
APRIL 2000

G A M E D E V E L O P E R M A G A Z I N E

D E V E L O P E R

ON THE FRONT LINE OF GAME INNOVATION

600 Harrison Street, San Francisco, CA 94107
t: 415.905.2200 f: 415.905.2228 w: www.gdmag.com

Publisher
Jennifer Pahlka jen@mfgame.com

EDITORIAL

Editorial Director
Alex Dunne adunne@sirius.com

Managing Editor
Kimberley Van Hooser kvanhoos@sirius.com

Departments Editor
Jennifer Olsen jolsen@sirius.com

News & Reviews Editor
Daniel Huebner dan@mfgame.com

Art Director
Laura Pool lpool@mfi.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Jeff Lander jeffl@darwin3d.com
Mel Guymon mel@infinexus.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook Verant Interactive
Susan Lee-Merrow Lucas Learning
Mark Miller Group Process Consulting
Paul Steed id Software
Dan Teven Teven Consulting
Rob Wyatt Microsoft

ADVERTISING SALES

National Sales Manager
Jennifer Orvik e: jorvik@mfi.com t: 415.905.2156

Account Executive, Silicon Valley
Mike Colligan e: mike@mfgame.com t: 415.356.3486

Account Executive, Northern California
Dan Nopar e: nopar@mfgame.com t: 415.356.3406

Account Executive, Western U.S. and Asia
Darrielle Sadle e: dsadle@mfi.com t: 415.905.2182

Account Executive, Eastern U.S. and Europe
Afton Thatcher e: athatcher@mfi.com t: 415.905.2323

Sales Associate/Recruitment
Morgan Browning e: mbrowning@mfi.com t: 415.905.2788

ADVERTISING PRODUCTION

Senior Vice President/Production Andrew A. Mickus

Advertising Production Coordinator Kevin Chanel

Reprints Stella Valdez t: 916.983.6971

MARKETING

Marketing Manager Susan McDonald

Marketing Coordinator Scott Lyon

CIRCULATION

Vice President/Circulation Jerry M. Okabe

Assistant Circulation Director Kathy Henry

Circulation Manager Stephanie Blake

Circulation Assistant Kausha Jackson-Crain

Newsstand Analyst Pam Santoro

INTERNATIONAL LICENSING INFORMATION

Robert J. Abramson and Associates Inc.
t: 914.723.4700 f: 914.723.4722
e: abramson@prodigy.com

CORPORATE
President & CEO Gary Marshall
Corp. President/Business Tech & Channel John Russell
President/Business Technology Group Adam Marder
President/Specialized Technology Group Regina Ridley
President/Channel Group Pam Watkins
President/Electronics Group Steve Weitzner
General Counsel Sandra L. Grayson
Vice President/Creative Technologies Johanna Kleppe
General Manager/Game Media Division Greg Kerwin

I
t’s difficult to believe that nearly
one year ago the Columbine
High School killings took place.
In the wake of their violence, our

industry (not to mention other media
sectors) experienced close scrutiny from
every corner in an attempt to establish
a cause-effect relationship with this dis-
aster. Today, we’re still no closer to
understanding the cause of that ran-
dom violence, and I suspect we’ll never
know what motivated gunmen Harris
and Klebold. However, despite all of the
unanswered questions, I’ve been heart-
ened by the way our industry has con-
tinued to evolve and shoulder the
responsibility that is ours to carry. In
the past year we neither compromised
our artistic game design ideals, nor did
we sit back uninterested. Instead, the
industry continued to defend the rights
of developers to express themselves
while improving the ways that it alerts
the public (parents in particular) about
the content of games.

For me, the most affirming event of
the past year was watching Doug
Lowenstein, Chairman of the Interac-
tive Digital Software Association, share
the stage with Sen. Joseph Lieberman
(D-Conn.) on C-SPAN and detail the
strides that the industry made to
improve the effectiveness of the Enter-
tainment Software Ratings Board’s rat-
ings system, including expanded efforts
to educate retailers and parents around
the United States about the system.
Lieberman, a longtime critic of violent
videogames, was as upbeat about our
industry as I’ve ever seen him.

Another point of progress over the
past year was the ESRB’s establishment
of a new arm called the Advertising
Review Council (ARC), charged to
“ensure that advertisements placed by
U.S. computer and videogame software
makers are appropriate, responsible,
truthful, and accurate.” The ARC was
announced in October, but the seeds of
its creation really go back to 1998.
Commenting on the ARC’s establish-
ment, Lieberman stated, “I want to
applaud the videogame industry for
taking seriously the concerns that were
raised in the wake of Littleton and try-
ing to do something about them. These

measures, taken together, are a real ges-
ture of responsibility, and an important
step forward in our ongoing efforts to
help parents protect their children from
the harms of digital violence.”

On one hand I’m glad to see Lieber-
man acknowledge our efforts, but I also
believe that in the absence of Colum-
bine and other senseless tragedies, we
would have taken the same course of
action. At last year’s E3 I talked to
many developers who felt the same
sadness as the rest of country. These
developers, like the vast majority of
people in our industry, genuinely care
about the effect that games have on
children. Because of this, I’m confident
that our progress in the areas of ratings
and advertising are the result of our
commitment to responsible actions,
not knee-jerk reactions to violent
events or political pressure. It’s about
us acting responsibly, and it makes me
bullish about our future.

ADIEU, OMID. It’s with regret that I bid
columnist Omid Rahmat goodbye from
the magazine. Omid has defected from
our ranks to join Expertcity.com, where
he’ll be heading up business develop-
ment efforts. We’ll miss Omid and wish
him all the best at his new .com job,
and most of all we hope he remembers
us when he’s flush with IPO cash.

HELLO, CMP. You may have noticed a new
logo on the upper left-hand corner of
this month’s cover. What’s this “CMP”
you ask? Last year the parent company
of this magazine, Miller Freeman,
acquired the large high-tech publishing
company CMP Media, and beginning
this month Game Developer will be pub-
lished under the CMP brand. The CMP
moniker will also attach itself to the
other products and services we provide
to the game development community,
including the Game Developers Confer-
ence, Gamasutra.com, the GAMEX-
ecutive Conference, the GDC HardCore
Technical Seminars, and the Indepen-
dent Games Festival, so you may seeing
it quite a bit from now on. ■

G A M E D E V E L O P E R A P R I L 2 0 0 0

2

P L A NG A M E

One Year Later....

D E V E L O P E R

ON THE FRONT LINE OF GAME INNOVATION

Game Developer

magazine is

BPA-approved

Stop the Game, I Want to Get Off

I
always enjoy reading the Postmor-
tems in Game Developer to see the

mistakes developers make, and also to
get a window into the work practices of
other games companies. In the Post-
mortem of AGE OF KINGS (January
2000), Matt Pritchard told us that
developing the prequel AGE OF EMPIRES

involved “working nonstop” for six
months, which “took a heavy toll on
people,” so that the company decided
to try to avoid this for AGE OF KINGS.

The way they tried to improve things
was by spreading out the crunch times,
and during crunch working 10 A.M. to
midnight, Monday through Friday,
with Wednesday nights ending at 7 P.M.

Is it just me or does this still sound
pretty bad? I guess doing this for a
week, or maybe two, wouldn’t be so
bad, but to do it for any longer peri-
ods, and repeatedly, sounds painful.
Working these hours will strain your
marriage, your family, and your friend-
ships outside work. To attract and keep
more experienced or specialist staff
(who are often older, married, and have
families), this would not be a recom-
mended working practice.

As you work longer hours over pro-
longed periods you become weary and
the quality of your code deteriorates.
When games were smaller projects
with one or two programmers, the
quality of your code wasn’t so impor-
tant, you could just cobble it together.
On larger projects as games are now,
sloppy code will leave you increasingly
drowning in bugs as you struggle to
make headway at the end of your pro-
ject which is “almost finished.” These
long hours will stretch your team rela-
tionships and tensions may develop,
leading to unmotivated (and therefore
less productive) staff, and people might
start to leave. As an industry, can we
please leave these barbaric and coun-
terproductive methods behind?

D r . P a u l T a p p e r

I n f o g r a m e s

v i a e - m a i l

Don’t Gamble on Our Artistic Vision

I
must come down firmly against con-
tent in Game Developer like Steve

Boelhouwer’s “Playing for Keeps:
Developing Casino Games”(January
2000). The obvious rationale for
including an article on gambling
devices in the magazine is that they’re
games themselves, running on com-
puters. This is where I think we need to
be careful. The two industries
(arcade gaming
and slot
machines)
make differ-
ent choices as
to how they
operate because
they’re funda-
mentally different.

Any
visual sim-

ilarity doesn’t
change that.
Transitively, this
means that com-

puter games
and gambling

devices are sepa-
rate entities in sep-

arate industries.
While I agree that

nobody can decide whether a game is
or isn’t “art,” I believe that you can
look at certain environments for game
creation and say how much room for
artistic innovation they offer.

Therefore, I feel pretty comfortable
saying that developing the digital con-
tent for slot machines doesn’t offer a
very artistically fertile environment.
(Note that I don’t mean this in the
graphical sense; graphically the slot
machines are quite beautiful, I mean
this in the sense of the game itself.)
You have fairly ironclad bounds on
how the game plays and works, and it
corresponds to a fairly mundane sys-
tem with a rather limited control set.
Plus, you’re catering to an audience for
whom the maximum requirement is
that they be able to put quarters in a
slot; requiring these people to be capa-
ble of ten-move combos, fast reflexes,
deep puzzle-solving, or army micro-
management is a losing proposition.

So you could ask, “So what? Why
can’t the magazine talk about opportu-
nities that maybe aren’t very innovative
and don’t offer much room for expres-
sion as game designers? It still offers
opportunity, what’s the problem?”

Here, I’ll admit that I’m making some
value judgments. But those value judge-

ments boil down to this: I want Game
Developer to be a magazine about inno-
vation and advancement in game devel-
opment. In times where there’s such a
push to drive our industry to crass com-
mercialization, I think it’s important to
keep focused on the artistic qualities of
our industry. You know, the qualities

that keep us here instead of in
other computer industries

where the jobs are a little
more secure and the
pay’s better. I’m not say-
ing that money is evil, or

that we should all wear
berets and smoke cigarettes

out of those stylus things. I’m just
saying that unless we keep focused on
the aspects of this industry that tran-
scend money as an attractive force, our
industry will eventually become a
generic field of computing (just one that
happens not to pay as well as others).

B r i a n S h a r p

v i a e - m a i l

AUTHOR STEVE BOELHOUWER RESPONDS:

My purpose in writing this article was to shed

light on an industry segment which many

game development professionals may be

only casually familiar with. You are correct

that the design parameters and objectives

for electronic gambling devices can be quite

different from those of other game genres,

just as an RPG has drastically different objec-

tives from those of a first-person shooter. As

a longtime reader of Game Developer, I enjoy

coverage of all of these genres, and would

be disappointed if the publication were to

narrow its focus and exclude certain aspects

of our industry. You touched on career

opportunities; this being a trade magazine

(as opposed to a publication for game fans),

I for one would like to continue to read about

areas where our skills may be of value.

With respect to the degree of innovation

and “artistic fertility” possible in the indus-

try, I would again opine that this is simply a

function of the design parameters and

objectives. The design and technology in

modern gambling devices are more complex

than perhaps you are aware. Furthermore, I

disagree that “these people” (your descrip-

tion of casino patrons) are somehow inca-

pable of enjoying advanced game-play fea-

tures. In fact, a key design goal for the

future will be to incorporate innovative fea-

tures while still maintaining the fun and

excitement of the gambling experience. We

would welcome talented professionals such

as yourself to join us in this task.

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

4

Y O US A Y S

We’ll lend you an ear. E-mail us at
editors@gdmag.com. Or write to

Game Developer, 600 Harrison Street,
San Francisco, CA 94107.

F

h t t p : / / w w w. g d m a g . c o m A P R I L 2 0 0 0 G A M E D E V E L O P E R

New Products
by Daniel Huebner

Pixel Prestidigitation

IMPULSE’S new Illusion: The Magic of
Pixels is a particle effects system and
compositing tool that aims to combine
maximum control with absolute ease
of use. Illusion allows users to work in
a 2D environment with a WYSIWYG
display showing what is going on dur-
ing all work stages.

The key to Illusion’s speed is its use
of images to simulate a larger number
of particles, reducing calculation and
rendering time. Users can even use an
.AVI or a series of images to create ani-
mated particles.

Effects can be added by selecting a
specific effect from Illusion’s emitter
libraries and placing it on the stage.
Many emitter properties can be manip-
ulated directly from the main work-
space, and low-level properties can be
accessed through an emitter properties
dialog while still providing a real-time

preview of the changes. Illusion sup-
ports multiple layers and other func-
tions to integrate effects easily into a
3D environment.

Illusion: The Magic of Pixels is
priced at $249 and runs on Windows
95/98/NT 4. An OpenGL accelerator is
recommended.
■ Impulse Inc.

Las Vegas, Nev.

(702) 948-1100

http://www.coolfun.com

Nichimen’s High Hopes for the Future

MIRAI is Japanese for “prosperous
future,” and Nichimen Graphics has
upgraded its modeling and animation
software package of that name to
ensure it meets its lofty goal. Mirai 1.1
is the next evolution of Nichimen’s
suite of real-time content creation
tools, which replaced N-World as Nichi-
men’s flagship package upon its origi-
nal May 1999 release.

Mirai 1.1 contains enhancements to
the render speed, display, and I/O of the
original Mirai. The upgrade offers com-
plete support for Game Exchange 2.1 as

well as improved
export to .OBJ
and .3DS file for-
mats. Geometry
enhancements
include addition-
al default model-
ing options,
improved camera
manipulation,
and magnet
move multiple
vertices on nor-
mals with falloff.
Skeletal anima-
tion advances
support magnet
operations,
squash and
stretch, root rota-
tion, and new

display options and deformer icons.
Mirai 1.1 includes support for additional
domains including Sony, N64, and
Dreamcast, and supports attribute trans-
lation between domains.

Mirai 1.1 is available for IRIX 6.3 or
higher and Windows NT 4. It is priced
at $6,495.
■ Nichimen Graphics Inc.

Los Angeles, Calif.

(310) 577-0500

http://www.nichimen.com

Breaking Down Development Barriers

CRITERION SOFTWARE has announced a
new plug-in for Renderware 3 that can
export world, object, and animation
data created in Maya. Available for
both PC and Playstation 2 platforms,
the plug-in allows developers to build
game levels and characters using a
completely integrated package, model-
ing and animating in Maya while
using Renderware 3 as the run-time
engine.

The Maya exporter plug-in allows
users to export entire 3D game worlds,
complete with UV texture coordinates
and vertex prelighting. The plug-in
can also export textured objects and
animations. Supported animation
types include morph target, keyframe,
animation sequence, and Renderware
3’s proprietary “skin and bones” for-
mat. Criterion plans future support for
Maya’s procedural materials, skinning
and weighting tools, and motion cap-
ture data in an upcoming version of
the exporter plug-in.

The Maya exporter plug-in for Ren-
derware 3 is included as part of the
standard Renderware 3 SDK at no addi-
tional charge, and complete source
code is provided to allow users to cus-
tomize the tool.
■ Criterion Software Ltd.

Guildford, Surrey, U.K.

+44 (1483) 406233

http://www.renderware.com

New Products: Impulse introduces
Illusion for particle effects, Nichimen
upgrades Mirai, and Criterion offers a
Maya plug-in for Renderware 3. p. 7

Industry Watch: Sony consolidates
in preparation for the PS2 launch, 3dfx
trims the fat, and Monolith spins off
Lithtech Inc. p. 8

Product Update: Jeff Lander reports
on what Digimation and Intel have
been up to since he reviewed the Multi-
Res Mesh in November 1999. p. 10

News from the World of Game Development

7

Illusion’s self-styled “WYSIWYG” interface offers real-time

previewing of particle effects in a 2D environment.

B I T B L A S T S - I N D U S T R Y W A T C H

Industry Watch
by Daniel Huebner

SONY CONSOLIDATES. In preparation
for the upcoming Playstation 2 launch,
Sony Computer Entertainment of
America is making moves to consoli-
date its operations. SCEA will merge
spin-off developer and publisher 989
Studios into Sony Computer Entertain-
ment America. Kelly Flock is due to
step down as 989’s president April 1,
and leadership of the studio will fall to
SCEA’s management team with Kazuo
Hirai as president and CEO of the
entire North American operation. In
addition, Shuhei Yoshida will join the
merged organization as vice president
of product development.

3DFX STREAMLINES. As part of an
aggressive program to return to prof-
itability, 3dfx Interactive announced
approval of a plan to spin off its Spe-
cialized Technologies Group (STG) and
reduce the company’s overall workforce
by 20 percent. The STG, which focuses
on commercial multi-channel video
and display, accounts for some of the
workforce reduction, while other reduc-
tions will come from layoffs and attri-
tion in redundant areas. Most affected
will be 3dfx’s administration, opera-
tions, sales, and software support
departments. CEO Alex Leupp said the
measures will help put the company in
a more favorable position for its new
fiscal year, which began January 1. One
notable departure is the retirement of
Bill Ogle from his position as executive
vice president and vice chairman of
3dfx’s board of directors. Ogle joined
3dfx as part of the company’s 1999
merger with STB Systems, which Ogle
co-founded in 1981.

MATTEL RESIGNATION. Mattel CEO Jill
Barad resigned after failing to stem the
decline of the company’s sales and
profits. Barad announced her resigna-
tion after Mattel announced its fourth-
quarter losses in February. The compa-
ny posted a net loss of $18.4 million
on sales of $1.77 billion. Mattel had a
net profit of $86.7 million on sales of
$1.82 billion in the same period last
year. Barad took the top job at Mattel
in 1997 and oversaw Mattel’s struggle
with last year’s $3.5 billion acquisition

of The Learning Company. Mattel
board members William Rollnick and
Ronald Loeb took on the respective
roles of acting chairman and acting
chief executive as the company under-
took its search for a new CEO.

MONOLITH FOUNDS LITHTECH INC.
Monolith Productions has announced
a technology spin-off, Lithtech Inc.,
dedicated to the creation of real-time
3D development and networked multi-
media operating systems. The company
will become the caretaker of Mono-
lith’s Lithtech 3D engine technology
licensing program, and has named 19-
year Microsoft veteran Gregory Whit-
ten as chief software architect. “Lith-
tech Inc.’s ability to attract someone of
Dr. Whitten’s caliber confirms our
belief that our technology implementa-
tion is state-of-the-art,” said Monolith
Productions CEO Jason Hall.

SORENSEN LEAVES LUCAS. Jack Soren-
sen has stepped down as president of
LucasArts Entertainment. At the time
Sorensen made the announcement in
February he did not specify what his
future plans would be, saying only
that he would take some time to work
through his opportunities. The Lucas-
Arts board in turn promoted Simon
Jeffery from his role as product devel-
opment director to replace Sorensen
as president. Jeffery joined LucasArts
in 1998 to help expand the company’s
international business. “Former presi-
dent Sorensen shaped the company’s
strategic direction, and I credit him
with building LucasArts into one of
the world’s leading developers and
publishers of interactive entertain-
ment software,” said LucasArts board
chairman George Lucas. Sorensen’s
resignation follows closely on the

heels of other high-profile departures
from the company, including that of
designer Tim Schafer. The LucasArts
board also appointed May Bihir to the
newly created position of vice presi-
dent of worldwide sales and named
Lucasfilm executive vice president
Micheline Chau as lead director of the
LucasArts board.

DAVIES DEPARTS DIGITAL ANVIL. Digi-
tal Anvil president Marten Davies left
the firm February 1. Digital Anvil had
originally envisioned itself as an inde-
pendent publisher, but consolidation
in the industry led the company to
pursue development, leaving Davies
with a less obvious place in the com-
pany’s plans. Davies commented upon
his departure that he had “enjoyed the
challenge of assisting the company in
laying the foundation stones for its
current and future success,” but he
was “unable to bring any more imme-
diate value to the equation.” Digital
Anvil’s founder and chairman Chris
Roberts said that the company would
not name a successor; rather, it is
dividing Davies’s responsibilities
among other members of the execu-
tive team. ■

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w. g d m a g . c o m

8

3D Conference & Expo

SANTA CLARA CONVENTION CENTER

Santa Clara, Calif.
May 7–11, 2000
Expo: free w/early registration
Conference: $395–$895
http://www.3dshow.com

Electronic Entertainment Expo

LOS ANGELES CONVENTION CENTER

Los Angeles, Calif.
May 11–13, 2000
Expo: free to qualified industry

professionals
Conference: $275–$450
http://www.e3expo.com

UPCOMING EVENTS

CALENDAR

The Lithtech engine is getting its very

own company spun off from Monolith.

B I T B L A S T S - P R O D U C T U P D A T E

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w. g d m a g . c o m

10

Digimation’s Real-
Time 3D Libraries

by Jeff Lander

I
n November 1999 in this very
space, I took a look at the MultiRes
Software Toolkit from Digimation.

This product was created at the Intel
Architecture Labs. And no, the gang up
at Intel hasn’t spent the last few
months hunkered down in their Y2K
bunkers. They have been cranking
away on some great 3D technology.

This toolkit expands on the automat-
ic level-of-detail (LOD) technology of
the original toolkit by adding modules
for subdivision surfaces, non-photore-
alistic cartoon rendering, skeletal char-
acter animation, and particle systems.
These modules have been integrated
into a single 3D rendering system. A
sample application allows you to try
out the various settings in each render-
ing module. These settings can then be
used in your game project to achieve
the same effect. Each module is sold as
a separate license so developers can
pick and choose only the pieces they

really need for production.
MULTIRES 2. MultiRes 2 implements a
continuous level-of-detail system for
3D objects. This system allows game
programmers to dynamically scale the
number of polygons in a model up or
down to achieve the ideal speed vs.
quality ratio for any rendering sce-
nario. For example, when a character is
farther away from the camera, the
number of polygons can be reduced
significantly, thus lowering the time
needed to render that character. With
the ability to adjust the polygon count
of an object in continuous steps, the
MultiRes system avoids the annoying
“popping” effect seen when a model
with a small number of discrete levels
of detail is used.

The MultiRes Mesh component in
the toolkit is largely unchanged from
when I last looked at the package. The
API has been changed slightly to inte-
grate with the other pieces of the
toolkit.
SUBDIV RT. The first new feature in the
toolkit is a subdivision surface system.
If you followed Brian Sharp’s two-part
series on subdivision surfaces (January
and February 2000), you are already
aware that this technology allows you
to dynamically increase the complexi-
ty in a simplified basic mesh. This
works by adding triangles to fill out
the detail in a base mesh. For exam-
ple, it will smooth out a curve by pro-
gressively adding more triangles to the
object.

You can see this in Figure 1. In the
simple low-resolution base mesh on
the left, the detail is progressively
added in the center mesh, achieving a
halfway-point mesh and then finally a

very detailed final model, shown on
the right.

Using the SubDiv RT toolkit, you
have a great deal of control over the
subdivision method. One option is to
decide to subdivide the mesh uniform-
ly, so an equal number of triangles is
created for each triangle in the original
mesh. Another option is to use adap-
tive subdivision where the mesh
divides to a level based on a user-sup-
plied metric.

An interesting application for subdi-
vision surfaces is using this technology
in combination with the MultiRes sys-
tem for online applications. In an on-
line game situation, when a unique
character is encountered, it may be
necessary to download geometry for
that character. By using subdivision
surface technology, a very simple base
mesh could be downloaded immediate-
ly to the user. This could be subdivided
adaptively to make a nice-looking
mesh. While this mesh is used, a high-
er-resolution MultiRes mesh can be
downloaded in the background. Once
it is available, the system can switch to
the MultiRes system and use all that
artist-created detail directly.
BONES RT. This package offers a real-
time skeletal deformation system that
can be used with both of the above
rendering technologies. Using this sys-
tem, a base mesh is deformed by a
user-provided skeleton. The Bones RT
toolkit provides algorithms to refine
the weight system that attaches the
skin to the skeleton. The user ani-
mates this skeleton and the Bones RT
system deforms the skin automatical-
ly. By using quaternions to represent
the orientation of each bone in the

system, the animation
frames can be interpo-
lated smoothly to create
nice in-between frames.
You can see a sample
creature with an embed-
ded skeleton along with
the skeleton control
dialog in Figure 2.

One interesting addi-
tion to the skeletal sys-
tem is the use of what is
called BoneLinks. These
are mini-bones that are

Jeff has been writing way too much lately to be able to come up with a clever bio. Show him up by sending him something funny
about yourself to jeffl@darwin3d.com.

F I G U R E 1 . Subdivision surface sample.

B I T B L A S T S - P R O D U C T U P D A T E

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w. g d m a g . c o m

12

inserted between each bone at the
joint to combat the problems of pinch-
ing and twisting that sometimes occur
at skeletal joints.
RENDER RT. The Render RT module
allows you to use non-photorealistic
rendering techniques with a mesh gen-
erated by any of the other object tools.
This module incorporates all of the
ideas I discussed in my March column
on cartoon rendering (“Shades of
Disney: Opaquing a 3D World,” Graph-
ic Content, March 2000). Render RT
detects silhouette edges as well as the
edges defining material borders. These
lines can be drawn with different col-
ors, different thicknesses, and with or
without antialiasing. The characters
can then be shaded using different
paint styles. The classic cartoon style
allows you to define a shadow, high-
light level, and threshold. This shading
is applied to the base material color to
create the “toon” look.

Beyond the cartoon shading, howev-
er, Digimation has added a sketch style
that applies line textures to the object
so it looks as if the character has been
sketched. This is a multi-pass method
that requires more rendering time, but
it really looks different from traditional
computer graphics, as you can see in
Figure 3.
PARTICLE RT. The last module in the 3D
Toolkit handles particle-system ren-
dering. Unlike the other modules, this
system doesn’t really work directly
with the other technologies but is
more of a stand-alone particle system
API. The API allows the user to con-
trol the generation, behavior, and
look of the particles in the system.
Forces can be created that interact
with the system, such as wind and
gravity. The particles can be con-
strained to follow a path and you can
also create collision boundaries for the
particles. By applying textures to the
particles and controlling the scale
dynamically, a great variety of effects
can be achieved.
TOOLKIT SDK. The key feature of this
toolkit is its API. The API allows devel-
opers to use this technology in their
own projects. As with the MultiRes
Mesh Toolkit, all of the run-time
source for each module is included, so
you can integrate the package easily
into your own productions.

Each module also includes a sample
viewer with source code along with

documentation for both the API and
the viewer.
PLUG-IN FOR 3D STUDIO MAX. To generate
content for these systems, there is an
export plug-in for 3D Studio Max. The
plug-in allows you to define the API
export parameters through a control
interface. For users who do not work
with Max, the API creation routines can
be used with your own custom tools.
THE BOTTOM LINE. The Digimation Real-
time 3D Libraries are a sophisticated

collection of technology, and the
source code is ready to be incorporated
into a variety of 3D projects. It marks a
significant enhancement of the origi-
nal MultiRes 3D Toolkit. Each module
is licensed separately so you are not
required to buy something you are not
going to use. If you are developing a
3D game project that requires cutting-
edge 3D technology and looking for a
head start, you should certainly check
it out for yourself. ■

Digimation Inc.
St. Rose, La.
(800) 854-4496
http://www.digimation.com

Software Requirements:
3D Studio Max for the plug-in;
Windows 95/98/2000/NT 4.0;
Run-time code is portable to other

platforms.

Pricing: Each module price is given per
finished game title.

MultiRes 2 RT: $10,000 including three
copies of the Max plug-in.

SubDiv RT: $10,000

Bones RT: $10,000

Render RT: $5,000

Particle RT: $5,000

MultiRes 2 plug-in for 3DS Max: was
$295, currently priced at $99

Digimation’s Real-Time 3D Libraries with
Intel Scalable 3D Graphics Software Technology:

F I G U R E 3 . The Render RT module adds a sketch effect to cartoon shading for a

different look.

F I G U R E 2 . Skeletal system and controls in the Bones RT module.

b y J e f f L a n d e r G R A P H I C C O N T E N T

CUT TO:
EMPTY SIDE STREET — MED. FULL

Camera tracks BURKE walking slowly
up Catalina. Footsteps can be clearly
heard following. BURKE notices and
eyes dart but does not turn. Shot
widens as he continues up street.
ROCCO enters frame following BURKE
casually strolling along smoking.
BURKE turns to a stop in front of a
restaurant, “examining” the menu.
ROCCO comes to a stop in a doorway,
puts out his cigarette with his shoe.

CUT TO:
REVERSE — OTS TWO SHOT — MED.
FULL

BURKE turns continuing down street.
ROCCO starts to follow again. BURKE
grimaces as footsteps resume. Camera
tracks ahead of BURKE showing
ROCCO over shoulder. Continues lead-
ing him until he comes to a newsstand.
He stops and turns to pick up and
examine a paper, footsteps slow behind
him coming to a stop.

CUT TO:
MED. CLOSE — BURKE

He picks up a magazine, eyes alert. Try-
ing to catch a glimpse of his pursuer to
his right out of the corner of his eye.
Suddenly a hand grabs his left shoulder.
He jumps.

CUT TO:

TWO SHOT — BURKE AND STAND
OWNER

STAND OWNER
I’m not running a library here,
Mac. That’ll cost you a nickel.

BURKE takes a beat, tucks the paper
under his arm, and tosses the man a
coin. Turns to continue down street.
Footsteps continue behind him. He
quickens his pace. The footsteps quick-
en. He breaks into a run. His pursuer
starts to chase.

ULTRAVIOLENT — TERRIBLY FASCI-
NATING STORY BEGINS...

From Big Screen to Game Screen

A
ll right, so it’s a cliché action
sequence. I’m a programmer and

this is not my latest screenplay. But
that’s not the point. A quality director
can take these simple ideas and create
tension, drama, and anticipation. These
are exactly the qualities that pull people
into a story. However, in interactive
game applications, generating feelings
of tension and drama is very difficult.

It’s easy enough to create a cinemat-
ic cutscene that follows traditional
filmmaking techniques. However, this
yanks the player out of the interactive
experience. Modern 3D game engines
can create cinematic sequences within
games, but most of the time these

sequences are completely scripted
using traditional animation tech-
niques. The sequence fires when the
player enters a location, pulls a lever,
or triggers some other mechanism.
Once started, the sequence follows a
deterministic path. The game designer
now has a choice to make. The first
option is to control the camera shots
to show the drama, suspending the
interactivity. Second, the player can
maintain complete camera control and
try to catch the action. This can create
a great sense of “What’s going on up
there?” as you rush to find a view-
point. HALF-LIFE used this technique
very effectively. However, crucial
information cannot be delivered in
this manner as the player may miss it
by spending too long studying the
magnificent architecture.

The ideal solution would be to pre-
sent the drama to the character as
much as possible while allowing the
player full control. It’s clear to me that
the camera system in a story-driven
game needs to be a crucial character. It
needs to be aware of what the player is
doing, what is going on in the world.
The camera needs to be “intelligent”
enough to find the best viewpoint to
show the player what’s going on with-
out ruining the dramatic element. To
address this situation, I’m going to
explore the idea of “camera AI.”

Smart Cameras

C
onventional game wisdom seems
to hold that 3D real-time shooters

must use a first-person camera while
story-driven 3D action and adventure

h t t p : / / w w w . g d m a g . c o m A P R I L 2 0 0 0 G A M E D E V E L O P E R

15

Lights...Camera...Let’s Have

Some Action Already!

E
XT. STREET — NIGHT — WIDE HIGH ANGLE

Camera tracks BURKE as he walks down rain-drenched street. Light foot

traffic. BURKE nods to a doorman and continues, turning right on

Catalina Street.

Jeff is the lead programmer and chief idea monkey at Darwin 3D, but what he real-
ly wants to do is direct. When not out pitching his latest spec script, he can be
harassed at jeffl@darwin3d.com.

games need to use a third-per-
son camera. This may be the
case. It is certainly true that
the first-person point of view
(POV) is not an effective
movie storytelling paradigm.
If you get the chance to see
the film Lady in the Lake
directed by and starring
Robert Montgomery, certainly
check it out. It is a very inter-
esting moviemaking experi-
ment. Montgomery filmed
almost entirely from a subjec-
tive point of view. The only
time you see the protagonist
is in reflection. While com-
pellingly different and not a
bad movie in its own right, it
shows dramatically why the
first person is not the most
effective method for convey-
ing drama.

Take the rough scenario I
outlined at the beginning of
the column. Played in the first
person, I would hear footsteps
and need to swing the camera
around to catch what was
going on. All the subtlety
would be gone. My shadow
would either simply be hidden
when I turned, or be caught
diving behind a wall, cover
blown. Likewise, for the news-
stand sequence, I would need
to rely completely on sound to
convey the surprise from the
stand owner grabbing my
shoulder. While all these
issues have solutions, the first-
person POV certainly limits
the possible options. With this
in mind, let’s take a look at
automated methods for third-
person POV cameras.

The Shooting Gallery

T
o begin with, I need to
create a frame of refer-

ence for all the shots I want to
compose. Fortunately, many years of
cinematography have provided a
ready-to-use guideline for shot compo-
sition. Let me start with the framing of
a shot for a single person. Obviously,
the simplest step would be to divide
the shots into long, medium, and
close. A long shot would include the

character and the environment, a
medium shot might be the character
from the knees up, and a close-up
would be just the head.

This doesn’t really give the fine-grain
descriptive terms that would be useful
for framing a character. Typically, cine-
matographers frame the human figure

using nine basic shots. The
terms I am going to use are:

• Extreme close-up
• Medium close-up
• Full close-up
• Wide close-up
• Close shot
• Medium close shot
• Medium shot
• Medium full shot
• Full shot
You can see the framing for

these shots in Figure 1. Once
defined, these different shots
are easy to work with in a
real-time 3D game scenario.
The goals are to center the
character on the screen at the
proper distance for the vari-
ous shots. The first thing to
find is the camera target,
where I am going to point the
camera. I could track a series
of focus points on each char-
acter. Fortunately, I embed a
skeletal system inside my
characters so I can animate
them. The base of each bone
in my skeletal system is a
ready-to-use focus point. I
just pick the appropriate bone
base to “look at” and use that
as the camera target. For
some of these shots, the focus
point will be in between
bones, but it’s easy enough to
interpolate the position
between them.

Getting the right framing
once I have the correct focus
point is a bit trickier. I have
two parameters I can play
with. I can change the dis-
tance of the camera to the
character or I can change the
field of view (FOV) on the
camera, effectively zooming
in or out on the character. I
have found that game play-
ers are very sensitive to FOV
changes. If the field is too
wide, the view takes on a
fish-eye lens look (Figure 2)

which can be very annoying (or cool,
depending on your needs). If the field
is too narrow, objects are hard to keep
centered as subtle movements are
exaggerated by the extreme zoom
(think sniper rifle). So, I try to stay
away from adjusting the FOV whenev-
er possible. It’s much better to move

G R A P H I C C O N T E N T

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

16

F I G U R E 1 . An array of commonly used terms for describing

shot selection.

F I G U R E 2 . The fish-eye effect can be an unintended result

of incorporating too much width in the field of view.

the camera. However, because we are
in an interactive world, the players
can move around into situations
where the camera is in a tight squeeze
and pulling back is not possible with-
out breaking through part of the set.
Here, a little zoom now and then is a
good thing.

So, using these simple guidelines, I
started to create some “camera AI”
routines. Given a character and a
desired framing, the camera routine
will start moving the camera to the
desired position. This gives me the
ability to say, “I’m ready for my close-
up, Mr. De Mille,” and it happens —
all without any keyframes or scripting.
But monologues are not very exciting.

Let’s Strike Up a Dialogue

A
dding a second charac-
ter to the mix compli-

cates things quickly. Let’s
consider a scenario where a
character walks up to another
and starts talking. I start by
tracking the main character
with a full shot, as in Figure 3
for example.

As my character walks
along, the other character can
either approach me, or I can
approach and start talking. At
this point a dialogue is initiat-
ed and I need to start consid-
ering both actors in the scene
as a pair. There is an imagi-
nary line connecting the two.
This line is actually very
important as it defines a verti-
cal plane that a camera cut
between two cameras should
not cross in most situations. I
have seen several games and
even some movies make this
mistake. “Crossing the line”
can really disorient the viewer
because when a camera cut
crosses the line, the relation-
ship between the parties
changes. The character on the
right is suddenly on the left
and your mind doesn’t imme-
diately follow the motion
path of the camera.

I start off with an establish-
ing shot that shows the spe-
cial relationship between the
two characters. If I’m lucky,

the standard single-player camera
shows the character adequately and
can be used as an establishing shot. If
for some reason the view of the sec-
ond character is blocked, the camera
needs to swing around to frame both
characters in the view. I just spin the
camera around the key character until
both are in view. At this point, I can
set up my dialogue cameras.

For two characters in a dialogue, I set
up a bunch of virtual cameras that I
can cut between while the dialogue
takes place. All of these cameras are on
the same side of “the line.” I decide
which side to stay on based on the ini-
tial positions, the direction each char-
acter is facing, and the environmental
restrictions. Usually, there is a pre-
ferred side that is obvious given the

conditions. The cameras I set up,
shown in Figure 4, are:

1. Group profile: camera perpen-
dicular to the line, framing both
subjects.

2–3. Individual profiles: one camera
framing each character.

4–5. OTS: over-the-shoulder shots of
each subject.

6–7. Reaction shot for each subject.
Now, that looks like a lot of cameras.

However, one thing I always find
amazing about 3D games is that cam-
eras are so underutilized. From a tech-
nical perspective, cameras are dirt
cheap. A position, orientation, and
field of view are all you really need.
There is absolutely no reason for
games to use the same camera, pan-
ning, swiveling, and gliding every-

where. Camera cuts are a very
important part of storytelling.
When was the last time you
watched a film or television
show that used a steady-cam
following everyone around all
the time? (Well, don’t count
the opening sequence of
Touch of Evil.) That is what we
have currently in most games.
(All right, mini-rant mode
off.... Now back to our story.)

Using the action line
between the characters and
the character positions, these
camera positions are calculat-
ed using simple 3D math. As a
guideline, I have found that
about ten degrees off the
action line is good for the OTS
cameras and 60 degrees is
good for the reaction shots.
The other cameras are just per-
pendicular to the line. You
remember how to take the
perpendicular to a vector,
right? (Big hint: Swap X and Y
and negate one.) During the
scene, the action line can
move if the participants move.
Anytime that happens, the
cameras just get recomputed.

Once all the cameras are
set up, I need to determine
which ones to use. This is
where the camera AI comes
in. The camera system needs
to know about the characters.
Who is talking? What’s the
emotional state of each char-
acter? For example, when a

G R A P H I C C O N T E N T

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

18

F I G U R E 3 . Adding a second person requires careful shot

selection to help viewers understand what is going on.

F I G U R E 4 . A camera setup for a two-person dialogue, offer-

ing a variety of camera cuts for different moods and effects.

character is talking, you probably
want to use either the OTS camera or
the profile camera that shows the
speaker. While the character is speak-
ing, you may occasionally want to
switch to a reaction shot, particularly
if the “mood” of the character dramat-
ically changes based on the AI, script,
or whatever. This is also where that
real-time facial animation system you
invested in earns its pay. Believable
emotional reactions will really build
the drama of the scene.

I used a very interesting reference
source (see “The Virtual Cinematogra-
pher” in For Further Info) to set up a
finite state machine that decides which
camera to switch to depending on fac-
tors similar to the above, as well as
delay timers. Another very good idea
they suggested is to prompt the AI of
the characters to move a little if they
are too far apart or are blocking the
camera. Though I haven’t tried that yet,

it certainly makes a
lot of sense.

Two’s Company,
Three’s a Crowd

E
xtending this
idea to more

than two subjects
complicates the
setup quite a bit.
For three people, a
line can be estab-
lished between two
of the participants
based on who is
speaking and who
is facing one
another. The gen-
eral patterns for a
three-person con-
versation will fall into an “A” or “L”
pattern depending on the layout of
the participants and the action line
chosen. In Figure 5, the people are in
an “A” pattern leaving a nice action
line between speakers A and C. How-
ever, there are also valid action lines
between the other players. So what do
you do? You can always transition to
the establishing shot to reset the
group. In general, however, when the
action line changes, there will be a
valid camera that was on the same
side as the previous line, so that
should be the first choice. You can
further complicate these groups by
adding individual reaction shots.
However, the basic alignment should
provide enough options.

For more than three speakers, it’s
usually best to generalize the shots into
group shots. You can create close-ups
for the speaker and try to cut that with
OTS shots from different sides of the
group. Luckily for game developers,
large groups of characters aren’t things
we want a whole lot of anyway, for
other reasons.

Let the Player Have Creative Control

E
veryone wants to be a director.
This includes the game player.

Most players will want to control the
action. However, these techniques give
the player a great deal of options
beyond just spinning the camera
around the key character, hoping to

find a good view. You can allow the
player to jump through your possible
cameras, modify the view once the cut
happens, or take total control to pre-
vent cuts. They could even assume a
first-person POV, if desired. The point is
to provide options that allow you to tell
a story without locking the player out.

Another interesting point is that the
participants do not necessarily have to
be people with whom the player
speaks. When the player goes to pick
up an object, open a door, or look at a
painting, the object in view can
become one of the subjects in the dia-
logue. Looking over the shoulder of a
character at a painting and then cut-
ting back for the reaction shot would
be very cool. Think of the AI reactions
you could fire off.

Our games are becoming more com-
plex, and it is definitely time to start
thinking about more sophisticated
camera usage. Applying some of the AI
techniques we have been using for
characters to cameras certainly makes a
lot of sense. As a bonus, experimenting
with these sorts of camera routines is
pretty fun. It’s amazing how you can
begin to influence mood and pacing by
manipulating very few parameters. ■

G R A P H I C C O N T E N T

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

20

• Bares, William, Joël Grégoire, and

James Lester, “Realtime Constraint-

Based Cinematography for Complex

Interactive 3D Worlds.” Proceedings

of the Tenth National Conference on

Innovative Applications of Artificial

Intelligence, Madison Wis., July

1998. pp. 1101–1106. Available at

http://www.csc.ncsu.edu/eos/users

/l/lester/www/imedia/papers.html.

• He, L., M. Cohen, and D. Salesin.

“The Virtual Cinematographer: A

Paradigm for Automatic Real-Time

Camera Control and Directing.” Pro-

ceedings of Siggraph. New York:

ACM Siggraph, 1996. pp. 217–224.

• Katz, Steven D. Film Directing: Shot
by Shot. Studio City, Calif.: Michael

Wiese Productions, 1991.

More Research on Cartoon Rendering
After my non-photorealistic render-

ing columns in February and March, I

got a note from Adam Lake, one of

the researchers at Intel who is work-

ing on NPR. He is presenting a paper

at the Non-Photorealistic Animation

and Rendering Symposium this sum-

mer covering more advanced silhou-

ette and shading algorithms. He has

graciously made it available to the

public. You can get the paper at

http://www.cs.unc.edu/~lake.

FF OO RR FF UU RR TT HH EE RR II NN FF OO

F I G U R E 5 . Adding a third person complicates matters but

shouldn’t disrupt the action if cameras are set up properly.

Thanks to Lisa Washburn at Vector

Graphics (http://www.vectorg.com)

and Steve Tice at QuantumWorks Corp.

(http://www.quantumworks.com) for

art contributions.

Acknowledgements

b y M e l G u y m o n A R T I S T ’ S V I E W

As I discussed in my previous col-
umn, there are many reasons to make
the shift from polygonal modeling to
one of the various surfacing techniques
available to us. As the technology for
processing and rendering 3D content
continues to advance, so too does our
ability to create realistic and engrossing
3D content. However, to take advan-
tage of the increased capability, the
content we generate must be corre-
spondingly more complex. More com-

plexity means more polygons, and
more time spent building, texturing,
and animating them. In order to avoid
ever-increasing development times, we
as developers need to identify those
processes that can be made “complexi-
ty-independent.” That is, we need to
evolve our content creation methods
so that we feel free to increase the
detail and diversity of our virtual
worlds, and do so within our allotted
development cycle.

In response to this, recall that last
month we set out to define a process by
which an artist could generate more
complex models without spending too
much time working with large amounts
of data (Figure 1). In this ideal process,
the artist, working only with a relative-
ly low-resolution control point lattice
and relying on a procedural method for
extracting the high-resolution surface
at the output, could generate arbitrarily
complex models while maintaining a
rapid and efficient workflow. To satisfy
the requirements of this ideal process,
we identified three potential surfacing
methods: NURBS, patch, and subdivi-
sion surfaces. Though all three of these
methods met the basic criteria as out-
lined in our ideal process, my choice
turned out to be patch surface model-
ing (for details on all three methods, see
“Skin Deep: Surfacing Strategies for
RT3D Characters,” Artist’s View, March
2000). Right now, the best implementa-
tion of patch surface modeling can be
found in 3D Studio Max 3.

Patch Modeling Basics

I
n Max, the patch surfacing tech-
nique combines the best things

about polygon-mesh and NURBS-sur-
face generation. As is the case with
polygonal modeling, artists can control
the process at the very lowest level of
data, and can create their surfaces one
patch at a time if necessary. Once a
patch is created, the tools for manipu-
lating it and its subobjects (edges and
vertices) are directly analogous to poly-
gons. Patches can be extruded and tes-
sellated, beveled, detached, and so on.

h t t p : / / w w w . g d m a g . c o m A P R I L 2 0 0 0 G A M E D E V E L O P E R

23

Skin Deep 2: Implementing

Patch Surfaces

L
ast month we examined NURBS, patch, and subdivision surfaces as

methods for creating real-time 3D characters. This month, we’ll pick up

where we left off by putting the theory to practice and examining how

to implement the patch surfacing method with RT3D geometry.

Mel Guymon has been animating in the gaming industry for several years. When he’s
not at his desk pushing polygons, he can usually be found at the local Barnes and
Noble, slumming for reference materials. Mel can be reached at mel@infinexus.com.

Polygonal Method Surfacing Method

High-Resolution

Polygonal Model

LOD 1LOD 2

LOD 3 etc.

High-Resolution

Polygonal Model LOD 1 LOD 2 LOD 3 etc.
Art Path

Run-Time Application

Low-Resolution

Primary Control Lattice

Surfacing Process

Art Path

Run-Time Application

F I G U R E 1 . Control point methodology.

As is the case with NURBS surfaces, the
surface detail information is stored in a
lattice of B-splines, whose curvature can
be adjusted readily by a set of control-
point tangent handles. Moreover, the
surface resolution can easily be scaled
up and down without affecting the
underlying topology. Thus, smoothly
organic shapes can be created efficient-
ly, without the artist having to depend
on complicated NURBS techniques or
complex subdivision surfaces.

All B-spline patch surfaces use as
their building blocks patches generat-
ed with three- or four-point polygons
or splines. Figure 2 shows some exam-
ple splines and the resulting surfaces.
Note that in the third example, the
spline lattice has not been completely
partitioned into three- or four-point
polygons. As a result, there are gaps in

the resultant patch
surface. This is due
to the fact that in
Max there are only
two types of patch-
es, tri-patches and
quad-patches. Note
also that with each
increase in the
number of steps,
the curvature of
each shape
becomes more
refined, as delin-
eated by the con-
trol-point tangent
handles. By using
these control han-

dles, the artist can create an almost
limitless number of variations in the
topology of the surface, all without
ever increasing the density of the gov-
erning control point lattice.

Surface Tools

T
he primary method for creating
patch surfaces in Max is through

the use of the Surface Tools. These
include the Cross Section and Surface
modifiers. The Cross Section modifier is
used to connect a set of splines defin-
ing the cross-section of a polygonal
object. This is necessary because a
spline lattice composed only of cross-
sections has, by default, not been parti-
tioned in the requisite three- and four-
point polygons necessary for surfacing.
In Figure 3, you can see an
example of how this works. On
the top left, we see a set of
splines defining the cross-sec-
tion of a human arm. Below
that is the same set of splines
after the Cross Section modifier
has been applied. On the top
right you can see a second
example where the number of
vertices in each cross-section
differs. Below that, the Cross
Section modifier has again
been applied, though this
process is somewhat hit-or-
miss, since the modifier has no
way of intelligently determin-
ing where best to place the
connecting splines.

The Surface modifier converts
a spline lattice into a patch sur-
face by creating a patch at every

point where spline segments intersect
to form a three- or four-point polygon.
For further editing, the resulting patch
surface can then be modified with an
Edit Patch modifier, which gives the
artist access to the entire set of patch
editing tools.

Converting a Polygonal Mesh
Directly to a Patch Surface

A
lthough the preferred method for
creating a patch surface is

through the use of the Surface Tools,
it’s possible to convert an existing
polygonal mesh to a patch surface
directly. This is done by applying an
Edit Patch modifier to a polygonal
mesh, or by collapsing a polygonal
mesh to an Editable Patch object. The
main advantage of using this method is
that any polygonal object can be con-
verted into a patch surface. And since
in many cases the data has come from
an outside source (such as from a digi-
tized model), the only current way to
see the data is in polygonal form.
Additionally, existing polygonal mod-
els that were created before the artist
had access to the patch surface method
can be converted immediately to patch
surfaces. Finally, the vast majority of
RT3D artists have experience working
only with polygons, and as such there
may be a slight learning curve associat-
ed with the Surface Tools process.

The main disadvantage to this
process is evident in Figure 4, where

A R T I S T ’ S V I E W

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

24

F I G U R E 2 . Example patch shapes.

F I G U R E 3 . Cross-section example.

F I G U R E 4 . Poly to patch method.

two surfaces with
identical topology
have been created.
On the top we see
a spline lattice and
the resulting patch
surface created
with the Surface
Tools method. On
the bottom is a
polygonal mesh
and the resulting
surface created by
adding an Edit
Patch modifier. If
you look closely,
you will notice
that there are
many more con-
trol handles on
the patch surface
on the bottom
right. This is because at every control
point, the number of tangent handles
corresponds directly to the number of
edges intersecting that point. When the
polygonal mesh is converted to a patch
surface, the result is composed entirely
of tri-patches. This results in a maxi-
mum number of edges with a maxi-
mum number of tangent handles, and
the absolute least efficient surface for
the corresponding geometry.

Alternately, polygonal data generat-
ed from an outside source can be used

as a template on which a spline lattice
can be built. This technique can prove
to be much faster than one might
think, since by using the 3D Snap
tool, the spline network can be laid
down very quickly. And though there
is a learning curve associated with the
Surface Tools method, in fact the simi-
larities to polygonal modeling are so
great, and the resulting advantages so
significant, there is little question that
the effort of learning the patch surfac-
ing process is time well spent for any
RT3D modeler.

Example Flowpath: Stitching
Two Surfaces Together

O
ne problem that has always been
hard to work around is how to

connect two dissimilar organic sur-
faces, such as an arm to a shoulder or a
torso to a pair of legs. With patch sur-
faces, however, the advantage comes
in the fact that the source data is of
extremely low resolution. In Figure 5,
we see two surfaces that need to be
joined together to create a single con-

tinuous surface. Note, however, that
where the two surfaces are to be
joined, they differ in the number of
vertices. To accommodate this, we’ll
need to create an in-between surface.
With the 3D Snap function turned on,
a spline lattice is created with an upper
and lower cross-section corresponding
exactly to the surfaces to be welded
(top left). Then the cross-sections are
connected with individual spline seg-
ments (top center). Finally, a Surface
modifier is applied, creating a patch
surface which fits both the upper and

lower surfaces (top right). These can
now be welded together to create a sin-
gle continuous surface. Alternately, we
could have simply attached the two
objects to each other and created the
in-between patches one at a time by
using the Add Tri or Add Quad func-
tions of the Edit Patch modifier.

Continuing on in Figure 5, we see
that the models have been welded
together, and the curvatures adjusted
through use of the control handles
(lower left). To add a belt to this char-
acter, we need only to select a set of
patches and extrude them, in much the
same way as we would extrude a set of
polygons. Following along in the fig-
ure, we see that the patches are first
selected, then extruded, and finally
expanded using the Outline function
of the tool.

Noncontinuous Surfaces

O
ne subtle limitation for patch
surfaces is that when a patch is

subdivided, all the patches welded to it
subdivide as well. This can be a prob-
lem if the model you’re working with
has areas of both high and low detail.
This is the case particularly with
humanoid characters, which can have
areas of intricate detail around the face
and hands, and areas of comparatively
lower detail, such as in the arms, legs,
and torso. Figure 6 shows an example
of this. In this model, the head is fairly
detailed while the rest of body is sim-

A R T I S T ’ S V I E W

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

26 F I G U R E 5 . Adding a belt solves the problem of joining two disparate surfaces.

The similarities to polygonal modeling are
so great, and the resulting advantages so

significant, there is little question that the
effort of learning the patch surfacing process

is time well spent for any 3D modeler.

plistic by comparison. As a result,
when the model is subdivided, the
head will increase in complexity much
faster than the rest of the model. In

order to avoid this, the head has been
kept as a separate surface, not welded
to the torso. At the point where the
neck joins the torso, there will be a

discontinuity, but this has been hid-
den beneath the collar on the model.
Furthermore, by keeping the surfaces
separate, it is possible to implement
object-swapping for equipment adjust-
ment, level-of-detail (LOD) implemen-
tation, or selective morph-target ani-
mation. The control point lattice on
the top left has been surfaced using
the Surface Tools method. On the top
right, the image is rendered with zero
subdivisions, which is equivalent to a
normal polygonal model. Continuing
around the image in a clockwise direc-
tion, the model has been subdivided
with an increasing number of subdivi-
sions, with the head object containing
one and two subdivisions, while the
body goes through three and four lev-
els of subdivisions respectively. Note
the high amount of complexity within
the head with only one or two subdivi-
sions. The polygonal complexity of the
head is roughly 220 quad polygons,
with the next two levels at 1,100 and
2,400 quad polygons respectively. The
high amount of detail is a characteris-
tic of patch modeling and is by far the
most impressive visual property of this

A R T I S T ’ S V I E W

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

28

F I G U R E 6 . Keeping the head’s surface separate from the body’s has its advantages.

B
ack in February (“Pyro-Techniques: Playing with

Fire,” Artist’s View), I discussed the advantages of

prototyping in-game effects through the use of pro-

cedural effects such as Maya’s Particle FX and 3D

Studio Max’s Combustion plug-in. One of the downfalls of proce-

dural routines is that they fail to

capture the subtle variations in

shape, color, and density that

are characteristic of most forms

of combustion. For this reason,

artists often rely on footage of

real-life conflagrations upon

which to base their effects. The

downside of this is that unless

you are generating the footage

yourself, you pretty much have

to settle for whatever you can

get your hands on from a third

party. With procedural effects,

the artist has the advantage of

being able to prototype and tweak

the look of the effect directly. This has two clear benefits. The

first, obviously, is that the artist is able to customize the effect in

accordance with his or her needs without relying on an external

source. The second, more subtle benefit is that by using a proce-

dural routine to prototype the in-game effect, the artist gains

experience working with a particle system interface. This experi-

ence will enable the artist to contribute to the design and imple-

mentation of the in-game particle system.

As particle system technology continues to advance, more and

better particle routines are becoming available for use in game

development. One of the most

recent particle system plug-ins

is Digimation’s Phoenix for 3D

Studio Max 3. Similar in execu-

tion to the Combustion plug-in

that ships with Max, Phoenix

generates a volumetric effect at

render time, capitalizing on

Max’s native particle technolo-

gy. As you can see in the image

at left, Phoenix is capable of

generating a wide variety of

realistic effects, from chaotic

fireballs and luminous volumet-

ric plasma, to a single flame on a

matchstick. The interface is

straightforward and functional, and the plug-in ships with a wide

variety of preset effects routines, covering most of those required

in game development. The product is currently only available for

3D Studio Max, for around $400. (For more information go to

http://www.digimation.com.)

P L U G - I N P O W E R !
D I G I M A T I O N ’ S P H O E N I X E F F E C T S

29

surfacing technique, highlighting the
artist’s ability to store massive
amounts of information within the
low-resolution mesh.

The Mad Scientist at Work

I
n Figure 7 we see another, more
striking example of the scalability of

an in-game character model generated
using the Surface Tools technique. At

the lowest resolution, the character
comprises roughly 1,800 three-point
polygons, with the next two levels of
subdivision at 6,000 and 23,000 poly-
gons respectively. Note again that the
control point lattice for this character
is extremely low-resolution when com-
pared with the final high-resolution
model, and that due to the patch sur-
face technique, these variations in
complexity can be achieved totally on-
the-fly simply by ramping up or down

the number of sub-
divisions in the
patch surfaces.

Get the Skinny

F
rom a content-
production

standpoint, the
advantages of
patch-surface mod-
eling are significant
enough to warrant
a change of
methodology for
most RT3D applica-
tions. However, an

even larger benefit is seen once the con-
tent actually makes it into a 3D engine
which has been optimized for rendering
patches. The most basic advantage from
a rendering standpoint is that the result-
ing surface has a regular, consistent
structure, optimal for use in the ultrafast
tri-strip rendering methods. Additional-
ly, since there is a relatively small
amount of data compared with the final
topology, time spent on data transfer
and geometry transformation is mini-
mized. As a result, in most applications,
switching from polygons to patches can
double the resulting frame rate. Cou-
pled with the resolution-independent
nature of the content creation process,
the advantages in rendering speed and
data manipulation should enable the
patch surfacing technique to maintain a
solid footing in the RT3D world. That is,
until the next big surfacing technology
breakthrough comes along. ■

F I G U R E 7. The Mad Scientist shows off his scalability.

Special thanks to Beau Perschall and Jeff

Yates. The Mad Scientist character was

designed and modeled by Frederick Ruff

and Mike O’Rourke.

Acknowledgements

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

Aboard
Hardware
T& L

All

Ron Fosner is the owner of Data Visualization, a company
that specializes in creating and tuning high-performance, real-

time software graphics systems for the consumer and
professional markets. Ron specializes in real-time 3D graphics,
code optimization, and hacks to get the maximum visual effect
possible on consumer PC systems. He’s the author of numerous

articles on graphics and optimizations that have appeared in
Dr. Dobb’s Journal, Microsoft Systems Journal, and Game

Developer. He wrote the book on OpenGL programming for
Windows as well as some of the OpenGL and Direct3D arti-

cles that appear in the Microsoft Developer Network CDs. His
weapon of choice is a railgun, while his whiskey is Booker’s.
Send him your questions or suggestions at ron@directx.com,
say hi at the GDC, or visit the Data Visualization web site

http://www.directx.com (not in any conceivable way
associated with Microsoft).

b y Ro n Fo s n e r

G A M E D E V E L O P E R A P R I L 2 0 0 0

i
f you’ve been working on any kind of game that takes advantage of

a 3D graphics accelerator, you’re probably painfully aware of the

rapid pace at which 3D hardware evolves.

h t t p : / / w w w . g d m a g . c o m

Just a few years ago most games didn’t even consider

using textures. Today of course, things are very different.

On-board textures and texture state management are fully

supported by the major graphics APIs, and most graphics

cards come with gobs of texture memory. We also have the

benefit of the AGP bus — a rapid data path designed exclu-

sively for use by graphics cards. More recently, CPU manu-

facturers added specific instructions (3Dnow! and SIMD,

for example) to pump out more vertex transformations and

use fancier lighting and blending operations.

Advances such as these
came about largely because
graphics card manufacturers
have attempted to meet the
texture management and fill
rate demands that games
place upon the graphics API.
Many of these advances were
the result of porting features
available on SGI worksta-
tions over to PC graphics
cards, where consumer
graphics chips manufacturers
bottom-fed off of the SGI-
developed hardware features,
in order of easiest feature to
hardest.

As we’ve scarfed up more
and more CPU cycles
attempting to out-Carmack
each other, we’ve been exer-
cising those graphics APIs,
pumping more and more
textures and polygons
through them, forcing the
CPU to do more of the work. If your
game isn’t doing its own transforms
and lighting operations (T&L), it’s like-
ly that the API driver is doing the setup
and letting the CPU crunch those
numbers.

Fortunately, we recently entered a
new evolutionary phase in which T&L
can be performed on 3D objects by a
dedicated graphics geometry processor
residing on the graphics card. A num-
ber of such graphics cards already exist,
and more are coming out every quar-
ter. Nvidia made the biggest splash
with its GeForce 256 chip, which came
out last fall and can be found on Crea-
tive Labs’ 3D Blaster Annihilator,
LeadTek’s WinFast GeForce 256, and
Elsa’s Erazor X boards. S3’s Savage 2000
chip, found on the Diamond Viper II
board, also provides hardware T&L
capabilities. And of course 3Dlabs has
supported geometry acceleration for a
while (no matter what Nvidia claims
about being first), although 3Dlabs’
cards (including the Oxygen GVX1)
have been targeted primarily at the
professional market. You can expect
that the rest of the major players will
be shipping (or at least announcing)
T&L boards by the end of the year.

So we stand at the cusp of a new age
of game graphics. Think about it: no
longer do we have to perform multiple
floating-point calculations on a vertex
before sending it off to the API to be

rendered. Instead, you simply hand off
the vertices to a graphics card and this
work is done for you, allowing your
CPU cycles to be spent on something
else. Performing T&L calculations in
hardware lets you make more complex
3D models and scenes, enabling those
freed-up CPU cycles to be used on
other tasks (such as better AI).

To answer naysayers who complain
about the visual quality of scenes gen-
erated by hardware T&L boards (or
more particularly, by the lighting cal-
culations performed by OpenGL and
Direct3D), I concede the fact that cod-
ing your own lighting routines can
provide a distinctly better look and
offer more flexibility than the stock
lighting calculations provided by most
graphics APIs. Perhaps that’s why hard-
ware-accelerated T&L hasn’t been on
the graphics card feature wish list of
many game developers thus far. But
taken as a whole, hardware-accelerated
T&L is great because it means develop-
ers can spend less time on the render-
ing pipeline portion of their games.

Talking about hardware T&L acceler-
ation today is a bit like talking about
how big a car’s engine is when you can
only drive it in a parking lot. What you
really need is a wide open space to rev
up the engine and run that sucker flat
out. Unfortunately, there aren’t yet any
games that really stress the T&L
engines. Nobody has designed a game

with 20,000 to 50,000 polygons
per frame simply because it
would choke the non-T&L
boards out there right now.
Since we’re already choking the
CPU with our T&L calculations,
we’re left with little room to
add more tasks when we
already hog the machine.
Hardware T&L enables us to
load up the visual details of a
scene while offloading a lot of
the calculations involved onto
the graphics geometry proces-
sor. While there’s not much to
actually using hardware T&L in
your application (you just let
the graphics API do the T&L),
this article explains how to fig-
ure out if T&L is available
through Direct3D (which has
the only “standard” way of
reporting if hardware T&L is
available), and explores cubic
environment mapping, a new

feature that most hardware manufac-
turers have included with their T&L
engines that simplifies the task of
reflecting the environment around an
object.

Leveraging Hardware T&L in Games

W
hile writing this article, I tested
an Nvidia GeForce 256–based

card, which came with some demos.
One of the more interesting demon-
stration applications generates a tree
procedurally using settings for the
number of branches, leaves, and so on,
which is lit by eight fireflies (simulated
by eight colored positional light
sources). You can adjust the demo set-
tings to make the tree as bushy as
you’d like, so I cranked up the level of
detail (LOD) to see what would happen
(Figure 1). At “normal” LOD settings
the tree was still quite bushy, looked
good, and ran at a reasonable speed.
But at the highest LOD setting, my
450MHz Pentium III workstation
slowed down to about one frame per
second. The reason for this can be seen
in Figure 2 where you can see the high-
LOD scene in wireframe mode. Notice
the incredible amount of detail in that
scene. They say a picture is worth a
thousand words, and in this case it’s
worth literally tens of thousands of
extra triangles and quads.

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

32

H A R D W A R E T & L

F I G U R E 1 . The tree — gobs of textured, lit polygons ren-

dered in real-time.

You might wonder why I
mention a 1FPS scene. Just
look at the incredible detail
in the scene shown in Figure
2. This is far beyond anything
we’d consider putting in
game scenes previously, and
without hardware T&L, it
wouldn’t even be rendering
that fast. But I assure you that
frame rates for scenes such as
this will quickly escalate.
(Remember when we were all
trying to figure out how to
use texture mapping just a
few short years ago? That
problem was solved by the
AGP bus and gobs of video
RAM, and likewise I expect
that today’s T&L challenge
will not be around for long.)

Taking advantage of hard-
ware T&L means that you
may have to change the way
you do things. Above all, you
have to let go of the idea that you can
code T&L routines that perform faster
than the same solution performed in
hardware. To make sure you get T&L
acceleration, two requirements must be
met. First, you have to let the graphics
API do the hardware transformation
and lighting calculations for you, even
if your engine already does them. (Yes,
I know you finally got your quaternion
code working, but it’s time to move on
to better things.) Second, you must ver-
ify that you have hardware T&L and
then you need to enable it in the
graphics API. If you’re doing your own
lighting or transforms (but not both),
then you’ll get some benefit from using
hardware T&L. Thus, games such as
UNREAL that do their own T&L won’t
see any benefit from hardware T&L
accelerators. Games such as QUAKE 3:
ARENA that do their own lighting calcu-
lations but let the graphics API do
transformations for them will get some
benefits from hardware T&L.

Today, only the two major graphics
APIs, Direct3D and OpenGL, support
hardware T&L. You must be using one
of these two APIs in order to enable
hardware T&L. I suspect that if 3dfx
continues to push Glide, we’ll see a
T&L card and Glide driver from 3dfx in
the near future. For now however, it’s
strictly an OpenGL and Direct3D show
if you want hardware T&L acceleration.

For Direct3D to take advantage of 3D

accelerators that support transforma-
tion and lighting operations in hard-
ware, check for the D3DDEVCAPS_HWTRANS-
FORMANDLIGHT capability flag during the
enumeration of devices. This flag is
located within the dwDevCaps member of
the associated D3DDEVICEDESC7 structure
and is returned when you call the
IDirect3D7::EnumDevices method. Alter-
nately, you can check the GUID of the
device being enumerated — T&L
devices will be identified with
IID_IDirect3DtnLHalDevice. (Previously,
we’d look for IID_IDirect3DHALDevice and
stop there.) Note that on a T&L-sup-
ported card you’ll find two hardware
devices — the regular hardware HAL
and the hardware T&L HAL, even
though they may be the same device.
(This is done for backwards compatibil-
ity reasons.)

To make sure you get T&L hardware
acceleration in your game under
Direct3D, you’ll need to add a prefer-
ence in your code for the T&L device
over the regular HAL device. Remember
you’re talking to some third-party dri-
ver code here, so just because the card
is in the machine doesn’t mean it’s
automatically turned on. There seems
to be a preference among the bleeding-
edge chip makers towards 32-bit mode,
so it might turn out that the new T&L
interface only works on 32-bit color
depths, while the legacy non-T&L
interface is kept around for any 16-bit

stuff. Remember that your
mileage may vary depending
on the graphics card and dri-
ver combination your game
will use.

Using T&L hardware under
OpenGL is a little different.
Although the latest version
of the OpenGL specification
(version 1.2) doesn’t directly
mention support for hard-
ware T&L, it doesn’t really
need to. With OpenGL, you
just ask for a pixel format
and you get “yes/no” infor-
mation from the API about
the availability of graphics
acceleration. Since it is basi-
cally “yes” or “no” if you
have hardware acceleration,
and since in most cases folks
let the API do their T&L (or
perhaps just the transforms),
you’ll automatically benefit
from code that was written

before hardware T&L. By simply
selecting the hardware-accelerated dri-
ver interface and letting the API do
the T&L (or just transform or light-
ing), your program will automatically
benefit. Gee, what a great API.

This is the spot in the article where I
would have liked to insert a big chunk
of code that you could cut and paste
into your game and modify as neces-
sary to get the best possible T&L accel-
eration. But hey, if you let the API do
your T&L for you, then the code is
exactly like you’d have written it if
you weren’t planning to implement
T&L acceleration. In other words,
implementing this support doesn’t
have to be difficult. The only tricky
part is enumerating and selecting the
T&L driver under Direct3D, since the
T&L driver has been given a new GUID.

Drawbacks to Hardware T&L

I
s there a downside to using hardware
T&L? There can be. First, let me clear

up one common misconception. Re-
cently, people testing the GeForce 256
(one of the first consumer chips to sup-
port hardware T&L) have claimed that
they cannot see much, if any, perfor-
mance difference between using T&L
acceleration and not using it. Some of
this might be due to the fact that some
of the tests being performed aren’t real-

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

34

H A R D W A R E T & L

F I G U R E 2 . The tree in wireframe illustrates the complexity

of the rendering job.rendering job

ly designed to assess T&L. After all, if
the difference between a T&L driver
and a non-T&L driver is merely some
capability bits, but OpenGL programs
(which have always had built-in matrix
memory and math routines) still let the
hardware handle T&L, is it reasonable
to assume that T&L won’t occur in
hardware if you’re running on a T&L
card? (Remember that the program
doesn’t have to change — it still passes
the same matrix information and ver-
tex list to the API.) To truly see the dif-
ference this new generation of hard-
ware provides, we need new tests to
stress the T&L capabilities of the chip
— tests that churn through huge num-
bers of polygons per frame. You should
be able to double or triple the number
of polygons in a game compared with
the numbers we’re used to using, and
see little performance impact on a
T&L accelerator. Such tests should be
available in short order — I’m creating
some of these tests, and I’ll post the
results on my web site when they’re fin-
ished. (If you have any suggestions or
have done your own testing and would
like to share the results, feel free to con-
tact me.)

Aside from these misunderstood test-
ing issues, there can be genuine
instances when implementing hard-
ware T&L will hurt application perfor-
mance. Recall that computing T&L in
hardware means that your game must
give the card all of a scene’s vertex
data, as well as the lighting and transla-
tion parameters. This is similar in con-
cept to sending texture data to the tex-
ture memory on the graphics card. It’s
faster to have the texture memory
reside on the graphics card, but it’s
slower if you need to change or access

that data. But there may be occasions
when you need to get the results of a
T&L calculation back over the AGP bus
and back into system memory so you
can use the results. For instance, your
game might require the location of
some object in worldspace, perhaps in
order to calculate whether two objects
collided. If you’re using hardware T&L,
it can be computationally expensive to
request this information from the API
since the API might be doing some-
thing else (caching data to optimize
calculations, for example). To retrieve
information from the hardware, the
API must flush all pending calculations
to update its state before it can return
that information. As such, repeatedly
requesting data during a rendering
cycle can trash the caching/optimiza-
tion scheme. I brought this issue up at
a 3D graphics roundtable discussion at
the 1999 Game Developers Confer-
ence, but the issue hasn’t been resolved
yet by the APIs. (Again, if you have any
ideas, pass them along.)

Some method is needed to mark cer-
tain state transformations as “volatile,”
so the data associated with these trans-
formations doesn’t get stuffed into the
bowels of the graphics CPU. Caching
the data in the driver is one way to
maintain access to it, but you’d get no
benefit from hardware T&L in this case
if you requested the data frequently.
Currently, the only solution to this
problem is to let the graphics API take
care of the T&L, and for you to main-
tain your own copy of the translations
(so don’t throw away all your matrix
and vector code just yet) and perform
your collision detection (and so on)
using a local copy of the transforma-
tion data.

Yes, this “solution” is ugly. After all,
if I want the API to handle T&L, I
want to unload all my T&L code, not
keep a duplicate around. All I can say
to rebut this is that the kinks with this
technology are still being worked out.
(It reminds me of the time when
someone first explained to me how to
do multi-pass texture effects. My
response was, “You want me to render
the whole scene three times every
frame? You’re kidding!” Now APIs
have taken over that chore for the
most part, and we’re trying to figure
out the best way to let the graphics
chip handle some of the calculations
while still letting us peek at the results
as necessary.)

Cubic Environment Mapping

C
ubic environment mapping is a
feature supported by the latest

revisions of OpenGL and Direct3D
that has debuted as a hardware-sup-
ported feature in the latest crop of
hardware accelerators. An environ-
ment map is essentially a texture map
of a scene viewed from one spot. In
the past, such environment maps were
generated for a scene or taken with a
360-degree camera or one with a fish-
eye lens. This usually gave you a pretty
distorted texture, but since the texture
was going to wrap around some shiny
object for the purpose of creating a
reflection, inaccurate environment
maps typically sufficed (no one com-
plained much except artists). Now that
new graphics hardware can generate
and process cubic environment maps,
scene-accurate, real-time reflections
are a reality.

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

36

H A R D W A R E T & L

A close-up of a vertex-rich tree.

Vertex-rich tree in wireframe mode, showing its high poly-

gon density.

The advantage of the cubic environ-
ment mapping technique is that when
compared with traditional spherical
texture map methods, it’s easier to
generate and use the reflected images.
As such, cubic environment maps let
you make more complex scenes, ren-
der a scene multiple times, and create
dynamic, realistic reflections of it.
Another plus is that you don’t get a
singularity at the poles, which is the
case with spherical texture maps. You
can generate the environment textures
at run time and update the environ-
ment maps, updating the textures
every frame to keep the reflected tex-
ture map accurate to the current scene.
Even if your environment map is stat-
ic, it’s still easier to generate the envi-
ronment map by rendering the actual
reflected scene and saving it.

There are two steps to implementing
cubic environment mapping. First,
generate the texture map of the envi-
ronment surrounding the object on
which the map will be applied.
Direct3D uses a special texture layout
scheme just for cubic environment
maps that’s based upon an unfolded
cube with ordered faces — hence the
“cubic” term. OpenGL’s solution is
similar, although it doesn’t order the
cube faces. The second step is simply to
load up the faces of the cube by render-
ing the scene from the center of the
cube for each cube face and voilà, you
have your cubic environment map.
The conceptual layout of the textures
can be seen in Figure 3.

To create a texture to use as a cubic
environment map using DirectX 7, you
call the IDirectDraw7::CreateSurface
method. A cubic map is created as a
series of attached surfaces (or “complex
surfaces,” in Direct3D parlance). There
are three things to keep in mind when
creating a cubic environment map:
You cannot create the cube’s surfaces
individually, the dimensions you speci-
fy are the dimensions of an individual
side, and each side of the cube must be
both square and a power-of-two length
(32×32, or 64×64, or 128×128 pixels,
and so on). Typically you render this
environment map onto a small reflec-
tive object so your cube dimensions
can be small as well. That’s good news.
Because this is a multi-pass rendering
technique, the cubic texture should
probably be kept as small as possible to
maintain good performance. To gener-

ate the optimal map, I suggest you ren-
der your scene in a window and make
the window smaller and smaller until
you start to lose fidelity. Then round
up the dimensions of the texture to the
next power of two.

If your scene requires Z-buffering,
you can create a separate Z-buffer and
attach it to the cubic environment
map. Alternately, you can detach the Z-
buffer from your back buffer (assuming
you created one) and attach it to the
cube map before you render, then re-
attach it when you’re rendering the
scene “for real.”

Rendering the cubic environment
map to an object can get nasty. First,
you allocate the environment map
texture memory for the current scene,
as shown in Listing 1. Assuming that
we can call some “render” method on
our scene to render all objects in their
correct positions in worldspace, we
just need to set the viewpoint to the

center of the cubic environment map
and render the scene into the map.
You do this for each of the six sides of
the cube. This gives us six additional
renderings of our scene for each cubic-
environment-mapped object within
the scene. So far, so good. But things
can get tricky when you have multiple
cube maps that are within sight of

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

38

H A R D W A R E T & L

// Assume pDD7 is a pointer to an IDirectDraw7 interface.

DDSURFACEDESC2 ddsd;

ZeroMemory((LPVOID)&ddsd, sizeof(DDSURFACEDESC2));

ddsd.dwSize = sizeof(DDSURFACEDESC2);

ddsd.dwFlags = DDSD_CAPS | DDSD_WIDTH | DDSD_HEIGHT | DDSD_PIXELFORMAT;

ddsd.ddsCaps.dwCaps = DDSCAPS_TEXTURE;

// Set the pixel format to a valid texture format here.

// Dimensions must be the same and must be a power-of-two.

ddsd.dwWidth = ddsd.dwHeight = 128;

// Set caps for a system memory cube-map texture that is a valid render target surface.

// We set the DDSCAPS_3DDEVICE bit only if we want to use the environment map as a render

// target. If you’re going to just load textures, you don’t need this flag set.

ddsd.ddsCaps.dwCaps = DDSCAPS_COMPLEX | DDSCAPS_3DDEVICE | DDSCAPS_TEXTURE;

// Here’s where we state that it’s a cubic environment map and that we want all 6 faces

// created at once.

ddsd.ddsCaps.dwCaps2 = DDSCAPS2_CUBEMAP | DDSCAPS2_CUBEMAP_ALLFACES;

LPDIRECTDRAWSURFACE7 pddsCubeMap;

// And here’s where we create the cube map complex surface.

if(FAILED(pDD7->CreateSurface(&ddsd, pddsCubeMap, NULL)))

{

// something bad happened.

}

L I S T I N G 1 . Cubic environment map code under Direct3D. This shows some

Direct3D (DirectX 7 or better) code that will allocate a cubic environment map.

F I G U R E 3 . Conceptual layout of the

cubic environment map.

each other. You run into the problem
of accurately generating the reflec-
tions of the reflections, which must be
repeated n times (where n is the num-
ber of times you want the reflected
scene reflected in your environment
map). A common solution to this
problem is to use the previous frame’s
rendering in the reflection repeatedly
for each frame, as long as you don’t
mind your reflections being off a
frame in the reflections. It’s not a per-
fect solution, but it still looks good
most of the time. (Yet I doubt we’ll see
many games with multiple real-time
cubic-environment-mapped objects
anytime soon.)

Listing 2 illustrates the process for
rendering a cubic environment map

in pseudocode. This code
describes the process within
Direct3D; OpenGL supports
cube mapping through an
extension mechanism. (On my
GeForce card it’s the EXT_tex-
ture_cube_map extension.)

After you’ve reset the view-
port and all matrices (in step 7),
then you can render your scene
again using the environment
map we just created. The result
is a texture map that looks like
Figure 4.

If you are wondering how
the texture coordinates are
used (since the cube texture
maps are treated as a 3D texture), let
me explain briefly. The vertex texture
coordinates are treated like a direc-
tional vector with an origin at the
center of the cube. The largest coordi-
nate axis is the one that selects the
cube face. The remaining minor coor-
dinate axes are divided by the larger,
and these two values are treated as the
2D U and V coordinates to the cube
face. From that point onward, the
cubic environment map is treated just
like a regular 2D texture map.

While the effects created by cubic
environment maps are pretty neat, it
does affect rendering speed. Without
the benefit of hardware acceleration, a

typical scene is rendered about two to
ten times slower than without an
environment-mapped object — hence
the requirement for a T&L graphics
card (which usually includes cubic
environment mapping in hardware).
But you do get spectacular effects out
of it, as shown in Figure 5. This image
shows a sphere that was environment-
mapped with the texture from Figure
4. A more interesting example is
shown in Figure 6, where there is sub-
tle interaction between the environ-
ment and the model’s hair: as the
woman moves her head, the high-
lights on her hair change to reflect the
environment.

While cubic environment mapping
is a useful feature, I’d rather see it
pushed further into the API. Right now
it’s got the feel of a hack, so hopefully
as the API folks get more feedback
they’ll refine the API to make the setup
and rendering process less onerous.
While it’s nice to have non-90-degree
viewpoints, or to create the faces sepa-
rately, 99 percent of the time you use
the same defaults, so a lot of setup
could be avoided by providing an easi-
er-to-use set of default interfaces, there-
by putting less of a setup burden on
the programmer.

2001: A New Game Odyssey

W
e’re about to be handed a big
dividend in the form of low-

cost T&L calculations, and like it or
not, if you’re coming out with a 3D
game for Christmas 2001, you ought to
incorporate hardware T&L into your
title if you want your game to be com-
mercially competitive.

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

40

H A R D W A R E T & L

1. Prior to rendering the scene, render the cube map.

2. If the cube map dimensions are small, enable antialiasing for the cube rendering.

3. Set the viewport to the cube dimensions.

4. Set the perspective matrix to a 90-degree field of view for both the X and Y axes.

5. For all six faces of the cube map:

a. Set the render target to the current face.

b. Optionally swap the Z-buffer to this map.

c. Set the viewpoint LOOK and UP vectors as follows for the particular pass:

Cube face LOOK Direction UP Direction

0 positive X positive Y

1 negative X positive Y

2 positive Y negative Z

3 negative Y positive Z

4 positive Z positive Y

5 negative Z positive Y

e. Set the modelview matrix according to LOOK and UP vectors centered at

cube center.

f. Begin scene.

g. Render everything in the scene but this object.

h. End scene.

6. Restore render target.

7. Reset viewport and all matrices.

L I S T I N G 2 . Process of generating and rendering a cubic environment map in

pseudocode.

F I G U R E 5 . The scene with a reflective sphere

incorporating the cube map.

F I G U R E 4 . The actual cubic environ-

ment map for the scene.

This is an issue that I think will have
a revolutionary effect on the games
market, but it will take a while for
everyone to get comfortable with how
best to incorporate T&L into the pro-
gramming. The upside is that in the
next few years we can expect to see
some incredibly detailed games with

spectacular environments. We can use
this functionality to incorporate more
complex models, better AI, or some
other feature that would previously
have placed too much strain on an
already-burdened CPU.

For the time being, it’s up to us to
test out these new hardware features

and do our best to give feedback to
the chip manufacturers and API archi-
tects. In the meantime, we must help
them in order for them to help us add
complexity to our content. Test out
one of the new T&L cards and see how
you can get more content into your
game. ■

41

Hardware information and reviews:
Hard OCP
http://www.hardocp.com

AnandTech
http://www.anandtech.com

Tom’s Hardware
http://www.tomshardware.com

Chip manufacturers supporting T&L:
Nvidia Corp.
http://www.nvidia.com

S3 Inc.
http://www.s3.com

3Dlabs Inc.
http://www.3dlabs.com

FF OO RR FF UU RR TT HH EE RR II NN FF OO

F I G U R E 6 . Example showing the subtle interaction between the environment

lighting and the model.

be a stretch. I am, however, going to clean

up the awful mess I left us in after the last

issue, where we had a bunch of equations, a

whole lot of terms, and not much of a clue

about what to do to get a ponytail simula-

tor out the other end.

When We Last Left Our Heroes...

T
here’s no escaping the fact that you need to read last
month’s part one article (“How to Simulate a Ponytail,”

March 2000) in order to read this part two. I can’t review it in
any meaningful way, so I’m just going to set up our initial
conditions from the end of last month’s article and move on.
Figure 1 shows the bodies and notation we’re using, and
Table 1 contains the equations we ended up with.

In part one, we decided to do the derivation for two con-
strained bodies first, to keep things manageable, and then
later generalize it to the longer chain of bodies that make up
the ponytail. At the end of part one, we had written out equa-
tions for the linear and angular accelerations of our simple
two-body system when they were affected by the constraint
force, fc , as you can see in Equations 1 and 2. We also deter-
mined that Equation 3 was going to be the constraint equa-
tion we would attempt to satisfy at all times during the simu-
lation using the constraint force. If we could satisfy Equation

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

44

P H Y S I C SG A M E

How to
Simulate a
Ponytail,
Part 2

b y C h r i s H e c k e r

hen I was a kid, I used to

leave my room — or wherever I

went, really — a total mess. I’d

like to be able to say that I’ve

changed and am a really tidy and

responsible person now, but that would

Chris Hecker (checker@d6.com) is the Editor-at-Large of Game
Developer.

WW

Swinging ponytail

screenshot from the

sample application

used in last month’s

article.

3, and our simulation started with the position and velocity
constraints satisfied, we’d have a constrained rigid body sim-
ulator. Finally, I said the end product of all the plugging and
chugging with equations would be a linear system of equa-
tions looking like Equation 4: Afc = b. We’d solve this equa-
tion for the force of constraint, and then apply it back to the
objects to stick them together.

Plug ‘n’ Chug

W
e originally derived Equation 3 because we needed
the constraint equation to be in terms of accelera-

tions rather than positions or velocities. Now that we’ve got
it in acceleration space, we can enforce it with fc , since we
know forces can directly affect accelerations. Still, it’s not
immediately obvious how to get our fc into Equation 3,
where it can do some good.

Equation 3 is too abstract for our needs. It simply says the
acceleration of the two constraint endpoints must be equal.
It makes sense that the force of constraint, fc , can affect the
accelerations of the endpoints by pushing and pulling on
the bodies, but how do we show this mathematically? First,
we need to express the endpoint accelerations in terms of
the body’s linear and angular accelerations, which we know
are directly affected by fc via Equations 1 and 2.

Remember from part one (or from my original physics
articles from Game Developer, referenced at the end of this
article) that the equation for the acceleration of a point fixed
on a rigid body — say, Body A — looks like this:

Eq. 5
Equation 5 contains the second derivative of RA (the vector
to the center of mass of the body) and aA (the angular accel-
eration of the body). These quantities are definitely affected
by fc as shown in Equations 1 and 2.

If we substitute Equation 5 and its counterpart for Body B
into Equation 3, we get a very long equation. Then, if we
substitute Equations 1 and 2 and their counterparts for Body
B into the very long equation, we get an extremely long equa-
tion. At that point, our extremely long equation is in terms
of our only unknown, fc , and we can munge it around until
we get something that looks like Equation 4. We could do
this, but we’d probably go insane trying to keep all the terms
straight with all their subscripts and whatnot, and I know I’d
go insane trying to type all the intermediate stages into the
evil Equation Editor.

We’ll take a step back, and just work with Equation 5 for a
little while. We can move ahead under the assumption that
anything we do to Equation 5, we can do to its Body B part-
ner. If we can simplify Equation 5 before substituting it into
Equation 3, then we can do the same for the B version and
we’ll stay sane.

One Term at a Time

L
ook at the first term on the right hand side of Equation
5, the acceleration of RA. Equation 1 just drops into

Equation 5 in place of this term, and we get Equation 6:

Eq. 6
This is already starting to get messy. We can simplify a bit

by introducing a new term, bA. We’ll use bA to hold all of the
“known” terms in the equation. The known terms are those
that contain quantities whose values we know how to calcu-
late at any given time. So, as we discussed in part one, the
external forces are all known at a given timestep, meaning
we can stuff the FEA term into bA. Also, the last term in Equa-
tion 6 is known because it only contains angular velocities
and the position vector, rA, both of which are known at any
timestep since they were integrated forward from a previous

˙ṗ M f M F r rA A c A EA A A A A A= + + × + × ×()− −1 1 α ω ω

˙˙ ˙˙p R r rA A A A A A A= + × + × ×()α ω ω

h t t p : / / w w w . g d m a g . c o m A P R I L 2 0 0 0 G A M E D E V E L O P E R

45

ACCELERATION EQUATIONS. Equations 1 and 2 are the linear and angular acceleration equa-

tions for the rigid body A in terms of the external forces and torques (denoted with a E

subscript) and the force of constraint, fc. Body B’s equations would be the same with B

subscripts and a –fc in place of the fc terms because the constraint force is applied neg-

atively to Body B.

Eq. 1

Eq. 2

CONSTRAINT EQUATION. Equation 3 is the second derivative of the position constraint

equation, p
A

– p
B

= 0. This equation specifies that the positions (and velocities and

accelerations) of the endpoints of the constraint vectors must be equal at all times.

Eq. 3

OUR GOAL. At the end of this article, we’d better have a system of linear equations that

looks like Equation 4.

Eq. 4

TA B L E 1 . Review equations from last month’s article.

˙Ṙ M f M F

I r f I I L

A A c A EA

A A A c A EA A A A

= +

= ×() + − ×()

− −

− − −

1 1

1 1 1α τ ω

˙˙ ˙˙p pA B− = 0

Af bc =

Body B

Body A

R
B

r
B

r
A

R
A

p
A
= pB

F I G U R E 1 . Bodies and notation from

last month’s article.

timestep. So, our bA looks like this so far:

Eq. 7
And, our simplified Equation 6 looks like this:

Eq. 8
The substitution of Equation 2 for aA is more complicat-

ed. First, the aA is inside a cross product, which means the
entire right-hand side of Equation 2 is going to have to go
into the first term of that cross product. This makes perfect
sense mathematically: aA is a vector, and so the right-hand
side of Equation 2 is a vector as well — it’s simply com-
posed of a bunch of other vectors. It’s a big mess symboli-
cally, though, because replacing the single symbol on the
left-hand side of Equation 2 with the multi-term expres-
sion on the right-hand side makes the cross product pretty
much unreadable, and we have to use parentheses to keep
everything straight.

We’ll concentrate solely on the aA term in Equation 8 and
ignore the other terms for a moment. We substitute in Equa-
tion 2 and use the fact that the cross product distributes
across addition and subtraction:

Eq. 9
Now, before dropping Equation 9 back into Equation 8,

let’s try to stick a bunch of it into bA to get it out of the way.
The first term on the right-hand side of Equation 9 contains
fc , so we need to keep it around, but the other two terms are
both known, since they contain only external torques,
velocities, momenta, and positions. Away into bA they go,
leaving us with:

Eq. 10
I “un-distributed” the cross product of the two known terms
in Equation 9 when writing Equation 10 to make it a bit
shorter.

Our equation for the constraint endpoint acceleration
now looks like this:

Eq. 11
As you can see, it’s much simpler than it could have been,
but we’ve still got some work to do.

A Breather

L
et’s take a break and assess our situation. We have
Equation 11, which is an equation for the acceleration

of Body A’s constraint endpoint in terms of the known
quantities (most of which are tucked away in bA), and the
unknown constraint force, fc. That is, at any given time we
can calculate the value of the bA vector, and plug it into
Equation 11. We can also calculate all of the other known
terms on the right hand side of Equation 11, such as the
mass, inertia tensor, and constraint vector, rA. The excep-
tion is fc ; we don’t know it in advance. In fact, our whole
goal is to solve for fc so we can plug it back into Equations
1 and 2 to find the acceleration of the bodies under
constraint.

Since fc is our unknown, we need to get it in a better posi-
tion to be manipulated. The first term on the right-hand
side of Equation 11 is pretty reasonable, since it’s just a
matrix times fc. This term looks a bit like Equation 4, so we
know we’re getting close. However, fc is stuck inside two
cross products in the second term, which is a far cry from
Equation 4.

Cross Products

H
ow do we get fc out of the cross products? Cross prod-
ucts are notoriously hard to manipulate, unless you

have the following definitions in your bag of tricks:

Eq. 12

Eq. 13

Equation 12 is the familiar rule stating that when you
reverse the cross product terms, the resulting vector is negat-
ed. This is what you see when you accidentally compute a
triangle’s normal by crossing the edges in the wrong direc-
tion — you get the inverted normal.

Equation 13 defines the “tilde operator,” which, when
applied to a vector, creates the matrix shown in the equa-
tion. It just so happens that this tilde-matrix of vector a —
also called the “skew symmetric matrix of a” — times vector
b gives the same resulting vector as taking the cross product
of a and b (multiply the matrix-vector product on a piece of
paper to double-check it for yourself). This is a great trick,
because it turns a cross product into a matrix-vector product,
which we know how to manipulate.

Now we can pound on our cross product term. First, let’s
get fc on the right side of the expression by applying Equa-
tion 12:

Next, we “tilde-ize” the outer cross product:

Notice how the outer brackets aren’t needed anymore,
because now we just have a matrix multiply of the tilde’d rA
and the inverse inertia tensor. Finally, let’s tilde-ize the
inner cross product:

Our result is simply three matrices times our unknown vec-
tor. Let’s put this result back into Equation 11 and group the
terms to isolate fc:

Eq. 14
Now we’re in business. I’ve renamed the grouped matrices

“AA” to highlight the structure of the equations. We have a

˙ṗ f bA A c A= +A

˙˙ ˜ ˜p M r I r f bA A A A A c A= −[] +− −1 1

˙˙ ˜ ˜p M f r I r f bA A c A A A c A= − +− −1 1

− ×() = −− −˜ ˜ ˜r I r f r I r fA A A c A A A c
1 1

− × ×()[] = ×()− −r I r f r I r fA A A c A A A C
1 1˜

I r f r r I r fA A c A A A A c
− −×()[] × = − × ×()[]1 1

a b ab

a a

a a

a a

b

b

b

× = =
−

−
−

˜
0

0

0

3 2

3 1

2 1

1

2

3

a b b a× = − ×

˙ṗ M f I r f r bA A c A A c A A= + ×()[] × +− −1 1

b M F r I I L rA A EA A A A A EA A A A A= + × ×() + − ×()[] ×− − −1 1 1ω ω τ ω

α τ ωA A A a c A A EA A A A A Ar I r f r I r I L r× = ×()[] × + [] × − ×()[] ×− − −1 1 1

˙ṗ M f r bA A c A A A= + × +−1 α

b M F rA A EA A A A= + × ×()−1 ω ω

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

46

G A M E P H Y S I C S

known matrix, AA, and a known vector, bA, and our
unknown fc . We’re not quite at Equation 4, but we’re
extremely close. We only need to get rid of the pA accelera-
tion term, and that’s our cue to substitute back into
Equation 3.

Body B

I
f you look at all the work we did to get from Equation 5
to Equation 14, you’ll see that very little of it depended

on whether we were talking about Body A or Body B. There’s
really just one difference between the bodies, and we’ve
already mentioned it: fc is positive for Body A, but negative
for Body B. This means we can simply rewrite all the equa-
tions with B subscripts, and if we’re careful to substitute in
–fc wherever fc shows up, we’ll have valid equations for Body
B. We don’t have to rederive everything.

We can actually just write the Equation 14 for Body B by
inspection:

Eq. 15
The AB matrix and the bB vector are calculated exactly as
shown above for Body A, and we simply negate the fc term.
Equation 3 tells us we can subtract Equation 15 from Equa-
tion 14 to get 0, assuming we’re enforcing our constraint
properly. Let’s write the subtraction, taking care to get our
signs right:

Finally, let’s group our terms to match Equation 3:

Eq. 16
That’s it. We have a linear system matching Equation 4,

where A = AA + AB and b = –bA + bB. A and b are known, and
fc is unknown, meaning that at any given time, we can con-
struct Equation 16 for the two rigid bodies, and then solve it
for fc to find the constraint force that will hold the bodies
together.

The Simulation Algorithm

N
ow we’re ready to outline the overall simulation algo-
rithm for two rigid bodies with one constraint:

1. Compute the external forces: FEA, tEA, FEB, tEB.
2. Compute the A matrix and the b vector.
3. Solve the linear system for fc.
4. Apply fc and the external forces to the objects.
5. Integrate forward.

After step three, fc is a known force, just like the external
forces. The forces can now all be applied to the bodies in the
usual way. Remember, fc is applied at the tip of the con-
straint vector, so it will induce torque on the objects as well
as apply a force to the center of mass. Also remember that fc
is applied negatively to Body B.

The Linear System

S
o, how do we solve the Afc = b linear system? This is
actually the easiest part of the algorithm in some

sense, because there are so many different ways to do it.
Solving linear systems on computers is the most studied
area of numerical analysis, and there are hundreds of books
about doing it right and lots of free source code. You could
probably write your own Gaussian Elimination routine in
a few lines of C, or you could download some fancy
numerical linear algebra package if you’re so inclined.
If you’re just interested in solving the 3×3 system in
Equation 16, you could even use Cramer’s Rule or just
solve the system by hand symbolically, but those tech-
niques won’t scale to the larger systems that occur when
we add bodies. When I wrote the sample application for
this article, I downloaded a simple linear system solver
from the web (http://www.netlib.org) and hacked it into
my program. See the references for details on the sample
application.

Kinematic Control

B
efore we generalize our derivation to multiple
bodies, let’s talk about how kinematic control fits

into our formulation. From last month, you’ll remember
the head of the character is kinematically controlled,
meaning its movements are already known from an
animation. It’s easy to integrate animated bodies into our
algorithm.

First, we need to be able to generate values for the
known position, velocity, and acceleration of the kinemati-
cally controlled body at a given point in time. We can find
the equations for these values from our animation system
in most cases. The position equation is simplest — we have
to have that around if we’re animating the body in the first
place. The velocity and acceleration equations are attained
by differentiating the equation for position. If we’re inter-
polating keyframes, then the interpolation function will
give us the velocity at a given time when we differentiate
it. Another differentiation gives us the acceleration. For
example, if we’re linearly interpolating positions between
keyframes, the velocity will be constant and the accelera-
tion will be zero. Linear interpolation is not continuous
at the keyframes themselves because the direction changes
sharply, so be careful about differentiating in those areas.
If we’re linearly interpolating joint angle keyframes, our
velocities and accelerations will be nonlinear, but still
derivable from the equations. If we’re doing a more soph-
isticated continuous spline interpolation, our derivatives
will be even more complicated, but we should still
be able to attain equations for the velocity and
acceleration.

Once we’ve gotten the linear and angular positions,
velocities, and accelerations from our animation system,
we use these known values everywhere they appear in our
equations. Equations 1 and 2 for the kinematically con-
trolled body become known values, rather than equations
depending on the force of constraint. All of the animating
body’s kinematic quantities are now known and end up in

A AA B c A Bf b b+[] = − +

˙˙ ˙˙p p f b f bA B A c A B c B− = + + − =A A 0

˙ṗ f b f bB B c B B c B= −() + = − +A A

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

48

G A M E P H Y S I C S

the b vector. When we compute fc, the computed force
will make the dynamically controlled body obey the move-
ment of the constraint due to the kinematically controlled
body’s animation. We don’t apply the constraint force to
the animating body because, well, it’s animated, not
simulated.

Multiple Constraints

T
wo bodies does not a ponytail make. Do we have to re-
derive everything when we want to do three bodies with

two constraints in a chain, not to mention N bodies with
N – 1 constraints? Thankfully, the answer is no. The equa-
tions for multiple bodies and constraints are very similar to
those we’ve already derived, but we need to talk a bit more
about the structure of the multi-constraint problem before
we can extend them.

The first thing to notice is that we have to solve for all of
the constraint forces simultaneously. If I have a chain of
three bodies, and I pull up on the top body, not only does
the middle body have to feel the yank, but the bottom body
does as well. If we didn’t solve simultaneously, the force of
the pull would ripple down the chain in the order we solved
the constraints, and the chain would separate. This is not
the behavior we want.

Because we need to solve
simultaneously, all of the
constraints need to be rep-
resented in the equations
we write. This forces us to
develop some new nota-
tion that will scale to mul-
tiple constraints. Bodies
can now have two con-
straints attached to them,
rather than just having one
as in our two-body deriva-
tion. It turns out that it
makes the most sense to be
“constraint-centric” in our
notation, numbering the
constraints and having
them refer to the bodies
rather than having the
bodies refer to the
constraints.

Figure 2 shows this nota-
tion. The constraints are
numbered 1, 2, and 3; if we
were being completely gen-
eral we’d call them i – 1, i,
and i + 1. We’re going to
talk about the middle
joint, number 2. We’ll call
the forces at each con-
straint fc1, fc2, and fc3. The
constraints attach the two bodies on either side of the joint,
and I’ve chosen the subscripts u and d to stand for the
“upstairs” body and the “downstairs” body relative to the
joint in the figure. So, the body between joints 1 and 2 is the

upstairs body of joint 2, and the other body is the down-
stairs body of joint 2. The constraint endpoint of the top
body for joint 2 is denoted p2u , and the endpoint from the
bottom body is p2d , and so on. The constraint endpoints and
the r vectors are still attached to their respective bodies, but
they’re numbered relative to the joints. Notice that the u-
body of joint 2 is the d-body of joint 1.

While I make no claims to the elegance of this notation, it
will let us get the job done.

General Acceleration Equations

G
iven the new notation, we could rederive all of our
equations for the new general constraint. We don’t

have the space for that (and it’s almost identical to our pre-
vious derivation), so we’re going to skip ahead and show the
structure of the equations we end up with for joint 2. The
accelerations of the two endpoints associated with joint 2
look like this:

Eq. 17

Eq. 18
A single joint is affected not only by its own constraint

force, but also by the constraint forces on
either side of it. This is because the body
accelerations are modified by all the con-
straint forces acting on them, and those
body accelerations appear in the equation
for the constraint. Put another way, the
top body’s motion at joint 2 is dependent
on what joint 1’s force is doing, in addi-
tion to what joint 2’s force is doing.

I haven’t described what the A matrices
look like exactly, but they’ll be very simi-
lar in composition to the A matrices we
derived above, so we can just deal with
them symbolically here. They’re subscript-
ed to describe their function: A2u1 is the
matrix for joint 2’s upstairs body that mul-
tiplies fc1. In English, A2u1 describes the
acceleration effect fc1 has on joint 2’s
upstairs endpoint. Put yet another way,
A2u1 maps the force from joint 1 to an
acceleration at joint 2, through the body.
To belabor the point a bit more, if you
look at the expression that makes up A2u1
(once you’ve derived it, of course!), you’ll
see that it converts fc1 to accelerations on
the center of mass, and then maps those
accelerations out to p2u.

Although I didn’t mention this way of
thinking above, the original AA and AB
matrices from the two-body derivation
work the same way. The linear acceleration
is transferred through the M–1 term, and

the angular acceleration is transferred through the cross
product (or tilde matrix) and inertia tensor term. In AA and
AB we’re mapping the constraint force from the joint, down
through the body, and back up to the same joint, but the

˙ṗ f f bd d c d c d2 2 2 2 2 3 3 2= − + +A A

˙ṗ f f bu u c u c u2 2 2 2 2 1 1 2= − +A A

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

50

G A M E P H Y S I C S

1

2

3

R
2u

R
2d

r
2d

r
2u

p 2u = p 2d

F I G U R E 2 . A multi-constraint system.

principle still applies. In Equations 17 and 18, A2u2 and A2d2
are similar to AA and AB, since they map fc2 to acceleration
back at joint 2.

We’ve also adopted the convention of applying the con-
straint force positively to the u-body and negatively to the
d-body, which accounts for the negative signs in Equations
17 and 18.

The Multi-Constraint System

I
f we subtract Equation 18 from Equation 17 and group
terms, we get the constraint equation we must satisfy for

joint 2:

Eq. 19
This equation has the three unknown vectors in it, but it’s
only one vector equation. To solve a linear system, we need
as many equations as we have unknowns. Where will we
find the other equations? From the other constraints,
naturally.

Let’s assume for the moment that the system in Figure 2
has four bodies and the three constraints shown. In other
words, although they’re only hinted at in the figure, there is
a body above joint 1 and a body below joint 3. These outly-
ing bodies each has only one constraint (joint 1 for the
upper body and joint 3 for the lower body, obviously), and
they are the endpoints of the chain in this example. Given
this system, the equation for joint 1 is:

Eq. 20
And the equation for joint 3 is:

Eq. 21
Notice that Equations 20 and 21 have only two constraint
forces each in them, as opposed to the three forces in
Equation 19. The equation for the end joints in a chain will
have only two constraint forces because the extremal bodies
don’t have a joint on their “far” side (or they wouldn’t be
very extremal, now would they?).

Now for a bit of matrix magic. Equation 20 contains fc1
and fc2, Equation 19 contains fc1, fc2, and fc3, and Equation
21 contains fc2 and fc3. Each of these equations depends on
one or more of the other ones. This is the mathematical
expression of our statement above that the constraints must
be solved simultaneously. We can construct a single large
matrix equation that contains all of these equations by
stacking them up, like so:

Eq. 22

If you perform the matrix multiply in Equation 22, you
can see you get the exact equations listed above. Further-
more, Equation 22 is just another Afc = b linear system,
where A now stands for the compound matrix in Equation
22, and fc and b (with no numbered subscripts) stand for the
stacked vectors. Instead of a 3×3 system, we now have a 9×9
system, but it’s still a linear system and the same rules apply
to solving it. Throw Equation 22 into a linear solver, apply
the individual fc vectors back to their appropriate objects,
and you’ve got a constrained system.

From here, it should be pretty clear how to extend this
math to an arbitrary number of bodies and constraints. The
A matrix and the associated vectors keep growing, but the
structure is exactly the same.

The Linear System Revisited

I
said you can solve the Afc = b system using a generic lin-
ear solver, which is true. However, there are more effi-

cient ways of solving the particular matrix generated by our
algorithm that take advantage of its special properties. Effi-
ciency is incredibly important when doing constrained
dynamics because linear systems such as Afc = b have O(n3)
complexity in the general case, where n is the number of
rows in the matrix. This means that every constraint equa-
tion you add as an additional row makes the system much
slower to solve. O(n3) complexity is not the kind of slowness
that waiting for next year’s CPU can fix.

The most important special characteristic of our A matrix
is its sparsity structure. You can see this structure developing
in Equation 22, and as you add more bodies and constraints
you can see it even better: the constraint submatrices stay on
the diagonal of the matrix and its neighboring columns, and
the rest of the matrix is zero. This makes intuitive sense
given that a constraint depends only on itself (which corre-
sponds to the diagonal element) and its two constraint
neighbors (the off-diagonal elements). The official name for
the sparsity structure of the A matrix is “block tridiagonal,”
for somewhat obvious reasons. What’s more, the A matrix is
symmetric, although this fact is not completely clear from
our derivation. And finally, it’s “positive definite,” assuming
the constraint equations are well formed. A positive definite
matrix is roughly analogous to restricting a real number to
be greater than zero, rather than allowing it to be zero or
negative. You can learn more about these characteristics in a
good numerical linear algebra book.

Taken together, these properties mean we can write (or
download) a custom linear solver that will solve our systems
in O(n) time. O(n) is definitely the kind of problem that
AMD and Intel will make faster every year.

Numerical Accuracy

I
t’s really a shame that all of this math I’ve presented to
you doesn’t actually work when you type it into the com-

puter. Well, that’s a bit extreme, but the world of floating-
point numerics is far removed from that of symbolic equa-
tions, and we have to do a bit more work to get them to
match up.

A A A

A A A A

A A A

1 1 1 1 1 2

2 1 2 2 2 2 2 3

3 2 3 3 3 3

1

2

3

1 1

2 2

3 3

0

0

u d d

u u d d

u u d

c

c

c

u d

u d

u d

f

f

f

b b

b b

b b

+ −

− + −

− +

=

− +

− +

− +

− + +[] = − +A A A3 2 2 3 3 3 3 3 3 3u c u d c u df f b b

A A A1 1 1 1 1 1 2 2 1 1u d c d c u df f b b+[] − = − +

− + +[] − = − +A A A A2 1 1 2 2 2 2 2 2 3 3 2 2u c u d c d c u df f f b b

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

52

G A M E P H Y S I C S

The major problem is that we’re
using numerically computed forces to
affect accelerations, which are then
numerically integrated to find new
positions. This algorithm has two big
numerical holes in it. For starters, the
forces we compute are not going to be
exact because of floating-point errors
accumulated during the formulation of
the Afc = b system and its solution.
This means the fc terms aren’t going to
exactly enforce the constraint equa-
tions when they’re applied in floating
point. To compound matters, the
integrator is going to introduce even
more numerical errors, since we’re
using forces to keep a position con-
straint together. These two sources of
error mean the objects will slowly drift
apart. At first the errors will be small.
If you subtract the positions of the
two endpoints of a constraint, you’ll
see the result is not exactly the zero
vector after a few steps. Eventually, the
objects will have drifted far enough
apart so you can see the gap. This
is bad.

There are many ways of dealing
with this drift, and we don’t have the
space to talk about any of them in
depth. I favor a method called
Baumgarte Stabilization, which basi-
cally places tiny springs on the joints
that are adjusted to suck up the
numerical error as it develops. The
springs don’t actually provide any
physical support (the fc terms still do
that), but they do a great job of keep-
ing the joints together in the face of
floating-point errors. The sample
application implements Baumgarte
Stabilization to fight the drift prob-
lem. It’s easy to implement and it
works well.

Other methods include directly cor-
recting for the drift in position space,
and other techniques. Now that you
know the math behind constrained
dynamics, you’ll have no trouble fol-
lowing the numerical accuracy discus-
sions in the books referenced on my
web site.

Miscellanea

P
hew! That’s a lot of equations, but
we’ve accomplished a lot. We’ve

actually accomplished even more than
we set out to, because all of this math
is valid for completely general con-

straints. When I say general, I mean it
in two ways: topologically and in terms
of the joint types.

Topologically, our constraint-cen-
tric viewpoint means we can have as
many constraints coming off a rigid
body as we like. We’ll need to modify
our notation slightly to support this,
and the location of the elements in
the Equation 22 matrix will change a
bit depending on the interconnection
of the bodies, but making an octopus
would be no problem, even though
the root body has eight constraints
on it.

As far as joint types go, Equation 3 is
just one of an infinite number of accel-
eration constraints this math can
enforce. Again, pieces of the derivation
change, but the overall structure stays
the same, regardless of whether you’re
simulating spherical joints such as
Equation 3, or hinges, or prismatics, or
whatever. Look at the references on my
web site for books about writing differ-
ent constraint equations, or give it a try
yourself. The important thing to
remember is to get it clear in your head
what you’d like the joint to be, and
then write down an equation that

describes that joint. Differentiate it
then plug and chug.

Hopefully, with the general interest
in physics for games that’s been grow-
ing for the past few years, we’ll start to
see a lot of special effects using real,
consistent physics. Then, when every-
body’s comfortable with the math and
implementation issues, we can start to
work on integrating physics with game
play and game physics can finally live
up to its potential. ■

h t t p : / / w w w . g d m a g . c o m A P R I L 2 0 0 0 G A M E D E V E L O P E R

53

My dynamics web site, including the
ponytail sample app, articles, references,
and more:
http://www.d6.com/users/checker/
dynamics.htm

FF OO RR FF UU RR TT HH EE RR II NN FF OO

I forgot last time to thank Lisa Washburn of

Vector Graphics (http://www.vectorg.com)

for the model of the head and the ponytail

pieces.

Acknowledgements

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

54

SHERON’S CALL is a statistical anomaly. In an industry

where cancelled games and dashed hopes are the

norm, this project seemed one day away from

certain failure for nearly its entire history. And

yet, thanks to the visionary foresight of a

handful of people, a healthy dose of luck,

and incredible conviction from both the development team and

publisher, it made it to store shelves and has received a great deal of

critical acclaim.

In May 1995, I walked into a small suburban home in southern

Massachusetts and met my new co-workers. Having left my previous job

at a genetics lab, I expected nothing more than an interesting summer

project as “A Game Writer.” Little did I realize what was in store for me

and this start-up company called Turbine.

b y T o b y R a g a i n i

TurbineÕs
ASHERONÕS CALL

P O S T M O R T E M

Toby Ragaini leads Turbine Entertainment Software’s design team and was the lead designer of ASHERON’S
CALL. He is currently working on Turbine’s next-generation massively-multiplayer game.

AA

55

h t t p : / / w w w . g d m a g . c o m A P R I L 2 0 0 0 G A M E D E V E L O P E R

Having filled every nook of a residential home
with PCs, an enterprising group of about ten
developers was already busy working on the game
that would one day become ASHERON’S CALL.
Although not a single one of them had profes-
sional game development experience, I was
immediately impressed with their enthusiasm
and dedication. After introductions, I was told to
scrounge around for a desk. Upon securing an
end table and a plastic lawn chair, I sat down and
started meeting with various team members to
figure out just what this game was all about.

What was described to me was something that
nearly every computer game geek is by now
familiar with: a 3D graphical MUD. A persistent
fantasy environment where hundreds of players
could explore the land, defeat monsters, form
adventuring parties, delve into dungeons, and
complete quests. I’m not sure why anyone
thought it was possible. We had no office, no
technology to speak of, and no publisher. And I
was being paid $800 a month. Yet from these
humble beginnings, something truly wonderful
was created.

The development team was divided into func-
tional departments. Tim Brennen, a Brown University
dropout who had helped develop Windows NT as a
Microsoft intern, led the engineering team and would go on
to design the server, networking, and character database.
Chris Dyl, a former physicist turned programmer, would
develop the 3D graphics engine and server-side physics.
Andy Reiff, also a Brown alumnus, would later round out the
engineering leads as the game systems programmer, respon-
sible for implementing all of the game rules systems and
functional interactions in the game world. All of the game’s
code would be developed from scratch. At the time, this was
a fairly easy decision, since licensable game code was pretty
much nonexistent in 1995.

On the art team, Jason Booth, a music student with expe-
rience using Lightwave, would take on the title of lead tech-
nical artist. In this role, Jason bridged the gap between the
art and graphics teams, ensuring that the art asset pipeline
ran smoothly. Sean Huxter brought his substantial anima-
tion and modeling experience to the team as the lead artist.

My own contributions to the team were in the area of
game design. As the project grew in scope, my role changed
to become that of lead designer. Soon realizing the amount
of work required to design a game with the scope of
ASHERON’S CALL, I put together a team of designers that envi-
sioned and documented the characters, monsters, history,
and timeline of a fantasy world called Dereth. In addition,
the design team spec’d all of the game rules and systems
necessary to RPGs.

Although the team had no professional game develop-
ment experience, one invaluable thing that the team did
have was experience playing MUDs and similar text-based
Internet games. Although these games were comparatively
simple, the game-play dynamics created in a massively-mul-
tiplayer environment are extremely different from a single-
player game. MUDs proved to be a very useful model for
multiplayer gaming patterns.

ASHERON’S CALL was initially designed to support just 200
simultaneous players, each paying an hourly fee. Turbine
would host the servers, which were originally going to be
PCs running Linux. Although in today’s market, this sounds
ludicrous, in 1995 this was in fact the standard premium
online game model. Games using similar models, like
Genie’s CYBERSTRIKE and America Online’s NEVERWINTER

NIGHTS, were quite successful at the time. Based on this goal,
the original schedule had ASHERON’S CALL shipping in the
fourth quarter of 1997.

What Went Right

1.
STAYING TRUE TO OUR ORIGINAL VISION OF THE GAME.
ASHERON’S CALL was a ridiculously ambitious project

for an unproven team. Yet despite this naïveté (or more like-
ly because of it), the final product is frighteningly close to
the original goal of the project. Of course during that time,

Turbine Entertainment Software
Westwood, Mass.
(781) 407-4000
http://www.turbinegames.com

Release date: November 1999
Intended platform: Windows 95/98
Project budget: multimillion-dollar development budget
Project length: 40 months plus 8 months of beta
Project size: approximately 2 million lines of code.
Team size: 30+ full-time developers, including 6 artists, 4 game

designers, 15 software engineers, and 5 QA testers.
Critical development hardware: Intel Pentium PCs
Critical development software: Microsoft Visual C++ 5.0, Visual

SourceSafe 5.0, Lightwave 5.5, Photoshop 4.0, RAID.

ASHERON’S CALL

Dynamic load balancing on the server gave ASHERON’S CALL an expansive,

seamless game world that required no load times.

Turbine learned lessons in feature cut-
ting, scheduling risks, and compro-
mise. But despite all the missed dead-
lines, all-nighters, and other
disappointments, we are able look back
on our shared vision and take pride in
that we achieved what we set out to do.

Typically, there exists a master docu-
ment that describes the overall game
concept and goal. Although the docu-
mentation at the inception of the game
was in fact very sparse, what little that
did exist described the fundamental
architecture of the game, including its
client/server model, dynamic load bal-
ancing capabilities (described later),
and 3D graphics. In addition, game-
play details such as the alle-
giance system, magic economy,
and the emphasis on social game
play are in my notes going as far
back as 1995. The team internal-
ized these goals, and a form of
oral tradition maintained them
in meetings.

Although we didn’t know it at
the time, ASHERON’S CALL would
debut as the third massively-
multiplayer online RPG amidst
two strong competitors, ULTIMA

ONLINE and EVERQUEST. We’re
often asked if we made any dra-
matic changes in response to the
release of these two titles. In all
honesty, the answer is no. If
anything, these two products
proved to us that our initial
technical and game design deci-

sions were correct. Clearly, social game
play helped drive the success of these
games. This made our game’s social
systems such as allegiance and fellow-
ships all the more important. It was
also obvious that immersion was criti-
cal. Instability and pauses were the
bane of massively-multiplayer games.
In theory, the dynamically load-bal-
anced servers would prevent many of
these problems.

In an industry that can be driven by
holiday deadlines, marketing hype,
and cutting corners, it’s refreshing to
know that ambitious goals can still be
rewarded. But it’s more than that.
While we certainly could have created

a less ambitious game, I believe it
would have been a detriment to
Turbine’s competitiveness as an inde-
pendent development studio.
ASHERON’S CALL might have shipped
earlier had it been a LAN game or a
series of connected arenas, but we
would not have the innovative tech-
nology and game design experience
that today puts Turbine in such a desir-
able competitive position in the indus-
try. In this way, our team’s unwavering
vision was handsomely rewarded.

2.
SECURING A PUBLISHING AGREEMENT

WITH MICROSOFT. In mid-1996,
representatives from the newly-formed
MSN Gaming Zone were booed by the

audience of the first Mpath
Developer Conference. Their crime
was the prediction that hourly fees
were dead and that flat monthly
rates would become standard. Our
business plan at the time counted
on an hourly model, but we recog-
nized the truth to the Zone team’s
statement. At that year’s E3, we
relentlessly pursued Jon Grande,
product planner on the Zone, in
order to pitch him our game pro-
posal and show him our technolo-
gy demo. At that time, the demo
consisted of two PCs connected to
each other. One was running the
client software, complete with 3D
graphics. The other was the server
executable. The Zone team was
very impressed, and scheduled a
visit to our office (we’d since

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

56

P O S T M O R T E M

Shot of the landscape test program. Designers ran

around the landscape off-line to see what had been

added and how it looked. This is a shot of the obsid-

ian plane with mushrooms and crystals, not to men-

tion some creatures lurking near a mysterious

power source.

Shot of the in-house dungeon creation tool. Once the dun-

geon is laid out the decorating can begin. The panel to the

right is a list of hand-placed objects in the current piece.

Note the mine wheelbarrows and picks on the wall.

Shot of World Builder decorating an Empyrean ruin on the

landscape in the desert. The pillars on that building are

hand-placed, as was the portal and the lights that stand

outside the door.

moved into an actual office space
south of Boston). Soon after the visit,
Microsoft agreed to enter into a pub-
lishing agreement with Turbine,
secured initially with a letter of intent.
The actual contract arrived six months
later, but the letter of intent granted us
an initial milestone payment and
enough certainty to schedule the mile-
stone deliverables. This was the start of
a long, sometimes tumultuous, but
ultimately fruitful alliance.

After we secured the contract, the
division of labor was discussed. As the
developer, Turbine was to design the
game, engineer and implement all of
the code, generate all art assets, create a
QA plan, and perform testing on all
game content. With its pre-existing
Zone platform, Microsoft was responsi-
ble for code testing, billing, and ongo-
ing server operations. Fundamentally,
this meant that while Turbine would
create the game, the day-to-day opera-
tions of the ASHERON’S CALL service
would be entrusted to Microsoft.

One thing that Turbine successfully
negotiated for was the rights to our
source code. Besides the team, we knew
that our massively-multiplayer tech-
nology was going to be our single most
valuable asset. In addition, we agreed
to a one-title deal that gave us the flexi-
bility to pursue other development
deals as opportunities arose. In this
way, we ensured that Turbine would

remain independent and effectively in
control of our own destiny.

In many respects, Microsoft proved
to be an ideal partner for Turbine. Like
Turbine, the Zone was a start-up orga-
nization, and was eager to prove itself.
The Zone was pioneering a new type
of business, with a business model
new to Microsoft, and this placed the
managers of the Zone in a position
where they could afford to take risks.
And while ASHERON’S CALL ultimately
validated Microsoft’s belief in
Turbine, at that point Turbine was
certainly a risk.

Besides the obvious funding issue,
Turbine benefitted from its partner-
ship with Microsoft in other ways. We
had free access to Microsoft develop-
ment tools like Visual C++, Visual
SourceSafe, and a bug-tracking data-
base called RAID. We learned a lot
about professional software develop-
ment from Microsoft as well, such how
to create an efficient build process,
manage code source trees, and orga-
nize effective test cycles on the daily
builds. Finally, we gained prestige by
working with one of the most respect-
ed software companies in the world.
Having Microsoft as a partner gave us a
lot of credibility and put us in a much
better position to pursue funding and
make critical hires, two incredibly
important objectives for a small start-
up company.

3.
REUSABLE ENGINE AND TOOLS. Mas-
sively-multiplayer games

require a fundamentally different
architecture from that of single-player
games, or even multiplayer LAN games.
Beyond the graphics engine, user inter-
face, and other elements of a typical
game, persistent massively-multiplayer
games generally require a centralized
server, networking layer, user authenti-
cation, game administration tools, and
a host of other technologies.

Early on, Turbine recognized that
many of these technologies would be
required by any massively multiplayer
game, and could perhaps be general-
ized enough that they could be reused
in different massively-multiplayer
titles. At the time, this was an unusual
premise for a game developer; typical-
ly, source code was thrown out at the
end of a project, and the idea of licens-
ing a 3D engine like Quake was still a
long way off. From our perspective it
just made good business sense to lever-
age our R&D as much as possible. Since
so much of our development budget
was devoted to creating these key
technologies, we made every effort to
keep the technology modular and data-
independent.

This modular architecture has since
proven to be a tremendous win for
Turbine. We’ve been able to prototype
new game concepts rapidly by chang-
ing data while keeping the server exe-
cutable nearly unchanged. Not only
has this helped us get new business, it
has also proven to be extremely useful
for in-house play testing and construct-
ing proof-of-concept demos.

Currently we are investigating the
potential of licensing our technology.
While we continue to advance the code
base, we have placed some emphasis
on productizing the Turbine engine.
From a business perspective, this is a
very desirable source of revenue. We
can leverage our R&D efforts and devel-
opment costs, while advancing the
engine that our own future products
will use.

In addition to the ability to reuse
code, Turbine’s modular emphasis
extended to the way content is created
for the game world. As development on
ASHERON’S CALL progressed, we quickly
came to realize that populating a game
world the size of Dereth was going to
be a monumental task. By this time, we
knew our competitors were hiring

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

58

P O S T M O R T E M

Different types of combat were developed independently, causing complications.

teams to design individual
levels and create content
manually. This seemed less
than optimal to us, and fur-
thermore we didn’t have the
resources to hire a large con-
tent team.

Instead, we created a series
of world-building tools to
maximize our efforts. The first
kind of tool allowed artists to
create vast chunks of game
environment (represented as a
grayscale height map) with
each stroke of their brush.
Random monster encounters
and terrain features such as
trees and butterflies could also
be placed using this method.

We also developed a tool called
Dungeon Maker to create subterranean
environments such as dungeons and
catacombs. Early on, Jason Booth got
sick of hand-modeling the complex
level designs he was getting from the
design team, so he and user-interface
programmer Mike Ferrier created a
level-building tool that used an intu-
itive drag-and-drop interface. This
allowed nontechnical designers the
ability to create and instantiate dun-

geons quickly without taking up the art
team’s valuable time.

An offshoot of Dungeon Maker,
World Builder, became a much more
advanced tool by the time ASHERON’S
CALL shipped. Using World Builder,
a content designer could wander
around the game world placing houses,
decorations, and monster encounters,
and even raise and lower the terrain.
This proved to be an incredible time-
saver, and the amount of landscape

content we were able to gen-
erate easily quadrupled.

This kind of tool modulari-
ty allowed us the ability to
update the game world easily
with new content, such as
new monsters, quests, items,
and adventure locations.
Thanks to monthly content
additions, ASHERON’S CALL

“events” can propel an over-
arching story forward and
involves players in all areas
of the games. So far these
events have proved to be a
huge success. Players feel like
they are part of a living,
breathing world, and are
more likely to stay involved

in the game for longer periods of time.

4.
PAINLESS LAUNCH. When the first
few thousand players began

pouring onto the production servers,
we were certain that there would be all
sorts of catastrophes. We had watched
our competitors suffer similar calami-
ties, and we had resigned ourselves to
accept this rite of passage. To our sur-
prise, nothing went wrong the first
day. We were delighted by just how
stable and uneventful the retail launch
was. Everything went without a hitch.

This stability was due to effective
beta testing, intelligent project man-
agement, and insightful data-center
equipment deployment. Here’s how it
worked. During beta, both Microsoft
and Turbine testers submitted bugs
into RAID. In addition, user-submitted
bugs were tracked by the Microsoft
team and were added into RAID if they
were deemed important. Server perfor-
mance metrics were one of the key
goals towards meeting our shipping
requirements. Each server had to
maintain a minimum level of perfor-
mance, given a concurrent user base of
3,000 players. To meet this metric, a
few changes were in order. The server-
side physics was modified to use a
more simplified collision model. In
addition, a faster “clean-up” cycle for
objects dropped on the landscape was
implemented. Having made these
changes, we were able to meet the
aggressive server metrics and our serv-
er software has since proved to be
nearly bulletproof. In fact, for the first
several weeks, the server software did
not crash once, which was a major
accomplishment considering the tech-

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

60

P O S T M O R T E M

Each ASHERON’S CALL server had to support 3,000 concurrent

players, minimum.

nical problems evident in
other massively-multiplayer
games.

Our retail launch was a stag-
gered affair. Initially, only two
“enthusiast-oriented” retail
chains received shipments of
ASHERON’S CALL boxes. This
allowed our die-hard fans from
the beta testing program to get
copies, but prevented the del-
uge that would have occurred
had we been in the larger, more
mainstream retail stores. While
it would have been exciting to
see massive sales on day one, I
believe that this gradual
approach was a smart move.

5.
SEAMLESS ENVIRONMENT

USING DYNAMICALLY LOAD-BALANCING

SERVERS. One the most impressive fea-
tures of the Turbine engine is the con-
tinuous outdoor environment. This is
made possible thanks to dynamic load
balancing, which is a scalable server-
side architecture. The easiest way to
appreciate the need for dynamic load
balancing is to consider the following
scenario.

Imagine a hypothetical game world
that is divided into four servers, each of
which corresponds to a geographic area
in the game world. With a static server
architecture, if everyone in the game
world decides to go to the same area,
that one server’s performance would be
dramatically impaired, while the three
remaining servers would effectively be
idle, completely unaware of their over-
taxed brother.

Dynamic load balancing solves this
overloaded server problem. Instead of
assigning a static geographic area to
each server, the individual servers can
divide up the game world based on the
relative processor load of each server.
In the previous example, instead of
remaining idle, all four servers would
divide the load equally among them-
selves, ensuring the most efficient use
of the hardware’s processing capacity.

Dynamic load balancing allows a
very free-form environment where
players can travel wherever they want
with very few hard-coded limits. But in
order for the graphics engine to accom-
modate the seamless nature of the serv-
er, we couldn’t allow a “level loading”
pause typical in many 3D games to
interrupt the game play. To avoid level-
loading, the geometry team headed by

Chris Dyl engineered a unique
rendering engine that con-
stantly loads data in the back-
ground, and draws objects at
far enough distances so as to
minimize obvious “popping”
effects and without having to
rely on a fogging effect to hide
the clipping plane.

What Went Wrong

1.
POOR SCHEDULING AND COM-
MUNICATION. For most of

its early history, ASHERON’S
CALL was the victim of poor
project management. During
the last year of development, a

management reorganization took place
that salvaged the project. Depending
on how far back you look at the sched-
ules, ASHERON’S CALL was either one to
two years late. This is attributable to a
number of reasons, some of which I will
explain momentarily.

When Microsoft and Turbine entered
into the development agreement, nei-
ther side had any idea of the scope of
the project. An initial list of milestones
was drawn up by the Microsoft product
manager and our development leads.
Unfortunately, after the second mile-
stone, deadlines were consistently
missed. A lot of this was due simply to
underestimating the time required for
development tasks. This created a
domino effect as we continually played
catch-up, trying desperately to make
up for lost time.

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

62

P O S T M O R T E M

World Builder let Turbine place monster encounters easily.

This is a shot of the Banderling being animated. The

motion graph shows the keyframes and the spline move-

ment of the Banderling’s chest as he makes a swing with a

weapon.

This is a shot of the Banderling being animated. He is per-

forming a large swing to the front, and is caught in mid-

backswing. The weapon is rooted out of the scene when

the animation is preprocessed, as is the floor. Note the

movement path of the weapon as it strikes.

This schedule free-fall continued
into 1997 and forced us to re-evaluate
the feature set. Unfortunately, feature
cuts were made without considering
the impact on the playability of the
game. Ultimately, most of these
features were added back into the
game anyway, which took additional
time due to the reallocation of team
resources. The lesson here concerns the
value of effective scheduling. Identify
the risky areas in your schedule early,
figure out the dependencies, and make
sure you pad the time estimates for
tasks.

Communication between Microsoft
and Turbine was also a major factor.
The teams were separated by about
3,000 miles and three time zones.
Although weekly conference calls
were scheduled, they lacked the col-
laborative mentality necessary for
maintaining a successful relationship.
E-mail threads were either ignored
or else escalated into tense phone
calls, and in some cases the bug-
tracking database (RAID) was not used
effectively.

Clearly, everyone would have bene-
fited from more face-to-face time.
E-mail — and even conference calls —
are poor media for managing new and
sensitive corporate relationships, espe-
cially ones between companies with
such different corporate cultures.
From a developer’s perspective, it’s
always easy to blame the publisher for
unrealistic expectations and bureau-
cracy. What’s important to realize is
that it is everyone’s obligation to com-
municate expectations and problems
before they escalate to the point of
being a crisis.

2.
INEXPERIENCED DEVELOPMENT TEAM.
None of the senior developers

at Turbine (including me) had ever
shipped a retail PC game. None. Many
of the employees were students imme-
diately out of college, or even college
students completing a work-study pro-
gram. This obviously was the source of
several severe problems in the develop-
ment of ASHERON’S CALL.

It was nearly impossible for team
leads to give realistic schedule esti-
mates for tasks, since few of us had
experience in professional software
development. It was also initially diffi-
cult to get different teams from the
programming, art, and design depart-
ments to communicate regularly with

each other. The collegiate atmosphere
made it very difficult for decisions to
be made; meetings would happen and
resolutions would seemingly be agreed
upon, only to have those same ques-
tions asked in a subsequent meeting.
No one likes unnecessary bureaucracy
and giving up creative freedom, but
ultimately one person needs to be
given the authority to make a decision
and hold people to it. A good supervi-
sor takes into account the opinions of
everyone involved; design by commit-
tee simply does not work.

Obviously, having a seasoned and
experienced development team has
innumerable advantages. While it’s not
critical that everyone on the develop-
ment team have professional experi-

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

P O S T M O R T E M

This is an incredibly early shot of our

Character Generator screen. Much of

the interface has remained unchang-

ed, but the same cannot be said of

the faces. This was probably version

one of the face images. Turbine has

gone through a couple of versions

since then.

Early early shot of a mock-up UI that

had very limited functionality. Some

of the buttons worked, but mainly

this was a prototype pasted over the

3D window, which was working at the

time. The upper-left set of buttons

were macros. The paper doll was

hand drawn, and did not reflect the

look of the character.

ence, at the very least team
leads should have some form
of professional experience. As
it was, Turbine had to get by
with raw talent, unabashed
enthusiasm, and simply not
knowing any better.

3.
NO FEATURE ITERATION DUR-
ING DEVELOPMENT. Many

weaknesses of ASHERON’S CALL

at launch stemmed from the
methodology we followed for
feature completion. Features
were scheduled by milestone
and were expected to be com-
pleted in their entirety before
other features were worked
on. While this approach may
work for more typical soft-
ware applications, PC games
rely on a host of interrelating
systems that cannot be implemented
in a vacuum.

An example of this involved our
melee combat system. This game fea-
ture was completely spec’d and imple-
mented long before magic spells
worked within the game, under the
misguided assumption that it saves
developer and test resources not to
have to revisit completed features.
Clearly, these two game systems
needed to be tested and balanced in
stages alongside each other, not
independently.

Another example of this problem
occurred during beta testing. A mas-
sively-multiplayer game cannot be con-
sidered adequately tested until thou-
sands of players have participated in
the game world for at least a few
months. The first time ASHERON’S CALL

was exposed to this many users was
when it went into beta testing.
Unfortunately, we were placed in a
code freeze situation during the beta
test, and only the most serious bugs
were fixed.

Both Microsoft and Turbine recog-
nized many serious game balancing
problems during beta, but at that point
it was extremely difficult to make
changes. This can be attributed to our
tight schedule, but earlier beta tests
would have accelerated the bug-finding
process and resulted in a better bal-
anced game. On future projects,
Turbine is deploying a more iterative
implementation process where rapid
prototyping and early play-testing is
encouraged.

4.
AN AMBITIOUS PROJECT LACKING

FUNDAMENTAL UNDERLYING TECH-
NOLOGIES. As one of the first massively-
multiplayer 3D games, ASHERON’S CALL

was a bold undertaking. Several core
components were still theoretical when
the project was planned. Things like
dynamically load-balanced servers and
continuous, uninterrupted outdoor
environments were still unproven con-
cepts when we committed to them for
ASHERON’S CALL. Furthermore, we had
to create our own 3D graphics engine,
a latency-friendly network layer, and
physics and game rule systems that
would all work within a client/server
model.

We learned very quickly why there
hadn’t been a game like ASHERON’S
CALL before us: It was damned hard to
develop such a game. I don’t think
committing to a less aggressive feature
set was the right solution, though.
Instead, we should have acknowl-
edged up front that R&D efforts are
fundamentally hard to schedule, and
been more flexible with our develop-
ment schedule. With this in mind, we
could have created more realistic esti-
mates and done a better job managing
expectations within and outside
Turbine.

5.
NO DOCUMENTED HIGH-LEVEL FEATURE

STATEMENT. Because ASHERON’S
CALL had such a long and evolving
development cycle, it was difficult to
keep all the documentation up-to-date.
To compound the matter, the project
never had an official feature set as part
of the development contract with

Microsoft. The technical
design document process
and high-level feature
overviews were basically
skipped. This created severe
problems when it came to
prioritizing which features
were important. We con-
stantly had to justify fea-
tures, and we had no docu-
mentation to fall back on to
resolve our discussions.

Without a high-level
vision statement it was also
very difficult to educate
new employees about the
game. There was a sort of
oral tradition to initiate
new employees that had
been passed down for so
long that it just became

part of our company’s culture. This was
partially possible because the concept
of a 3D graphical MUD intuitively
made sense to a lot of people.
Unfortunately, it was very difficult to
explain what ASHERON’S CALL was about
to people who didn’t understand this
concept or had their own ideas about
how things should be done. Having a
documented vision statement and a
description of the high-level feature set
is absolutely essential for any title.

A Unique Company Résumé

A
SHERON’S CALL was a tremendous
learning opportunity for Turbine

and Microsoft. Despite all the problems
and setbacks, ASHERON’S CALL is a suc-
cess story. The game has been well
received by PC game enthusiasts as
well as the majority of the game indus-
try press. The fan support for ASHERON’S
CALL is overwhelming, and players rou-
tinely spend more than six hours a day
logged into the game world.

In addition, Turbine is now in a very
desirable position, being one of only a
handful of developers (and the only
independent studio) that has success-
fully created a massively-multiplayer
title. Industry analysts predict that
online games will be the fastest grow-
ing segment of entertainment software.
With its reusable architecture, robust
toolset, and (now) experienced devel-
opers, Turbine intends to remain at the
forefront of massively-multiplayer
gaming. ■

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

66

P O S T M O R T E M

It was difficult to play-balance the game since that aspect of

development took place after the code was frozen.

O.K., I’m making it up. But it didn’t
sound entirely far-fetched, did it? After
all, if movie directors and rock stars can
be honored, why not Sid? He’s certainly
deserving when measured by hours of
entertainment provided. More than
deserving if quality counts, too.

But our industry is still too young
to achieve that level of recognition
— for now. If your reaction was
complete disbelief, just give it
some time.

Recently I offered to write this
article about the interactive entertain-
ment industry “coming of age.” But it’s
too easy to make the case for putting an
end to all those articles that begin
“Although the computer game industry
is still in its infancy...” At the very least
we’re well into adolescence, as the
success of Lara Croft attests.

Then I had the good fortune to
speak at the first Australian Game
Developers Conference in Sydney.
I was coming out for a week of
work with Microforte, a game
developer that was also co-sponsoring
the conference, so combining the two
seemed logical.

I was also one of the 180 or so atten-
dees at the second U.S. CGDC (now
known simply as the GDC) in 1988 —
not one of the two dozen people Chris
Crawford invited to meet in his living
room, but the first conference at a hotel.
The similarities and differences between
the Australian GDC and my first CGDC
convinced me just how far we’ve come,
as well as how far we have to go.

There were around 250 attendees at
this first AGDC, more than they expect-
ed, and all the more significant consid-
ering Australia’s population. A propor-

tional attendance in the U.S. would
be closer to 3,500 — the

size of

the CGDC
just a few
years ago. Back
in 1988, it was
impressive
simply to
have 180
game developers all in
one place. The Australian conference
was much more professionally orga-
nized, too, borrowing a great deal from

what has been refined through years of
experience in the U.S.

But more striking than the differ-
ences were some of the similarities
between the AGDC and that early
CGDC. The large majority of the atten-
dees at both were under 30 — not
unusual in this industry, but it seemed
the average age was a good five to seven
years younger than the 1999 GDC.
There was an air of enthusiasm and
optimism once common in the U.S.

and now increasingly
rare, no doubt due to
the increasingly cyni-
cal and skeptical “old-
timers” like me. There
were several times
when I cautioned

impassioned young
developers against

some proposed course
of game development

with some variation on
“that’s been tried repeatedly

before and failed in these
ways...” I think I saved some

people considerable heartbreak,
but there’s poignancy in realiz-

ing that we’ve explored some
frontiers and found nothing but

badlands. It’s more fun when every
horizon is virgin territory, full of

promise, and sometimes the excite-
ment of being an explorer is worth the
attendant pain.

Another measure of how far the
industry has come was the very fact

that I was at the conference in my
capacity as freelance game design-

er. The idea of flying someone
out for a week of work from more

than 7,000 miles away would have
been fanciful 12 years ago and is rare
even now, but to my delight is becom-
ing more common. It seems the
increasingly large and robust interac-
tive industry has grown to the point
of being able to support a growing
group of freelancers similar to
Hollywood’s ranks of writers, actors,
and technicians.

G A M E D E V E L O P E R A P R I L 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

80

b y N o a h F a l s t e i nS O A P B O X

A Tale of Two GDCs

NEWS FLASH: Sid Meier will be one of the

Kennedy Center Honorees next year and

is invited to spend an evening at the

White House!

Noah Falstein runs The Inspiracy, providing freelance game design, producing, and
writing for both established and up-and-coming companies. When he isn’t jet-setting
around the world he can be found in Marin County, Calif. For contact info see his
web site at http://www.theinspiracy.com.

CONTINUED ON PAGE 79

illustration by Jackie Urbanovic

Hollywood is often held up as a stan-
dard by which we measure the progress
of our own branch of the entertain-
ment industry. The widely touted fac-
toid that 1998’s computer and video-
game revenues surpassed Hollywood
box office receipts is one example.
When you consider the total revenues
from video rentals, licensing fees, and
advertising, Hollywood is still way
ahead — but our growth rate remains

much higher than Hollywood’s, and
shows little sign of slowing. It’s possi-
ble to make a good case that at some
point in the future, linear media such
as film and television will be consid-
ered a subset of interactive entertain-
ment, just like how at first there were
just movies, then “talkies” were intro-
duced, and eventually “talkies” became
“movies” and the old movies became
“silent movies.” Perhaps what we now
call movies will one day be called “lin-

ears” or “branchless movies.” If that
sounds ambitious now, at the 1988
CGDC it would have been wild fantasy.
Now, keeping our rate of growth in
mind, even more seems possible.

And so if it takes another ten years
for Sid to get a chance to sleep in the
Lincoln Bedroom (and scrawl “Lee
Rules!” on the wall?) just remember
you heard it here first. After that, who
knows...the Nobel prize for interactive
literature? ■

S O A P B O X

79

CONTINUED FROM PAGE 80

	back:

