
APRIL 2001

G A M E D E V E L O P E R M A G A Z I N E

G A M E P L A N
L E T T E R F R O M T H E E D I T O R

W elcome to Game
Developer maga-

zine’s new look! As

I’ve mentioned in

previous issues, we

have been making some changes around

here based on your feedback. Nothing

drastic, just some little tweaks around the

edges to provide you with more informa-

tion that you can use in your day-to-day

game development.

At the bottom right of this page you’ll

find our group’s new name: Gama Net-

work. We were previously known as the

CMP Game Media Group. Why did we

change our name? We want you to know

that we’re the same group that runs the

Game Developers Conference and

Gamasutra.com. We’ve changed all of our

logos to have a consistent look. We hope

you like the new style of our front cover

as much as we do!

But we wouldn’t be Game Developer
without great articles. This month we

introduce our first developer profile. Each

month we’ll interview a developer you

should know, someone who has a unique

industry perspective. For our first profile

we introduce you to Super Duper Game

Guy Ed Logg (seriously, that’s his title).

Ed is perhaps the hardest- and longest-

working game programmer out there. His

credits include the arcade titles ASTEROIDS,

CENTIPEDE, GAUNTLET, and TETRIS; and

more recently, the console versions of SAN

FRANCISCO RUSH, RUSH 2, and RUSH 2049.

If you turn to page 10, you’ll find our

new and expanded Product Review sec-

tion. We’ve received consistent feedback

that one of the most valuable parts of the

magazine for you are the product reviews.

No other magazine covers products from

a game development perspective, so we’ve

increased our monthly coverage from one

review each month to four. We’re also

going to increase the scope of our reviews

to include software, hardware, books,

even game engines and SDKs. The num-

ber of tools for game developers to use

out there just keeps increasing, and we

want to be your first resource when

you’re looking for new tools.

This month our Postmortem is on

AMERICAN MCGEE’S ALICE, by Rogue

Entertainment. Alice uses the QUAKE 3

engine to great advantage. The first time I

saw a room split itself in half I was pretty

impressed. Read about what trials and

tribulations the Rogue staff went through

as they took Lewis Carroll’s crazy tale of

Alice in Wonderland and made it even cra-

zier! (Please excuse the blatant Old Man

Murray reference.)

Our main feature this month is on a

similarly crazy game, MAJESTIC. (You

could say this is our crazy issue. Or our

EA issue. Or our Ed Logg issue — Ed is

also mentioned in our Soapbox). Imagine

that you’re playing a PC game, but some-

one keeps calling you on your cell phone

and screaming at you incoherently about

the developers that worked on the title. It

seems they’re in some kind of trouble.

You hop on the Internet to find out more

and follow a link on Google to a newspa-

per article describing a fire at the compa-

ny’s headquarters. Suddenly someone

sends you an instant message and hints

that these developers have gone under-

ground and you should check a particular

voice-mail box to find out more informa-

tion. Is this a game? Who are these devel-

opers, anyway? MAJESTIC is an episodic

game that plays on the boundary between

fantasy and reality. Read our feature on

what it took to create MAJESTIC, both

from a design perspective and a techno-

logical standpoint.

Our second feature this month comes

from an analysis of the troubles with using

the A* pathfinding algorithm. Marco

Pinter’s article details ways that you can

smooth out the jagged paths generated by

A*. Then he extends A* to include an ini-

tial and destination orientation. Check out

Marco’s modifications, which he terms the

Directional A* algorithm.

We hope you enjoy this month’s issue.

Let us know what you think about our

brand new look!

Whole New Ball Game

600 Harrison Street, San Francisco, CA 94107

t: 415.947.6000 f: 415.947.6090 w: www.gdmag.com

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief
Mark DeLoura mdeloura@cmp.com

Senior Editor
Jennifer Olsen jolsen@cmp.com

Managing Editor
Laura Huber lhuber@cmp.com

Production Editor
R.D.T. Byrd tbyrd@cmp.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Daniel Huebner dan@gamasutra.com
Jeff Lander jeffl@darwin3d.com
Mark Peasley mpeasley@gaspowered.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook Independent
Susan Lee-Merrow Lucas Learning
Mark Miller Group Process Consulting
Paul Steed WildTangent
Dan Teven Teven Consulting
Rob Wyatt The Groove Alliance

ADVERTISING SALES
Director of Sales & Marketing
Greg Kerwin e: gkerwin@cmp.com t: 415.947.6218

National Sales Manager & Western Region, Silicon Valley & Asia
Jennifer Orvik e: jorvik@cmp.com t: 415.947.6217

Senior Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 415.947.6224

Account Manager, Recruitment
Morgan Browning e: mbrowning@cmp.com t: 415.947.6225

Account Manager, Northern California
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Sales Associate
Aaron Murawski e: amurawski@cmp.com t: 415.947.6227

ADVERTISING PRODUCTION
Senior Vice President/Production Andrew A. Mickus

Advertising Production Coordinator Kevin Chanel

Reprints Stella Valdez t: 916.983.6971

CMP GAME MEDIA GROUP MARKETING
Senior MarCom Manager Jennifer McLean

Strategic Marketing Manager Darrielle Ruff

Marketing Coordinator Scott Lyon

Audience Development Coordinator Jessica Shultz

Sales Marketing Associate Jennifer Cereghetti

CIRCULATION
Group Circulation Director Kathy Henry

Director of Audience Development Henry Fung

Circulation Manager Ron Escobar

Circulation Assistant Ian Hay

Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes
t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas
t: 650.513.4234 f: 650.513.4482
e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall

Corporate President/COO John Russell

CFO John Day

Group President, Business Technology Group Adam K. Marder

Group President, Specialized Technologies Group Regina Starr Ridley

Group President, Channel Group Pam Watkins

Group President, Electronics Group Steve Weitzner

Senior Vice President, Human Resources Leah Landro

Senior Vice President, Global Sales & Marketing Bill Howard

Senior Vice President, Business Development Vittoria Borazio

General Counsel Sandra Grayson

Vice President, Creative Technologies Johanna Kleppe

Game Developer
magazine is

BPA approved

W W W . G A M A N E T W O R K . C O M4

✎

A D I V I S I O N O F C M P M E D I A I N C .

S A Y S Y O U
C T H E F O R U M F O R Y O U R P O I N T O F V I E W . G I V E U S Y O U R F E E D B A C K . . .

Fat Men Tell No Lies

I just wanted to drop you a quick note

and compliment you on your recent

music article in Game Developer [“The

Sound of Money (Down the Potty): Com-

mon Audio Mistakes in Kids’ Games,”

February 2001]. It was one of the best I

have read in a while! You made me think

of new sound issues, and you even made it

sound interesting. I hope The Fat Man can

write more articles in the future, perhaps

on specific sound/music issues (for exam-

ple, creating long, nontedious background

music). Thanks!

Steve Sheets

Midnight Mage Software

via e-mail

I enjoyed The Fat Man’s article in the

February issue of Game Developer.
After reading it, I decided to

consider myself lucky that for

several years my biggest client

has been Disney Interactive.

Overlooking for the moment the

fact that I always think I should

be paid more, at least I haven’t

had to deal with most of the

audio mistakes listed in your

article — probably because

Disney really is an entertainment company,

and the story really is more important to

them than the computer code. I loved the

article’s anecdote about letting kids save

their games. How many times have I said

to my own children, “It’s time for dinner,”

and the reply is always, “Just a minute, as

soon as we finish this level!” Thanks for

sharing.

Billy Martin

Lunch With Picasso Music

via e-mail

Put Effort Where It’s Due

I n response to Mark DeLoura’s February

editorial (“Telling Stories,” Game Plan),

I agree that story is important for certain

kinds of games, but I don’t think it’s as all-

important as you make it out to be.

Games are about interactivity. What we

need to do is not to mimic the sort of

author-predetermined linear story that we

see in books and film, but to come up with

our own kind of nonlinear, interactive

story that is appropriate to our

medium. Games are never going

to be as good at telling a linear

story as books and film (because

that involves the supression of

the player’s free will, and games

are about expression of free

will), so we should not try to

compete with them.

The reason we don’t make

this kind of nonlinear, interactive story is

that we don’t know how. Our best attempt

at it so far was DEUS EX . . . which did a

pretty good job, all things considered, by

just throwing tons of content at the prob-

lem. But it’s obvious that this approach

will not scale indefinitely into the future.

What we need to do is invent a techno-

logical system that allows us to create

things that are better at interacting with

people in rich and meaningful ways. You

make the point that graphics are so devel-

oped that players couldn’t see the differ-

ence with future graphical improvements. I

think that is largely true (though only

because today’s games are so primitive in

other ways). I think that we need to focus

a lot more technological development in

games but not on graphics.

Compared to our current graphics tech-

nology, our input technology sucks. Con-

trols are almost always a limiting factor in

games. Our AI sucks. We can’t make a

person in a game that you can talk to, or

that can talk back. We can’t even dynami-

cally synthesize the sound of a fork scrap-

ing across the table, much less the sound

of a person speaking emotionally.

Games need to become something very

different from what they are now. But they

won’t be able to become whatever it is they

need to be until we do enough technologi-

cal development to open the right doors.

Jonathan Blow

Bolt Action Software

via e-mail

C
Send e-mail to editors@gdmag.com, or

write to Game Developer, 600 Harrison St.,

San Francisco, CA 94107

6 a p r i l 2 0 0 1 | g a m e d e v e l o p e r

Kludge by Tiger Byrd and Daniel Huebner

I’ve created
the ultimate GDC
agenda.

“Meet booth
babes. Collect various
schwag. Gather invites
to all the best parties.”

“Meet the guys from
Nvidia for drinks. Meet the
guys from Electronic Arts for
drinks. Meet the guys from
Activision for drinks.”

You didn’t leave your-
self any time for classes.

They
have classes?

8 a p r i l 2 0 0 1 | g a m e d e v e l o p e r

I N D U S T R Y W A T C H
J

Sega pulls the plug on Dreamcast.
Sega’s plans to stem the tide of red ink in

its console business have finally become

clear. After weeks of speculation, the com-

pany confirmed that it would cease pro-

duction of its Dreamcast console on March

31, the end of its fiscal year. Dreamcast

sales have been disappointing, falling 44

percent below Sega’s projection — though

the console shutdown will be costly as

well. Sega anticipates that killing the

Dreamcast will cost $689 million, pushing

Sega’s loss for the fiscal year to a record

$500 million, as well as necessitating

workforce reductions.

Though Sega has pledged to continue

to offer support for the Dreamcast with

more than 100 titles planned for this

year, the company has also confirmed

that Sega titles will appear on rival plat-

forms. Sega has already locked up deals

to bring its games to Sony’s Playstation 2

and Nintendo’s Game Boy Advance, with

VIRTUA FIGHTER 4 tabbed for the PS2 and

SONIC THE HEDGEHOG heading to GBA.

Sega is working on arrangements to

extend its brand to include Xbox and

Gamecube titles.

One additional avenue for Dreamcast’s

post-Sega life is as a set-top box. Sega and

Pace Micro Technology have reached an

agreement that will add Sega’s Dreamcast

console technology to a set-top box. Pace

will pair the game platform with its digi-

tal personal video recorder system, a set-

top box with an integrated hard drive that

is compatible with multiple cable and

satellite systems, allowing on-demand

access to Sega’s videogame titles.

PS2 problems cut Sony profits. Sony’s

Playstation 2 problems led to a big hit to

the company’s bottom line. Sony’s third

quarter, which runs from October 1 to

December 31 and includes the critical hol-

iday season, showed an 11 percent drop

in profits over the same quarter last year.

Sony is placing the blame for most of that

decline in profits squarely on PS2 produc-

tion delays caused by parts shortages,

though the slowing pace of the U.S. econ-

omy was also problematic. Profits in

Sony’s game division were down a whop-

ping 23 percent from the same period last

year. All together, Sony still managed a

group operating profit of $1.24 billion for

the quarter. The company’s rough patch is

still far from over, as Sony has been

forced to cut its profit projections for the

fiscal year in half and Playstation 2 ship-

ments by 10 percent.

Sony acquires two key developers.
Though a solution for its Playstation 2

production woes seems to be just beyond

Sony’s reach, the company is taking steps

to take tighter hold of the development of

some of its top franchises. CRASH BANDI-

COOT has long been closely associated with

Playstation; now Sony Computer Entertain-

ment America (SCEA) is solidifying that

relationship by acquiring CRASH creator

Naughty Dog. Naughty Dog and its entire

development team will become a wholly-

owned subsidiary of SCEA and will develop

exclusively for Playstation 2. The company

will keep the Naughty Dog name and con-

tinue on under the direction of its founders,

Andy Gavin and Jason Rubin.

Sony is also bringing its sports game

development in-house by acquiring Red

Zone Interactive, the developers of the

NFL GAME DAY series published under

Sony’s 989 Studios label. Unlike Naughty

Dog, Red Zone will become a division of

SCEA’s first-party development opera-

tions under the direction of Shuhei

Yoshida. Red Zone’s 65 employees will

continue to work out of Red Zone’s San

Diego office exclusively on Playstation

titles. Sony did not release the financial

terms of either deal.

The Learning Company renames enter-
tainment division. Game maker The

Learning Company is hoping that a new

name will exorcise its demons. Now called

Game Studios, the Novato, Calif.–based

developer will gather The Learning Com-

pany, Broderbund, Mindscape, SSI, and

Red Orb under the new Game Studios ban-

ner, although the Strategic Simulation Inc.

imprint will continue on the company’s

strategy and simulation titles. Game

Studios will continue on as both a third-

party publisher and as a developer of PC

and console-based titles.

Activision exceeds estimates. Acti-

vision’s third-quarter profits managed to

beat analyst predictions by 10 cents per

share, with the company reporting income

of $20.5 million on revenues of $264.5

million — slightly down from last year’s

third-quarter result of $22.3 million in

income on $268.9 million in revenue. The

encouraging results have led Activision to

increase its full-year earning predictions by

nine percent to $48 million. q

d a n i e l h u e b n e r | T H E B U Z Z A B O U T T H E G A M E B I Z

E L E C T R O N I C
E N T E R TA I N M E N T E X P O

LOS ANGELES CONVENTION CENTER

Los Angeles, Calif.
Conference: May 16–18, 2001
Expo: May 17–19, 2001
Cost: $200–$450
www.e3expo.com

U P C O M I N G E V E N T S

CCAALLEENNDDAARR

SONIC THE HEDGEHOG. Sega’s trademark character will soon appear on platforms of his fomer rivals.

A top the users’ wish list last

year for Discreet’s 3D Studio

Max was a redesigned bones

and forward/inverse kine-

matics chain system (FK/IK)

for animating hierarchical characters.

Maybe it was unfair to ask for this, given

that release 3 contained serious modeling

improvements and a rework of shaders,

materials, lights, shadow, antialiasing, and

rendering, not to mention interfacing with

Mental Ray and Renderman, and a direct

link to Discreet’s new postproduction prod-

ucts, Paint and Effect (now combined into

Combustion). Character animators were dis-

appointed, and competitors disparaged the

product. Discreet representatives told me

last year that there were but a handful of

persons qualified to rework Max’s hierarchi-

cal animation code. Discreet listened to their

users and hired the talent for this release.

New Max Bones and
FK/IK Features

M ax 4 sports a major rewrite of for-

ward/inverse kinematics, bones,

solvers, and constraints. Character Studio 3

(CS3) expanded Biped’s foot animation with

an animatable pivot point, and with new

flocking, behaviors, and crowd control.

Physique was rewritten for speed and ease of

use. These simultaneous efforts to upgrade

CS3 and Max’s chain-based character ani-

mation represent a major focus of resources

and commitment by Discreet to expand their

position in the broadcast, game, and emerg-

ing online interactive markets.

Max bones now no longer flip when con-

strained. Under a new animation menu, you

control bone hierarchies through a series of

IK solvers and constraints. With the new

FK/IK arrangement, dummy objects can be

used like handles to drive a bones system

properly set up. One dummy handle could

drive a character’s hip, knee, and ankle

joints, while another might move and bend

the foot. An animator could drive a very

natural walk cycle using 12 bones (six per

leg) controlled by four handles (two per leg).

Also, bones can be now rescaled in height

and width, and include optional “fins” that

can protrude top, bottom, and sides. Bones

also can be shaded for volume display and

previews. The Skin and Physique modifiers

respond to the scale and fins, enabling a bet-

ter skeletal fit to the character mesh. The

envelopes and tendons in the Physique mod-

ifier (and envelopes in Skin) are no longer

the only way to tune bone-driven mesh

deformations: lattice constraints can be

linked to changes in bone angles or posi-

tions to portray muscle flexing, or they can

be applied directly to a joint and animated.

There are three types of deformers: joint

angle deformer, bulge angle deformer, and

morph angle deformer. The Skin modifier

features include painting weight attributes

on the surface.

Animators used to Maya or Softimage

should feel more at home with the new

Max IK for the greater control, ease of use,

and mainstream character setup and ani-

mation conventions. My wish list for the

next release is to see more AI-based con-

straints built into Max bones and skele-

tons. This can save both setup and animat-

ing time. I’d also like the new FK/IK bones

to support creating, saving out, and blend-

ing nonlinear animation components.

Modeling
Enhancements

T he modeling tools continue their evolu-

tion toward more control and ease of

use. For patch modelers and Surface Tools

users, spline-cage modeling tools offer easi-

er access Bézier handles when splines inter-

sect in 3D space. Keyboard shortcuts are

available for Patch modeling, just as they

were for editable meshes in Max 3.1, and

are now available for every command. The

Edit Patch modifier includes soft-selections.

The Flex modifier, used to portray sec-

ondary animation and soft-body dynamics,

is expanded for use in cloth simulation.

Meshsmooth’s subdivision surface capabili-

ties are enhanced to include soft-selections

and expanded reset features. Max 4

includes Intel’s Multi-Resolution Mesh

technology (MRM), as well as Hierarchical

P R O D U C T R E V I E W S

Discreet’s 3DS Max 4
by jeff abouaf

Max 4 addresses complaints about 3DS Max’s interface with improved mouse utility.

XXT H E S K I N N Y O N N E W T O O L S

10 a p r i l 2 0 0 1 | g a m e d e v e l o p e r

XP R O D U C T R E V I E W S

12 a p r i l 2 0 0 1 | g a m e d e v e l o p e r

Subdivision Surfaces (HSDS). MRM per-

mits continuous and selective polygon deci-

mation, useful to solve level-of-detail issues

in real-time 3D. With these enhancements,

Max can res-up or simplify polygonal mod-

els as never before. A new polygon model-

ing tool converts triangular faces into

quads, providing advantages in both mod-

eling and UVW mapping.

UI Enhancements

T he customized user interface (CUI)

options have been expanded and reor-

ganized in Max 4. You have a very large

CUI dialog encompassing the keyboard,

toolbars, quads, menus, and colors. You

have options to record macros and turn

them into buttons on either tabs or tool-

bars. As before, you can load these on the

fly, only now you have greater control over

features, which let you redesign and simpli-

fy this massive toolset to meet your needs.

Nested menus on the edge of a screen

force you to look away from your work to

dig and find a tool. In Max 1, nested menus

were replaced by buttons nesting rollouts

nesting more buttons, and so on. New users

complained that there were too many but-

tons. Discreet has taken two steps to fix this:

maximizing right-click access with new con-

text-sensitive (and customizable) quad

menus, and opening up the Command Panel.

In Max 3, you could reposition, float, and

hide the Command Panel. Alternatively, you

could use the Tab Panel to get to most fea-

tures nested in the Command Panel. Now,

instead of rollouts going down to the floor,

you can expand the Command Panel across

the UI by dragging its left edge toward the

right. This lets you get to top and subfea-

tures at once. Also, the Modifier Panel is an

expandable outline (no longer a drop-

down); you can reorder the stack by drag

and drop. In addition to changing viewport

layouts, you can also resize any viewport by

dragging its border right or left, up or down.

The new quad menus further maximize

mouse utility. A right click brings up a

square icon divided into four parts, each

part giving you a separate menu. While it

doesn’t do away with nested menus, you

can access four top levels immediately. It

also remembers the last several tools used,

so if you are doing a series of extrude-scale

operations, these features remain at the top

of one of the quads. A three-button mouse

would use the left button for selection and

manipulation, the center for navigation

(with the Alt and Control keys), and the

right for context-sensitive tool selection.

The quad menus can be customized and

saved with different CUIs, and, if desired,

you can view a sound file in the main UI.

Texturing
Enhancements

M ulti-map materials can now be dis-

played in the viewport. Instead of a

single map, you can examine the blending or

compositing of any map tree in the viewport.

You can also see vertex illumination and

alpha channel effects in the viewports. If you

are using DirectX 8, you can display vertex

and pixel shaders like bump maps and

reflection maps. With the new Active Shade

renderer, you have an interactive, continu-

ously updating final render window of all or

part of the scene. These features speed

resolving material, mapping, and lighting

issues in the scene. The ability to drag and

drop materials and maps from the Material

Navigator, Map Browser, and map channels

remains unchanged.

Max 4 contains improved mapping for

patch models, as well as improved depth

of field and motion blur render effects.

The Asset Manager utility, renamed Asset

Browser, is expanded to search across net-

works and online for texture maps and

geometry files.

Miscellaneous Features

D iscreet designed and will support Max

4 on Windows 2000 only; this means

support for HEIDI, OpenGL, and Direct3D

drivers. They stated early in the beta pro-

gram they would not support Max 4 on NT

4. But my Max 4 experience on NT 4 was

about the same as for Max 3.1.

Max 4 no longer requires a hardware

lock. The new C-dilla software security sys-

tem generates an authoring code based on

the computer hard disk, and not from an

external lock. You can no longer easily

move your Max installation from one

machine to another. I argued against this for

release 3 and am disappointed to see it now.

Tying software to a single computer restricts

the mobility of an independent Max artist;

with a hardware lock, you could work on-

site for a client who didn’t own Max by tak-

ing your lock, the installation disk, and a

Zip disk containing a personal keyboard,

CUIs, plug-ins, and texture maps. With the

new software lock, you must either trans-

port your computer(s) to the site, or contact

Discreet to authorize your client’s hardware

as part of a pool. Either result is cumber-

some and wasteful.

Final Word

D iscreet deserves praise for fitting Max 4

with improved character animation

tools. It includes a very adequate animation

alternative for those disliking CS3. Last sum-

mer, Discreet announced a reorganized focus

“on film, on air, online.” The Max 4 release

contains added value for each of these areas,

and should be well received. q

STATS
DISCREET

Montreal, Quebec
(514) 393-1616
www.discreet.com

PRICE
$3,495

SYSTEM REQUIREMENTS
Windows 98/2000 (SP1) with 300MHz
Intel-compatible processor(s), 128MB
RAM (256MB recommended), and 400MB
hard disk space (300MB swap); CD-ROM;
sound card and speakers; pointing
device; optional network card.

PROS
1. Bones and IK system rewritten and

updated. If used with Character Studio
3, this represents a major step forward
in character animation capability.

2. Enhancements to modeling tools for
game modeling.

3. Builds on strengths of prior releases
and continues evolutionary enhance-
ments.

CONS
1. Software security system may impede

artist’s ability to travel with the software.
2. New features and capabilities bring

more complexity and a new learning
curve.

3. Max 4 requires experience and long-
term commitment.

3DS MAX 4 XXXX

XXXXX
XXXX
XXX
=XX
X

excellent

very good

average

fair

don’t bother

14 a p r i l 2 0 0 1 | g a m e d e v e l o p e r

XP R O D U C T R E V I E W S

IK MULTIMEDIA’S
T-RACKS 24 2.0

by aaron marks

G ame musicians and sound designers

have yet another software application

to add to their bag of tricks — T-Racks 24

2.0. Available for both Windows and Mac-

intosh at a very reasonable price of $299,

this new and improved edition doesn’t

generate unusual noises, add dazzling

effects, or inspire wild creativity; it simply

takes what you’ve already created and

makes it better.

“Mastering” is not usually a process syn-

onymous with game audio. Audio produc-

tion is typically fragmented with delivery of

music cues and sound

effects spread over sev-

eral milestone submis-

sions. With larger

games, it is quite possi-

ble to have a wide

range of volume and

equalization mismatch-

es that are painfully

noticeable. A final mas-

tering session sees to

their overall uniformity

and ensures consistent playback quality,

giving the final mixed audio a certain char-

acteristic which ties it to the game. T-Racks

24 will refine any audio production when

used in conjunction with patience and a

good set of ears.

In this age of cold, almost brittle digital

recording methods, T-Racks 24 adds a

pleasant analog warmth, clarity and pres-

ence, and either subtle or extreme equaliza-

tion and volume adjustments through a

simple, single screen interface.

Full 24-bit resolution enables up to 24-

bit .AIFF, .WAV, and .SD2 files to be read

and written. Conversion to 16-bit is accom-

plished with high-end dithering which pre-

serves all of the intended richness of your

mix. The Multi-band Peak Limiter and

Compressor have been enhanced along with

a new output stage to allow hard digital

clipping, exceptionally smooth tapelike sat-

uration, and everything in between.

While the tests I made with various

pieces of music had my head nodding in

approval, the real smiles came when I dis-

covered new and highly usable features.

One of the best additions is “skins,” which

provide a chance to customize the virtual

rack of equipment to match your mood —

everything from “beat up” to “camouflage”

and “lizard skin.”

Looking beyond the “visuals,” I was

pleased to find other useful embellishments.

You can check mixes in mono, stereo, and

their differences as you would on a high-

end console. You can zoom in on the top

portion of the level meter to adjust precise

output levels enabling very hot signals with-

out clipping. More than 50 factory presets

can help you start off in the right direction,

and you can adjust and save them at will.

You’ll also uncover adjustable internal pro-

gram settings which will allow customiza-

tion of the program’s architecture and sonic

characteristics. Users can then share these

newly configured settings

online through the T-Racks

web site.

I’ve always favored

instantaneous feedback and

the ability to make unen-

cumbered parameter

adjustments. Moving

knobs using a mouse is a

big pain in the hindquar-

ters. I found myself adjust-

ing too much or too little and playing so

much “click — listen, click — listen” that it

became distracting. Also, the program ini-

tially opens as a half-screen, and after maxi-

mizing the window, the rack equipment

remains the same size, blackening the

unused space around it. The lettering isn’t

that large to begin with and, unless you like

sitting close to your display, there is no

chance of making them easier to read. Per-

haps IK Multimedia could address this issue

in future upgrades.

Overall, T-Racks 24 2.0 is a great prod-

uct. Many of my tracks have already bene-

fited from its hospitable virtual circuitry,

and until they make economical high-end

mastering equipment, I’m staying right

where I’m at with this agreeable solution.

Whether you are creating samples for a

Playstation 2 sound bank, composing a

momentous CD-ROM game score, or in

need of final mastering for a game sound-

track release, this program will work as

advertised and at a great price.

XXXX | IK Multimedia | T-Racks 24 2.0 |
www.t-racks.com

3D GAME ENGINE
DESIGN
BY DAVID H. EBERLY

reviewed by mark deloura

I f the name David Eberly sounds famil-

iar to you, it might be because of his

frequent postings to the Usenet news-

group comp.graphics.algorithms. Or per-

haps you’ve visited his vast repository of

source code for graphics and image algo-

rithms at www.magic-software.com. Or it

could be that you’ve examined the

NetImmerse game engine, created by

Numerical Design Ltd., where Eberly used

to be the director of engineering.

Regardless of whether you know of

Eberly, his name is certainly one you’ll

want to remember when you go to your

bookshelf to find help on that tricky colli-

sion detection problem or inverse kinemat-

ics solver. Eberly’s recent book, 3D Game
Engine Design: A Practical Approach to
Real-Time Computer Graphics (Morgan

Kaufmann, 2000), is best described as a

reference manual for 3D real-time graphics

engine programmers. But oh, what a refer-

ence manual it is.

Eberly’s web site is known by many as a

great online resource for code snippets

that implement particularly sticky graph-

ics algorithms. But up until this point

there haven’t been descriptions of the

implementations to accompany the code.

Now you can find out why each algorithm

works, in gory mathematical detail.

Eberly has a Ph.D. in mathematics, and it

shows — this book is extraordinarily

heavy with math. If your linear algebra is

rusty, don’t start here! Go dust off your

old linear algebra texts first. Appendix B

does contain some good information on

various numerical methods, but you’ll

need to have a solid math foundation

before you delve into it.

Assuming that math doesn’t easily scare

you, you’ll get a lot out of this book. The

particularly strong parts include distance

and collision detection sections, but there

are also good sections on quaternions, scene

graphs, curves and surfaces, animation, and

terrain rendering. I was especially impressed

by a brief dissection of TCB curves

(Kochanek-Bartels splines), which I hadn’t

seen discussed in print before. Algorithm

descriptions are accompanied by volumi-

T-Racks 24’s interface in “lizard skin.”

XXXXX
XXXX
XXX
=XX
X

excellent

very good

average

fair

don’t bother

16 a p r i l 2 0 0 1 | g a m e d e v e l o p e r

XP R O D U C T R E V I E W S

nous equations and pseudocode, making

this book as much a bathroom reader

(bring your pencil) as a quick reference. It

would also certainly make a good textbook

for courses teaching real-time graphics.

Interspersed every few pages throughout

nearly the entire book are references to code

files on the CD. The accompanying CD

includes reams of code, all of which compiles

under both Windows and Linux. It really is

an impressive amount of information.

As much as I recommend this book,

there are a few caveats. 3D Game Engine
Design frequently gets mired in mathemat-

ics. I don’t always need to know the com-

plete derivation of the algorithm I’m using,

sometimes I’m just looking for a solution,

and I need it right now. It can be frustrat-

ing digging through all the equations to

find this solution. Certainly I expect to find

a lot of math when discussing things such

as quaternions and parametric curves and

surfaces, but frequently I feel like Eberly

gives us mathematical proofs as opposed to

algorithm descriptions. This needlessly

obfuscates the useful techniques described.

3D Game Engine Design doesn’t go into

detail on practical graphics engine issues

such as using hardware transformation and

lighting, multi-texture effects, cubic envi-

ronment maps or shadow-casting. The

book is really designed as a high-level game

engine theory book for scene-graph-orient-

ed graphics engines, so if what you’re look-

ing for are performance optimizations to

make your game engine fly, this isn’t the

right book. But if you’re looking to under-

stand how a real-time graphics engine

works, or add functionality to your engine,

you likely will find what you’re looking for.

As with most books, state-of-the-art

techniques aren’t covered very well. But

after you’ve gone through this book you’ll

have the necessary expertise to tackle other

books, magazines, and the GDC and Sig-

graph proceedings.

3D Game Engine Design is a very good

book that discusses the algorithms behind

designing a 3D real-time graphics engine

from a mathematically oriented perspec-

tive. Check it out.

XXXX Morgan Kaufmann | 3D
Game Engine Design: A Practical Approach
to Real-Time Computer Graphics |
www.mkp.com

STARBASE’S
CODEWRIGHT 6.5

by scott bi las

A re you an engineer who enjoys working

with the least common denominator of

editors — the kind that comes with your

IDE? Do you accept the defaults given to

you by expensive usability labs that cater to

rookie Visual Basic programmers?

Accept your calling as a true engi-

neer: use a stand-alone editor! I’ve

been using Codewright since ver-

sion 1 came out for 16-bit Windows

years ago. As of this writing, version

6.6 is in the works, and the product

has acquired a huge array of fea-

tures. I doubt I’ve used even 10 per-

cent of them, so instead I’ll focus on

the features I rely on heavily.

Codewright comes with everything that

you expect from a serious editing tool these

days: template expansion, symbol browsing,

syntax coloring, version control integration,

automatic code formatting, and pointless

emulation of VI. It’s difficult to break com-

pletely free of the IDE, so Codewright pro-

vides project and edit window auto-synch-

ing. Recently some useful new things have

been added, such as an embedded spread-

sheet-style XML viewer and partical

Unicode support. There are also many tiny

features that probably took five minutes to

implement but are indispensable. Select a

section of code and “filter” it through an

external stdin/out-aware command-line app

(such as uniq or sort). Use the “edit search

path” facility to open files by pattern match

from anywhere you please without being

forced to browse there through a File>Open

dialog or a messy project window. Have all

your files automatically saved when you

task-switch away. Automatically save a

backup every 10 keystrokes or 10 seconds.

Check spelling in your comments. Upload

via FTP to your web site.

Codewright is all about patterns in text. If

you wanted to add support to it for a lan-

guage it doesn’t know about (perhaps one

you’ve written) then it’s a matter of config-

uring the generic lexer to recognize your

language’s keywords and telling it how to

parse comments and such. The symbol

browser and many other parts of the editor

can be customized using regular expressions.

Like other programmer tools, Codewright is

also extendable through script. Unlike most

programmer tools, you have a choice of

three languages: a Visual Basic clone, Perl,

and “API Macros” (a C-style scripting lan-

guage). Or you can do what I do and write

the big stuff in an extension DLL, and the

little stuff in script. Note that the documen-

tation is not very good, so refer to samples

often here. Codewright comes with much of

its own source code, which is

convenient for über-cus-

tomizing, hacking, or just

figuring out how things

work for writing your own

macros.

When I’m not editing

code, I’m rummaging

through it. I probably run a

global search every 10 min-

utes or so when I’m work-

ing (I can never remember

where anything is). Codewright supports

this compulsive habit through named

search lists on the multi-file search dialog.

You can configure patterns of files using a

wildcard with optional path, run searches

on them, and then save these lists for later.

You can also search and replace from this

dialog, even making it modeless if you

want. One useful feature is to preserve

case on replacement. Probably the single

nicest feature of all is that if the file is

read-only, Codewright can automatically

check the file out from version control,

make the changes, and save the file, log-

ging the results to the output window. All

of this is optionally prompted, of course.

The main problem I have with Code-

wright is a problem I have with all edi-

tors. There have been no revolutionary

advancements in the state of the art for

quite some time. Syntax coloring was a

leap forward in readability, as it can make

a misplaced end quote glaringly obvious.

But beyond that decade-old feature, I’ve

found few other new things that make the

basic tasks of writing, finding, and modi-

fying code any faster or easier. On the

plus side, the makers of Codewright are

very responsive and provide excellent

technical support.

Codewright is available for Windows

95/98/NT/2000 and is priced at $299.

XXXX | Starbase | Codewright 6.5 |
www.starbase.com

XXXXX
XXXX
XXX
=XX
X

excellent

very good

average

fair

don’t bother

P R O F I L E S
m a r k d e l o u r a | T A L K I N G T O P E O P L E W H O M A K E A D I F F E R E N C E

d Logg is something of a rarity in our industry; he’s an

articulate, opinionated developer who has been creating

games since the very first arcade hits. Ed has worked on

arcade classics, Atari VCS titles, and gorgeous real-time

3D console games. Game Developer caught up with

him on a cold Friday night to chat about his experiences.

GD. Is that really your title?

EL. I wanted to get some business cards made, and the secretary

asked me what I wanted for my title. I said, “I don’t care.” One of

the producers said, “Put ‘Super Duper Game Guy.’” The secretary

gave me a funny look and asked if I was sure. I said it was fine with

me. It makes for a good story.

GD. What are some of the games you’ve worked on?

EL. My first game at Atari was DIRT BIKE, but SUPER BREAKOUT

was doing better in field tests, so we just produced that. Next came

VIDEO PINBALL. I did a lot of the vector routines for the vector hard-

ware, which was useful for ASTEROIDS. After ASTEROIDS I did a game

called MALIBU, which was a vector-based driving game. That didn’t

make it into production, either. I did work on CENTIPEDE. After that

came MILLIPEDE in 1983. I worked on the original ROAD RUNNER,

the video disk version. Then GAUNTLET, and GAUNTLET 2 shortly

after that; XYBOTS, SPACE LORDS, STEEL TALONS. I did TETRIS for

Tengen on the original NES. Nintendo owes me big time for that

one. More recently, GRETZKY HOCKEY, SAN FRANCISCO RUSH, RUSH

2, and RUSH 2049 for Nintendo 64, and RUSH 2049 for Dreamcast.

GD. How is working with Nintendo and Sega in general?

EL. Sega is very good. They have guidelines, and if they’re

wrong, you can convince them to let you do it your way.

Nintendo says, “We have guidelines, and these are the guide-

lines.” You know, these are the rules of God. Thou shalt not

change them. That is why we don’t have saved ghost races

on the N64 version of RUSH 2049.

GD. Where did your get the ideas for ASTEROIDS and CEN-

TIPEDE?

EL. In the case of ASTEROIDS, breaking the rocks apart came

from Lyle Rains. He had a game, I think it was called

COSMO, and people kept shooting at the rocks in the

game, trying to break them up. He decided, why not

put in smaller ones so people could shoot and

destroy them? I said fine, let’s break the big

rocks into smaller pieces, to give it some

strategy. Then people might not want

to just spray bullets around and hit

all the big rocks at once. But then

we needed something to chase

you so that you wouldn’t just

sit there, so we put in the

flying saucer. I also decid-

ed to put it all on a vec-

tor display, since they used 1024×768 instead of the raster display’s

320×240. So out of one meeting with Lyle we came out with vector

graphics, breaking rocks into smaller pieces, and a saucer.

CENTIPEDE came from a game called BUG SHOOTER. I don’t

remember how the centipede character came into it, but I wanted

an object that broke into two every time you shot it (like ASTER-

OIDS). Originally there was a fixed pattern for the mushrooms, and

they were nondestructible. Dave Van Elderen, my boss, suggested

that you should be able to shoot the mushrooms. I said to myself,

if I can shoot the mushrooms I need something that adds mush-

rooms. So if you shoot the centipede, it leaves a mushroom. Well,

now I need something to get rid of mushrooms at the bottom.

O.K., the spider will get rid of them, and the spider is the guy that

keeps you moving so you don’t just sit there. You see the ASTER-

OIDS model — the spider is my saucer, the centipede segments are

the rocks.

GD. How big were your teams on CENTIPEDE and ASTEROIDS?

EL. ASTEROIDS was myself, the technician who kept my hardware

running, and the engineer that designed the hardware. On CENTI-

PEDE, Donna Bailey and I did the programming, and there was also

a technician and engineer. The graphics I did myself.

GD. Was it more fun to work on games with smaller teams?

EL. Product development goes through several phases. You have

maybe three months of euphoria until the next stage, which I call

the grind-it-out stage. The third stage is the panic stage,

“Oh my God, only a couple months left.” And

finally you hit the worry stage when you’re

finished and you hope it sells well. Nowa-

days you get going, it looks like it’s going to

be fun, and then you have 12 months or

more of boredom followed by months of

80-plus-hour weeks.

GD. Why do older games seem more cre-

ative than recent titles?

EL. It was a lot easier when a project took

three months, and if it died, so what? You

could take four shots a year, with fewer peo-

ple. Now, in coin-op, if it isn’t a shooter,

driver, fighter, or sports game, forget it.

Consumer titles these days cost so

much to develop, and everyone

expects movies, everyone expects

FMV. Now there are links with

films, and more licensing of char-

acters. It’s try anything to get some

hook into the consumer market.

It’s no wonder more time is spent

on things other than gameplay. q

a p r i l 2 0 0 1 | g a m e d e v e l o p e r18

Ed Logg — Super Duper
Game Guy

ED LOGG. Game industry pioneer.

G ame programmers like to

think of themselves as a

rebellious lot. I like to

think that we put a little

of our own alter egos into

the programs we write (assisted of course

by talented artists who make the charac-

ters come to life). Although we program-

mers are not plundering and pillaging, the

characters in our games probably are.

In last month’s column (“Graphics

Programming and the Tower of Babel,”

March 2001), I dug into the topic of ver-

tex shaders. These small but powerful

programs give a programmer direct con-

trol over the transformation pipeline of a

3D vertex. Along with that power comes a

bit of confusion and uncertainty. What

level of support for these features will

individual graphics cards actually have?

Will software fallbacks exist for situations

that the hardware is not capable of han-

dling? How does art production deal with

these variables? As I am writing this, I do

not even have a graphics card capable of

executing these vertex shaders in the hard-

ware. Fortunately, the software implemen-

tation of DirectX 8 allows developers to

experiment with the concepts and try vari-

ous techniques even before the hardware

is available. That way, when the hardware

arrives and management wants to see the

game with the new graphics features, the

programming staff won’t be forced to

walk the plank.

Yo Ho Ho and a Bunch
of Bones

W hen I left off last time, I had imple-

mented the basic cartoon-cel-style

painting with a vertex shader using

DirectX 8. This simple program took the

vertex position and transformed it into the

position to be rendered. The vertex shader

also transformed the vertex normal and

calculated the dot product of the normal

and the light vector to determine the shade

to select from my 1D shade texture. You

can refer to the final vertex shader in last

month’s column.

This shader was sufficient to render

static objects with a flat-color shading

style. Since there are many times that this

may be exactly what I need, I will certain-

ly keep this shader around. That’s one of

the good things about using programma-

ble vertex shaders. Developers can create

a variety of useful effects and keep them

in a library for use when needed. Of

course, the downside to this is the need to

create a bunch of shaders for the various

effects needed in a typical game produc-

tion. Hopefully, graphics card manufactur-

ers, Microsoft, and individual developers

will help with this problem by continuing

to share code and ideas.

The goal when I began this task of play-

ing with DirectX 8 was to get my character

animation system up and running with the

new hardware features. The simple vertex

shader from last month’s column is not up

to the task of working with animated char-

acters. It is much too simple for anything

that complicated. To get any serious anima-

tion done, the vertex shader is going to

need to get beefed up a bit.

DirectX 8 has quite a few options when

it comes to character animation. Along

with support for morphing between multi-

ple vertex streams, the API specifies several

methods for matrix deformation of ver-

tices. This is quite a change from the past,

when everything had to be done in the

application program. However, it means I

j e f f l a n d e r G R A P H I C C O N T E N T

J E F F L A N D E R | When not hoisting the mainsail and embarking on

exciting adventures around the world, Jeff can be found manning the

bilge pump at Darwin 3D. Send mail to the scurvy wretch at

jeffl@darwin3d.com.

A Heaping Pile of
Pirate Booty

A Heaping Pile of
Pirate Booty

22 a p r i l 2 0 0 1 | g a m e d e v e l o p e r

need to make some choices.

I am going to have to assume at this point

that you are at least somewhat familiar with

animation by matrix deformation — I know

I’ve talked about it a few times in this col-

umn. The technique, often called skinning or

bone-based animation, uses a series of trans-

formation matrices, each possibly contribut-

ing to the final position of a vertex. The

matrices are often used for character anima-

tion by arranging them in a skeleton hierar-

chy with each matrix representing a bone in

the character’s body. If this technique is not

familiar to you, I suggest you take a look

back at my article “Over My Dead,

Polygonal Body!” (Graphic Content,

October 1999) for a quick overview of the

mathematics of the technique.

DirectX 8 specifies several fixed-func-

tion pathways for matrix deformation of

vertices; by this I mean methods that do

not require the use of programmable ver-

tex shaders. One method is to allow sever-

al matrices to be specified as influencing

the vertices of a triangle. For each vertex,

a weight value is submitted for each

matrix that influences it. These weights

determine the amount of influence the

corresponding matrix has on the final

transformed position of the vertex. The

number of matrices that can be specified

for each vertex is limited by the hardware

implementation and can be determined by

querying the hardware. Since a small

number of matrices are specified per ver-

tex, it is most likely necessary to divide up

the model into groups of triangles that

share matrix sets. In a model with a large

number of matrices in the skeleton, this

could mean breaking up the model into a

bunch of pieces.

A second method introduced with

DirectX 8 is the use of indexed matrix

deformation, called “indexed vertex blend-

ing” in Direct3D-speak. In this method, a

larger number of matrices are specified in a

table. Each vertex is still influenced by a

small number of matrices, with the maxi-

mum number specified by the hardware.

However, in this case the matrices used are

selected from the larger table or palette of

matrices. This is confusing, so let me use an

example. The DirectX 8 software imple-

mentation of the fixed-function pipeline

allows for up to 256 matrices to be speci-

fied for use in deformation. Each vertex

can be influenced by up to four of these

matrices as specified by an index value in

the vertex structure. To make this work,

each vertex has a structure similar to:

struct sample_vertex

{

// Position XYZW

float pos[4];

// Amount of influence each matrix has

// w4 = 1 - (w1+w2+w3)

float weight[3];

// Index to matrices [0-255] influencing

// this vertex

byte index[4];

float normal[3];

};

This is a pretty flexible system. The

palette of 256 matrices is probably

a p r i l 2 0 0 1 | g a m e d e v e l o p e r24

G R A P H I C C O N T E N T

enough for most character

applications. I don’t really find

that the limit on the number of

matrices that can

influence a vertex

is very restrictive. I

have a hard time creating cases

where a single vertex needs to

blend with more than four matri-

ces. Of course, one of the big

problems with the entire DirectX 8

approach is that there is no guaran-

tee that an individual graphics

card will support a 256-matrix

palette in hardware. To deter-

mine the true number of matrices support-

ed, the program needs to query the hard-

ware and check the MaxVertex-

BlendMatrix setting. If the system does

support all 256 matrices, this is a pretty

good setup for animation.

However, when you choose to use the

fixed-function pipeline for transformation

of vertices, you lose all the benefits of

using vertex shaders. For example, I

couldn’t do my fancy cartoon-ink

vertex shader along with the fixed-

function vertex pipeline. In order to

use both techniques together, I will

need to duplicate the

functionality of the

indexed vertex blending in

my own vertex shader.

Be Your Own Boss

N ow that I have decided to

implement the indexed vertex

blending system with a programma-

ble vertex shader, the fun can really

start. I first need to determine the capabili-

ties of the hardware I am running on.

Determining the amount of space for matrix

information is the first crucial step. This

will determine how many matrices I can

have in my blend table. There are two ways

to go about getting data to a vertex shader.

Data can be passed in through the vertex

structure or put into the constant registers.

It does not make any sense to me to pass

the matrix data in the vertex structure, since

the same matrix may be used for multiple

vertices. Therefore, the matrix data must be

put in the constant register space. The other

thing I will need in order to handle indexed

vertex blending is support for indirect

accessing of this constant register space.

DirectX 8 provides for this capability in the

form of the address register, A. In version 1

of the vertex shader spec, there was no sup-

port for this address register. In version 1.1,

there is one address register, labeled A0.x.

Since I need this support, I will have to

check the VertexShaderVersion and make

sure it is at least 1.1. If the hardware does-

n’t have this support, I can use the software

vertex pipeline.

As I said last month, DirectX 8 hardware

that supports vertex shaders must have at

least 96 constant registers. It can have more

than 96, but that is the minimum support.

The number of constant registers supported

is determined by checking the MaxVertex-

ShaderConst capability setting.

Let me work with the base case of 96

w w w . g d m a g . c o m 25

Low-polygon pirate.

registers and a single address register. This

setup should be acceptable for my charac-

ter animation system. The way I trans-

formed a vertex and normal using the ver-

tex shader last month was by placing the

four rows of the transformation matrix

into four constant registers. I used four

more constant registers to store the four

rows of the inverse transpose of this

matrix for use in transforming the vertex

normal. That is a total of eight registers

per matrix, giving me a theorerical maxi-

mum of 12 matrices in the matrix blend

table (12 × 8 = 96). That doesn’t include

the register I will need for the lighting vec-

tor or anything else, so it really doesn’t

give me much power.

I could dump support for vertex light-

ing, since that would double the available

space, but that really isn’t a good option.

When transforming the normal, I really

only used the first three rows, so I can save

one register per matrix that way. But in

order to really free up space, I need to do

something drastic.

Trash the Transpose

I never really have explained why I need

the inverse-transpose matrix for light-

ing. The projection-transformation matrix

that transforms the vertices into projec-

tion-space coordinates ready to be clipped

and sent to the screen is probably not

orthogonal. That means it usually consists

of rotations, translations, and a perspec-

tive scaling function. To rotate a normal

into the correct space for lighting, the nor-

mal needs to be transformed by the

inverse transpose of the projection-trans-

formation matrix.

For my character animations, I animate

most of the bones by simply rotating the

bones. Since I am not planning on having

bones dynamically scale, the bone matri-

ces contain only rotations and transla-

tions. For a simple rotation matrix, the

inverse of the matrix is equal to the trans-

pose. That is:

I can use this fact to reduce drastically

the number of constant registers needed

for indexed vertex blending. I can

calculate the matrices that trans-

form the vertices from the rest

position to world space in the

deformed pose. This is the

matrix that is stored in four con-

stant registers for each bone.

To take this

deformed world-

space pose and proj-

ect it into projection

space, I will need a final simple

projection matrix and its inverse

transpose. For the inverse-transpose

matrix, I only need to store off the

first three rows of the matrix in

three constants.

What does that do for the poten-

tial capability? I have one register

for the light vector, and seven for

the projection matrix and its inverse

transpose. That leaves 88

registers for the bones. At

three registers per bone

matrix, I can deform from a

palette of 29 bones with one register left

over. Not too bad.

I can now set up the vertex structure

for this system. I need the vertex position,

normal, UV coordinates (used for the

shading as well as texturing), vertex

weights, and matrix indices. This is pretty

much the same as the fixed-function pipe-

line I described above.

struct sample_vertex

{

// V0.xyzw = Position

float pos[4];

// V1.xyz = Amount of influence each

// matrix has

// w4 = 1 - (w1+w2+w3)

float weight[3];

// V2.xyzw = Index to 4 registers

// where each matrix is stored

byte index[4];

// V3.xyz

float normal[3];

// V4.x = Shade texture coordinate

float u0;

// V5.xy = Mapping coordinates

float u1, v1;

};

Since I am rolling my own deformation

system, I am not really limited to blending

only four matrices per vertex. I could han-

dle as many as I want as long as I

don’t run out of instruction space. But

for this application, four weights will

do just fine.

Just like the fixed-function pipeline,

I am going to calculate weight #4

instead of passing it into the shader.

This is a classic developer trade-off.

Passing it in the vertex structure

will mean the

vertex structure

size is one float

larger. More data will need to be

stored and passed over the bus.

By calculating the value for weight

#4, I will save a bunch of vertex data

space. But, as I will describe in a

minute, I need to sacrifice an instruc-

tion in the shader as well as one con-

stant slot. I don’t really know which

way is better. It probably will depend

on the application, so you

should try doing both and see

how it works out.

The bone deformation

matrices need to be laid out such that I

can access them easily in the vertex shad-

er. Each matrix takes three slots, so the

logical layout is:

Constant n = Matrix1 Row1

Constant n + 1 = Matrix1 Row2

Constant n + 2 = Matrix1 Row3

Constant n + 3 = Matrix2 Row1

Constant n + 4 = Matrix2 Row2

Constant n + 5 = Matrix2 Row3

Constant n + 6 = Matrix3 Row1

This is done for all 29 matrices. You

will notice that since each matrix occurs

every three registers, I will need to set the

matrix indices in the vertex structure

accordingly. For example, if a vertex is

influenced by matrix #20, I will store the

value 20 × 3, or 60, as the index for that

matrix. I now have all my data laid out

and I am ready to write the vertex shader.

Cast off the Mooring
Lines and Set Sail

F irst I need to declare the shader ver-

sion number:

; Declare the shader version number

vs.1.1

M M

M M

T

T

−

−

=

=

1

1

therefore

()

a p r i l 2 0 0 1 | g a m e d e v e l o p e r28

G R A P H I C C O N T E N T

Skeleton for the pirate with
29 bones.

I want to deal with the first bone matrix

immediately. I will start by getting the index

offset and putting it in the address register.

; get the first matrix index

mov a0.x, v2.x

I can then transform the vertex position by

the first bone matrix using the four-com-

ponent dot-product operator. This trans-

formed position is multiplied by the weight

and stored.

; multiply by matrix 1

dp4 r0.x, v0, c[a0.x + 0]

dp4 r0.y, v0, c[a0.x + 1]

dp4 r0.z, v0, c[a0.x + 2]

; factor weight and store in reg 0

mul r0.xyz, v1.x, r0

I now need to do the same thing for the

vertex normal. Notice how the normal

only uses the first three columns of the

matrix and thus the dp3 instruction.

; multiply normal by matrix 1

dp3 r2.x, v3, c[a0.x + 0]

dp3 r2.y, v3, c[a0.x + 1]

dp3 r2.z, v3, c[a0.x + 2]

; factor weight and store

mul r2.xyz, v1.x, r2

For each subsequent bone, the result of

the transformation operation is multiplied

by the weight and added to the total

result using a single mad (multiply and

add) instruction. For example, to handle

the position with the second bone matrix:

; get the second matrix index

mov a0.x, v2.y

; multiply by matrix 2

dp4 r1.x, v0, c[a0.x + 0]

dp4 r1.y, v0, c[a0.x + 1]

dp4 r1.z, v0, c[a0.x + 2]

; multiply weight and accumulate result

mad r0.xyz, v1.y, r1, r0

This process continues for the rest of

the second and third bone matrices. For

the fourth matrix, the vertex weight

needs to be calculated. To do this, I will

utilize a method that is used in several of

the Microsoft and Nvidia Direct3D sam-

ple applications. I can store the values

(x = 1, y = -1) in my remaining empty

constant register. A constant register can

be fully swizzled, that means the contents

of any component of the register can be

swapped to the other. Using this fact, I

can calculate the weight formula with

two shader instructions.

; store off the weights temporarily in r4

mov r4, v1

; calculate w4 = (1 - (w1 + w2 + w3))

dp4 r4.w, r4, c[8].yyyx

See how that works? Matrix #4 is then

blended in the same way as the others.

The last thing I need to do is transform

the final position by the projection matrix

and the normal by the inverse-transpose

projection. The vertex is then shaded just

like last month, and I am done. I now

have a shaded vertex that has been trans-

formed by a weighted blend of four matri-

ces from a palette of 29. The grand total

of instructions for the shader is 49, out of

a possible total of 128 instructions.

Potential Leaks in the
Boat

T he system works very well. But there

could still be a few problems. On the

basic DirectX 8 hardware with 96 con-

stant registers, I can only have 29 bones

in the palette. This is far fewer than the

256 matrices allowed in the fixed-func-

tion vertex pathway. What is the reason-

ing for this? It sure seems like the number

96 came out of nowhere. It probably is

the number of registers that the first

hardware designed for the shader system

had. This same number appears in the

recently released OpenGL extension

NV_vertex_program by Nvidia. Some

hardware may support more registers. If

so, the system I describe will still work

pretty well, but you may have problems

storing the index values in a byte if you

support more than 84 or so bones.

When there is not support for the num-

ber of matrices needed for a model, the

easiest option is to break the object up

into subobjects where each subobject

needs fewer matrices. A good solution for

characters may be to have 29 matrices for

the body and 29 more for the head and

face. Then you only need to have two

draw calls per character. As an aid to

development, Matrox has developed a

tool that allows artists to break up an

object into subobjects automatically

based on bone and weight settings.

Another problem occurs when you start

thinking about using the subdivision meth-

ods in DirectX 8. There is support for auto-

matic subdivision of polygons to allow for

smoother curved surfaces and such. While

this works well for general polygonal

objects, it is not clear how this can work for

vertices that are deformed by matrix blend-

ing. How do you interpolate a series of

matrix weights or matrix indices across the

surface of a polygon? For now, I think you

will need to forget automatic subdivision if

you want to use indexed vertex blending.

You can still use software methods to tessel-

late the object before submitting it. But then

you lose the benefit of passing small geome-

try over the computer bus.

A further potential problem is that the

next thing in graphics may be the use of dis-

placement maps. How will these maps inte-

grate with the matrix blending techniques?

All of this is a little unclear right now. How-

ever, with that all said, there clearly will be

strong support from hardware makers for

DirectX 8–capable hardware. These pro-

grammable vertex shaders will most likely

also be useful for the Xbox console system.

Since the technique I described in this col-

umn will clearly allow detailed characters to

be animated directly using the transforma-

tion and lighting hardware on the card, I

think it is well worth it to add support for

shaders like this to your next game project.

You can get the final vertex shader pro-

gram as well as a sample application off

Game Developer’s web site at

www.gdmag.com. I would like to thank

Juan Guardado of Matrox and Cass

Everitt of Nvidia for discussing the issues

with me. q

a p r i l 2 0 0 1 | g a m e d e v e l o p e r30

G R A P H I C C O N T E N T

FOR MORE INFORMATION

B DirectX 8.0 Development Kit,

Documentation, and Sample Code

www.microsoft.com/directx

B Nvidia DirectX 8.0 Sample Code and

Developer Information

www.nvidia.com

B Matrox Developer Relations

www.matrox.com

T his month’s column will be a continuation of the tuto-

rial on terraforming we started in last month’s col-

umn (“Terraforming, Part 1,” March 2001). We are

using both Bryce and Photoshop to create realistic

terrain elements. Based upon the desired output, the

mesh can be modified at export for optimal usage. By utilizing the

grayscale terrain editor in Bryce and Photoshop, we can have a

high degree of control in creating our terrain.

Creating a Tiled Sequence

A number of the more recent real-time 3D games are using

actual mesh geometry as tile pieces. In previous years, these

were simply rendered bitmaps that ended up being tiled in order

to create the final game terrain. More recent games are starting

to push toward the use of 3D modeled terrain elements in real-

time 3D engines. This shift toward a 3D environment keeps the

terrain artist on the cutting edge of the technological knife. With

the power that is available on systems now, it becomes more real-

istic to consider fully modeled terrains. Utilizing Bryce 4 as the

basic terrain maker, we will explore how to extract these ele-

ments in a usable way that might be the first step in creating

some terrain nodes.

When you first fire up the terrain editor in Bryce and hit the frac-

tal button, you’ll see the standard mountain displacement map

replaced with a flat terrain piece. While this looks nice, you may find

the need to have greater resolution in the image or a different scale.

Changing the Grid (located in the middle of the interface) to a high-

er terrain resolution doesn’t have an effect on the scale of the dis-

placement map. What you need is the ability to take a given terrain

piece and create a number of matched sets that fit together seamless-

ly with one another. While this seems to be a tall order, there are

some nice features in Bryce that are designed with just this in mind.

The first step is to determine how many mesh nodes you want

to create. For the sake of argument, let’s say you decided upon a

3×3 grid (nine individual pieces) that will make up your base

ground terrain. With that in mind, it’s easiest to set up the first

grid piece and then repeat it, changing the fractal pattern as you

m a r k p e a s l e y A R T I S T ’ S V I E W

M A R K P E A S L E Y | Mark hangs his hel-

met at Gas Powered Games, where he’s the

art director on a real-time 3D RPG called

DUNGEON SIEGE. Drop him a line at

mp@pixelman.com or visit his web site at

www.pixelman.com.

Terraforming, Part 2

32 a p r i l 2 0 0 1 | g a m e d e v e l o p e r

do so. This makes it easier to see errors, and to see the progress

as you go.

A seamless texture in Bryce is exactly the same as a tiled 2D

image with the addition of height information. The first step is

to create a standard mesh in Bryce by clicking on the small

mountain icon in the Create menu (Create>Terrain). This will

result in a mesh being added to your scene with the default

128×128 grayscale displacement map assigned to it. The terrain

will automatically be selected when it enters, and will have a set

of small icons floating to the right of its bounding box. Select

the “E” icon (Edit Object) and you will find yourself in the

grayscale Terrain Editor.

Now it’s time to do some experimenting with the fractal types.

Go to the Fractal pull-down and select a fractal pattern. After

selecting one, you won’t see any change until you click on the

Fractal button. Make sure you click on it several times, as the set-

tings are randomized with each click, which can result in fairly dif-

ferent looks. The trick here is that it’s a one-shot deal. There’s no

undo function to go back to the texture before your current one.

Even though Control-Z will undo the grayscale image you see, it

doesn’t undo the fractal pattern generated in memory by Bryce, so

you won’t be able to duplicate it. Don’t worry too much about this,

since once you settle on a fractal type, it’s fairly easy to find an

acceptable-looking one with a few more clicks. Spend some time

testing out the variations, as they are quite striking.

For a unique-looking world, I decided to go with the Lava Frac-

tal, and eventually found a pattern I liked (see Figure 1). Once

you’ve decided on an image, go to the Fractal pull-down menu

again (you’ll do this three times) and remove the check marks for

Random Extent, Random Position, and Random Character. These

lock the pattern down so that when you click on the button again,

you’ll get the exact same result time and again.

What are the functions of these selections you just turned off?

Well, Random Extent is essentially the scale or zoom factor you

are seeing for the terrain piece. Random Position is just that, the

position of the fractal pattern. And Random Character deals more

with the granularity or effects of the pattern, among other things.

Now that all three are off, go to the Grid button and select a

smaller resolution size from the selections. For this tutorial, I chose

64×64. Click on the Fractal button again, and it will rerender the

same pattern but at a lower resolution. We could have just as easily

gone up in resolution, which might be desired if you are targeting

output that won’t be put into a real-time environment. Since our tar-

get output will be grid pieces that will need to be optimized anyhow,

it’s overkill to crank up the resolution. A 64×64 grid terrain piece is

still 1,152 polygons in size, so going to a higher displacement map

won’t accomplish much besides slowing your process down.

Now that the single grid is set, it’s time to start the duplication

process. What we will be doing is duplicating the mesh pieces,

shifting them into place, and reapplying the fractal effect in a tiled

method to create a seamless match.

The first step is to go into the main Bryce application and set

the viewport to top-down by sliding the Control>View icon to the

top-down image. Once there, you will see your terrain piece, the

camera, and an additional ground plane that defaults into the

scene. Select the ground plane and delete it. It will be the larger of

the two grids in the scene.

The next step is to set the material on your terrain piece to a

flat gray instead of the texture Bryce uses automatically. This will

dramatically speed up the renders by simplifying the texture Bryce

is using. Click on your terrain mesh and select the small “M” icon

(Materials Lab) which will put you in the Texture Editor. Now,

select the small arrow to the right of the preview window by

clicking on it once. This will bring up the Materials presets win-

dow. From here, select Simple & Fast, then choose a color. Flat

gray works well for this tutorial. Click on the O.K. button and

you will end up back at the main Bryce interface.

The last default we want to set is the sky color. Since it will

try to render a default cloud set with haze and a bunch of other

things that we don’t need for our tutorial, we need to turn the

sky off. To do this, go to the far left icon of the sky settings. It is

located directly below the word Create. Click on the down

arrow, and select Atmosphere Off.

Now we need to get our terrain in the right location for tiling.

Press the spacebar on your keyboard and hold it down. This will

turn the cursor into a hand, which will let you place the grid in

the bottom-left part of the view. Alternatively, you can go into the

document setup area and define a larger resolution for the screen.

Since our target output will be reduced in resolution quite a

bit, it’s a good idea to increase the height for the grid so that our

mesh is more distinct. This is sort of a relative thing, open to

artist choice. Go to the mesh and click on the “A” icon (Attri-

butes). In the bottom of the window, select the Size Y box, and

double the value there.

We will need to duplicate the terrain grid, starting with the

bottom left of the screen. Do this by selecting the shortcut

Control-D. Bryce will duplicate the terrain and place it in exactly

the same location as the original. Without clicking anywhere else,

press the Shift key and the up arrow eight times. This will put it

close to the next grid position. A quick render here will show

two identical grids.

The next step is to tile the displacement map being applied to

the second mesh terrain piece. So select the newly created mesh,

a p r i l 2 0 0 1 | g a m e d e v e l o p e r34

A R T I S T ’ S V I E W

FIGURE 1. An example of a lava fractal terrain pattern.

a p r i l 2 0 0 1 | g a m e d e v e l o p e r36

A R T I S T ’ S V I E W

and once again, click on the Edit button to go into the grayscale

editor. Go to the Fractal pull-down menu and go down to Tile

North and select it. This will enable it with a check mark. Now,

click once on the Fractal button. The pattern will change and be

applied to the second mesh. Click on the O.K. button and verify

your new tiled piece by doing a render. You will see that the pat-

tern is perfectly matched with the next piece.

Repeat this process again by selecting the newly altered terrain

mesh, duplicating it, and shifting it up eight spaces. Tile the frac-

tal pattern again by repeating the process of going into the editor

and clicking on the Fractal button. Your previous setting of Tile

North will be applied to this new piece, and again, you will have

a perfectly matched piece. Render once more to verify that every-

thing is progressing as expected.

Next, duplicate the mesh, and holding down the Shift key, press

the right arrow eight times to move the new piece to the right. In

the grayscale editor, go to the Fractal pull-down menu, and select

Tile East, which will change the direction you are tiling. Now click

the Fractal button, and you will get a perfect match to the right. (If

you get out of sequence by tiling the wrong direction, you will need

to start over. The process is sort of a one-way street.) Repeat these

steps going down the column, but be sure to select Tile South. Con-

tinue this process until your grid is complete (see Figure 2).

Altering the Displacement Maps with
Photoshop

T he next thing we want to do is give a few of these terrain

grids some customization using Photoshop. As long as you

keep everything on a grid, and are careful, you can alter the

images without too much concern.

The first step is to set up a Photoshop file to the correct size.

Since we have a 3×3 grid, each being 64 pixels across, we need to

create a file that is 192×192 in Photoshop. Once this is done, set

your grid to correspond with the mesh sizes. Go to Preferences>

Guides & Grid. Set the grid line to 64 pixels with the subdivision

set to 1. Now, when we copy and paste the files into Photoshop,

they’ll snap to the grid you’ve established.

Using the method described in last month’s column, open up both

applications and use the cut-and-paste method to transfer each dis-

placement map over to the Photoshop file in its correct place (see

Figure 3). Once all nine pieces have been transferred over, collapse

the entire stack, and you will end up with the displacement maps

that were used to create each Bryce terrain mesh.

The next step is to create a unique terrain feature. In this case, I

decided on an impact crater. The easiest way to do this is to start

with a new mountain mesh. Next, go into the grayscale Terrain

Editor and click on the small set of dots in the bottom-left corner of

the Elevation menu. This toggles some of the Elevation effects on

and off. Do this until you see the Blob Maker effect, and click once

on it. This will create a large, evenly shaped mound. Now go to the

far right of the editor. There you will find a gradient bar beside the

terrain image with a bracket by it. The bracket is movable and

allows you to set the clipping height of the mesh. Select the bottom

part of the bracket and slide it up until you have clipped the lower

portion of the mountain off. It will display as a red area. Now, click

and hold the Raise/Lower button, and then slide it to the right. This

should turn the active area on the grayscale image black. Go back

to the gradient bar and slide it back down. You should now have a

hole cut into your terrain mesh. Apply some erosion to the image,

and you end up with a fairly believable crater that didn’t take too

long to make (see Figure 4).

Once you have your impact crater complete, copy the image into

the clipboard using the Control-C shortcut. Switch to Photoshop

and paste the grayscale image into your 3×3 grid. With a little

layer work, the crater can be added to the existing texture map

easily. The exact placement is up to you. Since the export will take

the new geometry into account, you need not concern yourself

FIGURE 2 (top). Follow-
ing a zigzag pattern
while tiling keeps the
terrain seamless.
FIGURE 3 (middle). The
3×3 grid of displacement
maps transferred over to
Photoshop. FIGURE 4
(bottom). The hole
applied to the terrain
mesh.

38

with the image crossing over a seam. Once you are done placing

the crater, collapse all the layers down so that you are dealing with

only one grayscale image.

Set the marquee selector in Photoshop to rectangle. Go into

the Options menu and select Fixed Size from the Style pull-down

and enter 64 for both the width and the height. The last step is

to make sure the mode for the Photoshop file is set to RGB

mode, not grayscale. For some reason, Bryce doesn’t like gray-

scale images in the clipboard and will react with an “invalid

clipboard format” error message.

Now, reverse the process you went through at the beginning of

this section to copy the Photoshop files back into the grayscale

displacements for each mesh in Bryce. Once you are done, render

the file to ensure that it all went according to plan (see Figure 6).

Exporting Your Meshes

N ow that you have your nine meshes ready for export, let’s take

a look at the export utility in Bryce 4. There are two ways to

access the exporter. First, after selecting the first mesh you created,

simply use the top tool pull-down interface and select File>Export

Object. The second way is to use the exporter from within the gray-

scale editor. Once you are in the editor, you can select the word

Export located directly below the grayscale image. Either way, you

end up with a menu that lets you choose the file format you need. In

this case, I’ll export in .3DS format for use in 3DS Max. When you

initially created the meshes, Bryce named each new terrain piece in

sequence, so you shouldn’t need to rename the output files.

Once you select the file format, you’ll end up in the Terrain

Export Lab. Within this menu, you have the capability to change

the mesh resolution before you export. In addition, you can

select the method that Bryce uses to alter the level of detail when

reducing the polygon count. The two types are Grid

Triangulation and Adaptive Triangulation. The Grid method

keeps your polygons on a consistent grid, which is what we will

want for our output. Adaptive Triangulation optimizes based

upon polygon angle and detail. Larger areas that are uniform and

low detail (a flat plain, for example) will reduce substantially,

while rugged areas with a lot of height variation will have more

detail. Though Adaptive is more efficient, it doesn’t maintain the

integrity of the grid edge from texture piece to texture piece.

Since we are interested in edges that are matched to one another,

we need to choose the method that doesn’t eliminate what could

end up being critical vertex points. The exporter automatically

defaults to Grid Triangulation, which is what we need.

The mesh originally created had a grid resolution of 64×64. In

Bryce, this equates to a terrain with a resolution of 1,152 poly-

gons. This is probably overkill for most real-time game applica-

tions, so we will want to reduce it down to a reasonable number.

The slider at the bottom of the Terrain Export Lab allows you to

increase or decrease the grid resolution interactively while watch-

ing the results in real time. To the right of the slider is a numerical

output of the polygon count. For this tutorial, I selected an output

of 200 polygons per grid. Select and export each mesh grid you

created with 200 polygons as your target size.

Importing the Mesh
Pieces into 3DS Max

N ow that all of the meshes are exported, open up your 3D pro-

gram of choice. In this case, I’ve used 3DS Max. To import

.3DS format files, you need to use the File>Import command and

select the first terrain. The importer will ask if you want to merge

the new item into the current scene or create a new one. Choose

Merge and also choose Convert Units so that the mesh comes in at

a reasonable size rather than tiny. You can easily scale the resultant

imports, but I find it easier to convert the units. One of the nice

things about this process is that the export from Bryce remembers

its offset so each imported file loads in at the correct spot in rela-

tion to the other grids. Continue to load each grid into Max until

all nine are in place.

With all nine grids in place, you can see the results of your work

(see Figure 7). While converting them down to 200 polygons per

grid means that you lost a lot of detail, you will find that you can

make up for it with smart texture mapping. Speaking of texture

mapping, you may have noticed all those settings in the exporter

that related to texture maps. While Bryce has the capability of

exporting the procedurally generated texture, it can be challenging

to re-create. There are better ways to get the texture out of Bryce

for use in other applications, but that’s for another column down

the road. Hopefully, this tutorial has given you some ways to add

Bryce to your war chest of software packages. q

a p r i l 2 0 0 1 | g a m e d e v e l o p e r

A R T I S T ’ S V I E W

FIGURE 6 (above).
A crater merged
into displacement
maps and ren-
dered in Bryce.
FIGURE 7 (left).
Grid pieces
reduced in poly-
gon count and
imported into
3DS Max.

a p r i l 2 0 0 1 | g a m e d e v e l o p e r40

N E I L Y O U N G , R A L P H G U G G E N H E I M , A N D R I C H M O O R EN E I L Y O U N G , R A L P H G U G G E N H E I M , A N D R I C H M O O R E

N E I L Y O U N G | Neil is the creator of MAJESTIC, which started officially in May 1999, when he relocated to the Bay Area from Austin, Tex.
Before joining EA, Neil had been the general manager of Origin Systems. R A L P H G U G G E N H E I M | Ralph is one of the founding members
of Pixar and the producer of the movie Toy Story. Ralph is the executive producer for MAJESTIC. R I C H M O O R E | Rich has a deep under-
standing of games from his many years at Atari Coin-Op and Capcom and also of the Internet from his time as a technical leader at Media-
Shower. Rich is the director of technology for MAJESTIC.

N E I L Y O U N G | Neil is the creator of MAJESTIC, which started officially in May 1999, when he relocated to the Bay Area from Austin, Tex.
Before joining EA, Neil had been the general manager of Origin Systems. R A L P H G U G G E N H E I M | Ralph is one of the founding members
of Pixar and the producer of the movie Toy Story. Ralph is the executive producer for MAJESTIC. R I C H M O O R E | Rich has a deep under-
standing of games from his many years at Atari Coin-Op and Capcom and also of the Internet from his time as a technical leader at Media-
Shower. Rich is the director of technology for MAJESTIC.

w w w . g d m a g . c o m 41

hat if you could be at the very center of your own suspense

thriller? What if the characters called you on the phone, left

clues on your fax machine, and infiltrated your life? What if

you couldn’t discern between fact and fiction?

This is MAJESTIC, an episodic online entertainment experience. It’s an

unfolding mystery adventure that uses the Internet as the canvas for its

story, weaving the player through both real and fictional experiences in real

time. Highly personalized and naturally paced, MAJESTIC tailors the experi-

ence specifically for each participant in order to immerse the player at the

very heart of a developing conspiracy. MAJESTIC players assume the leading

role at the center of their own thriller, interacting with other characters,

uncovering clues, searching for answers, collecting and using digital objects,

and resolving challenges. In many ways MAJESTIC is a classic adventure

game, albeit with a dramatically different set of locks and keys.

The Big Idea

W hen we founded Synthetic (the Electronic Arts studio that is devel-

oping MAJESTIC), we set out to build much more than MAJESTIC —

we wanted to create a new type of entertainment, something that was built

for the generation that had grown up with interactivity, but that had per-

haps grown bored with just developing their dexterity. We sought to create

something that was packaged in manageable moments and that, in its ulti-

mate realization, would answer EA’s ad of 1983: “Can a Computer Make

You Cry?”

Browsing the Internet has become the second most popular entertain-

ment activity in the country, rivaling television for the attention of Amer-

ica. We wanted to produce something worthy of that attention, something

that could compete with television in its storytelling but would not com-

promise interactivity in the process, and we wanted to create entertainment

designed from the ground up specifically for this medium.

It became affectionately known as “The New, New, New Thing”:

• New because it was for a new medium with new users.

• New because no game had been episodic before.

• New because it was being distributed by EA.com, a new company.

MAJESTIC started officially in May 1999, when Neil relocated to the

Bay Area from Austin, Tex., where he had been the general manager of

Origin Systems. Neil had a vision for online entertainment, and EA

agreed to provide the seed money and organizational autonomy that was

necessary in order to pursue the project. Like the project, the team had

to be different than existing teams at EA. It truly had to understand

game-making, but it also needed to understand storytelling, sharing disci-

ABOVE. Rooted in the conspiracy theory MAJESTIC sends players to various web links
for clues and information. Pictured here are images from just a few of those web sites.

plines with the TV and film business, and how to leverage the

best Internet technologies.

The core group that we ultimately assembled had a varied back-

ground: Rich Moore had a deep understanding of games from his

many years in Atari’s U.S. Coin-Op Division and at Capcom, and

of the Internet from his time at MediaShower; Gail Oda, our pro-

duction supervisor, was a seasoned veteran of visual effects produc-

tion, having most recently worked on Mission: Impossible 2; John

Danza, who became the creative director, was a feature-film screen-

writer with experience directing commercials and music videos;

Ralph Guggenheim was one of the founding members of Pixar and

producer of the movie Toy Story.

As the team came into place, and with EA’s continued support

for our vision for online entertainment, MAJESTIC’s creative shape

took form. While unique in many ways, there are three key features

which differentiate MAJESTIC from traditional titles.

It comes to you. The relationship that you have with a game

today is like any other entertainment in that you set aside time in

your day to interact with it. But unlike other forms of entertain-

ment, it frequently occupies much more of your time than you

planned. Ultimately, this is a barrier for games to gain mass-market

appeal to adults. As you age, the demands on your time shift: you

get a job, find a partner, and perhaps even have children. Finding

six hours a night to play DIABLO 2 becomes difficult, if not impos-

sible. In MAJESTIC, we wanted to fundamentally change the rela-

tionship that players have with the game. Instead of requiring them

to interact for multiple hours at a time to be successful, we wanted

to package the experience in much smaller segments.

To achieve this, we leveraged people’s relationship with the

Internet. The entertainment seeks you out, and at the very least

will remind you that you need to play, or better still engage you

at that very moment. You could be sitting at your desk and sud-

denly receive an instant message from a character, you could be

driving home when your cell phone rings with a frantic call from

a woman who needs your help, or you could be checking your

mailbox at work only to find a fax of secret government docu-

ments between your copies of Game Developer, PC Gamer, and

CGW. By pushing the game toward the player, we’re fundamen-

tally changing the dynamic of the experience. This of course cre-

ates its own set of unique challenges.

It’s played in real time. If a character in MAJESTIC says they’ll get

back to you tomorrow, they will literally call you tomorrow. This

pace of gameplay is very different from most games, which operate

at an accelerated pace. What’s so powerful about this concept is

that once we’ve established that the game can connect with you

through devices such as instant messenging or the phone, anytime

an IM window pops up or the phone rings it could be from the

game. This adds to and builds the sense of anticipation that the user

feels, which for MAJESTIC has become a key creative element.

It’s episodic. There was not only an opportunity for us to use the

Internet to change the entertainment experience, but also an oppor-

tunity to change the development and distribution process radically.

By releasing the product episodically, we are able to deliver the ini-

tial release of the product to market more quickly and provide a

constantly evolving experience. When MAJESTIC goes live, we will

have the pilot and two full episodes completed. Moving forward,

our internal team will be continually developing future episodes, so

we’ll constantly be ahead of the players.

Creating the Technology

B uilding an episodic experience leads you to one conclusion

very quickly; you have to decouple technology from content.

Technology is the single biggest contributor to schedule unpre-

dictability, and predictability is vital if we want to develop new

episodes while users are still engaged in the earlier ones.

Thus, the concept of the platform — a single engine that we

develop multiple episodes on top of — was born. Whereas con-

tent will evolve monthly, the technology is able to evolve quarter-

ly, and always from a stable foundation. Infinitely and inexpen-

sively scalable, it will provide us with a base that we can progres-

sively expand and leverage over time.

MAJESTIC has unique technology requirements which need to

meet a number of key objectives:

• The Internet is our sole medium.

• Integrate a wide variety of communication methods.

• Support a player base exceeding one million users.

• Provide a robust, scalable, cost-effective platform supporting

episodic delivery of content and regular feature-set enhancements.

• Create toolsets to enable content creation within the episodic

schedule requirements.

Due to our requirements, our definition of what constitutes an

engine is broader than the image that the term conjures of a pure

technological base and toolset. Indeed our platform has these, but it

also includes the capability to leverage existing third-party tech-

nologies, and also includes new production processes and pipelines.

In order to achieve all of this, we have developed technology

which we call the Experience Server, and we’ve established a num-

ber of key relationships with technology providers. We’ve put a

special focus organizationally on the production process and

pipeline, commissioning a “Red Book” that forces us to detail our

process. We’ve hired people who are specifically responsible for

the management and deployment of assets against that pipeline, as

we’ve invented the myriad new production processes which will

allow us to build the product.

This platform is now at the heart of everything that we do.

These technologies, processes, and pipelines provide the key

building blocks that enable MAJESTIC and the class of product

that it represents.

a p r i l 2 0 0 1 | g a m e d e v e l o p e r44

M A J E S T I C

Via AOL Instant Messenger, players are engaged by MAJESTIC and given
hints and information to progress through the game.

Infrastructure Overview

A s mentioned earlier, we quickly determined

that if we were to achieve the objective of

predictable episodic delivery, we needed to

decouple technology from content. Our technical

team was responsible for creating the underlying

technological foundation that would deliver

assets consistent with the entertainment experi-

ence to players (see Figure 1).

MAJESTIC intends to support a player base in

excess of one million players and provide an

experience that delivers new episodes on a regu-

lar basis. Meeting both of these criteria requires an enterprise-class

technology platform utilizing a component-oriented software imple-

mentation. This fact strongly encouraged and rewarded utilizing

topography and server components similar to what EA.com uses for

their online service.

Somewhat independently, Synthetic and EA.com both came to

the conclusion that server-side Java operating on WebLogic appli-

cation servers would provide the proper environment for our soft-

ware development. We selected Netscape Enterprise Servers for

their strength in scalability and ease of Java integration, and Ora-

cle 8i for our database system due to its robustness and ability to

handle a scalable player base.

The Java language provides a rich set of core network classes and

methods and strongly encourages the reuse of software compo-

nents. The core classes of server-side Java have allowed us to proto-

type many of our features, iterate improvements, and provide a

working sample that defines a final, production-worthy implemen-

tation. Much of the development process behind MAJESTIC has been

driven by rapid prototype development, followed by a cycle of iter-

ation, testing, and enhancement. In parallel with this ongoing devel-

opment, a process of system design, documentation, and implemen-

tation was conducted for the final production version of the plat-

form. In essence, this met the needs of product demonstration dur-

ing development while providing bottom-up testing and validation

of the top-down system architecture design process.

The foundation to the MAJESTIC platform is a rich set of Enter-

prise JavaBeans that are referenced by Java Servlets and JavaServer

Pages. This approach encapsulates player-specific data access and

separates it from the presentation layer. The separation of the logic

for platform functionality, data encapsulation, and final presenta-

tion formatting provides us with a seamless means to optimize each

portion of our software pipeline. It also allows us to change each

portion independently as needed to improve efficiency and include

new features and enhancements.

The technical team took advantage of software design patterns in

class implementations. One example is the use of a Factory pattern

for the asset classes in MAJESTIC. Consider assets as items that are

added to a player’s inventory as the episode is played. An obvious

benefit to this approach is that we can easily extend the asset types

supported in our platform by adding additional assetTypes. Existing

methods and classes naturally extend to support new assetTypes

and maintain current functionality. Some of these assetTypes are

functions of our Experience Server and others are derived from

third-party technolo-

gies which are integrat-

ed into the platform.

One of our key

development principles

was to use technology

partnerships to provide

several of the delivery

systems for the prod-

uct. We were fortunate

that the business

arrangement between

EA.com and AOL provided us with a unique level of access to

AOL’s Instant Messaging network and its technology components.

Partnerships have also been established with Sentica, to support

voice and fax delivery; HotVoice, to provide an Internet-based Uni-

fied Messaging System (UMS) for our e-mail, v-mail, and e-fax;

EGain, whose eGain Assistant provides the base technology for the

conversational AI; Akamai, for hosting of streaming video and

audio; and AOL SpinAmp, for streaming audio clients.

By architecting with third-party partnerships in mind we creat-

ed an easily extendable platform which allows us to replace, add,

or remove asset delivery mechanisms over time for MAJESTIC or

future products.

Key Challenges

A s with all games, the technical development team faced a

number of key challenges. Principal on the list were: support-

ing rapid prototyping while implementing a production-worthy

platform, integrating a wide array of communication methods and

technologies, and supporting ongoing content development and

testing during development of the technology platform. We’ll dis-

cuss each of these in turn.

As mentioned in the previous section, we conducted parallel

development of our enterprise-class software components simulta-

neously with development of prototypes and early platform versions

which used less scalable architectures. As an example, early plat-

form versions combined the presentation logic and game logic. Any

change to the visual presentation, human interface, or game logic

would require making changes to this component. The segmenta-

tion of these software layers is illustrated in Figure 2.

The integration of third-party technologies required establishing

a p r i l 2 0 0 1 | g a m e d e v e l o p e r46

MAJESTIC
Experience

Server

MAJESTIC
Database

Assets
Episode
Scripts

Player
Status

Instant Messaging
E-mails
Inbound Phone
Outbound Phone
Web Pages
Game Objects
Outbound Fax

Internet

Players

Players

Players

Players

Players
Players

Presentation Layer (JSPs, HTML)

Game Logic Layer
(Server, JavaBeans)

Enterprise Layer
(EJB, JDBC, Database Connectivity)

M A J E S T I C

FIGURE 1 (top). MAJESTIC architecture diagram.
FIGURE 2 (bottom). Software layers for MAJESTIC.

clear functional requirements and integrating versions of these

products early in the development cycle. As part of our evaluation

process, we gave high importance to the developer’s ability to meet

our player-base growth objectives and the quality and completeness

of their product at the time of evaluation. Other business considera-

tions were of course involved in the selection process, yet the chal-

lenge and innovation we were striving for helped to energize the

work of our partners as it did our internal development staff. Addi-

tional complexity was added with the need to ensure that upgrades

of our partners’ products were synchronized with our development

process, so as to minimize the impact on our development sched-

ules. A solution to this third-party integration issue was to isolate

data passing via a queue. For example, the Unified Messaging Sys-

tem requires delivery of messages to players at specific times. We

utilized a combination of a database queue, a sending UMS process,

and the packaged UMS method supplied by our technology partner.

We could thus easily upgrade just our technology partner’s compo-

nent and only “touch” our UMS process component to incorporate

the changes. This processing cycle is illustrated in Figure 3.

The parallel development of content with technology creates

interesting trade-offs and considerations. The need to demonstrate

and evaluate the product during development at minimum influ-

ences, and more often determines, task priorities for technology

development. On MAJESTIC, we completed an early proof-of-con-

cept to demonstrate the potential of the product. This early proto-

type utilized none of our final code base, but was valuable in driv-

ing the definition of the technology platform and blueprinting the

functional decomposition of the architecture. This prototype

process also served as a model for the leapfrogging of platform

versions that occurred during technology development.

One main requirement we determined early on was the need to

support several simultaneous server environments at once (see Fig-

ure 4). This adds workload to maintain and support each environ-

ment, but helps isolate the work of technology development from

content creation and testing. Software development proceeded on a

specific development environment, implementing new functionality

and tests with sample content. Once this new functionality was

completed and fully tested, it would migrate over to the content

production environment. This isolated many of the possible con-

flicts between content production and technology development and

also assisted in our rapid prototyping approach.

Majestic vs. Traditional Game
Development

T here are two ways to compare the development of MAJESTIC

to traditional game development. One is to compare it with

traditional shrink-wrapped products, and the other is to compare

it with other online products. The essence of the Internet is the

ability of the player to easily combine a number of different activ-

ities at once. At times we may be engaged in e-mail, web brows-

ing, or instant messaging. We could have streaming audio or

video playing simultaneously. A challenge for MAJESTIC was to

provide this range of options to the designer while presenting

them functionally integrated within the experience.

An immediate difference for MAJESTIC, then, was the need to pro-

vide structure around distinct Internet activities. We solved this by

using a variety of technologies and approaches to recognize Internet

activities accomplished or discovered by the player that in turn

enable other activities or enrich options available to the player. In

MAJESTIC, the database stores the content presented to the player as

key events are accomplished and game puzzles solved. Unlike tradi-

tional games, MAJESTIC does not completely dictate or control the

environment of the game — there is no two- or three-dimensional

graphical world in which the player operates.

In contrast to most online games, the game experience does not

revolve around the requirement to maintain a certain display frame

rate or minimize latency. The challenges for MAJESTIC are to opti-

mize performance so that content can be accessed and presented to

players quickly over a broad range of bandwidth speeds, and to

make the players’ accomplishments feel interactive and responsive.

The design decisions made during our development have cen-

tered around the need to provide players with personalized con-

tent reflecting their “position” in the game — and being efficient

about presenting new content and activities as players accom-

plish key objectives. The episodic nature of MAJESTIC requires

that there be a separation between technology and content. This

separation supports development by allowing content changes to

occur at any time, and provides the foundation for delivery of

new episodes as each subsequent one is completed. This principle

of encapsulation proved a useful approach toward defining the

organization of the technology platform and in defining the

structure and organization of data in the database to provide an

easy means to publish new episodes.

48 a p r i l 2 0 0 1 | g a m e d e v e l o p e r

M A J E S T I C

UMS
Message

Queue
(Database)

UMS Process
Retrieve Time-

Ordered Messages
(Session EJB)

Package UMS Data
Send to UMS Service

(Session EJB)

Message
Delivery

Time
Met?

Successful
Delivery?

Yes — Check Next Message

No — Adjust Delivery Time, Return to Queue

No — Return
to Queue

R&D
Environment

Technology
Development

Time
to Play!

Content
Production

Dev
Environment

Tuning/
User Testing

Demo
Environment

QA/
Load TestingString

Environment(s)

Integration
& Final Testing

EA.Com Assembly/
Integration Environment

EA.Com Assembly/
Integration Environment

FIGURE 3 (top). UMS processing cycle.
FIGURE 4 (bottom). MAJESTIC environment migration.

With the exception of the Experience Server, MAJESTIC’s discrete

technologies are not unique. What makes the experience unique,

and what has been our greatest challenge and biggest accomplish-

ment technologically, is how those technologies are used in con-

cert to deliver an entertainment experience that evolves over time,

is scalable, is extremely dynamic, and is built to an enterprise-

class level.

MAJESTIC Game Design

W e’ve built MAJESTIC and its platform in parallel, and in the

process we have learned an amazing amount about how

to create games for this medium. While the heart of MAJESTIC’s

interactivity borrows from adventure games, and the story bor-

rows from episodic television, the surface and pace of the experi-

ence are so different that the structure of puzzles and delivery of

the story require new and often lateral thinking.

Our key challenge has centered around the pacing of episodes.

This meant determining how much content should be delivered in a

given day to ensure that users are continually connected with the

experience, without requiring them to invest more than 15 to 30

minutes in any given sitting to make progress. Initially, we used just

our instinct to determine the right density and volume of content.

Our simple strategy was to drive an instinctive stake in the

w w w . g d m a g . c o m 49

Why Neil Young Is Like Bill Budge
In 1983, Bill Budge was responsible for shipping EA’s first Hall of Fame

game, PINBALL CONSTRUCTION SET. Bill did the game design, programming, art,
music, manual, and even stuffed floppy disks into baggies for shipment. In
2001, Neil Young is responsible for launching EA’s first Internet adventure
game, MAJESTIC. Neil did not do the detail of the game design, programming,
art, music, manual, or stuff any damn baggies.

But like Bill Budge a generation prior, Neil grabbed a big new game design
idea and wrestled it to the ground. Where Bill had been inspired by Apple’s work
on interface design, Neil was inspired by innovative media like Orson Welles’
War of the Worlds, everyday communication devices, and movie serials. Both of
these guys began with boredom with the game industry’s current offerings, but
had the confidence to try to find a new way to use our medium.

I watched Neil wrestle with the big new design ideas of MAJESTIC: how to cap-
ture the mystery of X-Files; how to blur reality and fiction as War of the Worlds
had done; how to avoid standard CD game formats; how to create and release
episodic stories. And then, as Budge had done, Neil made the appropriate
organizational decisions for his time. Where Bill had done it all himself, Neil
hired experts like John and Rich and Ralph to flesh out the big idea.

Neil has a copy above his computer of EA’s original “Can a Computer Make
You Cry?” ad, which set a goal to make “software worthy of the minds that use
it.” Neil doesn’t look like Bill, or wear a studded gauntlet like Bill did, but he
has brought the same kind of questing intelligence to game design. As much as
game development has changed in two decades, the personalities of creative
leaders are very similar.

— Bing Gordon, chief creative officer/co-founder, Electronic Arts

ground and then iterate to success, and this rapid prototyping

approach has proven to be tremendously valuable. For MAJESTIC,

we’ve focused our energy on building the “pilot,” a free demo of

the product that users play to get a taste of MAJESTIC before sub-

scribing. It showcases the product and uses every aspect of the plat-

form but is one-quarter to one-third the size of a full episode. By

focusing ourselves around the pilot, we found that we had a much

more manageable design and implementation problem.

We built the pilot prototype in July 2000 and tested it with a

small group of EA employees. Fifteen people participated in that

first test, and we were able to get good general feedback. However,

it wasn’t until our third user test in November 2000 that we really

got a good handle on how users were progressing through the

game. The knowledge and learning we acquired during that process

was primarily enabled by tracking metrics which reported back to

us on each user’s progress as they advanced through the game. By

plotting this information on a graph, we were able to see quickly

and visually where users were having difficulty. Our goal from a

design standpoint is always to bring as close to 100 percent of the

users as possible through to the end of each episode, and never to

put people in a situation where they can no longer progress.

If you think about game design, you rarely have an opportunity

to gain an accurate and complete picture of how people play a

game. In an episodic game it’s an essential design and business ele-

ment to convey as many people as possible through the experi-

ence. If we don’t, players won’t subscribe or continue to sub-

scribe, and if they don’t do that then it’s all for naught.

What we’ve learned on MAJESTIC, and specifically how we’ve

tackled and solved design challenges by rapidly prototyping and

then measuring real users’ interactions with the project, will be a

key part of every project that we develop from now on.

New Medium, New Production
Processes

C reating an episode of Majestic combines a number of tech-

niques, tools, and tricks that draw from film, television, web,

and game production. The successful integration of all these tech-

niques lies at the core of MAJESTIC.

The episodic nature of the game is its greatest production chal-

lenge. This rhythm affects every aspect of the experience, from the

way episodes are conceived and written, to the design of the tech-

nology platform, to the QA process, and even its marketing and

publicity. For the moment, let’s focus on the nuts and bolts of

episodic production.

On any given day, the MAJESTIC crew simultaneously touches

three different episodes in the project, each working their way

through the production pipeline. In an ideal world, the crew

would create only one new episode at a time. In reality, they are

producing the current episode, polishing the previous one (based

on feedback from QA), and developing story ideas and scripts for

the next episode. This constant jumping from past to present to

future has a valuable benefit: it compels the team to compare

episodes constantly to ensure a comparable level of quality from

one to the next.

As described earlier, we recognized early on the need to organ-

ize around technology and content separately. The technology

team builds the technological components of the platform, and

our content team is responsible for the story and game design and

development that happens on top of it.

The all-encompassing challenge for the content team is to create

an ongoing story with compelling characters that users will want to

spend time with and get to know. This is a significant departure

from the development of most other games at Electronic Arts.

However, with a creative director, executive producer, and others on

the team from television, film, and theater, we were able to apply

lessons we had learned in those worlds to this interactive medium.

One simple example: the creation of a “story room,” a technique

used by screenwriters and animation story artists as a war room for

story development. It is a place where the project’s writing team can

work for days at a time while creating a new episode. The room

features floor-to-ceiling bulletin boards and whiteboards, and each

wall serves a specific purpose. One wall lays out overall ideas for all

the episodes in the first season. As the season progresses, the cre-

ative team fills the wall with episode information, character descrip-

tions, inspirational artwork, and other material that fill in gaps in

the story, but keep us aware of the overall thrust of our seasonal

story concept. A second wall is reserved for brainstorming the story

structure of a single episode. At a glance we can assure ourselves

that the vision for the season on the first wall and the ideas for the

current episode on the second wall are consistent. Finally, a third

wall graphically deconstructs that episode outline into the specific

assets required for production. Once the episode has evolved to suf-

50 a p r i l 2 0 0 1 | g a m e d e v e l o p e r

M A J E S T I C

D.W. Griffith is credited for inventing the early language of film, with things
like “the establishing shot,” “the close-up,” “the fade out,” and “the cross
cut,” among other things. I’ve been trying to understand what the equivalent
of “the close-up" or “the cross cut" would be in this new medium we are cre-
ating and have a few ideas about that. Our vocabulary is ever growing and
we’re all slowly becoming fluent. We may even be getting poetic with this new
language we’ve learned.

— John Danza, creative director

D.W. Griffith and the Language of Film

Creative director John Danza (in a black cap) and executive producer Ralph
Guggenheim (seated to the right) during the filming of a segment for the
first episode of MAJESTIC.

ficient detail, it is pitched to the entire team, who give feedback and

look for holes in the episode’s story logic and gameplay. Only after

the story has passed this final test is it memorialized in a script or

blueprint document and readied for production.

Another test prior to moving the episode to production is a

rough calculation of the number and types of each asset (there are

150 to 200 assets in a typical episode). Based on experience with

previous episodes, we attempt to assess whether this asset count fits

within the constraints of our production schedule and try to make

adjustments accordingly. This can be a difficult task, as the writers

have already worked to tell their story as efficiently as possible, but

the discipline of working toward a manageable monthly production

cycle requires that we be able to predict the workload with a high

degree of accuracy.

After a blueprint for the episode has been created, two other

events occur in rapid succession: the design of a logic table that

captures the triggers and events that comprise the episode, and the

creation of a production schedule assign-

ing each asset to the group responsible

for it. Delivering an episode of MAJESTIC

relies on the production of a variety of

assets of different types that must come

together to tell the story and entertain

the audience. The crew is organized

around specific areas of expertise: writ-

ing, art and web design, Flash program-

ming, and video and audio production —

these being the simplest groupings of the

dozen or so types of assets involved in an

episode. All the work is performed in-

house with the exception of the video

and audio assets, which are created by

freelance crews under the supervision of

our creative director and production

management team.

While the entire cycle of production

for an episode spans eight to ten weeks, the core of the produc-

tion schedule is typically broken into two segments: a three-week

production period to create the various assets for the episode and

one week to integrate, test, and polish these assets. Considering

the aggressive roll-out strategy of MAJESTIC as an episodic prod-

uct, it’s a very short time schedule, which puts pressure on the

production management team to schedule the process in sufficient

detail. The entire production process is dependent on the timely

creation of assets, all of which must be approved by the creative

director to be considered final. We have established a multi-step

approval system that allows us to track the status of each asset in

our process. This multi-step approval is captured in a customized

database to track the progress of the episode. The system gener-

ates metrics in a variety of forms to allow our production man-

agers to keep the team focused on meeting the episode’s deadline.

While we have limited the number and type of assets in a given

episode, we are still learning from the creation of each new

episode and applying those lessons to successive ones. We are con-

stantly improving the production pipeline by creating time-saving

tools to address each step in our process. Ultimately, every change

and enhancement is judged by its ability to enhance the user expe-

rience in this uncharted medium of interactive storytelling.

On a creative level, the production of an episode bears a lot of

similarity to other production work we have done in film and

video. First and foremost, everything must be created to support

and enhance the emotional quality of the story and its characters.

This is an area that has frequently been overlooked in game design.

Where many interactive products are games with a few plot points,

we have tried to make MAJESTIC a “story with puzzles.” It is our

single-minded emphasis on the importance of the story and charac-

ters that we hope makes MAJESTIC truly unique in its medium.

Since our production process most closely resembles episodic

television production, we have tried to learn as much as we can

from that medium. But TV and film can rely on the fact that the

technology they use to distribute and present their product (35mm

film, videotape, cable TV) are standardized and relatively stable.

The intimate relationship between MAJESTIC’s technology and its

content is typical of computer and online

games. Issues of browser and plug-in com-

patibility complicate our ability to deliver a

consistent user experience. Our tech team

must carefully integrate these standards,

including those of our online partner, AOL.

Also, the QA process has a tremendous

impact on the production schedule. This is

another element that is vastly different from

film or TV production, due again to the

need for compatibility with a wide variety

of online and computer platforms.

MAJESTIC offers the opportunity to

explore storytelling in a new and different

way. It uses the various communications

media of the web to unfold its story. While

MAJESTIC appropriates the digital communi-

cations techniques we use every day, at

times we feel akin to the early directors of

movies at the start of the last century — equipped with camera,

film, and lights, but trying to learn just how to harness their tech-

nology to best tell a story. As film pioneers did, we are able to

bring to bear our related expertise from traditional storytelling

media, but they only go so far as we undertake this complex proj-

ect in the new medium of the Internet.

The Future

A t the time of this writing, we are in the middle of our fourth

user test, with 500 users around the country participating in

a closed test of MAJESTIC. Overall, the feedback is great, and peo-

ple seem to be excited about what we’ve been able to create.

Although we are constantly trying to make MAJESTIC the best

game it can be, we realize that it is ultimately version 1.0 of a

new Internet-based entertainment experience. When we look

back, I hope that we are able to see MAJESTIC as a commercial and

critical success, but regardless it will have provided us with many

ideas and insight into leveraging the strengths of the Internet as an

entertainment medium. q

52 a p r i l 2 0 0 1 | g a m e d e v e l o p e r

M A J E S T I C

ABOVE. The game
will feature stream-
ing video clips such
as these from a web
cam. RIGHT. Players
will be provided
links to many web
sites, some real and
some fictitious —
such as this “U.S.
Digital Services” site.

P athfinding is a core component of most games

today. Characters, animals, and vehicles all move

in some goal-directed manner, and the program

must be able to identify a good path from an ori-

gin to a goal, which both avoids obstacles and is

the most efficient way of getting to the destination. The best-

known algorithm for achieving

this is the A* search (pro-

nounced “A star”), and it is typi-

cal for a lead programmer on a

project simply to say, “We’ll use

A* for pathfinding.” However,

AI programmers have found

again and again that the basic

A* algorithm can be woefully

inadequate for achieving the

kind of realistic movement they

require in their games.

This article focuses on several

techniques for achieving more

realistic looking results from

pathfinding. Many of the tech-

niques discussed here were used

in the development of Activision’s

upcoming BIG GAME HUNTER 5,

which made for startlingly more

realistic and visually interesting

movement for the various ani-

mals in the game. The focal top-

ics presented here include:

Achieving smooth straight-line
movement. Figure 1a shows the

result of a standard A* search,

which produces an unfortunate

“zigzag” effect. This article presents postprocessing solutions for

smoothing the path, as shown in Figure 1b.

Adding smooth turns. Turning in a curved manner, rather than

making abrupt changes of direction, is critical to creating realistic

movement. Using some basic trigonometry, we can make turns

occur smoothly over a turning radius, as shown in Figure 1c.

Programmers typically use the standard A* algorithm and then

use one of several hacks or cheats to create a smooth turn. Several

of these techniques will be described.

Achieving legal turns. Finally, I will discuss a new formal tech-

nique which modifies the A* algorithm so that the turning radius

is part of the actual search. This results in guaranteed “legal”

turns for the whole path, as shown in Figure 1d.

Examining these various tech-

niques will not reveal a single, true

“best approach.” Rather, which

method you choose will depend on

the specific nature of your game,

its characters, available CPU

cycles, and other factors.

Note that in the world of

pathfinding, the term “unit” is

used to represent any on-screen

mobile element, whether it’s a

player character, animal, monster,

ship, vehicle, infantry unit, and so

on. Note also that while the body

of this article presents examples

based on tile-based searching,

most of the techniques presented

here are equally applicable to

other types of world division,

such as convex polygons and 3D

navigation meshes.

A Brief
Introduction to A*

T he A* algorithm is a venera-

ble technique which was orig-

inally applied to various mathe-

matical problems and was adapted to pathfinding during the early

years of artificial intelligence research. The basic algorithm, when

applied to a grid-based pathfinding problem, is as follows: Start at

the initial position (node) and place it on the Open list, along

with its estimated cost to the destination, which is determined by

a heuristic. The heuristic is often just the geometric distance

between two nodes. Then perform the following loop while the

Toward More
Realistic Pathfinding

a p r i l 2 0 0 1 | g a m e d e v e l o p e r54

R E A L I S T I C P A T H F I N D I N G m a r c o p i n t e r

M A R C O P I N T E R | Marco deftly escaped from the rat race in 1998 by selling his development firm to a public company. He currently con-
sults for the game industry as a programmer and designer from his home in Santa Barbara, tinkering with concepts and AI code while watching
dolphins swim by. He can be reached at marco@badass.com.

FIGURE 1. Some of the techniques discussed in this article. (A) is the
result of a standard A* search, while (B) shows the results of a post-
process smoothing operation. (C) shows the application of a turning
radius for curved turns. (D) illustrates an A* modification that will
enable searches to include curved turns that avoid collisions.

A. B.

C. D.

Open list is nonempty:

• Pop the node off the Open list that has the lowest estimated cost

to the destination.

• If the node is the destination, we’ve successfully finished (quit).

• Examine the node’s eight neighboring nodes.

• For each of the nodes which are not blocked, calculate the esti-

mated cost to the goal of the path that goes through that node.

(This is the actual cost to reach that node from the origin,

plus the heuristic cost to the destination.)

• Push all those nonblocked surrounding nodes onto the Open

list, and repeat loop.

In the end, the nodes along the chosen path, including the start-

ing and ending position, are called the waypoints. The A* algo-

rithm is guaranteed to find the best path from the origin to the

destination, if one exists. A more detailed introduction to A* is

presented in Bryan Stout’s article “Smart Moves: Intelligent Path-

finding” (October/November 1996), which is also available on

Gamasutra.com (see For More Information).

Smoothing the A* Path

T he first and most basic step in making an A* path more real-

istic is getting rid of the zigzag effect it produces, which you

can see in Figure 2a. This effect is caused by the fact that the stan-

dard A* algorithm searches the eight tiles surrounding a tile, and

then proceeds to the next tile. This is fine in primitive games

where units simply hop from tile to tile,

but is unacceptable for the smooth move-

ment required in most games today.

One simple method of reducing the num-

ber of turns is to make the following modi-

fication to the A* algorithm: Add a cost

penalty each time a turn is taken. This will

favor paths which are the same distance,

but take fewer turns, as shown in Figure

2b. Unfortunately, this simplistic solution is

not very effective, because all turns are still

at 45-degree angles, which causes the

movement to continue to look rather unre-

alistic. In addition, the 45-degree-angle

turns often cause paths to be much longer

than they have to be. Finally, this solution

may add significantly to the time required

to perform the A* algorithm.

The actual desired path is that shown in

Figure 2c, which takes the most direct

route, regardless of the angle. In order to

achieve this effect, we introduce a simple

smoothing algorithm which takes place

after the standard A* algorithm has com-

pleted its path. The algorithm makes use

of a function Walkable(pointA, pointB),

which samples points along a line from

point A to point B at a certain granularity

(typically we use one-fifth of a tile width),

checking at each point whether the unit

overlaps any neighboring blocked tile. (Using the width of the

unit, it checks the four points in a diamond pattern around the

unit’s center.) The function returns true if it encounters no

blocked tiles and false otherwise. See Figure 3 for an illustration,

and Listing 1 for pseudocode.

Since the standard A* algorithm searches the surrounding eight

tiles at every node, there are times when it returns a path which is

impossible, as shown with the green path in Figure 4. In these

cases, the smoothing algorithm presented above will smooth the

w w w . g d m a g . c o m 55

2A.

2B.

2C.

3.

FIGURE 2 (above left). The common zigzag effect of the standard A* algorithm (A); a modification with
fewer, but still fairly dramatic, turns (B); and the most direct — and hence desired — route (C). To
achieve the path shown in Figure 2c, the four waypoints shown in red in Figure 2a were eliminated.
FIGURE 3 (top right). Illustration of the Walkable() function which checks for path collisions. FIGURE 4
(bottom right). This smoothing algorithm will leave impossible paths alone.

LISTING 1. Pseudocode for the simple smoothing algorithm. The
smoothing alogorithm simply checks from waypoint to waypoint along
the path, trying to eliminate intermediate waypoints when possible.

4.

checkPoint = starting point of path

currentPoint = next point in path

while (currentPoint->next != NULL)

if Walkable(checkPoint, currentPoint->next)

// Make a straight path between those points:

temp = currentPoint

currentPoint = currentPoint->next

delete temp from the path

else

checkPoint = currentPoint

currentPoint = currentPoint->next

portions it can (shown in purple), and leave the “impossible” sec-

tions as is.

This simple smoothing algorithm is similar to “line of sight”

smoothing, in which all waypoints are progressively skipped until

the last one that can be “seen” from the current position. However,

the algorithm presented here is more accurate, because it adds colli-

sion detection based on the width of the character and also can be

used easily in conjunction with the realistic turning methods

described in the next section.

Note that the simple smoothing algorithm presented above, like

other simple smoothing methods, is less effective with large units

and with certain configurations of blocking objects. A more

sophisticated smoothing pass will be presented later.

Adding Realistic Turns

T he next step is to add realistic curved turns for our units, so

that they don’t appear to change direction abruptly every

time they need to turn. A simple solution involves using a spline

to smooth the abrupt corners into turns. While this solves some of

the aesthetic concerns, it still results in physically very unrealistic

movement for most units. For example, it might change an abrupt

cornering of a tank into a tight curve, but the curved turn would

still be much tighter than the tank could actually perform.

For a better solution, the first thing we need to know is the

turning radius for our unit. Turning radius is a fairly simple con-

cept: if you’re in a big parking lot in your car, and turn the wheel

to the left as far as it will go and proceed to drive in a circle, the

radius of that circle is your turning radius. The turning radius of a

Volkswagen Beetle will be substantially smaller than that of a big

SUV, and the turning radius of a person will be substantially less

than that of a large, lumbering bear.

Let’s say you’re at some point (origin) and pointed in a certain

direction, and you need to get to some other point (destination),

as illustrated in Figure 5. The shortest path is found either by

turning left as far as you can, going in a circle until you are

directly pointed at the destination, and then proceeding forward,

or by turning right and doing the same thing.

In Figure 5 the shortest route is clearly the green line at the bot-

tom. This path turns out to be fairly straightforward to calculate

due to some geometric relationships, illustrated in Figure 6.

First we calculate the location of point P, which is the center of

our turning circle, and is always radius r away from the starting

point. If we are turning right from our initial direction, that means

P is at an angle of (initial_direction - 90) from the origin, so:

angleToP = initial_direction - 90

P.x = Origin.x + r * cos(angleToP)

P.y = Origin.y + r * sin(angleToP)

Now that we know the location of the center point P, we can

calculate the distance from P to the destination, shown as h on

the diagram:

dx = Destination.x - P.x

dy = Destination.y - P.y

h = sqrt(dx*dx + dy*dy)

At this point we also want to check that the destination is not

within the circle, because if it were, we could never reach it:

if (h < r)

return false

Now we can calculate the length of segment d, since we already

know the lengths of the other two sides of the right triangle,

namely h and r. We can also determine angle � from the right-tri-

angle relationship:

d = sqrt(h*h - r*r)

� = arccos(r / h)

Finally, to figure out the point Q at which to leave the circle and

start on the straight line, we need to know the total angle � + �,

and � is easily determined as the angle from P to the destination:

� = arctan(dy / dx) [offset to the correct quadrant]

Q.x = P.x + r * cos(�+�)
Q.y = P.y + r * sin(�+�)

The above calculations represent the right-turning path. The left-

hand path can be calculated in exactly the same way, except that

we add 90 to initial_direction for calculating angleToP, and later

a p r i l 2 0 0 1 | g a m e d e v e l o p e r56

R E A L I S T I C P A T H F I N D I N G

h

d
P

r

Q

Origin

Destination

r

�
�Origin Initial

Direction

Destination

FIGURE 5 (left). Determining the shortest path from the origin to the destination. FIGURE 6 (right). Calculating the length of the path.

a p r i l 2 0 0 1 | g a m e d e v e l o p e r58

we use � – � instead of � + �. After calculating both, we simply

see which path is shorter and use that one.

In our implementation of this algorithm and the ones that fol-

low, we utilize a data structure which stores up to four distinct

“line segments,” each one being either straight or curved. For the

curved paths described here, there are only two segments used: an

arc followed by a straight line. The data structure contains mem-

bers which specify whether the segment is an arc or a straight

line, the length of the segment, and its starting position. If the

segment is a straight line, the data structure also specifies the

angle; for arcs, it specifies the center of the circle, the starting

angle on the circle, and the total radians covered by the arc.

Once we have calculated the curved path necessary to get

between two points, we can easily calculate our position and

direction at any given instant in time, as shown in Listing 2.

Legal Turns: The Basic Methods

S o now that we know how to find and follow an efficient

curved line between two points, how do we use this in our

pathing? The methods discussed in this section are all postprocess-

ing techniques. In other words, they involve using the standard

A* algorithm during initial pathfinding, and then adding curved

turns later in some fashion, either in an extended pathfinding or

during actual unit movement.

Simple solution: ignoring blocked tiles. We start with the simplest

solution. First use the A* algorithm to calculate the path. Then

progress from point to point in the path as follows: At any way-

point, a unit has a position, an orientation, and a destination

waypoint. Using the algorithm described in the preceding section,

we can calculate the fastest curved path to get from the current

waypoint to the next waypoint. We don’t care what direction we

are facing when we reach the destination waypoint, though that

will turn out to be the starting orientation for the following way-

point. If we skim some obstacles along the way, so be it — this is

a fast approximation, and we are willing to overlook such things.

Figure 1c shows the result of this method. The curves are nice, but

on both turns, the side of the ship will overlap a blocking tile.

This solution is actually quite acceptable for many games.

However, often we don’t want to allow any such obviously illegal

turns, where the unit overlaps obstacles. The next three methods

address this.

Path recalculations. With this method, after the A* has com-

pleted, we step through the path, making sure every move from

one waypoint to the next is valid. (This can be done as part of a

smoothing pass.) If we find a collision, we mark the move as

invalid and try the A* path search again. In order to do this, we

need to store one byte for every tile. Each bit will correspond to

one of the eight tiles accessible from that tile. Then we modify the

A* algorithm slightly so that it checks whether a particular move

is valid before allowing it. The main problem with this method is

that by invalidating certain moves, a valid path approaching the

tile from a different direction can be left unfound. Also, in a

worst-case scenario, this method could need to recalculate the

path many times over.

Making tighter turns. Another solution is that whenever we need

to make a turn that would normally cause a collision, we allow our

turning radius to decrease until the turn becomes legal. This is illus-

trated with the first turn in Figure 7a. One proviso is that when we

conduct the A* search, we need to search only the surrounding

four tiles at every node (as opposed to eight), so we don’t end up

with impossible situations like the one illustrated in Figure 4. In the

case of vehicles, this method may look odd, whereby some lumber-

ing tank suddenly makes an unbelievably tight turn. However, in

other cases this may be exactly what you want. Unlike vehicles,

which tend to have a constant turning radius, if your units are peo-

ple, they are able to turn much more tightly if they are creeping

along than if they are running. So in order to follow the simple

path, you simply need to decelerate the unit as it approaches the

turn. This can yield very realistic movement.

Backing up. Our final solution comes from real-world experience.

How do we make a very tight turn into a driveway? We back up

LISTING 2. Calculating the position and orientation at a particular
time.

FIGURE 7. Decreasing the turning radius (A), and making a three-point
turn (B).

A. B.

R E A L I S T I C P A T H F I N D I N G

distance = unit_speed * elapsed_time

loop i = 0 to 3:

if (distance < LineSegment[i].length)

// Unit is somewhere on this line segment

if LineSegment[i] is an arc

determine current angle on arc (theta) by adding or

subtracting (distance / r) to the starting angle

depending on whether turning to the left or right

position.x = LineSegment[i].center.x + r*cos(theta)

position.y = LineSegment[i].center.y + r*sin(theta)

determine current direction (direction) by adding or

subtracting 90 to theta, depending on left/right

else

position.x = LineSegment[i].start.x

+ distance * cos(LineSegment[i].line_angle)

position.y = LineSegment[i].start.y

+ distance * sin(LineSegment[i].line_angle)

direction = theta

break out of loop

else

distance = distance - LineSegment[i].length

60

and make a three-point turn, of course, as illustrated in Figure 7b.

If your units are able to perform such maneuvers, and if this is con-

sistent with their behavior, this is a very viable solution.

Directional Curved Paths

F or some of the techniques described later, it is necessary to

figure out how to compute the shortest path from origin to

destination, taking into account not only starting direction, orien-

tation, and turning radius, but also the ending direction. This

algorithm will allow us to compute the shortest legal method of

getting from a current position and orientation on the map to the

next waypoint, and also to be facing a certain direction upon

arriving there.

Earlier we saw how to compute the shortest path given just a

starting direction and turning radius. Adding a fixed ending direc-

tion makes the process a bit more challenging. There are four pos-

sible shortest paths for getting from origin to destination with

fixed starting and ending directions. This is illustrated in Figure 8.

The main difference between this and Figure 5 is that we approach

the destination point by going around an arc of a circle, so that we

will end up pointing in the correct direction. Similar to before, we

will use trigonometric relationships to figure out the angles and

lengths for each segment, except that there are now three segments

in total: the first arc, the line in the middle, and the second arc.

We can easily position the turning circles for both origin and

destination in the same way that we did earlier for Figure 6. The

challenge is finding the point (and angle) where the path leaves

the first circle, and later where it hits the second circle. There are

two main cases that we need to consider. First, there is the case

where we are traveling around both circles in the same direction,

for example clockwise and clockwise (see Figure 9).

For this case, note the following:

1. The line from P1 to P2 has the same length and slope as the

(green) path line below it.

2. The arc angle at which the line touches the first circle is simply

90 degrees different from the slope of the line.

3. The arc angle at which the line touches the second circle is exact-

ly the same as the arc angle at which it touches the first circle.

The second case, where the path travels around the circles in

opposite directions (for example, clockwise around the first and

counterclockwise around the second), is somewhat more compli-

cated (see Figure 10). To solve this problem, we imagine a third

circle centered at P3 which is tangent to the destination circle,

and whose angle relative to the destination circle is at right

angles with the (green) path line. Now we follow these steps:

1. Observe that we can draw a right triangle between P1, P2,

and P3.

2. We know that the length from P2 to P3 is (2 * radius), and

we already know the length from P1 to P2, so we can calcu-

a p r i l 2 0 0 1 | g a m e d e v e l o p e r

Destination
Origin

Destination
Origin

Destination
Origin

Destination
Origin

Destination

Origin

P1

P2

R E A L I S T I C P A T H F I N D I N G

Destination

OriginP1

P2

P3

�

�

FIGURE 8 (top). Arriving at the destination facing a certain direction. FIGURE 9 (bottom left). Case 1: Traveling around both circles in the same direc-
tion. FIGURE 10 (bottom right). Case 2: Traveling around the circles in opposite directions.

62 a p r i l 2 0 0 1 | g a m e d e v e l o p e r

late the angle � as � = arccos(2 * radius / Length(P1, P2))

3. Since we also already know the angle of the line from P1 to

P2, we just add or subtract � (depending on clockwise or

counterclockwise turning) to get the exact angle of the (green)

path line. From that we can calculate the arc angle where it

leaves the first circle and the arc angle where it touches the

second circle.

We now know how to determine all four paths from origin to

destination, so given two nodes (and their associated positions

and directions), we can calculate the four possible paths and use

the one which is the shortest.

Note that we can now use the simple smoothing algorithm pre-

sented earlier with curved paths, with just a slight modification to

the Walkable(pointA, pointB) function. Instead of point-sampling in

a straight line between pointA and pointB, the new Walkable(pointA,

directionA, pointB, directionB) function samples intermediate

points along a valid curve between A and B given the initial and

final directions.

Legal Turns: The Directional A*
Algorithm

A ll of the smooth turning methods presented earlier are actu-

ally hacks or cheats of one kind or another to achieve the

effect of realistic movement. While this is valid and common in

game programming, there are times when we may want a formal-

ly correct solution that takes into account turning radius and

other factors. Comparing Figures 1c and 1d, we see that the only

valid solution which takes turning radius into account may

require a completely different route from what the basic A* algo-

rithm provides. To solve this problem, a significant modification

to the A* algorithm was implemented, which I have termed the

Directional A* algorithm.

The basic A* algorithm has two dimensions for every node,

namely the X and Y coordinates of the grid. (This can differ if

you are using convex polygons or grid meshes, but the concept is

the same.) The Directional A* algorithm adds a third dimension,

which is the orientation of the unit as one of eight compass direc-

tions. This allows the direction a character is moving to be taken

into account when determining whether a move from one node to

another is valid.

There are several complex issues in the implementation of the

Directional A* algorithm which are outside the scope of this

article, but can be found in the expanded version of this article

on Gamasutra.com. The expanded article incorporates a discus-

sion of the performance of the algorithm, and also introduces

hybrid solutions which contain many of the same benefits and

run much faster.

A Better Smoothing Pass

T he smoothing algorithm given earlier is less than ideal when

used by itself. There are two reasons for this. Figure 11

demonstrates the first problem. The algorithm stops at point q
and looks ahead to see how many nodes it can skip while still

conducting a legal move. It makes it to point r, but fails to allow

a move from q to s because of the blocker near q. Therefore it

simply starts again at r and skips to the destination. What we’d

really like to see is a change of direction at p, which cuts diago-

nally to the final destination, as shown with the dashed line.

The second problem is demonstrated by the green line in Figure

12. The algorithm moves forward linearly, keeping the direction

of the ship pointing straight up, and stops at point p. Looking

ahead to the next point (q), it sees that the turning radius makes

the turn impossible. The smoothing algorithm then proceeds to

“cheat” and simply allow the turn. However, had it approached p
from a diagonal, it could have made the turn legally as evidenced

by the blue line.

To fix these problems, we introduce a new pre-smoothing pass

that will be executed after the A* search process, but prior to the

simple smoothing algorithm described earlier. This pass is actually

a very fast version of the Directional A* algorithm, with the dif-

ference that we only allow nodes to move along the path we pre-

viously found in the A* search, but we consider the neighbors of

any node to be those waypoints which were one, two, or three

tiles ahead in the original path. We also modify the cost heuristic

FIGURE 11 (left). One shortcoming of the simple smoothing algorithm. FIGURE 12 (middle). Another shortcoming: the simple smoothing algorithm is
unable to find and execute a turn within the legal turning radius. FIGURE 13 (right). The blue line shows the only truly legal path, which the pre-smooth-
ing algorithm can’t find, but the Directional search can.

R E A L I S T I C P A T H F I N D I N G

q

p

q
r

s
p

64

to favor the direction of the original path (as opposed to the

direction toward the goal). The algorithm will automatically

search through various orientations at each waypoint, and various

combinations of hopping in two- or three-tile steps, to find the

best way to reach the goal.

Because this algorithm sticks to tiles along the previous path, it

runs fairly quickly, while also allowing us to gain many of the

benefits of a Directional search. For example, it will find the legal

blue line path shown in Figure 12. Of course it is not perfect, as it

still will not find paths that are only visible to a full Directional

search, as seen in Figure 13.

The original search finds the green path, which executes illegal

turns. There are no legal ways to perform those turns while still

staying on the path. The only way to arrive at the destination

legally is via a completely different path, as shown with the blue

line. This pre-smoothing algorithm cannot find that path: it can

only be found using a true Directional search or its hybrids. So

the pre-smoothing algorithm fails under this condition. Under

such a failure condition, and especially when the illegal move

occurs near the destination, the pre-smoothing algorithm may

require far more computation time than we desire, because it will

search back through every combination of directional nodes along

the entire path. To help alleviate this and improve performance,

we add an additional feature such that once the pre-smoothing

algorithm has reached any point p along the path, if it ever

searches back to a point that is six or more points prior to p in

the path, it will fail automatically.

Other Topics

T here are a number of other important related issues which are

not discussed here, but are dealt with in the expanded version

of this article on Gamasutra.com. They include:

• Speed optimizations for the A* algorithm

• Using hierarchical map divisions to decrease the search space

and reduce pathfinding time

• Dealing with smooth movement for prerendered character art,

in which there may only be eight or 16 rendered angles for each

unit

• Creating realistic movement for turning on roads without hav-

ing vehicles slide “across the yellow line”

• Reducing the number of path failures

• Timeslicing of long searches

• Incorporating speed and acceleration parameters by either

adding speed as an additional dimension to the A* algorithm

(the formal method), or other, simpler “cheats”

• Dealing with units that can have a different turning radius

depending on speed.

Final Notes

T his article has made some simplifying assumptions to help

describe the search methods presented. First, all searches

shown have been in 2D space. Most games still use 2D searches,

since the third dimension is often inaccessible to characters, or

may be a slight variation (such as jumping) that would not affect

the search. All examples used here have also utilized simple grid

partitioning, though many games use more sophisticated 2D

world partitioning such as quadtrees or convex polygons. Some

games definitely do require a true search of 3D space. This can be

accomplished in a fairly straightforward manner by adding height

as another dimension to the search, though that typically makes

the search space grow impossibly large. More efficient 3D world

partitioning techniques exist, such as navigation meshes. Regard-

less of the partitioning method used, though, the pathfinding and

smoothing techniques presented here can be applied with some

minor modifications.

The algorithms presented in this article are only partially opti-

mized. They can potentially be sped up further through various

techniques. There is the possibility of more and better use of

tables, perhaps even eliminating trigonometric functions and

replacing them with lookups. Also, the heuristic used in the

advanced smoothing pass could potentially be revised to find solu-

tions substantially faster, or at least tweaked for specific games.

Pathfinding is a complex problem which requires further study

and refinement. Clearly not all questions are adequately resolved.

One critical issue at the moment is performance. I am confident

that some readers will create faster implementations of the tech-

niques presented here, and probably faster techniques as well. I

look forward to this growth in the field. q

a p r i l 2 0 0 1 | g a m e d e v e l o p e r

R E A L I S T I C P A T H F I N D I N G

F O R M O R E I N F O R M AT I O N

Find an expanded version of this article online at www.gamasutra.com.

GAME DEVELOPER

Pottinger, Dave C. “Coordinated Unit Movement” (January 1999).

www.gamasutra.com/ features/19990122/movement_01.htm

Pottinger, Dave C. “Implementing Coordinated Movement” (February

1999).

www.gamasutra.com/features/19990129/implementing_01.htm

Pottinger, Dave C. “The Future of Game AI” (August 2000).

www.gamasutra.com/features/20001108/laird_01.htm

Stout, W. Bryan. “Smart Moves: Intelligent Pathfinding”

(October/November 1996).

www.gamasutra.com/features/19970801/pathfinding.htm

WEB SITES

Steven Woodcock’s Game AI Page

www.gameai.com

BOOKS

Game Programming Gems (Charles River Media, 2000)

Refer to chapters 3.3, 3.4, 3.5, and 3.6.

hat do you get when you take a successful independent
developer, one of the world's largest game publishers, and a

design inspired by a property that is both unique and familiar,
Lewis Carroll’s Alice tales? You get Electronic Arts looking to

make a huge splash with their first PC action title, Rogue Enter-
tainment creating AMERICAN MCGEE’S ALICE and a roller coaster ride

of success and failure all wrapped up into one little black box with a girl and her
enigmatic cat gracing the cover.

AMERICAN MCGEE’S ALICE is a tale of a young girl who is subjected to a tragic incident
which leaves her severed from reality and locked away inside the safety of her own
mind. Years later, the experience begins to attack Wonderland, turning it into a
dark and threatening place, as broken and fragmented as Alice herself. We wanted
to create a game that would combine the frantic elements of such legendary games
as DOOM and QUAKE with the adventure elements of a TOMB RAIDER. We were shooting
for a game that would seamlessly combine those elements with an intriguing story
and use the boundless freedom of Wonderland to create fantastic environments in
which to present these features. Another goal was to create a strong female hero-
ine devoid of the usual extremely overexaggerated female assets. Alice was to be a
character that would cross the usual gender boundaries in action games and bring
female gamers into the fold.

Rogue was prepared to carry out these goals through our extensive experience
with the QUAKE technology, stemming from five years of working with id Software on
mission packs for QUAKE and QUAKE 2, and the N64 port of QUAKE 2. We know the id
technology inside and out, which was one of our greatest strengths when we start-
ed our discussions with EA. We had a team of nine dedicated professionals, ready
to tackle the challenges of Rogue’s first full title since our introductory game,
STRIFE, four years prior. We also felt that we needed to leave behind the “mission
pack” company mantle and that ALICE would let us do just that.

As a company, all of us were enthralled that we would be the ones to tell a new
tale of Wonderland and our Alice’s adventures through them. The programming
team was prepared to enhance and expand the technology to create a platform
that would support the immense weight of the content assets. The designers were
ready to shape a world so exciting that it would set new standards in level design.
The artists were equipped with the ability to transfer the warped representations of
a twisted world to the textures and skins of this world. Our modeler/animators
wanted to stretch the preconceived notions of Lewis Carroll’s characters and add
our own additions to the bestiary, with creative flair that would burn these charac-
ters into the minds of the players. Needless to say, we wanted ALICE to be the best
game that we could make it, and nothing was going to stand in our way of making
this happen.

Rogue Entertainment’s
AMERICAN MCGEE’S ALICE

a p r i l 2 0 0 1 | g a m e d e v e l o p e r66

G A M E D A T A

PUBLISHER: ELECTRONIC ARTS

NUMBER OF DEVELOPERS, ARTISTS

& CONTRACTORS: 27

BUDGET: $2.5 MILLION

LENGTH OF DEVELOPMENT: 16 MONTHS

RELEASE DATE: DECEMBER 5, 2000

PLATFORMS: WINDOWS 95/98/ME

HARDWARE USED: DUAL PENTIUM ll 500–700'S

SOFTWARE USED: 3DS MAX, CHARACTER

STUDIO, TEXTURE WEAPONS, QERADIANT,

SOURCESAFE, VISUAL C, MICROSOFT PROJECT,

MICROSOFT OFFICE SUITE, PHOTOSHOP,

PAINT SHOP PRO, DEEP PAINT 3D

TECHNOLOGIES: QUAKE 3, FAKK2

LINES OF CODE: 200,000

LINES OF SCRIPT: 30,000

NUMBER OF ART FILES: 5,500

NUMBER OF CUPS OF COFFEE CONSUMED: I

DON'T THINK THAT WE CAN COUNT THAT HIGH

P O S T M O R T E M j i m m o l i n e t s

J I M M O L I N E T S | Jim laid the foundation for his computer gaming career with concepts for comic books, designs for role-playing and
strategy board games, and endless nights of wide-eyed “investigation'’ of computer games.With over 10 years of professional experience in the
industry, creating over 50 levels, and enjoying the role of producer on all four of Rogue’s titles, this focus was not wasted. He works his butt
off to make sure that Rogue is a success.

w w w . g d m a g . c o m 67

What Went Right

1. Company and team growth. While growth presented a challenge to ALICE’s

scheduling (discussed later in “What Went Wrong”), overall Rogue managed to

avoid panicking and hiring warm bodies to fill empty seats. We waited and chose people

we felt were right for the company and the team. This was not an easy task, but today

we feel that we have one of the strongest, most talented teams in the industry. Just as

important as making sure that you make your deadlines is the need to put talented peo-

ple in place to help you do that. Hiring on a whim has gotten us into trouble before,

and our shift to a more refined search paid off during this project.

2. The level of professionalism. This professionalism displayed by the team

stretched across all aspects of design to include everyone. There are industry hor-

ror stories of teams that are ruined by egomaniacal people. This, for some reason, seems

to have become the norm for developers. Rogue has always tried to stay away from that

issue, and we feel that the team did just that. During the development of ALICE, people

were not interested in who got credit for what, or whose great idea something was, but

simply that everyone was working to make the game stronger. This also applied to criti-

cism, another area where egos can get in the way. The ALICE team members openly cri-

tiqued each other’s work, and this was never viewed as malicious or hurtful, but again as

something that would make the product stronger and help everyone.

3. Creative freedom. We never closed the door on creative freedom on any

design aspect. I have seen some developers who start with something as a base

for an idea, and the team members responsible for the implementation of those ideas are

not allowed to deviate from that path. I am not suggesting that people are or should be

able to make any change they feel is right, but what worked for us on ALICE was to use

68

P O S T M O R T E M

a p r i l 2 0 0 1 | g a m e d e v e l o p e r

ABOVE. The wireframe, model, and skin for the
Alice character. RIGHT. Alice, the Cheshire Cat,
and the Mad Hatter in the Fortress. BELOW.
Concept sketch of Alice.

the design as an overall goal of what had to be accomplished with an asset or portion of

the game. While the actual work was being done, we encouraged experimentation and

creative input so that the entire team could share every aspect of ALICE, not just the indi-

viduals responsible for the original ideas. This translated to higher-quality assets

and the kinds of inspirational touches that make games really shine.

4.“Guerilla” meetings. Due to the tight time constraints of ALICE, there

came a point when team meetings stopped being called; e-mail summaries were

sent out instead. After a short period of time, it became obvious that we needed to have

meetings regardless of the schedule. To keep the things on track, small “guerilla” meet-

ings were set up where key people met and ironed out any issues on the table quickly.

This proved to be a great way to solve major problems without incident. These meetings

also served to keep people informed as to what other departments thought might be

problems in the future. For the engineers in particular, guerilla meetings became an

invaluable tool. They were short meetings, with only the key people from each depart-

ment, and they stayed very focused, allowing those in attendance to get back to their

work quickly.

5. The Alice intellectual property. I saved this one for last, but most people

around the Rogue offices will agree that this was one of the best parts, if not

the best part about the project. Most developers look to create something that is new

and exciting for their next intellectual property. Sometimes this works out wonderfully

(AGE OF EMPIRES, STARCRAFT, DOOM, THE SIMS). Sometimes it does not (BATTLEZONE,

INTERSTATE ‘76). All of those are great games that I have enjoyed playing, but the latter

group did not strike the same chord with consumers that the others did. When we first

heard that Alice was available, we were concerned that this would be something that

could go very wrong. Instead, the original body of works inspired the team to try to

create something that would do Carroll’s works justice. The IP also gave us unfettered

69w w w . g d m a g . c o m

ABOVE. Concept
sketch of the
Fortress. RIGHT. A
rendition of the Mad
Hatter.

creative freedom. Who’s to say what works and does not work

in Wonderland? This is one of the issues with using real-world

settings. No matter how fanciful you make the differences

between the real world and your game

world, people still ground their knowl-

edge in what should work in the real

world. The scope of this freedom

was upheld by EA, and we let the

team tear into it, creatively speaking.

This was also something that has

been noted by reviewers as one of

ALICE’s greatest strengths.

What Went Wrong

1. Scheduling. No schedule sur-

vives the first milestone intact.

There were many factors that forced us

to rework the schedule, but the most

important was growth. We started the

project with nine developers thinking that

we could complete a title that, by the end,

required about 25. Our first mistake was to

think that one modeler/animator could com-

plete the Alice character and all her anima-

tions in three weeks. By the end of the

project, our young lass had 180 sequences

with about 12,000 frames of animation. Some of that didn’t make

it into the game, but you can tell by those numbers that we were

off, way off. Without a doubt, main characters in third-per-

son-perspective games require dedicated artists from

start to finish.

Underestimating the amount of time it

would take to complete one entire level

was another factor that hurt our sched-

ule. In QUAKE 2, it would take one

designer about one-and-a-half to

two weeks to create and populate a

level, if the level was laid out in

advance. In ALICE, it took nearly a

month. That also did not include

the scripting or cinematics, which

added at least another week. We

were prepared to make Wonder-

land all it could be, we just didn’t

have a correct idea as to how long

that would take.

These errors, combined with other,

similar factors threatened to push

ALICE into the “another late software

title” category. In order to minimize this

impact, we asked the team to go into

the infamous Crunch Time about four

months before we were supposed to ship

70

P O S T M O R T E M

a p r i l 2 0 0 1 | g a m e d e v e l o p e r

TOP LEFT. Alice in action in the garden. BOTTOM LEFT. Alice using one of her weapons in the fortress. ABOVE RIGHT. Alice battling the Queen of Hearts’
minions. BELOW. A concept sketch for Tweedle Dee.

the product. (I use capital letters because anyone who has been

through one of these knows that it simply requires that kind of

respect.) That amount of effort burned out everyone, and to no

one’s surprise, when we needed to ask even more from people at

the end, they couldn’t push themselves any more than they

already were.

2. Communication. A lot of projects credit miscommuni-

cation or lack of communication as factors in causing

delays in the product development cycle and missing the original

ship date. ALICE, unfortunately, was no different. Rogue started

as a nine-person team in one office, a war-room atmosphere

which fostered the “Rogue attitude” of community and a

stream-of-consciousness design flow. That works for a very small

group of people, but simply does not work for a team of 25. We

knew that moving to new offices during ALICE’s design cycle

meant changes to the team’s organization, allowing for more

structure and better information flow. Initially, we tried to leave

our style of open office communication in place at the new

offices with the expanded team. This did not work as planned,

and when coupled with growing to three times the original team

size and having an extremely tight timeline, caused a fundamen-

tal breakdown in communication. Information that should have

been given to all team members about design changes was not

disseminated correctly, and sometimes not at all. This led to a

“blurred” management structure as we tried to insert people into

a new management hierarchy. We also had problems with train-

ing new personnel, as the veterans of the company were trying to

sort out their new positions, train new people, and keep to the

already tight schedule.

3. Lack of predesign time and assets. There are some in

the industry that use the “fly by the seat of our pants”

design path. That was something that we were able to use when

we were a smaller team, but again, as a company grows, it cannot

afford to fall prey to this mistake. With a full team, everyone

73w w w . g d m a g . c o m

LEFT. Blown away. RIGHT. Checkmate; a chess game ending in Alice‘s favor.

needs to understand all aspects of the game, and any allowances

here only make every other aspect of managing the team and cre-

ating the product exponentially harder. We started with a great

high concept and some very detailed character information, but

when we started to develop the levels and overall structure fully,

milestone pressure began to loom, and we had to speed up devel-

opment to make sure that we would meet our obligations.

While this took care of the short-term issues, it left the team

without fully developed goals for the long term. This hurt us most

during crunch, when time is of the essence, and several design ele-

ments ended up needing to be reworked or tweaked at the last

minute. Spending the time to develop the ideas and assets would

have saved weeks of work towards the end of the project. Fully

developing your ideas before you start asset creation also helps

communication flow, because then everyone knows what is sup-

posed to be completed by when and can track the schedule indi-

vidually. This in turn allows the team to have much more person-

al flexibility in their asset creation and working schedule.

4.No time allotted to prototype new gameplay inno-
vations. The entire team had one goal in mind when we

started this project, to make the best game for the PC in 2000.

Most developers have that in mind when they start working on a

title, but we felt that by combining powerful technology with our

intellectual property and a strong team, there was a very good

a p r i l 2 0 0 1 | g a m e d e v e l o p e r74

P O S T M O R T E M

ABOVE. The caterpillar.

chance that we could do this. We

also knew that in order to reach

this mark, we were going to have

to introduce some new and

interesting game elements that

had not been seen on the PC

before, or which had been

accentuated for ALICE. Consumers

and reviewers alike are always seek-

ing the holy grail of innovative

gameplay combined with cutting-

edge technology. At the beginning,

we knew that the schedule

was ambitious. As the

development progressed,

however, slippage in other

areas created an inability to

prototype these new innovations fully. We had to fall back on the

tried but true action/adventure elements, and if you have been fol-

lowing the reviews of ALICE, you know that this is something that

has been seen as an issue with the title. Some of the more interest-

ing elements that were not developed or fully explored were slid-

ing (à la Mario), flying, swimming, and most importantly, more

specialty puzzles designed to fit the Wonderland theme.

5.Outside “help.” I will be honest here and say that we

did have some incredible help on the title by people out-

side of Rogue. When that worked, it was poetry in motion.

However, when it went wrong, it went very wrong. There were

instances of work created that had to be redone by internal team

members, which pulled them away from more important sched-

uled items due to the fact that those assets were needed for a

more immediate milestone. There was an overall problem getting

one particular set of assets from outside that should have been

done months before we shipped, but instead they were done by a

single contractor with only weeks to go. I am a firm believer in

asking for help when you need it, but make sure that the people

you are asking to help will really make a difference. If you plan

on using them to fulfill milestone requirements, and they miss

their milestone or give you assets that cannot be used as is, then

you have wasted not only money, but also that more valuable

commodity, time.

Lessons from the Trenches

G ame development is about taking the good with the bad and

the fortitude necessary to realize creative solutions to chal-

lenges. It was this credo that kept ALICE chugging along and

made its eventual release only one month late. We completed the

product on our original budget, built a team, moved during pro-

duction, and had issues with internal communication, outside

contractors, and a lack of predevelopment. If someone were to

ask what the single biggest lesson that we took away from the

development of ALICE was, without hesitation I would say that it

is the need to plan out the entire

product in advance, before anyone

begins production. Working out the

complete game flow and details would

have greatly reduced the impact of

the problems that arose during ALICE.

Also, as a producer I would tell

anyone interested in running a project,

no matter what size, to learn how to work

in Microsoft Project. It is by no means a magic

bullet, but it definitely allowed us to realize

very early on exactly where we

were going to need assistance

and let us start planning our

path before it became critical.

The last lesson, and one

that we feel the entire team

was part of, is that no matter

what the problem, there is a

solution. It may not be the

best or most graceful solution,

but it’s one that will get the

job done. Creativity in this

industry is not limited to design-

ing games, but is also an essential

part of any successful develop-

ment process. q

a p r i l 2 0 0 1 | g a m e d e v e l o p e r76

The Jack-in-a-Bomb.

The Cheshire Cat.

P O S T M O R T E M

a p r i l 2 0 0 1 | g a m e d e v e l o p e r88

S O A P B O X r i c h a r d r o u s e l l l

omputer gaming is

unique among art

forms in that it has

undergone a transfor-

mation from a solo

medium to a collabo-

rative one. For the most

part, theater has always been

a group effort, and novel writing has

always been a solitary activity. However,

since the early 1980s commercial computer

games have changed from being developed

by a single designer/programmer/artist in a

room alone with a computer into projects

undertaken by large teams in similarly

large offices.

This change has had a number of signifi-

cant effects on game development: manage-

ment has become much more of an issue;

games have become considerably more

expensive to develop, limiting the quantity

and type of games that get made; the games

have changed from representing a distinctly

personal vision to that of a group; and the

position of lead designer/programmer has

been distributed between two separate peo-

ple. While the first three of these effects

may be inherent to the way that computer

games have changed as a medium, the last

change seems to have come about acciden-

tally, and, to my mind, is not a change for

the better.

On one hand, it makes sense from a

management perspective that development

tasks be divided in the most logical way

possible. On cursory inspection it might

appear that designing gameplay is an

entirely different discipline from actually

implementing it. But on the other hand,

there are many advantages to including a

multi-talented designer/programmer on a

team, regardless of the team’s size.

A designer who programs will be able to

implement the design he or she has in mind

perfectly, resulting in time saved both com-

municating that idea to a programmer as

well as reducing the amount of rework

required to get that idea working optimally.

Furthermore, any programmer knows that

coding a game is full of “little” decisions

that no amount of designer forethought is

going to be able to anticipate, yet it is these

programmer choices that ultimately estab-

lish the elusive “feel” of a game. All good

designers know that — regardless of their

own skills — if the programmers working

on the game don’t have a good sense for

gameplay, the final game is not going to be

worth a damn. Who better to make sure

this “feel” is correct than a programmer

who truly understands the game’s design?

Designer/programmers have the further

advantage of better understanding a game’s

core technology, leading to thorough

exploitation of that technology to create a

superior game. Designers with a weak tech-

nical background will often fail to under-

stand what can be accomplished trivially

and what is nearly impossible to pull off.

Indeed, some programmers will use this

fact against unsavvy designers, claiming

that tasks are impossible merely because

they don’t want to add them to the game.

It’s a sad truth that designers who can-

not program are at the mercy of the game’s

programmers and what they feel like

adding to the project. Though a designer/

programmer may not add every last feature

to the project, if the gameplay is not turn-

ing out as hoped, at least a designer/pro-

grammer can step into the code and adjust

it until it’s perfect. Furthermore, designers

who can add features to games themselves

are much more at liberty to experiment

with the gameplay and to try out bizarre

ideas that no one thinks will work. In the

end, such quirky ideas may turn out to be

the best elements of a game.

Despite the many advantages of having

a designer/programmer, few companies

today seem to use them. When I was look-

ing for a new job two years ago, I found

no studios who were interested in hiring

someone who would both design and pro-

gram games. In part this may be because

programmers are so rare that those a com-

pany does find need to be programming

constantly and not spending half their

time working on levels or writing design

documents. Perhaps there are fears, again

from a management perspective, that hav-

ing a designer/programmer concentrates

too much power and responsibility in a

single individual.

continued on page 87

What Ever Happened to the
Designer/Programmer?

Ill
us

tr
at

io
n

by
 C

la
ud

ia
 N

ew
el

l

w w w . g d m a g . c o m 87

S O A P B O X

continued from page 88

But if one looks at the industry’s most

revered designers, one will find that a sig-

nificant number of them started out as

programmers — Richard Garriott, Chris

Roberts, Steve Meretzky, Jordan Mechner,

Dani Bunten Berry, and Tim Schafer, to

name just a few. Furthermore, a similarly

impressive list continue to program on

their projects to this day — Sid Meier,

Peter Molyneux, Ed Logg, Brian Reynolds,

Jason Jones, and Eugene Jarvis. I was for-

tunate enough to interview Sid Meier for

my book, Game Design: Theory and Prac-
tice, and questioned him about how he

could possibly have time to be lead

designer and lead programmer on his

projects when so many teams divide that

position between two individuals. His

immediate answer: “Well, I think they

probably spend half their time talking to

each other, which is something I don’t

have to do.”

The breakout critical and commercial

success of ROLLER COASTER TYCOON is a

prime example of the perfect synergy of

the designer/programmer. Chris Sawyer

was not only the lead designer/program-

mer on the project, he was the only design-

er and the only programmer, making the

game’s development extremely reminiscent

of projects from the early 1980s. It seems

that Sawyer’s filling of both roles gave the

game its very personal feel, a unique vision

that is a huge part of the game’s appeal.

Of course, few commercial games are

small enough in technological and game-

play scope to be developed by a single

person, but having a designer/programmer

on the team can be a boon for any proj-

ect. Though it’s indisputable that many

great games have been designed by people

who have never programmed, it appears

that designer/programmers have a distinct

advantage at creating compelling interac-

tive works. Game studios would do well

to consider this when assembling their

development teams. q

R I C H A R D R O U S E l l l | Richard is currently lead designer and occasional programmer
on the action/RPG GUNSLINGER at Surreal Software. His past credits include CENTIPEDE 3D,
ODYSSEY: THE LEGEND OF NEMESIS, and DAMAGE INCORPORATED. His book, Game Design:

Theory and Practice, is available from Wordware Publishing, with more information available
at www.paranoidproductions.com. He can be reached at rr3@paranoidproductions.com.

	04gameplan
	06saysyou
	08indwatch
	10prodrev
	18profile
	22graphic
	32artview
	40f-young
	54f-pinter
	66postmort
	88soapbox

	return:

