in the U.S. as BALL BREAKERS), our

first title, had been a relatively small project, so as pro-

duction on BATTLE ENGINE AQUILA got underway, the

team was expanded to allow for the project’s scale — a

process that continued right through to the

later stages of development.

Even though we were targeting consoles (specifically

the Xbox and Playstation 2) for the final game, all of our

development work was done on the PC. It wasn’t until

late in development that we moved the code base over to

the two consoles, and even then it was only the program-

mers and testers working on those consoles that ran the

game on them — all the artists and designers used the PC

version of the game. This turned out to be both a bless-

ing and a curse.

Lost Toys’

a p r i l 2 0 0 3 | g a m e d e v e l o p e r50

B E N C A R T E R | Ben has been working in the games industry since 1995, both as a free-
lance journalist for magazines including Super Play, Edge, and G4, and was a lead program-
mer on two titles for the Acorn RISC OS platform (MERP and MIRROR IMAGE), and one on
the PC (ABSOLUTE TERROR). He has also been involved in writing games coverage for many
nonspecialist press publications such as Manga Max and The Irish Times. Having spent the
last two years working on PS2 and Xbox engine code for BATTLE ENGINE AQUILA, he is now
working on the graphics engine for Lost Toys’ as-yet unannounced future projects and spend-
ing far too much time watching anime. Contact him at ben@sailune.net.

w w w . g d m a g . c o m 51

What Went Right

1. Flexible core technologies. From the project’s

beginning, everything was designed to be as modular

and flexible as possible. As much information as possible was

read in from externally editable files, and several custom editors

for different areas of the game were written to allow designers

and artists to alter everything from level layouts and unit statis-

tics to graphical effects, without needing code changes.

Internally, too, we kept the engine and game code carefully seg-

regated, and defined interfaces between the two that enabled

implementation details to be changed without unduly affecting

other code. In addition to this, one of our programmers created

a sophisticated C-style scripting language to allow special

events, objectives, and such in the game’s missions to be devel-

oped by the level designers without the need for mission-specific

code in the main game code base itself.

This approach paid off both by reducing the knock-on effects

of changes and potential bugs and by enabling a lot of experi-

mentation during the game’s development — a test version of a

proposed new feature could be implemented quickly, we could

get a feel for how well it would work without disrupting other

development, and then quickly integrate it if we decided to

keep it. Many of BATTLE ENGINE AQUILA’s features and effects

are a direct result of this rapid prototyping ability.

P O S T M O R T E M

a p r i l 2 0 0 3 | g a m e d e v e l o p e r52

As the designers and artists became

familiar with the various editors and

scripting systems, they were able to create

effects and missions that we had previous-

ly assumed would require custom code.

For example, for a level requiring players

to chase after a retreating enemy battle-

ship, we had been contemplating writing a

complex system to enable the game’s nor-

mally static (and constrained) world map

to scroll. While the programming team

was attempting to figure out how to

achieve this, the level designers imple-

mented the mission without it by mis-

using some of the scripting functionality

in a clever way. This was an unexpected

side effect of the system’s flexibility.

It was only near the end of the project

that we were forced to scale back on this

flexible approach (reasons for which are

explained further under What Went

Wrong) and implement more optimized

specific routines for certain areas of the

game. Even then, however, the engine’s

modular construction frequently allowed

faster special-case code to be substituted

for the generic routines without actually

altering the interfaces, and without any

code outside the module being modified.

2. Constant play-testing and
feedback. Since all the devel-

opment — except that of the actual con-

sole versions of BATTLE ENGINE AQUILA —

was done on the PC, everyone on the

team could play the game at any time on

their own machine, without needing to

borrow a development or test kit and a

TV. This made a huge difference to the

development process, as team members

not directly involved with the program-

ming and design could see their work in

the game almost instantly — a model

could be exported from 3DS Max straight

into the format and location needed. The

artist responsible could then run the game

and see changes immediately.

This functionality also helped with the

game’s sound effect and music creation,

which was handled out-of-house. By pro-

viding the audio contractor with a copy of

the PC–development build and our cus-

tom sound-effect editing and placement

tool, the contractors could experiment

with different effects within the game, and

then send us a complete set of sounds and

the effects file (which mapped game events

to specific sound files, and allowed alter-

ation of relative volume, pitch-shifting,

and the like). We could then drop these

files straight into the game with no need

for format conversion, file renaming, or

other such annoyances.

The final and probably most beneficial

effect of constant play-testing was a

steady stream of invaluable feedback to

the design team on gameplay and level-

balancing issues. This feedback allowed

us to assess the impact of changes to

parameters such as the Battle Engine’s

handling and available flight energy, and

to catch those cases where minor changes

caused major differences in certain play-

ers’ game experiences.

We were also able to catch a lot of bugs

with this process. It was not uncommon

during development for changes to art-

work or scene units to break certain levels

(buildings being placed close together and

then intersecting each other when the

model changed, for example). But with

many pairs of eyes constantly inspecting

the whole game, these mishaps were gen-

erally found — and fixed — quickly.

3. Planning localization and
porting in advance. We knew

from the beginning that BATTLE ENGINE

AQUILA was going to be a console game,

and that it would probably end up being

translated into many different languages

for international export. Hence, by plan-

ning for localization and porting issues as

early on in development as was practical,

we attempted to avoid as many problems

as possible.

The majority of the engine was struc-

tured in such a way that platform-specif-

ic code was collected into small modules,

which were then called upon by the high-

er-level platform-independent code. By

keeping code separated out like this, we

were able to remove the PC implementa-

tion of these modules and insert Xbox

and Playstation 2 replacement code with

relative ease — in theory at least, the

porting process consisted of taking all

these blocks of code and replacing the

blank function calls with the appropriate

code for each platform.

While we did encounter some porting

problems (described later), in general

the approach worked very well. Until

we deliberately split the code bases for

final tweaking and testing, the game

could be built on all three supported

platforms from one set of project files.

This was a huge boon, as the majority

of development in many areas of the

game (gameplay, scripting, AI, and so

on) was performed entirely in platform-

independent code, so no effort was

G A M E D A T A
PUBLISHER: Infogrames

NUMBER OF FULL-TIME
DEVELOPERS: 12–18

CONTRACTORS: 2
LENGTH OF DEVELOPMENT:

30 months
RELEASE DATE:
January 22, 2003

TARGET PLATFORM: Playstation 2 and
Xbox (PC version forthcoming)

DEVELOPMENT HARDWARE:
400MHz–1.8GHz CPU PCs with 256–768MB

of RAM and GeForce 3 cards,
PS2 and Xbox devkits

DEVELOPMENT SOFTWARE: Visual
Studio 6, Visual C++ 6, Source Safe,

ProDG, 3DS MAX, Photoshop
NOTABLE TECHNOLOGIES: Bink,

Multistream, in-house custom terrain
generation and rendering system

PROJECT SIZE: 380,000 lines of C++,
50,000 lines of script code, and about 500

individual game objects

P O S T M O R T E M

a p r i l 2 0 0 3 | g a m e d e v e l o p e r54

required from the programmers on each

platform to ensure the latest changes

were integrated and working.

To simplify the effort of translating

the game text and dialogue into the five

languages we supported in the final ver-

sion, we developed a text management

system that split all the text out from

the code and scripts and instead allowed

individual strings to be referenced by a

special tag. For example, FRONTEND_NOMEM-

CARD would translate to a string inform-

ing the user that there was no memory

card inserted. These tags could also be

used to reference the appropriate speech

sample for a spoken version of the text,

if it was available. Later, we extended

this to allow platform-specific variations

on tags as well as language-specific ones,

so that we could have different sets of

messages for the two consoles where

their naming conventions differed.

After a few initial teething problems,

this localization system worked beautifully.

It enabled us to provide the translation

teams with a single file containing all the

text required for the game, and then re-

integrate their localized versions with rela-

tive ease. Some careful file management

allowed later changes to the dialogue and

messages to be separated out for retransla-

tion, and in the final stages of testing we

also implemented a simple text viewer that

could display all of the messages in the in-

game language file so that the localization

QA teams could easily check that their

work had been incorporated correctly.

4. Ambitious goals. It was obvi-

ous from the original design

document that some of the technologies

we were setting out to create were going

to require an enormous amount of work.

We wanted a game with hundreds of

units, huge walking robots, detailed ter-

rain, fully destructible buildings, and

realistic physics. We wanted the player to

be able to experience these features at

every level, from alongside the tiny

troopers swarming around the battlefield

to high in the sky looking down across

the entire conflict. Even with the over-

whelming scale of the initial design, we

still considered outlandish ideas for addi-

tions (“The islands should have dense

forests on them that the walkers and

tanks can flatten paths through as they

go,” “You should be able to land on

large enemy craft and destroy them from

the inside,” or “If you blow up build-

ings, there should still be rubble when

you return to that island later”) as

potential challenges, rather than dismiss-

ing them as technically too difficult or

time-consuming.

This mindset caused us more than a

few headaches later in development

when we realized just how complex and

resource-hungry the game had gotten,

but the dedication of everyone working

on the game ensured we could include a

huge number of these ideas that were

not originally planned. If we hadn’t

aimed so high and constantly attempted

to achieve the impossible, the game

would not have been as fun or techni-

cally impressive.

5. Open atmosphere and good
communication. It’s some-

thing of a cliché in these Postmortems to

mention the value of good teamwork, so

I won’t dwell on it, but that doesn’t

make it any less of an important point.

The entire Lost Toys team worked well

together on the BATTLE ENGINE AQUILA

project, and a lot of potential problems

were averted by having relevant people

talk them over beforehand.

With the entire company based in one

open-plan office, it’s always possible to

walk over and ask questions. This way

we are able to pool expertise from

everyone involved. It’s often the case

that even if someone isn’t working

directly on a given aspect of the project,

that person has some relevant knowl-

edge that can be helpful.

What Went Wrong

1. Late console development.
The vast majority of the devel-

opment work on BATTLE ENGINE AQUILA

was performed on PCs, and it was only

about nine months before the game went

gold that we finally started working on

real development systems for our two

target platforms, the Xbox and Play-

station 2. Although the PC-centric devel-

An early version of the Battle Engine in flight, one of

a number of discarded designs.

Most game models were composed of a large num-

ber of independently animated parts.

BATTLE ENGINE AQUILA’s explosions and other effects

were created without programming assistance by

designers using our custom particle editor.

56

opment environment was a great help in

some areas, it wasn’t long before we

realized that working like this for so

long had caused some serious bloating of

code and resource.

Our code structure was aimed toward

making the porting process as painless as

possible, but we hadn’t counted on the

extent of the limitations of the console

platforms relative to the PC. It only took

us a day in both cases to get the core

game engine running on each machine,

but there was clearly an awful lot of

work left to do.

Fundamentally, the game was too

resource-hungry for the machines it was

to run on; in terms of memory, the PCs

we were using for development had four

to 16 times as much RAM as the con-

soles. In the early days of the porting

process, even small levels were regularly

using more than 100MB of RAM and

running at below 20 frames per second.

Right until the game went gold there

was a constant battle to get everything

to fit into memory, especially on the

Playstation 2 where we only had about

28MB of RAM after the game exe-

cutable had been loaded.

The Xbox port of the game had the

advantage of being based on DirectX,

and hence the majority of the code was

shared with the PC version. The

Playstation 2 port, however, required an

entire graphics and sound engine to be

coded from scratch — a mammoth task

for our two Playstation 2 programmers,

one of whom had never actually written

any code for the machine before this

project and was still supporting a signif-

icant amount of code on the PC tool-

chain and Xbox sides of the project.

Thus the Playstation 2 version of the

game was playing catch-up with the PC

and Xbox versions from day one. While

initial development went quickly, a

vicious circle developed mid-project,

where features were being added to the

project faster than they could be port-

ed, and we were still struggling daily to

get the code optimized enough to stand

any hope of reaching acceptable speeds

(or even running at all on retail hard-

ware). It was only in a final burst —

after the Xbox version of the game was

finished and in final testing — that

functionality stopped being added to

the engine and we were able to get the

port running acceptably.

For the project’s last couple of months,

most of the programming team was think-

ing about just two things: how to make

the game run fast enough and how to use

sufficiently little memory on the two plat-

forms. We used every trick we could think

of — structures were ruthlessly compact-

ed, data was decompressed on the fly or

streamed off-disk as needed, and on the

Playstation 2 we were even forced to store

additional game data in the I/O proces-

sor’s memory and move it into main RAM

when it was required.

While some of this effort was a conse-

quence of the ambitious game design, we

could doubtlessly have avoided a great

deal of pain and effort had we been

stricter in working to the limitations of

our target platforms earlier in the

development process.

2. Too much story, too
little script. The story

line for BATTLE ENGINE AQUILA went

through many revisions before arriving at

the version in the final game. Unfortu-

nately, constant editing removed many

of the interesting twists, and cutting

down on the volume of cutscenes

and dialogue (both to keep from

overstretching our limited art

resources and to avoid bogging

the game with irrelevant story)

resulted in a faint shadow of

what the final plot could have been. This

is by no means a major problem, since we

intended the gameplay rather than the

story line to be the more important factor,

but the less exciting cutscenes and charac-

ters add little to the game. The time spent

creating them would have been put to bet-

ter use elsewhere.

A more serious side effect of trimming

the story was on the mission structure of

the game. In making a conscious effort

to keep the missions and story tied

together, we ended up in a posi-

tion where we were tied to creat-

ing certain missions in a certain

order, with little room for maneuver if

we felt part of the design wasn’t work-

ing. While I think we overcame this

quite well, one of the main criticisms

leveled at BATTLE ENGINE AQUILA is that

the missions often have similar objec-

tives with little variation in the settings

— a direct consequence of sticking to

the structure of the original story line.

3. Poor resource management.
BATTLE ENGINE AQUILA’s 40-plus

levels comprise a bewildering array of files

and data, much of which was created by

P O S T M O R T E M

a p r i l 2 0 0 3 | g a m e d e v e l o p e r

A typical level can
have hundreds of indi-
vidual troopers, each
with independent and
squad-level AI.

our own custom tools before being com-

bined into a set of “resource files,” one

for each level, which include all of the

required data for that mission in a ready-

to-load processed format. The console

versions of the game run exclusively from

these combined files, while the PC devel-

opment version can operate from the raw

data for quick turnaround when testing.

This system provided us with a lot of flex-

ibility, but it wasn’t until close to the pro-

ject’s end that we realized that we’d inad-

vertently created an unmanageable process

for building final output.

The process of getting a complete

build of the game from raw data invol-

ved using about five different tools on

different sets of data, some of which

were only understood by one or two of

the team members. There were quirks in

many of the tools (such as the level edi-

tor saving files with no scripting informa-

tion unless you had the right set of script

files on your hard drive), and we had vir-

tually no version-control system to

ensure that the right files were being

used. Amazingly, the final game data was

a huge directory on the server, which got

files dumped into it by all team members.

By far the worst part of this system,

however, was the process of creating the

final resource files. The PC version of the

game ran in a special mode where it

would load each level and then

dump the contents of its own

resource pools into a file, performing

operations like compressing textures

and precalculating shadow data as it did

so. Unfortunately, this process relied on

an incredibly risky system of saving

objects to disk by writing the entire con-

tents of a C++ class structure and then

manually fixing up pointers and other

information when it was reloaded. In

some senses this worked quite well, as it

allowed most additions to game struc-

tures to be handled “automatically” by

the resource system. But the system

caused complete chaos toward the end of

the project, as any change to one of the

stored structures would render all the

existing resource files useless and necessi-

tate a full rebuild of the data — a

process that could take several hours for

a full level set. It was not uncommon for

people to waste hours simply trying to

update both their code and resource file

sets to be compatible with each other,

only to find that in the interim someone

else had made another change, rendering

the new sets of files useless.

4. Lack of communication
between art and program-

ming teams. The similarity between the

Xbox and PC versions of the game

meant that the screen previews the art

team was seeing of their work were

almost pixel-perfect representations of

what the Xbox version would look like.

Unfortunately, this approach to the pre-

view process tended to hide two very

important potential problems: perform-

ance and the Playstation 2 version.

The artists rarely paid much attention

to the frame rate, as the game’s speed

varied a great deal depending on the

specification of the machine it was run-

ning on at the time. With no sign-off

process for the technical aspects of art-

work, it wasn’t uncommon for models

with ridiculous numbers of textures or

polygons to get put into the game.

w w w . g d m a g . c o m 57

Concept art and production materials were
gathered together to form an unlockable
“goodies” section for additional replay value.

Problems would only show up when

the levels were played on the target hard-

ware, and by that stage it was often hard

to tell exactly what was causing the

problem. In one case we had an innocu-

ous building mesh that had texture map-

ping that generated approximately five

times as many polygons as the original

model contained when converted for ren-

dering. This problem was exacerbated by

the fact that until relatively late in devel-

opment, the programming team was not

sure what the eventual limits on polygon

counts and texture usage would be, so

artists were often given vague or contra-

dictory advice on what to aim for.

The Playstation 2 version of the game

suffered from these problems and more

— many of the features supported by the

Xbox and PC engines (such as anisotrop-

ic texture filtering) were not available,

and others had to be turned down or

dropped entirely for speed or memory

reasons. Until very close to the gold mas-

ter date, many of the models in the

Playstation 2 version of the game did not

look right or caused immense perform-

ance issues, and it was not until we made

a concerted effort to produce and work

through a list of problems that we really

managed to bring the problem under

control. Even then, we found ourselves

making modifications to artwork to fix

odd problems mere days before the final

build was sent off.

5. Too much flexibility. The

advantage of the engine’s flexi-

bility became a serious liability when we

had to feature-lock the

game and get it run-

ning within our speed

and memory budgets.

There were both pure-

ly technical and

design-related prob-

lems, some of which

could have been avoid-

ed if we had planned

ahead a little.

One of the main

problems we had was

with the exceptions. A

lot of our attempts to

optimize systems went

along the lines of

“Well, this functionality is only ever

used in this way, so let’s just hard-code

that instead.” We’d generally find out at

that point (or sometimes only after actu-

ally making the code change) that there

was one place in the game where this

rule didn’t hold. There would be one

particle effect that used a certain awk-

ward blend mode, or one type of unit

that had a nonstandard friction setting.

In some instances we could change the

errant case so that the optimization

would still work, in others we were

forced to abandon the optimization or

code in yet another special case to han-

dle the one-off situations.

A similar issue that crept up a few

times was that some of the systems were

so flexible that they were being used for

things they were never designed to do.

While in some cases such uses were per-

fectly reasonable and even quite clever, in

others they posed a major problem. Code

was not optimized to work in the man-

ner in which it was being employed, and

hence was running very inefficiently.

Sometimes further functionality had been

based on this behavior, leading to even

more trouble when trying to optimize it.

For example, trees were originally

added to the game as standard

“things,” handled in much the

same way as units, troops, and

the like. Trees could be shot at,

knocked over, or block line-

of-sight, which seemed a

neat addition to the game at

the time. Unfortunately, we

realized a few weeks later that some lev-

els now had in excess of 6,000 individual

tress on them (which accounted for near-

ly 2MB of RAM at one stage), and re-

engineering the code to handle this effi-

ciently without breaking the now-estab-

lished behavior took a great deal of

thought and effort.

Battlefield Stories

D eveloping BATTLE ENGINE AQUILA

was a tough struggle at times, and

there are many things we’d undoubtedly

do differently if we had a chance to do it

all again. Our experiences should allow

us to avoid making the same mistakes

again in the future, freeing us to discover

a host of new ones. But game develop-

ment wouldn’t be the vibrant, ever-evolv-

ing field it is without fresh pitfalls to

uncover at every turn.

At the time of writing, the game has

not yet been unleashed on the public.

We’re all understandably nervous about

how the title we have slaved over for the

last two years will be received, but I

don’t think there’s anyone here at Lost

Toys who isn’t immensely proud of what

we have created. We’ve managed to pro-

duce a finished product without compro-

mising the original concept and gameplay

that we first aimed for, and the finished

BATTLE ENGINE AQUILA is a remarkably

accurate reflection of that original vision.

That, above commercial success or criti-

cal acclaim, is surely the greatest thing a

developer can hope for. q

P O S T M O R T E M

a p r i l 2 0 0 3 | g a m e d e v e l o p e r58

The transformation sequence for the Battle Engine uses a complex blend of

traditional animation and procedural techniques.

S O A P B O X d a n a m r i c h & t e d p r i c e

a p r i l 2 0 0 3 | g a m e d e v e l o p e r80

Ill
us

tr
at

io
n

by
 B

el
le

 M
el

lo
r

When Game
Developers

and Game
Reviewers

Collide

Dan’s View (the Reviewer):

W hat do reviewers think of when they

think of developers? “Thank heavens

these people exist, because otherwise I’d

be stuck reviewing pocket calculators.”

Without developers, there are no games

to review. These are the folks who create something out of

nothing. Developers make magic.

That said, I think the magicians are often wary of revealing

their secrets to the press, afraid that their work is going to be mis-

represented by some insulting hack with no sense of responsibili-

ty. And while some press members do set bad examples, others

aspire to noble goals. In general, I think both developers and

reviewers want the same thing: to be known for making worth-

while products. Better still, we can both root for the other side as

much as our own.

Just as I don’t publish first drafts, I understand a developer’s

reluctance to show a product before it’s ready (but without a

handful of early screens and basic info, I can’t tell the masses

what you’re up to). It’s tough to send out early builds for pre-

view, because you know how much has yet to be implemented

and tweaked (but without doing that, we can’t tell our readers

why they should start saving their money). And it’s really hard to

cough up a release candidate when you’ve gotten 10 hours of

sleep in the last two weeks and all you can think of is the stuff

that still needs to be triple-checked (but if we don’t get the game

for review in time for our deadline, we can’t capitalize on the all-

important exciting newness of your release). The press is neces-

sary, but I would like to believe we are not a necessary evil.

Most developers I’ve met take their fun seriously, do what

they do out of love, and invest a lot of themselves into each

product. Hey — me too. As a game critic, I may be in no dan-

ger of winning a Pulitzer, but I still maintain a code of ethics. If

Ted’s View (the Developer):

W hat do developers think of when they

think of the press? How about, “Oh man,

are they going to like our game? Please,

please, God, let them like it ... Did we get

it to them in time? Did anyone remember

to activate the nude cheats?”

Waiting to see how your game fared in the enthusiast maga-

zines and web sites is like waiting to see your grades posted at

the end of a school semester. You approach the event with a

mixture of fear and excitement, hoping that the reviewers saw

everything that was great in the game and ignored all of the

crash bugs that shipped out with the beta.

But for all the effort developers put into making a good game

and cooperating with the media, 99 percent of the games ever

released have received at least one or two bad reviews, by which I

mean the reviews fall well below what the developer expected.

Bad reviews are disappointing but can provide eye-opening

feedback for developers. We take what the press says very seri-

ously, and sometimes it drives the decisions that we make.

The down side of this feedback channel is that sometimes we

take what the press says too seriously, erroneously assuming

that reviewers represent average consumers. By trying to please

reviewers, we potentially alienate the non-hardcore consumer

market. And since we here at Insomniac make games that are

for broad audiences, this is especially true for us.

One of the big questions we ask ourselves all the time is,

“How much do enthusiast reviews matter to consumers?” I’ve

never seen any hard data to answer that question, but generally

developers presuppose that the reviews are really important to all

gamers. Most of us are hardcore gamers ourselves, so a lot of us

make our buying decisions based on enthusiast reviews.

But review scores may not mean as much to the average

gamer as we imagine. There are some shining examples of

games that were reviewed badly and sold millions (FROGGER on

PSX, anyone?) — it doesn’t happen all of the time, but it hap-

pens. Many more games are reviewed great but sell squat (our

own DISRUPTOR being a good example). We’ve got to remember

continued on page 79, column 2continued on page 79, column 1

that there are a lot of other forces at work when it comes to

influencing the average game consumer — marketing cam-

paigns, name recognition and licenses, price point, and so on.

Reviews that don’t live up to developers’ expectations are

almost inevitable, since everyone who reviews a game uses

slightly different criteria to judge a title, and developers general-

ly don’t complain about that.

Given that inherent fact, I really wish that the same reviewers

at magazines or web sites would review games within the same

genre. When I see publications where reviewers are jumping

between FPS games, racing games, RPGs, and everything else, as

a consumer I feel like making valid comparisons between rat-

ings is fruitless. And as developers, sometimes we’re left won-

dering, “Wait, this guy just said in his review that he hates plat-

formers. Why is he reviewing our game?”

Ultimately, though, if we’re charging people money for our

games, they have the right to say whatever they want to about

them. It doesn’t matter if the comments come from a senior edi-

tor or an 8-year-old on a forum. The only time I think we really

have a right to complain about bad reviews (outside of the bitch-

ing and moaning we do with the rest of the team) is when people

get the facts completely wrong, or if there’s clear evidence the

reviewer barely played the game. And even then, we’re probably

better off keeping our mouths shut, quietly evaluating all criti-

cism, and working to make the next game an improvement. q

T E D P R I C E | Ted is president of Insomniac Games.

a game’s not

worth $50, I’ll

say so. The only

time I ever really

think ill of

developers is

when I hear

them complain

about reviews

they didn’t like,

and not because

the reviewer’s point wasn’t valid — just because they wanted a

perfect review. GamePro’s highest rating is a 5.0; I’ve gotten

negative feedback on scores as high as 4.5. Huh? Please accept

my constructive criticism for what it is — constructive — and

take a step back from your baby.

I have tried programming. I suck at it. I truly do appreciate

the blood, sweat, and long nights that you’ve put forth over the

last 18 months. But in the same way that I don’t hold the entire

industry responsible for one bad game, I hope developers don’t

lump all the press into one pile of unqualified egomaniacs.

The press has to agree not to slam games without doing our

homework, and developers have to agree not to slam reviews

without considering our criteria. The press represent your most

loyal fans, and we can’t wait to see the magicians’ next trick. q

D A N A M R I C H | Dan is senior editor at GamePro magazine.

S O A P B O X

w w w . g d m a g . c o m 79

continued from page 80, column 1 continued from page 80, column 2

The press has to agree
not to slam games

without doing our homework,
and developers have

to agree not to slam reviews
without considering our criteria.

	04gameplan
	06saysyou
	08indwatch
	10prodrev
	14profile
	17innerp
	20artview
	27soundp
	28betterby
	30f-gilles
	40f-saulni
	50postmort
	80soapbox

	return:

