
APRIL 1999

G A M E  D E V E L O P E R  M A G A Z I N E



Y ou have to love the month
of February. And May.
Heck, while I’m at it, let’s
throw in July and Novem-

ber. Why? Those are the sweeps
months for television, when the net-
works throw everything they’ve got at
you in an effort to boost their audi-
ences. For instance, last week I caught
“The World’s Most Shocking Moments
2: Caught On Tape” on Fox, which in-
cluded the usual assortment of plane
wrecks, animal attacks, extreme sports
accidents, monk riots, and other scenes
of gratuitous carnage and mayhem. I
often wonder why one person can be
so fascinated with another’s calamity.
Whatever the reason, though, sweeps
month certainly has its share of these
types of shows. 

For some companies in our industry,
sweeps month came a month early. In
January, all eyes were riveted on Ion
Storm after a damning exposé about
the company appeared in the Dallas
Observer, in which reporter Christine
Biederman ripped the company’s man-
agement and cast doubt on the viabili-
ty of the company. And, like the mil-
lions of spectators that tune in to
watch tragedies unfold on Fox specials,
many in our industry dropped what we
were doing to rubberneck at the Ion
Storm fender bender. In the interest of
conserving this very limited space and
owing to my strong aversion to ugly
legal messes like that which ensued
between various parties in the incident,
I don’t intend to recount the story.
(Plus, frankly, I’m really tired of the
whole thing.) But the situation is
worth noting for other reasons. For as
much as you may not want to witness
(or personally experience) another pub-
lic flogging of a game development
company, I can almost guarantee that
this type of situation will repeat itself
again in the not-so-distant future. 

The reason is that today’s game com-
panies rely on sophisticated, multi-
tiered marketing plans to build up ex-
citement about their products. Once
upon a time, game publishers focused
most of their time and energy market-
ing games, and the industry press was
the only outlet for this information.
However, games are now mainstream

entertainment in America, and pub-
lishers now cozy up to newspapers and
pop-culture magazines for coverage
about their games, and compare their
game revenues with movies over simi-
lar periods of time — a metric readily
understandable by the lay person.

Add to that the fact that many com-
panies have started to market the per-
sonalities behind the games, elevating
designers, programmers, and artists to
rock-star status. Just look at Take-Two
Interactive, which just formed a new
internal videogame label called (per-
haps not coincidentally) Rockstar
Games. Take-Two says this label “em-
bodies an elite team of talent which
has been assembled to redefine the
videogame industry.... At Rockstar, we
want to change the way the media
looks at the game industry and give it
some personality, which has been
noticeable by its absence until now.”
Clearly, statements like this are de-
signed to evoke interest from a broader
cross section of media, those who know
what a “rock star” is, but who don’t
necessarily understand what an “en-
gine programmer” does during the day. 

The combination of marketing per-
sonalities and products to mass-media
outlets is a shrewd way of getting at-
tention. The mass media readily gloms
on to larger-than-life characters. On
the other hand, it’s that tendency to
glom that results in coverage when it’s
not welcomed. What happened to Ion
Storm could have happened to any
number of companies, under a variety
of different circumstances.

It’s clear that many in this industry
want the kind of coverage normally af-
forded true rock stars. However, those
individuals ought to keep in mind that
rock stars get their share of positive as
well as negative publicity, much as
they try to avoid the latter. The moral
of the story is that companies which
charge headlong into the mass-media
spotlight must prepare themselves for
what could follow — both welcome
and unwelcome attention. Those who
seek the white hot spotlight shouldn’t
be too surprised if they get burned by it
now and again.  ■

G A M E  D E V E L O P E R A P R I L  1 9 9 9

4

P L A NG A M E

Rock Star Woes 

www.gdmag.com

600 Harrison Street, San Francisco, CA 94107
t: 415.905.2200 f: 415.905.2228  w: www.gdmag.com

Publisher
Cynthia A. Blair  cblair@mfi.com 

EDITORIAL

Editorial Director
Alex Dunne  adunne@sirius.com

Managing Editor
Tor D. Berg  tdberg@sirius.com

Departments Editor
Wesley Hall  whall@sirius.com

Editorial Assistant
Jennifer Olsen  jolsen@mfi.com

Art Director
Laura Pool  lpool@mfi.com

Editor-At-Large
Chris Hecker  checker@d6.com

Contributing Editors
Jeff Lander  jeffl@darwin3d.com
Mel Guymon  mel@surreal.com
Omid Rahmat  omid@compuserve.com

Advisory Board
Hal Barwood  LucasArts
Noah Falstein The Inspiracy
Brian Hook  id Software
Susan Lee-Merrow  Lucas Learning
Mark Miller  Harmonix
Paul Steed id Software
Dan Teven  Teven Consulting
Rob Wyatt  DreamWorks Interactive

ADVERTISING SALES

Western Regional Sales Manager
Alicia Langer  e: alanger@mfi.com t: 415.905.2156

Eastern Regional Sales Manager/Recruitment
Ayrien Houchin  e: ahouchin@mfi.com t: 415.905.2788

ADVERTISING PRODUCTION

Senior Vice President/Production Andrew A. Mickus

Advertising Production Coordinator Dave Perrotti 

Reprints Stella Valdez  t: 916.983.6971

MILLER FREEMAN GAME GROUP MARKETING

Group Marketing Manager Gabe Zichermann 

MarComm Manager Susan McDonald 

Marketing Coordinator Izora Garcia de Lillard

CIRCULATION

Vice President/Circulation Jerry M. Okabe

Assistant Circulation Director Mike Poplardo

Circulation Manager Stephanie Blake

Circulation Assistant Kausha Jackson-Crain

Newsstand Analyst Joyce Gorsuch

INTERNATIONAL LICENSING INFORMATION

Robert J. Abramson and Associates Inc.
President Libby Abramson
720 Post Road, Scarsdale, New York 10583
t: 914.723.4700  f: 914.723.4722
e: abramson@prodigy.com

CEO/Miller Freeman Global Tony Tillin
Chairman/Miller Freeman Inc. Marshall W. Freeman
President Donald A. Pazour
Executive Vice President/CFO Warren “Andy” Ambrose
Executive Vice Presidents  H. Ted Bahr, Darrell Denny,
Galen A. Poss, Regina Starr Ridley
Senior Vice Presidents Annie Feldman, Howard I. 
Hauben, Wini D. Ragus, John Pearson, Andrew A. 
Mickus
Vice President/Development Solutions Group KoAnn 
Vikören
Executive Vice President/Division SF1 Regina Ridley

BPA International Membership Applied for March 1998



Storytelling in RPGs: 
To Be or Not to Be

W arren Spector covered a lot of
important topics in his article

(“Remodeling RPGs for the New
Millennium,” February 1999). I’d like
to take a few of them a step further, if I
may. I agree wholeheartedly that
games and game development have
matured enough that it’s time to start
exploring what we do that other media
don’t or can’t do. The issue now is how
exactly we can accomplish that.

Chris Hecker proposed the creation
of a common terminology in Game
Developer a few issues back (“Spielberg
Switches to Panaflex Cameras,” Game
Plan, January 1999). Perhaps we need
to take his idea and expand upon it.
How about coming up with a lexicon
of stock devices for computers as a
storytelling medium? We could then
treat computers not as emulators of
board games, movies, or books, but as a
true and unique genre.

We would list the strengths and
weaknesses of the various computer
techniques as applicable to storytelling.
This would be accomplished in much
the same way Spector did in his article
for the few techniques he covered, but
in a more formal manner. The true
objective is not to create the lexicon,
but to stimulate discussion and explore
its limits.

It’s clear we need to tell different
kinds of stories altogether, instead of
stories that fail to fit our medium. We
need to stop telling movie stories, or
book stories, and create an entirely
new type of story that emphasizes our
strengths. I think Spector’s approach
to SYSTEM SHOCK was absolutely cor-
rect. If computers can’t converse, it
makes sense not tell stories that
require conversation.

It would also help differentiate the
true storytelling applications of com-
puters (I hesitate to call them games)
from the merely entertaining computer
games. Nobody confuses comic books
with dramatic literature, even though
they’re both printed on paper. I think
it’s time we separated the comic book
computer games from dramatic stories
told on a computer.

Here’s an example. Take Shakespeare’s
Hamlet and apply it to the strengths of
the computer. Instead of playing the
prince (a theatrical convention) or

watching him emote (a movie conven-
tion), let’s play the ghost. The ghost
can influence the action in the story,
observe while remaining unobservable,
but doesn’t carry on conversations or
engage in sword fights.

This kind of story caters to the com-
puter’s strengths and makes use of its
expressive capabilities while avoiding
its weaknesses. It is, however, a chal-
lenging kind of story to write. Perhaps
the problem with RPGs today is not
that the computer has its limitations,
but that most designers (present com-
pany excepted) just aren’t very good
with the medium.

M i k e  K e l l e g h a n
v i a  e - m a i l

Defining a Game Vocabulary

T he game design vocabulary Chris
Hecker was looking for in his Game

Plan column (“Spielberg Switches to
Panaflex Cameras,” January 1999) is
possibly best defined in terms of exam-
ples, archetypes, or patterns. Since Erich
Gamma and his co-authors wrote Design
Patterns (Addison-Wesley, 1994), the
very word “pattern” has become fash-
ionable, but that does not diminish the
idea’s value. However, a workable defin-
ition of game genres has to precede
attempts to list possibly genre-specific
recurring patterns.

Many such patterns will be found in
existing proprietary game design docu-
ments, few of which, if any, are pub-
licly available. Design documents of
classic games might be an excellent
starting point for any attempt to create
a useful design reference vocabulary.
Patterns have probably been used for
decades, but they need to be identified
before they can be used as a language
to communicate inside and outside
your present team and project.

Games such as HALF-LIFE that try to
evoke patterns from movies imply that
game designers might do well in com-
plying with the rules of scriptwriting as
well — rules such as, “two dogs and one
bone.” Do not change objectives mid-
way from “save your butt” to “save the
world.” Do not leave a location once
established — stick to one place and
one sequence of events. Have one main
antagonistic force standing between
the player and the objective. Make sure
everything shown has meaning and
importance. Review HALF-LIFE from this

perspective, and you might find that in
blatantly violating these rules follow-
ing the Lambda Core levels, it takes a
significant risk of diminishing its oth-
erwise outstanding accomplishments.

I think a game design language is
needed to discuss the potential major
split in game design implied by the
interactive movie approach to gaming.
Scriptwriting is an exercise in control
and manipulation — the quintessential
linear flow. Movies have no choice here.
In terms of control theory, a movie is
an open loop scenario. Games, on the
other hand, depend on the player
being in the loop, and decisively so.
Ultimately, the patterns experienced in
games might just superficially resemble
those merely observed in movies.

In my opinion, game design has prob-
ably just as much to learn from physics
here: setting the scene in terms of initial
conditions and equations of motion
might ultimately turn out to be superior
to scripting events. In interactive enter-
tainment, you may just have to get used
to the idea of letting things happen.

There are some interesting resources
on the Web for patterns — object-
oriented programming and its origin in
architecture:
http://www.hillside.net/patterns,
http://st-www.cs.uiuc.edu/users/

patterns/DPBook/DPBook.html,
http://www.math.utsa.edu/sphere/

salingar/Chris.text.html,
http://public.logica.com/~stepneys/

bib/nf/alexandr.htm#pattern.
B e r n d  K r e i m e i e r

v i a  e - m a i l

h t t p : / / w w w . g d m a g . c o m A P R I L  1 9 9 9 G A M E  D E V E L O P E R

7

S A Y S Y O U

In Dave Pottinger’s “Implementing
Coordinated Unit Movement” article in
the February 1999 issue, several of the
figures on pages 56 and 58 were mis-
labeled. Here’s how it should read:
• Figure 13 in the text should have

referred to Figure 13A, Figure 14
should have referred to Figure 13B,
and Figure 15 should have referred to
Figure 13C.

• Figure 16 in the text should have
referred to Figure 14A, Figure 17
should have referred to Figure 14B,
Figure 18 should have referred to
Figure 14C, and Figure 19 should have
referred to Figure 14D. 

Game Developer apologizes for any
confusion.

CC OO RR RR EE CC TT II OO NN SS



h t t p : / / w w w. g d m a g . c o m A P R I L  1 9 9 9 G A M E  D E V E L O P E R

New Products
by Wesley Hall

Right Speed, 
Right Price in 3D Engine

CANOPUS CORP. has just let loose the
Rexf/x, a new 3D Digital Video Editing
(DVE) system.

The Rexf/x is a hardware-based 3D
effects engine and transition package for
digital video editors. It combines a hard-
ware 3D engine and 16MB of on-board
memory to provide near-real-time ren-
dering speeds. The package includes 40
preset 3D effects, including cube tube,
mosaic, double doors, spinning cube,
and environment effects such as haze
and lighting. Adjustable parameters
allow you to create custom effects, too.
The engine is accompanied by two soft-
ware codecs: DV and MJPEG. These
codecs allow you to install Rexf/x as a
remote editing adapter that can read
files generated by other hardware video
capture devices. This is a useful feature
in a network environment where you
want many people working on the same
footage, but don’t want to buy multiple
hardware codec products. Rexf/x also
ships with the Standard Effects Pack,
Additional Packs can be downloaded
from the Canopus web site as they
become available.

Rexf/x is available in AGP and PCI
configurations. System requirements
include a Pentium II, 64MB, an avail-
able PCI or AGP slot, and Windows 95
or 98. Rexf/x supports Adobe Premiere
5.1, Ulead MediaStudio 5.x, Canopus
RexEdit 2.0 software, and all popular
Motion-JPEG and Digital Video (DV)
nonlinear editing systems. It retails
for $699.
■ Canopus Corp.

San Jose, Calif.
(408) 954-4500
http://www.canopuscorp.com

New CE miniDraw Library

INTELLIGRAPHICS INC. just announced
the CE miniDraw Library, a Windows
CE-based subsystem that provides sup-
port for portions of Microsoft’s
DirectDraw for Windows CE platform.

The CE miniDraw Library includes
both an API and a hardware abstrac-
tion layer (HAL), and enables popular
DirectDraw functionality that is cur-
rently unsupported by Microsoft on
the Windows CE Operating System.

The CE miniDraw Library makes it
feasible for you to port DirectX titles
to Windows CE. Prior to development
of this graphics subsystem, application
manufacturers for Windows CE sys-
tems were required either to use GDI
calls or develop their own hardware
interface in order to enable high speed
display and animation on the
Windows CE platform. Intelligraphics
included a number of DirectDraw
function calls in the Library’s HAL and
API, and support for additional
DirectDraw functions can be added
upon request. 

The CE miniDraw Library supports
Windows CE version 2 and above. The
Library, in the form of a DLL, is one of
two components necessary for a
DirectDraw solution on Windows CE.
Manufacturers will also need a
DirectDraw-compatible graphics driver
for DirectDraw support.
■ Intelligraphics Inc.

Richardson, Texas
(972) 479-1770
http://www.intelligraphics.com

Codewarrior for Playstation

METROWERKS recently showed-off the
shiny new features of Codewarrior for
Playstation Release 5 as the company
announced the product’s release at the
Playstation Developers Conference in
San Francisco. 

Release 5 will ship sometime before
the end of 1999’s first quarter.
Codewarrior includes the updated IDE, a
new MIPS compiler and linker, a
Playstation remote debugger, as well as
conversion tools and drivers that are
specifically designed for Playstation soft-
ware title development. New features for
Codewarrior for Playstation Release 5
include: support for Windows 98: sup-
port for command-line development;
the latest version of the Codewarrior
IDE; an enhanced compiler with
improved optimization of GTE macros;
support for the DTL-H1500 network
attachment box; support for PSNetD,
which allows multiple PCs to remotely
use the same Sony Playstation develop-
ment card; a VRAM viewer application,
which allows you to browse the current
contents of VRAM while running a pro-
gram in PSComUtil; MWDBcontrol
library; and Symbol completion func-
tion, which allows the user to input a
partial symbol name and have the IDE
complete the name for the symbol.

CodeWarrior for Playstation runs on
Windows 95/98/NT and retails for
$3,000, which includes one free update
and free technical support for a year. 
■ Metrowerks Inc.

Austin, Texas
(800) 377-5416
http://www.metrowerks.com

New Products: Canopus has a new
3D engine, Codewarrior for Playstation
Release 5, and the new CE miniDraw
Library from Intelligraphics. p. 9

Industry Watch: A bevy of legal
attacks, Rtime dares to patent, and
Eidos gets some new blood. p. 10

Product Reviews: Josh White gives
the low-down on Raindrop’s Decimator.
pp. 12-13News from the World of Game Development

9

Editor Window for Codewarrior for the
Playstation.



B I T  B L A S T S  -  I N D U S T R Y  W A T C H

Industry Watch
by Alex Dunne

THE UPPER RANKS OF EIDOS under-
went changes recently. Rob Dyer, who
once held the position of president at
Crystal Dynamics, replaces Keith Boesky
as the president of Eidos Interactive,
and now oversees operations of the
company’s U.S. office. (Boesky left the
company to become an independent
consultant.) Joining Dyer at the helm is
former Crystal Dynamics coworker Scott
Steinberg, who was the vice president of
marketing at CD and now assumes the
position of senior vicepresident of mar-
keting for Eidos Interactive. 

GT INTERACTIVE SUES MIDWAY. GT
Interactive, which has signed a number

of distribution agreements with game
developers over the years, filed a civil
complaint against Midway.  GT, which
has been the exclusive worldwide dis-
tributor of Midway’s titles since the
two companies entered into a contract
in 1994, claims that Midway broke this
contract, acted in bad faith, and slan-
dered GT Interactive. GT seems to
think that Midway tried to hinder the
distribution of its own titles so that
Midway could minimize its costs, pre-
vent GT from hitting performance
goals for the distribution of Midway’s
games, and then have legal justifica-
tion to back out of the contract. How
could a company harm the distribution
of its own titles? GT claims that the
defendant did so through “repeated
failure to give timely notice of new
products; provide game development
schedules; deliver usable, bug-free mas-
ter game disks; provide artwork, adver-
tising materials, and packaging materi-
als; and obtain required third-party
approvals.” The suit also alleges that
Midway’s chairman and CEO, Neil
Nicastro, “issued false and baseless
public statements designed to under-
mine the confidence of the investment
community and the game software
industry as a whole in the ability of GT
Interactive to effectively market and
distribute games and to retain the
Midway line.” In a response statement,
Midway said it would strongly defend
itself against GT Interactive’s claims,
and hinted that it would file counter-
claims against GT Interactive. 

3DO’S THIRD QUARTER. 3DO issued
results for the third fiscal quarter end-
ing December 31, 1998, announcing
that its software revenues were $10.3
million, up 178 percent from software
revenues of $3.7 million in the third
fiscal quarter of 1998. During the

quarter, the company shipped five
new games, including its first title for
the N64, BATTLETANX. While the rev-
enues were up, the bottom line wasn’t
so rosy: 3DO lost $5.7 million during
the same period, and has cash and
cash equivalents of just $12.1 million.
The company is hoping that upcom-
ing titles such as REQUIEM: AVENGING

ANGEL, HEROES OF MIGHT AND MAGIC III,
MIGHT AND MAGIC VII: FOR BLOOD AND

HONOR, and ARMY MEN II hit the top
10 charts and provide a much needed
cash infusion.

CONNECTIX WEATHERS LEGAL STORM.
Connectix Corporation’s Virtual Game
Station, which uses emulation tech-
nology to let Macintosh owners play
Playstation games, has taken some
heat from Sony so far, but seems to be
weathering the storm. Recently a San
Francisco Federal District Court tossed
out Sony’s request for a temporary
restraining order on shipments of the
Connectix product. The Connectix
Virtual Game Station, which sells for
around $49, won “Best of Show” at
the recent MacWorld Expo in San
Francisco, Calif.

PATENT WATCH. Rtime Inc. received a
patent for its Rtime Interactive
Networking Engine, a client/server net-
working engine that lets real-time
multi-user, interactive applications (pri-
marily games) deal with the perfor-
mance and scalability problems inher-
ent with large-scale networks — such as
the Internet. The patent (U.S. No.
5,841,980) is comprised of 54 individual
claims that cover several facets of dis-
tributed, interactive communication
systems,  including real-time data filter-
ing, in which only relevant data is dis-
tributed to each interested party based
on object location, type, priority, or
data rate. Additionally, Rtime received
protection for its global time base that
keeps disparate users synchronized
within milliseconds to overcome high
and varying network latency. The
patent covers both single-server sys-
tems, which are predominant in small-
scale applications supporting 8 to 32
concurrent users, as well as multiserver
systems that support hundreds or thou-
sands of concurrent users. How this
patent affects existing games or game
networks, or those under development,
is not clear.  ■

G A M E  D E V E L O P E R A P R I L  1 9 9 9 h t t p : / / w w w. g d m a g . c o m

10

April 17-22, 1999

NAB99
Las Vegas Convention Center
Las Vegas, Nev.
Cost: starts at $150
http://www.nab.org/
conventions/

April 19-22, 1999

COMDEX/Spring ‘99 and
Windows World 99
McCormick Place
Chicago, Ill.
Cost: starts at $100 for Guest
Pass only
http://www.comdex.com

May 10-13, 1999

3D Design and 
Animation Conference
Santa Clara Convention Cntr.
Santa Clara, Calif.
Cost: Early Bird rates available
http://www.3dshow.com

UPCOMING EVENTS

CALENDAR

3DO’s BATTLETANX for the N64.



B I T  B L A S T S  -  P R O D U C T  R E V I E W

G A M E  D E V E L O P E R A P R I L  1 9 9 9 h t t p : / / w w w. g d m a g . c o m

12

Raindrop’s
Decimator

by Josh White

H ere’s the punchline: buy
Decimator if you need to
reduce the polygon counts of

.3DS or VRML files and don’t need to
preserve textures or hierarchy.
Decimator has a great algorithm — it
collapses edges without adding or
removing holes and it’s easy and obvi-
ous to use. However, version 1 doesn’t
support UV mapping coordinates, hier-
archies, animation data, or any other
data in your 3D model.
SETTING UP. Kudos to the online distribu-
tion. I downloaded the Decimator demo
off of Raindrop Geomagic’s web site and
had it running on my workstation in

about fifteen minutes. I can’t imagine
an easier way to buy art tool software
than downloading it from a web site,
and this software really proves that.

Decimator doesn’t need much com-
puting power. This initial release of
Decimator is a stand-alone program for
Windows 95/NT and SGI. The mini-
mum system requirements are 16-bit
color, a 100MHz Pentium, and 32MB
RAM. It ran plenty fast on my tame
$2,000 workstation (a 300MHz
Pentium II with 16MB VRAM and
128MB RAM running Windows 95).
DOCUMENTATION. Decimator’s documen-
tation is simple: it’s on the company’s
web page (take a look for yourself at
http://www.geomagic.com/decimator
1_0_guide/chapters/decimator_
frame.html). As with most software, the
manuals aren’t much. I wanted more
detail, such as technical explanations,
hints, and advice from people who have
used Decimator in production. (Does it
move vertices? What does it do with
coincident vertices? Will it preserve ver-
tex order? What happens to UV coordi-
nates?) Also, more real-world examples
or case studies would help illustrate the
various purposes of the tools that
Decimator offers. Even after reading the
documents, the purpose of functions
such as Relax and Smooth wasn’t clear. 

As I read the documentation, I also
wondered, “Why does the Decimator
manual refer to Wrap so much?” It was
confusing. Eventually, I learned that
Wrap is Raindrop Geomagic’s first
product; it generates a smooth surface

from “point-clouds” (piles of uncon-
nected vertices).
BASIC USAGE. Here’s a real-world exam-
ple of how you might use Decimator. I
built an example model of a warrior
princess (Figure 1) in about 20 seconds.
(Amazingly enough, I’m giving this
fantastic model away free to anyone
who writes. No, really.) So let’s say
we’re totally thrilled with our 5,000
polygon character, but those darned
programmers are whining about how
they said 500 polygons, not 5,000.

Decimating a model is delightfully
easy. We simply click the Decimate but-
ton and type in the face count we want.
Presto! We now have an instant low-
polygon version of our model (Figure
2). Decimator did a good job because
the model doesn’t look drastically differ-
ent. It mainly killed all the tiny faces in
the spheroid body and shin objects,
though it did erase the chamfered cor-
ners on the boxes. If those chamfers are
important, you can easily tell Decimator
to preserve them by selecting a group of
faces (everything but the boxes in our
example) to modify. Unfortunately, this
first version of Decimator doesn’t
import Max’s hierarchy, mapping, mate-
rials, or animation, and it only reads
.3DS files directly.

There’s another handy feature: the
History bar has thumbnails of each
entry in the undo stack. This is conve-
nient when you’re experimenting with
face count reduction (as you surely
will). You can quickly go to any of
these by selecting any thumbnail and
clicking Go at the bottom. 
DATA LOSS. The manual says,
“Decimator currently works with raw
triangle data only. All other informa-
tion in input files, including color and
texture, is currently ignored.” To me,
“raw triangles” means (x,y,z) points and
the triangles that connect them, so you
can’t keep material assignments, object
transforms, or anything like that when
you load a 3D model into Decimator.
This restriction isn’t a problem as long
as you reduce the face count early in
your production cycle (as in, before
applying any materials, mapping, ani-
mation, or other attributes).
REAL-TIME VIEW CONTROLS. The real-time
view works reasonably well. When you
rotate a model in Decimator’s preview
window, you’ll start to appreciate the
robustness of your modeling software’s
real-time tumble feature. While

Josh White runs Vector Graphics, a real-time 3D art production company. He wrote
Designing 3D Graphics (Wiley Computer Publishing, 1996), has spoken at the
CGDC, and cofounded the CGA, an open association of computer game artists. You
can reach him at josh@vectorg.com.

F I G U R E  1 . The fantastic 5,000-poly-
gon warrior princess. 

F I G U R E  2 . Reduction from 5,000 to
500 — easy case.



Excellent Very Good Average  PoorBelow Average

h t t p : / / w w w. g d m a g . c o m A P R I L  1 9 9 9 G A M E  D E V E L O P E R

13

Decimator’s preview works well
enough to see what’s going on, it’s not
as polished as a major modeling pack-
age’s most visible feature. The over-
layed wireframe lines penetrate the
shaded surfaces in alarming and
obscure ways. 

If you zoom in on a detail of your
model, you’ll find that it gets sliced in
a surprising way. You’ve just been
introduced to the “near clip plane.”
Any geometry that gets too close to the
camera is clipped or cut off. Graphics
tools typically don’t have this problem
in their real-time preview windows, but
Decimator does.
CORE ALGORITHM. I tried a number of
different objects and found that I
approved of the triangles it threw
away. As with most polygon reduction
algorithms, Decimator works best
when your target polygon count is
around several hundred triangles. I
experimented with their example file,
MONSTER.OBJ, and found that it
reduced from 10,000 to 5,000 triangles
nicely. Further reduction from 5,000 to
500 was not bad either. After that, I
wanted to make the decisions myself
— the algorithm started throwing away
important faces. Decimator wasn’t
great at handling thin, two-sided sur-
faces such as fins. The results were
somewhat convoluted, but far better
than most typical polygon reduction
tools that I’ve used.
FEATURES I WANTED. I was slightly frus-
trated by the lack of control that
Decimator offered. If I need a special-
ized polygon reduction tool, then I
probably don’t have a simple problem
to solve, and polygon reduction
requires weighing several factors.
Instead, we get a single slider for face
count. I want the kinds of features that
can only be produced by fast, flexible
programmers who observe their cus-
tomers in action, noting their needs
and writing tools that fit those needs.

One of the most annoying problems
that artists face is coincident vertices
from detached faces. My models often
must have two overlapping vertices in
the same object, but I can’t weld them.
Perhaps I need to apply separate map-
ping coordinates on each vertex. In
that case, I need them to act as a single
vertex when I edit the geometry. Most
modeling software, Decimator includ-
ed, have no awareness of this issue.
Their algorithms depend on finding

continuous surfaces, and these
detached faces resemble holes. 
FEATURES I GOT INSTEAD. Relax and
Refine are cute features, but basically
unrelated to decimation. So far, I
haven’t needed either of these func-
tions in my career, so I’m not thrilled
to find them instead of the features
demanded by game artists.

Relax smooths a surface as it reduces
face count. It seems to work much like
the Spherify modifiers in some 3D mod-
eling software. Relax’s main purpose is
to remove unintentional variations on
insanely detailed (digitized) surfaces. 

I was somewhat surprised to find the
Refine feature in Decimator, because it
adds triangles. The new triangles lie on
a surface that the existing triangles
define, so the resulting new surface
seems smooth and curvaceous. This
feature isn’t necessary in a polygon
reduction tool.

Decimator does have a feature that I
appreciate very much: selective reduc-
tion. I need the ability to select a few
triangles out of a mesh and work on
only those (Figure 3). 

Decimator’s Undo is robust and reli-
able. This feature is essential to produc-
tion artists, and often is missing from
small tools such as Decimator.
IMPORTING ISSUES. As I mentioned ear-
lier, Decimator doesn’t offer very thor-
ough import and export options. This
deficiency is one of the most common
drawbacks of stand-alone art tools, and
it’s a difficult problem for any tool
maker to overcome. Three-dimensional
graphics file formats are constantly
evolving, and every market (games,
movies, simulation, legal, architectural,
mechanical, and so on) has different
favorites and different requirements.
Plug-ins have the advantage of using
their host’s data directly, thus raising
no import/export issues. On the down-
side, plug-ins have to be nearly rewrit-

ten if developers want to offer their
tools for all software packages.

Decimator’s developers assure me
that version 2 will feature much more
complete import/export capabilities.
Raindrop is also working on a plug-in
version for 3D Studio Max. These addi-
tions should make Decimator much
easier to use during production.
HIGH HOPES. Despite its drawbacks, I like
Decimator because its core algorithm is
well designed and it’s easy to use.
Version 1 has obvious shortcomings (no
texture support, for example) that
would prevent game artists from using
it interactively during production, but
Decimator’s developers are currently
working on a second version, and I
have high hopes for it. Raindrop
Geomagic’s CTO, Ping Fu, listed the fol-
lowing planned features: preserving tex-
ture UV coordinates, keeping hierarchy,
ability to select decimation by tolerance,
by frame rate, or by distance, real-time
diagnosis of decimated surface accuracy
by color map, plug-ins for 3D Studio
Max, Maya, Rhino, and better handling
with very large data (multi-million poly-
gons). With these improvements, I
think Decimator would be a solid
choice for polygon reduction.  ■

Company: Raindrop
Geomagic Inc.
Champaign, Ill.
http://www.geomagic.com
(800) 251-5551

Price: $295

System requirements: A
100MHz Pentium, 32MB
RAM, and 16-bit color

Pros:

1. Solid algorithm

2. Single surface mainte-
nence

3. Easy to install and use

Cons:

1. No support for materials,
mapping

2. Limited “tweaking”
options for decimation

3. Weak import/export
options

Decimator 1

F I G U R E  3 . Decimator mercifully
allows the artist to reduce triangle
count in a particular area, as seen in
the rear-view mirror here.



b y  J e f f  L a n d e r G R A P H I C  C O N T E N T

I have fought have been with myself. I
fight to bring back the knowledge I have
long since forgotten. I fight my desire to
play the latest action game when more
pressing needs are at hand (deadlines,
the semblance of a social life).

This month I document one of the
less glamorous battles — the battle of
the physics simulator. It’s not going to
be fun. It’s going to be a bit bloody.
However, if I ever hope to achieve a
realistic and interesting physics simula-
tion, it’s a battle that must be fought.
So, my brave warriors, join me.
Sharpen your pencils, stock your first-
aid kit with plenty of aspirin, drag out
the calculus book, and fire up the cof-
feepot. Let’s get started.

I hope you all had a chance to play
around with the soft body dynamics
simulator from last month. The demo
highlighted an interesting problem —
the need for stability. While creating
my dynamics simulation, I waged a
constant battle for stability. However,
in order to wage the war effectively, I
need to understand the roots of the
instability in the system. Last month, I
implied that the problem resulted from
my use of a simple Euler integrator. But
I didn’t really explain why that caused
the problem. Let me fix that right now. 

Integrators and You

M any game programmers never
realize that when they create the

physics model for their game, they are
using differential equations. One of my
first programs on the Apple II was a
spaceship flying around the screen. My
“physics” loop looked like this:

ShipPosition = ShipPosition + ShipVelocity;

ShipVelocity = ShipVelocity +

ShipAcceleration;

Look familiar to anyone? It’s a pretty
simple physics model, but it turns out
that even here I was integrating. If you
look at the Euler integrator from last
month, I had
Position = Position + (DeltaTime * Velocity);

Velocity = Velocity + (DeltaTime * Force *

OneOverMass);

Now for my simple physics model,
DeltaTime = 1 and Mass = 1. Guess what? I
was integrating with Euler’s method
and didn’t even know it. If I had made
this Apple II physics model any more
complex, this integrator could have
blown up on me. These sorts of prob-
lems can be difficult to track down, so
it’s important to understand the causes. 

When Things Go Wrong

T he reason that the Euler integrator
can blow up is that it’s an approxi-

mation. I’m trying to solve a differen-
tial equation by using an iterative
numerical method. The approximation
can differ from the true value and cause
error. When this error gets too large,
the simulation can fail. A concrete
example may help to explain. Last
month, I added a viscous drag force to
the simulation to add stability. The for-
mula for this force was 

(Eq. 1)

In this formula, kd represents the
coefficient of drag that is multiplied by
the velocity of the particle. This coeffi-
cient determines how fast the velocity
of the object is dragged down to zero.
This is a very simple differential equa-
tion. In fact, it’s simple enough to be
satisfied for v directly by the formula. I
can use this exact solution to check the
accuracy of my numerical integrator:

(Eq. 2)
Euler’s method is used to approxi-

mate the integral curve of Equation 2
with a series of line segments along this
path. Each step along this path is taken
every time, interval h, via the formula

(Eq. 3)
In all cases, the viscous drag force

should approach zero. However, the
size of the step h and coefficient of
drag kd determine how well the
approximation performs. Take a look
at Figure 1.

With the given step size and drag
coefficient, Euler’s method may not be
a great approximation, but it gives the
desired result. The velocity converges
on zero. But take a look at the relation-
ship between the step size and drag
coefficient in Equation 3. 

If 
then the approximation

step will overshoot zero, as you can see
in Figure 2.

h
kd

> 1

w w hf t w

V V h k V
i i i i

i i d i

+

+

= + +
= + −

1

1

( )

( )

V e k td= −

F k Vd d= −

h t t p : / / w w w . g d m a g . c o m A P R I L  1 9 9 9 G A M E  D E V E L O P E R

15

Lone Game Developer 

Battles Physics Simulator

A s a real-time 3D graphics developer, I need to wage many battles. I fight

with artists over polygon counts, with graphics card manufacturers over

incomplete or incorrect drivers, and with some producers’ tendencies to

continuously expand feature lists. However, some of the greatest battles 

Jeff is the technical director of Darwin 3D where he spends time calculating his rate
of procrastination with respect to his articles. E-mail optimization suggestions to
jeffl@darwin3d.com.



By increasing the step size, I was try-
ing to get a system that converged to
zero more quickly — but I got some-
thing entirely different. Things really
start to get bad when the drag coeffi-
cient increases more, as in Figure 3. As
each step is taken, not only does the
approximation oscillate across zero,
but it also actually diverges from zero,
and eventually explodes the system.
This is exactly what was happening in
the spring demonstration from last
month, when the box blew up.

How Can I Prevent Explosions?

I f you find a situation where your
simulator blows up, there’s an easy

way to see if this kind of numerical
instability is the cause. Reduce the step
size. If you reduce the size of the step
and the simulation works, then this
numerical instability is the problem.

The easy solution is always to take
small steps. However, realize that each
step requires quite a few calculations.
The simulation will run faster if it can

take fairly large step sizes. Unfortun-
ately, when you get lots of objects
interacting, these instability problems
appear even more. So, just when
things start to get interesting, you
need to reduce the step size and slow
things down.

I’d rather create an integrator that
would allow me to take large step sizes
without sacrificing stability. To do
this, I need to look at the origins of
Euler’s method.

Taylor’s Theorem

Y ou may remember Taylor’s
Theorem from calculus. It’s

named after mathematician Brook
Taylor’s work in the eighteenth centu-
ry. This theorem describes a method
for converging on the solution to a dif-
ferential equation. 

(Eq. 4)
In Equation 4, Pn(x) represents the

nth Taylor polynomial. If you take the
limit of Pn(x) as , you get the
Taylor series for the function. If, how-
ever, the infinite series is not calculated
and the series is actually truncated,
Rn(x) represents the error in the system.
This error is called the truncation error
of approximation.

How does this apply to the problem
with which we are working? If I only
look at the first Taylor polynomial and
do some substitution, I get Equation 5.

(Eq. 5)
Notice how similar this equation is to

Equation 3. In fact, Euler’s method is
based on this equation. The only differ-
ence is that the last error term is

h x x

w t f t w t

w t w t hf t w t
h

w Ei i i i
n

= −
′ =

= + ++

( )

( ) ( , ( ))

( ) ( ) ( , ( )) ( )

0

1

2

2

n → ∞

f x P x R x

P x f x f x x x

f x
x x

f x
n

x x

R x
f E

n
x x

x E x

n n

n

n
n

n

n
n

( ) ( ) ( )

( ) ( ) ( )( )

( )
!

( )

...
( )
!

( )

( )
( )
!

( )

( )

( )

= +

= + ′ − +
′′ − +

+ −

= −

< <

+

0 0 0

0
0

0
0

0

0

2
2

1

G R A P H I C  C O N T E N T

G A M E  D E V E L O P E R A P R I L  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

16

60.0000

Actual

Time  (Stepsize = 0.8  Kd = 0.8)

Euler

Ve
lo

ci
ty

50.0000

40.0000

30.0000

20.0000

10.0000

0.0000

0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0

F I G U R E  1 .  A decent approximation.

60.0000

Actual

Time  (Stepsize = 0.8  Kd = 0.8)

Euler

Ve
lo

ci
ty

40.0000

20.0000

-20.0000

-40.0000

0.0000

0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0

F I G U R E  2 .  This looks a lot worse.

150.0000

Actual

Time  (Stepsize = 0.8  Kd = 0.8)

Euler

Ve
lo

ci
ty

100.0000

50.0000

0.0000

-50.0000

-100.0000

-150.0000

0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0

F I G U R E  3 .  Kaboom!



dropped in Equation 5. By stopping the
series at the second term, I get a trunca-
tion error of 2. This gives Euler’s
method an error of order O(h2).

If I added another term of the Taylor
series to the equation, I could reduce
the error to O(h3). However, to com-
pute this exactly, I would need to eval-
uate the next derivative of f(x). To
avoid this calculation, I can do another
Taylor expansion and approximate this
derivative as well. While this approxi-
mation increases the error slightly, it
preserves the error bounds of the
Taylor method. This method of expan-
sion and substitution is known as the
Runge-Kutta techniques for solving dif-
ferential equations. This first expan-
sion beyond Euler’s method is known
as the Midpoint method or RK2
(Runge-Kutta order 2), and is given in
Equation 6. It’s called the Midpoint
method because it uses the Euler
approximation to move to the mid-
point of the step, and evaluates the
function at that new point. It then
steps back and takes the full time step
with this midpoint approximation.

(Eq. 6)
In fact, I can continue to add Taylor

terms to the equation using the Runge-
Kutta technique to reduce the error
further. Each expansion requires more
evaluations per step, so there is a point
at which the calculations outweigh the
benefit. I don’t have the space to get
into it here, however, I understand
that smaller step sizes are preferred
over methods above RK4 with an error
of (Faires & Burden, p. 195).
Runge-Kutta order 4 is outlined in
Equation 7.

(Eq. 7)
RK4 gives the simulation a very

robust integrator. It should be able to
handle most situations without blow-

ing up. The only issue now is what the
step size should be. 

Watch Your Step!

E ven with a robust integrator such
as RK4, there will be times when

the simulation will be in danger of
blowing up. To keep this from hap-
pening, you may have to reduce the
step size at times. At other times, how-
ever, a large step size works fine. If my
simulator only has a single fixed step
size, I cannot take advantage of these
facts. If I vary the size of the steps
according to need, I could use large
steps when possible without sacrific-
ing stability.

This is how it works. I take full step
using my current integrator, then take
two steps half the current step size,
and compare the results. If the error
between the two results is greater than
a threshold, then the step size should
be reduced. Conversely, if the error is
less than the threshold, the step size
could actually be increased. This form
of control is known as an adaptive
step size method. Adaptive methods
are a major area of research in numeri-
cal analysis, and can definitely
improve simulation performance. I
chose not to implement adaptive step
size controls in my simulation.
However, this is an area where you
could improve the simulation.

Other Techniques

D ifferential equations are not easy
to learn and understand. How-

ever, the programmer who pursues this
knowledge has many weapons in his
arsenal. As witnessed by the birthdates
of Euler and Taylor, this research has
been going on for centuries. If you
ignore this work and strike out on your
own, you’re doing yourself a great dis-
service. Knowledge is available to the
developer as never before. While work-
ing on these algorithms, I was able to
cross-check formulas and techniques in
many different sources.

In fact, I’ve barely scratched the sur-
face of the field. The integrators I’ve
described (all explicit one-step meth-
ods) represent only a subset of the
methods available to the programmer.
Implicit integrators will also work. For

example, an implicit Runge-Kutta inte-
grator trades greater computations per
step for greater stability in particularly
difficult differential equations. Also,
the one-step nature of these integrators
reflects the fact that the method does
not consider any trends in the past
when calculating a new value.

In addition to these one-step meth-
ods, there are also multistep methods,
extrapolation algorithms, predictor-
corrector methods, and certainly many
others. Clearly, there is plenty of
ground for the adventurous program-
mer to explore. The book I used,
Numerical Algorithms with C, does a
good job of comparing different meth-
ods during a variety of test conditions.

For this month’s sample application
(available from Game Developer’s web
site), I have implemented both the
midpoint method and Runge-Kutta
order 4 in the dynamic simulation
from last month. You can switch
between integrators and adjust the
step size and simulation variables to
get a feel for how each performs.  ■

k hf t w

k hf t
h

w k

k hf t
h

w k

k hf t h w k

w w k k k k

O h

i i

i i

i i

i i

i i

1

2 1

3 2

4 3

1 1 2 3 4

5

2
1
2

2
1
2

1
6

2 2

=

= + +

= + +

= + +

= + + + +( )
+

+

( ( )

( , )

( , )

( , )

( )

,

O h( )5

w w h f t
h

w
h

f t w

O h

i i i i i i+ = + + +





+

1

3

2 2
( , ( , )

( )

G R A P H I C  C O N T E N T

G A M E  D E V E L O P E R A P R I L  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

18

In addition to the references cited last
month, a couple of other sources proved
very valuable during this article.

• Faires, J. Douglas and Richard Burden.
Numerical Methods.Second edition.
Pacific Grove, California: Brooks/Cole,
1998. This book provided a great dis-
cussion of measuring error in numerical
solutions. It also contains a great deal
of source code for all the algorithms.
• Engeln--Müllges, Gisela and Frank
Uhlig. Numerical Algorithms with C. ,
New York, New York: Springer-Verlag,
1996. In addition to the fine sections on
the methods discussed in this column,
this book describes and compares a
great number of other numerical meth-
ods. Additionally, the book has a great
number of references to articles on the
topic.
• Press, William H. et al., Numerical
Recipes in C. Cambridge, England:
Cambridge University Press, 1998.
While not as strong a reference on these
topics, this book may be interesting to
many, as it is available in electronic
form. See http://www.nr.com but also
check out a critical discussion of it on
http://math.jpl.nasa.gov/nr/nr.html.

FF OO RR   FF UU RR TT HH EE RR   II NN FF OO



b y  M e l  G u y m o n A R T I S T ’ S  V I E W

We’ll look at art resources from each
major part of a project, and discuss tips
and tricks for getting these resources
produced in a timely manner. 

What’s it Take to Make a Game?

F igure 1 shows a scene from Surreal’s
game, DRAKAN. This title has been

in production for almost two years, and
at one point had upwards of eleven
artists and animators working on the
resources for the game. Let’s analyze the
scene in Figure 1 and identify the build-
ing blocks necessary to construct it.

Player Characters

A rguably, the most important part
of an artist’s job is to work on the

game’s player character(s). The player
character defines the personality of the
game and gives it its flavor. There’s lit-
tle room for error because the player
character is constantly on the screen,
whether in the form of a weapon (in
the case of first-person perspective), or
in the form of the player’s avatar (in
the case of third person). Getting that
character to feel just right to the target
audience is one of the toughest chal-
lenges that we face as artists. 

In a real-time 3D game — and in
almost any character-based game for
that matter — we are asking the player
to identify with the character, whether
by seeing through the character’s eyes

or by vicariously enjoying the charac-
ter’s activities. To that end, everything
about the character must be convinc-
ing. The character’s shape and struc-
ture, how the character moves, and
what (if any) weapons the character
uses all must fit together in a coherent
package that the player can at once
relate to and recognize.

The simple fact is that to have a good
character, you need a good character
concept — and you need to execute
that concept correctly. Back in my
October column, entitled “It’s About
Character,” we looked at some of the
aspects of character design for real-time
3D. Now, let’s take this a step further
and look at some of the particulars that
compose a good player character.

In Figure 2, we can see all the pieces
and parts that make up the main player
character in DRAKAN. Two of the design
goals that our team set while creating
this character were that she be both

h t t p : / / w w w . g d m a g . c o m A P R I L  1 9 9 9 G A M E  D E V E L O P E R

21

Playing God: 

Putting it All Together

I n January’s column, part one of the “Playing God” series, we talked about

game-play–critical architecture. In February’s installment, we followed up with

tips on how to build and populate an immersive environment. This month,

we’ll finish the series by taking a step back and seeing how it all fits together.

Mel has worked in the games industry for several years, with past experience at Eidos and Zombie. Currently, he is working as the
art lead on DRAKAN (http://www.surreal.com). Mel can be reached via e-mail at mel@surreal.com.

F I G U R E  1 .  Scene from DRAKAN.

F I G U R E  2 .  DRAKAN’s player character.



attractive and athletic. These qualities,
among other concerns, dictated the
character’s body style and shape. After
several iterations, the player character’s
shape evolved into Figure 2’s design. 

The art direction for the game man-
dated a stylized-yet-realistic look that
involved hand-painted textures. The
textures would augment and make up
for the low-polygon nature of the char-
acter. If you look closely at the texture
maps, you can see the subtle shading
that give the texture it’s 3D feel. This
helped to give the character a smooth-
ness and a roundness of form that
belied the polygonal nature of the
underlying geometry. (The in-game
shot in Figure 2 shows the highest level
of detail, roughly 500 polygons).
PLAYER-CHARACTER PLANNING. The character
in Figure 2 is shown wearing one of the
several different costumes in which she
appears in the game. For each costume,
three levels of detail (LOD) were gener-
ated, with polygon counts ranging
from 120 polygons at the lowest to 530
polygons at the highest. For any given
costume, the same texture set was used
for all three LODs. Modeling and tex-
turing, including the character concep-
tual work, took roughly two weeks for
each version. This two week period,
plus the time we spent on the over 200
animations that this character uses in
the game, brought the total time com-
mitment for the main character close
to eight man-months.
PLAYER-CHARACTER TIPS. Details, details —
spend as much time and effort as you
can putting the subtle details and
nuances into the character’s textures. If
you look at the preceding example,
you’ll notice that most of the charac-
ter’s shape and form comes from the
textures, not from the geometry. 

The character’s silhouette needs to
be convincing as well. The human
brain perceives gross shape and color
before it recognizes the minutiae of
fine detail. Your character should be
recognizable without any textures
applied. This will help cement the
character’s personality.

Non-Player Characters (NPCs)

The NPCs in the game are the crea-
tures and people with whom the

player’s character will interact. The
NPCs are the supporting actors and

actresses on a stage starring the player as
the main character. They give the player
something to do (most likely, you’ll end
up fragging most of these poor folks).
And with their personalities, they help
to create the mood and set the drama
within the player’s world. Essentially,
the same guidelines apply to the NPCs
as apply to the main character. NPCs
need to be convincing in form and
motion, and they need to fit with the
art direction of the existing world. 

In Figure 3, we can see one of the
main antagonists from DRAKAN, a hefty
Wartock. Weighing in at roughly 500
pounds, these brutish beasts tower over
the main character at a height of seven
to eight feet. The original concept for
these creatures called for an intimidat-
ing — if somewhat dimwitted — thug.
The body structure for the character
shows this in its construction. The
powerful, heavy-set shoulders, the
overly large facial features and brutish
tusks all serve to give the character a
menacing appearance, yet at the same
time emphasize the disproportionately
small brain box. 

Polygonal construction is more lim-
iting for NPCs because (in most games)
there will be situations where  many of
them are simultaneously on screen. In
this instance, the three LODs for the
NPC clock in at 300, 180, and 60 poly-
gons, respectively. This is barely over
half the resolution used in the main
character. The low polygon count of
the NPC puts even more pressure on
the texture artist to hide the polygonal
nature of the model, and, as before,
you can see that almost all of the

detail in the model is actually done
with textures. 
NPC PLANNING. This particular NPC came
in three variants, which took about
one week to conceptualize, model, and
texture. Combined with the few dozen
animations this character used, this
specific class of NPCs took close to five
man-weeks to complete.
NPC TIPS. NPCs are the guys you just
love to hate. Until videogames become
a kinder and gentler experience, the
NPC crowd is going to keep getting
fragged, slashed, pummeled, and vapor-
ized by millions of game players world-
wide. That being the case, one of the
best ways to make NPCs interesting is
to give them interesting deaths. Most, if
not all game players, have a macabre
streak running through them, and you
don’t have to look too deep into video-
games to know that developers have
recognized and capitalized on this all
too common facet of the player psyche.

Game-Play–Critical Structures

B ack in January, we looked at the
theory and practice for game-play–

critical structures. We analyzed how
important these pieces were in the over-
all flow of the game, and how they fit
within the project timeline. We also
looked at ways in which design and art
could interact to ensure that these struc-
tures conformed to both the game-play
mechanic and the artistic direction. 

Figure 4 is an example of a piece of
game-play–critical architecture. This
happens to be a building in which a

A R T I S T ’ S  V I E W

G A M E  D E V E L O P E R A P R I L  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

22

F I G U R E  3 .  An NPC from DRAKAN.



modest amount of exploration and
combat takes place. Additionally, this
building acts as a central hub for the rest
of the surrounding village. The tavern
acts as a focal point in the environment,
and the player will have a large amount
of interaction with this piece of archi-
tecture. Therefore, the tavern meets the
criteria to be a game-play–critical object.

The initial conceptual criteria for
this building were that it contain two
stories and that it enclose sufficient
space inside for combat to occur.
Furthermore, the artistic vision called
for the level and style of architecture to
be at once unique  and yet consistent
with the rest of the level design. The
standard A-frame construction imme-
diately breaks up the rigid, orthogonal
lines of classical human habitation. 

As you can see from the cutaway, we
built the interior and exterior portions

of the building independently of one
another. This was done to allow the
engine to render only the internal
geometry while the player was outside
the structure, or vice-versa —  this
reduced the overall polygon count
while easing the restriction on available
polygons for internal construction. The
bottom line is that the internal geome-
try could be much more detailed.
STRUCTURE PLANNING. From concept, to
model, to textured building, this piece
of architecture took approximately five
days to complete. Although this partic-
ular piece is unique and only occurs
once in the game, the work done on
generating the textures and geometry
overlapped into other buildings of
similar shape and style. So, the work
done here actually lessened the
amount of work done on future build-
ings of this type. 

Ambient Objects and Flora

I n February, we discussed how to
assemble complete sets in the envi-

ronment. We talked about the need for
filling your worlds with ambient archi-
tecture and the appropriate flora. In
order to give your worlds the depth
and believability that will make them
feel immersive, you just can’t skimp
on these objects. In any given scene,
you can probably expect to spend 20
to 60 percent of your polygon count
and on-screen fill budget on ambient
objects and flora. It’s worth spending
the polygons, though, because that’s
about what it takes to make the scene
feel whole. 

Figure 5 shows an example of a pine
tree used in populating a mountainous
region. This particular model is a pretty
good design because the polygon
counts are relatively low (48, 30, and 8
polygons for the three LODs, and yet
the objects is still recognizable by its
shape alone. Note that for the lowest
LOD, a simple planar construction will
suffice to give the depth necessary at
distance, and will only cost you one-
sixth of the polygons required for the
highest LOD.
AMBIENT OBJECT PLANNING. This type of
object takes about half a day to do, and
that includes both modeling and tex-
tures. The different sized trees in the
world were generated by randomly scal-
ing and rotating the objects. This proce-
dure gave us a high level of variation
without the additional memory over-
head required for different-sized objects.
AMBIENT OBJECT TIPS. Be fastidious in your
level creation so that you have enough
room in your polygon budgets for
placing ambient objects around a
level. When you sit down to put the
final touches on a level, it can be
extremely frustrating to find out that
you simply don’t have the overhead to
do it. You end up with a geometrically
complex level that is nevertheless stale
and uninteresting.

These models for ambient objects are
relatively easy to build, but don’t be
wasteful. The models need to built effi-
ciently and with care because they will
probably be appearing in groups. For
example, in Figure 5 above, the real-
time view shows a scene with seven
trees. That means that for every five
extra polygons you add to the tree,
you’re going to be paying for 35 extra

A R T I S T ’ S  V I E W

G A M E  D E V E L O P E R A P R I L  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

24

F I G U R E  5 .  Ambient objects.

F I G U R E  4 .  Village tavern (game-play–critical structure).



polygons in your scene. Remember to
do your polygon math in multiples for
ambient objects, just as you would for
an NPC. Once again, it’s all about well-
designed economy.

Environments

I f you think of your game as a kind
of interactive play, then the envi-

ronment is analogous to its stage. This
is where everything comes together;
the actors read their lines, the sets are
built, the lighting and sound set the
mood, and all parts cooperate to create
the illusion of a complete world. Gone
are the days when you could get away
with using a plain, boring landscape
populated by a few trees and out-of-
place buildings. Whether composed of
dugouts and pitfalls to shelter the
player from enemies, or seamless,
rolling vistas over which players will
soar, the environments of today’s real-
time 3D titles are expected to be com-
pletely immersive, as well as an inte-
gral part of game play.

So what makes a good environ-
ment? In real-time 3D, a good envi-
ronment provides a convincing,
immersive area for the game play to
take place. The environment must fit
together seamlessly with the struc-
tures placed upon it and the style of
characters moving in it. Whether your
art direction is highly stylized or
hyper-realistic, the environment plays
almost as big a roll in defining the aes-
thetic as the characters.

A good environment is not necessari-
ly realistic. Miles and miles of rolling
hills or rambling corridors do not make
for interesting game play. The vast
majority of people don’t play games to
simulate reality. Instead, they play
games to be stimulated. That doesn’t
mean that you can’t get away with
using real-world scenarios and geome-
tries in your game. Just be sure you
never send your players out to navigate
the world without giving them some-
thing to do or a specific direction to
follow. If players get lost or doesn’t
know where they’re supposed to go,
they’ll get bored and lose interest very
rapidly. Maps can help lessen this
problem, but maps shouldn’t be used
as a crutch for a poorly designed world.
Game players will see right through
this and resent you for it.

To avoid creating a dull world, you
should build the environment so that
it either funnels players towards the
game-play areas, or provides a con-
stantly changing game-play dynamic
that will keep players interested even if
they stray off the beaten path.
Obviously, there are some instances
where the game may take place entire-
ly indoors, in which case, the struc-
tures become the environment. Pay
attention to the same design details
when you create an internal environ-
ment as you do when you create an
external one. 

Figure 6 shows an example of a piece
of landscape for DRAKAN. This outdoor
shot shows a pastoral mountainside
with geometry inspired by the rock for-
mations of Utah’s Arches National
Park. The flowing, organic-style of the
geometry is what gives the terrain its
natural, realistic feel. The texture set
enhances this effect with several dozen
hand-painted textures to minimize
overlap and repetition. Note the water-
fall in the center of the shot.
ENVIRONMENT PLANNING. Building the envi-
ronments is arguably one of the most
time-consuming parts of the real-time
3D process. Lots of trial and error and
game-play tweaking, combined with
the sheer surface area involved, com-
bine to make this a mammoth task. For
example, the landscape section in
Figure 6 is part of one contiguous
piece, so it’s tough to estimate an exact
timeline — however, for the entire
level (approximately one square mile
of in-game space), it took close to two
months to get the geometry just right,

while the textures were cranked out at
a rate of 6 to 10 per day. 
ENVIRONMENT TIPS. Polygon count is still
a factor, even with today’s high-pow-
ered processors. In the preceding
example, note that the area is actually
a canyon. This technique serves to
channel the player towards the game-
play areas while minimizing the actual
viewing distance for the player. This
sort of design results in a lower overall
polygon count in the environment
and allows more creatures and objects
on-screen.

When building outdoor environ-
ments, it’s important to remember that
nature seldom employs straight lines or
planar surfaces. Also, to complete the
organic look, avoid any hard, orthogo-
nal angles, and refrain from using
clean texture boundaries; for example,
use a transition texture at the bound-
ary where snow meets rock, or sand
meets grass, and so on. 

Make the Parts Whole

T his third and final installment of
the “Playing God” series stitches

together the concepts that I covered in
January and February and attempts to
present an overview of designing and
creating the art for a world in real-time
3D. Meticulous details will create the
illusion of reality in your game, but in
order to make the details themselves a
reality, you must be able to grasp the
big picture and plan effectively. I can
only hope that this series aids you in
that process. ■

A R T I S T ’ S  V I E W

G A M E  D E V E L O P E R A P R I L  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

26

F I G U R E  6 .  DRAKAN environment inspired by Utah’s Arches National Park.



b y  O m i d  R a h m a t H A R D  T A R G E T S

History

Nvidia began operations in January
1993. The company was one of

three high-profile 3D chip start-ups at
the time (the other two being Rendition
and 3Dfx). Even then, Nvidia’s market-
ing message wasn’t pure 3D, but was
more about a coherent multimedia plat-
form. The company was backed by a
combination of venture capital and cor-
porate technology funding, and had a
strong manufacturing partner in ST
Microelectronics (formerly known as
SGS Thomson). Sega of America helped
the company gain credibility when they
established an exclusive licensing agree-
ment with Nvidia to convert Sega’s
Saturn and arcade software to CD-ROMs
for PCs equipped with Nvidia’s multi-
media accelerators. The deal may have
come because of Nvidia’s multimedia
technology, or possibly because the
company wanted to repurpose its con-
tent for the PC platform. Whatever the
reason, the Sega deal helped Nvidia
secure the support of Diamond, a com-
pany that bought over 80 percent of
Nvidia’s products in 1995 and 1996.

The relationship with Diamond had
mixed results for Nvidia. The Diamond
Edge 3D, arguably the first consumer 3D
graphics board to hit the PC market,
ended up being too expensive and lack-
ing in enough game support to kick
start the market. Diamond’s CEO used a
financial analysts’ conference call in
1996 to decry the value of his own com-
pany’s Edge 3D inventory, and wrote off
$5 million in excess inventory charges
as a result. Ironically, this inauspicious
start to business may prove to be
Nvidia’s strongest hand in the 3D game.
Nvidia was able make all the mistakes of
any fledgling 2D/3D chip vendor before
there was any real 3D market to witness
the young company’s errors.

Oddly enough, DirectX also helped
Nvidia find its direction and purpose. By
the fall of 1996, Nvidia and SGS
Thomson had both said publicly that
they were codeveloping a new part
based on Direct3D that aimed at acceler-
ating all of Direct3D’s functions. When
Nvidia announced the RIVA 128 (RIVA
stands for Real-time Interactive Video
Accelerator) in the Spring of 1997, the
company was back on track in the
graphics business. Unlike Nvidia’s earli-
er attempt at multimedia acceleration,
RIVA was pure graphics — and it hit all
of the graphics hot points. It had
Direct3D acceleration, and pretty good
performance at that. It had a high-per-
formance VGA, 2D, and video core.

The legacy of Direct3D acceleration
carries the company forward today.
Michael Hara, vice-president of corpo-
rate marketing for Nvidia, says, “A year
ago, developers were using Glide to
show off their games and get a good
deal. If you look at
the number of
developers support-
ing Direct3D vs.
Glide today it
doesn’t make sense
to support Glide. So,
in 1999 we’ll see a
lot of developers
leveraging Glide
and their invest-
ment in it, but
Direct3D is the
overwhelming
choice for develop-
ers, and that’s what
we accelerate better
than anybody else.”

RIVA was, and is, an ideal product for
PC OEMs as well. In the chip’s first year
of production (1997), Dell, Gateway,
and Micron had each signed up for the
RIVA 128. Dell and Gateway were to be
serviced by STB Systems, while Micron
went to Diamond Multimedia. Nvidia
went from being on the chopping block
in 1996 to prepping for an IPO in 1998.
The company’s most recent success
comes from RIVA’s big brother, the
TNT — a chip that has put Nvidia at the
helm of the graphics industry.

The Industry Landscape

L ast year wasn’t a great time for a
graphics chip company to have an

IPO. Intel virtually made it impossible
for the graphics industry to do any-
thing but fight fires, rumors, and innu-
endo about its future. By the end of
1998, Intel’s Intel740 graphics chip

h t t p : / / w w w . g d m a g . c o m A P R I L  1 9 9 9 G A M E  D E V E L O P E R

31

Nvidia on the Brink

A s I write this column, Nvidia’s closest competitor (3Dfx) has just pur-

chased Nvidia’s biggest customer (STB). With Nvidia fresh from its ini-

tial public offering (IPO), the time is right to take a closer look at the

company that would be king of 3D.

Omid Rahmat works for Doodah Marketing as a copywriter, consultant, tea boy, and
sole employee. He also writes regularly on the computer graphics and entertainment
markets for online and print publications. Contact him at omid@compuserve.com.

Product sales

Royalty revenues

Total revenue

Gross profit (loss)

Research 
and Development


Sales, general 
and administrative

Net income (loss)

$1,103

79

1,182

(367)

2,426



3,677


(6,377)

Year ended
December 31,

1995

$27,280

1,791

29,071

7,845

6,632



3,773


(-2,691)

Year ended
December 31,

1997

$3,710

202

3,912

874

1,218



2,649


(3,077)

Year ended
December 31,

1996

F I G U R E  1 .  Nvidia’s abbreviated financial statements
based on the company’s IPO filings (figures in thousands).



had fallen flat. In addition, 3Dfx and
Nvidia had created a healthy retail
market for graphics boards based on
the companies’ respective Voodoo2
and TNT chipsets. As a result, Creative
Labs and Diamond stocked the retail
store shelves with competing products
based on both 3Dfx’s and Nvidia’s
chips, and STB gainfully serviced the
PC OEM market. At the same time,
3Dfx managed to acquire a board busi-
ness — STB — which was more eager
than its competitors at Diamond or
Creative to get proprietary silicon (or
so the story goes). 

Now, in 1999, the landscape for 3D
graphics doesn’t look any more stable.
3Dfx has the challenge of merging with
STB and making that deal work to its
advantage. Nvidia has the two largest
brand name board makers in the world
almost all to itself. 3Dlabs is going to
make a run at the consumer 3D market
with Permedia 3, and S3 is promising
to raise the bar at the low-end as a
result of a cross-licensing agreement
with Intel. In addition, NEC/Video-
logic has finally shipped PowerVR to
Sega for Dreamcast, and it’s ready to
try for the PC market again. Intel is

going to avoid the
consumer 3D sweet
spot for now, but has
designs on the sub-
$1,000 PC market
and the high-end
workstation business.
In addition, mobile
graphics vendor
NeoMagic is rumored
to have its eye on the
desktop. The good
news for Nvidia is
that it’s the only

company with a proven architecture
and roadmap to rival these competitors
and to go after ATI’s stranglehold on
the PC OEM market.

Nvidia’s Road Ahead

TNT2 will drive Nvidia’s sales effort
in 1999. The chip launches on the

back of the Pentium III, and hits the
feature list that pleases the PC OEMs.
According to Michael Hara, TNT2 will
feature a 32MB frame buffer, signifi-
cant improvements in the graphics and
memory clock speeds, will support AGP
4X, will have integrated transceivers
for flat panels, will be optimized for K6
3DNow and the new instructions in
Pentium III, and will have a full 32-bit
rendering pipeline. It’s the strength of
Nvidia’s TNT that sets the company
apart from the crowd in 1999.

Nvidia has many obstacles in its
path, too. First, there are two uncer-
tainties: if the company has a success-
ful IPO it comes at a time when the
company needs the capital investment,
but is also facing its strongest competi-

H A R D  T A R G E T S

G A M E  D E V E L O P E R A P R I L  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

32 $60,000

$50,000

$40,000

$30,000

$20,000

$10,000
$0

M
ar-9

7

M
ay-9

7

Ju
l-9

7

Sep-9
7

Nov-
97

Ja
n-9

8

M
ar-9

8

M
ay-9

8

Ju
l-9

8

Sep-9
8

Quarterly Product Revenue
(in thousands of dollars)

F I G U R E  2 .  Nvidia’s quarterly product revenue (in thou-
sands of dollars).



tion ever, from all quarters. The twin
pressures of competition and Wall
Street are considerations. Secondly, the
company has outstanding intellectual
property and patent issues to resolve in
three lawsuits from Silicon Graphics,
S3, and 3Dfx. While the company is
confident of its own case in each suit,
it still faces a drain on management
time and resources just when the com-
petitive arena is at its most active.

There is a significant backlash against
3Dfx brewing among Creative,
Diamond, and other board OEMs left
high and dry by the STB deal. That
means that Nvidia will probably have as

much marketing muscle in its corner as
any graphics chip company has ever
had. This may push the company’s
brand awareness over the current cham-
pion, 3Dfx. Nvidia’s support of both
Direct3D and OpenGL, coupled with
the strengths of TNT2, put the company
at the head of the pack. If Nvidia’s chip
manufacturing partners can deliver
enough product, there is little to stop
the company continuing on a high
ramp up in 1999. All of this action,
especially from a company primed to
serve the PC OEM market, will help to
proliferate the kind of premium 3D per-
formance that game players value.

Nvidia has to maintain its momen-
tum in the coming year to avoid falling
by the wayside like so many other
graphics chip companies. But how will
it react to industry moves such as the
3Dfx/STB merger? ATI and Matrox
have proven the value of chip/board
combos. Undoubtedly, 3Dfx/STB will
be clubbing that message into the
heads of Nvidia’s PC OEM customers.
At some point, Nvidia will have to do
something. Michael Hara, however,
doesn’t believe Nvidia has to change. 

“Vertical integration is not the only
answer. The chip has to be good or else
the board doesn’t matter. The market
leader has to be a company that inno-
vates and executes successfully. In
some ways, ATI didn’t win the market,
but maybe S3 lost it. We don’t plan on
repeating the mistakes of the past that
others have made.”

There are a few other chip manufac-
turers (not to mention board vendors)
that are relying on Nvidia being correct
about the market. These guys are veter-
ans, so when they move, it’s worth
paying attention.

Shortly after this column was fin-
ished, Nvidia completed its IPO. It was
relatively successful, but very low key.
Nvidia’s IPO set the agenda for 3D
graphics competition in the months
and years to come, but it also signals the
end of an era in the PC graphics indus-
try. It may have been the last great
graphics chip IPO that we’ll see. In the
next two years, all graphics companies
may look like ATI. Nvidia harkens back
to the days when a company such as S3
dominated OEM and add-in board
channels with equal ease.  ■

h t t p : / / w w w . g d m a g . c o m A P R I L  1 9 9 9 G A M E  D E V E L O P E R

33

STB

Diamond

Creative

Others

1995



86%



14%

1996



82%



18%

1997

63%

31%



6%

9 Months of 
1998

40%

28%

12%

20%

F I G U R E  3 .  Year-on-year change in
the share of Nvidia’s revenues due to
STB, Diamond, Creative, and others.
Total sales by year are 100 percent.



G A M E  D E V E L O P E R A P R I L 1 9 9 9 h t t p : / / w w w . g d m a g . c o m



h t t p : / / w w w . g d m a g . c o m M O N T H  1 9 9 8 G A M E  D E V E L O P E R

33

h t t p : / / w w w . g d m a g . c o m A P R I L 1 9 9 9 G A M E  D E V E L O P E R

advocate physics as an important game

technology because I believe we must

increase the interactivity of our environ-

ments. If we’re to accomplish this leap in

interactivity, we need to let the behavior of objects

emerge through interactions with the player, not

just try to prescript a fixed number of behaviors. By

“behavior,” I could mean

something as simple as a

box’s motion as it tumbles

down a hill and lands in a

pile at the bottom. A good

dynamics simulator will make

the right thing happen

regardless of how the player

tosses the box, and the move-

ment will be convincing and

consistent with the player’s

expectations. However, I

choose to define “behavior” in a much broader

sense, encompassing not only passive situations

such as the motion of a tumbling box, but also

active situations such as machines with moving

parts reacting as the player tries to jam them, or a

creature’s hobbled escape after the player hacks at its

leg with a sword.

These active situations call for more than just

dynamic simulation. What causes the machine to

move? What causes the creature to limp after it’s

struck, or at an even lower level, how does the crea-

ture move in the first place, and how does the player

swing that sword? The answer to these questions is a

piece of code called a controller, and I’m willing to

bet that implementing robust and interesting con-

trollers will be one of the holy grails for the game

industry over the next ten years.

Will Animate for Food

To put it mildly, animation

loops leave a great deal to be

desired. These are interactive

games we’re working on, not

movies. Animation loops

don’t react to their environ-

ments nor to the player.

What does an animation of 

a character swinging a sword

do when the sword hits 

a wall? Most do nothing: the animation keeps 

playing, the sword and maybe even the arm pene-

trate the wall, and the game looks silly. Another

alternative is to stop the animation, but again, 

the movement halts midswing with no momentum,

and the game looks silly. Either way, the player’s

immersion is significantly diminished as the world’s

consistency is violated. The correct solution — 

cause the sword transmit forces back through 

the arm such that it looks as though the sword 

Chris Hecker is a total control freak, and I don’t just mean that he likes control theory. Tune his gains at checker@d6.com.

Physical 
Controllers:

Re-inventing
Game Environment

b y  C h r i s  H e c k e r

C O V E R S T O R Y



actually hit something and the charac-
ter actually noticed — isn’t possible
with animation loops. 

Of course, you could have a canned
animation of the sword hitting a wall,
and play that if the sword collides
(we’ll assume we’ve solved the problem
of blending this strike animation over
the currently playing animation).
However, the player can move the
character and hit any wall or box or
pillar at any angle, and a really strong
bad guy can grab the blade of the
sword and wrestle with the character.
Clearly, trying to pre-animate every-
thing quickly becomes intractable.

Rather than trying presumptively to
create the behaviors and motions of
our creatures, I say we need to take a
different tack. We need to teach our
characters how to behave, so when
slightly different circumstances present
themselves, the creature can react in a
meaningful way. Put more concretely,
we need to write code to tell our char-
acters how to walk and run and do all
the things that animation loops cur-
rently do in our games. If we want our
character to walk, it needs to balance
on its legs, pick one foot up, move the
foot forward, push off with its other
foot, and let the simulated friction
between its foot and the floor propel it
forward. We write the code that con-
trols the muscles of our virtual charac-
ter, and its bones and interactions with
the world are run through the dynam-
ics simulator. With a little luck — O.K.,
a lot of luck and hard work — our char-
acter walks.

But, our character doesn’t just walk.
If it does, we wasted a lot of expensive
programmer time writing the con-
troller. The character also limps if its
leg is chained to a heavy ball. It stum-
bles if you tie its legs together. It leans
over in a strong wind or going up a
hill. It walks slower if it’s carrying a lot
of weight. It collapses in a heap when
you blow its leg off. All of these believ-
able behaviors simply emerge from the
simulation. This character will always
react to its environment because it’s
simulated, as is everything else in the
scene. If a log is in the character’s way
and the controller isn’t smart enough
to step over it, the character won’t just
pass right through the log, or stop
moving forward while still walking in
its cycle (and looking stupid). The
character will trip and fall. Its legs will

collide with the log, the force of those
collisions will propagate up through its
body, its center of mass will keep mov-
ing forward because of momentum and
will move outside the support of the
feet, and the character will fall over.
That’s interactivity, and you just can’t
get there with animation loops.

What I’m asking for is very complicat-
ed and will take a lot of effort, especially
compared to yelling down the hall to
the animators and asking for yet anoth-
er run cycle. But what I’m asking for is
vital if we’re ever going to achieve truly
deep levels of interactivity, where the
player’s expectations and physical intu-
ition are never violated and the world
reacts absolutely to his or her presence.

Unfortunately, when I say, “very
complicated,” I’m understating the dif-
ficulty of writing this controller code.
In fact, let me tell you how bad it is
right here up front. Dynamic simula-
tion — the topic upon which I spent
almost 20,000 words in my old Behind
the Screen column, barely scratching its
surface — is a piece of cake compared to
writing robust controllers. A sufficiently
motivated programmer can go read all
the dynamics references I list on my
web site, implement what he or she
learns, and have a top-of-the-line rigid
body simulator. Rigid body dynamic
simulation is basically a solved prob-
lem. By contrast, physical control of
locomoting creatures is very far from a
solved problem. Even the highest-end
SIGGRAPH research is still nowhere
near adequate for us to implement con-
trollers that are robust enough and
interesting enough to play the part of
the main character in an action game.
People often talk about the DOOM guy
running at 90 miles per hour, not slow-
ing down to go up stairs, turning on a
dime, and carrying 10 times his weight
in ammo and weapons. Well, the cur-
rent highest-end human locomotion
controllers can’t actually get up when
they fall down while walking. They fall
down a lot. On flat smooth ground.
Don’t fire the animators yet.

Control Theory

A t this point, for the few of you I
haven’t scared off with my sweep-

ing philosophical prognostications,
let’s talk about controllers and how we
can get started using them today. I’ve

probably given the impression that
controllers are all about locomotion.
This is not true; locomotion is a subset
of the problems that controllers try to
solve, and thankfully, most of the other
problems are much simpler than loco-
motion. Best of all, we’ll learn some
neat math that’s used by almost all con-
trollers. Let’s start at the beginning.

Control theory centers around the
concept of a system that has inputs, a
process (sometimes called the plant, as
in processing plant), and outputs. The
idea is to get a desired result on the out-
put by changing the inputs, possibly in
the face of disturbances and uncertain-
ty. The task might be something rela-
tively simple, such as controlling the
temperature in your living room by
turning the heater and air conditioning
on and off. It might be something mod-
erately complicated, such as controlling
how thinly to slice the potatoes and
long to cook them to get a tasty potato
chip. It might be something really com-
plicated, such as getting a biped to walk
across the room by controlling the
muscle contractions in its legs.

Control theory tells us how to ana-
lyze the system that we’re trying to
control, and then tells us how to
design a controller that will get the
desired results. At least, that’s the idea.
For simple systems, the theory has
been very well developed and you can
basically plug in your system and out
comes a controller that works really
well. For more complex systems with
lots of nonlinearities and discontinu-
ities, controller design is an active area
of research (read: there’s still a fair
amount of heuristic voodoo involved).

There are infinitely many places to
use controllers in games. I’ve already
talked about locomotion, and even
though I was a bit harsh on the current
state of the art, there are many interest-
ing nonhuman locomotion controllers
out there (creatures that successfully
hop, swim, fly, and so on). And to be
fair, robust and convincing human
locomotion is the hardest possible
locomotion problem. Besides locomo-
tion, the list of controllable systems
goes on: automatic doors, elevator plat-
forms, cars or other motorized moving
objects, sidekicks following the player,
homing missiles, and so on. Basically,
controllable systems include anything
that has outputs that you want to con-
trol with known inputs. 

G A M E  D E V E L O P E R A P R I L  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

34

P H Y S I C A L  C O N T R O L L E R S



Additionally, hybrid simulations may
be of interest to game developers.
Perhaps we could design a system
whereby only the sword arm is con-
trolled physically, while the rest of the
body is animated. At least with a hybrid
technique, the arm will react correctly,
and the controller writer doesn’t have
to figure out how to solve the entire
character control problem all at once.

A SISO Controller

Control theory is a rather large disci-
pline with some pretty intense

math associated with it, so we’re only
going to touch on some of its basic
aspects in this article. We’ll focus on the
simplest type of system, the Single Input
Single Output (SISO) system, and we’ll
build a commonly used controller for
our example. In our case, and in most
cases that you’ll come across when con-
trolling physical objects in your simula-
tor, our input to the system will be
forces and torque, and the output will
be some kind of position or velocity. 

Let’s say we want to control the way
in which a character’s arm reaches out
to place its hand on a door handle or
swings the hand in a circle at a certain
velocity for a punch. The control that
we’d exert over this system would be
the torque at the joints, which simu-
late the muscles of the character. By
limiting our input to exerting torque,
we allow the system to interact with
the world: if a wall is in the way, its
solidity will overpower the muscle
torque and the arm will stop moving,
as you’d expect.

Conversely, in a system controlled
by inverse kinematics, the arm can't
respond to collisions because the joint
angles are fed in directly — it’s just
another way of generating an anima-
tion. You can use inverse kinematics to
generate goal angles for a controller,
however. The controller tries to attain
the goal angles using joint torques, and
we get the world interaction we desire
(for more information on IK, see Jeff
Lander’s Graphic Content columns
“Oh My God, I Inverted Kine!,”
September 1998 and “Making Kine
More Flexible,” November 1998).

We’ll use an arm for our example
SISO system, but because we only want
one input, our arm only has one joint
(Figure 1). Our arm isn’t incredibly

exciting or useful, I admit, but it’ll do
the job. Now that we’ve got a system to
control, let’s look at the steps for build-
ing a controller:
1. Study the system.
2. Model the system.
3. Write the controller.
4. Test the controller.
5. Iterate.

In step 1, we ask ourselves a bunch
of questions so we can get to know our
system. What are the inputs and out-
puts of the system? What is our goal
for the system? That is, which outputs
do we want to control? How does the
system behave without a controller
(called its open-loop response)?

For step 2, we build a mathematical
model of our system. If our system is
running open-loop in our game, then
we must already have a model for it in
some sense. However, that model
might not be very clear or appropriate
for designing a controller. The level of
detail that you build into this model
depends on how precisely you want
your controller to perform. An exact
model might enable you to design a
controller that exactly controls the sys-
tem, but it might be very expensive in
terms of time to develop. An approxi-
mation might do almost as well for
much less cost. Or, the exact model
might not yield to analysis as easily as
a carefully chosen approximation.

Now we choose a controller and
implement it in step 3. Choosing the
right controller is a matter of experi-
ence, knowledge, and a bit of luck.
Implementing it is a matter of under-
standing the math behind the con-
troller you’ve chosen, picking the para-
meter values for the controller, and
writing the code.

Next, in step 4, we run the controller
in the game. One should always back-
up one’s work before trying this step.

Finally, because the previous step
didn’t turn out very well, we iterate in
step 5. We can loop all the way back to
step 1 and try to learn more about the
system, we can make only minor tweaks
in the controller parameters and retest,
or we can try anything in between.

I should point out that we have it
much easier than our real-world con-
trol engineer friends. Not only won’t
we break a multimillion dollar
machine or kill a hapless patient in
step 4, but we also know exactly how
our systems work and what the distur-

bances on them will be. Be aware that
control theory books spend a fair
amount of time explaining problems
that we simply won't face in building
our simulation.

Step One

O ur system is the one-jointed arm
shown in Figure 1. The angle of

the arm, θ, is measured off of the hori-
zontal axis. The input to the system is
torque about the joint, and the output
is the resulting angle. We could have
said that the output was the end-effec-
tor position, but it’s clear that our end-
effector is going around in a circle and
that’s about it. I decided to keep it sim-
ple and just use the angle.

We want to set a desired angle (some-
times called a setpoint), and have our
arm achieve it quickly and reliably. We
don’t want our arm to oscillate around
the point, or overshoot the point by a
wide margin as it approaches. Our arm
should also reach the desired angle
whether or not gravity is in effect.

If you run the sample application
that accompanies this article (which
you can download from my web site),
you can see the open loop behavior of
the system. If the arm is not on the set-
point and gravity is not turned on,
then the arm just sits there regardless
of where you put the setpoint. If gravi-
ty is on, the arm falls down to a dan-
gling position, but because our virtual
world doesn’t have damping, it oscil-
lates about the vertical like a pendu-
lum. Neither of these behaviors is
remotely close to what we want, so
clearly a controller is needed.

G A M E  D E V E L O P E R A P R I L  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

36

P H Y S I C A L  C O N T R O L L E R S

θ
l

F I G U R E  1 .  Our incredibly nonintu-
itive single-jointed arm.



Step Two

N ow we need to build a mathemati-
cal model for the system. By this I

mean we need to write out the differ-
ential equations of motion for the arm
so we can see how the system behaves
over time. Going forward, I need to
assume that you understand a bit of
calculus or have read at least the first
column in my physics series in Game
Developer (“Physics, The Next Frontier,”
Behind the Screen, October/November
1996); the columns are available on my
web site, which is referenced at the end
of this article.

We’re going to model this arm as a
single-degree-of-freedom generalized-
coordinate system. The equation of
motion for the arm is

Eq. 1
where I is the moment of inertia of the
arm about the joint, θ is the arm’s angle
(remember that the dots above the sym-
bol mean time differentiation, so the
left-hand side shows the second deriva-
tive of θ with respect to time, d2θ/dt2 or
angular acceleration), l is distance to the
arm’s center of mass (as shown in Figure
1), m is the mass of the arm, g is the
gravitational constant, and u is the (cur-
rently unknown) torque we’re going to
generate with our controller.

As we look at this equation (setting
u=0 for now, because we haven’t actu-
ally designed the controller yet), we
can see a few things already. First, if
gravity is enabled, this is a nonlinear
ordinary differential equation. It’s non-
linear because of that θ in the cosine
term. This term arises because gravity
torques the joint differently depending
on the angle of the arm, and that
torque in turn affects the angle of the
arm through integration.

Assume that gravity is disabled. Then
the entire right-hand side is 0, which
means when you solve for the accelera-
tion by dividing both sides by I, you get
0 — the arm’s velocity isn’t changing.
That is, if the arm isn’t moving, it won’t
start moving, or if it’s already moving, it
won’t change the speed at which it’s
moving. In other words, our model has
no damping. If you want to test this
assertion, you can recompile the sample
application to start the arm with an ini-
tial angular velocity and see if it changes
with no other inputs to the system.

Next, assume that gravity is enabled.

The arm will have an acceleration most
of the time, except when the cosine
term equals 0, namely straight up (90
degrees) and straight down (270
degrees). If the arm is already pointing
straight down, then the angle won’t
change under gravity. If the arm is ver-
tically balanced the arm at the joint,
then the slightest perturbation in the
straight up position will give gravity
that bit of tangential movement it
needs to accelerate the arm. That’s why
vertically balancing a pole is difficult,
but holding it pointing down is easy.

The acceleration is greatest when the
arm is parallel to the horizontal axis, at
either 0 degrees or 180 degrees. In
these positions, all the force of gravity
goes into rotating the arm (as opposed
to working against the joint, as in the
vertical case). If we want to counteract
gravity with our controller, we’d better
be able to deal with gravity exerting
different amounts of torque in differ-
ent positions.

At this point in the analysis, we could
study the behavior of the differential
equation after linearizing it about a few
points of interest. Linearization is a
technique that turns a nonlinear differ-
ential equation, such as our Eq. 1, into a
linear differential equation. This linear
equation accurately emulates the origi-
nal in the neighborhood of a chosen
point. We’d linearize because the theory
surrounding linear differential equa-
tions is much more developed than for
nonlinear ones. This advanced theory
lets us figure out exactly how the equa-
tions behave over time and in response
to different types of inputs. Obviously,
if the equations that describe your sys-
tem are linear in the first place (as is our
equation without gravity), you get all of
these tools without having to linearize.
Unfortunately, we’re not going to have
space to cover anything more about lin-
earization, but you’ll definitely learn
more about it if you read about control
theory on your own.

Step Three

A t last we get to choose and imple-
ment a controller for our system.

Rather than attempt to enumerate all
the different kinds of controllers that
are applicable to our SISO system, I’m
simply going to pick the very common
Proportional Integral Derivative (PID)

controller. The PID controller is actual-
ly three controllers in one that work
together to control the system. 

PID controllers, like almost all con-
trollers, use feedback to regulate the
system. In other words, the controller
uses the current outputs to modify the
inputs to get the desired result.
Another type of controller, the feedfor-
ward controller, relies on its internal
model to be accurate enough that it
doesn’t have to look at the output state
to tell how it’s doing. We don't have
room to discuss feedforward in detail,
but because we have perfect models for
our systems (by virtue of our simula-
tion), feedforward is a viable alterna-
tive to feedback.

A PID controller uses the difference
between the current output state and
the desired setpoint as the controller’s
input. This difference is called the
error, and is denoted by

Eq. 2
Here, θd is the desired angle, and θ is

the actual angle. The controller tries to
drive e to zero.

The proportional part of the PID con-
troller’s name refers to its act of directly
feeding back this error, multiplied by a
positive constant called the proportion-
al gain, as the control torque.

Let’s look at what happens when we
substitute this control torque into Eq.
1, assuming gravity is 0. We’ll also
assume that the desired angle is 0 just
to simplify things.

You may recognize that this is an
equation for an undamped spring. This
is the same differential equation that
we’d get if we had a particle in 1D with
a spring attached to the origin. As we
know, an undamped spring will oscil-
late about the setpoint forever. So, while
this proportional controller gets us to
the setpoint, it doesn’t keep us there.
You can test this in the sample applica-
tion by turning on the proportional part
of the controller and watching it work.

In the real world, people use propor-
tional controllers without oscillation
all the time, but in the real world
there’s no such thing as an undamped
system. Friction robs all real systems of
energy, so in the physical world, pro-
portional control is often all you need.

I kp
˙̇θ θ= −

u k ep=

e d= −θ θ

I lmg u˙̇ cosθ θ= − +

G A M E  D E V E L O P E R A P R I L  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

38

P H Y S I C A L  C O N T R O L L E R S



We can add our own damping to our
system with the derivative part of PID.
The derivative controller uses the time
derivative of the error to try to force
the velocity of the output to 0 (or actu-
ally, to force the velocity of the output
to the desired velocity, but for our arm
that’s 0). The error derivative is

Adding this derivative to our control
torque (with a derivative gain, kd) gives

When we substitute this equation
into Eq. 1 (again, assuming no gravity),
we get the equation for a damped
spring. You can see the results by run-
ning the sample application with the
proportional and the derivative con-
trollers active. This controller is often
used in the real world as well, where
it’s known as — surprise — a PD con-
troller, or PDC.

The final part of our controller, the
integral, needs a bit of motivation,
because it appears that the PD con-
troller is doing just fine without the
integral. This observation may seem
valid at first glance, but what happens
when you turn on the gravity? The arm
droops and hangs below the desired
angle, not quite getting up the steam
to reach its goal. 

This error is called a steady state
error. The arm will sit there forever,
never getting worse, but never getting
better. We need to add something to
the system to eliminate this steady
state error. You might ask why we
can’t just crank up the proportional
gain to eliminate the error. We could
do that, but we’d never eliminate it
completely using only the proportion-
al gain. Increasing the gain is equiva-
lent to making the spring stronger, but
it’s always going to sag a bit when a
constant force, such as gravity, is
applied. Furthermore, really large
gains make for unstable systems. There
is a better way.

We need our controller to detect
when it’s not quite doing its job and to
add a little extra torque automatically
when necessary. We can implement
this capability by integrating the error
over time and using that integration as
another control torque (the I in our
PID controller).

Eq. 3

Think about how the integral of the
error (implemented in discrete code as
a running sum of the e term on each
timestep) will affect the control torque
for a steady state error. If we start out
with some steady state error, the inte-
gral will begin increasing and the error
will start decreasing as the controller
exerts the extra torque that’s needed.
As the error gets smaller, the integral is
increasing at a much slower rate, until
finally the error goes to 0 and the inte-
gral term is now exactly the constant
extra torque needed to eliminate the
steady state error. Neat, huh? In reality,
the integral term will probably exert
too much torque and the arm will
overshoot. Then the negative error will
start decreasing the term and it will
eventually settle down to 0 steady state
error. Integral controllers not only
increase the overshoot, but also have
some other negative performance
effects that you can experiment with in
the sample. As you might expect, using
the integral term offers tradeoffs.

To implement a PID controller, you
need to pick initial values for the three
gains in Eq. 3. You can do this in any
number of ways, ranging from the com-
pletely ad hoc to the highly analytical.
We don’t have space to go into the vari-
ous techniques, but you can read about
them in the references. 

Step Four

I f you’ve been following along, you’ve
already been playing with the sample

application. But now you should play
with it a bit more to get a feel for how
the various parts of the controller
behave. One interesting thing that I dis-
covered is that the integral controller
will suck up any steady state error, not
just the gravity. Turn off gravity, turn
on the proportional and derivative con-
trollers, and then hold down the [i] key,
increasing the desired arm angle, until
the keyboard repeat sets in. You’ll see
the arm chase its desired angle around
in circles, but it will always be a bit
behind, as you’d expect. Now turn on
the integral controller as well. The arm
will start out behind, but will soon
catch up and sit at the desired angle as it
moves around the circle. The integral
controller has eliminated the rotating
steady state error. Of course, when you
stop increasing the desired angle, the

arm overshoots, but then comes back to
rest on the setpoint.

Step Five

I already iterated the sample applica-
tion while I was writing it, but you

should play with it by changing the
gains and recompiling to see what
effect they have on the behavior. See if
you can improve the performance of
the arm. Notice how the lame Euler
integrator handles (or doesn’t handle)
cranking up the gains.

Tuning gains for PID controllers is a
huge topic in control theory, and is far
beyond the scope of this article. Several
of the references talk about a number of
different ways to tune the gains to
achieve various performance goals,
such as overshoot, rise time, settling
time, and steady state error. You’ll also
find ways of generating the gains direct-
ly from an optimization procedure. 

Beyond Physical Objects

C ontrollers don’t have to be limited
to controlling joints on creatures,

or even to controlling physical objects
at all. A piece of code that looks at how
long the previous frame took to render
and then adjusts the level of detail of
the scene to maintain a constant frame
rate is a controller. The code that your
enemy fighter planes use to track the
player is a controller. In general, any
piece of artificial intelligence code is a
controller, and can be analyzed using
the tools of control theory. Try adding
some controllers to your game, and let
me know about your experiences.  ■

u k e k e k edtp d i= + + ∫˙

u k e k ep d= + ˙

˙ ˙ ˙e d= −θ θ

G A M E  D E V E L O P E R A P R I L  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

40

P H Y S I C A L  C O N T R O L L E R S

• Here are some URLs for interesting
controller tutorials on the Web: 
http://www.engin.umich.edu/group/

ctm/index.html
http://www.eng.uml.edu/Dept/

Chemical/onlinec/white/sdyn/s7/
s7intro/s7intro.html

http://www.manufacturing.net/
magazine/ce/archives/1998/
ctl0801.98/08abas.htm

• You can read my physics articles and
references and download the sample
application at my web site:
http://www.d6.com/users/checker/

dynamics.htm

FF OO RR   FF UU RR TT HH EE RR   II NN FF OO



killing or stealing from other players. Such problems are
known more generally as player-vs.-player conflict (PvP).
Over the course of time, different games developed by differ-
ent companies have sought to control this problem through
a variety of methods. This article touches upon PvP control
strategies used by Simutronics Corp., where I am currently
employed, as well as strategies used by Origin Systems in
ULTIMA ONLINE and by 989 Studios in its upcoming game
EVERQUEST. While there is no single correct way to maintain
order in an online game, by examining these companies’
strategies for restraining nonconsensual PvP, I have created a
set of general guidelines that should be considered when
designing an online justice system.

The Current Methods

W hile existing systems for controlling PvP show some
very creative design solutions, each of the following

strategies nonetheless suffers from certain flaws that arise
from the different priorities assigned to game play elements.
ADMINISTRATIVE CONTROL (SIMUTRONICS’ GEMSTONE AND

DRAGONREALMS). Simutronics gives its players wide leeway in
resolving conflicts among themselves, and generally limits
its hard-coded restrictions on attacking other characters.
New players may not be attacked and are not strong enough
to harm one another. Stealing from a person’s inventory is
limited to coins and small gems, and corpse looting is either
not possible (as in GEMSTONE III) or has safeguards that allow
careful players to prevent it from happening (as is the case in
DRAGONREALMS). The leeway afforded the players allows the
responsible players a great degree of freedom in how they
play their characters. To balance out this freedom, though,
Simutronics strictly polices its player base. Its players’ terms
and conditions agreement, for example, states, “What is not
acceptable is to initiate combat against unsuspecting vic-
tims. Anyone exhibiting such behavior, especially one who

G A M E  D E V E L O P E R A P R I L  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

42

S Y S T E M SJ U S T I C E

Online Justice
Systems

n order to build a successful online game,

you must build a sense of community

among your players. One of the biggest

challenges to successful community

building in online role-playing games is

tempering the problems caused by players 

b y  D e r e k  S a n d e r s o n

Derek Sanderson has held several design and customer service
positions during his tenure with Simutronics, and has recently
settled in as the company’s lead designer. He is currently pon-
dering the career ramifications of commuting to work in a go-
kart, and welcomes input on this subject at rpgvault@aol.com.

II

DRAGONREALMS’ rogues’ gallery.



chooses to prey upon weaker players for his or her own
enjoyment, may be in violation of…policy.”

“Unsuspecting victims” can be a difficult standard to
enforce. It’s fairly obvious when someone is on a mass-mur-
der spree, and we remove such characters from our games
immediately. If the offender is an experienced player who
knows better, we generally penalize the account with official
warnings and restrictions from playing for a period of time.
If the player is new to our game, we explain our policies. If
any player is unwilling to abide by the rules, Simutronics
usually recommends that he or she try a product better suit-
ed to his or her tastes.

Simutronics’ methods are effective for controlling those
players who understand the rules and deliberately choose to
violate them. The system’s main weakness, however, is in
handling conflicts in which the two parties disagree over
whether consent to violence was given. For example, if play-
er A makes a few choice comments about Player B’s suspect-
ed lineage, and Player B attacks, is the conflict consensual?
Some Simutronics staffers would say consent was implicit in
the insult, but others consider consent to be something that
must be explicitly stated by the victim prior to any attack.
When staff tread such nebulous ground, they’re fighting a
battle that is impossible to win. No matter how they handle
the conflict, their intervention often creates hard feelings
among the players. Resolving these squabbles also uses staff
time that could be spent on game development, requiring a
higher developer-to-player ratio than would otherwise be
necessary. Simutronics has made the choice to incur these
higher costs in order to maintain games in which our cus-
tomers may play in relative safety from arbitrary attacks.
Whether such a solution would be viable in another game
depends on the developers’ goals and budget.
PLAYER POLICING (ORIGIN SYSTEMS’ ULTIMA ONLINE). ULTIMA

ONLINE’s developers decided to forgo administrative policing
and leave its justice system entirely in the hands of the play-
ers. Raph Koster, ULTIMA ONLINE’s lead designer, said Origin
designed the game this way in the hopes that, “given the
tools to police their own environment, [players] would do
so…. Our experience was that every method of administra-
tively imposed policing either failed or led to intense resent-

ment of the administrators of the game. We were particular-
ly concerned because traditional models on MUDs for
enforcing social mores were very administrator-intensive,
requiring a large number of skilled administrators willing to
devote a lot of time to soothing ruffled feathers on the part
of players who felt wronged. In a commercial venture of a
large scale, we didn’t think this was sustainable.”

Allowing your customers to police themselves is a noble
goal, but one that is difficult to implement. The most infa-
mous result of the ULTIMA ONLINE hands-off policy was the
gangs of player killers (PKs) that formed. Such gangs would
station themselves at key locations in the game and ambush
any poor soul foolish enough to travel with a group smaller
than a mob. “I just got PK’d,” was a refrain commonly heard
outside the game’s banks, where naked adventurers would
come to beg for money to re-equip themselves. Some players
formed anti-PK militias, but, as Raph says, they were “inade-
quate for handling the problem of player killing. The actions
of the few police were both insufficient in quantity and
inadequate in severity to curb the activity of the player
killers and the player thieves.”

In response to the problem, Origin instituted a variety of
tools to allow the players even greater control over their
environment. Under the current system, all characters begin
the game flagged as “innocent,” with their names highlight-
ed in a bright, happy blue. Steal from, attack, or loot the
dead body of an innocent — including an NPC — and your
character’s name will be highlight gray, branded a criminal
and open to attack by anyone. Kill an innocent player char-
acter, and that person is given the option to report you as a
murderer and place a bounty on your head. Kill five or more
innocents in a short period of time, and your character is
flagged a “murderer,” unable to use shops or access your
bank account, and subject to being slain on sight by other
adventurers who wish to collect the bounty on your head.

ULTIMA ONLINE’s greatest strength is that it places adminis-
tration of PvP entirely in the hands of its players, giving them
an unrivaled sense that they, and not the Origin staff, control
their world. The benefit of this feeling among players
shouldn’t be underestimated; it’s a powerful contributor to a
sense of immersion in the game environment. The system is

h t t p : / / w w w . g d m a g . c o m A P R I L  1 9 9 9 G A M E  D E V E L O P E R

43

An innocent is attacked in ULTIMA ONLINE ULTIMA ONLINE’s facility for reporting crimes.



weak, however, in controlling random
aggression. Only after five reported kills
does PvP activity have any real repercus-
sions for the aggressor, and the game
does little to track long-term aggressive
behavior. If a player waits just eight
hours of online time between murders,
he can kill one player a day without
ever reaching the murderer threshold.
No penalty exists (other than being
flagged a “criminal” for a short period of
time) for attacking someone unless that
person dies as a result of his or her
injuries. Harassment attacks that fall
short of a murder are still extremely
common in ULTIMA ONLINE. I was, for
example, attacked by total strangers an
average of once a day over three weeks
of playing while writing this article, and
killed three times. (Note to game design-
ers: other game designers get really
grumpy when your players kill them,
especially when their colleagues make
fun of their poor fighting skills.)
PLAYER-TOGGLED FLAGS (989 STUDIOS’
EVERQUEST). The developers of 989
Studio’s EVERQUEST (which should be
going on sale at around the same time
you read this article) plan to imple-
ment a flagging system that will mark
characters either as able to attack and
be attacked by other players (+PK), or
completely unable to engage in such
activities (-PK). The method is a com-
mon one for controlling violence in
small text-based MUDs, but my experi-
ence suggests that in a large-scale
game, where the community is of suffi-
cient size to allow true anonymity, the
use of “throwaway” (also known as
“mule”) troublemaker characters with -

PK flags will
abound. Such char-
acters, immune
from physical
harm, can do many
nonviolent but
extremely annoy-
ing things to other
players, such as fol-
lowing another
character around
wherever he goes,
blocking entries to
important areas,
attacking monsters
other players are
already fighting,
engaging in verbal
harassment, hold-
ing goods stolen by

+PK characters, running cons and
scams, refusing to leave someone’s
home, and more.

Brad McQuaid, EVERQUEST’s producer,
says his team is aware of the PK flag’s
potential abuses and is prepared to com-
bat them. The game will have a squelch
command to combat verbal harassment,
and out-of-context (non-role–played)
harassment will result in punitive mea-
sures against the offender’s account. As
for killing the creature another person is
fighting, Brad says, “…the player or
group that does the most damage to an
NPC gets to loot it and receives the
experience for the kill. This stops the
jerk who comes along and gives the
killing blow to a creature even though
another person or group had engaged
the NPC long before. He’s welcome to
deliver the killing blow, but he will
receive no experience for doing so.”

The general principle behind the
EVERQUEST kill-stealing prevention is
sound, but what does one do about the
high-level, -PK player who goes to a
low-level hunting ground and steals
kills repeatedly, doing more damage to
creatures than the new players fighting
them by virtue of an incredible advan-
tage in skill? Does one block entry to
such areas for high-level players? Does
one prevent high-level players from
attacking low-level monsters? Does one
simply warn the player for disruption?
The number of ways to get around the
game design illustrates the greatest
danger to the PK flag solution, namely
that it creates an invulnerable subclass
of character that players will be unable
to police, thus shifting the burden

(read: increasing staffing costs) to the
game administrators. However, I sus-
pect the flagging solution will be popu-
lar with a significant portion of
EVERQUEST’s customer base, because it
allows responsible players who don’t
enjoy PvP to play without interference
from their more aggressive cohorts.

A Few General Guidelines

I f the perfect solution has yet to be
implemented, then what is the

answer to managing PvP? A complete
system design is beyond the scope of
this article, but here a few things to be
considered when designing an anti-
PvP system.
REDUCE OVERHEAD BY MINIMIZING STAFF INTER-
VENTION IN PLAYER AFFAIRS. Minimizing staff
intervention in player affairs is a princi-
ple that should be followed across all
aspects of your game design, and it’s
particularly true for your game’s PvP
controls. Players will always exploit
loopholes in your design to their advan-
tage, and when they do, the best way to
resolve the problem is to alter your code
to prevent the undesired activity.

A good example of players using a
system contrary to its intended design
is the process by which a character of
the cleric class may resurrect another
character in DRAGONREALMS. When a
character dies, a counter starts tracking
skill loss, and the longer a character
has been dead when resurrected, the
larger the loss will be. Clerics are able
to cast a Soul Bond spell that will neu-
tralize this skill loss, and players gener-
ally expect that a cleric will do so
before performing the resurrection. In
the early implementation of this sys-
tem, however, players used the process
to force skill loss by intentionally resur-
recting characters without first casting
the Soul Bond spell.

Although the system mechanics
allowed such activity, it didn’t fall with-
in the behavior expected by the staff,
and several clerics had their ability to
cast the spell temporarily taken away
for abusing the loophole before we
coded changes to close it. Although our
intervention took care of the immedi-
ate problem and made the victims of
the aggression happy, it tended to make
the players against whom we took
action resentful. A pattern of such staff
interference can result in an antagonis-

G A M E  D E V E L O P E R A P R I L  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

44

J U S T I C E  S Y S T E M S

Bounty available for the heads of ULTIMA ONLINE criminals.



tic relationship between your customers
and staff and increased expenses to
cover the lost development time spent
correcting player behavior. It can also
foster an environment in which players
expect staff to handle their disputes,
generating an ever-increasing number
of assistance calls as your customer base
grows. Whether you are willing to pay
such costs is up to you.
MAKE ALL METHODS OF PVP REPORTABLE TO A

HARD-CODED JUSTICE SYSTEM. Players should
be able to report all forms of PvP to the
game’s justice system. Possible methods
include presenting murder victims with
a pop-up window, such as the one
ULTIMA ONLINE display, or allowing
players to file complaints with NPC
guards or magistrates. Whatever the
reporting mechanism, it’s important to
include all forms of PvP, such as theft,
corpse looting, casting offensive spells,
being harmed by an area-effect spell,
being attacked with a weapon, being
killed, or having player-controlled NPCs
or creatures perform any of these offens-
es. The reporting mechanism should be
intuitive and easily accessible, but
should involve some effort on the part
of the reporting player so only the truly
important attacks are reported.

Extra care must be taken with area-
effect spells. (Area-effect magic spells
affect all characters within a certain
radius of the character who cast the
spell.) A common player-killer tactic in
ULTIMA ONLINE is to enter someone’s
area-effect spell deliberately, then kill
that person after the system flags them
as “criminal” because of the damage the
spell causes to the player-killer’s charac-

ter. If you cannot
detect such behav-
ior with your code,
possible solutions
are either not to
design such spells
or to make them
non-harmful to
other player charac-
ters. You’ll lose a bit
of realism, but the
loss will be vastly
offset by your clo-
sure of this com-
mon PvP loophole.

Another area of
special attention
should be your PvP
theft-detection
mechanism. Here’s

an all-too-common scenario: Character
A has a pocket full of coins, and
encounters Character B. Character B
steals the coins from Character A, but
Character A fails his skill check to notice
the theft attempt. The person playing
Character A, however, notices the coins
are gone, and draws the very reasonable
conclusion that they were stolen by
Character B. Under most game systems,
however, Character A has no recourse,
and will be labeled criminal if he attacks
the thief in an attempt to recover the
money. Such thefts are generally the
most frustrating for your customers,
because the person playing the thief will
often use his immunity to taunt his vic-
tims. The solution is to allow the victim
to report anyone to the justice system,
with penalties for false accusations.
MAKE ANTI-PVP SYSTEMS ACTIVATE ONLY UPON

PLAYER REQUEST. Only the victim of an
online crime truly knows whether the
actions against his or her character
merit a reaction by the justice system.
The person who harmed the character,
for example, may be engaged in a
friendly duel, or the violence may be a
role-played conflict that the victim
wishes to avenge personally.

ULTIMA ONLINE has an excellent
implementation of player-initiated jus-
tice, although it contains a few loop-
holes. If one attacks an innocent, for
example, one is automatically flagged
“criminal,” even if the attack were acci-
dental or entirely consensual. A charac-
ter of mine was once killed and looted
by a stranger for being “gray” (indicat-
ing criminal status) after I accidentally
hit a companion while in combat. My

killer wasn’t impressed with my expla-
nation, and I signed off that day much
poorer than when I began. If I’d been
murdered as “innocent,” however, I
would have been able to report the
attacker and place a bounty on his head.

ULTIMA ONLINE also has a way to
remove players entirely from the justice
system if they are members of a player-
run guild. The guildmaster of a guild
may issue an official declaration of war
on another guild, and if the declaration
is reciprocated, the two guilds enter into
a state of conflict in which members
may attack, kill, steal from, and loot
each other freely without becoming
criminals. A second level of warfare
offers even more uncontrolled PvP con-
flict. When a guild’s leader becomes
famous enough, he or she is given the
power to declare the guild an Order or
Chaos guild. Upon doing so, the guild
enters a state of perpetual warfare with
all guilds of the opposing type, and
members may fight with opposing guild
members at any time, anywhere. “This
provides the ‘ambush around every cor-
ner’ feeling that this type of player val-
ues,” says Raph. “The warfare system
proved to be very popular, with 10 per-
cent of guilds converting over to the
‘free-for-all’ guild type as soon as it
became available.”

In EVERQUEST, those characters who
are flagged +PK will be able to attack
and kill other +PK players at will, but a
hard-coded race and alignment system
will determine how the rest of the
world reacts to the slaying. A player-
character ogre, for example, is from a
classically evil race. If that ogre kills a
player-character elf, which is a classical-
ly good race, the ogre will, says Brad,
“[when] he returns to his home town,
be welcomed as a hero…. In this sense,
player killing is encouraged in
EVERQUEST where it makes sense.”
However, if elven guards observed the
ogre attacking the elf, they would likely
intervene. Furthermore, a character
that kills members of his or her own
race would eventually find NPCs of that
race reacting poorly to the character.
MAKE REVENGE AN OPTION. This section
merits an entire article in itself, so I‘ll
mention it only for completeness and
keep my comments brief. The key idea
here is that many players would prefer
to fight back when subjected to a PvP
attack and wouldn’t enjoy reporting
the activity to an NPC system. When a

G A M E  D E V E L O P E R A P R I L  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

46

J U S T I C E  S Y S T E M S

ULTIMA ONLINE’s guild system allows a sort of regulated PvP.



character is the subject of aggression,
the aggressor should be flagged so the
victim may fight back without penalty,
whether it be an immediate response
or a later ambush. ULTIMA ONLINE has
implemented this principle by flagging
an aggressor attackable for two minutes
per attack. My experience suggests that
this isn’t enough time; for me, at least,
my initial reaction to an attack was to
flee to heal myself. By the time I’d
recovered from the initial ambush, my
aggressor was usually no longer eligible
for a penalty-free attack.
MAKE PVP MUCH LESS PROFITABLE THAN PLAY-
ER-VS.-GAME ACTIVITY. A certain percentage
of those who kill or steal from other
players do so simply because player-
characters tend to be far more wealthy
relative to the level of danger they pre-
sent than NPCs or creatures. Take away
the profit from PvP, and you’ll curtail a
certain percentage of it. Ensure a stable
supply of player-vs.-game activity, and
you’ll decrease it even more.

The most obvious way to lessen the
profitability of player-killing is to
restrict looting of dead characters, with-
out removing the ability for players to
help their fallen comrades. One method
is to prevent looting entirely, although
a corresponding mechanism must be
created to allow recovery of stolen items
if a thief is tracked down and slain.
Another is to allow looting only under
specific circumstances. ULTIMA ONLINE

flags looters as criminals, making them
vulnerable to attacks or having the NPC
guards called to execute them.

EVERQUEST had
not yet finalized its
corpse-looting
restrictions at the
time I wrote this
article, but Brad
says that the devel-
opers are consider-
ing several options.
“…If you are -PK
and you die, only
you or someone to
whom you give
consent may loot
your corpse. If you
are +PK and come
across the corpse of
another +PK charac-
ter, you currently
are free to loot it.
We are, however,
experimenting with

some limitations to make player killing
more viable. We will test a system in
which the killer may loot his victim
only once, and may take only one item
of choice from the corpse.”

If you implement such restrictions,
provide enough monsters or NPCs to
meet player demand, and give players
enough wealth for them to feel they
are making reasonable progress, you’ll
drive player activity towards the mon-
sters. Make your monsters and NPCs
too poor, or fail to spawn enough of
them, and your players will turn on
each other. Similarly, it’s important to
give player thieves enough creature or
NPC targets to make the class economi-
cally viable, else a percentage of those
who would normally only steal from
non-players will turn to PvP stealing.
RESTRICT THE ABILITY OF NEW CHARACTERS TO

HARM OTHERS. Players will always use sys-
tem loopholes to maximize their gains,
and if a new character is able to accom-
plish a highly dangerous task and realize
the same gain as an older character,
then the use of the aforementioned
throwaway characters will abound. This
is especially true when more than one
character is available to the customer on
the same account, or if free trial
accounts are accessible to the players
without the purchase of a retail product.

Stealing and scamming are the most
common uses for throwaway characters,
and is usually accomplished in a way
that circumvents the system’s intended
design. In DRAGONREALMS, for example,
throwaways are frequently created to

loot weapons dropped on the ground by
dead adventurers. The throwaways then
pass the weapons through friends and
back to the main character on the
thief’s account, disguising the true iden-
tity of the thief and making redress
impossible. Throwaways also exploit
loopholes in our player-to-player item
exchange mechanisms, tricking adven-
turers out of their goods and then pass-
ing the profits to the real character on
the account.

Simutronics is not alone in facing
problems with throwaway characters.
One common trick in ULTIMA ONLINE

used to be for two players to create
thief characters, stand near a bank, and
steal items from adventurers. If the vic-
tim detected the theft and called for
the guards, the thief was executed. The
thief’s partner would then lift the item
from the dead body, and the original
victim would have no way to get it
back. Origin recently fixed this exploit
by having the guards return stolen
items to the victim if the thief were
killed within city limits within two
minutes of the theft.
CHARGE PLAYERS FOR PVP ACTIVITY IN A CUR-
RENCY THAT IS VALUABLE TO THEM. When an
activity has a perceived cost, the fre-
quency of that activity will always
decrease. It’s a basic supply-and-
demand formula; make PvP more
expensive, and fewer people will choose
to purchase it. Those who choose to
engage in PvP activities will therefore
have to decide before every assault
whether they are willing to pay the
price. Scale the cost of that activity as
its frequency increases, you’ll prevent
repeated abuse by older, richer players.

You could, for example, make the
tax a monetary one, and charge an
aggressor 25 coins for his or her first
reported murder, 50 for the next, then
200, 400, 800, and so on, allowing the
character’s criminal past to decay one
fine level per week if he or she refrains
from all criminal activity. Characters
who are unable to pay the fine could
be restricted to a debtors’ area from
which they couldn’t leave until they
had performed enough low-paying
menial tasks to pay off their debts.
Preventing someone from leaving
until their fines are paid would stop
savvy players from offloading their
valuables onto storage characters
before going on a killing spree; allow-
ing them to perform work to escape

G A M E  D E V E L O P E R A P R I L  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

48

J U S T I C E  S Y S T E M S

In EVERQUEST, players who wish to attack other players must
be flagged +PK and even then can only attack other +PK
characters.



would prevent anyone but the worst
cases from being trapped inside.

A tax doesn’t have to be a monetary
one. A character could, for example,
lose an increasing number of experi-
ence points or skills with each subse-
quent PvP report against him. If he or
she reaches a certain threshold, that
character would be hit with a curse
that prevents all aggressive activity for
extended periods of time. Another pos-
sibility would be to toss characters in a
jail cell for increasing periods of time,
where they must stay until their sen-
tences are served.

Whatever you choose for your tax,
the penalties should start at negligible
levels and scale up exponentially rather
than linearly. Low initial penalties,
when combined with a slow decay of
criminal histories, will allow new play-
ers to learn the system, allow all play-
ers to make the occasional mistake,
and allow normally law-abiding char-
acters to take the occasional swing at
someone who really, really deserves it.
Only those who try to make a career of
harming other characters without their
consent will be subject to heavy fines.

Balancing Good and Bad

There is no magic bullet solution to
solve all of the PvP problems inher-

ent to an online role-playing game
community. No matter what methods
one uses, players will always find ways
to harass, pester, and annoy each other,
so trying to eliminate all forms of
aggression isn’t a realistic goal. If, how-
ever, you give proper reporting tools to
the victims of non-consensual PvP,
allow players outlets for consensual
attacks, and make everything else cost-
ly, you’ll find the problems reduced to
manageable levels. There is room for all
styles of play in a properly designed
role-playing game, and finding the cor-
rect balance is key.  ■

h t t p : / / w w w . g d m a g . c o m A P R I L  1 9 9 9 G A M E  D E V E L O P E R

I wish to extend a special thanks to
Raph Koster and Teresa Potts of Origin
Systems, and to Brad McQuaid of 989
Studios for their timely assistance. This
article would not have been possible
without them. Thanks also to
Simutronics designer Emily Jacobson for
her ruthless editing.

Acknowledgements



G A M E  D E V E L O P E R A P R I L  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

50

ur goal with FIRETEAM was to create a complete online

game experience. The Internet gives game design-

ers the ability to take multiplayer gaming one

step further by creating a community, some-

thing that wasn’t possible before online games

came about. Multitude wanted to take the next step

in gaming evolution by making the community a significant part of our

product. In other games, such as DIABLO or QUAKE, the players were cre-

ating communities themselves, mostly through their own web sites.

Multitude, on the other hand, devoted significant development time to

creating tools that would help the community.

We spent as much time on FIRETEAM’s lobby

and community web pages as on the game

engine itself. Our goal was to create a game 

b y  A r t  M i n

MultitudeÕs
FIRETEAM

P O S T M O R T E M

Art Min is FIRETEAM’s project leader and the cofounder of Multitude. He lives in the San Francisco Bay Area.
Art relaxes by hitting a little black object on a cold surface and attempting to learn how to paint, though not
at the same time (yet). He can be reached at minman@multitude.com or minman@alum.mit.edu.

OO



51

h t t p : / / w w w . g d m a g . c o m A P R I L  1 9 9 8 G A M E  D E V E L O P E R

that would make people say, “Wow, this is what I’ve wanted
from an Internet game.”

FIRETEAM is an online-only gaming experience. The actual
game play is a squad-based tactical combat. Players can com-
municate with other members of their team using
Multitude’s voice technology. Each player controls one char-
acter in the battlefield. The game uses an isometric, three-
quarter view 2D graphics engine. There are four different
FIRETEAM scenarios, and each game session is ten minutes
long. The scenarios are very sports-like in their design to
help promote team play. Equally important to the FIRETEAM

experience is the lobby, where players can view other play-
ers’ statistics, chat between games, and find squad mates and
enemies for their games. The last component of FIRETEAM is
the community web pages, which display players’ complete
statistics and provide support for FIRETEAM Companies
(which are similar to QUAKE Clans). On the community web
pages, players can create companies, add/kick members, and
access private Company bulletin boards.

Brief History

F IRETEAM evolved dramatically over its first year of devel-
opment. Multitude was originally founded to create the

“ultimate online game,” which was to be a large persistent
science fiction world. We knew that there would be some
competition because ULTIMA ONLINE had already been
announced, although Origin hadn’t yet performed any alpha
or beta testing. We spent months writing and planning for a
massively multiplayer online game set in a futuristic world.
The project was to have a server team of around 10 people
and a game team approximately double that size. As we were
designing around our original concept for the game, our
desire to make a persistent-world game work as well as a sin-
gle-player game presented us with many hard technical and
design problems. On the good side, it was during this process
that we finalized the design spec for our combat engine. The
combat engine was inspired by X-COM: UFO DEFENSE, empha-
sizing squad combat with features such as line-of-sight. 

We soon realized that our new company’s financing was
coming along very slowly and that we needed a much more
easily attainable goal (due to lack of resources, both financial
and human) that would still showcase the unique voice
technology that we’d developed. We looked at the combat
engine specification, our voice technology, and the Internet
technology that we were designing and realized that we
could make a great tactical team game. So at that point, we

decided to abandon the large persistent world and make
team play the essence of the game.

Designing a multiplayer game is very different from
designing a single-player game. I’ve heard that in many
games, the multiplayer component was added on only
because marketing had requested the feature; this approach
can make the multiplayer experience less than ideal. In a
single-player game, the player is the hero and the focus of
the game experience. The player should be able to win 100
percent of the time (with some effort). In a multiplayer
game, a player should win 50 percent of his or her games
against an equivalently skilled player. The thrill of a multi-
player game shouldn’t be in the winning, but more in the
process and the actual competition. Team play gives players
a deep gaming experience, even if they lose. Our efforts to
create engaging multiplayer game play were made even
more effective by our voice technology, which allowed play-
ers to hear the emotions of their fellow players.

FIRETEAM’s Components 

F IRETEAM’s network architecture is client/server-based. We
chose a client/server architecture because of the benefits

that it offered us in the areas of performance (especially with
the voice technology), cheat prevention, and centrally locat-
ed statistics. The clients all run on Windows 95/98 and the
servers run on Windows NT boxes, where we use Microsoft
Chat services to do the intercommunication between our
server processes. We also have a Microsoft web server run-
ning the community web pages, with a Microsoft SQL server
maintaining the database. Our servers are at one location,
our ISP Globalcenter, in Sunnyvale, California.

Multitude Inc.
Burlingame, California
(650) 685-2001
http://www.multitude.com or http://www.fireteam.com

Team Size: 14 full-time developers. Some number of contractors.
Release Date: December 1998
Target Platform: Windows 95/98
Budget: Approximately $2.5 million
Time in Development: Two and a half years
Tools: Microsoft Developer Studio 5.0, Microsoft SQL Server,

Microsoft IIS, 3D Studio Max, Microsoft Interdev 6.0, Microsoft
Chat Service, and Windows NT

FIRETEAM



FIRETEAM uses the Elemedia SX2.0
Voice Codec to do its voice compres-
sion and decompression. Multitude’s
proprietary software wraps around this
voice codec and interfaces with the
Windows sound system for both input
and output. The game mixes multiple
voices on the client side rather than
the server side. Clients simply send
voice packets to the server, the server
then routes them on to the appropriate
teammates. In the future, spectators or
enemies will be able to listen in on the
voice chatter. Our voice software han-
dles both DirectSound and non-
DirectSound drivers because some
sound cards work with DirectSound in
full duplex. Full duplex means record-

ing from microphone and playing
sound at the same time.

Who Worked on Fireteam

N ed Lerner and I started Multitude
and began working on the origi-

nal project in April 1996. The develop-
ment team grew gradually over the
course of the project. Jim Morris was
brought on during the summer of 1996
to be the chief technical officer, and his
first project was to develop the voice
technology. Alan Murphy was brought
on to provide art for the prototype and
eventually was named art director.
Conroy Lee, Harvey Smith, and Harry
Schaffer were brought on in early 1997
to help take FIRETEAM from a prototype
to the real game that we showed off at
E3 1996. Bill Money, James Poelke, and
David Reese came on in late 1997. The
team has a very diverse group of prod-
ucts to its collective credit. Lerner and
Morris were two of the first people to
work on 3D in the game industry.
Murphy’s art credits include GALAXIAN,
PAC-MAN, DEFENDER, TAZ, and X-MEN.
The others have worked on games such

as SYSTEM SHOCK, TERRA NOVA, MAGIC

SCHOOL BUS, ULTIMA VIII, and FRONT

PAGE SPORTS: BASEBALL.

What Went Right

1.COMBINING TEAM PLAY AND VOICE TOGETH-
ER. FIRETEAM’s design focus was on

team play. Just as we’ve seen in team-
oriented sports, the cooperative nature
of playing as a member of a team has
proven to be a very addicting and pow-
erful gaming design. FIRETEAM’s coopera-
tive nature was a symbiosis of our voice
technology and team play design. We
needed to give people a reason to talk to
strangers on the Internet. Team play

52

P O S T M O R T E M



was that reason; it gives people the abili-
ty to say “Watch out behind you!” or
“Good job!” Teammates can share the
joys of victory or the agonies of defeat.
Because there is no button to push to
transmit your voice (it transmits auto-
matically when you talk), players can
hear the spontaneity of teammates
yelling and laughing. Emotion comes
across very clearly with voice and is defi-
nitely preferable to typing in ALL CAPS
or emoticons. The ease of vocal interac-
tion brings the team together. 

In a fast-paced tactical game such as
FIRETEAM, players don’t have time to
coordinate movements with the key-
board. Without voice, you limit team
communication to select macro keys

(or players who can type very fast). In
FIRETEAM’s Basetag scenario, for exam-
ple, teammates protecting the base can
give instant information on where the
enemy is making its attack. Over the
course of their lives, people have
already learned how to talk; it’s an
interface they understand. Vocal com-
munication doesn’t require a key card
list for communication hotkeys, just a
microphone to talk into. 

2.DESIGNING THE PROJECT AROUND CON-
STRAINTS. Multitude was founded

to do a game for the Internet. The
Internet offers many problems that we
had to solve in order to make a fun
game. The biggest technical problem
was Internet latency. Fundamentally,
latency causes each player to have
something different on his or her
screen, so there is always a delay
between a player performing an action
and the other players seeing that
action carried out. 

For example, we decided early on that
we wanted the game to respond as
quickly as possible. When you shoot at
something during a FIRETEAM game,
you’ll see instantly whether or not you
hit your target. The actual damage will

take a small amount of time to be
applied to the target. So it’s possible that
you’ll see someone get shot, walk a bit,
and then die. The game cannot provide
a perfect view of the world to each play-
er; that’s not possible given the limita-
tions of the Internet. So we decided not
to show players their opponents’ health.
If you can see that your opponent has
only a sliver of health and that one shot
could kill him or her, then you would
expect that player to die instantly with
the next shot you made. By hiding
opponents health from our players, we
hide the perception of lag.

A project’s constraints can also be
exploited to the project’s benefits.
Because the constraint was that we

53



needed to be on the Internet, we creat-
ed the community web pages to give
players the ability to look at their sta-
tistics and create FIRETEAM Companies.
We wanted a strong community for
FIRETEAM, and the community web
pages were an easy way for people to
have an identity in this community
and to join a group of other players.

3.SPENDING SUFFICIENT TIME TO DEVELOP

TOOLS. We used several proprietary
tools to create FIRETEAM’s game envi-
ronments. Early on, we spent a lot of
time building easy-to-use tools that
allowed us to create content rapidly.
Our internal testers used these tools to
create new arenas for FIRETEAM. And
because FIRETEAM is an online game, we

were able to test new maps very quick-
ly with our beta testers. 

With an online game, game balance
is crucial. Players will find any competi-
tive edge and map imbalance they can
and exploit it. Especially in an online
game with a lobby, word of cheats or
advantages spreads very fast. Your tools
must allow you to tweak your maps, so
you can quickly fix any small problems.
Many of our maps changed during the
course of testing as our testers would
point out weaknesses that they found.

I can recall a particular controversy
over whether Gunball (a FIRETEAM sce-
nario similar to combat football) was
balanced enough. Many of the
advanced players were complaining
that Gunball’s offense was too hard.
Using our Tile Edit tool, we quickly cre-
ated a few maps with two endzones for
each team (Gunball maps normally
only have one endzone). Through test-
ing the new maps, we discovered some
of the problems with Gunball were
unrelated to the maps themselves, but
that the offense simply had a disadvan-
tage when trying to score. So instead of
redoing all of our map designs, we
tuned the Gunball game by giving the
Gunball carrier a protective drone.

An added bonus of easy-to-use tools
is that you can make them available to
the public and let your players cus-
tomize the game and create their own
content. We haven’t yet taken that last

G A M E  D E V E L O P E R A P R I L  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

54

P O S T M O R T E M

This is Tile Edit, our basic world builder. We quickly prototype the physical layout
of the maps with this tool. It’s very easy to move walls around to achieve the right
game balance.

Lobby Client

Statistics Service

Server SideClient Side

Utility Service

Redirector Service

Game State Service

Game 
Statistics
Database

Combat daemon

Game Server

Community Web Pages

Game Client

Web Browser

Internet

Internet

Internet

F I G U R E  1 .  FIRETEAM’s technical architecture.



step, because we’re not sure how we
want to store the maps on our servers
and present them to the community.

4.MANAGING RISK: VOICE TECHNOLOGY.
The biggest risk in developing

FIRETEAM has been the voice technolo-
gy. Many smart people initially said it
was impossible, but we knew that the
game’s design objective was a coopera-
tive team game, and voice was very
important to accomplishing the goal.
So FIRETEAM’s first technical project was
to determine whether or not voice on
the Internet was even possible. Once
we had the technology running over
the Internet, we still faced the possibili-
ty that it wouldn’t work with the wide
spectrum of sound cards in the market.

We tried to minimize the problems
that voice would cause by providing
users with a tool that would configure
the sound card and microphone during
installation. Multitude was very aware
(almost scared) of the fact that FIRETEAM

would represent most users’ first use of
voice technology on their computers. So
we had to make sure that it worked on
as many sound cards as possible and
that it was very easy to use. We eventu-
ally released FIRETEAM as two executables
— one for systems with DirectSound
and one for systems without it.

One feature that we explicitly did
not put into the game was the ability
for players to talk to their opponents.

We wanted players’ first experience
with voice to be a positive one. We
didn’t think a 12-year old telling you
where to put your gun in his shrieking
voice would convince people that voice
is a wonderful addition to gaming.
Similarly, people asked for the ability
to eavesdrop or steal another team’s
radio and listen to the other team. This
feature would impel team members not
to talk if they believed they were being
monitored. These types of behavior
would weaken the voice feature.

5.PROMOTING COMMUNITY. If you’re
going to design an online game,

you cannot ignore the community. Any
online game, from FIRETEAM to Poker on
AOL to ULTIMA ONLINE, will have a
community because the players will be
able to communicate with each other.
Online game developers should take
advantage the fact that their product
inherently has a community. Most
online games go through alpha and
beta online tests mostly to test the soft-
ware, but few deliberately create or test
the community aspects of a product.
Players are not only a source of revenue
for a project, but they are a feature of
your game. In an online environment,
the players’ game experiences are dic-
tated by their teammates and the oppo-
nents against whom they play. You
want the players to follow guidelines
and really care about the game and the

community. If your population is full
of a bunch of player killers, then that’s
the experience that the players will get.

Multitude succeeded in developing
community-enabling tools. We spent
significant time and discussion on our
lobby and community web pages.
Given FIRETEAM’s team nature, we
wanted players to feel a sense of
belonging so that they would want to
save each other’s lives. The FIRETEAM

product is not just the game itself. The
game is an important piece of the
FIRETEAM experience, but it’s only a
piece. The community plays a large
part of the whole experience.

What Went Wrong

1.MISJUDGING MARKET CONDITIONS.
When Multitude was founded in

April 1996, there was a lot of buzz in
the online game space. Mpath and Ten
had big plans. ULTIMA ONLINE was
about to go through testing. We
believed that an online-only game,
sold directly to customers via the
Internet, would be acceptable to the
market when we eventually shipped.
What we’ve discovered is that the
online game market has not matured
to the level that we expected. Very few
online-only games have been released,
with ULTIMA ONLINE being the only
clear success. We made two decisions
early on that should have been reex-
amined when it became clear that cus-
tomer acceptance of an online-only
game was not a forgone conclusion. 

FIRETEAM would have been more will-
ingly accepted by the market if it con-
tained some artificial intelligence (AI).
With such an implementation, players
could practice using the interface by
themselves and, more importantly,
players could practice as a team against
AIs. With computer-controlled oppo-
nents in place, players could play
offline or possibly on a LAN against
computers opponents. Many users are
intimidated by having to learn a new
game while playing against other more
experienced human players. AIs would
have helped ease players into the
online-only part of the game, provid-
ing a feature that many players expect
to find in games today. 

FIRETEAM also should have had a
demo available on day one. As an
online game, providing a demo pre-

G A M E  D E V E L O P E R A P R I L  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

56

P O S T M O R T E M

We take the output from 3D Studio Max (with our plug-ins) and, with our propri-
etary ZHMPView tool, convert the files to a format that FIRETEAM can read. 



sented an interesting problem because
of the server issues. With a traditional
game, developers can hand out a mil-
lion demo disks and never think about
the problems their users might experi-
ence. If we gave out a million demo
disks, then we would need to have
enough servers to support all those
people that actually play the demo. We
didn’t create an infrastructure to sup-
port a demo mode of FIRETEAM.
FIRETEAM is a new type of game — peo-
ple aren’t yet accustomed to online tac-
tical team games with voice technolo-
gy. We should have made some extra
promotional effort to get potential
users to make that initial leap and try
out the game.

2.MANAGING CONTRACTORS. FIRETEAM

was a large and extremely chal-
lenging project. We had to look outside
of our own company for help with cer-
tain parts of the project. Our mistake
was in assuming that these experts held
the same priorities as the rest of the
development team. These groups have
their own objectives and aren’t expected
to understand the big picture or know
how to create fun games. We realized
that when working with contractors, we
needed to give those contractors a very
precise and clear specification. Because a
good game design evolves over the
course of a project, a project manager
must constantly make certain that the

contractors are following the latest ver-
sion of the specification.

As we were developing FIRETEAM, our
attention was also focused on growing
our new company. We found that it was
easy to forget what the contractors were
doing and how they fit into the project.
We made the naïve assumption that
they would be willing to work with an
evolving specification. However, when a
project is fix-bid, an external developer
will only do so much tuning and
reworking of code before he or she starts
charging you for it. If you don’t manage
this relationship closely, these costs add
up very quickly. For example, the cost
for developing the community web
pages doubled from the original quote
because the design evolved. The final
version of the community web pages
was great, but a more thoughtful initial
design specification and better manage-
ment of the process would have saved
Multitude significant money and time.

3.INTERNET TECHNICAL ISSUES. The
Internet poses significant prob-

lems for developers. Although we did
our best in designing the game around
the limitations of the Internet, we did
have some technical problems. We
originally designed FIRETEAM around
TCP/IP because it’s a reliable transport
protocol for network traffic. However,
the reliability comes at a very high cost:
retransmission times. If a packet is lost

on the Internet (which happens a lot),
it takes some time for the machines on
both ends to realize this and resend the
data. TCP/IP guarantees that all packets
are in order; therefore, all of the packets
after the lost packet will be delayed
until the lost packet is sent again. In a
fast-paced game such as FIRETEAM, lost
packets can really cause problems. As
soon as we started doing real Internet
tests, we realized that we needed to
start sending some packets unreliably
via UDP. These packets could get lost,
be out of order, or even duplicated, but
they wouldn’t be delayed by other
packets. We learned that different pack-
ets require different sets of reliability
and timeliness, and that developers
should use all the tools available to
them, both TCP/IP and UDP. We ini-
tially labored under the idea that only
one protocol should be used for the
sake of simplicity, but it’s best to use
the appropriate tool for each job.

Packet loss and high ping times are
simply part of the reality of dealing
with the Internet. You do your best to
deal with these issues, but they’ll still
cause you endless headaches as
routers over which you have no con-
trol go down throughout the country.
Many online games come with a little
utility that does a trace on the route
the packets take between a player’s
machine and the servers. The informa-
tion that the utility returns can help
the player and his or her ISP deter-
mine where the bad connection is
along that route. Developers should
be aware that while they cannot fix
the Internet infrastructure, it’s impor-
tant to understand its limitations and
deal with them as best they can.

4.SERVER SPAGHETTI. FIRETEAM is a
very complicated project with

many processes running on both the
client and the server. Add in the com-
plication of the Internet, and you can
get one confusing mess (Figure 1 shows
just how complicated the FIRETEAM

architecture is). We tried to break our
server components down into smaller,
more manageable pieces, each with its
own function. We hired some experts
in various disciplines to help us better
understand parts of the server technol-
ogy that were new to us. Our mistake
was in thinking that these experts
could just come in and solve our prob-
lems. As we busied ourselves with other
parts of the project, it was easy for us to

G A M E  D E V E L O P E R A P R I L  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

58

P O S T M O R T E M

A 3D Studio Max layout of one of the maps. Our artists take the game-tested layout
from Tile Edit to create backgrounds for each map.



say to ourselves, “They know what they’re doing.” In the
end, however, the development team needs to understand
the whole picture and how the pieces really fit together. One
of FIRETEAM’s unique properties is that its server-side compo-
nents run remotely at an ISP’s facilities. In order to debug
something as complicated as our server architecture
remotely, our key programmers — not just the client/server

experts —needed to understand the whole system.
One or two weeks spent planning and discussing the

entire project with everyone involved will save you months
down the road. The process of actually finishing and ship-
ping a game is the hardest part of the development cycle;
not many people actually know how to ship a game. During
the final stage of the project, it’s essential that the entire
team understand all the pieces of the puzzle.

5.COPING WITH THE COMMUNITY. As I mentioned previously,
when you create an online game, you need to embrace

the community. At the same time, a direct connection with
a community of testers who aren’t 100 percent aware of your
objectives is something that needs to be managed very care-
fully. The testers will always want something different.
When is the last time you played a game and said, “This is
perfect”? I’ve often said that even my favorite game would
be better if it had feature X. Most beta testers are young peo-
ple who have a lot of time on their hands; that’s great for
finding bugs, but it can also be a problem because some of
them lack perspective. All players have an equal voice in the
FIRETEAM lobby, so we had to watch over the lobby constant-
ly because a few testers could ruin the fun for others, even to
the point of instigating a mini online riot.

From what I can tell, some online game companies simply
ignore their testers’ constant demands. After the experience
of developing FIRETEAM, I must admit that this is a possible
solution, though not an optimal one. Many of us on the
development team spent many hours justifying our design
decisions in order to educate the testers on why we were
doing things a certain way. While this education does make
them better testers, it takes up a lot of time. And it’s a dan-
gerous black hole that you can be sucked into if you’re not
careful. I believe that the true balance is to pay attention to
your community, but sometimes to sacrifice the battle in
order to win the war. You should involve your intended
community in the evolution of your game, but don’t let it
take over your design process or time.

Evolving Right Along

I n building FIRETEAM, we as developers accomplished our
goal of providing a complete online gaming experience

with true team play, innovative voice technology, and
extensive community building tools. The Internet offers
brand new gaming experiences; game players can compete
in ladders such as Battle.net or tournaments such as the
PGL. Also, an online game lets players meet new friends
with whom they can share true social gaming experiences. 

However, the Internet introduces a lot of negatives to the
gaming experience. Instead of lightning-fast LAN connec-
tions, players must now tolerate latency. Instead of a small
group of friends, a player’s opponents may be complete
strangers who aren’t polite and may even be cheaters.
Because to the newness of this market, FIRETEAM may be
ahead of its time. Or it may not have exactly hit the sweet
spot that online multiplayer gaming should be. But,
FIRETEAM has helped online game evolution along by
demonstrating that voice technology does work and that
team play and community are compelling elements that
don’t have to be accidental.  ■

G A M E  D E V E L O P E R A P R I L  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

60

P O S T M O R T E M

The home page for the community web pages. Players can
access a wealth of information about their statistics or other
players’ statistics.



If you want to live forever, you have
some options: spiritual immortality
(religion), practical immortality (don’t
die), or virtual immortality (fame). The
disadvantage of spiritual immortality,
at least for the rationally-minded, is
that there doesn’t seem to be any evi-
dence that it exists. And we’re a long
way, technologically or medically,
from achieving practical immortality
and conquering death. So,
that leaves virtual immor-
tality: fame, and the
knowledge that you
counted for some-
thing and will be
remembered by
those who fol-
low you. How
can I, as a
game devel-
oper, be
remem-
bered?

Now, you might say, “So what? The
vast majority of the world leaves no
legacy. What entitles you to a monu-
ment?” I don’t have an answer to that,
except that I know that I want one.
And not just for myself. There’s some-
one else that I want people to remem-
ber as well.

Danielle Bunten Berry is dead. And
in a few years the work of her heart

and hands and mind are going to
be dead too, and that is not

right, my friends. Her imagina-
tion, her contribution, was too

important to be forgotten. We need a
way to remember her. We need a

Computer Game Hall of Fame. Not
just a list of names printed every

month in Computer Gaming
World, but a real memorial. But

what kind?
Now, I have stood in the

tomb chamber at the heart of
the Great Pyramid. One of the
most common reactions to

the Great Pyramid is, “My
God! What a ego that
guy had, to build such a
monument to himself.”
But there’s nothing
intrinsically evil or
immoral about build-
ing monuments,
even to yourself. We

no longer have to use
whips and slaves to get it

done. Why shouldn’t
Dani get a pyramid, if

we want one for her?

Well, pyramids are expensive, and
they take up a lot of space. So, we turn
to the question of leaving a legacy in
memory, rather than stone. But the
work of game developers suffers from a
kind of technological decay that is not
experienced by other artists. To illus-
trate this I want to quote Bruce
Sterling, the science fiction author,
from a speech he gave at the 1991
Computer Game Developers’
Conference. He was talking about a
hypothetical — and now not-so-hypo-
thetical — device, the “electronic
book,” and he said:

“Now I’m the farthest thing from a
Luddite ladies and gentlemen, but when
I contemplate this particular technical
marvel my author’s blood runs cold. It’s
really hard for books to compete with
multisensory media, with modern elec-
tronic media, and this is supposed to be
the panacea for withering literature, but
from the marrow of my bones I say get
that little sarcophagus away from me.
For God’s sake don’t put my books into
the Thomas Edison kinetoscope. Don’t
put me into the stereograph, don’t write
me on the wax cylinder, don’t tie my
words and my thoughts to the fate of a
piece of hardware, because hardware is
even more mortal than I am, and I’m a
hell of a lot more mortal than I care to
be. Mortality is one good reason why
I’m writing books in the first place. For
God’s sake don’t make me keep pace
with the hardware, because I’m not real-
ly in the business of keeping pace, I’m
really in the business of marking place...

“You folks are dwelling in the very
maelstrom of Permanent Technological
Revolution. And that’s a really cool
place, but man, it’s just not a good
place to build monuments.”

He’s right, of course. Our work is as
bright and as beautiful as the wild-
flowers of a Sierra mountain spring-
time... and just as ephemeral. Our
games cannot serve, unaided, as our
monument. When we die, we leave
nothing to remember us by. We need
something else.

Continued on page 71.

G A M E  D E V E L O P E R A P R I L  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

72

b y  E r n e s t  A d a m sS O A P B O X
Immortality for 
Game Developers

Iwas thinking in the shower the other day about the

notion of immortality. It’s among the most ancient

of human fascinations, and a subject of philosophy

and spiritual thought since before recorded history.

Ernest Adams has been a computer game developer for ten years and has a longstand-
ing interest in the industry’s professional culture. He was a founder of the Computer
Game Developers' Association and is a frequent lecturer at the GDC.

Il
lu

st
ra

ti
on

 b
y 

Pa
m

el
a 

H
ob

bs



Continued from page 72.

The Computer Game Hall of Fame
would be a place where the great
games are kept, and talked about, and
studied for the wonder and truth that
they contain. Above all, it would be a
place where their designers are hon-
ored. It should consist of two things:
First, a permanent site on the World
Wide Web (which, in my opinion, is
soon to be the collective cultural
memory of mankind). Second, a phys-

ical place. A building, a museum — an
arcade if nothing better — where peo-
ple can go and admire, play, learn,
and remember.

Now some will say, “A museum
about outdated video games?
Pathetic.” But consider this: I work on
a game about professional football.
There’s nothing very world-shaking
about professional football. It doesn’t
change the fate of the human race.
Professional football is about the exer-

cise of athletic skill for the purpose of
excitement and entertainment.
Excitement and entertainment is our
business too. If professional football
can have a Hall of Fame, then by God,
we’re entitled to one.

Who’s going to build it? I don’t
know. I don’t have the time. I don’t
have the money. But it needs to be
done, so that our great works can live
on. They can be remembered, but only
if we choose to remember them.  ■

S O A P B O X

71


	back: 


