
APRIL 2002

G A M E D E V E L O P E R M A G A Z I N E

G A M E P L A N
L E T T E R F R O M T H E E D I T O R

About Face

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief

Jennifer Olsen jolsen@cmp.com
Managing Editor

Everard Strong estrong@cmp.com
Production Editor

Olga Zundel ozundel@cmp.com
Product Review Editor

Daniel Huebner dan@gamasutra.com
Art Director

Audrey Welch awelch@cmp.com
Editor-At-Large

Chris Hecker checker@d6.com
Contributing Editors

Jonathan Blow jon@bolt-action.com
Hayden Duvall hayden@confounding-factor.com
Noah Falstein noah@theinspiracy.com

Advisory Board
Hal Barwood LucasArts
Ellen Guon Beeman Beemania
Andy Gavin Naughty Dog
Joby Otero Luxoflux
Dave Pottinger Ensemble Studios
George Sanger Big Fat Inc.
Harvey Smith Ion Storm
Paul Steed WildTangent

ADVERTISING SALES
Director of Sales & Marketing

Greg Kerwin e: gkerwin@cmp.com t: 415.947.6218
National Sales Manager

Jennifer Orvik e: jorvik@cmp.com t: 415.947.6217
Senior Account Manager, Eastern Region & Europe

Afton Thatcher e: athatcher@cmp.com t: 415.947.6224
Account Manager, Northern California

Susan Kirby e: skirby@cmp.com t: 415.947.6226
Account Manager, Recruitment

Raelene Maiben e: rmaiben@cmp.com t: 415.947.6225
Account Manager, Western Region, Silicon Valley & Asia

Craig Perreault e: cperreault@cmp.com t: 415.947.6223
Account Representative

Aaron Murawski e: amurawski@cmp.com t: 415.947.6227

ADVERTISING PRODUCTION
Vice President, Manufacturing Bill Amstutz
Advertising Production Coordinator Kevin Chanel
Reprints Stella Valdez t: 916.983.6971

GAMA NETWORK MARKETING
Senior MarCom Manager Jennifer McLean
Marketing Coordinator Scott Lyon
Audience Development Coordinator Jessica Shultz

CIRCULATION
Group Circulation Director Catherine Flynn
Circulation Manager Ron Escobar
Circulation Assistant Ian Hay
Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes

t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas

t: 650.513.4234 f: 650.513.4482 e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall
Executive Vice President & CFO John Day
President, Technology Solutions Group Robert Faletra
President, Business Technology Group Adam K. Marder
President, Healthcare Group Vicki Masseria
President, Specialized Technologies Group Regina Starr Ridley
President, Electronics Group Steve Weitzner
Senior Vice President, Business Development Vittoria Borazio
Senior Vice President, Global Sales & Marketing Bill Howard
Senior Vice President, HR & Communications Leah Landro
Vice President & General Counsel Sandra Grayson
Vice President, Creative Technologies Philip Chapnick

W W W . G A M A N E T W O R K . C O M

✎

High-powered consumer 3D
hardware continues to
blaze forward, and I, like
many, am duly impressed
by the new opportunities

for realism afforded by each advancement.
We have solved a lot of long-standing
problems obstructing believably realistic
real-time environments and are tantaliz-
ingly close to conquering many others.

Clever technology notwithstanding, one
of the quickest ways to dash the realism
of even the most richly immersive 3D
environment is to put a human in there
and have him say something.

Audiences and critics alike were daz-
zled by the visual realism of Final
Fantasy: The Spirits Within, but despite
the heroic efforts on the animators’ and
technicians’ parts, a number of critics
pinged the film for lacking believability in
the facial animation: expressions that
missed their mark in some barely percep-
tible way, lip-synching that seemed stilted,
lifelessness beaming from meticulously
shaded eyeballs.

Going back to the Latin, to animate
something is literally to imbue it with a
soul. Humans are very sensitive to the
nuance of expression they and their kind
are capable of; it’s a form of communica-
tion more essential to our survival than
language. Darwin studied human facial
expressions and believed our ability to
interpret them represented the existence of
a continuum between the human and ani-
mal worlds, between nature itself. It is far
more difficult to quantify that kind of
subtlety, so close to our very essence, than
it is to create a few million vertex-shaded
blades of grass.

With every technological advancement,
are we getting closer to or farther away
from the goal of creating truly realistic,
believable virtual humans? As we
approach perfection in virtual environ-
ments, do our senses then amplify per-
ceived shortcomings of the human ele-
ment? Is it a psychological barrier that our
conscious minds know the person we’re
observing doesn’t actually exist? Just
where is the solution to this problem
going to come from?

On the one hand, this industry has
always loved a challenge; perhaps the
challenge of convincingly simulating the
range of human expression (dozens of
intricate facial muscles creating between
5,000 and 10,000 discrete, recognizable
expressions, according to estimates from
psychological researchers) is one we’ll be
able to solve once and for all when a suffi-
ciently high number of transistors arrives.
Perhaps all our gorgeous, soulless figures
need is a few million more polygons and a
fresh set of shading algorithms and they’ll
be a bunch of virtual Brandos.

On the other hand, we can accept the
notion that every medium has its strengths
and shortcomings relative to other media.
Traditional cel animation today retains
many of the same abstract stylization con-
ventions for facial expression and lip-
synching that have existed since the birth
of the medium, in part because viewers
recognize them so well. In the near term,
stylization affords game developers the
ability to circumvent an insurmountable
hyperrealism with creative flair. New
hardware has done a lot to encourage
visual creativity: 3D cel-shading, 2D
“paper” characters such as Paper Mario
or Parappa the Rapper, and plenty of
research on the non-photorealistic render-
ing front.

Infinite realism is a tricky goal for
human expression in games. Facial anima-
tion, while far better than it used to be, is
still fraught with major compromises to
genuine immersiveness. Engineers, anima-
tors, psychologists, anthropologists, and
neurologists are all going to continue
working to understand and thereby con-
vincingly replicate every facet of human
expression; there’s certainly no reason to
stop, even though I think the solution will
continue to evade us for years. For now,
it’s exciting to see other creative avenues
open up and flourish at a time when we
are still exploring the creative and artistic
potential of our young medium. Because
who will ultimately judge when computers
have successfully conquered reality?

600 Harrison Street, San Francisco, CA 94107 t: 415.947.6000 f: 415.947.6090

2

Game Developer
is BPA approved

Understanding Is Key

I read “Mathematical Growing Pains”
(Inner Product February 2002) with

great interest.
Alas, I’m a 3D artist, and I can’t real-

ly say that I can program (though I’m
reading through C++ books and under-
standing it little by little) and have very
little math knowledge beyond high
school calculus.

More than anything, I’m rather proud
that I had the faculty to sort out the
meaning behind “why we should care
about n-dimensional generality,” and
though I lacked the engineering back-
ground to appreciate Blow’s article in
full, I am a stickler for understanding
things — not just plugging numbers into
formulas or mashing buttons in a 3D
application. I think it is that part of me
that responded to his article the most.

There are plenty of barely qualified
hacks in any and every department of
every field, and I think Blow’s exhorta-
tion to seek understanding in underlying
concepts is relevant to everyone at all
levels. If that “negativity” he mentioned
in his column was indeed a reflection of
general ignorance and it was toned
down, I am really very glad it was not
removed altogether.

Jin Choung

via e-mail

Mathematical Quibble

Irecently read Jonathan Blow’s Inner
Product column, “Mathematical

Growing Pains” and found something
funny. Blow states, “As a bonus, the
surface normal of the line is (a, b), and
the distance from the line to the origin
is c” (1st page, 2nd column, 3rd para-
graph). Since I was taught exactly the
same thing in school, I didn’t give it
much importance at first glance, but
then I started thinking more thoroughly
about it and realized that despite the
fact that the first statement is true
(mostly because is it the gradient for a
z = ax + by equation), the second one is

false. The distance to the origin isn’t the
same for both 2x + 2y + 1 = 0 and x + y
+ 1 = 0. The correct expression should
be abs(c/).

That really astonished me, because I
have the c== distance definition memo-
rized and never really cared about it.

Manuel Sanchez

via e-mail

JONATHAN BLOW RESPONDS: Well, I didn’t
really explain this well in the article,
though I guess I should have. As you
know, the equation ax + by + c = 0 is
underconstrained, and there are an infi-
nite number of possibilities for any par-
ticular line (they are all multiples of
each other). Usually we choose the one
so that (a, b) is a unit vector. I had
assumed that this is the case (I say that
it’s the “surface normal” to the line, and
in graphics, a surface normal is assumed
to be unit length).

When (a, b) is a unit vector, c is the
distance to the origin (because
becomes 1, so this is consistent with
what you were saying).

But you can store the line equation so
that (a, b) is not unit, so my article is a
little misleading there, I guess. I hope
people new to this kind of math don’t
get too confused by that.

On Industry Awards
Re: “The Envelope, Please,” Hal
Barwood’s Soapbox on game industry
awards (February 2002).

T he Academy of Interactive Arts and
Sciences (AIAS) has been working for

several years to meaningfully represent

the interests of the game development
community and to offer meaningful and
prestigious awards to our professional
community.

The various craft screening committees
(referred to by AIAS as Peer Panels)
ensure that AIAS’s individual craft award
nominees are actually meaningful. These
nominations are selected through ardu-
ous review and vigorous debate by some

of the most accomplished professionals
in the business. To be nominated for an
Interactive Academy Award is to win the
respect and admiration of those who
really know.

I have personally been involved in the
craft awards screening process for four
years on behalf of the audio community.
For the past two years, I have overseen
the process in the Music Composition
and Sound Design categories.

It might be interesting to some of
your readers to take a behind-the-scenes
and look at how these Peer Panels oper-
ate. HUGEsound recently posted a sum-
mary of this year’s experience in its
HUGEnews section:
www.hugesound.com/HUGEnews.htm.

Recognition for outstanding accom-
plishment is important. These award
nominations provide additional incen-
tives to keep us pushing ever upward
and onward in our respective crafts.

Chance Thomas

HUGEsound

via e-mail

a b2 2+

a b2 2+

a p r i l 2 0 0 2 | g a m e d e v e l o p e r4

S A Y S Y O U
A F O R U M F O R Y O U R P O I N T O F V I E W . G I V E U S Y O U R F E E D B A C K . . .C

C
Let us know what you think: send us an

e-mail to editors@gdmag.com, or write

to Game Developer, 600 Harrison St.,

San Francisco, CA 94107

I think Blow’s exhortation to seek under-

standing in underlying concepts is relevant

to everyone at all levels.

It's official: 2001 best year yet for
U.S. game industry. Thanks to the PS2,
Xbox, and Gamecube, U.S. sales of
videogames and related hardware hit a
new all-time high in 2001, reaching $9.4
billion according to market researcher
NPD. The previous record, set in 1999,
stood at $6.9 billion.

NPD said that the number of consoles
increased by 39 percent last year,
amounting to a 120 percent increase in
revenue. The higher revenue came as a
result of higher sales volume on consoles,
as well as the higher average price of the
next-generation consoles.

On the game side, the industry hit $6
billion in sales, up from $5.4 billion in
2000. As a benchmark, the U.S. box office
receipts for Hollywood movies in 2001
amounted to $8.4 billion.

The top seller in 2001 for consoles was
Take-Two’s GRAND THEFT AUTO 3 for the
PS2, which has sold more than 2 million
copies since it debuted last October. THE

SIMS was the best seller on the PC, posting
2.6 million units in sales since it launched.

Nintendo was the top publisher for
consoles and handhelds in 2001 (three
top-10 titles, all for the Game Boy
Advance). Sony had seven of the top 10
console titles for the year, and EA con-
trolled the PC market with six of the top
10 games on that list.

Mixed messages as Fargo leaves
Interplay. While Titus CEO and Inter-
play President Herve Caen was wishing
Brian Fargo good luck in his future
endeavors, Interplay itself was consider-
ing filing suit against its former chairman
and CEO. Interplay’s board of directors,
which is accusing Fargo of improperly
engaging in competition with the compa-
ny by soliciting Interplay employees, has
tapped Herve Caen as Interplay’s interim
CEO. The change in leadership at the
troubled publisher is just the latest move
by Titus, Interplay’s controlling share-
holder, to establish greater control over
the company. In August, Titus increased
its ownership of Interplay to 51.5 per-
cent, and in September Titus arranged to
increase its hold on Interplay’s board of
directors to five of seven seats.

As one leading dispute at Interplay was
brewing, another was finally settled.

After four months of legal disputes
between BioWare and Interplay, the two
companies announced that they have set-
tled their differences over the publishing
rights to BioWare’s upcoming RPG,
NEVERWINTER NIGHTS. The two companies
squared off against one another last
September, when BioWare filed suit
against Interplay to stop the publisher
from sublicensing the game’s distribution.
Later in November, BioWare announced
that it was canceling its publishing agree-
ment with Interplay. Under the terms of
the settlement, NEVERWINTER NIGHTS will
be published worldwide by Infogrames,
but the new agreement will be subject to
certain pre-existing Interplay licenses.

Take-Two halts trading. Questions
about irregularities in Take-Two’s
accounting procedures have erupted into a
firestorm of controversy. After announcing
that the company would be forced to
restate earnings and revenue numbers for
all of its fiscal year 2000 as well as the
first three quarters of 2001, Take-Two
unexpectedly postponed the announce-
ment of its fourth-quarter results. Explain-
ing that the company would need more
time to put its accounts in order, Take-
Two filed for a 15-day extension on filing
its annual report.

Citing a lack of proper information
regarding the company’s financial report-
ing, the Nasdaq exchange halted trading
of Take-Two shares shortly after the
company postponed its fourth-quarter
report. The trading hold was to remain
in effect until Take-Two was able to fully
satisfy Nasdaq’s request for additional
financial information.

Take-Two financial woes have culmi-
nated in nearly a dozen class action law-

suits filed by investors asserting that the
company’s accounting practices misled
shareholders by misrepresenting the true
state of Take-Two finances. All of the suits
were filed in the United States District
Court for the Southern District of New
York, and charge that Take-Two issued a
series of materially false and misleading
statements to the market between
February 24 and December 17, the day
Take-Two announced that it would restate
its numbers.

Eidos boutique label brings Japanese
games west. The obscure world of
Japan-only games will no longer be strictly
the domain of import buyers. Eidos is
establishing a new game label dedicated to
bringing Japanese-only videogames to the
rest of the world. The Fresh Games label
will launch with three Sony-developed
Japanese titles previously unavailable out-
side of Asia: MISTER MOSQUITO, MAD

MAESTRO!, and LEGAIA 2: DUEL SAGA.
Fresh Games titles are set to debut in
spring 2002. q

a p r i l 2 0 0 2 | g a m e d e v e l o p e r6

I N D U S T R Y W A T C H
T H E B U Z Z A B O U T T H E G A M E B I Z | d a n i e l h u e b n e rJ

U P C O M I N G E V E N T S

CCAALLEENNDDAARR

BioWare and Interplay have settled their differ-
ences over NEVERWINTER NIGHTS.

Get the can of bug spray, MISTER MOSQUITO is
coming to town!

E L E C T R O N I C
E N T E R TA I N M E N T E X P O

LOS ANGELES CONVENTION CENTER

Los Angeles, Calif.
Conference: May 21–23, 2002
Expo: May 22–24, 2002
Cost: $200–$475
www.e3expo.com

Expo admission free to game
industry professionals

XX

T he second version of Virtools
clearly builds upon previous
releases, keeping a similar
look while adding a host of
new features that greatly

improve the final package. For those new
to the product, Virtools is a production
environment (such as Director) designed
to allow the rapid creation of 3D-interac-
tive applications.

It features importers for many popular
file formats, an intuitive drag-and-drop
scene manager, and a behavior engine that
allows users to assign behaviors graphical-
ly to the different entities in the world.
Import your Character Studio files (other
supported formats are discussed later),
make them move by dragging the appro-
priate behavior from the palette, and off
you go. No recompiling, no coding: all the
actions are performed graphically.

For this reason, Virtools is a great tool
for game designers needing to create wor-
king prototypes. In fact, it works so well
that it can be used to create full-blown
games of moderate size (no, that does not
include EVERQUEST). Thanks to the web
player supplied with the package, Virtools
can create some of the best web-based
content around, with top-notch 3D
graphics and interaction. It’s rather imp-
ressive to see some of the Virtools-based
DOOM clones available online.

Version 2.0 offers a wealth of new stuff
for Virtools aficionados. To begin with,
the number of behavior building blocks
(BBs) has expanded to a whopping 400.
That includes everything from basic trans-
forms or texture assigns, to rich and com-
plex behaviors such as skin/bones con-
trollers and Bézier patch support. Another
highlight of the new features is the way
Virtools handles progressive meshes. You
can adjust your triangle count by moving

one slider and modifying it on the fly to
guarantee a good frame rate. Another
impressive feature is the portal system that
culls away large parts of the geometry to
optimize rendering speed. All these fea-
tures give Virtools the ability to produce
professional-looking applications.

Should you require additional behav-
iors, there are several tracks you can fol-
low. Your first stop should be to investi-
gate purchasing the add-on Physics Pack
(new in version 2 of Virtools), a version of

the Havok toolkit designed to run with
Virtools. The Physics Pack adds 30 new
BBs, which implement gravity, friction,
and the like in your project. If you don’t
want to spend the extra cash to get more
behaviors, Virtools sports a large fan base,
and many community web sites have free
downloadable behavior and composition
collections. You can also create new
behaviors using the supplied SDK.

As far as the interface goes, the overall
philosophy has remained unchanged since

Virtools Dev 2.0
by daniel sánchez-crespo

a p r i l 2 0 0 2 | g a m e d e v e l o p e r8

P R O D U C T R E V I E W S
T H E S K I N N Y O N N E W T O O L S

D A N I E L S Á N C H E Z - C R E S P O | Dani has been in involved with computer graphics
in one form or another for about 10 years, from raytracing to academic research and
now as a professor of game programming. He is founder and lead engine programmer at
Novarama, an indie studio in sunny Barcelona, Spain. You can reach him at
dani@novarama.com.

VIRTOOLS DEV 2.0. Tracing through the building blocks (active ones are shown in red) allows
users to debug applications done in Virtools.

the previous release: three stacked panes
display the scene, behavior library, and
current script. All actions are performed
via drag-and-drop, with no coding
required. Still, the interface has several
problems that have remained from previ-
ous versions. For one thing, it does not
follow a “standard” Windows design. In
addition, the interface’s structure is coun-
terintuitive: it lacks an undo feature, it
does not follow standard key mappings,
and there is a huge amount of informa-
tion displayed on-screen. All these issues
can make for a long and steep learning
curve. An extra effort could have been
made to make this otherwise strong prod-
uct a bit more accessible.

Workflow with Virtools is, despite the
flaws of the interface, a breeze. After
importing your content (.3DS, .X, .MP3,
.WMA, and Maya files are among the
formats supported) you can begin
assigning scripts to the items by dragging
building blocks to the lower pane. Click
the play button, and your composition
will run interactively within the environ-
ment. You can even select the renderer
of your choice (DirectX 5, DirectX 7, or
software/hardware OpenGL; DirectX 8.1
support is being added with the immi-
nent 2.1 release) and limit your frame
rate should you need to do so. While
you are in play mode, the Trace feature
shows you which BBs are activated at
any given time, their parameter values,
and other information. You may also set
breakpoints, which will pause the execu-
tion once it reaches the marked BB. This
way you can avoid losing vital informa-
tion about its inner workings when the
script is running at full speed. All these
debugging features make working with
Virtools very easy.

The documentation is a mixed bag.
Virtools comes with a printed manual
that, aside from being slick and well laid
out, does a great job of introducing us to
the basic components and terminology.
The 230-page manual covers the program
operation and interface as well as the
inner structure of the behavior engine in a
fair amount of detail. It also features two
complete tutorials that guide users
through the different features of the sys-

tem. Despite offering a strong introduc-
tion, however, the manual is not sufficient
to gain real knowledge of the system: I
had to depend on online help files, con-
text-sensitive help, and the like to learn
about specific building blocks and — sur-
prisingly — the SDK.

One of the main strengths of Virtools
Dev is the access to the SDK, allowing
users to create specific building blocks.
Do you want to create a complex AI?
Then you need to use the SDK. Sadly,
the SDK is not even mentioned in the
manual, and the available online docu-
mentation is “under construction.”
Several extensive samples are supplied
(an AVI player, a Max exporter, among
others), but if you want to go on with
the SDK, you are left on your own.

The Bottom Line

V irtools 2.0 is a great tool with some
annoying problems. On the plus side,

it allows you to create great interactive
content rapidly with its intuitive building
block system. Being a programmer, I’m
more used to coding, but it’s good to
know that there’s something out there
worth using for those of you that don’t
know (or like) down-and-dirty coding.
The workflow is very intuitive and, given
some time, can produce stunning results.
In fact Microsoft selected Virtools as the
first official Prototyping Tool: you can
have a working prototype with final art
and gameplay within weeks, not months,
and if the game is good enough for Xbox,
you can then move on to a final working
environment (or stay with Virtools should
you wish to do so), while keeping all of
the art assets you have created. This pre-
production or production-planning
method, greatly encouraged by Virtools,
can be a real advancement from tradition-
al production techniques.

On the minus side, the first hours with
the system are rather harsh: the interface
is not intuitive, and the manuals only
cover part of the picture. It’s true that
using the manual tutorials can get you up
and running fast, but Virtools needs more
and better documentation. I have the
sense that many interesting features are

hidden in there somewhere, but the lack
of documentation is preventing me from
discovering them. And that’s a shame.

EQUILIBRIUM’S
DEBABELIZER PRO 5.0

by tom carroll

R eviewing DeBabelizer Pro 5 for
game development in the amount

of space allotted here is a challenge. The
product as a whole is as deep as True
Color and as broad as a panoramic
JPEG. But it may not be right for every
game developer, especially one currently
using DeBabelizer 4.5.

w w w . g d m a g . c o m 9

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

STATS
VIRTOOLS S.A.

Paris, France
+33 (1) 42 71 46 86
www.virtools.com

PRICE
Virtools Dev 2.0: $5,000
Physics Pack: $5,000

SYSTEM REQUIREMENTS
Pentium II or equivalent with 64MB RAM
running Windows 95/98/ME/2000/NT 4
(SP 6)/XP; CD-ROM drive, monitor capa-
ble of displaying 1024�768 in 16-bit
color (65,536-color/high-color), pointing
device, Direct3D- or OpenGL-compatible
graphics card with 8MB RAM; DirectX
5.0 required for DirectX-compatible
graphics cards, Internet Explorer 4.0
required for the online reference.

PROS
1. Simple workflow.
2. Robust feature set.
3. Good entry point for Xbox.

CONS
1. Counterintuitive, nonstandard interface.
2. Insufficient documentation for everyday

use.
3. SDK documentation is poor: unfinished

reference help file, no tutorials.

VIRTOOLS 2.0 XXX[[

DeBabelizer Pro was originally devel-
oped to automate the tedious tasks of
graphics production: image processing,
graphics optimization, and file conversion.
The package combines simple scripting of
repetitive tasks, batch processing of script-
ed processes, and advanced automation
into one seamless whole. All this power
comes at the expense of your neat little
desktop. The interface can get cluttered up
rather quickly, especially when multiple
images are open simultaneously. Oh, and
the toolbar isn’t terribly intuitive. But

once you get past these shortcomings, the
package itself is wonderfully deep.

For game developers, especially those
working on console systems that still
require texture optimization (anyone out
there working on PS2 games, raise a
hand), DeBabelizer is the answer. It’s a
must for anyone porting graphics from PC
to console, optimizing palettes, perform-
ing blue- or green-screen compositing,
eliminating scan lines, and/or converting
assets from NTSC to PAL or vice versa.
The package supports more than a 100
file formats for input and output. Along
with fairly pedestrian .GIF, .JPG, and
.PNG formats, you can also manipulate
more exotic Ventura Publisher .IMG and
Dr. Halo .CUT formats, among others.
While game developers don’t necessarily
need so much flexibility, it’s comforting to
know that collecting textures from exotic
sources isn’t going to become a time pit.

The package has also grown famous for
pioneering such features as batch process-
ing and SuperPalette creation.

But no software package exists in a vac-
uum. Following DeBabelizer’s lead, other
packages, such as Photoshop, now pro-
vide similar functionality for roughly the
same price. (DeBabelizer Pro 5 is available
for Windows XP/2000/NT/Me/98 as well
as Mac OS 9.x and X at a suggested retail
price of $699 and a street price of $479.)
And that brings us to the current state of
DeBabelizer affairs: DeBabelizer Pro 5.

DeBabelizer Pro 5 does everything past
versions have done, plus enabling users to
do some new things, such as automatical-
ly digitally watermarking high volumes of
images and multi-frame files on the fly.

Pro 5 also features the ability to pub-
lish web catalogs with HTML, thumb-
nails, and JPEG files; new Palm OS and
Windows CE color palette optimization;
QuickTime, AVI, and RealVideo file con-
version and compression; and increased
batch automation. While many of these
new features — especially web cataloging
and watermarking — are powerful, they
are aimed primarily at markets other
than game development.

The real question is, then, could a
game developer already using Debabelizer
4.5 get by without the new package and
the $149 upgrade fee? Probably. Version
4.5 contains the core functionality that
most game developers require.

Should a game developer who is not
using DeBabelizer consider trying to
make Photoshop (or some other equiva-
lent) do the same job? Possibly. But
would it be better for that person to
invest in DeBabelizer Pro 5 because it is
the best in the business? Absolutely.

As a final note, I considered giving
DeBabelizer Pro 5 just three stars, but
decided it’s unfair to penalize a software
developer for attempting to broaden its
market by adding new features, regard-
less of how little they apply to game
development.

XXXX | DeBabelizer Pro 5
Equilibrium Technologies

www.equilibrium.com
Tom Carroll is a 2D/3D artist who
would be quite happy if he could some-
how fit 25 (or more) hours in each day.
Reach him at jetzep@pacbell.net.

MAXON COMPUTER’S
BODY PAINT 3D

by steve theodore

G erman developer Maxon Compu-
ter’s Body Paint 3D is the newest

entry into the field of 3D texture paint-
ing. The $595 program (Windows and
Mac OS) allows users to paint complex,
multi-layered texture maps directly onto
3D objects.

Body Paint is designed to work with
models created in other packages, al-
though it can be integrated into Maxon’s
flagship 3D software, Cinema4D XL.
Maxon offers free plug-ins for Lightwave
(versions 6.5 and 7) and 3DS Max (3 and
4), allowing direct import and export of
models and materials. Models can also be
imported and exported via standard 3D
interchange files, including .DXF, .OBJ,
and .3DS, or more esoteric formats such
as VRML and QuickDraw 3D. Textures
can be imported and exported as
Photoshop .PSD, .TIF, .TGA, .JPG, or
Macintosh-standard PICT files.

An arbitrary number of views of the
model can be displayed and painted
simultaneously. While navigation seems
sluggish compared to 3DS Max or Maya,
performance is adequate for the limited
task of finding views to paint. Extensive

XP R O D U C T R E V I E W S

a p r i l 2 0 0 2 | g a m e d e v e l o p e r10

DEBABILIZER PRO 5
Offers many features,
including some not
commonly used by
game developers.

hotkey and customization support, plus
good window- and palette-management
tools, make workspace management fairly
easy, although the reversed mouse-pitch
for camera movement is off-putting (a
right mouse move rotates the view right,
not left, as users might be accustomed to
in their 3D modeling package).

The workflow is quite similar to tradi-
tional 2D painting; the paint tools are
responsive, and the feedback is very fast
on a modern machine. The program offers
a large collection of brushes, but all of
them (airbrushes, charcoals, pencils, and
so on) are customized instances of a single
generic brush, similar in capability to the
default brush in Painter. The interface for
customizing and storing brushes is spartan
but functional. Users can also define tex-
ture brushes (the familiar Rubber Stamp or
Pattern tools from Photoshop) and the
very handy “multibrushes,” which affect
multiple texture properties (such as color,

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

w w w . g d m a g . c o m 11

BODY PAINT 3D’S interface handles a great deal of information with strong workspace-manage-
ment tools.

bump, and specularity) at the same time.
Other standard paint tools — selection
marquees, friskets, magic wands and so on
— all function as expected. Each texture
can include an arbitrary collection of
Photoshop-like layers with masks and mul-
tiple blend modes. A selection of 2D image
filters (color correction, sharpen, and so
on) rounds out the paint functionality.

Successful 3D painting depends on
the model’s UV mapping; poorly
arranged UV coordinates can result in
smeared textures or seams between
adjacent polygons. Body Paint includes
tools for touching up or completely
replacing UV mapping on a model. One
standout feature is Optimal Mapping,
which distributes texel density evenly
across an object to prevent texture
smearing. This provides nice results but
requires hand-tweaking to avoid prodi-
gal waste of texture memory. To accom-
modate on-the-fly edits of existing maps,

Body Paint can reposition existing tex-
tures to match edited UV coordinates.
While this process can result in seams
and filtering artifacts, the results are
generally as good as could be had from
performing the same edit by hand.
Overall, the UV tools lag behind those
in Maya or Texture Weapons in sophis-
tication, but being directly integrated
into the 3D paint application makes
them extremely useful nonetheless.

Unlike similar tools, Body Paint 3D
also includes a full-featured rendering
system. The Raybrush renderer offers a
fast raytracer and cel-shader capabilities.
Users can also render into a 3D paint
window and work directly on the ren-
dered image, with the high-quality filter-
ing and refractive effects of the raytraced
image. Real-time artists will find, how-
ever, that the power of the renderer is
irrelevant to their immediate needs.

Overall, Body Paint 3D is a capable

program at an attractive price. The paint-
ing toolset has few frills but is capable,
and the UV tools are solid. Painting per-
formance is fine, and the interface is styl-
ish. The most significant competitor, Right
Hemisphere’s Deep Paint 3D, does hold
two key advantages: more sophisticated
UV-editing tools and a projective painting
mode that does an excellent job of elimi-
nating texture seams (see Product
Reviews, August 2001). Nevertheless,
Body Paint does a workmanlike job for
half the price of the Deep Paint
3D/Texture Weapons bundle. Teams on a
budget, teams using Macintoshes, and
current Cinema 4D users should all look
seriously at Body Paint 3D.

XXX | Body Paint 3D
Maxon Computer

www.maxoncomputer.com

Steve Theodore is an animator and char-
acter designer at Valve Software. He can
be reached at stevet@valvesoftware.com.

XP R O D U C T R E V I E W S

a p r i l 2 0 0 2 | g a m e d e v e l o p e r12

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

I f you don’t know who Doug Church
is, don’t blame us. Doug has done
design and programming work on
three of PC Gamer’s top 20 PC games
of all time: ULTIMA UNDERWORLD (I

and II), SYSTEM SHOCK, and THIEF: THE DARK

PROJECT. In his 10-year career he has frequent-
ly found ways to allow cutting-edge technolo-
gy to produce innovative gameplay experi-
ences, mitigating the long-running debate that
one can only come at the expense of the other.

GD. You’ve been doing work for several years
on formal abstract design tools. Are game
designers getting any closer to benefiting from a
common language?

DC. I think what has happened has been a lot of individual
efforts from people to move it forward, but no common front.
Harvey Smith on DEUS EX 2 has tried to create some common
abstract vocabulary for that team, for instance. This year at
GDC, Bernd Kreimeier is running a roundtable on patterns for
design. One of my hopes is to have a plan for really moving
this forward at GDC next year, hopefully taking some of this
year’s discussion and using it as a basis for several talks and
roundtables next year.

GD. You’ve been doing some work with the academic community
through IGDA. What are you learning about academia’s needs from
the game development community?

DC. A big one is a curriculum framework for academics want-
ing to build development-related coursework.

GD. Which area of game development curriculum development
poses the greatest challenges?

DC. The issues of trying to introduce any new curriculum or
courses into a modern university poses the largest challenges.
But if we ignore that logistical and political problem, I’d say the
multi-disciplinary nature of game design is hard to make work
in a university context — not that some people aren’t trying
hard and making good progress.

This is another area where better vocabulary and analysis
would help. Right now teaching game technology is fairly
straightforward, as there is a body of well-understood knowl-
edge. The design space is far less clear, far less agreed upon, and
far less concrete. This makes teaching it hard.

For now, this means most university design work is very piece-
meal. And often the valuable part of developer interaction with
academia is simply explaining how the industry really works, and
what the parameters and possibilities are.

GD. How are the changing content demands for the current genera-
tion of consoles and PC hardware changing the task of game design?

DC. As our capabilities grow, content cre-
ation has become more time-consuming and
specialized. It is easy to generate vast fields of
tedium with ever higher poly counts. Normal
maps and so on are a scheduling and cost
headache, but not hard. Creating environments
rich in meaningful user interactions is hard.

Sadly, progress doesn’t happen in all game
aspects at once. Fifteen years ago, a charac-
ter was a 2D bitmap, and emotions were
indicated through text messages. Now, that
character is an articulated 3D figure, and we
are just beginning to reach the point where
facial expressions can express things like cry-
ing. And our ability to generate and simulate

reasons for emotions is still pathetic.
Representation and feedback are crucial aspects of good

game design, and the old standards of text messages and die
rolls don’t cut it anymore. As technologies advance, those that
haven’t moved forward are exposed. You can’t just say, “You
critically missed,” or “Wounded 42%,” you need to figure out
how to show the player what happened, and why, all in the
context of the world.

This is where tools for design become more vital. Building a
space appropriate for a given game style is a mix of good
architecture, well-tuned game systems, and steady information
flow to the player. This requires the flexibility to experiment
with and hone design ideas.

GD. Doesn’t that end up venturing into design-on-the-fly territory?
DC. Well, there is a difference between flexible design with

goals in mind and design-on-the-fly. That is one of the reasons
we need to develop some way of speaking about design, so we
can speak about design goals, and what tools we have to
change the players’ experience.

It is almost impossible to write a design doc for any brand-
new project that is both accurate and specific. Design docs have
specifics, which are hopes, and they have general goals. The
specifics may change as the project goes on, as you learn more
about what actually works to achieve your goals.

If the tech specs change, you may have to rework many of
your specific design decisions. And that is why tool flexibility is
paramount. You must have tools good enough to change your
specifics routinely, while keeping the overall goals in mind.

There is a reason good games often went through extensive
play-test and tuning. Good design usually means an under-
standing of where you want to go and a willingness to change
and experiment until you get there. But that change can’t rea-
sonably be hand-editing some hex file anymore. q

Doug Church: Rummaging Through
the Designer’s Toolbox

a p r i l 2 0 0 2 | g a m e d e v e l o p e r14

P R O F I L E S
T A L K I N G T O P E O P L E W H O M A K E A D I F F E R E N C E | j e n n i f e r o l s e n

Doug Church is lobbying for a com-
mon vocabulary for game designers.

T his month and next, I’m
going to talk about inverse
kinematics (IK). Jeff Lander
wrote a series of introducto-
ry articles about IK in 1998;

see For More Information at the end of
the article if you’d like to get caught up.

There are a few different paradigms for
solving IK problems, but I’ll concentrate
on Cyclic Coordinate Descent (CCD).
CCD is easy to implement and is fairly
modular; in other words, you can hack
stuff into it without too much trouble.

How CCD Works

CCD is an iterative numerical algo-
rithm. You have a chain of joints,

which I will call the “arm”; the arm is
in some initial state, and you want the
end of the chain (the “hand”) to reach
some target. We have some measure of
the error in the current state of the arm,

which involves the position and orienta-
tion of the hand with respect to the tar-
get. CCD iterates over the joints in the
arm, adjusting each in isolation, with
the goal of minimizing this overall error
(see Figure 1).

To animate a human character, we
want CCD to give us solutions that are

valid for a human body. When picking a
glass up from a table, we don’t want the
character’s elbow to bend backward in a
physically impossible way. In order to
prevent this situation, we can enforce
limits on the ways each joint can bend. A
shoulder has all three degrees of rotation-
al freedom, but each degree is limited —
the shoulder can only reach through a
certain range of angles and can only
twist so far. An elbow might be modeled
with two degrees of freedom: one that
bends the forearm toward the upper arm,
and another that twists the forearm.

CCD Convergence
Issues

Because CCD is iterative, you can
enforce these limits at each step by

taking the orientation for any joint and
forcing it to stay within the valid range.
However, this affects CCD’s ability to
converge on an answer. CCD is a blind
hill-climbing algorithm; it is walking
across a terrain defined by your error
function, trying to find the lowest point.
But when you impose joint limits, you
stick invisible walls on the terrain of
which the hill-climber isn’t aware. A
typical situation occurs when the system
tries to reach the target by expanding
the elbow beyond its joint limit. After
each iteration the elbow is forced back
within limits, so the algorithm doesn’t
get anywhere.

We can detect this situation and
attempt to resolve it by starting the arm

in a different configuration in which
that particular wall will no longer be in
the way. This is a special case of a time-
honored tool called simulated annealing.

Using the most basic form of simulat-
ed annealing, you would reset each joint
to a random pose and try again. This is
probably the easiest to code. A solution
that may perform better at run time is to
precompute a fixed number of starting
positions for the arm. During a pre-
process, we can randomly choose a large
number of points in space; for each tar-
get point, we discover a starting configu-
ration for which IK is sure to converge.
For experiments I’ve tried with reason-
able arms, four starting positions is
enough. You cluster the group of test
points reachable from each starting
state. At run time, given a target in arm-
relative space, you find the cluster cen-
troid that is closest to the target and use
the corresponding initial state.

In this month’s sample code (available
at www.gdmag.com), though, I just
chose the starting points by visual
inspection. I interactively moved the tar-
get around until I found a situation that
caused the solver to fail. Then I would
find a nearby target for which conver-
gence was successful and use that suc-
cessful final arm state as the initial state
for the new target. This lackadaisical
approach may actually be fine for most
projects, because not many starting con-
figurations are needed. (It is important
to realize here that I am restarting the
arm in a neutral position every frame. If

Inverse Kinematics
with

I N N E R P R O D U C T j o n a t h a n b l o w

a p r i l 2 0 0 2 | g a m e d e v e l o p e r16

FIGURE 1. A CCD solution for an arm,
anchored at the mustard-colored block, to
reach the designated target. Green: hand;
purple: forearm; red: upper arm.

Joint Limits

J O N A T H A N B L O W I Jon is a game technology consultant living in

San Francisco. He reads e-mail sent to jon@bolt-action.com. Game that

influenced this article: JUMPY MCJUMP, by gameLab!

you choose to begin the CCD solve from
an unpredictable pose, this problem
becomes more difficult.)

Implementing Joint
Limits

How do we allow the animator to
express joint limits, and how do we

write the code to enact those limits? We
know that commercial animation pack-
ages such as Maya and 3DS Max will do
IK; we might follow their examples. But
those systems don’t have very intuitive
interfaces, and they don’t provide good
control over what the IK solver does.
Let’s roll our own.

Nicer Rotation
Decomposition

C ommon IK packages allow you to
express joint limits by clamping

Euler angles, componentwise, into
adjustable intervals. But the resulting set
of valid directions for the bone is kind of
weird, and you have minimal control
over its shape. Consequently, the IK
solver comes up with solutions that you
don’t want, and you need to fix them up.
This process is tedious even in offline
animation; it’s unacceptable for an inter-
active game. So I’m going to discuss an
alternative rotation decomposition and a
means for limiting rotations that is clean-
er than that of Euler angles.

As I discussed in my February 2002
column (“Mathematical Growing
Pains”), any two (noncolinear) unit vec-
tors a and b define a plane. We can con-
struct a simple rotation that rotates a
onto b but does not affect vectors
orthogonal to the plane. The quaternion
form of this rotation is the square root of
the Clifford product ab; you can com-
pute the quaternion with a dot product,
a cross product, and a little bit of
trigonometry (see David Hestenes’ book
in For More Information). If we wish to
limit a bone rotation R, we can factor it
into two rotations: one is the simple
rotation that moves the bone into its
final direction vector, and one represents
the twist around that final vector.

We will adopt the convention that a
bone is oriented along the x-axis of its
local transform. We perform a CCD step
that yields a rotation R for some bone,
and we want to joint-limit R. Let
x� = Rx, the direction vector in which
the bone points after rotation. We first
compute S = Simple(x, x�), the simple
rotation that points the bone in the same
direction R does. Now let R = TS, where
T is a rotation representing the discrep-
ancy between S and R. Rx = x� implies
that TSx = x�, but since Sx = x�, T must
leave the vector x� unchanged. That is,
x� is an eigenvector of T, so T is a rota-
tion around x�. Beginner’s linear algebra
says that T = RS–1.

Suppose we want to implement a shoul-
der joint, which has a limited amount of
twist and a limited space into which the
vector can reach. We compute T and S,
then limit T and S separately. In this
month’s sample code, all rotations are rep-
resented as quaternions. To limit twist, it’s
a simple matter to decompose the quater-
nion representation of T into an axis and
an angle (though we actually knew the
axis already — it’s x�), clamp the angle,
and turn that back into a quaternion.

This decomposition is nice because it
talks about rotations in terms of two
concrete things that we can visualize,
that are close to the things we care about
for doing human body animations, and

that have no hidden gotchas (or at least
none nearly so bad as the Euler angle
confusions). The things we think about
are, “What direction does the bone point
in?” and “How twisted is it?”

The Euler angle representations used by
animation packages will create twist even
when they don’t intend to rotate around
the axis of the bone. As the angles get
larger, more unintentional twist is impart-
ed toward the extremes. Our decomposi-
tion does not have this problem.

Limiting Reach

T hink of the bone we’re limiting as a
vector pointing out into space from

the origin. We can limit the “reach win-
dow” of the bone by defining some wire
loop hung in space and declaring that
the bone must always pass through that
loop. The loop is embedded in a plane
some distance from the origin. We can
choose an arbitrary polygonal shape for
the loop; figuring out whether the bone
is inside it becomes a 2D point-in-poly-
gon problem (Figure 2). That kind of
problem is considered pretty easy to
solve these days. Thus we have a versa-
tile and easily visualized method of
restricting where the bone can go.

To keep the implementation simple, I
am only supporting convex reach win-
dows; I don’t see the benefit of a more
complicated system at the present time.
If we want our joints to be able to reach
beyond a single hemisphere, we can use
multiple convex windows embedded in
different planes. For an alternative for-
mulation of reach windows that sup-
ports star polygons, see the Journal of
Graphics Tools paper by Wilhelms and
Van Gelder in For More Information.
They also tend to discuss a 3D “reach
cone” rather than a reach window, but
the ideas are equivalent. I prefer to think
about this problem in 2D because it’s
easier to sketch on paper that way (and
for other reasons that I’ll demonstrate
next month).

When we bang up against a reach limit,
we find which side of the reach window
we slammed against and then find the
closest point along the segment to the des-

w w w . g d m a g . c o m 17

FIGURE 2. Computing the best reach orienta-
tion as a point-in-polygon problem. The blue
hexagon is our reach window. The white point
is our initial state, and the red point is our
goal outside the window. The valid point clos-
est to the destination is marked in green; it is
not the intersection of the hexagon with the
direct path of rotation (tan line).

tination; that point represents our final
direction. Wilhelms and Van Gelder use
the point where the bone slams into the
wall, but it seems to me that if you do
this, numerical algorithms like CCD will
have difficulty finding the best point in the
window. They would grind against the
wall, moving very slowly.

Tuning for Speed

C onverting a rotation to the
reach/twist representation is com-

putationally cheaper than using Euler
angles, but it still seems to involve some
expensive operations: one acos and one
sin. But it turns out that we only need to
perform this conversion if our rotation is
trying to exceed the limit. We can devel-
op quick and cheap tests to determine
whether the rotation is within bounds; if
it is, we just accept it and move on.

When testing reach, we just compute
x� = Rx without doing the ST decomposi-
tion. If x� is within the reach window, we
can exit early. Checking reach still
involves a point-in-polygon test, but for
each reach window we can precompute
the radius of a large inscribed circle, and
a vector that points to the center of that
circle. Then a simple dot product pro-
vides an early-accept; we only need the
point-in-polygon test when x� does not
pass through that circle.

This test can be even faster than we
expect. Rx is much cheaper to compute
than a normal quaternion-vector multi-
ply (because two components of x are
0); but if the inscribed circle is centered

around the x-axis, then in the end we
are computing (x � Rx) — in other
words, only the x coordinate of Rx. This
requires only four multiplies and three
adds: it is (qw

2 + qx
2 – qy

2 – qz
2), where

our rotation is the quaternion (qx, qy, qz,
qw). If this quantity is greater than some
precomputed constant, we know the
joint’s reach is safe.

We can use this same trick to accelerate
the computation of the simple rotation
between x and Rx (we can simplify the
cross product as well as the dot product).
The trigonometry involved in taking the
square root of the resulting quaternion is
implicitly slow, so this optimization might
seem ineffective. But the square root of
some quaternion q is the point on the 4D
unit sphere halfway between q and (0, 0,
0, 1). In other words, it’s Slerp(1, q, 0.5).
We can use our superfast quasi-slerp from
last month’s column (“Hacking Quater-
nions,” March 2002) to compute the
square root of q.

Recall that 0.5 is a point of symmetry
for linear interpolation — aside from the
endpoints, this is the one spot where a
lerp gives you precisely the same direction
as a slerp. So we can discard much of our
quasi-slerp; all we need to retain is the fast
normalizer. We need to modify that nor-
malizer, though: it needs to work for lerp
distortion all the way up through 180
degrees, because this is one interesting
case where we are not supposed to force
our quaternions into the same half-sphere
before interpolating.

I present to you Listing 1, the fastest
simple-rotation-finder in the West. If

the two inputs to this function are x
and Rx, you can further collapse the
rotation, dot product, and cross prod-
uct and use the CPU savings to rule the
world. (A note: The quaternion for any
simple rotation starting from x always
has an x component of 0). It is worth
reiterating that Listing 1 computes
exactly the right answer, to within the
scale factor introduced by the normal-
ization approximation.

Fast Twist Limit Testing

I’ve discussed how to quickly test for
reach limits, but we can speed up twist

limit testing as well, by not computing all
of T. All we really need is the cosine of
the twist angle, which we can test against
a precomputed constant. To get this,
compute Ry � Sy. We’ve seen in the pre-
ceding paragraph that s is fast to com-
pute; Ry and Ry are again cheaper than
normal quaternion-vector multiplies. q

I N N E R P R O D U C T

a p r i l 2 0 0 2 | g a m e d e v e l o p e r18

LISTING 1. Quickly find the simple rotation mapping a to b.

Quaternion fast_simple_rotation(const Vector3 &a, const Vector3 &b) {

Vector3 axis = cross_product(a, b);

float dot = dot_product(a, b);

if (dot < -1.0f + DOT_EPSILON) return Quaternion(0, 1, 0, 0);

Quaternion result(axis.x * 0.5f, axis.y * 0.5f, axis.z * 0.5f,

(dot + 1.0f) * 0.5f);

fast_normalize(&result);

return result;

}

F O R M O R E I N F O R M AT I O N
Hestenes, David, and Garret Sobczyk. Clifford

Algebra to Geometric Calculus: A Unified

Language for Mathematics and Physics.

Kluwer Academic Publishers, 1984.

Wang, Li-Chun Tommy, and Chih Cheng Chen.

“A Combined Optimization Method for

Solving the Inverse Kinematics Problem of

Mechanical Manipulators.” IEEE

Transactions on Robotics and Automation

Vol. 7, No. 4, August 1991.

Wilhelms, Jane, and Allen Van Gelder. “Fast

and Easy Reach-Cone Joint Limits.”

Journal of Graphics Tools Vol. 6, No 2.

Lander, Jeff. Game Developer Companion

Source Page

www.darwin3d.com/gdm1998.htm

ACKNOWLEDGEMENTS

Thanks to Casey Muratori for pointing out

Wilhelms and Van Gelder’s Journal of

Graphics Tools paper.

O f all the worlds we are
asked to create when mak-
ing a game, perhaps that
of the alien is the most
difficult to portray suc-

cessfully. On the one hand, building a
world that feels truly alien requires a cer-
tain amount of unhinged creativity if we
are to produce something exciting and
original. On the other hand, designing an
environment that really works relies on an
appreciation of what makes a place
appear alien while continuing to appear to
be a credible setting, as opposed to look-
ing like a cheap set from a low-budget
1970s sci-fi movie.

At this point, let’s reach for a dictionary
and have a quick look at how those dis-
tinguished men in beards (they always
have beards) and women in tweed jackets
(you can guarantee they’re wearing tweed
jackets), define “alien.”

Alien: n. an exotic, strange being, from
or characteristic of another place or part
of the world; adj. belonging to, charac-
teristic of, or constituting another and
very different place, society, or person.

This somewhat stuffy definition of “ali-
enness” can be put alongside the huge
array of images that most of us will have
accumulated from decades of fantasy art,
comic books, cripplingly cheap TV shows
and big-budget movies that have formal-
ized our concepts of the alien. Using these
ideas and the work of artists and designers
over the years, we can look at ways of
successfully creating alien worlds and how
best to use our resources to achieve maxi-
mum visual impact.

There’s Something
Familiar About That
Alien

One vital ingredient when creating
something new that is designed to

be interpreted visually, where it is
assumed that the audience will not neces-
sarily know in advance exactly what
you’re trying to achieve, is that of famil-

iarity. In the context of this article, it may
seem out of place to be talking about
familiarity as an ingredient in creating
something alien, but it is only through the
contrast between what is recognizable
and what is strange that we can make
these differences work effectively.

Consider Stanley Kubrick’s classic mon-
key-fest, 2001: A Space Odyssey. As a
child, I remember sitting restlessly through
what felt like 20 hours or so of unintelligi-
ble imagery, punctuated by men dressed as
apes throwing bones around, and a com-
puter that sang “Daisy, Daisy.” Watching
it again as an adult, I had a much-
improved understanding of the film’s
intent and held on firmly right up until
the end. Then came the colors. I think you
know what I’m talking about: Mr.
Kubrick’s 15-minute descent into nose-
bleed-inducing psychedelia that had many
children of the 1960s thinking that all the
acid they’d dropped a few years before

had finally caught up with them in a big,
wide-screen kind of way.

This sequence, depending on whose
account you read, was attempting to sym-
bolize a journey through time, space,
dimensions, consciousness, or whatever,
but because it had no shred of familiarity,
nothing to which the viewer could anchor
some attempt at interpretation, became
confusing and frustrating.

Now I know many of you will be shak-
ing your heads, appalled at the shallow-
ness of my appraisal of such an important
piece of filmmaking. But without things
degenerating into a fistfight, the point I
am making is that interpretation is an
important element in any visual form, but
much more so in a game. A player is not a
mere spectator, invited to marvel at how
original and innovative our designs are. A
player is actively engaged in navigating
our world, and even if that world is creat-
ed to be alien, it has to be understood.

One reason why the Star Wars universe
sits so comfortably on the mantelpiece of
modern movie genius is its conscious
effort to use what we know about our
world when creating its own. Looking at
many of the environments seen in the Star
Wars films, it is interesting to see how
many of them find their origin in the vast
diversity of habitats we see here on earth.
The planet Degobah is a caricature of the
mangrove swamps of South America
(Figures 1 and 2), and the ice world of
Hoth is an exaggeration of our own polar
regions. Tatooine is presented as a barren
world of harsh deserts, and Endor is a
lush forest moon of gigantic trees. All of
these places feature something we can
relate to as real and takes it in a direction
that distinguishes it from what we are

Strange New Worlds

A R T I S T ’ S V I E W h a y d e n d u v a l l

a p r i l 2 0 0 2 | g a m e d e v e l o p e r20

H A Y D E N D U V A L L I Hayden started work in 1987, creating
airbrushed artwork for the games industry. Over the next eight years,
Hayden continued as a freelance artist and lectured in psychology at
Perth College in Scotland. Hayden now lives in Bristol, England, with
his wife, Leah, and their four children, where he is lead artist at
Confounding Factor.

FIGURE 1 (top). Mangrove swamps in South
America. FIGURE 2 (bottom). The planet
Degobah in Star Wars.

used to. Artists often achieve this effect
through exaggeration or by adding things
that are unfamiliar to us.

This process is certainly not unique to
Mr. Lucas’s lucrative franchise, and its
principles can be very useful when design-
ing an environment for a game.

Significantly, many of these worlds are
only conclusively established as alien
when some form of creature is identified.
Think back to when C-3PO and R2-D2
landed their escape pod on Tatooine; as
they wandered the desert, the audience
could easily have chosen to believe that
the sequence was set in Tunisia, for exam-
ple, until they saw the skeleton of an
unfeasibly large beast stretched out along
the dunes. Ewoks do the same on Endor,
and the Tauntaun lets the audience know
that the rebels haven’t just set up their
base in Alaska. Landscape is important,
but it is certainly not the deciding factor
when producing an alien world.

Quite often, the game design itself will
dictate the kind of world that needs to be
created, the physical conditions of the
planet, and the state of its inhabitants. Is
it an advanced world with highly evolved
technology, or is it primitive and primor-
dial? Visually convincing a player that
they have journeyed somewhere alien is
usually the combined result of well-
designed landscapes, creatures, buildings,
vehicles, and technology. All of these ele-
ments, however, rely on the same kinds
of component parts. One of the most
important of these is surface.

Surface: Color

A lien worlds, as I discussed previously,
may well have much in common

with the world we are used to. Rocks,
dirt, and sand may all be similar to those
we see around us daily. We know from
the exploration of our own solar system,
as well as the more comprehensive travels
of the Starship Enterprise, that planets,
wherever they are, generally adhere to
similar laws of nature. In this respect,
when we consider textures for certain ele-
ments of an alien world, we can use regu-
lar textures as a starting point, with a
view to making certain adaptations where

w w w . g d m a g . c o m 21

FIGURE 3 (top). Color variation through texture. FIGURE 4 (center). Simple vertex coloring across
a quad. FIGURE 5 (bottom). More detailed vertex coloring through added vertices.

necessary. One area that is ripe for a
change is that of color.

Geological features of a landscape are
usually acceptable as alien if they remain
within the general ranges of color that
we see on Earth. I have, however, argued
before that too much brown and gray in
a game world fails to take advantage of
the colors that we see in nature even
when we’re restricted to this planet. We
have an opportunity to liven up the land-
scapes of an alien world with some excit-
ing color choices. The trick here is to
make sure that a terrain stays clear of
becoming cartoony. Bright yellow and
orange rocks with highly saturated pur-
ple mountains might be ideal as the set-
ting for the Roadrunner to hand out
some anvil-shaped pain to Wile E.
Coyote, but can easily overstep the mark
when attempting to make something
more believable.

Again, using our own world as a
model, plants and animals show the most
vivid range of color variation. A leaf that
may look tropical when taken directly
from a photograph can begin to look alien
when we change its color.

Figure 3 is demonstrating the color
changes available through texture manipu-
lation. In that example, I kept the leaf’s
shape the same and adjusted the color bal-
ance in Photoshop to give it a different
base color. I then added variation into a
separate layer, making sure to follow the
leaf’s structure so as not to lose too much
of its original surface form; I then com-
bined the layers into the final image.
Using vertex coloration instead of generat-
ing several unique textures can go some
way in delivering a wider variation at
reduced cost to texture storage, but this
technique will produce different, less ver-
satile results.

Figure 4 shows color change through
basic vertex coloring across a quad. You
can see that mapping this texture onto a
quad, using its alpha channel to define
the leaf’s shape, will only allow four ver-
tices to be given color information, and
the effect will therefore be rather diffuse.

Figure 5 shows more complex vertex
coloring when more detail is added to the
geometry. Adding vertices gives the leaf

more shape in three dimensions and
allows an artist to apply a more controlled
and versatile set of vertex colors. As
always, you need to strike a balance some-
where between an acceptable effect and a
wildly overdetailed piece of geometry.

As you can see from the examples I’ve
given, vertex coloring offers artists less
control over color distribution than they
have when creating a specific texture. It
also flattens the texture onto which it is
applied as a result of the way that vertex
color information and that of the texture
below it are combined. With this in
mind, you can often obtain the best
results when you use vertex coloring to
provide general color variation within
the geometry, as opposed to complex sur-
face coloration.

Surface Detail

F or the last the last few years, artists
have had to choose between creating

detail as geometry or as part of a texture;
this trend has reversed itself in the last
year. The next generation of consoles and
the most recent additions to the already
monstrous lineup of graphics cards have
changed the layout of the field on which
the game artist does battle. A short while

ago, the Army of the Polygon battled
regularly with the Forces of Texture, and
more often than not was forced into
hasty retreat by its inability to support
enough detail in the geometry itself. The
Cohorts of Texture would sit back smug-
ly, watching the Devotees of the Triangle
crumbling under the limited support
hardware was able to provide, while they
wheeled out a few of their big 512�512
guns just to show off what texture com-
pression allowed them to do.

But a change was inevitable, and sud-
denly, holding the banner of next genera-
tion aloft, the new wave of hardware
brought a smile to those who love their
polygons.

The question still remains whether it is
more economical to use textures or poly-
gons, and what will the impact of either
choice be in terms of visual quality (back
to the issue of spending budgets where
they will do the most good). The differ-
ence now is that the overhead for draw-
ing 10,000 extra polygons per frame may
well be less than adding a number of
extra textures. GPU muscle has concen-
trated on propelling the marketing-
friendly triangle-shifting numbers
through the roof, and texture handling
hasn’t received anywhere near the same
attention (please listen to me, Mr. Sony).
In addition to this advance, bump map-
ping is at last beginning to be available
as a practical option, which allows detail
to be added through texture (a bump
map), but which mimics (to some extent)
surface features in geometry. As usual,
choosing the best approach has to be
based on the rigors of your engine and
the demands of the particular location
being considered.

So the method with which you can
add surface detail is now more flexible,
but what kinds of surface detail will help
build the illusion of an alien world? One
direction often taken is exemplified by
the well-known fantasy artist Jim Burns
(see Figure 6). Among his many trade-
mark approaches to portraying the alien
in his paintings, Mr. Burns devotes a lot
of time to surface details, implying that
the landscape, or objects seen, are made
from unfamiliar organic materials.

A R T I S T ’ S V I E W

a p r i l 2 0 0 2 | g a m e d e v e l o p e r22

FIGURE 6 (top). Jim Burns’ alien organic land-
scape. FIGURE 7 (bottom). H. R . Giger’s bio-
mechanical landscape.

In contrast, perhaps the most famous
creator of all things alien, H. R. Giger
(Figure 7), uses surface detail to communi-
cate inorganic interference with organic
forms. His “biomechanical” designs have
indeed spawned a never-ending stream of
imitations that take the chaos and free-
dom of the natural world and combine it
with the order and structure of man-made
forms, creating a hybrid style that has
become firmly entrenched as synonymous
with alien life.

Creating interesting alien surface char-
acteristics, especially for use with objects
or areas that are reasonably large, pres-
ents the game artist with the familiar chal-
lenge of conveying detail at close range
while avoiding noticeable repeat in the
texture when the player is at a distance.
There are numerous ways to avoid this
problem, but one that is particularly use-
ful is that of employing layers of appropri-
ate detail, which fade in or out, depending
on the distance of the camera from the
object in question.

The number of layers you use depends
on the constraints of each particular
project but will, if allowed to run wild,
grind any engine into a pile of smoking
silicon. As a rule, two layers are usually
sufficient, one that gives a more accept-
able large-scale appearance, and the sec-
ond, to be mapped much tighter, for
close-range surface detail. The second
layer can be applied so that it has a
noticeable repeat, but must be set only to
fade in above the base layer once the
player is close, so that the repetition is
not obtrusive. Depending on the textures
you use, the detail layer can be set to
remain below a certain level of opacity
(60 percent for example), so that larger
scale variations in the base layer will
continue to provide some changes across

the surface. In this case, the detail layer
needs to have relatively high levels of
contrast (see Figures 8 and 9).

Surface Matters

The factors that contribute to the suc-
cessful creation of an alien world are

many and varied. One area not to be
overlooked is that of surfaces, and con-

centrating appropriate resources on creat-
ing surfaces that work can add significant-
ly to the overall feel of an environment.
Using what the player knows about our
own world as a starting point allows us as
artists to contrast the familiar with the
unknown, the result being accessible for
the player to interpret while hopefully
placing them in alien environment that is
new and interesting. q

A R T I S T ’ S V I E W

a p r i l 2 0 0 2 | g a m e d e v e l o p e r24

FIGURE 8 (left). A base texture. FIGURE 9
(right). A detail texture.

A few short years ago, the
game-playing public
practically begged for
better sound quality.
We have seen some dra-

matic results stemming from this demand;
today’s new standards include audio sam-
ple rates of at least 22kHz, 16-bit resolu-
tion, and some rates as high as 44.1kHz.
With this improved CD-quality sound
becoming more prevalent, now is a good
time to take a hard look at what develop-
ers can collectively do to make their
sound shine.

Most game companies don’t officially
address mastering, leaving it instead to
whatever the audio person feels is neces-
sary before delivery. That particular mind-
set was O.K. with the not-so-great play-
back systems and low sound resolutions
of years past. But now that we are doing
surround sound for playback on home
theater systems, it would behoove us all to
give that little extra attention to push
game sound over the top. Audio master-
ing is the key.

What is mastering? Mastering, in its
basic form, is taking audio content that
has been created over the course of sev-
eral weeks, smoothing out the bumps,
and making it into a cohesive collection.
This includes adjusting the perceived
loudness of each track and equalizing
frequency bands so that once a player
(or programmer) has set volume and/or
EQ levels, they can concentrate on
gameplay and not wonder why one
music track is louder than another, or
why the speakers are distorting from the
bass on another track.

The music industry subscribes fervent-
ly to this routine process — music CDs
are never released without going through
it. There are even professional mastering
houses that do nothing but take these
types of projects, iron out the wrinkles,
and enhance the soundscape.

An absorbing game that totally immers-
es the player has a better chance of suc-
cess. Audio tracks that don’t stick out like

a sore thumb are key to this total immer-
sion. The mastering process can guarantee
this actually happens on purpose.

Specific benefits. In this business of
tight production schedules, it’s not
always worth the extra expense in time
or money for what some may perceive as
a small benefit. But is it really such an
imperceptible gain?

Composers and sound designers cus-
tomarily create their work at the highest
resolution possible, normally 44kHz, 16-
bit stereo, and downsample to what the
project requires. During this conversion,
there is always a loss of fidelity. Master-
ing will offset this loss by reintroducing
some high-end “sparkle,” usually 3 to 5
decibels in the 8kHz range. This keeps
the audio powerful and sonically interest-
ing to the listener.

Music, sound effects, and dialogue
require a certain amount of uniformity
for each category, each one being deliv-
ered at roughly the same volume. With
this in mind, the programmer implement-
ing audio can control the levels in code.
All background ambiance, for example,
could be coded at level 4, dialogue to 7
or 8, and explosions at the maximum
level 10. The mastering process is essen-
tial to making this happen.

Total immersion requires masking out-
side distractions. Programmers can set
audio levels above the noise of computer
fans, spinning hard drives, and speaker
hiss. Audio content providers can do
their part by ensuring that the loudness
of the sound they deliver is above any
inherent noise floor and that they don’t
themselves add noise to the equation.
Mastering can maximize sound levels to
accomplish this specific responsibility.

Using a professional mastering house

or a third-party mastering engineer will
afford added bonuses. By having a fresh
set of trained ears working on the audio,
essential, unbiased adjustments can be
made to enhance the sonic experience.
Additionally, high-end mastering equip-
ment does more than just even out the
EQs and compress the various audio
tracks to comparable levels. Good mas-
tering preserves the stereo field, enhances
imaging, and increases dynamic range,
while also evening out the program.

So what does it take? Mastering can be
accomplished by the content provider,
before final delivery, by taking a step
back and seriously evaluating the needs
of the audio. The goals of enhanced
audio can be easily accomplished by run-
ning the audio through hardware proces-
sors or software counterparts such as TC
MasterX, Waves Renaissance or Ultra-
maximizer, or T-Racks 24.

Sending a game project’s audio to a
professional mastering facility is also a
great choice. An hour’s worth of music,
for example, can be processed in roughly
three to four hours. An average rate of
$250 per hour means your game audio
can have all the benefits and enhance-
ments for around $1,000 — worth the
relatively modest investment.

The audience is listening. Audio master-
ing is slowly working its way into the
game audio scene. In the past, under-
standably, it wasn’t important. But as
playback systems, processing speed, and
storage capabilities continue to improve,
it is critical that our attention be given to
making game audio the best it can be. q

My thanks to Keith Arem, Darryl
Duncan, Tim Larkin, Tommy Tallarico,
Mark Temple, and Chance Thomas for
sharing their wisdom for this column.

Audio Mastering: Taking Game
Audio to the Next Level

S O U N D P R I N C I P L E S a a r o n m a r k s

a p r i l 2 0 0 2 | g a m e d e v e l o p e r28

A A R O N M A R K S | Aaron (aaron@onyourmarkmusic.com),
composer, sound designer, and author of The Complete Guide to
Game Audio (CMP Books), is the humble proprietor of On Your
Mark Music Productions (www.onyourmarkmusic.com). He is
currently hard at work on game projects for Vivendi/ Universal,
Flipside.com, and Enemy Technology.

a p r i l 2 0 0 2 | g a m e d e v e l o p e r30

Welcome to another game design rule
from the 400 Project. This month’s rule
has wide applications to most game
designs.

The Rule:
Provide Parallel Challenges with Mutual
Assistance

W hen presenting the
player with a chal-
lenge — a monster
to kill, a puzzle to
solve, a city to cap-

ture — provide several such challenges
and set it up so accomplishing one chal-
lenge makes it a little easier to accom-
plish the others (that’s the mutual-assis-
tance component). Setting up these paral-
lel challenges on many levels of scale of
the game, from the ultimate goal down
to the small, short-term steps, is also very
effective. Doing so eliminates bottlenecks
and makes the game accessible to a wider
range of players.

The rule’s domain. This is a basic rule
of game design, applying to all games
directly.

Rules that it trumps. There are as yet
no rules in our collection that this one
trumps.

Rules that it is trumped by. This rule is
trumped by “Provide Clear Short-Term
Goals,” our rule from last month’s col-
umn. It is important not to let parallel
challenges confuse the player about what
must be accomplished. But the two rules
can easily co-exist in harmony if the par-
allel challenges are clear steps necessary
for a larger goal. In SMALL SOLDIERS:
SQUAD COMMANDER from Dreamworks
Interactive, we broke the single goal of
freeing an ally into two subgoals of “free
his feet” and “free his hands,” each of
which became an entire mission that
could be accomplished in either order.

Examples from games. This rule is used
effectively in many classic, successful
games. Sid Meier’s CIVILIZATION series of
games is practically a case study of
extensive use of this rule, nested recur-
sively on many levels. On the highest
level, the objective is to win the game —
but this can be done in the original game
by conquering all the other civilizations
in the world, or by being the first to send
a starship to Alpha Centauri. If a player
focuses on conquest, it still can help to
pay attention to building technology that
leads to the starship victory, as this tech-
nology provides advantages in conquest
as well. If the player focuses on the star-
ship victory, limited conquest of neigh-
boring civilizations can provide the
resources needed to achieve it. The recent
CIVILIZATION III adds various parallel
diplomatic and cultural avenues to win
the game. But deeper down in the game,
the rule is applied even more directly. At
any point there are challenges of improv-
ing individual cities, building the military,
accumulating wealth, engaging in diplo-
macy, and researching new technology.
Moreover, success in any of these can
make it easier to achieve the others.

DIABLO II is another fine example.
Unlike many other, less successful games,
players are never left with a single bottle-
neck challenge that must be surpassed by
the frustration of repeated vain attempts.
Completing one of several available
quests makes your character incremental-
ly stronger by gaining a new level, or
wins better armor or magic, making the

other quests slightly easier. Even the
apparent bottlenecks of tough boss mon-
sters at the end of each act of the game
are really parallel challenges with mutual
assistance. You are required to fight the
boss to progress forward, but you can
always go back and repeat earlier quests,
allowing you to face the boss with a
higher-level, better-prepared character.
This structure was effective in making
DIABLO II into a multi-million-unit seller,
because it has made the game accessible
to a wide range of skill levels. A very
experienced player can zoom through
and fight Andariel, the first-act end boss,
with a character that has only achieved
level 15 and accordingly must be handled
masterfully, providing a tough and excit-
ing challenge. Novice players can stay in
their comfort zone, taking their time to
reach Andariel, raising their character to
level 20 or higher, and gaining new
weapons and armor. For them, Andariel
will still be an exciting challenge that
they’ll vanquish only after a satisfying
fight, despite their more modest game-
playing skills. q

The 400 Project Continued:
Providing Parallel Challenges

n o a h f a l s t e i n

N O A H F A L S T E I N | Noah is a 22-year veteran of the game
industry. You can find a list of his credits and other information at
www.theinspiracy.com. If you’re an experienced game designer
interested in contributing to The 400 Project, please e-mail Noah
at noah@theinspiracy.com (include your game design background)
for more information about how to submit rules.

T H E 4 0 0 P R O J E C T

In CIVILIZATION III, diplomacy is one of several
parallel paths to victory in the game, and suc-
cess in other CIVILIZATION goals.

R endering engines used in today’s game titles uti-
lize various techniques for hidden surface
removal (HSR), different techniques being suit-
able for different game genres. For example,
action games played in closed-in locations such

as rooms, caves, and tunnels need an engine allowing fast ren-
dering of a few hundred polygons, a high frame rate, and a
high level of details to impress players. Conversely, a game that
is taking place outdoors requires quite a different approach.
Let’s discuss appropriate approaches for the latter.

Not too long ago, games ran in software mode only, without
the help of 3D accelerators. With the CPU doing all the work,
engines rendered as few pixels as possible, typically with BSP-
based scenes and BSP rendering.

Moving Games Outdoors

W ith the advent of 3D accelerators and the invention of
the depth-buffer (or Z-buffer), the strict sorting of poly-

gons slowly faded out of engines, and software engineers start-
ed trying out different techniques. Game designers wanted to
move their worlds outdoors, and new graphics hardware made
such designs possible.

As graphics hardware power increases, however, so do
requirements for game content and high-quality graphics, creat-
ing room to waste processing power with inefficient usage of
computing resources.

Let’s discuss one technique for hidden surface removal usable
in 3D engines, developed while creating some of the games I’ve
worked on. The technique, utilizing object occlusion, is for out-
door rendering. The fundamental entities working for us will be
so-called occluders, and we’ll come to them soon. First, some
rendering theory.

Figure 1 shows a rendering pipeline using the technique pre-

sented here. This is a higher-level look at the rendering process,
without going into details about actual polygon rendering.

The Scene Hierarchy Tree

O ne of the first steps toward optimized rendering is keeping
objects in a scene organized. Most commercial modeling

packages and 3D engines use a scene hierarchy, and for good
reason: used smartly, it allows for fast rejection of entire hierar-
chy branches based on bounding volume tests, and may also
accelerate collision testing.

A scene hierarchy tree is a collection of objects (visuals as
well as nonvisuals) in an organized fashion. In a tree structure,
a scene has its root object, which may have children objects
linked to it, and these child objects may have other objects
linked to them. The objects may be visuals (characters, terrain,
items in the game), as well as nonvisual objects (such as 3D-
positioned lights, sounds, dummies, and other helper objects).

Balancing the Tree

W hen creating the hierarchy tree in a commercial 3D
graphics package or in-game editor, keep the tree bal-

anced. For example, by linking all your objects to the root level,
you lose the benefits of having a hierarchy, because all your
objects are in a single list and any processing will just treat them
as an array. Grouping objects logically is a big step forward.

Hierarchical object linking is usually based on some logical
assumptions. For preprocessing purposes, keep multiple adja-
cent objects together, linked to one parent object. Object link-
ing is also done for other purposes, such as inheriting the par-
ent’s position, rotation, and scale. This is achieved by using
matrices and matrix concatenation.

Bounding Volumes

A bounding volume is a simple geometrical object roughly
representing the volume of a real object’s geometry. It’s as

small as possible while still enclosing all vertices of the object.
The most suitable geometric objects for bounding volumes are
spheres and boxes. For the techniques presented in this article, I

O C C L U S I O N C U L L I N G m i c h a l b a c i k

Rendering the Great
Fast Occlusion Culling for Outdoor

M I C H A L B A C I K | Michal is the lead programmer at Lonely
Cat Games, a small company based in the Czech Republic.
Previously he was lead programmer for HIDDEN & DANGEROUS, a
World War II title released two years ago. Recently he finished
work on H&D DELUXE, an improved version of the original game.
Michal can be reached at michal@lonelycatgames.com.

a p r i l 2 0 0 2 | g a m e d e v e l o p e r32

recommend using both types and defining a structure represent-
ing the bounding volume:

struct S_bounding_volume{
struct{

struct{
float x, y, z;

} min, max;
} box;
struct{

struct{
float x, y, z;

} pos;
float radius;

} sphere;
};

You’re probably already using an HSR technique utilizing
bounding boxes or spheres, so why use a combination of both?
The answer is simple: speed. While bounding spheres allow for
very fast collision detection using a simple distance test, the vol-
ume it encloses is often much greater than the actual object it
represents (Figure 2). Too often, then, we consider an object to
be on-screen when none of its vertices actually would be.

On the other hand, a bounding box is a closer match to the
shape of an object, but tests with boxes are slower. Usually we
do a two-pass collision/intersection test, using a bounding
sphere in a first pass and oriented bounding box (OBB) in the
second pass. Because the first test rejects most invisible or
non-clipped objects, the chances that a second test will never
be executed are high. At the same time, performing the
bounding box test yields more accurate results, leading to
fewer objects being rendered.

This mixed bounding volume is also suitable for other pur-
poses, such as collision detection or physics.

Node Volumes

E very visual object in a scene hierarchy should have an asso-
ciated bounding volume, so that with just a few math oper-

ations, we’re able to say if each object is visible or not. As I
mentioned previously, it wouldn’t be very efficient to test all the

scene objects in each rendered frame. For example, in a racing
game with 20 cars, you’d end up testing all the vehicle’s objects
(wheels, doors, driver, driver’s fingers, and on and on) 20 times,
which could easily make for upwards of 25 objects on each car
multiplied by 20 cars. Why perform 25 tests when a single test
for each car can accomplish the same result?

With complex models or models used in a scene multiple
times, finding a way to skip the processing of an entire model or
models if they’re out of view would be highly desirable. For this
reason, we’ll introduce a node bounding volume. This is the same
bounding structure defined above, but it doesn’t enclose vertices;
rather it encloses all bounding volumes of a group of objects, the
child objects of the node (objects, models, and so on).

w w w . g d m a g . c o m 33

 Outdoors:
Environments

Building and Maintaining Volumes

A ssuming you have static geometry, calculating a visual
object’s extent is done once before starting rendering. The

bounding box is axis-aligned (AABB) in the local coordinates of
an object, defined by two extreme points of the box. Anytime a
bounding box is used in computations, it must be transformed
into world coordinates using the object’s transformation
matrix, and thus changed to an oriented bounding box. Because
OBBs cannot be specified by just two corner points, we’ll need
to extract the two corner points of the AABB into the eight cor-
ner points of the OBB, and transform all these points to world
coordinates with the object’s transformation matrix (the same
one that will be used to transform the object’s vertices to world
coordinates). The bounding sphere is also in local coordinates,
and must be transformed (position) and scaled (radius) to
world coordinates before being used in computations.

The situation with node bounding volumes is a bit more dif-
ficult. Because the position of objects may change in real time,
this bounding volume must be computed at run time whenever
any object in the group moves. The best method is a lazy evalu-
ation programming technique — in other words, computing the
value when it’s needed. You may implement a system of invali-
dation of a node’s bounding volume when the child’s matrix
changes due to position, rotation, or scale. This system is hard-
er to implement and debug, but it’s critical for fast 3D culling,
both rendering and collision testing.

By measurements I’ve made in our 3D system, the dynamic
bounding volume update takes no more than 1 to 2 percent of
total CPU time when the game is running.

Convex Hull
Computation

B ecause it’s very easy to
detect collision against it,

a convex hull is another basic
geometry object used in occlu-
sion testing. During occlusion
testing, we’ll detect a collision
of a 3D point with a hull and a
sphere with a hull. Since we
must detect how the bounding
volume of an object collides
with viewing volumes (screen
frustum and occlusion frus-
tum), hidden-surface removal
has much in common with col-
lision detection.

A hull is defined as a set of
planes that forms the hull, with
their normals pointing away
from the hull. Any point in
space is a part of the hull if it

lies behind all the planes forming the hull. For our purposes,
we’ll also use an open hull, which is a hull that represents an
open 3D volume.

All the information we need to compute the convex hull is a
set of 3D points. During the computation, we’ll remove redun-
dant points, which are inside the hull and do not lie on the
skeleton of the hull. We’ll also need to compute the edge faces
of the convex hull; these faces are not necessarily triangles, as
they are in 3D meshes.

We’ll utilize planes of these edge faces for our occlusion com-
putations: for example, a fast check of whether a 3D point is
inside of a convex hull. If a point in space is behind all the edge
faces of the hull (assuming the planes’ normals point out from
the hull), then it is inside of the hull (Listing 1).

O C C L U S I O N C U L L I N G

a p r i l 2 0 0 2 | g a m e d e v e l o p e r34

FIGURE 2. Visual object with bounding box and sphere. Notice that the
sphere is a bit larger than the box.

bounding
sphere

bounding
box

x

Z
Y

FIGURE 1. Preprocessing part of
the rendering pipeline.

bool IsPointInHull(const S_vector &v, const vector<S_plane>
&planes){

for(int i = planes.size(); i—;){
float d = v.DistanceToPlane(planes[i]);
if(d >= 0.0f)

return false;
}
return true;

}

LISTING 1. Checks if a 3D point is inside a convex hull. A convex
hull is defined as a set of planes with normals pointing away from
the hull. This function uses the S_vector class for a 3D point, the
S_plane class for a plane in 3D space, and a member function S_vec-
tor::DistanceToPlane(const S_plane&) const that determines the dis-
tance from a 3D point to a plane.

Several algorithms exist for computing a convex hull from a
set of points. Some commonly used ones include incremental,
gift-wrapping, divide-and-conquer, and quick-hull. There is a
nice Java applet demonstrating techniques of building convex
hulls that is a good starting point for choosing and imple-
menting the algorithm. It is available (with kind permission of
its author) at www.cse.unsw.edu.au/~lambert/
java/3d/hull.html.

Speaking from my own experience, writing code for building
convex hulls is quite a difficult task. Even when you implement
the code properly, you’ll encounter problems with float-round-
ing errors (using doubles won’t solve anything). Regardless of
which algorithm you choose, with some point sets you’ll end up
with hulls that are invalid after final validity checks are per-
formed. Having multiple points placed close together on a
plane is a common source of problems.

After I struggled for months with code that computed it
wrong, then spending another month writing my own convex-
hull computation code, I finally switched to Qhull, a freeware
package that utilizes the quick-hull algorithm. It’s available at
www.geom.umn.edu/software/qhull.

Although the QHull library is a robust, platform-independent
package that can do many additional tasks, we will only be need-
ing it to compute the convex hull using our structures. It handles
rounding problems by joggling points; if computation fails, it
shifts points randomly by a small value and recomputes until it
gets a proper hull.

If you decide to use this or any other available package, be
prepared to spend a day or two reading its documentation and
writing code to call it; you’ll save a month otherwise spent
writing and debugging your own system.

The final result we need after computation is a set of filtered
points that form a skeleton of the hull, and a set of faces.
Following is an example of what we get (faces are kept as indices
in the point set):

struct S_vector{

float x, y, z;

};

struct S_face{

int num_points;

unsigned short *indices;

};

Now we use the help of C++ STL vector class for storing our
vertices and faces:

std::vector<S_vector> hull_points;

std::vector<S_face> hull_faces;

Note that when inserting into vector, a copy constructor of
the class being inserted is called. Make sure you have imple-
mented a copy constructor of S_face so that memory for indices
is properly allocated and freed.

The View Frustum

A viewing frustum is a 3D volume. For practical reasons, we
can treat it as a convex hull, simplifying further computa-

tions. The viewing frustum is typically a cut pyramid (if a pro-
jection transformation is used) or a cube (if an orthogonal
transformation is used). This article assumes that projection
transformation is used, and many times the camera’s position
will form one of the points of the frustum’s hull.

Making Sense of Occluders

O ccluders in the real world may be thought of as objects
which occlude (or obstruct) your view of other objects

behind them (Figure 3). Take an example of an occluder — a
building, a hill, or a car — all these things occlude your view to
objects physically located behind them. Transparent or translu-
cent objects are not good view occluders, because as light rays

O C C L U S I O N C U L L I N G

a p r i l 2 0 0 2 | g a m e d e v e l o p e r36

FIGURE 3. An example of occlusion in the real world. The house
occludes the view onto the tree; the shaded area represents the volume
that the viewer cannot see.

A

FIGURE 4 (left). A house, suitable for occluding other objects in 3D
scene. FIGURE 5 (right). The occluder object (drawn in green wire-
frame), representing the simplified shape of the house.

pass through the material, so we’ll ignore transparent objects as
occluders in 3D rendering.

Objects in the real world consist of atoms and molecules,
and pretty much every atom can either be occluded by another
atom or not (in which case a viewer can see it). In computer
graphics, however, objects are built from vertices and polygons,
and these vertices and polygons are usually grouped into primi-
tives, which are rendered together in order to achieve good
graphics throughput. Our task consists of rejecting as many of
these primitives as possible in the early (preprocessing) phase of
our pipeline, without affecting the viewer’s experience by reject-
ing objects that should be rendered.

In practice, this means finding which objects are fully occlud-
ed by other objects and rejecting these occluded objects from
any further processing. A solid object, sufficiently big to be
worth the additional computations associated with occlusion
testing, is an ideal occluder.

In an ideal 3D engine, we could detect occlusion of even the
smallest primitive behind any object in a scene. In reality,
however, we must find some algorithm that allows fast detec-
tion of occlusion for a sufficient number of potentially visible
primitives. For that reason, we’ll simplify the occlusion vol-
umes to convex hulls.

Convex hulls allow for sufficient approximation of a 3D
object in most cases. When it is not possible to represent the
shape of an object with a convex hull, you can use more hulls
to accomplish the task. The occlusion hull doesn’t need to
copy the exact shape of visual object it works with. In many
cases, an occluder may consist of many fewer faces than the
visual primitive itself, roughly copying the shape of the visual
(Figures 4 and 5). The rule to keep in mind here is that an
occluder’s shape shouldn’t be bigger than the shape of visuals
it represents; otherwise your engine will end up rejecting
primitives that should be rendered, resulting in an ugly graph-
ical artifact.

The Occluder’s Place in the Pipeline

I n determining HSR, occluders should be processed first.
Because the position of a camera (viewer) changes constantly

in 3D games, so does the occlusion frustum, the 3D volume cast
by the occluder. Our task is to compute the occlusion volume at
the beginning of rendering from a particular camera view. (If you
render multiple views in a single frame, a mirror for example,
this step must be done for each rendered view.) After this prepro-
cessing step, you should collect all occluders on the screen,
against which you’ll test other potentially visible primitives.

Some optimization tips: Minimize the number of occluders
you include in the test list, done by determining if a particular
occluder is occluded by another occluder. Figure 6 shows this
possibility. Also, don’t consider occluders that may potentially
hide only a small amount of primitives. You should reject
occluders that occupy a small area of screen space.

Once we have a list of on-screen occluders, we can move on
to the next preprocessing step: traversing the scene hierarchy
tree and using the list of occluders to check if a particular
object is visible.

Building Occlusion Volumes

L et’s have a closer look at the information needed in order
to detect whether an object is occluded. Looking closer at

the occlusion volume, we see that occlusion volume is actually
another kind of convex hull, expanded from the viewpoint into
infinity. The occlusion volume is built from all of the occluder’s
polygons facing the camera, and from contour edges (as seen
from the camera) expanded away from the camera (Figure 7).

Actually, this volume is open — there’s no back plane that
would cap the volume — because the occluder hides everything
behind it into infinity. And any plane we save will speed up fur-
ther computations.

w w w . g d m a g . c o m 37

FIGURE 7. An Oocclusion frustum built from an occluder, using current
viewer position.

FIGURE 6. Image showing an occluder hidden by another occluder. Any
visual occluded by the occluder B is also occluded by occluder A, so we
include only occluder A in our list of occluders we test against.

n

n

n

n

n

A B

Occluder

Occlusion frustum

occluder's polygons
facing viewer

To build contours from a convex hull, we use a simple algo-
rithm utilizing the fact that each edge in a convex hull connects
exactly two faces. The algorithm is this:
1. Iterate through all polygons, and detect whether a polygon

faces the viewer. (To detect whether a polygon faces the
viewer, use the dot product of the polygon’s normal and
direction to any of the polygon’s vertices. When this is less
than 0, the polygon faces the viewer.)

2. If the polygon faces viewer, do the following for all its edges:
If the edge is already in the edge list, remove the edge
from the list.
Otherwise, add the edge into the list.

After this, we should have collected all the edges forming
the occluder’s contour, as seen from the viewer’s position.
Once you’ve got it, it’s time to build the occlusion frustum
itself, as shown in Figure 7 (note that this figure shows a 2D
view of the situation). The frustum is a set of planes defining a
volume being occluded. The property of this occlusion volume
is that any point lying behind all planes of this volume is inside
of the volume, and thus is occluded. So in order to define an
occlusion volume, we just need a set of planes forming the
occlusion volume.

Looking closer, we can see that the frustum is made of all
of the occluder’s polygons facing the viewer, and from new
planes made of edges and the viewer’s position. So we will do
the following:
1. Add planes of all facing polygons of the occluder.
2. Construct planes from two points of each edge and the view-

er’s position.
If you’ve gotten this far and it’s all working for you, there’s

one useful optimization to implement at this point. It lies in
minimizing the number of facing planes (which will speed up
intersection detection). You may achieve this by collapsing all
the facing planes into a single plane, with a normal made of
the weighted sum of all the facing planes. Each participating
normal is weighted by the area of its polygon. Finally, the

length of the computed normal is made unit-length. The d part
of this plane is computed using the farthest contour point.
Occlusion testing will work well without this optimization, but
implementing it will speed up further computations without
loss of accuracy.

Detecting Occlusion

T o detect if an object is occluded, we will utilize the object’s
bounding volume. To find out if the object is inside of the

occlusion frustum, we’ll make a simple test to check if its
bounding sphere is inside of the frustum. Figure 8 shows possi-
ble situations that may arise. Here we see that only sphere C
passed the test and is fully occluded. Listing 3 shows the func-
tion that may be used for such a computation.

This process detects whether a bounding sphere is occluded.
It’s fast, but not as accurate as detection using bounding boxes.
With this technique, some objects may be detected as visible
after the bounding sphere test succeeds, but their bounding
box is still fully occluded, so we would end up rendering them
even though they’re fully occluded. Figure 9 illustrates this
possibility.

Detecting if the bounding box is inside the occlusion frus-
tum is another very simple task: detect if all eight corner
points of the bounding box are inside of the frustum (Listing
2). Note that we use oriented bounding boxes in world coor-
dinates, so we must transform local AABBs to world OBBs (as
explained previously). If any vertex is outside of the volume,
the box is not occluded. This test can take eight times more
dot products than the sphere test, so it is less efficient. Ideally
you would use it only when you detect that the center of the
bounding sphere is inside the occlusion frustum but the sphere
is still not occluded. This minimizes the chances of wasting
time checking box-versus-frustum collision, at the same time
getting more accurate occlusion tests, resulting in fewer
objects being rendered.

O C C L U S I O N C U L L I N G

n

n

n

n

r

A
B

C

n

n

n

n

bounding sphere

bounding box

a p r i l 2 0 0 2 | g a m e d e v e l o p e r

FIGURE 8. Sphere A is outside of at least one plane. Sphere B is inside all
planes, but its radius is greater than the distance from one of the planes.
Sphere C is behind all planes and a sufficient distance from all planes.

FIGURE 9. A case when the bounding sphere is not fully occluded but
the bounding box is, thus the object should not be rendered.

38

Editing Support

C omputing the occlusion volume and detecting whether an
object is occluded is half of the work that needs to be

done. Another task is finding a way to edit occluders comfort-
ably in an evolving 3D scene during development. It may be
done in several ways; I’ll discuss some of them here.

Editing occlusion volumes in a modeling package. This is a con-
venient way of starting with occluders quickly and testing func-
tionality. You may use 3DS Max, Maya, or whatever modeling
program you prefer, to build an occluder skeleton from vertices
and faces and import that into your engine.

Integrating an occluder editor into your game editor. This is a
harder way to do it, but it’s preferable over editing in a model-
ing package. The geometry inside occluders may change, and
occluders must match geometry in order to be effective, so an
“edit and see” approach is the best bet here.

Because an occluder is simply a convex hull, once you’ve
implemented and tuned your convex hull code, you can call it
with a set of points and you’ve got it.

Figures 10a–c show occlusion techniques in a real game proj-

ect, including numbers about rendered triangles. Note that the
terrain is specially modeled so that occlusion is efficient; it con-
tains high hills that are suitable for occluding objects behind
them. But the areas of possibility for occluder utilization are
much wider: cities with plenty of buildings, fences (solid, not
transparent), and so on.

Finally, fine-tune editing support by visually displaying
occluders in edit mode while designing your missions or modi-
fying the occluder’s shape in the editor.

Take It Outside

T his article provides some insight into rendering possibilities
for outdoor scenes, and shows some new directions for

optimizations. The model described here has worked — and
continues to work — for games I have been working on (used
with other HSR techniques, such as sectors and portals) and
has undergone many changes to get to this point. As we contin-
ue to improve our methods for rendering all kinds of environ-
ments in games, soon there will be no boundaries as to what
kinds of worlds we can provide players. q

w w w . g d m a g . c o m 39

FIGURE 10A (left). The original in-game screenshot. FIGURE 10B (middle). The same screenshot in wireframe mode, with 7,000 triangles rendered at 50
fps. FIGURE 10C (right). Occlusion is switched off. The number of rendered triangles rose to 17,300, the frame rate dropped to 20 frames per second.

bool AreAllVerticesInVF(const vector<S_plane> &planes, const

S_vector *verts, int num_verts){

for(int i = 0; i < num_verts; i++){

for(int j = planes.size(); j—;){

float d = planes[j].d + planes[j].normal.Dot(verts[i]);

if(d >= 0.0f)

return false;

}

}

return true;

}

LISTING 2. Detects if a set of all points is inside of the viewing
frustum. This is just a variation of Listing 1, checking multiple points
instead of one.

bool IsSphereInFrustum(const vector<S_plane> &planes,
const S_vector &sphere_pos, float sphere_radius, bool &clip){

clip = false;
for(int i = planes.size(); i—;){

float d = planes[i].normal.Dot(sphere_pos) + planes[i].d;
if(d >= sphere_radius)

return false;
if(d >= -sphere_radius)

clip = true;
}
return true;

}

LISTING 3. Detects if a sphere is inside the frustum (convex hull).
Notice that this function also computes clipping flag, which is set
whenever a sphere collides with one hull’s plane (that is, it is neither
fully inside nor fully outside of the volume).

M any art pipelines are
driven by the old tru-
ism “The faster you
can see the art in-
game, the faster you

can decide to change it.” However, this is
based on the game engine being the last
stage in the pipeline, and the first time
artists see their work rendered in-game
comes after they’ve sent it off to be con-
verted into a format the game can under-
stand, and then placed into the game
itself. Unfortunately, by the time they see
their work or get art review feedback,
they’re already working on something
new. This system then requires time to go
back and fix up or redo the old art and
put it back through the long, arduous
process of getting it in-game.

Enabling artists to get art into the
game as soon as possible, and in near
real time, can allow them to iterate on
the in-game look of an asset before
involving others and can speed reviews of
in-game assets. By integrating the game
engine directly into Discreet’s 3DS Max
or Alias|Wavefront’s Maya (Figure 1), the
artist doesn’t even have to leave the mod-
eling environment to check the in-game
look of a particular model.

Last month, in the first part of this
series (“Integrating Your Game Engine
into the Art Pipeline, Part 1: Integrating
with 3DS Max”), I discussed the issues
that have to be solved in order to convert
a stand-alone game engine into a Dynam-

ic Link Library (DLL) that forms the
basis for a plug-in for Max or Maya. I
then identified the issues associated with
implementing a game viewer as an
extended viewport plug-in in 3DS Max 4,
and the trade-offs that need to be taken
into account when exchanging data with
Max or attempting to get mouse and key-
board input to the game viewport.

In this concluding article, I’ll recap the
issues and problems with converting a
stand-alone Direct3D-based game engine
first into a DLL. Then I’ll develop it into
a plug-in for Maya 4. I’ll also discuss the
trade-offs between creating an in-game
viewer for Max or Maya and then briefly
highlight the changes and differences
required to create the same functionality
for a game engine that utilizes OpenGL
instead of Direct3D.

Throughout this article, references to
Max and Maya are completely inter-
changeable except where the two are
being compared, or specific comments
are made about Maya (or Max) features
and programming.

Getting Ready to Plug In

T he first step to getting a stand-alone
game engine to run as a plug-in for

Maya (or Max) is to convert the engine
into a DLL. To demonstrate the changes
that need to be made to convert the game
engine into a DLL, the Direct3D sample
program Skinned Mesh was converted

first into a DLL (Figure 2), then into a
full-fledged plug-in (Figure 1). Making
this a two-step process allows us first to
handle the problems created by convert-
ing the game engine into a DLL, and
then separately handle the problems cre-
ated by integrating the game engine into
Maya itself. All source code for this
series is available from the Game Devel-
oper web site at www.gdmag.com.

When converting a stand-alone game
engine into a DLL, chief among the issues
to be solved is making sure that global
variables and values are set to known
states when the game engine shuts down.
This is because now that the game is run-
ning as a DLL, it can be loaded once and
then started and shut down any number
times. Since the global variables are only
initialized during the load process, the
game will work correctly the first time but
likely either leak memory or crash out-
right on subsequent runs.

Converting to a DLL also requires a
new way to drive the game update loop.
When the game was an executable, the
winMain function drove the update, but the
game will now need to supply its own
driving function in the DLL. The easiest
method is to create a thread that will
drive the game update, although a timer
could be used as well.

Since the game will now be driven by
two threads — one it created itself for
the update and one from the calling
application — care must be taken to
make sure the game doesn’t try to shut
down while rendering or resize the ren-
dering window in the middle of an
update. This can be accomplished by

E N G I N E I N T E G R A T I O N h e r b m a r s e l a s

a p r i l 2 0 0 2 | g a m e d e v e l o p e r40

H E R B M A R S E L A S | Herb is a game programmer at Microsoft’s Ensemble Studios,
where he is working on the upcoming AGE OF MYTHOLOGY. He can be reached at
herbm@microsoft.com all hours of the day and night.

Integrating Your Game Engine into the Art
Pipeline, Part 2: Integrating

with Maya

placing critical sections around code that
can be executed from both threads. It
may also be required to inform the
Direct3D device that it’s being run from
multiple threads, but this can be avoided
if the developer is vigilant with his or her
critical-section handling.

Although individual game engines may
encounter other problems, two other
common problems are window and input
handling. Since the game will now be
running in a child window, the window
style needs to be changed to reflect this.
Running in a child window may also
require changes to mouse positioning, as
well as to mouse and keyboard input,
because even while the application may
have input focus, the game window may
not. A full discussion of these issues can
be found in last month’s article.

With the game successfully running as a
DLL, it’s now time to take it to the next
level and convert it into a Maya plug-in.

Plugging into Maya

C onverting a DLL into a Maya plug-
in requires two simple steps. The

first of these is to change the extension of
the DLL from .DLL to .MLL and place it
in the AW\Maya4.0\bin\plug-ins folder.
This allows Maya to find the plug-in
when it’s time to load it. As an aside, for
simplicity and to eliminate any confusion
with the SkinnedMeshDLL and the
SkinnedMesh Max plug-in, I renamed
the Maya plug-in d3dview.MLL.

The second step is the addition of two
functions that are used to initialize the
plug-in when it is loaded and shut down
the plug-in when it is unloaded. These
are called initializePlugin and
uninitializePlugin, respectively (Listing 1).
The initializePlugin function registers
two new commands, called d3dviewport
and gameview. Registering these commands
will allow them to be called from Maya’s
Embedded Language (MEL).

Declaring these new commands is a
straightforward process. New commands
are derived from the MPxCommand class
(Listing 2). The derived class then imple-
ments its own versions of the static cre-

w w w . g d m a g . c o m

FIGURE 1. Direct3D viewer running in the lower-left panel of Maya.

MStatus initializePlugin(MObject obj)
{

// d3dviewport command

MFnPlugin d3dplugin(obj, “GameDevMag”, “1.0”, “Any”);
d3dplugin.registerCommand(“d3dviewport”, CD3DViewport::creator);

// gameview command

MFnPlugin gameplugin(obj, “GameDevMag”, “1.0”, “Any”);
gameplugin.registerCommand(“gameview”, CGameView::creator);

// all done

return MS::kSuccess;
}

MStatus uninitializePlugin(MObject obj)
{

MFnPlugin d3dplugin(obj);
d3dplugin.deregisterCommand(“d3dviewport”);

MFnPlugin gameplugin(obj);
gameplugin.deregisterCommand(“gameview”);

return MS::kSuccess;
}

41

LISTING 1. Registering MEL commands in Maya is a very simple process. initializePlugin
registers two new MEL commands d3dviewpoint and gameview. uninitializePlugin
deregisters the commands when the plugin is unloaded.

ator method, which acts like a very sim-
ple class factory to instantiate instances
of the class, and the doIt method, which
is called when MEL executes the com-
mand. The new command is then regis-
tered and the class factory passed on to
Maya using the MFnPlugin::registerCommand
method during the plug-in’s
initializePlugin function (Listing 1).

Loading a plug-in in Maya is done
through the Plug-in Manager (Figure 3).
This is available from the Windows
menu, under Settings > Preferences. The
new d3dview.MLL is marked “auto
load” so that it will automatically be
loaded when Maya is restarted. It is also
marked “loaded,” indicating that it is
currently loaded for use. This ability to
dynamically load and unload plug-ins
using the “loaded” option can signifi-
cantly cut turnaround time in developing
a plug-in, because Maya just needs to be
started once, then the plug-in can be

loaded, tested, and unloaded repeatedly.
In Max, the game viewport was creat-

ed using an extended user viewport.
Unfortunately, Maya has no concept of

user-created viewports or panels through
the SDK (Figure 4). Custom panels and
windows can be created through MEL,
but these are for holding UI controls, not

E N G I N E I N T E G R A T I O N

a p r i l 2 0 0 2 | g a m e d e v e l o p e r42

FIGURE 2 (above). Direct3D Skinned Mesh
sample program running as a DLL. It can be
loaded once, then started and shut down
repeatedly before exiting.
FIGURE 3 (right). The Direct3D viewport viewer
is loaded by checking the option in the Plug-In
Manager.

for doing low-level rendering work as is
needed here. Therefore, the only recourse
is to piggyback off of one of the existing
viewports.

With the d3dview.MLL plug-in loaded,
the user can switch to the four-pane view,
select one of the viewports, and type the

new command d3dviewport in the MEL
command line window. The d3dviewport
command will create and piggyback the
Direct3D viewer window to the selected
viewport pane.

Because of the method used to deter-
mine which viewport to piggyback on,

the user must change to the four-pane
view before running the d3dviewport com-
mand. Even though the static
M3dView::active3dView method (Listing 3)
retrieves the active viewport, this is not
always the selected visible pane in the
single-pane view. This could be either a
bug or a side effect of the way the view-
port system is, but you can easily work
around it by switching to a multiple-pane
mode before running the command.

To view the current scene in the
Direct3D viewport, the user need only
enter the gameview command into the MEL
command line. The functionality behind
this command is based on the DirectX .X
file exporter sample for Maya 4. To sim-
plify managing multiple plug-in files, the
sample .X file exporter was merged direct-
ly into the project that creates the
d3dview.MLL plug-in. The export func-
tionality that was previously exposed
through the Maya exporter menu has

w w w . g d m a g . c o m 43

FIGURE 4. Ultimately, the Direct3D viewport running in Maya (left table) and Max (right table) look
similar. The main difference is that in Max, the developer is actually creating a new type of view-
port. In Maya, we rely on Win32 to allow the Direct3D viewport to magically work.

IDirect3DDevice8

Direct3D viewer window
(child of “mainplane”)

M3dView Viewport class

“mainplane” (win32 Window)

IDirect3DDevice8

Direct3D viewer window
(child of viewportFrame)

MyViewWindow : public ViewWindow

viewportFrame (win32window)

been placed directly into the gameview com-
mand’s doIt method (Listing 4).

By executing the gameview command, the
current scene is saved off to a temporary
file using common .X file export options.
The file is then automatically loaded into
the Direct3D viewport (Listing 4).

Where Maya Meets the
Game

E ven though the Direct3D game view-
port can be displayed, and the cur-

rent scene displayed within it, there are
still questions to answer about how Maya
and the game viewport can interact. The
biggest question is when and how the
game viewport should be updated from
the Maya scene. Although the viewport
could be updated in real time by scanning
the scene, or when the game viewport
receives focus or input, these options are
both potentially slow. Also, the user
could inadvertently update the game
viewport through an errant mouse move.

The best alternative is to have a MEL
command, as we do in our example, or
preferably a panel window that the user
can use to tell the game viewport to
transfer the contents of the scene to the
game view. While the simple gameview
MEL command is enough for transfer-
ring the whole scene with some default
parameters set behind the scenes, users
probably want to use a panel window

because they will have various options
(selected object? animated?) that they
would prefer to select from.

One usability issue that arises from this
is how to make the panel window avail-
able. In last month’s Max implementation
of the game viewport, I added a new
menu, Direct3D Tools, to the main title
bar of the application (Figure 5). This
menu contained the option for displaying
the panel window where the user could
select the options. Creating this sort of
menu isn’t possible in Maya, because there
are no functions available to work directly
on the main window menu. An alternative
would be to do this using the Win32 API,
as I did in the case of Max, but this would
break Maya’s UI style guidelines because
the menu wouldn’t be able to be torn off,
as can be done with the other menus
(excepting the Help menu).

After deciding when to transfer data
from the scene into the game viewport,
the actual method for transferring the
data needs to be selected. This could be
done through the file-based scheme used
here, through shared memory structures,
or the game engine could parse the Maya
scene itself. Keeping the data transfer
file-based or through memory structures
can help keep the Maya-specific code out
of the core of the game engine, and in a
thin layer on top.

The final integration question is deter-
mining how mouse and keyboard input

are handled in the game viewport. Again,
in contrast to the Max implementation,
Maya doesn’t have a method for disabling
its own processing of keyboard input.
This means that the game viewport will
need to subclass windows in the window
hierarchy and triage input messages, or
use an alternative input system such as
DirectInput, or make the usage of the
game viewport modal. While making the
usage of the game viewport modal is a
drastic step, it is probably fraught with
less trouble than having to use DirectInput
and subclass other Maya windows.

But I Use OpenGL!

E ven though the example game view-
ports that were created for Maya

and Max are based on Direct3D, an
OpenGL-based game engine can be inte-
grated just as easily. In both cases users
would create their own OpenGL con-
texts, instead of Direct3D devices, and
handle all of the rest of the window and
input handling the same exact way.

Because of its fully integrated support
of OpenGL, Maya could make the
OpenGL developer’s life easier by adding
a user-defined viewport. Then the
OpenGL developer could use the OpenGL
context and functionality exposed through
the standard M3dView class.

An alternative for the OpenGL game
engine using Maya would be to forgo the

E N G I N E I N T E G R A T I O N

a p r i l 2 0 0 2 | g a m e d e v e l o p e r44

FIGURE 5. A custom menu containing game and export options was
added to the 3DS Max main window. Unfortunately, there is no MEL
support to do this in Maya.

class CD3DViewport : public MPxCommand

{

public:

MStatus doIt(const MArgList& args);

static void* creator();

};

void* CD3DViewport::creator()

{

return new CD3DViewport;

}

LISTING 2. CD3DViewport encapsulates the functionality of the
new d3dviewport command. It contains its own static class factory
function, CD3DViewport::creator, that Maya uses to instantiate it.

notion of a game viewport and just cre-
ate one’s own Maya objects. This way
they could effectively render into all
viewports as needed using the built-in
OpenGL functionality.

The Good, the Bad

I n the end, integrating a Direct3D or
OpenGL game engine into Max or

Maya can be done. Unfortunately, both
packages have similar problems, which
will lead to some hard choices for devel-
opers looking to create their own in-
game viewport.

In the case of Max, the functionality for
developing the game viewport exists for
the most part. However, there are issues
ranging from bugs in handling the input to
the custom viewport, to documentation
and header files that might lead you to
believe that there’s more support for inte-
grating Direct3D than there actually is.

The main problem with Maya is that
integrating a game viewport is doable,
but the developer is going off-road
because the SDK isn’t set up to support
this. There’s also no way to create a cus-
tom viewport except for UI through a
MEL panel, and getting input to the
game viewport is problematic because
the SDK doesn’t have any functionality

to tell Maya to stop processing input for
a given viewport.

None of the problems encountered
with either package is a roadblock to
integrating one’s own game engine into a
viewport, but the developer must plan
ahead to reduce the risk of falling into
the traps and pitfalls in both packages.

Most of the big differences in developing
these plug-ins for Maya and Max come
down to the ease with which a plug-in can
be developed in Maya, versus the power
and flexibility of developing in Max.

Hands down, the process for creating
and registering a plug-in for Maya is
much simpler than that of Max. Plus
there’s the added bonus that the plug-in
can be dynamically loaded and unloaded
while Maya is still running, which can
help reduce development time. On the
other hand, the Max SDK is much broad-
er and deeper than the Maya SDK, sup-
porting features such as user viewports
and the ability to control input processing.

Almost There but Not
Quite

A s developers continue to bring the
art creation pipeline and the game

engine closer together, this should be a
wake-up call to both Discreet and

Alias|Wavefront to address these issues.
Alias|Wavefront needs to add the concept
of an SDK-created and -managed view-
port, and the ability to selectively filter
input. If they could extend their unified
OpenGL system to support Direct3D,
this would be a great help as well, but
it’s not a necessity. Discreet on the other
hand needs to fix their bugs associated
with input and viewport handling, and
since they already support Direct3D and
OpenGL rendering, they should expose it
upwards through the viewport system.

The unification of viewports with the
underlying rendering system would allow
the creation of a completely integrated
game engine that could render alongside
Max (or Maya) in the viewports. This
would create a truly powerful and inte-
grated art pipeline solution. q

E N G I N E I N T E G R A T I O N

a p r i l 2 0 0 2 | g a m e d e v e l o p e r46

MStatus CGameView::doIt(const MArgList& args)
{

char cExportDir[_MAX_PATH];
GetTempPath(sizeof(cExportDir), cExportDir);

GetTempFileName(cExportDir, “dvp”, 0, gcExportFilename);

DeleteFile(gcExportFilename);

// export file
exportFile(gcExportFilename);

// load into viewport
g_d3dApp.loadAndDisplayMesh(gcExportFilename);

return MS::kSuccess;
}

LISTING 4. The MEL gameview command exports the current
scene to a temporary file and then automatically loads it into the
Direct3D viewport for viewing.

MStatus CD3DViewport::doIt(const MArgList& args)
{

RECT rect;
MStatus status;

M3dView active3dview = M3dView::active3dView(&status);

M3dWindow window = active3dview.window(&status);

HWND hWnd = (HWND) window;

GetWindowRect(hWnd, &rect);

createRenderWindow(ghInstance, hWnd, 0, 0,
rect.right - rect.left,
rect.bottom - rect.top);

return MS::kSuccess;
}

LISTING 3. The MEL d3dviewport command determines which
viewport is active, obtains its window handle, and passes it on to the
function that actually creates the game window and Direct3D device.

F O R M O R E I N F O R M AT I O N

Alias|Wavefront Maya 4
www.aliaswavefront.com

Microsoft Direct3D .X File Exporter for
Maya 4

http://msdn.microsoft.com/directx, in
the downloads section under DirectX
8.1 SDK Extras

a p r i l 2 0 0 2 | g a m e d e v e l o p e r48

s t e p h e n w h i t e

G A M E D A T A

PUBLISHER: Sony Computer Entertainment
NUMBER OF FULL-TIME DEVELOPERS: 35

LENGTH OF DEVELOPMENT: 1 year of initial
development, plus 2 years

of full production.
RELEASE DATE: December 2001

PLATFORM: Playstation 2
OPERATING SYSTEMS USED: Windows NT,

Windows 2000, Linux
DEVELOPMENT SOFTWARE USED: Allegro

Common Lisp, Visual C++, GNU C++,
Maya, Photoshop, X Emacs, Visual

SlickEdit, tcsh, Exceed, CVS

P O S T M O R T E M

B y the end of 1998, Naughty
Dog had finished the third
game in the extremely suc-
cessful CRASH BANDICOOT

series, and the fourth game,
CRASH TEAM RACING, was in development
for a 1999 year-end holiday release. And
though Sony was closely guarding the
details of the eagerly awaited Playstation 2,
rumors — and our own speculations —
convinced us that the system would have
powerful processing and polygonal capabil-
ities, and we knew that we’d have to think
on a very grand scale.

Because of the success of our CRASH

BANDICOOT games (over 22 million copies
sold), there was a strong temptation to
follow the same tried-and-true formula of
the past: create a linear adventure with
individually loaded levels, minimal story,
and not much in the way of character
development. With more than a little trep-
idation, we decided instead to say good-
bye to the bandicoot and embark on
developing an epic adventure we hoped
would be worthy of the expectations of
the next generation of hardware.

For JAK & DAXTER, one of our earliest
desires was to immerse the player in a sin-
gle, highly detailed world, as opposed to
the discrete levels of CRASH BANDICOOT.
We still wanted to have the concept of lev-
els, but we wanted them to be seamlessly
connected together, with nonobvious
boundaries and no load times between
them. We wanted highly detailed land-

scapes, yet
we also
wanted
grand vistas
where the
player could
see great dis-
tances, includ-
ing other sur-
rounding levels. We
hoped the player would be
able to see a landmark far off in the dis-
tance, even in another level, and then trav-
el seamlessly to that landmark.

It was important to us that Jak’s world
make cohesive sense. An engaging story
should tie the game together and allow for
character development, but not distract
from the action of the game. The world
should be populated with highly animated
characters that would give Jak tasks to
complete, provide hints, reveal story ele-
ments, and add humor to the game. We
also wanted entertaining puzzles and ene-
mies that would surpass anything that we
had done before.

To achieve these and many other diffi-
cult tasks required three years of exhaust-
ing work, including two years of full pro-
duction. We encountered more than a few
major bumps in the road, and there were
times when the project seemed like an
insurmountable uphill battle, but we man-
aged to create a game that we are quite
proud of, and we learned several important
lessons along the way.

Naughty Dog’s

JAK & DAXTER:
THE PRECURSOR LEGACY

What Went Right

1. Scheduling. Perhaps
Naughty Dog’s most impor-

tant achievement is making large-scale
games and shipping them on time,
with at most a small amount of slip.
This is an almost unheard of combi-
nation in the industry, and although
there is a certain amount of luck
involved, there are valid reasons to
explain how Naughty Dog has man-
aged to achieve this time and again.

Experience will tell you it’s impos-

sible to predict the precise details of
what will be worked on more than a
month or two in advance of doing it,
yet many companies fall into the
trap of trying to maintain a highly
detailed schedule that tries to look
too far into the future. What can’t be
effectively worked into these rigid
schedules is time lost to debugging,
design changes, over-optimism, ill-
ness, meetings, new ideas, and myri-
ad other unpredictable surprises.

At Naughty Dog, we prefer a
much more flexible, macro-level

S T E P H E N W H I T E | Stephen is the programming director of Naughty Dog,
where he has been instrumental in the development of the CRASH BANDICOOT

games as well as JAK & DAXTER: THE PRECURSOR LEGACY. Stephen is an industry
veteran with over 15 years of published programming experience, including the
multi-award-winning Deluxe Paint ST and Brilliance.

w w w . g d m a g . c o m 49

BLUE SAGE

KEIRA

GOL

BIRD LADY

THE SAGE

MAIA

CHIEF

FARMER

scheduling scheme, with milestone
accomplishments to be achieved by cer-
tain dates. The schedule only becomes
detailed for tasks that will be tackled in
the near future. For example, a certain
level will be scheduled to have its back-
ground modeled by a certain date. If the
milestone is missed, then the team makes
an analysis as to why the milestone was-
n’t achieved and changes plans accord-
ingly: the background may be reduced in
size, a future task of that artist may be
given to another artist to free up more
time, the artist may receive guidance on
how to model more productively, or
some future task may be eliminated.

In the case of JAK & DAXTER, we used
the knowledge we’d gained from creating
the CRASH BANDICOOT games to help esti-
mate how long it should take to model a
level. As we modeled a few levels, how-
ever, we soon realized that our original
estimates were far too short, and so we
took appropriate actions. If we had
attempted to maintain a long-term, rigid-
ly detailed schedule, we would have
spent a lot of time trying to update some-
thing that was highly inaccurate. Beyond
this being a waste of time, the constant
rescheduling could have had a demoraliz-
ing effect on the team.

2. Effective localization tech-
niques. We knew from the start

that we were going to sell JAK & DAXTER

into many territories around the world,
so we knew we would face many local-
ization issues, such as PAL-versus-NTSC,
translations, and audio in multiple lan-
guages. Careful structuring of our game
code and data allowed us to localize to a
particular territory by swapping a few
data files. This meant we only had to
debug one executable and that we had
concurrent development of all localized
versions of the game.

All of our animation playback code
was written so that it could automatical-
ly step animations at a rate of 1.2
(60fps/50fps) when playing in PAL. We
also used a standardized number of units
per second so that we could relate the
amount of time elapsed in a game frame
to our measure of units per second. Once

everything was nice and consistent, then
timing-related code no longer had to be
concerned with the differences between
PAL and NTSC.

Physics calculations were another
issue. If a ball’s motion while being
dropped is computed by adding a gravi-
tational force to the ball’s velocity every
frame, then after one second the ball’s
velocity has been accelerated by gravity
60 times in NTSC but only 50 times in
PAL. This discrepancy was big enough to
become problematic between the two
modes. To correct this problem, we made
sure that all of our physics computations
were done using seconds, and then we
converted the velocity-per-second into
velocity-per-game-frame before adding
the velocity to the translation.

3. Seamless world, grand vis-
tas, and no load times. We

knew very early on in the development of
JAK & DAXTER that we wanted to
immerse the player within one large
expansive world. We didn’t want to stall
the game with loads between the various
areas of that world.

JAK & DAXTER’s designers had to over-
come many obstacles to achieve our open
environments. They had to lay out the

levels of the world carefully so that levels
could be moved in and out of memory
without stalling gameplay or causing
ugly visual popping. They also had to
create challenges that would engage the
player and maintain the player’s interest,
even though the player could roam freely
around the world. And they had to tune
the challenges so that the difficulty
ramped up appropriately, without giving
players the impression that they were
being overly directed.

The programmers had to create tools to
process interconnected levels containing
millions of polygons and create the fast
game code that could render the highly
detailed world. We developed several com-
plex level-of-detail (LOD) schemes, with
different schemes used for different types
of things (creatures versus background),
and different schemes used at different
distances, such as simplified models used
to represent faraway backgrounds, and
flats used to represent distant geometry.
At the heart of our LOD system was our
proprietary mesh tessellation/reduction
scheme, which we originally developed for
CRASH TEAM RACING and radically
enhanced for JAK & DAXTER.

The artists had the burden of generat-
ing the enormous amount of content for

P O S T M O R T E M

a p r i l 2 0 0 2 | g a m e d e v e l o p e r50

The game’s real-time lighting scheme transitioned through multiple times of day with realistic
coloring and shadows.

these environments. Their task was com-
plicated by the very specialized construc-
tion rules they had to follow to support
our various renderers. Support tools and
plug-ins were created to help the artists,
but we relied on the art staff to overcome
many difficulties.

4. Camera control. From the ini-
tial stages of JAK & DAXTER, we

looked at the various camera schemes
used in other games and came to the
depressing conclusion that all existing
camera schemes had serious issues. We
suspected that making a well-behaved
camera might be an unsolvable 3D prob-
lem: How could one possibly create a
camera that would maneuver through a
complex 3D world while behaving both
unobtrusively and intelligently?

Only fools would believe that all prob-
lems have a solution, so, like idiots, we
decided to give it a try. The resulting
camera behaved extremely well, and
although it had its limitations, it proved
the problem does indeed have a solution.
Jak can jump through trees and bushes,
duck under archways, run between scaf-
folding, scale down cliffs, and hide

w w w . g d m a g . c o m 51

Extensive character sketches and color key/
concept design work were done in advance of
actual modeling.

behind rocks, all with the camera unob-
trusively keeping the action in view.

We wanted the player to be able to con-
trol the camera, but we did not want to
force the player to do so. Players can use
the second joystick to maneuver the cam-
era(rotating the camera or moving it closer
to or farther from Jak), but we were con-
cerned that some people may not want to
manipulate the camera, and others, such as
children, may not have the required
sophistication or coordination. Therefore,
we worked very hard at making the cam-
era do a reasonable job of showing players
what they needed to see in order to com-
plete the various challenges. We accom-
plished this through a combination of
camera volumes with specially tuned cam-
era parameters and specialized camera
modes for difficult situations. Also, crea-
tures could send messages to the camera
in order to help the camera better
show the action.

This may sound
funny, but an
important feature
of the camera was
that it didn’t make
people sick. This
has been a serious
problem that has
plagued cameras in
other games. We
spent a bit of time
analyzing why peo-
ple got sick, and

we tuned the camera so that it reduced
the rotational and extraneous movement
that contributed to the problem.

Perhaps the greatest success of the cam-
era is that everyone seems to like it. We
consider that a major accomplishment,
given the difficulty of the task of creating it.

5.GOAL rules! Practically all of the
run-time code (approximately

half a million lines of source code) was
written in GOAL (Game Object Assembly
Lisp), Naughty Dog’s own internally
developed language, which was based on
the Lisp programming language. Before
you dismiss us as crazy, consider the
many advantages of having a custom
compiler.

Lisp has a very consistent, small set of
syntactic rules involving the construction

and evaluation of lists. Lists
that represent code are

executed by evaluating the
items that are in the list; if
the head of the list is a

function

(or some other action), you could think of
the other items in the list as being the
parameters to that function. This simplici-
ty of the Lisp syntax makes it trivial to cre-
ate powerful macros that would be diffi-
cult or impossible to implement using C++.

Writing macros, however, is not enough
justification for writing a compiler; there
were features we felt we couldn’t achieve
without a custom compiler. GOAL code,
for example, can be executed at a listener
prompt while the game is running. Not
only can numbers be viewed and tweaked,
code itself can be compiled and down-
loaded without interrupting or restarting
the game. This allowed the rapid tuning
and debugging, since the effects of modi-
fying functions and data structures could
be viewed instantaneously.

We wanted creatures to use nonpreemp-
tive cooperative multi-tasking, a fancy
way of saying that we wanted a creature
to be able to execute code for a while,
then “suspend” and allow other code to
execute. The advantage of implementing
the multi-tasking scheme using our own
language was that suspend instructions
could be inserted within a creature’s code,
and state could be automatically preserved
around the suspend. Consider the follow-
ing small snippet of GOAL code:

(dotimes (ii (num-frames idle))

(set! frame-num ii)

(suspend)

)

P O S T M O R T E M

a p r i l 2 0 0 2 | g a m e d e v e l -52

Screenshot showing highest level of detail of in-game geometry for
the Forbidden Jungle level.

The same shot displayed with textures.

This code has been simplified to make
a point, so pretend that it uses a counter
called ii to loop over the number of
frames in an animation called idle. Each
time through the loop the animation
frame is set to the value of ii, and the
code is suspended. Note that the value of
ii (as well as any other local variables) is
automatically preserved across the sus-
pend. In practice, the preceding code
would have been encapsulated into a
macro such as:

(play-anim idle
;; Put code executed for each time..
;; through the loop here.
)

There are other major compiler advan-
tages: a unified set of assembly op-codes
consistent across all five processors of the
Playstation 2, register coloring when
writing assembly code, and the ability to
intermix assembly instructions seamlessly
with higher-level code. Outer loops could
be written as “slower” higher-level code,
while inner loops could be optimized
assembly.

What Went Wrong

1.GOAL sucks! While it’s true that
GOAL gave us many advantages,

GOAL caused us a lot of grief. A single
programmer (who could easily be one of
the top ten Lisp programmers in the
world) wrote GOAL. While he called
his Lisp techniques and programming
practices “revolutionary,” others
referred to them as “code encryption,”
since only he could understand them.
Because of this, all of the support, bug
fixes, feature enhancements, and opti-
mizations had to come from one person,
creating quite a bottleneck. Also, it took
over a year to develop the compiler,
during which time the other program-
mers had to make do with missing fea-
tures, odd quirks, and numerous
bugs. Eventually
GOAL became
much more
robust, but even
now C++ has
some advantages

over GOAL, such as destructors, better
constructors, and the ease of declaring
inline methods.

A major difficulty was that we worked
in such isolation from the rest of the
world. We gave up third-party develop-
ment tools such as profilers and debuggers,
and we gave up existing libraries, including
code previously developed internally.
Compared to the thousands of program-
mers with many years of C++ experience,
there are relatively few programmers with
Lisp experience, and no programmers
(outside of Naughty Dog) with GOAL
experience, making hiring more difficult.

GOAL’s ability both to execute code at
the listener and to replace existing code in
the game at run time introduced the prob-
lem of memory usage, and more specifical-
ly, garbage collection. As new code was
compiled, older code (and other memory
used by the compiler) was orphaned, even-
tually causing the PC to run low on free
memory. A slow garbage collection process
would automatically occur when

available memory became sufficiently low,
and the compiler would be unresponsive
until the process had completed, some-
times taking as long as 15 minutes.

2.Gameplay programming.
Because we were so busy creating

the technology for our seamless world,
we didn’t have time to work on game-
play code until fairly late in the project.
The situation caused no end of frustra-
tion to the designers, who were forced to
design levels and creatures without being
able to test whether what they were
doing was going to be fun and play well.
Eventually programmers were moved off
of technology tasks and onto gameplay
tasks, allowing the designers to play the
game and make changes as appropriate.
But without our designers’ experience,
diligence, and forethought, the results
could have been a disaster.

3.Audio. We were plagued
with audio-related prob-

lems from the start. Our first
indication that things might not be
going quite right was when our
sound programmer quit and
moved to Australia. Quickly hir-
ing another sound programmer

would have been the correct
decision. We tried several

P O S T M O R T E M

Village geometry displayed with textures and sunrise lighting. About 5,000 time-of-day lights
were used in the game.

a p r i l 2 0 0 2 | g a m e d e v e l o p e r54

other schemes, however, made some poor
choices, and had quite a bit of bad luck.
We didn’t recognize until fairly late in
development what a monumental task
audio was going to be for this project. Not
only did JAK & DAXTER contain original
music scores, creature and gadget noises,
ambient sounds, and animated elements,
but there are also over 45 minutes of story
sequences, each containing Foley effects and
speech recorded in six different languages.

Our audio issues could be broken up
into four categories: sound effects,
spooled Foley, music, and localized dia-
logue. Due to the large number of sound
effects in the game, implementing sound
effects became a maintenance nightmare.
No single sound effect was particularly
difficult or time-consuming; however,
creating all of the sound effects and
keeping them all balanced and working
was a constant struggle. We needed to
have more time dedicated to this prob-
lem, and we needed better tool support.

We used spooled Foley for lengthy
sound effects, which wouldn’t fit well in
sound RAM. Spooling the audio had
many advantages, but we developed the
technology too late in the project and
had difficulty using it due to synchro-
nization issues.

Our music, although expertly com-
posed, lacked the direction and attention
to detail that we had achieved with the
CRASH BANDICOOT games. In previous
games, we had a person who was respon-
sible for the direction of the music. Un-
fortunately, no one performed that same
role during JAK & DAXTER.

Dialogue is a difficult problem in gen-

eral due to the complexity of writing,
recording, editing, creating Foley, and
managing all of the audio files, but our
localization issues made it especially
challenging. Many problems were diffi-
cult to discover because of our lack of
knowledge of the various languages, and
we should have had more redundant test-
ing of the audio files by people who were
fluent in the specific languages.

4. Lengthy processing times.
One of our greatest frustrations

and loss of productivity came from our
slow turnaround time in making a
change to a level or animation and seeing
that change in the actual game.

Since all of our tools (including the
GOAL compiler) ran across our network,

we ran into severe network bandwidth
issues. Making better use of local hard
drives would have been a smarter
approach. In addition, we found extreme
network slowdown issues related to read-
ing file time/date stamps, and some tools
took several minutes just to determine
that nothing needed to be rebuilt. When
we compiled some of our tools under
Linux, we noticed dramatic improve-
ments in network performance, and we
are planning on using Linux more exten-
sively in our next project.

We implemented the processing of the
lengthy story-sequence animations as a
hack of the system used to process the
far simpler creature animations. Unfor-
tunately, this bad system caused lengthy
processing times, time-consuming debug-

P O S T M O R T E M

a p r i l 2 0 0 2 | g a m e d e v e l o p e r56

A frame from Jak’s victory animation displaced as IK, textured, and textured with color shading.

Color key for Forbidden Jungle. The game required two full-time conceptual artists for nearly
two years of production.

ging, and a lot of confusion. If we had initially hidden the
processing complexity behind better tools, we would
have saved quite a bit of time.

We used level-configuration scripts to set actor
parameters and other level-specific data. The script
processing was done at an early stage in our tools pipeline,
however, so minor data changes took several minutes to
process. We learned that tunable data should instead be
processed as close as possible to the end of the tools pipeline.

5.Artist tools. We created many tools while developing
JAK & DAXTER, but many of our tools were difficult to

use, and many tools were needed but never written. We often
didn’t know exactly what we needed until after several revisions
of our technology. In addition, we didn’t spend a lot of time
polishing our tools, since that time would have been wasted if
the underlying technology changed. Regrettably, we did not
have time to program tools that were badly needed by the
artists, which resulted in a difficult and confusing environment
for the artists and caused many productivity issues. Since pro-
gramming created a bottleneck during game production, the
added burden given to the artists was considered necessary,

though no less distasteful.
We lacked many visualization tools that
would have greatly improved the artists’
ability to find and fix problems. For
example, the main method artists used
to examine collision was a debugging
mode that colorized a small section of

collision geometry immediately surrounding Jak. A far better solu-
tion would have been to create a renderer to display the entire col-
lision of a level.

We created plug-ins that were used within the 3D modeling
package; however, for flexibility’s sake most of the plug-ins
operated by taking command parameters and outputting results
as text: not a good interface for artists. Eventually, one of our
multi-talented artists created menus and other visualization aids
that significantly improved productivity.

Many of our tools were script based, which made the tools
extremely flexible and adaptable; however, the scripts were often
difficult for the artists to understand and use. We are replacing
many of these scripts with easier-to-use GUIs for our next project.

The Legacy

C reating JAK & DAXTER was a monumental effort by many
hardworking, talented people. In retrospect, we were prob-

ably pretty foolish to take on as many challenges as we did,
and we learned some painful lessons along the way. But we also
did many things right, and we successfully achieved our main
goals. At Naughty Dog, there is a strong devotion to quality,
which at times can border on the chaotic, but we try to learn
from both our success and our failures in order to improve our
processes and create a better game. The things that we learned
from JAK & DAXTER have made us a stronger company, and we
look forward to learning from our past as we prepare for the
new challenges ahead. q

a p r i l 2 0 0 2 | g a m e d e v e l o p e r58

Front and side view drawings of the character are scanned, imported,
and used as blueprints for modeling.

P O S T M O R T E M

S ince its creation in
1994, the
Entertainment
Software Rating
Board (ESRB)

has assigned ratings and con-
tent descriptors to more
than 9,000 computer and
videogames to help parents
and consumers choose
games that are right for them
and their families.

When the ESRB was creat-
ed, advocacy groups and some
government leaders were highly
critical of the interactive soft-
ware industry — a few had even
called for the imposition of a
government regulatory system to
monitor game content, despite seri-
ous First Amendment and freedom-of-
commerce concerns. Fortunately, the
ESRB’s rating system and our aggressive
efforts at public outreach have won over
many of these critics.

Unlike other entertainment industry
rating systems, the ESRB system is truly
content based. The rating icons (EC, E,
T, M, and AO) provide an at-a-glance
reference for age appropriateness, but the
content descriptors alert consumers to
game elements they may wish to search
out — such as educational content — or
elements they may wish to avoid, such as
violent or sexual content.

More than anything else, the ESRB’s
emphasis on content has earned the praise
of many former critics, including Senator
Joseph Lieberman (D-Conn.), who has
described the ESRB system as “the best
entertainment rating system in America.”

Despite the ESRB’s success, some indus-
try critics continue to attack the rating sys-
tem. And when they do, the news media

often leaps at the
story, often without
carefully examining the critics’ claims.

While the ESRB welcomes consumer
comments and well-intended suggestions,
we will not change the rating system in
response to the kind of incomplete or
misleading criticism that I will focus on
here. Let’s take a closer look at two spe-
cific charges leveled at the ESRB over the
past year.

Criticism #1: The ratings are “soft”
or too lenient. Some critics maintain
that more games should be rated T or M,
and they imply that the ESRB is “soft”
on game publishers because (in their
view) too many games receive an E rat-
ing. (Publishers who have received rat-
ings more restrictive than they had hoped
know this criticism is truly off-base.)

These critics generally rely on studies
showing that people sometimes disagree

with ESRB ratings, citing
surveys showing that

some people would
assign a T rating
instead of an E to
certain games. What
these critics fail to

point out is that
Americans overwhelming

agree with ESRB ratings,
and when they disagree,
they are more likely to
find the ESRB’s rating
too strict than too lenient.
In fact, when presented

with actual game footage
and asked to select the appro-

priate rating, consumers are
twice as likely to choose a less restric-

tive rating than a more restrictive one,
according to independent research com-
missioned by the ESRB.

These results are neither surprising nor
indicative of problems with the ESRB
system. In a country as diverse as ours,
it’s impossible to achieve 100 percent
agreement on anything. For example,
some parents believe that games depict-
ing outdoor activities such as hunting or
fishing are appropriate for young chil-
dren, whereas others choose to shield
their families from such activities.

What all this research really shows is
that ratings are subjective — that well-
intentioned people can examine the same
game and, when it’s a close call, may
reach different conclusions about the
most appropriate rating. Accepting this
reality, the ESRB never intended to
design a rating system that would foster
100 percent agreement. Rather, our goal
is to administer a system that is helpful
to parents and reflects the values of the

S O A P B O X a r t h u r p o b e r

a p r i l 2 0 0 2 | g a m e d e v e l o p e r72

continued on page 71

Ill
us

tr
at

io
n

by
 D

ar
re

n
R

av
en

Staying Ahead in the

Ratings Game

S O A P B O X

w w w . g d m a g . c o m 71

vast majority of parents and consumers.

Criticism #2: E-rated games contain exces-
sive violence. One recent study printed in
the Journal of the American Medical
Association went so far as to charge that
nearly two-thirds of E-rated games con-
tained acts of violence. The central problem
with this study, and others like it, is its
unusually broad definition of violence.
These critics discern violence in innocent
acts that most Americans would dismiss.
For example, the JAMA report cited MS.
PAC-MAN as a violent game, because play-
ers receive points for eating ghosts. In a

similar study of children’s films, critics
identified acts of violence in every G-rated
animated film ever made, including Dumbo
(because Dumbo shoots peanuts through
his trunk during a circus performance).

Just as it is impossible to design a rat-
ing system that produces 100 percent
agreement, it’s equally impossible to
define violence in such a way as to pro-
duce universal approval (although defin-
ing PAC-MAN and CENTIPEDE as violent
games is clearly not the solution). For
example, some parents may find the
physical contact associated with sports
like hockey to be inappropriate for
young children, while others may consid-

er such sports to be good, clean fun.
The ESRB respects both points of

view. It is not our role to tell families
which games are appropriate for kids.
That’s a judgment families need to make
for themselves. Instead, we strive to give
parents and consumers the information
they need to make informed choices. And
according to both independent research
and the government leaders who watch
our system closely, we’re achieving that
objective every day. q

A R T H U R P O B E R , E D . D . | Dr.
Pober is president of the Entertainment
Software Rating Board.

continued from page 72

	02gameplan
	04saysyou
	06indwatch
	08prodrev
	14profile
	16innerp
	20artview
	28soundpri
	30f-falste
	32f-bacik
	40f-marsel
	48postmort
	72soapbox

	return:

