
APRIL 1998

G A M E D E V E L O P E R M A G A Z I N E

L ately, there’s been a lot of
press coverage about the cur-
rent shortage in information
technology (IT) workers in

the U.S. and its impact on the country’s
ability to keep up with the demand for
high-tech goods and services. While
none of the coverage I’ve read has
addressed the impact on the game
development industry specifically,
there’s no reason to think that our
industry has somehow sidestepped the
problem.

Sometimes it doesn’t seem like we’re
facing a labor shortage of our own. The
rec.games.programmer newsgroup is
perpetually peppered with messages
from people trying to enter the indus-
try. In February, I wrote about a student-
run game studio at UC Berkeley that’s
lined up dozens of members who are
interested in getting into game develop-
ment. Database programmers by day
come home and work on their games at
night (I know because I get several
e-mails every day about their projects).

But let’s consider the facts. The
Information Technology Association of
America (ITAA) and Virginia
Polytechnic Institute released a study
(available at www.itaa.org) in February
stating that 10% of IT jobs (defined as
programmers, systems analysts, and
computer engineers) are now vacant. I
don’t know if they polled any compa-
nies such as Activision, Red Orb, or
Interplay, but I don’t think I’m sticking
my neck out too far when I say that
we’re likely in the same boat.

Assuming that there’s a shortage in
our industry as well, I believe that the
threat it represents to us is greater than,
say, the neighborhood bank looking for
a SQL developer. In addition, I think
game development projects are more at
risk of failure due to a talent shortage
than other shrinkwrap products. Games
are fundamentally different from other
applications, and often they’re extreme-
ly different from each other at the code
level and the technology they use. In
trying to create games that break genre
molds and hit new performance
heights, custom engines, optimized

assembly routines, in-house utilities,
and proprietary scripting languages
have made jumping into a project mid-
stream nightmarish for new hires.

The lack of programming talent
affects animators, too. Many animators
rely on programmers to create utilities,
plug-ins, and other custom tools.
Without enough programming talent to
support animators, we might see the
productivity of animators decline, the
quality of their work degrade, or both.
Fortunately, there seems to be a trend
towards making customization easier for
animators, with tools such as 3DS MAX
R2 integrating scripting languages into
their environments. Yet animators still
face that learning curve, better though
it may be than learning C.

For independent game development
studios, the labor shortage problem is
very serious. Imagine a programmer on
a small team jumping ship halfway
through development, and picture the
kind of pressure that would put on the
remaining staff. In this month’s
Postmortem, you’ll read exactly how
that scenario played out at Bungie dur-
ing the development of MYTH. Bungie
had to fall back on their company’s net-
work administrator to get some sections
of the game completed.

A missed milestone and slipped ship
dates can also cause serious financial
repercussions, sometimes forcing man-
agement to put employee salary checks
on their credit cards. While larger com-
panies can spread their risk around by
working on multiple projects, they face
shareholder pressures or have to answer
to parent companies if schedule dates
are not met.

I don’t want to sound like Chicken
Little here — the industry won’t collapse
tomorrow because 10% of our program-
ming jobs are vacant (assuming that
number holds true for us). But it’s worth
bearing in mind that the problem exists,
because as long as it does, your projects
will face scheduling uncertainties. ■

G A M E D E V E L O P E R A P R I L 1 9 9 8

4

P L A NG A M E

Talent Shortage Means

Many Uncertainties

EDITOR IN CHIEF

MANAGING EDITOR

EDITORIAL ASSISTANT

ART DIRECTOR

EDITOR-AT-LARGE

CONTRIBUTING EDITORS

ADVISORY BOARD

COVER IMAGE

PUBLISHER

MARKETING MANAGER

AD. PRODUCTION COORDINATOR

DIRECTOR OF PRODUCTION

VICE PRESIDENT/CIRCULATION

GROUP CIRCULATION DIRECTOR

CIRCULATION MANAGER

CIRCULATION ASSISTANT

NEWSSTAND ANALYST

REPRINTS

CEO-MILLER FREEMAN GLOBAL

CHAIRMAN-MILLER FREEMAN INC.

PRESIDENT/COO

SENIOR VICE PRESIDENT/CFO

SENIOR VICE PRESIDENTS

VICE PRESIDENT/PRODUCTION

VICE PRESIDENT/CIRCULATION

VICE PRESIDENT/
SD SHOW GROUP

SENIOR VICE PRESIDENT/
SYSTEMS AND SOFTWARE

DIVISION

Alex Dunne
adunne@compuserve.com

Tor Berg
tdberg@sirius.com

Wesley Hall
whall@mfi.com

Laura Pool
lpool@mfi.com

Chris Hecker
checker@bix.com

Jeff Lander
jeffl@darwin3d.com

Josh White
josh@vectorg.com

Hal Barwood

Noah Falstein

Brian Hook

Susan Lee-Merrow

Mark Miller

Josh White

id Software

Cynthia A. Blair
(415) 905-2210
cblair@mfi.com

Susan McDonald

Dave Perrotti

Andrew A. Mickus

Jerry M. Okabe

Mike Poplardo

Stephanie Blake

Kausha Jackson-Craine

Joyce Gorsuch

Stella Valdez
(916) 983-6971

Tony Tillin

Marshall W. Freeman

Donald A. Pazour

Warren “Andy” Ambrose

H. Ted Bahr,

Darrell Denny,

David Nussbaum,

Galen A. Poss,

Wini D. Ragus,

Regina Starr Ridley

Andrew A. Mickus

Jerry M. Okabe

KoAnn Vikören

Regina Starr Ridley

Miller Freeman
A United News & Media publication

www.gdmag.com

DirectSound3D Top Ten

Iwas disappointed by Rich Warwick’s
article in the January 1998 issue of

Game Developer (“Avoiding a
DirectSound3D Disaster,” p.49).
Suggestion #3, “Avoid using the
DDuupplliiccaatteeSSoouunnddBBuuffffeerr call,” misses the
main reason DDuupplliiccaatteeSSoouunnddBBuuffffeerr exists:
to conserve system resources when
multiple instances of a sound must be
played simultaneously. Rich is right to
warn programmers that the call may
fail unexpectedly, but he’s wrong to
categorize it as a mere “convenience”
function.

Here are ten of
my own sug-
gestions,
drawn from
the sound
engine
for
ROCKET

JOCKEY, which
was the first title to support
DirectSound3D:

1. Approach the problem the same
way you’d approach video rendering:
create a list of potentially audible
objects once per frame, sort it, and play
only as many buffers as system perfor-
mance can support.

2. Sort based on the needs of your
game, but do consider distance, volume,
and intrinsic priority. Sounds that are
associated with visible events (gunshots)
and sounds that are important cues
(footsteps approaching from behind) are
high priority. Sounds that exist simply
to enrich the audio mix are low priority.

3. Don’t play sounds that are redun-
dant (three explosions at once); kill the
one that’s been playing the longest.

4. Stop playing sounds when their
volume drops below a minimum.

5. When a sound is closer than a cer-
tain distance, disable 3D positioning,
since the sound is “right on top of the
listener.”

6. Update the positions of sound
objects and listener only once per
frame. Use the DDSS33DD__DDEEFFEERRRREEDD flag to tell
DirectSound3D not to recompute the
transfer functions until all the posi-
tions have been updated, then call
CCoommmmiittDDeeffeerrrreeddSSeettttiinnggss(()) after culling the
sounds that won’t be audible this
frame.

7. Define threshold values for pan,
volume, and frequency, and don’t
update those parameters until the
cumulative change exceeds the thresh-
old value.

8. If your system can’t support all the
3D buffers you need, you can crudely
emulate 3D positioning using pan and
volume. Pitch changes are expensive,
so don’t bother emulating Doppler
shift. On a
really
slow
sys-
tem,
you
can fall
back to just

manipulating volume.
ROCKET JOCKEY bench-

marked system performance
at installation time, and set a

default Sound Realism value that the
user could override.

9. Set the primary sound buffer for-
mat to match the format of your sound
samples.

10. Avoid overhead from dynamic
memory management (and memory
fragmentation) by allocating a pool of
sound buffers at the start of a level.
Assign those buffers as needed.

D a n T e v e n

I n d e p e n d e n t c o n s u l t a n t

Responses to Hook’s Column

L et me begin by applauding Brian
Hook for taking the time to share

how id’s development process works
from a programmer-management per-
spective. I’m sure that everyone, both
technical and administrative, takes a
great interest in how a company that
created its own market develops prod-
ucts and how a world-class high-tech-
nology development team operates.

However, I do feel that the average
reader should take it all with a fairly big
grain of salt. What Hook describes is a
classic example of “development by
heroism,” which is rampant in the game
programmer culture, and not always to
its benefit. This is referred to as level 1
of the SEI Process Maturity Model, the
lowest possible level and where most
teams stay. It demands that companies
base their business around the particular

core personalities; what results is a high-
ly inflexible structure for improving or
adding talent. At id there is no “Who’s
the man?” question because everyone
there knows their place. But managing
egos while still allowing growth for
team member is a sticky problem not
easily solved by seniority alone. While
I’m not suggesting that the same struc-
ture used to create air-traffic controller
software or Microsoft Word will create

exciting and engaging games, the
experience in this area shouldn’t be
completely discounted.

I do not question the validity of
the id team model and I would

never suggest that they change it. I do
think that far too many business plans
center around hiring or involving “the
next John Carmack” and the belief that
id’s success can be recreated.

C h u c k W a l b o u r n , V i c e P r e s i d e n t

C h a r y b d i s E n t e r p r i s e s I n c .

I just read Brian Hook’s latest column
in the February 1998 issue of Game

Developer and I have to admit that I
find it sad that he does not intend to
continue writing for the magazine.

Especially because I’ve been ponder-
ing his final column quite a bit. I’ve
been in this industry for twelve years
now and I went through all the stages
from programming in hexdumps on
the old 8-bit machines to full object-
oriented C++ implementations.

At first, when I read Hook’s ram-
blings about C++, I was somewhat
offended; I like C++ a lot. However,
after about five minutes of thinking
about his points, a cloud started to
appear, and I thought “Hmm, there is
some truth to that.” The more I
thought about it, the more truth I
found in it, until eventually I thought
“Darn, he’s right. He is so right!”

While I believe that C++ has a valid
position in the programming world,
Hook’s column made me think about
my choices — even though it might not
change them. And frankly speaking,
before I start my next project, I will defi-
nitely sit down and seriously consider
using C instead of C++ for the reasons
he mentioned and many others besides
— the language’s speed and perfor-
mance issues among them. I’m amazed
how blind I’ve been, not even consider-
ing anything besides C++.

G u i d o H e n k e l , S e n i o r P r o d u c e r

I n t e r p l a y P r o d u c t i o n s

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

6

Y O US A Y S

Speak your mind! E-mail us at
gdmag@mfi.com. Or write to Game
Developer, 600 Harrison Street, San

Francisco, CA 94107.

k

Game Control Interface
QUANTUM3D announced at the
Amusement Trades Exhibition
International (ATEI) show that it has
developed a second-generation Game
Control Interface (GCI) for PC-based
coin-op, location-based entertainment,
and visual simulation applications.

This new generation of GCI is
designed to interface with coin-op
industrial input/output devices and per-
sonal computers that run Windows
95/NT and DOS. The GCI bridges the
gap between traditional arcade-style

controls — such as analog joysticks,
steering wheels, buttons, and coin
mechanisms — and Intel architecture
PCs. It allows both arcade and con-
sumer game developers to design video
games for “out-of-home” venues with-
out worrying about the specific electri-
cal, mechanical, and software aspects of
coin-op I/O devices. For developers,
Quantum3D has developed a GCI
Developers Kit (GDK) that provides a
comprehensive development environ-
ment that includes everything required
to create a new PC-based application
with coin-op I/O, or to add coin-op
controls to an existing aplication.

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

10

BIT BBBB LLLL
N E W S F R O M T H E W O R L D

M I C R O S O F T H O S T E D A N O T H E R

M E L T D O W N in February, and the first
evening Microsoft sponsored an event at
the Seattle Gameworks. Ty Graham
(Microsoft’s “Mr. Meltdown”) jokingly
warned the crowd to be on their best
behavior at that event, since Microsoft was
sharing Gameworks with a group from
Ralph Lauren Fragrances. To ensure that
the Meltdowners did the company proud,
Microsoft inserted automobile-style air
fresheners emblazoned with the Meltdown
logo in the attendee registration packets,
and suggested that folks might want to
wear them to really impress the RLF group.
C H R I S T M A S U P S A N D D O W N S .

Electronic Arts had a merry Christmas. The
company released an amazing 22 titles dur-
ing its third fiscal quarter (which includes
the holidays), helping to grow sales by 35%
and profits by 50% over the same period
last year. On the other hand, MicroProse
announced that its third fiscal quarter end-
ing December 31st wasn’t as rosy. The com-
pany reported a loss of $10.9 million, on
sales of $14.9 million. MicroProse
acknowledged that its holiday titles
missed their ship dates and didn’t generate
needed sales. The company expects to see
red ink again this quarter, but also plans to
release nine sequels to strong product
lines, including FALCON and CIVILIZATION.
I M M E R S I O N A N D M I C R O S O F T have
come to terms, and the result is that there
will be better compatibility between
Microsoft’s Force Feedback Pro joystick
and Immersion-technology-based sticks
from companies such as CH Products and
Logitech. Beginning with DirectX 6 and 7,
the proprietary interfaces that Immersion
and Microsoft currently have will be
dropped in favor of one unified set of-
protocols.
H U Z Z A H ! Simutronics and Renaissance
Entertainment Corp. will collaborate in a

I N D U S T R Y
W A T C H
I N D U S T R Y
W A T C H

b y A l e x D u n n e

Project Dune
NICHIMEN GRAPHICS is planning the next major release of its 3D animation
environment, N-World — currently known as Project Dune.

Dune strives to be holistic in nature and to adapt itself to each individual’s work-
ing style (and with a minimum of palette popping and button clicking, due to a
new object-oriented UI). Ease of use and simplicity are key elements of the pro-
gram. It will allow you to view, edit, and work concurrently on different aspects of
the scene data (UVs, geometry, and states, among others). Additionally, unlike
other products that combine objects in linear time, Dune is a full animation sys-
tem with nonlinear editing capabilities. As an artist, you will be able to embed
motion into objects, but not explicity with respect to time or space. This grants
you the ability to create re-usable content and direct it quickly. By separating all
methods for creating content from one another (including animation and time
operations) Dune allows you to edit any aspect of a scene without producing a rip-
ple effect.

Project Dune will
become simultaneously
available for both
Windows NT and SGI
IRIX platforms. PC
plug-ins also will run
with the SGI installa-
tions. Due to the cross-
platform user interface,
artists and programmers
will find no difference
between the two ver-
sions of the product.
■ Nichimen Graphics

Los Angeles, Calif.

(310) 577-0500

www.nichimen.com

Designed to support development
under MS-DOS and Windows 95/NT,
the GDK includes a GCI with internal
PC mounting cable assemblies and
brackets, the GCI to JAMMA adapter,
Direct Input and GCI driver software
binaries, test programs, wiring harness
design guide, and a Quantum3D
Gameframe. The suggested retail price
for the standalone GCI is $250. The
pricing for the GCI Developers Kit is
$2,795.
■ Quantum3D Inc.

Santa Clara, Calif.

(408) 919-9999

www.quantum3d.com

Lucidity RT
DIGITAL MEDIA INTERACTIVE
recently released Lucidity RT for inter-
active video authoring.

Designed as an advanced plug-in for
Kinetix’s 3D Studio MAX, Lucidity
allows you to create fully interactive
visualizations and multimedia titles
with broadcast-quality graphics and
photo-realistic detail. First, you use
MAX to develop a navigable space or
objects to be visualized. You can then
use Lucidity RT to create a “visualiza-
tion model” made up of “motion ker-
nels” or video segments. Lucidity
directs the rendering of all required

views, and then encodes the rendered
views in MPEG to create the motion
kernels, placing these in an interactive
video database for access during play-
back. Individual motion kernels are
readily identified for editing, re-encod-
ing, or post processing. Once you’ve
created these interactive environments,
you can port them to, and play them
on, your stardard notebook, laptop,
and desktop PCs.

Lucidity RT runs on Windows NT
and has a suggested retail price of
$1,295.
■ Digital Media Interactive Inc.

San Mateo, Calif.

(650) 655-4824

www.dmix.com

TrueMotion 2.0
THE DUCK CORPORATION
announced the release of its
TrueMotion 2.0 Compression Tools at
Microsoft’s Winter Meltdown 98 in
February.

DirectX Media 5.1 offers APIs and
run-time services for game develope-
ment, multimedia applications, devel-
opment tools, and Web content. The
TrueMotion 2.0 playback filter, includ-
ed in DirectX 5.1, provides game and
multimedia developers with a way to
incorporate full-motion video and

interactivity into their products.
TrueMotion is a set of video

compression and decompres-
sion components available for
DirectX for Windows 95/NT. In
addition, the Truemotion 2.0
playback filter is scheduled to
ship as part of Windows 98.
Duck’s TrueMotion and
TruePlay technologies are also
avialable for Macintosh, and
Sega Saturn, among other plat-
forms.
■ The Duck Corporation

New York, N.Y.

(212) 692-2000

www.duck.com

h t t p : / / w w w . g d m a g . c o m A P R I L 1 9 9 8 G A M E D E V E L O P E R

11

AAAA SSSS TTTT SSSS
O F G A M E D E V E L O P M E N T

new advertising campaign. REC is the orga-
nizer of various Renaissance faires
throughout the U.S., events which encour-
age attendees to engage in live role play-
ing. In their agreement, Simutronics’ role-
playing games will be featured on REC’s
web site and in all of their advertising for
the upcoming faire season.
I T ’ S T O U G H T I M E S O V E R A T S 3 .

The company announced that it’s laying off
approximately 15% of its employees (100
people) to slash operating expenses. The
company has said that it isn’t anticipating a
profitable first half of 1998.
3 D L A B S F I L E D A L A W S U I T charging
Texas Instruments with breach of contract
and misappropriation of trade secrets
belonging to 3Dlabs. 3Dlabs claims that, in
breach of the parties’ written license agree-
ments and in violation of the trade secret
provisions, TI posted confidential and pro-
prietary information belonging to 3Dlabs on
the Web, and distributed thousands of print-
ed copies of confidential and proprietary
information belonging to 3Dlabs.
S T A T S O ’ T H E M O N T H D E P T . :

• Research firm Frost & Sullivan reported that
industry revenues for online gaming grew to
approximately $93.3 million in 1997,and pro-
jected that revenues for 1998 will be $169.6
million – an increase of over 80%.
• Worldwide sales of hardware and soft-
ware for the home interactive entertainment
industry surpassed $23 billion in 1997, with
the United States representing nearly 40%
of the total market, according to the
research firm Access Media International.
• Mercury Research predicts that the num-
ber of 3D-enabled accelerators shipped in
1998 will more than double to 75.3 million.
I O N S T O R M is licensing yet another high-
ly-touted game engine – the UNREAL engine
from Epic MegaGames. This engine will be
used in Warren Spector’s upcoming 3D
espionage game, code-named Shooter,
which will be published late this year by
Eidos. ION Storm is in negotiations with
Epic to use the engine for future games. It
has already licensed the QUAKE 2 engine for
its upcoming DAIKATANA and ANACHRONOX

titles, and it’s using AnimaTek’s voxel tech-
nology in DOPPELGANGER.

Lucidity RT allows you to create photo-real

interactive environments.

b y J e f f L a n d e r G R A P H I C C O N T E N T

As you’ll recall, I finished up with an
OpenGL application that converts Euler
angle data to quaternions and then dis-
plays the results. Now I want to extend
this application to allow for the inter-
polation of two keyframed positions. It
struck me that I should create a custom
3D first-person interface that effectively
demonstrates interpolation.

The Task

A s the project technical lead, I am
asked to create an interface for a

first-person fighting game. However,
the design calls for allowing the player
to create custom attacks in some sort of
pregame editor. The player does this by
manipulating an arm consisting of an
upper arm, a lower arm, and a hand
with a weapon. The player positions
this arm into two poses. One pose is
the beginning of the attack move and
the other pose is the end of the attack
move. During the game, this custom
action is triggered and creates a smooth
attack. The player’s effective use of this
interface determines the effectiveness
of the move. Several of these moves are
then combined to create a unique
fighting experience.

Alright, so it’s not revolutionary, but
it’s a well-defined task with a pretty
clear path of attack. As technical lead, I
like that. So how do I get started?

Clearly, the problem revolves around
the interpolation of the arm positions.

Interpolation

A s I discussed last month, one of
the key benefits of using a quater-

nion representation is the ability to
interpolate between keyframes. Nick
Bobick, in his article in the February
1998 issue of Game Developer, discussed
interpolation of quaternions (“Rotating
Objects Using Quaternions,” pp.38-39).
Bobick described the use of Spherical
Linear Interpolation (SLERP) to achieve
smooth interpolation. For very small
interpolation, he mentioned that it’s a
good idea to use simple Linear
Interpolation (LERP). Being the hard-
core game programmers that you are,
you may ask, “Why not use LERPs all
the time and avoid the expensive math
that SLERPs require?” The reason is that
unit length quaternions describe a 4D

hypersphere. If I were simply to inter-
polate between the two keyframes in a
straight line, I would be cutting across
the arc of that sphere (Figure 1a). As
you can see, in-betweens that are even-
ly spaced on the hypersphere create
nonlinear positions on the LERP-line.
Alternately, the effect of evenly spacing
out in-betweens along the LERP-line
would create an animation that would
appear to move faster as it traveled
across the middle of the interpolation
(Figure 1b). This may not always be a
bad thing, so it’s quite easy to adjust
between LERP and SLERP.

The code in Listing 1 gives me the
basis for creating my 3D interface. By
applying these routines to a three-
bone hierarchy, I get a smooth attack
from any two keyframed positions. To
implement this in OpenGL, I only
needed to modify my display routine a
little bit. The critical section is in
Listing 2, and you can see the results
in Figures 2a-c.

h t t p : / / w w w . g d m a g . c o m A P R I L 1 9 9 8 G A M E D E V E L O P E R

13

Slashing Through Real-Time

Character Animation

L ast time we left off, you were hanging out on a bridge in quaternion

space. Quaternion space is like the space between the handout desk and

the deal room at any booth of any publisher at E3. It’s a concept you can

grasp, but it’s really tough to visualize being there.

When not bending the bones of some
strange alien creature, Jeff can be found
hanging out at his studio at the beach.
See if you can smack some sense into
him by writing to jeffl@darwin3d.com.

F I G U R E 1 a . Spherical Linear

Interpolation (SLERP) between

quaternions.

F I G U R E 1 b . Linear Interpolation

(LERP) between quaternions.

Let’s Recap

L et me take a moment to recap what
I’ve covered in my past two

columns. I started by taking motion
capture data and applying it to a skeletal
system. I then created a method for con-
verting Euler angles to quaternions.
Then, by using quaternion interpola-
tion, I created smooth in-betweens for
the skeletal system. Lastly, to make
things look a bit more interesting, I
attached 3D objects to individual bones.

One remaining problem is that the
arm is created from three separate
objects — and it shows. The points at
which the different objects are con-
nected look a little rough. This prob-
lem has been plaguing real-time 3D
graphics for some time now. In fact,
many successful games live with this
and get quite good results (VIRTUA

FIGHTER, TOMB RAIDER, and JEDI KNIGHT

come to mind). However, to combat
this problem, many artists design their
characters to disguise the fact that the
bones are composed of separate
objects. This is done through clever
texturing or modeling, and explains
why so many real-time 3D characters

wear armor or tank top shirts.
If the character was created from

one single mesh, we wouldn’t have
any of the problems that separate

objects create. In a 3D graphics pack-
age such as Softimage, Alias, or 3D
Studio MAX, I could create a mesh and
animate it with the software’s skeletal

G R A P H I C C O N T E N T

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

14

//

//// FFuunnccttiioonn:: SSlleerrppQQuuaatt

//// PPuurrppoossee:: SSpphheerriiccaall LLiinneeaarr IInntteerrppoollaattiioonn BBeettwweeeenn ttwwoo QQuuaatteerrnniioonnss

//// AArrgguummeennttss:: TTwwoo QQuuaatteerrnniioonnss,, bblleenndd ffaaccttoorr,, rreessuulltt qquuaatteerrnniioonn

//// SSoouurrccee:: WWaatttt aanndd WWaatttt,, AAddvvaanncceedd AAnniimmaattiioonn,, pp.. 336644

//// NNOOTTEE:: TThhiiss ffiixxeess aa bbuugg iinn tthheeiirr ccooddee

//

vvooiidd SSlleerrppQQuuaatt((ttQQuuaatteerrnniioonn **qquuaatt11,,ttQQuuaatteerrnniioonn **qquuaatt22,,ffllooaatt sslleerrpp,, ttQQuuaatteerrnniioonn **rreessuulltt))

{{

////// LLooccaall VVaarriiaabblleess //

ttQQuuaatteerrnniioonn qquuaatt11bb;;

ddoouubbllee oommeeggaa,,ccoossoomm,,ssiinnoomm,,ssccaallee00,,ssccaallee11;;

//

//// UUSSEE TTHHEE DDOOTT PPRROODDUUCCTT TTOO GGEETT TTHHEE CCOOSSIINNEE OOFF TTHHEE AANNGGLLEE BBEETTWWEEEENN TTHHEE QQUUAATTEERRNNIIOONNSS

ccoossoomm == qquuaatt11-->>xx ** qquuaatt22-->>xx ++

qquuaatt11-->>yy ** qquuaatt22-->>yy ++

qquuaatt11-->>zz ** qquuaatt22-->>zz ++

qquuaatt11-->>ww ** qquuaatt22-->>ww;;

//// MMAAKKEE SSUURREE WWEE AARREE TTRRAAVVEELLIINNGG AALLOONNGG TTHHEE SSHHOORRTTEERR PPAATTHH

iiff ((((11..00 ++ ccoossoomm)) >> DDEELLTTAA))

{{

//// IIFF TTHHEE AANNGGLLEE IISS NNOOTT TTOOOO SSMMAALLLL,, UUSSEE AA SSLLEERRPP

iiff ((((11..00 -- ccoossoomm)) >> DDEELLTTAA)) {{

oommeeggaa == aaccooss((ccoossoomm));;

ssiinnoomm == ssiinn((oommeeggaa));;

ssccaallee00 == ssiinn((((11..00 -- sslleerrpp)) ** oommeeggaa)) // ssiinnoomm;;

ssccaallee11 == ssiinn((sslleerrpp ** oommeeggaa)) // ssiinnoomm;;

}} eellssee {{

//// FFOORR SSMMAALLLL AANNGGLLEESS,, UUSSEE AA LLEERRPP

ssccaallee00 == 11..00 -- sslleerrpp;;

ssccaallee11 == sslleerrpp;;

}}

rreessuulltt-->>xx == ssccaallee00 ** qquuaatt11-->>xx ++ ssccaallee11 ** qquuaatt22-->>xx;;

rreessuulltt-->>yy == ssccaallee00 ** qquuaatt11-->>yy ++ ssccaallee11 ** qquuaatt22-->>yy;;

rreessuulltt-->>zz == ssccaallee00 ** qquuaatt11-->>zz ++ ssccaallee11 ** qquuaatt22-->>zz;;

rreessuulltt-->>ww == ssccaallee00 ** qquuaatt11-->>ww ++ ssccaallee11 ** qquuaatt22-->>ww;;

}} eellssee {{

//// SSIINNCCEE WWEE FFOOUUNNDD TTHHEE LLOONNGG WWAAYY AARROOUUNNDD,, UUSSEE TTHHEE SSHHOORRTTEERR RROOUUTTEE

rreessuulltt-->>xx == --qquuaatt22-->>yy;;

rreessuulltt-->>yy == qquuaatt22-->>xx;;

rreessuulltt-->>zz == --qquuaatt22-->>ww;;

rreessuulltt-->>ww == qquuaatt22-->>zz;;

ssccaallee00 == ssiinn((((11..00 -- sslleerrpp)) ** ((ffllooaatt))HHAALLFF__PPII));;

ssccaallee11 == ssiinn((sslleerrpp ** ((ffllooaatt))HHAALLFF__PPII));;

//// MMUULLTT BBYY TTHHEE SSCCAALLEE

rreessuulltt-->>xx == ssccaallee00 ** qquuaatt11-->>xx ++ ssccaallee11 ** rreessuulltt-->>xx;;

rreessuulltt-->>yy == ssccaallee00 ** qquuaatt11-->>yy ++ ssccaallee11 ** rreessuulltt-->>yy;;

rreessuulltt-->>zz == ssccaallee00 ** qquuaatt11-->>zz ++ ssccaallee11 ** rreessuulltt-->>zz;;

rreessuulltt-->>ww == ssccaallee00 ** qquuaatt11-->>ww ++ ssccaallee11 ** rreessuulltt-->>ww;;

}}

}}

//// SSlleerrppQQuuaatt //

L I S T I N G 1 . Interpolation of Two Quaternions.

F I G U R E S 2 a - c . Keyframe #1, 50 per-

cent interpolation, and keyframe #2.

deformation system. This would create
very seamless characters that could be
animated very quickly by a game
engine. In fact, this method has been
used by QUAKE (and its genetic off-
spring) quite successfully.

However, by predeforming the charac-
ters to animate them, I lose the key ben-
efit of real-time 3D — flexibility. By
sticking to a hierarchy of bones, I’m able
to apply unique motion capture data,
interpolate between keyframes, and
incorporate many things that I haven’t
talked about, such as real-time inverse
kinematics, dynamics, and motion
blending. So how do I achieve the key
benefits of a skeleton without having the
ugly seams that come with it?

Skin Them Bones

T he answer is to stretch a single skin
over the bones in the skeleton.

While this is a fairly advanced feature in
most 3D modeling packages, the tech-
nique behind it is really quite easy. As a
good starting point, let’s consider associ-
ating each vertex in the skin mesh with
an individual bone. The influence of
that bone directly effects its associated
vertex . Thus, when you rotate a bone, it
rotates the associated vertices about the
root position of that bone. You can see
the effect of this process in Figure 3. In
this image, two bones define the hierar-
chy, and each bone has eight vertices
associated with it. While this technique
creates a seamless, deformable mesh
with very little processor overhead, it
has one drawback. At the point where
the two bones meet, the skin is stretched
a bit. While this may be fine for many
applications, with extreme motion, this
stretch is very unrealistic.

The solution to this problem is to
add a few more vertices to the model
and “weight” the individual vertices.

This means that for each vertex in the
model, you assign a certain percentage
of its influence to each bone. While
many vertices may be assigned 100 per-
cent to an individual bone, some may
be assigned 50/50 between two bones.
By blending the influence of different
bones, you can achieve a very smooth
skin. In some extreme cases, you may
even need to weight a vertex between
three or more bones, but in general,
two is sufficient.

Figure 4 shows how a fully weighted
mesh could be applied to the same two-
bone system. Because of the
calculations needed to han-
dle the weighting, this sys-
tem is a bit more processor
intensive then basic skin-
ning. However, for a main
character or opponent, the
smooth results and flexibility
are worth the increased
processor load.

The remaining question is,
How do I implement a fully
weighted mesh applied to a
hierarchical skeleton in an
immediate mode API such as
OpenGL? Well, that’s going
to be the topic for next time.
However, some of you may be
itching to get started. Since I
have now covered all of the
main pieces, for your home-
work, see if you can figure
out an efficient way to calcu-
late those vertex positions,
and I will work it out next
month. Try to wrap your
brain around the underlying
concept, and then we’ll work
out the details together next
month.

The sample application for
this month (on the Game
Developer website at
www.gdmag.com) allows you

to keyframe two positions for a three-
bone arm and interpolate smoothly
between them. ■

G R A P H I C C O N T E N T

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

16

F I G U R E 3 . Two bones weighted 100 percent to

each vertex.

F I G U R E 4 . Two bones weighted to each vertex

100-66/33-50/50-33/66-100.

// CONVERT THE TWO KEYFRAME ROTATIONS TO QUATERNIONS

EulerToQuaternion(&curBone->p_rot,&primaryQuat);

EulerToQuaternion(&curBone->s_rot,&secondaryQuat);

// INTERPOLATE BETWEEN THEM BY A BLEND FACTOR 0.0 - 1.0

SlerpQuat(&primaryQuat,&secondaryQuat,m_AnimBlend,&curBone->quat);

// QUATERNION HAS TO BE CONVERTED TO AN AXIS/ANGLE REPRESENTATION

QuatToAxisAngle(&curBone->quat,&axisAngle);

// DO THE ROTATION

glRotatef(axisAngle.w, axisAngle.x, axisAngle.y, axisAngle.z);

L I S T I N G 2 . Applying quaternion rotation in OpenGL.

For my quaternion SLERP code, I have

used Advanced Animation and

Rendering Techniques,(ACM Press,

1992) by Watt and Watt as a starting

point. This is a very good book that cov-

ers many topics not touched by any

other text. However, as I’ve tried differ-

ent concepts in the book, I have found a

few errors. The code sample on interpo-

lating quaternions is a case in point.

When negating an input quaternion to

find the shortest arc, they negate the

wrong one. The source that accompa-

nies this article corrects that error.

Problems such as these are a good rea-

son to study the underlying concepts

and follow sources for any new tech-

nique. This can save you a great deal of

frustration when things do not work out

as they should.

RR EE FF EE RR EE NN CC EE SS

b y J o s h W h i t e A R T I S T ’ S V I E W

For example, let’s say you want a por-
trait of your pet lizard. Your idea is to
put the lizard on a nice branch with a
desert scene as a backdrop (that’s the
design). You hire a professional photog-
rapher to actually take the photograph.
You spend 15 minutes explaining how
you want the shot to look and drawing
a simple layout sketch (that’s art direc-
tion). The photographer sets up the
shot, takes some prints, and shows them
to you (that’s art execution). You pro-
vide criticism and ask the photographer
to retake the shot (that’s art direction).

Now that we have an idea of the
scope of art direction, let’s look at how
it works in the game industry (obvious-
ly, this is a fictional story).

Kotz and Amy’s Little Issue

K otz is a wound-up monkey of an
art director with a couple of solid

hits under his belt. His enthusiasm is
legendary — with spittle flying and
arms flapping, he spews out quirky artis-
tic ideas nonstop and then leaps onto
his drafting stool and slashes out his
trademark designs, hooting “Ooo-ooo! ”
when he really gets in the groove.

Kotz was hired to design artwork for a
game project called “DreamFly,” a car-
toonish, dreamy flight simulator that
feels like a kid’s book. There are little
fairy creatures fluttering around a big,
puffy airplane. The plane zooms over
surreal blobs of landscape — you know,
concept stuff. Kotz loves this idea, and
has already scrawled out a huge pile of
sketches for the game artwork.

Now the project is ready to start, and
Kotz’s job is to find artists to build his

design. He hires Amy, a skeptical veter-
an game artist, to create 2D sprites of
the fairies dancing around the airplane.
Kotz’s initial direction to Amy consists
of handing her a crude and childishly
executed sketch of a fairy.

“So hey! Check it out! I bet you’re
just itching to build this little bugger!”
Kotz chirps as Amy stares at the sketch
in disbelief.

Let’s freeze that frame and take a
look at the problems so far. The sketch
is completely inadequate for character
definition — there’s not enough infor-
mation. But there’s another important
problem developing here.

Problem 1: Staying Friends

A my and Kotz are forging a rela-
tionship. This is an important

interaction, and it’s not going well.
Neither of them is taking care to create
a solid foundation for their working
relationship, even though that’s what
they both want.

As Amy’s boss, Kotz wants to com-
municate enthusiasm and good vibes,
but he has set himself up for disaster by
approaching the problem too lightly.
Since this is the first project he and
Amy will be collaborating on, he
should have assessed the situation
more carefully. He should get Amy’s
input on the art-direction process and
make her feel comfortable giving feed-

back. Right now, Amy can’t criticize
anything without implying that Kotz
screwed up — but she needs to say
something. That’s a lose-lose situation.

What are Amy’s options, given this
situation? One option would be a
response such as, “Umm... Kotz, I can’t
draw this.” Her low, measured tones
totally puncture his mood. “This
sketch is, uh, really rough.” Kotz’s
heart sinks. “What’s wrong? It’s a cool
little fairy, right?” Amy’s exasperation
wells up as she dramatically sighs, “Oh,
good grief... Kotz, this drawing is so far
from a complete design! I can’t work
miracles.”

Amy’s reaction is justifiable since
Kotz has obviously made some mis-
takes, but that kind of self-centered
attitude won’t get her far in her career.
Even if she hates Kotz and is planning
to quit, she’ll do better if she doesn’t
burn bridges. How can she be honest
without burning bridges? Amy can pre-
vent conflict by buffering her negative
reaction.

David Packard (of Hewlett-Packard
fame) wrote a book called The HP Way
(HarperBusiness, 1995), which
describes Bill Hewlett’s three-step
process for critiquing ideas without
dampening enthusiasm:

Upon first being approached by a
creative inventor with unbridled
enthusiasm for a new idea, Bill
immediately put on a hat called

h t t p : / / w w w . g d m a g . c o m A P R I L 1 9 9 8 G A M E D E V E L O P E R

19

Art Direction:

A Touching Story

A rt direction is the communication between an original designer and the

executor of the design. It’s not the design process, and it’s not the final

design’s execution. This month, we’ll peek at the perils and delights of

game art direction.

Josh White runs Vector Graphics, a real-time 3D art production company. He wrote
Designing 3D Graphics (Wiley Computer Publishing, 1996), he has spoken at the
CGDC and cofounded the CGA, an open association of computer game artists. You
can reach him at josh@vectorg.com.

“enthusiasm.” He would listen,
express excitement where appro-
priate and appreciation in gener-
al, while asking a few rather gen-
tle and not too pointed
questions. A few days later, he
would get back to the inventor
wearing a hat called “inquisi-
tion.” This was the time for very
pointed questions, a thorough
probing of the idea, lots of give-
and-take. Without a final deci-
sion the session was adjourned.
Shortly there after, Bill would put
on his “decision” hat and meet
once again with the inventor.
With appropriate logic and sensi-
tivity, judgment was rendered
and a decision made about the
idea. This process provided the
inventor with a sense of satisfac-
tion, even when the decision
went against the project — a
vitally important outcome for
engendering continued enthusi-
asm and creativity.

Bill Hewlett was passing judgment,
but Amy could use the spirit of this
technique. Her first step is to recog-
nize that Kotz’s enthusiasm is very
valuable to the project, even if it bugs
her. As a veteran, she has on occasion
worked with uninspired art directors
who glumly create standard-looking
artwork, which never makes for an
exciting game. Good games have pas-
sion in them, and if she wants to
make good games, she’s got to under-
stand and empathize with the passion,
at least a little.

So her first reaction should be to the
spirit of the sketch, not the problems
with it. “I’m into drawing fairies! Back
in art school, I drew these kind of
wood-gnome-elf characters, kind of like
this sketch, but more realistic-looking.”

Kotz is curious. “Really?” he asks.
“I’d love to see them! Were they photo-
realistic, or more like Norman Rockwell
fake-real?”

“Well, sort of like... hard to say. I
have some photos of the canvas I’ll
bring in tomorrow if you want. So any-
way, what kind of outfit were you
thinking?” and Amy steers the conver-
sation around to gathering more
design input.

Once she’s gathered an overall sense
for Kotz’s vision of the character, Amy
can start exploring the technical issues

of creating game art that works in the
engine. For example, she might think
aloud, “Hmm, so if we’ve got four
frames of animation, we could do a lit-
tle wing-flap bobbing cycle. But maybe
we couldn’t get an eye-blink in there
because it would happen too often.”

From these musings Kotz would learn
what Amy’s limitations are, giving him
a chance to calibrate Amy’s judgment
to match his. “Hey Amy, wanna just
skip the eye-blinks? It’s not a big deal,
right?” After a few rounds of this, Amy
and Kotz will each become familiar
with the other’s style and where they
disagree. If Kotz knows Amy’s style,
he’ll trust her judgment and avoid
micromanaging her in the areas where
they agree — and he can keep control
of the areas where they differ.

Problem 2: Art Direction

T he second problem is the obvious
one: the sketch doesn’t say enough

to build art. Kotz needs to provide a lot
more information before Amy can
build any production artwork. Of
course, Kotz doesn’t want to spend a
week describing art that could be built
in a day, so there’s going to be a trade-
off between thorough communication
and time. Here are some common ways
in which art directors communicate
their ideas:
ARTISTIC REFERENCES. Torn-out magazine
photos, scenes in movies, well-known
artwork (for example, the Statue of
Liberty) — a good reference gets an
idea across quickly, but rarely matches
the desired style exactly. Most art
directors use them in combination or
with limitations: “like this photo, but
no neon signs and dirtier.” The artistic
reference can be a completely different
subject from the planned artwork —
for example, a mermaid drawing that
has the right type of color saturation
and detail for a fairy.
HAND-DRAWN SKETCHES. Character sketch-
es, top-down scene layouts, storyboard
cel-frames — they’re all powerful meth-
ods of description. Often it’s quicker to
label special features than draw to draw
them — for example, write “dirty
leather belt” with an arrow pointing at
the waist. Making quick, useful sketch-
es is an art discipline in itself, so we’ll
leave that for a different article.
WORD DESCRIPTIONS. Stories and essays

are also common ways to describe art-
work — they are easy to compose, but
leave a lot open to interpretation.
Often, text descriptions are best for
giving an overall sense for the charac-
ter or scene, and will work best when
combined with a few detail sketches.
Word descriptions are good for techni-
cal issues, such as an exact list of a
character’s poses or the number of
frames for looping animations.
REFERENCES TO ARTIST’S EARLIER WORK. This
is a really powerful way to define style
since the artist knows exactly how the
artwork was created. This is one of the
most powerful benefits of working with
the same artists on multiple projects.
Without that shared experience, it’s
often time consuming to convey some-
thing subjective such as style. If the
director can get the artist’s earlier work
and can take the time to review the new
art in terms of the old, the definitions
are often very convincing.
ACTING. For describing animation, a
quick and powerful method of commu-
nication is to actually act out the
motion in person — a goofy strut, a wild
swing, a sulky slouch-stance — all these
motions can be acted out in seconds,
whereas good sketches could take days.

Necessary Information

A good art director can creatively
communicate a number of techni-

cal requirements as well. For 2D sprite
art, here are some specific examples of
what the art director should share:
EXPECTATIONS OF QUALITY AND STYLE. Artistic
references tell the artist how much
detail to create, as well as what kind of
artistic style is sought.
TECHNICAL SPECIFICS. There’s a host of
inevitable limitations: dimensions of
sprites in pixels, how your program rec-
ognizes transparent pixels, possibility of
antialiased edges, number of colors
(and if you are using a fixed palette, a
copy of the palette), file format to deliv-
er in, naming conventions, and so on.
CAMERA AND LIGHTING. What angle should
these be drawn from: Overhead? Iso-
metric? Side view? What background
will they be viewed against? Is there
perspective? Should there be bright,
shiny highlights?
CHARACTER DEFINITIONS. We’ll need a
description of the unique attributes of
each character. That first sketch is a

A R T I S T ’ S V I E W

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

20

great start for character definition, but
ultimately, we’ll need more informa-
tion: Man or Woman? Age? Culture (as
indicated by clothes)?
ANIMATION. A list of required animations
is a must. Art directors should also
communicate the motion style that
they expect. The technical issues usual-
ly rear their ugly heads here, too: num-
ber of frames available, type of transi-
tions, and so on.

Ways to Direct Artwork

T he methodology of art direction is
pretty complicated in and of itself.

Whole books have been written on the
subject (see References). Still, there are
some specific techniques that can help
Kotz and Amy forge a more productive
working relationship.
FRAMING. Framing is the concept of
putting limits on the desired style,
rather than naming the style itself. It’s
like drawing the space around an
image, or “proof by negation” in math.
For example, Kotz might tell Amy,
“This fairy is fatter than Tinkerbell, but

not as adult-looking. It’s not a baby or
a standard Christian angel, either.”
When used in addition to descriptions
of the character itself, framing is a great
way to rule out huge regions of style.
CONFIRM DECISIONS. After Kotz has tried to
describe the concept, he wants to know
if Amy really gets it or is just nodding
along. Amy can demonstrate her under-
standing (and reveal areas she doesn’t
get) by offering some new design ideas
that she thinks fit with Kotz’s concept.
For example, she might suggest that
there be a fat little fairy and a tall thin
fairy, and the two argue and tease each
other. Kotz then can see that she’s
thinking of the fairies as having very
clear, strong, goofy personalities, rather
than being ethereal, ghost-like crea-
tures.

There are some dangers with this
approach. First, Amy has to expect that
her suggestions will be shot down — if
she has easily injured pride, she may
not be willing to offer suggestions.
Also, if Kotz thinks Amy is trying to
take design control and doesn’t under-
stand that Amy’s trying to prove her
understanding, he’s not going to be

O.K. with her input. Obviously, Amy
should preface the talk with a diplo-
matic comment, such as, “Let me see if
I’ve got the idea. I’m not actually sug-
gesting we build anything new, but...”
It’s also possible that Kotz will like
Amy’s ideas and give her more creative
control than he was planning.

Our story ends happily. After Kotz
and Amy have an hour-long discussion
about fairies, Kotz leaves with the idea
that Amy is into the concept but needs
more details before she can actually
build anything. Amy thinks that Kotz
is kooky, but is open to the reality of
making games and understands what
she needs. Their future is all roses, and
the world will soon be blessed with the
fruits of their relationship: a game with
great artwork. ■ 21

h t t p : / / w w w . g d m a g . c o m A P R I L 1 9 9 8 G A M E D E V E L O P E R

Art Direction for Film and Video by

Robert Olson (Focal Press, 1993).

Sets in Motion : Art Direction and Film

Narrative by Charles Affron, and

Mirella Jona Affron (Rutgers

University Press, 1995).

RR EE FF EE RR EE NN CC EE SS

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

24

E N G I N EA N I M A T I O N

ARCHITECTING A
3D

ANIMATION ENGINE
t always helps to know what you’re getting into. About three years ago, I

was asked to volunteer my time at a junior high school (7th and 8th

graders) to speak with groups of kids. They were having Career Day, and

most of the people coming in to speak about their careers were parents

of the children in school. I had attended this particular junior high

school years ago, and a friend of mine who now works there contacted

me a few days before Career Day to see if I’d come talk about working in

the video game industry.

When I arrived at the school, I checked in at the principal’s office, and

amidst some confusion, they were able to tell me where I’d be present-

ing. I thought it was strange that they had chosen the girl’s gym as my

B Y S C O T T C O R L E Y

II
When Scott Corley was in junior high, he wanted to be a firefighter. Unfortunately, all he managed to become was vice president
of software development at High Voltage Software. Express your disappointment at scottcy@ripco.com.

h t t p : / / w w w . g d m a g . c o m A P R I L 1 9 9 8 G A M E D E V E L O P E R

25

The interface to a
3D animation
system can
be very
simple or
very
complex.
If you’ve
written
one, you
know what
I mean.

…If you haven’t
written one, you

probably will
someday

soon.

The interface to a
3D animation
system can
be very
simple or
very
complex.
If you’ve
written
one, you
know what
I mean.

…If you haven’t
written one, you

probably will
someday

soon.

Here
is a set of C/C++

interface guidelines
for an animation

engine.

Here
is a set of C/C++

interface guidelines
for an animation

engine.

presentation room, but it didn’t con-
cern me too much. I hadn’t been in a
junior high school in
quite some time,
and from the
moment I
walked in
the front
doors, I
realized
I was in
a differ-
ent,
mostly
shorter,
world.

I made my way
to the girls’ gym. The
gym teacher was there to greet me,
and she explained how the day’s
schedule worked. Then she dropped
the bomb. Nobody had told me this
yet, but the reason I was asked to
come in was because another presen-
ter had canceled. This didn’t strike me
as horrific until I learned two more
facts. The other presenter had can-
celed after the kids had chosen the
careers they were interested in. The
other presenter was scheduled to talk
about sewing.

That day, I learned that 13-year-old
girls who are interested in sewing and
junior-high kids who are interested in
video games are mutually exclusive
groups. The talk was a disaster. I
bombed. The discussion quickly degen-
erated to questions like, “Are you a
surfer?” The only thing that saved me
was the girls’ gym teacher, who kept
the group of giggling girls from explod-
ing into full-on 13-year-old giggling
girl anarchy. By the end of the day, the
results were in. Everybody loved the
firefighter (he brought in lots of cool
equipment), and everybody liked the
clown (everybody except, perhaps, the
clown’s kid). Nobody mentioned video
games. So much for my first attempt at
being a positive role model.

The moral of this story is: Know
what you’re getting into beforehand.
Applied to 3D animation engines, this
lesson dictates that you determine
exactly what you want your engine to
do before you begin developing it. If
you don’t have a good grasp of the
requirements, your initial engine will
have only the most basic features and
won’t be sufficient to support your
game. You could find yourself adding

various capabilities to the engine dur-
ing the course of developing your

game. Why not get it right from
the start? This article

describes a fairly full-fea-
tured interface for just

such an engine.

Gathering
Requirements for
Your Engine

T here are a num-
ber of informa-

tional resources and
sources of inspiration to

investigate before you begin devel-
oping your 3D animation engine:
• If you’ve already written your own 2D

or 3D animation API, consider what
features you’ll be able to add to it.

• Get documentation on commercial
high-level 3D APIs that support ani-
mation. They’ll inspire you to think
in new directions and develop new
features.

• Look at some other 3D game titles in
development. What features do they
use that you would like to implement
in your next title?

• Discuss your ideas with someone who
is knee deep in a large
project. Their
experience
and per-
spective
will
undoubt-
edly expose
ideas that
are very use-
ful and not
obvious at the
start of a project.
The 3D system that

you start with will like-
ly fall somewhere close
to OpenGL on the spec-
trum of high- to low-
level APIs. The high-
level end of this
spectrum includes all
retained-mode sys-
tems, while the lowest
level of this spectrum is
you, the hardware, and
an assembler. Whichever
end of the spectrum you’re
on, however, you’ll want to write your
own animation control system.

At the high level of the API spec-
trum, there’s usually support for ani-
mation, but it’s unlikely that it will
do you any good for the following
reasons: performance, licensing fees,
and feature set. Retained-mode APIs
have a pretty consistent reputation
for being slow and bulky. Some
retained-mode APIs require licensing
fees that you may not want to pay.
And finally, animation support is
often very basic.

For example, Direct3D Retained
Mode allows you to define keyframes
and the current display time for your
animated object. You’ll have to add a
lot more code to make this system
useful to you, and you have no con-
trol over important things such as the
internal representation (storage size
and accuracy) of the keyframes.
Direct3D Retained Mode stores rota-
tional keyframes as quaternions
defined as four ffllooaatts (16 bytes per
keyframe). Using a custom 16-bit
value in place of the 32-bit ffllooaatts may
provide you all the accuracy you
want, and it will cut your animation
data size in half. However, retained
mode APIs won’t provide you with
this option.

At the low-level end of the spec-
trum, animation support is nonexis-

tent and completely up to you.
In the midrange,

where OpenGL
falls, anima-

tion sup-
port is also
nonexis-
tent.

OpenGL,
Direct3D

Immediate
Mode, 3Dfx’s Glide,

and consoles provide a
rendering pipeline only.

Hierarchical animation
takes place in the steps
before your data is taken
over by the rendering
pipeline.

So let’s get down in it.
Here, I will propose an
interface to a 3D animation
system. The only assump-
tion that I’ll make about the

underlying engine is that you
will implement the capability of

interpolating between arbitrary
keyframes.

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

26

A N I M A T I O N E N G I N E

Defining Functions to Play
Animations

T he first part of our animation inter-
face will deal with playing anima-

tions. With one very simple function,
many different modes of animation
playback are covered.

For all code listings, I’ll use a C++
style that assumes we have a class that
implements this animation interface.
Every function interface listed in this
article is actually a member function
(or method) of our AAnniimmaatteeddOObbjjeecctt class
(Listing 1). If you’re using C, just men-
tally insert a pointer to the animated
object ssttrruucctt as the first argument of
each function, then grumble about the
lameness of C++ for a bit. Likewise, you
can use your imagination to eliminate
the default arguments used in the
examples if you are using a strictly C
compiler that doesn’t support default
arguments.

The PPllaayyAAnniimmaattiioonn function,
vvooiidd PPllaayyAAnniimmaattiioonn((iinntt aanniimmNNuumm,, ffllooaatt

ssttaarrttTTiimmee==00ff,, ffllooaatt ttrraannssiittiioonnTTiimmee==00ff));;

gives us the very basic ability to start
playing any animation that our charac-
ter is capable of playing, as defined by
aanniimmNNuumm. It also allows us to supply a
starting point, ssttaarrttTTiimmee, within that
animation; depending on the game,
there may be many occasions when
you want to start playing an animation
“in progress” by skipping a few mil-
liseconds of that animation. Finally, we
allow ourselves the ability to define the
transition time between animations
with the ttrraannssiittiioonnTTiimmee argument. This
time can mean different things to dif-
ferent people. For some, it can define
the number of milliseconds inserted
between the previous animation and
the one that you are attempting to
play. For others, it can define a period
of time during which both animations
are played and averaged together.
Either way you look at it, this time will
normally be a standard value that
makes the transition between anima-
tions look good. The other common
value for ttrraannssiittiioonnTTiimmee will be zero,
indicating that the next animation
must start immediately without any
interpolation at all.

From PPllaayyAAnniimmaattiioonn, we can easily
come up with a few commonly used
variations to define within our animat-
ed object class.

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

28

A N I M A T I O N E N G I N E

ccllaassss AAnniimmaatteeddOObbjjeecctt {{

//// AAnn iinntteerrffaaccee ttoo aann aanniimmaatteedd oobbjjeecctt.. MMoosstt ccoommmmeennttss aarree

//// lleefftt oouutt ffoorr bbrreevviittyy.. SSeeee aaccccoommppaannyyiinngg aarrttiiccllee ffoorr

//// ffuullll ddeessccrriippttiioonnss ooff eevveerryytthhiinngg hheerree..

//// SSttaannddaarrddTTrraannssiittiioonnTTiimmee iiss 11//1100 sseeccoonndd,, 110000 mmiilllliisseeccoonnddss

ssttaattiicc ccoonnsstt ffllooaatt SSttaannddaarrddTTrraannssiittiioonnTTiimmee==110000ff;;

//// DDeeffaauullttMMssPPeerrFFrraammee iiss 11//3300 sseeccoonndd

ssttaattiicc ccoonnsstt ffllooaatt DDeeffaauullttMMssPPeerrFFrraammee==3333..333333333333ff;;

//// TThhee iinntteenntt iiss ttoo pprroovviiddee aann iinntteerrffaaccee oonnllyy,, bbuutt ssoommee ooff tthhee ddaattaa

//// mmeennttiioonneedd iinn tthhee aarrttiiccllee iiss pprreesseenntteedd bbeellooww.. OObbvviioouussllyy,, iinn aa ffuullll

//// aanniimmaattiioonn eennggiinnee iimmpplleemmeennttaattiioonn,, tthheerree wwiillll bbee mmuucchh mmoorree ddaattaa

//// iinn tthhiiss oobbjjeecctt..

iinntt ccuurrrreennttAAnniimmaattiioonn;; //// IIDD ooff aanniimmaattiioonn ppllaayyiinngg nnooww

ffllooaatt ccuurrrreennttAAnniimmaattiioonnTTiimmee;; //// ccuurrrreenntt ffrraammee ooff ccuurrrreenntt aanniimmaattiioonn

iinntt nneexxttAAnniimmaattiioonn;; //// IIDD ooff nneexxtt aanniimmaattiioonn ttoo ppllaayy,, --11 iiff nnoonnee sseett

ffllooaatt mmssPPeerrFFrraammee;; //// ccuurrrreenntt ppllaayybbaacckk rraattee sseettttiinngg

bbooooll llooooppCCuurrrreennttAAnniimm;; //// ttrruuee iiff ccuurrrreenntt aanniimmaattiioonn sshhoouulldd lloooopp

//// EEvveerryy aanniimmaatteedd oobbjjeecctt hhaass ttoo hhaavvee aa ppooiinntteerr ttoo tthhee aanniimmaattiioonn ddaattaa

//// iitt iiss ccaappaabbllee ooff ppllaayyiinngg.. AAccttuuaall iimmpplleemmeennttaattiioonn iiss uupp ttoo yyoouu..

AAnniimmaattiioonnDDaattaa **aanniimmaattiioonnDDaattaa;;

ppuubblliicc::

AAnniimmaatteeddOObbjjeecctt((AAnniimmaattiioonnDDaattaa **aanniimmDDaattaaIInn));; //// ccoonnssttrruuccttoorr

vvooiidd PPllaayyAAnniimmaattiioonn((iinntt aanniimmNNuumm,, ffllooaatt ssttaarrttTTiimmee==00ff,, ffllooaatt ttrraannssiittiioonnTTiimmee==00ff));;

iinnlliinnee vvooiidd PPllaayyAAnniimmaattiioonnAAttTTiimmee((iinntt aanniimmNNuumm,, ffllooaatt ssttaarrttTTiimmee))

{{ PPllaayyAAnniimmaattiioonn((aanniimmNNuumm,, ssttaarrttTTiimmee));; }}

iinnlliinnee vvooiidd TTrraannssiittiioonnIInnttooAAnniimmaattiioonn((iinntt aanniimmNNuumm))

{{ PPllaayyAAnniimmaattiioonn((aanniimmNNuumm,, 00ff,, SSttaannddaarrddTTrraannssiittiioonnTTiimmee));; }}

iinnlliinnee vvooiidd TTrraannssiittiioonnIInnttooAAnniimmaattiioonnAAttTTiimmee((iinntt aanniimmNNuumm,, ffllooaatt ssttaarrttTTiimmee))

{{ PPllaayyAAnniimmaattiioonn((aanniimmNNuumm,, ssttaarrttTTiimmee,, SSttaannddaarrddTTrraannssiittiioonnTTiimmee));; }}

vvooiidd SSeettNNeexxttAAnniimmaattiioonn((iinntt nneexxtt));;

vvooiidd EEnnaabblleeLLooooppeeddAAnniimmaattiioonn(());;

vvooiidd DDiissaabblleeLLooooppeeddAAnniimmaattiioonn(());;

bbooooll IIssAAnniimmaattiioonnLLooooppeedd(());;

vvooiidd PPllaayyNNeexxttAAnniimmaattiioonn(());;

vvooiidd TTrraannssiittiioonnIInnttooNNeexxttAAnniimmaattiioonn(());;

vvooiidd SSttooppAAnniimmaattiioonn(());;

vvooiidd SSttaarrttAAnniimmaattiioonn(());;

vvooiidd SSeettMMssPPeerrFFrraammee((ffllooaatt nneewwRRaattee==DDeeffaauullttMMssPPeerrFFrraammee));;

ffllooaatt GGeettMMssPPeerrFFrraammee(());;

vvooiidd CCaappttuurreeRRoottaattiioonnCChhaannnneell((iinntt wwhhiicchh));;

vvooiidd CCaappttuurreeTTrraannssllaattiioonnCChhaannnneell((iinntt wwhhiicchh));;

iinntt GGeettCCuurrrreennttAAnniimmaattiioonn(());;

ffllooaatt GGeettAAnniimmaattiioonnTTiimmeeIInnMMss(());;

ffllooaatt GGeettAAnniimmaattiioonnTTiimmeeIInnFFrraammeess(());;

bbooooll IInnTTrraannssiittiioonn(());;

L I S T I N G 1 .

Continued on page 30.

The function in Listing 2 will start a
particular animation immediately.
There will be no transition between the
currently playing animation and the
animation specified in this function
call. The starting point of the new ani-
mation will be ssttaarrttTTiimmee milliseconds
into the new animation.

The TTrraannssiittiioonnIInnttooAAnniimmaattiioonn function in
Listing 3 will be the most frequently
used function to start a new anima-
tion. All you need to specify is the new
animation to play. The transition peri-
od between the currently playing ani-
mation and this new animation is set
to the SSttaannddaarrddTTrraannssiittiioonnTTiimmee (a ccoonnsstt
defined in a header file, typically
equivalent to two or three frames’
worth of animation). This function
provides the smooth transitions that
you’ll normally want to see between
animations.

The TTrraannssiittiioonnIInnttooAAnniimmaattiioonnAAttTTiimmee func-
tion in Listing 4 will transition (inter-
polate) into a new animation and will
skip the first few milliseconds of that
new animation as specified by ssttaarrttTTiimmee.

All three of these functions are just
convenient ways to call PPllaayyAAnniimmaattiioonn;
they are all ideal candidates for inlin-
ing. Each function states exactly what
its purpose is, so you can tell what’s
going on in the code without trying to
interpret individual arguments to
PPllaayyAAnniimmaattiioonn.

What happens when an animation is
finished playing? Our animation
engine has two options. It can loop the
current animation, or it can transition
into the next animation. We need a
way to define what the next animation
is. This can be achieved with the fol-
lowing function:
vvooiidd SSeettNNeexxttAAnniimmaattiioonn((iinntt nneexxtt));;

The SSeettNNeexxttAAnniimmaattiioonn function can be
called at any time, but it is most appro-
priate to call it immediately after play-
ing an animation. That way, you know
exactly what will happen after an ani-
mation is finished even if you don’t get
around to playing another animation.
Our engine can make some fairly intel-
ligent decisions regarding looping ani-
mations at this point. As soon as an
animation is played with any variant of
PPllaayyAAnniimmaattiioonn, assume that the animation
will be looped. Then, as soon as a next
animation is defined via SSeettNNeexxttAAnniimmaattiioonn,
disable the looped status of the current
animation (otherwise the next anima-
tion would never be reached), and
assume that the next animation will be
looped. If these assumptions ever
change, we’ll conveniently have func-
tions to manipulate or examine the
looped status of the currently playing
animation.

The functions in Listing 5 do exactly
what you would expect. If the currently
playing animation is looped (recall that
our engine will automatically loop any
played animation), you can change that
status with a call to DDiissaabblleeLLooooppeeddAAnniimmaattiioonn.
If you then change your mind, you can
re-enable looping with EEnnaabblleeLLooooppeedd--
AAnniimmaattiioonn. IIssAAnniimmaattiioonnLLooooppeedd returns the
current status.

What would happen if you played an
animation, set the next animation, and
then called EEnnaabblleeLLooooppeeddAAnniimmaattiioonn, like this?
//// IInntteerreessttiinngg ccooddee ssnniippppeett

PPllaayyAAnniimmaattiioonn((aanniimmNNuumm,, ssttaarrttTTiimmee));;

SSeettNNeexxttAAnniimmaattiioonn((nneexxtt));;

EEnnaabblleeLLooooppeeddAAnniimmaattiioonn(());;

In this case, the initial animation
will be looped. When you call
SSeettNNeexxttAAnniimmaattiioonn, the playing animation
will cease to loop. When you re-enable
looping on the current animation via
EEnnaabblleeLLooooppeeddAAnniimmaattiioonn, the next animation
that you set will never be played. This
is a perfectly reasonable sequence of
actions that could arise in your game,
and no harm will come of it. What
happens if your next animation is play-
ing looped, and you disable its loop-
ing? When that animation ends, your
engine won’t know what to play. This
case can either be considered a bug (an
error message appears with something
clever such as “Should never get
here!”), or you can define a default ani-
mation for each animated object that is
played and looped when no more ani-
mations are instructed to play.

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

30

A N I M A T I O N E N G I N E

bbooooll IIssAAnniimmaattiioonnLLooooppeedd(());;

iinntt GGeettNNeexxttAAnniimmaattiioonn(());;

vvooiidd GGeettGGlloobbaallPPoossiittiioonn((iinntt jjooiinntt,, ffllooaatt &&xx,, ffllooaatt &&yy,, ffllooaatt &&zz));;

vvooiidd GGeettCCuurrrreennttVVeelloocciittyy((ffllooaatt &&xx,, ffllooaatt &&yy,, ffllooaatt &&zz));;

vvooiidd SSeettCCuurrrreennttVVeelloocciittyy((ffllooaatt xx,, ffllooaatt yy,, ffllooaatt zz));;

ffllooaatt GGeettAAnniimmLLeennggtthhIInnMMss((iinntt aanniimmNNuumm));;

}};;

L I S T I N G 1 (C O N T. F R O M P A G E 2 8) .

iinnlliinnee vvooiidd PPllaayyAAnniimmaattiioonnAAttTTiimmee((iinntt aanniimmNNuumm,, ffllooaatt ssttaarrttTTiimmee))

{{ PPllaayyAAnniimmaattiioonn((aanniimmNNuumm,, ssttaarrttTTiimmee));; }}

L I S T I N G 2 .

iinnlliinnee vvooiidd TTrraannssiittiioonnIInnttooAAnniimmaattiioonn((iinntt aanniimmNNuumm))

{{ PPllaayyAAnniimmaattiioonn((aanniimmNNuumm,, 00ff,, SSttaannddaarrddTTrraannssiittiioonnTTiimmee));; }}

L I S T I N G 3 .

iinnlliinnee vvooiidd TTrraannssiittiioonnIInnttooAAnniimmaattiioonnAAttTTiimmee((iinntt aanniimmNNuumm,, ffllooaatt ssttaarrttTTiimmee))

{{ PPllaayyAAnniimmaattiioonn((aanniimmNNuumm,, ssttaarrttTTiimmee,, SSttaannddaarrddTTrraannssiittiioonnTTiimmee));; }}

L I S T I N G 4 .

vvooiidd EEnnaabblleeLLooooppeeddAAnniimmaattiioonn(());;

vvooiidd DDiissaabblleeLLooooppeeddAAnniimmaattiioonn(());;

bbooooll IIssAAnniimmaattiioonnLLooooppeedd(());;

L I S T I N G 5 .

You can exert even more control
over what happens with the next ani-
mation to be played. There will be
times when you want the currently
playing animation to end early, but
you don’t yet have another animation
to play. Usually, the animation that
was set with SSeettNNeexxttAAnniimmaattiioonn is a safe fol-
low-on to the current animation (oth-
erwise you wouldn't have set it as the
next animation). You can skip directly
to the next animation by calling either
of these functions:
vvooiidd PPllaayyNNeexxttAAnniimmaattiioonn(());;

vvooiidd TTrraannssiittiioonnIInnttooNNeexxttAAnniimmaattiioonn(());;

PPllaayyNNeexxttAAnniimmaattiioonn will start the next
animation immediately with no tran-
sition. TTrraannssiittiioonnIInnttooNNeexxttAAnniimmaattiioonn will
start the next animation with the
default amount of interpolated transi-
tion frames. You could add a
ttrraannssiittiioonnTTiimmee parameter to the
TTrraannssiittiioonnIInnttooNNeexxttAAnniimmaattiioonn func-
tion, which would allow you to
specify the transition time each
time this function is used.
However, in general you want to
use your default transition time,
so don’t bother with this parame-
ter unless it’s a must.

The final functions related to
playing animations allow you
to temporarily disable the
entire animation system.
They are
vvooiidd SSttooppAAnniimmaattiioonn(());;

vvooiidd SSttaarrttAAnniimmaattiioonn(());;

If you want the animated
object to freeze, or if you
want to take algorith-
mic control over
the animation,
then you need to
temporarily discon-
nect animation
playback.
SSttooppAAnniimmaattiioonn stops anima-
tion playback in its tracks. Any
updates to the current animation will
be ignored. Even calls to PPllaayyAAnniimmaattiioonn
should be ignored until the anima-
tion is re-enabled with a call to
SSttaarrttAAnniimmaattiioonn.

Playback Speed

T he animations that you play back
with this interface will have

keyframes, and those keyframes will
have timestamps that define the ani-

mation’s actual playback speed. Those
timestamps will most likely be in
terms of frames, where a frame is
about 1/30 second. What if you want
to play an animation back at a differ-
ent speed? Give yourself an easy way
to do this with functions like these:
vvooiidd SSeettMMssPPeerrFFrraammee((ffllooaatt

nneewwRRaattee==DDeeffaauullttMMssPPeerrFFrraammee));;

ffllooaatt GGeettMMssPPeerrFFrraammee(());;

The preceding functions allow you
to set “milliseconds per frame” to
define the playback rate of an anima-
tion. If your animations were origi-
nally 30 frames per second, the
DDeeffaauullttMMssPPeerrFFrraammee value about 33.33. By
calling SSeettMMssPPeerrFFrraammee with a value of
66.66, you cut the animation play-
back rate in half and everything will
play back slower than normal.
Smaller values will make animations
play faster. Note that the playback

rate set in the preceding functions
should be set on a per-object basis,

and it should stay set for that
object until it is changed again

by you. Setting a global play-
back rate for all objects
won’t have the flexibility

that you will need.
If you’re accustomed
to basing your entire

life around a vertical
blank interrupt, the
idea of setting
33.33 millisec-
onds per frame is

going to hurt your
brain in some way.

Sorry about that.
There is some over-

head to using mil-
liseconds instead

of an integral
frame count, but it’s

minimal on today’s
machines. Basing everything on mil-
liseconds rather than frames makes
more sense if you ever plan on hav-
ing the game run on more than one
machine configuration. For consoles,
there’s a discrepancy between PAL
(50 FPS) and NTSC (60 FPS). On a PC,
the frame rate you can to achieve will
fluctuate according to the perfor-
mance of the machine on which your
game is running. Basing everything
in your game on milliseconds instead
of frames is hard to get used to for
some people (including me), but it’s
worth the effort.

Capturing Channels

A n advanced feature that you may
want to add to your animation

engine is the ability to capture a chan-
nel. If you have a hierarchical anima-
tion system, you will have multiple
channels of data for each animation,
such as a root translation channel and a
joint rotation channel for each joint in
the hierarchy. There may come a time
in your game when you want to take
algorithmic control over one part of the
character’s animation and allow the rest
of the character to animate normally.
For example, you might want your char-
acter to look in a certain direction while
running. To do this, you have to capture
the channel for the neck rotation.

Capturing the channel itself is easy if
you have a method of identifying
translation and rotation channels by
number. To accomplish this, you
should add the following functions to
your engine:
vvooiidd CCaappttuurreeRRoottaattiioonnCChhaannnneell((iinntt wwhhiicchh));;

vvooiidd CCaappttuurreeTTrraannssllaattiioonnCChhaannnneell((iinntt wwhhiicchh));;

The numbers that you use to identify
channels should correspond to the
numbering or ordering convention of
your 3D animation tools. Your engine
will respond to this capture request by
simply stopping the animation for that
channel only. For example, you may
have 16 joints in a model being ani-
mated with rotation information every
frame. Capturing joint 10 means that
joint 10 will no longer be updated with
rotation information every frame, but
the other 15 joints will continue to be
updated.

Once a channel is captured, you can
do with it what you like, safe in the
knowledge that changes you make to a
captured joint’s rotation or translation
won’t be clobbered by animation data.
How you actually manipulate that
joint depends on how your animation
system is implemented.

Determining the Engine’s State

A s your animation engine grows in
complexity, it becomes increas-

ingly important to know about the
state of the engine at various times dur-
ing game execution. The solution, of
course, is to create functions that
retrieve this state information. Let’s
look at some of these.

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

32

A N I M A T I O N E N G I N E

Information regarding the current
animation being played is certainly
important. To identify the currently
playing animation by number, use this
function:
iinntt GGeettCCuurrrreennttAAnniimmaattiioonn(());;

To return the current position in the
animation being played relative to the
start of that animation (this value will
continually reset to zero for looped ani-
mations), use:
ffllooaatt GGeettAAnniimmaattiioonnTTiimmeeIInnMMss(());;

Similarly, you can return the current
position in the animation being played
relative to the start of that animation
in terms of frames with
ffllooaatt GGeettAAnniimmaattiioonnTTiimmeeIInnFFrraammeess(());;

Why create two functions that
return the same information in differ-
ent formats? Recall that the playback
speed of an animation can be changed.
In some cases, you might be interested
in knowing whether a particular frame
of an animation has passed yet. Using
GGeettAAnniimmaattiioonnTTiimmeeIInnFFrraammeess, you can deter-
mine this information regardless of
the animation’s current playback
speed setting.

The IInnTTrraannssiittiioonn function should
return TTrruuee if the animation engine is
currently interpolating between two
different animations:
bbooooll IInnTTrraannssiittiioonn(());;

The functions in Listing 6 provide
you with additional state information
that you will likely need. The first func-
tion, GGeettNNeexxttAAnniimmaattiioonn,, will tell you what
animation is set to be played next.

Sometimes, you need to know very
specific information about the current
state of the animation, such as the
global position of a particular joint.
Using your joint numbering conven-
tion, you can ask for the position of
any joint in terms of world coordi-
nates. In this example, the
GGeettGGlloobbaallPPoossiittiioonn function returns the x,
y, and z values individually, but you’ll
probably use your own vector type
here. The global position of any joint is
essential for collision detection.

The velocity of an animation is an
implementation-dependent concept. If
you’ve extracted a velocity from your
animations and stored this velocity
with the animation, you can use
GGeettCCuurrrreennttVVeelloocciittyy to find out
what the current velocity
is. This information is
useful when trying to
predict when an
animated charac-
ter will reach a
certain location,
for example.
The corre-
sponding
SSeettCCuurrrreennttVVeelloocciittyy

can come in
handy if you’ve
determined that
an animated
character is mov-
ing too slowly to
get where it needs
to be. Get the veloci-
ty, scale it up, and set it
again. SSeettCCuurrrreennttVVeelloocciittyy
should override the current
animation’s velocity only.
When a new animation starts, the
correct velocity for that animation
should be used. Note the SSeettMMssPPeerrFFrraammee
function that I already discussed will
affect the velocity as well as playback
rate, so if a persistent change in speed
is what you’re after, use SSeettMMssPPeerrFFrraammee.

Often, you’ll need to know how long
an animation will take to play back.
GGeettAAnniimmLLeennggtthhIInnMMss will return that infor-
mation for any animation that a char-
acter is capable of playing. This infor-
mation can be useful in hundreds of
situations. This call should take into
account the current milliseconds per
frame setting.

In addition to the length of a partic-
ular animation, there is a long list of
other information that you may want
to know before playing an animation.
For example, you might want to know
which frame of an animation has the

largest z translation from the starting
position. For custom information such
as this, write a routine that can query
individual frames of individual anima-
tions. Note that in a keyframed, inter-
polation-based system, the frame that
you inquire about might not physically
exist. In this case, the query will have
to create the interpolated frame in
order to return the information that
you’re after.

And More

P erhaps you have an ani-
mation scripting system
that plays back

sequences of anima-
tions defined in a

text file. Or you
may need to

queue up more
than one ani-
mation at a
time. These
needs are
simple
extensions
to the sys-
tem pre-
sented in
this article.
If you start

out with a
fairly com-

plete founda-
tion to your ani-

mation system,
new and advanced fea-

tures will come easily.
Many ideas are presented in this dis-

cussion of a theoretical 3D animation
system interface. All of the ideas are
from real-world examples. None-
theless, your real world will always be
different. The entire set of features that
you need can only be determined by
you; hopefully, by now you are think-
ing well beyond the ideas presented
here and picturing your ideal anima-
tion system. And if anyone asks you to
speak to kids about any of this, walk
away. Just walk away. ■

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

34

A N I M A T I O N E N G I N E

The author would like to acknowledge
fellow High Voltage guy Dwight
Luestcher for his part in developing
the concepts discussed in this article.

Acknowledgements

iinntt GGeettNNeexxttAAnniimmaattiioonn(());;

vvooiidd GGeettGGlloobbaallPPoossiittiioonn((iinntt jjooiinntt,, ffllooaatt &&xx,, ffllooaatt &&yy,, ffllooaatt &&zz));;

vvooiidd GGeettCCuurrrreennttVVeelloocciittyy((ffllooaatt &&xx,, ffllooaatt &&yy,, ffllooaatt &&zz));;

vvooiidd SSeettCCuurrrreennttVVeelloocciittyy((ffllooaatt xx,, ffllooaatt yy,, ffllooaatt zz));;

ffllooaatt GGeettAAnniimmLLeennggtthhIInnMMss((iinntt aanniimmNNuumm));;

bbooooll IIssAAnniimmaattiioonnLLooooppeedd(());;

L I S T I N G 6 .

company) because we work together so
well as a team. Sure, we each have our
particular strengths and weaknesses,
but in the end, any of us can do any
aspect of the art needed for the game.
The strength of the three-man art
department at id comes from experi-
ence, hard work, and talent. Adrian
Carmack, Kevin Cloud, and I created
the art for QUAKE 2 (and the upcoming
mission pack), and this article reveals
how it all came together.

Production Design

O ur team begins the art process
with a solid production design

and tons of sketches. This is the basis
upon which we build models, create
map textures, or skin characters. We
contracted a very good production
design artist to help with the environ-
ment concepts for QUAKE 2, but for the
most part, conceptual art and produc-
tion design comes from one of the
three artists here at id. Although we

had to design the art based on our game
design ideas, our main goal was simple:
“Make it cool.” That pretty much
summed up our design philosophy.

Our team went for a grungy, sci-fi look
for QUAKE 2, so the enemies are barbaric
races of miscreants sporting an array of
cybernetic prostheses. The rationale
behind this design was that the inhabi-
tants of Stroggos (the planet where the
game takes place) aren’t much into aes-
thetics and are purely a warlike, spartan
race. The good guys were designed with
a futuristic military look. Weapons,
armor, and other aspects of the Terran
Coalition of Man are easily recognizable
and not too far removed from contem-
porary military and weapon design. Our

intention was to spare the player the
effort of stretching his or her imagina-
tion too far in pondering the purpose of
an object. Is this a weapon in my hand,
or is it a bread-maker?

Noticeably missing from QUAKE 2’s
production design was any form of
demonic symbology. This wasn’t due to
any political or publisher-induced cor-
porate pressure; it was because it didn’t
fit the theme of the game. If the Strogg
had developed into a magical/nether-
world-dependent race of conquerors,
we would have had plenty of demons
running around doing demon-type
activities. QUAKE 2 is about kicking
some alien butt on their turf and ensur-
ing mankind’s future survival.

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

36

A R TQ U A K E

The Art of QUAKE 2
b y P a u l S t e e d

s in nearly all aspects of the company, the art

department at id Software runs on pure synergy.

That is, no real distinct lines of responsibility

exist among us three artists (other than the fact

that fellow artists Kevin Cloud and Adrian

Carmack — along with programmer John

Carmack — also happen to own theAA
After attending 22 different public schools spanning five states, serving his country
for six years, and bouncing around Europe for three more, Paul Steed taught himself
how to create art on a computer at the University of Origin (Austin branch). After
almost finishing up a 4-year degree in low-polygon model creation and animation
and cinematic techniques, he spent time at Iguana Entertainment and Virgin
Interactive Entertainment before being recruited to the Mt. Olympus of PC software
development, id Software. He doesn’t plan on going anywhere else anytime soon.

Level Texture Maps

A lthough technically there are only
three artists at id, an argument can

be made for including the level design-
ers in the pool of pixel and vertex push-
ers. The designers make maps, and in
order for them to build the world, they
need plenty of building material. We
used an in-house editor (designed by
John Carmack), which allowed level
designers to take our textures and turn
them into geometric shapes. The level
designers then used these shapes to fill
in the architecture (Figure 1). We call
these shapes “brushes.”

Typically, the process of handing the
level designers the textures that they
needed for a map went like this. First,
we artists created a series of “base” tex-
tures — generic textures with a certain

look that could be reused throughout
different areas of the game. We also cre-
ated textures specific to certain areas as
dictated by the design document, such
as the “mines” texture set or the “facto-
ry” texture set. All textures were
required to be sized in a power-of-two
(for example, 8 pixels × 8 pixels, 16×16,
32×32, 32×64, 128×128, 128×64, and so
on) (Figure 2).

All of the in-game textures in
QUAKE 2 were created using Electronic
Arts’ venerable Deluxe Paint, and for
some animations we also used
Kinetix’s Animator Pro. You may
chuckle at our choice of Deluxe Paint,
as the program has been around for
ages. But for static manipulation of
pixels using a 256-color palette, there
really is no substitute. Sure,
Photoshop and other programs

designed to work in true color can be
used to do 256-color tweaks, but
Deluxe Paint is a worthy tool.

The reason QUAKE 2’s textures
turned out so well is due to our hand-
drawn approach to creating them.
Using what’s called “nearest pixel”
methodology, we ensured the integrity
of each texture by paying special
attention to the proper amount of
antialiasing. Sometimes, a stippled or
dithered effect is appropriate, but sim-
ply rendering a scene in a 3D package
and slapping it into a game without
modifying the image will often result
in “pixel swim.” While massaging an
image pixel by pixel is painful and
time-consuming, it’s a necessary
process. However, as 3D accelerator
cards become more popular (and in
some cases, mandatory), bitmap inter-
polation will address the problems
associated with pixel swim.

Skinning Characters

T o skin our characters (skins are
textures that are projected linear-

ly onto a character’s model), we had
to warp the models’ base frames in
order to get the maximum amount of
coverage (a base frame being a refer-
ence-only state of deformation for the
generation of the texture map)
(Figures 3a and 3b).

To help us artists skin characters,
John Carmack wrote a tool (in a week-
end, no less) called Texpaint, which

h t t p : / / w w w . g d m a g . c o m A P R I L 1 9 9 8 G A M E D E V E L O P E R

37

F I G U R E 1 . id’s in-house level editor.

F I G U R E 2 . One of QUAKE 2’s .LBM

texture files, created in Deluxe Paint.

F I G U R E 3 a . A character skin texture

map.

F I G U R E 3 b . And the skinned charac-

ter.

allowed us to paint directly
onto a mesh, much like the
commercially available tool
Positron’s MeshPaint. Texpaint
proved to be invaluable.
Though fairly simple, the tool
nevertheless featured unlimit-
ed undo capability, showed
model and texture lines, and
let us select any pixel resolu-
tion for the texture sheet. It
also gave us the ability to gen-
erate a triangle-unique multi-
colored “start” skin for clarity
and identification of possible
problem areas (Figure 4a).

Using Texpaint to create a
skin was a simple affair. First,
we’d load up the base frame
and click the New Skin menu
item, which generated an
.LBM (Deluxe Paint’s native
file format) for the character on which
we wanted to paint — the .LBM’s reso-
lution was based on the mapping coor-
dinates of the loaded object. Then,
we’d bring in any other non-base
frame’s object file from the object’s
directory, retaining the previously gen-
erated base texture (Figure 4b).
Texpaint would then help us take the
model from its deformed base frame
state to a polished, finished object
(Figure 4c).

As we’d draw on the .LBM object, the
changes to the skin appeared simulta-
neously on both the texture page and
the skinned object itself. This method
worked especially well when we used

Texpaint and Deluxe Paint in conjunc-
tion with Animator Pro. Our process
consisted of marking out certain areas
on the skin, using either Deluxe Paint
or Animator Pro to refine these areas,
and then reloading the skin into
Texpaint for further refinement. All of
the artists on our team had at least two
computers (a Windows NT system and
a Windows 95 system), so using the
Windows NT-based Texpaint and the
DOS-based Deluxe Paint in tandem
wasn’t really a problem because we
could rely on our network to transfer
the files and our twin 21-inch monitors
for instant feedback. Once textures
were completed, they were handed off

to the programmers, who con-
verted them from .LBM to
.PCX format for better con-
sumption by the game engine.

Inanimate game objects,
including the view-model
weapon that characters used,
required only one skin since
these objects didn’t change
states during the game. (View-
model weapons are those that
you see in your hands while
playing the game, and world-
model weapons are those that
you run over to add to your
inventory.) The monsters and
player characters, however,
required an additional “pain”
skin to convey that the crea-
ture or player was hurt. This
different texture wasn’t sector-
based in any way. We merely

switched out entire skins when a char-
acter’s hit points reached a critical level.

View Screens, Option Screens

The look for the main-view and
option screens in QUAKE 2 were

designed to fit the basic militaristic
theme of the game. We chose a clean
and uncluttered look for the status bar
for simplicity’s sake. When we released
Q2test (the public beta version of
QUAKE 2) on the Internet, we featured a
face at the bottom left of the screen
(likely familiar to QUAKE and DOOM

players) that reflected the damage state

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

38

Q U A K E A R T

F I G U R E 4 a . John Carmack’s character skinning utility,

Texpaint.

F I G U R E 4 b . Bringing a non-base frame’s object file into

Texpaint.

F I G U R E 4 c . The skinned character after refinement in

Texpaint.

of the character and even indicated
from which direction the player was
being hit. Unfortunately, since players
can choose from about 30 different
deathmatch characters, we decided
that implementing an animated face
for each deathmatch character would
be too time-consuming — we decided
to use the universal red cross on a
white background instead (Figure 5).

Although no faces are displayed on
the status bar during game play, the
player does get a snapshot of the cho-
sen character in the multiplayer setup
menu (Figure 6). A rotating model of
the chosen character also allows casu-
al perusal of the model and skin.
While we would have liked to use these
same snapshots in the status bar during
game play, it wasn’t possible due to
their resolution. The portraits of the
characters in the multiplayer setup
menu are 32×32 pixels; the highest pos-
sible resolution for any graphic in the
status bar was 24×24. It all came down
to the fact that the 32×32 versions were
done first, we didn’t have time to do
secondary versions of them, and we
didn’t feel that 24×24 was enough pix-
els to do justice to the different faces.
So we opted for the red cross.

QUAKE 2’S view and option screens
were created last and constructed with
functionality and practicality in mind.
We were constrained to these screens
by code that was already in place from
the previous game. In addition, while
we would have loved to have had all
kinds of tricky animated buttons in the
front-end menus, why make the player
run through a maze of information just
to change an option? Time and func-
tionality concerns dictated QUAKE 2’s
spartan interface.

Modeling

B asically, two types of models
exist in QUAKE 2: Alias models

and B-models. Alias models were cre-
ated using Alias|Wavefront’s
PowerAnimator on an SGI (an Indigo
2 Extreme with 256MB RAM). B-mod-
els are “brush models” created by
level designers from the previously
mentioned textures. Another way
that we gave the designers working
material for their level creation was in
the form of an internally-developed
tool called 3DS2MAP. This little utili-

ty took nonconvex shapes built in
Kinetix’s 3D Studio R4 and converted
them into brush models that could be
used in either QUAKE or QUAKE 2 levels.
3DS2MAP helped overcome some of
the deficiencies of the designers’ in-
house development tool (the QUAKE

Editor), such as its inability to create
perfect spheres, domes, or weird geo-
morphic shapes such as boulders or
rocks. Tim Willits, the lead designer on
QUAKE 2, gave me the strangest look
when I made him a half-dozen rocks
one time in about five minutes; he said
it would have taken him days to do
that in their editor.

Alias models were used for characters
and objects in the game as well as the
view model and world-model weapons.
We also used Alias models for miscella-
neous map-specific objects, such as radar
dishes and the ships that fly by occasion-
ally. We used 3D Studio R4 for the bulk
of the character modeling because once
the normals are reversed, 3D Studio files
can be exported as .DXF files (the

AutoCAD file format) and easily
imported into PowerAnimator.

If you’re wondering why we didn’t
just use PowerAnimator’s modeling
capabilities for every object, the
answer is me. Kevin Cloud actually
did use PowerAnimator exclusively.
However, I was responsible for most
of the models and I used the product
that I know best: 3D Studio R4.
Simply put, I don’t care for
PowerAnimator’s modeler. I know
3DS4 like the back of my hand and
treat it as my 3D sketchbook. I can
complete a model in about the same
time that it takes to work up the same
design on paper.
Objects’ face counts were dictated by

the “less is best” doctrine (that is, be as
economical as possible with model
polygon counts). The creation of all
the models was, however, an iterative
process, and optimizing them was an
art form unto itself. For example,
Figure 7 shows a high-resolution ver-
sion of the gunner that I created for an
Australian magazine cover, along with
the version of the same character as it
appeared in the game.
CHARACTERS. Our goal was to keep basic
enemy characters to 600 faces or less,
although some reached as many as 700.
Most were in the 400 to 500 range. Boss
characters, due to their uniqueness and
the fact that they were often alone on
their level, ranged from a hefty 1,500
faces to a whopping 2,500 faces for the
final boss Makron (astride his mount,
Jorg). The player character was exactly
600 faces, but because we did the
weapon as an overlay, you could actual-
ly say the male and female player char-
acters were around 750 faces each.

VIEW-MODEL WEAPONS. When you play
QUAKE 2, the weapon model that you
see in your hands is slightly to the
right or left. This is because of the
way that we optimized the view-
model weapons (Figures 8A and 8B).
The view-model weapons are the
most optimized models in the game
due to their visually restricted and
visually predictable nature. What
you’d see if the weapons were slid
over to the middle would be hardly
recognizable as a weapon, because the
side view shows more of the texture
mapping details. Keeping the
weapons (and the hands holding
them) under 400 faces was no easy
task. Not only did the weapon and

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

40

Q U A K E A R T

F I G U R E 5 . id’s artists chose to represent

health as a simple red cross.

F I G U R E 6 . The multiplayer setup screen

gives players a rotating view of their cho-

sen character.

hands have to look realistic, but in
most cases, had to animate as well.

Creating the view model so that it
appeared correctly in the world was sort
of tricky. Because the game engine gives
you a ninety-degree field of view (FOV),
objects that are close up are severely
skewed and seem stretched out. To
adapt to this FOV limitation, we created
the weapon models and then viewed
them in a camera window approximat-

ing the same view of the game. The
models also had to be squashed some-
what to compensate for the stretching
effects on nearby objects in the FOV.
Only after quite a bit of tweaking did
we achieve the correct results. Once we
were satisfied that the weapon looked
good from the proper angle, that ver-
sion was saved and the arduous task of
optimizing it down to more digestible
measurements began. In my opinion,

the weapon view models were probably
the most challenging and most satisfy-
ing of the models done for QUAKE 2.
GENERAL OBJECTS. General objects such
as ammo boxes, armor, weapons, or
anything that you can you pick up
were also created with the “less is
best” philosophy (Figure 9). These
objects rarely surpassed 200 faces. The
subtle pulsing glow around the objects
is for the gaming aspect of the artifact
and is understandably necessary to
ensure its visibility.

The modeling in QUAKE 2 was done
with the same attention to detail as all
other parts of the game. We wanted to
make visually interesting characters
and objects that fit within the plot and
design of the game. We put as many
characters and objects into the game as
the single CD and time would permit.
The characters and objects that didn’t
make it into QUAKE 2 will most likely
rear their low-polygon, ugly heads in
the upcoming mission pack that we’re
working on.

Animation

A ll of the in-game, nonrendered
animations in QUAKE 2 were done

in PowerAnimator. We feel Power-
Animator is simply the best program
for character animation available. The
strength of PowerAnimator for doing
character animation lies in the amount
of control you have over each vertex. A
tool that provides subtle degrees of
influence over individual vertices
makes a big difference in the realism of
a bicep or elbow joint that maintains
its integrity as it flexes. If your program
doesn’t allow you to control elements
at the vertex level (as opposed to a tool
that merely assigns influence to an area
of vertices), you’ll run into problems
sooner or later.
CHARACTERS. The following is QUAKE 2’s
general character animation process:
• Create the character or import it from

3DS4 into PowerAnimator.
• Build a skeleton inside the mesh to

support its animation.
• Attach the mesh to the skeleton and

name the clusters accordingly.
• Assign an appropriate amount of

influence over the vertices or groups
of vertices (clusters).

• Flip any edges that have to be
changed in order to better support

h t t p : / / w w w . g d m a g . c o m A P R I L 1 9 9 8 G A M E D E V E L O P E R

43

Q U A K E A R T

F I G U R E 7. The low-polygon version of the gunner (right-hand side) weighs in at

around 620 faces. The high-resolution version (left-hand side) is about 20,000

faces. When optimizing, Paul Steed used an external plug-in for 3D Studio R4

called Optimize, which gave him a head start on a super-dense mesh. Once he’d

reduced a model down to about 1,000 faces, he would finish the optimization by

hand. Nearly all tools of this kind simply smooth off and merge faces based on

their relational or incidental angles, and often some manual work is required by

the modeler to polish off the job.

the animation (especially around the
hips or shoulders), thus avoiding any
unwanted “crimps” or other ugly
deformations.

• Create any applicable inverse kine-
matic (IK) chains (I only used IK for
legs or arms if the creature used them
in locomotion).

• Make a copy of the character’s feet
and save them as templates for future
reference.
Setting up a skeleton and mesh so

that they would work well together
usually took about a day and was the
single most time-consuming and ardu-
ous part of the character animation
process. Associating over 300 vertices
into groups, naming them, and making
sure that they were linked to the right
joint made me sometimes wish we had
an intern. If the process isn’t done per-
fectly, you’ll regret it later. One of the
problems we faced — even with Power-
Animator — was that even though you
can set a keyframe for an IK handle and
make the body sway or lead over time,
the feet at the bottom of the IK chain
will turn and twist. That’s why I always
made copies of the character’s feet and
saved them as templates. These guides
ensured that there was no skating
effect by characters as they walked.

The actual animation process is my
favorite part of my job. Early on in the
project, we debated whether to animate
at 10 frames or 20 frames per second.
John Carmack had linear interpolation
working within the engine from Day
One, so we knew that the faster
machines would make our animations
as smooth as silk regardless of the frame
rate. We ended up going with a 10 FPS
base for several reasons. First, it meant
less data storage because we weren’t
going to use an in-game skeletal anima-
tion system. Instead, we used the QUAKE

method, which tracks the vertex posi-
tion based on differencing the position
of the vertices frame by frame. The sec-
ond reason was that even our slowest
target machine could play back the ani-
mations at 10 FPS without a problem.

Because we went with 10 FPS instead
of 20 FPS, we never even considered
using motion capture to animate our
characters. There was no point — what
good animator can’t animate at 10 FPS?
Just as all the textures and skins are
hand drawn, the animations were also

created by hand with-
out secondary data.
When we dive into
developing Trinity,
however, we definite-
ly will explore the
benefits of motion
capture.

The basic anima-
tion set of the charac-
ters generally consist-
ed of an idle
animation, an idle
animation in which
the character did
something interesting
at random intervals
(such as scratching a
certain anatomical
part), a walk, a run,

several attacks, several expressions of
pain, several deaths, a duck or crouch,
and a blocking animation (which did-
n’t make the final cut). This is a very
generalized list, though, and anima-
tions sometimes varied drastically from
character to character. Typical charac-
ters had between 250 and 500 frames
of animation total.

One regret we had with regard to our
animations was not putting all of the
animations for a given character into
one file. When you have a run anima-

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

44

Q U A K E A R T

F I G U R E 8 A . The view-model mesh of

a machine gun.

F I G U R E 8 b . Several orthographic views of the same

view-model mesh.

F I G U R E 9 . Random objects in QUAKE 2 were created with the same care as the

main characters.

tion, a stand animation and three pain
animations saved as different files,
making changes to a character’s main
mesh necessitates changing a sequence
of files, rather than just one. For exam-
ple, adding the flag for the capture-the-
flag multiplayer mode would have
been much easier with this method.
Instead, the flag had to be grouped to
each of the subsequent character ani-
mations, making the job take about
one-and-a-half times longer that it
should have.

Once a character’s animation suite
was complete, the arduous process of
saving the frames began. Each frame of
animation had to be saved as a .TRI file
in order for the mesh to be added to
the game. We would go through each
animation file (in this case, for a char-
acter’s pain animation) and save
frames as a sequence of files such as
PAIN101.TRI, PAIN102.TRI, and so on.
Each character had its own directory,
so we used the same naming conven-
tion for all characters. A spreadsheet
containing all of the salient data about
a character’s animation set (file names,
offsets, and general action description)

was also maintained by the art team.
This proved extremely helpful down
the stretch when the animations were
converted to .DLLs, and on those occa-
sions when programming data mysteri-
ously “disappeared.”
VIEW-MODEL WEAPONS. Animating the
view-model weapons was a lot trickier
than the animations for the characters.
The models were so optimized that a
great deal of care had to be taken to
animate them. Early on, the weapons
were higher in view space to show off
more geometry. This approach blocked
too much of the player’s view, so we
lowered the weapon, which revealed
even less of it and allowed us to opti-
mize the models even more. For exam-
ple, initially the chain gun had a base
and some trigger buttons on top that
corresponded to the world chain gun
model. These features disappeared after
we lowered the weapon and pulled it
closer to the player’s view.

Making the weapon appear as if it
was being drawn and adding idle or fid-
get states to the weapons models was
primarily John Carmack’s idea. He
wanted a little more realism in the

weapon switching and weapon anima-
tions (as opposed to the instant
weapon switch trick used in QUAKE), so
we added finger taps and weapon re-
adjustment animations .

We tried to add muzzle flashes but
they didn’t quite work out, so they
didn’t make the final cut. Although I’m
personally dubious as to the effective-
ness of any type of polygonal represen-
tation of fire, smoke, or any other sort
of incendiary effect, Kevin and Adrian
pulled off these effects very convinc-
ingly. Given more time, I’m sure we
would have found some way to make a
convincing flash effect or shell ejecting
animation for the weapons. I guess
we’ll have to wait for Trinity.

As in all things id-like, an attempt was
made to infuse attitude into all the ani-
mations to give an identity to the char-
acters and weapons. Small details such
as painful deaths, humorous taunts, and
tapping fingers are examples of game
elements that we wracked our brains
over. I believe that our meticulous
approach made the animations more
memorable and resulted in a more
enjoyable game playing experience. ■

h t t p : / / w w w . g d m a g . c o m A P R I L 1 9 9 8 G A M E D E V E L O P E R

45

For example, textures can be pulled from disk into system
RAM or downloaded from system RAM into the video RAM
of a 3D accelerator. Textures can be dynamically generated
by combining illumination maps with unlit source textures.

QUAKE was one of the first games to implement a texture
caching system that interacts closely with the 3D pipeline to
cache graphics in an efficient manner (see References). DOOM

cached textures as well, but its system was more of a solid-
state approach, as was the data caching scheme in the 2D
side-scroller ABUSE. The source code to both ABUSE and DOOM

is now available; see the References at the end of this article.
This article is broken into two parts. First, we’ll discuss the

nature of texture maps and the issues involved in imple-
menting a texture cache. Then, we’ll look at some concrete
implementations of caching systems used in games that are
currently under development.

Textures and MIP-mapping

T exture storage is all about MIP-maps. MIP-maps are pre-
filtered versions of a texture map stored at varying reso-

lutions. To simplify this discussion, we will focus on MIP-
maps that are square and are a power-of-two in width (1×1,
2×2, 4×4,). We will speak of a MIP-map level (or MIP-level)
as a nonnegative integer that describes the resolution of a
MIP-map: a texture at MIP-map level n is 2n texels square.
MIP-level 0 is the smallest size at 1×1 texels, increasing with
conceptually no upper bound (though we might voluntarily
choose one to ease implementation) (Figure 1).

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

46

C A C H I N GT E X T U R E

Implementing
a Texture
Caching
System

exture caching systems are

designed to overcome the texture

budget limitations of 3D games. Only the

textures required to display the current

scene are held in RAM. When new tex-

tures need to appear in the scene, they are

loaded from a larger and slower repository,

or they are dynamically generated.

TT
b y J o n a t h a n B l o w

Jonathan Blow is vice president of software development at
Bolt Action Software, a San Francisco-based game developer.
He can be reached at jon@bolt-action.com

WULFRAM, the multiplayer tank from

Bolt Action Software.

The reader should note that this MIP-level numbering
convention is different from the most commonly used nota-
tion, in which MIP-level 0 is the texture at its maximum res-
olution, perhaps 128×128, level 1 is reduced by one step
(that is, 64×64), and so on. That convention doesn’t make
any sense when you’re deep into texture caching: what is
the maximum resolution of a dynamically generated plasma
fractal?

Let’s take a look at the memory required to store textures.
Every (uncompressed) MIP-map level of a texture requires
four times as much RAM as the level below it. A texture at
level n uses

texels worth of RAM. Storing all MIP-map levels from 0 to n
requires

Now suppose we have a texture at maximum detail and
we want to store all MIP-maps down to level 0. How much
extra memory does this require? In other words, how big is
SizePlus(n) relative to Size(n)? We can figure this out using
some standard power series diddling.

Since the amount of memory required to store a texture
grows with 2n as you climb the MIP-map ladder, you need to
be careful about holding resolutions that are only as large as
you really need. Conversely, because the required memory
shrinks as you decrease MIP-map level, storing all the detail
levels that are smaller than the level that you really need
requires only one-third more memory.

Decisions Must Be Made

To build a system that’s good at texture management, you
want to keep only the necessary textures in RAM at only

the necessary detail levels. The set of necessary textures will
change from frame to frame based on what the 3D pipeline
decides to do. To be effective, our caching system must pre-

dict and accommodate the needs of the pipeline. A good
cache will be specifically designed for a particular application.
(Does the cache need to handle dynamic or static textures or
both? How many textures and at what sizes?) See Figure 2.

Our system will have to perform the following tasks. There
are a variety of ways to approach each problem, each with
its own advantages and drawbacks.
GENERATE TEXTURE REQUESTS. In order to fetch textures into
RAM, the main 3D pipeline must tell the cache which tex-
tures it needs. Typically, this communication takes place in
one of two ways. When the pipeline decides to emit a poly-
gon using a particular texture, it calls a procedure to request
that texture from the cache; this is known as pipeline hook-
ing. Zoning, on the other hand, divides the world into
zones; the pipeline predicts which textures it will need based
on the position of the viewpoint, then requests those tex-
tures from the cache in batches.

Zoning generally requires preprocessing to determine visi-
bility between spatial regions; however, it can be less expen-
sive than pipeline hooking during run time because it does
not require per-polygon tests. Pipeline hooking will generally
require vigorous prefetching, but it is more versatile in that it
places fewer restrictions on the application as a whole.

The concept of zoning applies itself more naturally to
occluded indoor environments (such as QUAKE’s) than to
outdoor scenes (such as TERRA NOVA’s).
DETERMINE THE DETAIL LEVEL. To operate efficiently, the cache
should only retrieve detail levels that are required to draw
the scene. We can achieve a precise solution by computing
the texture gradients for each polygon that we emit and
using those gradients, along with the nearest and furthest

s SizePlus n Size i

s

s

s s

s

s

i

n
i

i

n

i

i

n
i

i

n

j

j

n
j

j

n
n

n

n

n

= −() = () =

= =

= = + −

= + −

= −

= −

=

−

=

−

=

−
+()

=

−

= =

−

∑ ∑

∑ ∑

∑ ∑

1 2

2 2 2 2

2 2 2 2 1

2 2 1

3 2 1

2 1

0

1
2

0

1

2 2 2

0

1
2 1

0

1

2 2

1

2

0

1
2

2 2

2

2(()
−() = () −()

3

1 1 3SizePlus n Size n

SizePlus n Size i
i

n

() = ()
=
∑

0

Size n n n() = () =2 2
2 2

h t t p : / / w w w . g d m a g . c o m A P R I L 1 9 9 8 G A M E D E V E L O P E R

47

Level 0: 1 x 1

Level 1: 2 x 2

Level 2: 4 x 4

F I G U R E 1 . MIP-maps of a texture at levels 0-2.

vertices of the polygon, to tell us which
MIP-map levels are needed.
Alternatively, finding a conservative
estimation involves cheaper computa-
tions than those required for the pre-
cise solution scheme. We can use a
polygon’s nearest vertex and a per-
polygon precomputed coefficient to
find a conservative upper bound on the
necessary MIP-level. Or we can simply
dodge the problem by always fetching
textures at full resolution. We use the
caching mechanism only to decide
which textures are necessary.

Superficially, the conservative estima-
tion scheme seems more attractive than
attempting to find a precise solution
because of our tendency to play bean
counter with CPU cycles spent per poly-
gon. However, since the conservative
estimation scheme will generally
request higher MIP-levels than the pre-
cise solution scheme, it places more
load upon the cache. When comparing
these methods in the WULFRAM engine,
we found that on average the conserva-
tive estimation scheme would request
textures one or two MIP-levels higher
than would the precise solution scheme.
This meant that the texture cache was
fetching and synthesizing textures that
were about eight times as large as they
needed to be, slowing texture construc-

tion to an unacceptable rate. The frame
rate also became very jumpy because
texture-building costs are less evenly
distributed than per-polygon costs.

However, the effect of the MIP-map
level decision is application-depen-
dant, and the conservative estimation
scheme could be better than the pre-
cise solution scheme in some cases,
especially if polygon counts are very
high compared to the frequency of
cache misses.
FILL THE CACHE. When the pipeline needs
a texture, the cache makes it available.
A synchronous fetching scheme
momentarily pauses execution of the
main program while the texture is
being placed in the cache.
Asynchronous fetching, on the other
hand, allows execution of the main
program to proceed in parallel with the
cache filling process.

If textures are being dynamically
generated into the cache in a CPU-
bound manner, asynchronous fetching
will only result in performance
improvements on a multiprocessor
machine. When a cache fill involves
reading from external storage such as a
bus-mastering hard drive controller,
however, an asynchronous fetch won’t
actively consume CPU cycles.
EMPTY THE CACHE. The cache is of finite

size. When it fills up, we must discard
textures that are no longer needed. The
games surveyed in the latter half of this
article use a few different methods for
emptying the cache. One common
term we’ll use is LRU, meaning Least
Recently Used. In an LRU scheme,
cache elements are marked with time-
stamps indicating the last time they
were used. The element with the oldest
timestamp is discarded.
MANAGE MEMORY. The texture caching
system must find available memory for
new textures efficiently. Also, if pre-
cious cache space is to be effectively
utilized, fragmentation must be kept to
a minimum. For a memory manage-
ment scheme to be effective, it must be
designed around permitted texture
dimensions and the application’s typi-
cal usage statistics. Developers are
using a huge number of approaches to
memory management; I’ve outlined
several in the survey.

Potential Enhancements to Base
Functionality

O nce a caching system is in place,
many things can be done to

improve performance. Here are a few
possibilities:

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

48

T E X T U R E C A C H I N G

F I G U R E 2 . MIP-map level distribution for a typical scene from WULFRAM.

A

B

14,712 polygons

1,238 polygons

On the left is the actual rendered image; on the right is a gray-coded version, with MIP-maps at level 0 drawn in dark gray, ranging up

to level 7 drawn in white. Version A of the scene has detail reduction turned off; version B has it turned on. Note that A generally con-

tains textures that are much smaller than B (the image on the right is darker). The point of this example is to highlight the interaction

between cache design and pipeline design. The detail reduction system in WULFRAM strongly affects its texture usage statistics,

changing the job that the cache must perform. A scheme that is memory-efficient, but behaves poorly with many small textures,

would not suit applications with scenes resembling A, but would be fine for B.

PREFETCHING. Fetching a texture invari-
ably incurs a computational cost;
requests for new textures will often
occur in bursts, resulting in uneven
demand on the CPU. To maintain the
frame-rate level, fetch some textures
before they’re actually needed (during
a lull in the handling of cache misses),
thereby spreading each burst across
more frames.

If texture fetching occurs asynchro-
nously, it’s possible that a texture
won’t have arrived in the cache by the
time we need to draw it. In this case,
we typically draw some sort of stand-in
for that texture, which results in a loss

of image quality. Prefetching textures,
however, minimizes the possibility
that our cache will be missing textures.

An easy way to prefetch textures is to
bias MIP-level computations (recall the
precise solution and conservative esti-
mation schemes) so that larger MIP-
maps are requested slightly early. In
the very common case where the view-
point is moving forward, this has the
effect of automatically prefetching
higher-resolution MIP-maps of visible
textures.
COMPRESSION. If the cache system
manipulates compressed textures,
throughput requirements (and CPU

requirements due to copying) will be
reduced, and a cache of a given size
will be able to hold more textures.
However, this idea has many draw-
backs. A software rendering system typ-
ically needs to manipulate uncom-
pressed textures. Hardware accelerators
use many different types of compres-
sion, so textures will often need to be
uncompressed before they are sent to
hardware (especially when using an
abstracted 3D API such as OpenGL).
The cost of decompressing your tex-
tures will usually outweigh the com-
pression’s initial benefits.
ADVANCED HIDDEN SURFACE ELIMINATION.
Rendering scenes of high depth com-
plexity using the painter’s algorithm
or a depth buffer places an unneces-
sary load on the texture cache; we will
often load the cache with textures
that are actually invisible because
they’re on polygons that are occluded
by other polygons. A reasonable form
of occlusion culling could reduce
cache load tremendously for certain
types of scenes.

Performance Patterns

W e would do well to note some
basic truths about texture-

caching systems. If the viewpoint and
all objects in the scene are stationary,
cache misses will be at a minimum
because the scene will be the same
from frame to frame. In this case, we
only need to fetch new textures for ani-
mated polygons or when the cache is
too small and we are forced to discard
live textures. If we consider both these
circumstances to be rare, then the
cache is basically unstressed with a sta-
tionary viewpoint.

When the viewpoint moves linearly,
small wedges of the frustum will come
into view, and some textures that were
already visible will shift to a higher
MIP-map level (Figure 4a). This shift
causes texture fetches, putting some
load on the cache. The more quickly
the viewpoint moves, the heavier the
load on the cache, because more of
those events are happening each frame.
Backward motion places especially high
stress on the cache because it intro-
duces new textures at their highest
detail levels (textures coming into view
from the sides will generally be needed
at intermediate detail levels).

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

50

T E X T U R E C A C H I N G

Many upcoming games use

“illumination maps” (or

“lightmaps,” the term

used in the rest of this arti-

cle). Lightmaps are a good example of

dynamic texture generation: a source tex-

ture will often be combined with a lower-

resolution lightmap to produce a shaded

texture, which is then used on polygons in

the scene. The shaded texture remains in

the cache as long as it is being displayed.

When a polygon’s lighting changes, its

texture is invalidated and recomputed

using a new lightmap. The generation of

the shaded texture can consume an

appreciable number of CPU cycles, since

effects such as bilinear filtering are often

used to compensate for the lightmap’s

lower resolution (Figure 3).

In the survey of game engines in the

latter half of this article, we’ll speak of

“lumel ratio.” A lumel is one pixel of a

lightmap, and the lumel ratio is a lumel’s

width divided by the width of a texel from

the texture map to which the lightmap is

being applied.

Generating Lightmaps

Bilinear filter

Lightmap x Source texture Generated texture

X

0 .5

.5 1

0 1 1 0

1 .5 .5 1

1 .5 .5 1

0 1 1 0

0 0

0 0

0 .17 .34 .5

.17 .34 .5 .67

.34 .5 .84

.5 .67 .84 1

.67

.17 .34

.17 .17 .25 .67

.34 .25 .34 .84

.67 .84

F I G U R E 3 . A lightmap at level 1 is bilinear filtered up to level 2 so that it can be

combined with a source texture at level 2 to generate the resultant texture. The

lumel ratio in this example is 2:1.

Rotating the viewpoint stresses the
cache even more. At each frame, a
wedge comes into view that widens
with distance from the viewpoint
(Figure 4b). Generally, the new vol-
ume of space revealed by a rotation
will be much larger than the volume
revealed through linear movement,
resulting in a corresponding increase
in cache events.

Long-distance “teleportation” of the
viewpoint is the nastiest type of move-
ment in terms of stressing the cache —
the newly revealed area could poten-
tially consist of the entire frustum
(Figure 4c.)

Quality Loss

If cache filling occurs asynchronous-
ly and a texture isn’t ready when we

need it, we’ll typically use a stand-in
for the texture, such as a lower-resolu-
tion MIP-map. In this case, we suffer a
loss in image quality. We can catego-
rize potential magnitudes of quality
loss in the same way that we just cate-
gorized cache stress: according to view-
point movement.

A stationary scene should incur no
quality loss in the steady state, again
provided that no exceptional circum-
stances exist. Most linear motion in
games is forward, and forward motion
causes the fewest problems — when
we’re nearing a texture and it switches
MIP-map levels from n to n+1, it does
so at the point where there is almost
no visual difference between level n
and level n+1. This is the whole point
of MIP-maps; if the texture arrives a
frame or two late, the impact on the

scene is minuscule.
Handling linear

motion that causes
new textures to come
into view (say, side-
ward or backward
motion) isn’t too dif-
ficult because those
newly-appearing tex-
tures are easy to
prefetch. If a polygon
comes into view at
time t, then at time
t-1 it was probably
just outside the view
frustum and was
rejected during clip
testing. This brings

the polygon quickly to the attention of
a properly concerned rendering engine.

Rotating the viewpoint can be slight-
ly more difficult because the wedge
widens as distance from the viewpoint
increses. Nevertheless, in practice, a
rotating viewpoint won’t cause severe
problems if adequate prefetching is in
place.

Remember, however, that the quick-
er the motion, the greater the quality
loss, because the area of newly-exposed
polygons (which are now carrying erro-
neous textures) will be larger. Telepor-
tation, therefore, is problematic
because all textures will be unexpected.

These same principles regarding a
moving viewpoint also apply to mov-
ing objects in a scene. Note, however,
that rotating objects impose little stress
on the cache. Textures on rotating
objects first come into view edge-on,
which means they are only necessary
at minimal detail levels. As the poly-
gon spins into view, the necessary MIP-
map level rises in a continuous man-
ner, just as it does for textures nearing
a forward-moving viewpoint.

Survey of Engines in
Progress

In the next section, we
examine texture caching

techniques in use by games
and engines currently in
development. Because these
descriptions are only snap-
shots of prerelease software,
they may not be accurately
representative of the games in
their final forms.

The main purpose of these descrip-
tions is to provide examples of the
design decisions that developers have
employed to suit the games they are
making. Because these game engines
are very different from each other, it
isn’t useful to see these descriptions as
“feature lists” in comparing engines to
determine which is “better.” All the
developers involved have been very
kind in sharing information about
their systems and should be appropri-
ately thanked.
GOLGOTHA. According to Trey Harrison at
Crack Dot Com, GOLGOTHA uses 16-bit
textures that are initially JPEG-com-
pressed; they are uncompressed at the
beginning of each level, so the render-
ing engine only sees them as uncom-
pressed. When unpacked, the textures
are stored in the native formats of the
current display (on 3Dfx Voodoo
Graphics cards, for example, opaque
textures are stored as 565 RGB, textures
with holes are stored as 1555 ARGB,
and textures with a full alpha channel
are 4444 ARGB.)

Because of the high resolution and
large number of textures in the game,
textures reside primarily on disk and
are cached into texture RAM. The game
uses about 700 textures, typically
256×256 in size, requiring around
100MB of storage once they are
uncompressed. Textures are power-of-
two in width and height, but not nec-
essarily square. The smallest handled
MIP-map level is 16×16.

To determine which resolution of a
texture it needs, GOLGOTHA uses a con-
servative estimation scheme based on
the closest (1/z) of the polygons being
displayed. When a new MIP-map is
required, it’s loaded asynchronously
from disk (by a separate thread) into a

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

52

T E X T U R E C A C H I N G

a.

04BlowF3.gd

b. c.

F I G U R E 4 . Regions of space revealed by a viewpoint

moving in various ways: a is linear motion (sideways); b

is rotational motion; and c is teleportation. The blue

trapezoid represents the position of the view frustum

before movement; the gold trapezoid is the frustum after

movement.

Golgotha, Crack Dot Com.

temporary holding area in system
RAM. At a fixed point in the rendering
cycle, textures are downloaded from
system RAM into texture RAM and
removed from the holding area, elimi-
nating concerns over the threadsafe-
ness of 3D hardware APIs.

Until a texture arrives in memory,
the MIP-map at the closest available
resolution will be used for rendering.
Some MIP-maps will always be avail-
able since the lowest resolution of each
texture is always kept in texture RAM.
Currently, the engine doesn’t prefetch
textures, although the final version of
the game may implement this feature.

Texture memory is organized as a
linked list of free space (used when
finding memory for a new texture) and
a linked list of allocated space (used
when deciding which textures to dis-
card from the cache). An LRU scheme
is used to throw out textures when the
cache is full.

Memory management becomes “a
bit more ugly” under higher-level
APIs such as OpenGL and Direct3D.
With these APIs, the engine will dis-
cover that the cache is nearly full
when an allocation request fails; tex-
tures must then be freed in a slightly
blind manner because it’s not possible
to know what effect their deallocation
will have on the fragmentation of the
heap.

In order to keep the frame rate level,
the main thread is limited in the num-
ber of textures that it can request per
frame. The limit is imposed on both
the number of textures and the total
bytes requested and is adjustable based
on system speed.
CRYSTAL SPACE. This is a freeware game
engine under the GNU license. It was

written by Jorrit Tyberghein.
Crystal Space textures are 8
bits in depth and a power-of-

two in both width and height, but
not necessarily square. Most textures,
however, tend to be square, typically
128×128 or 64×64. Four MIP-map lev-
els are supported.

The engine uses lightmaps, which
can be RGB or monochrome with a
lumel width of 16:1 (see “Generating
Lightmaps” for a definition of lumel).
All source textures and static lightmaps
are stored permanently in system RAM.
The purpose of the texture cache is to
manage the storage of textures generat-
ed by combining source textures with
lightmaps. When a texture is built for a
specific polygon, bilinear interpolation
is used to expand the polygon’s
lightmap up to the necessary resolu-
tion; the source texture is tiled until it
is the proper size. Since those 64×64 or
128×128 source textures can wrap
across a polygon several times, the
cached textures can be “very large.”
Since Crystal Space currently uses a
software renderer, graphics hardware
cannot impose a maximum limit on
texture sizes.

The texture cache is of a fixed size;
when it’s full, an LRU scheme
is used to discard textures
until there is enough space. At
present, C++ memory man-
agement (nneeww and ddeelleettee) is
used for the texture cache,
though this may be replaced
with a custom memory man-
ager in the near future.
Hyper3D. This engine, written
by John McCarthy, is made to
render exterior scenes and
space environments, with an
emphasis on non-static
objects. Textures are of arbi-
trary sizes and arbitrary multi-

ple-of-8 bit depths. Each
“color” of a texture is an 8-
bit channel representing an
arbitrary property; for
example, a texture contain-
ing RGB color, alpha, and
bump map information is
stored in “40-bit color.”
Each channel is stored con-
tiguously (a buffer consist-
ing of two RGB texels would
be stored as RRGGBB, rather
than RGBRGB). The frame
buffer is also divided into

channels or “output banks.” This mem-
ory organization simplifies the use of
texture mapping operations to create
complex effects. The banks of the
frame buffer are combined into native
format when it’s time to display each
frame. Because of this per-frame trans-
lation, the color model produced by
mapping operations is not restricted to
RGB; HSV textures can readily be used.
Vertex-based lighting is supported, but
because of the customizable screen
mixing, lightmaps can also be used;
they are treated just like any texture,
then used to scale color in the final
buffer synthesis.

Because of the high resolution and
depth of textures, they are stored on
disk and demand-loaded into system
RAM when the renderer tries to use
them. Loading occurs synchronously at
a fixed point in the update cycle; the
number of texture loads per frame is
capped at a maximum (adjustable)
value to keep frame rate level.

When textures need to be displayed
but are not yet loaded, the renderer
draws a flat-shaded polygon instead. As
Hyper3D author John McCarthy says,
“Frame rate was more important than
perfectly correct scenes.”

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

54

T E X T U R E C A C H I N G

DESCENT 3 from Outrage Entertainment.

The Crystal Space engine by Jorrit Tyberghein.

The Hyper3D engine by John McCarthy.

The texture cache
is a linked list of
256×256-byte
blocks. The cache
manager fits tex-
tures together with-
in these blocks. To
reduce fragmenta-
tion, textures are
rounded up to the
nearest 8-texel
boundary in x and y
(so a 73×131 texture
will take the same
amount of space as
a 79×133 texture:
they will both occu-
py an 80×136 aperture). When a new
texture won’t fit into an available
block, textures are discarded based on
their reference counts (textures being
used 0 times are thrown out first, then
textures being used 1 time, and so on).
If the heap becomes too full or very
fragmented, currently-used textures
will have to be discarded and reloaded
during the next frame. These discards
tend to reduce fragmentation.
DESCENT 3. According to Jason Leighton
at Outrage Entertainment, DESCENT 3’s
textures are stored in 16-bit color; they
are all square and power-of-two in
width. QUAKE-style lightmaps are used,
using lumels at a size of 16:1. Because
there are many lightmaps and each
lightmap is small, the caching system
must efficiently handle large numbers
of small textures, in addition to being
effective for larger textures.

The main purpose of DESCENT 3’s
caching mechanism is to efficiently use
the texture RAM of a 3D accelerator.
All textures from the current game
level are held in system RAM, with the
cache pulling them into texture RAM
as needed.

The square, power-of-two texture
geometry allows the system to manage
texture RAM without the possibility of
fragmentation. Texture memory is
divided into an ordered series of
blocks, each of which stores textures
of a given MIP-map level. There are
seven such regions, with the smallest
storing 2×2 textures and the largest
storing 128×128 textures. Suppose
that the renderer needs to use a new
16×16 MIP-map, but the 16×16 region
is full. First, the system checks the
16×16 region to see if any textures can
be discarded. If so, the new texture is

simply uploaded over the old one. If
not, the 16×16 cache region needs to
grow. It can grow to the left, taking
space away from the 8×8 region, or to
the right, stealing space from the
32×32 region (Figure 5). Heuristics are
used to make the right decision about
which way to grow.

Note that when a region grows to
the right, it steals only one texture
from the neighboring region and gets
enough space to hold four of its own
textures. When growing to the left, a
region must consume four of its neigh-
bor’s textures to produce space for
only one of its own. When memory is
stolen from a region, any textures
residing within the reassigned memory
are discarded.

This memory management scheme
requires direct control over a single,
continuous memory aperture. Many
hardware-specific APIs (such as 3Dfx’s
Glide) support this type of access nat-
urally. However, when using higher-
level APIs such as OpenGL or
Direct3D, such direct control is lost,
and this sort of scheme becomes diffi-
cult or impossible.

KAGE. Terminal Reality Inc. designed
this an engine to render arbitrary
polygonal scenes generated in editors
such as 3D Studio MAX. According to
Paul Nettle, KAGE uses lightmaps with
a lumel width of 4:1. It uses a precise
solution scheme to determine the MIP-
map levels of polygons in the scene.

Textures are of unconstrained size,
but their width or height cannot
exceed 256 texels. The cache is stored
as an array of pages. Each page is a two-
dimensional image and is indexed by a
list of occupied space. Within a page,
textures are lined up from left to right.

Each page stores textures only with-
in a certain range of texture heights.
The global page array can be con-
structed so that each page height is a
multiple of n. (If n is 8, there will be
pages that are 8 texels high, pages
that are 16 texels high, and so on.
Since the height is capped at 256,
there would be 32 different page
heights.) Textures are effectively
rounded up to the nearest multiple of
n in height and stored in the appro-
priate page; the gap between the bot-
tom of an allocated texture and the

h t t p : / / w w w . g d m a g . c o m A P R I L 1 9 9 8 G A M E D E V E L O P E R

55

KAGE, Terminal Reality Inc. Wulfram, Bolt Action Software.

a.

b.

8x8 16x16 32x32 64x64

8x8 16x16 32x32 64x64

F I G U R E 5 . DESCENT 3’s memory management scheme. a: Memory is partitioned

into contiguous regions based on texture size. b: The 16x16 region has grown by

taking space from the 32x32 region.

bottom of a page is wasted memory.
In practice, the amount of waste pro-
duced is very small.

When it is time to allocate space for
a surface, the system searches pages of
the appropriate size for a “best fit.”
This search is capable of examining
continuous groups of allocated areas
and gaps between them to determine
whether that area should be cleared for
the new texture (by comparing the
combined most-recently-used values of
allocated shards and taking the lowest).
WULFRAM. In this game from Bolt Action
Software, textures are 8 bits deep,
square, and power-of-two in width. At
any given time, the game will have
random access to around 2,800 tex-
tures, about 1,500 of which are gener-
ated at the beginning of each level.
Most textures are 128×128, and all
MIP-map levels of every texture are
stored on disk — the size of the texture
store is around 58MB. The caching sys-
tem’s main emphasis is on caching tex-
tures from disk in system RAM.

Detail reduction is employed heavily
in landscape rendering using an algo-
rithm based on Peter Lindstrom’s SIG-
GRAPH paper (see References). To
accommodate this detail reduction, the
engine dynamically generates textures
that are composites of the source tex-
tures in the texture store. Monochrome
lightmaps are also used; lumel width
varies within the scene, but the average
is around 16:1.

A dependency management scheme
is employed to synchronize the fetch-
ing of multiple textures from disk to
build a composite. MIP-maps that are
members of visible composites are
locked in system RAM so that they are
readily available when the composite
needs to be resized or broken into
smaller pieces.

Prefetching is used in several places.
Animations (such as explosion
bitmaps) are fetched several frames

ahead, and the first few frames of each
animation are always locked in system
RAM at their maximum detail levels.
Sky textures near the edges of the view
frustum, as well as ground textures
very close to the viewpoint, are
prefetched.

MIP-map levels 0-3 of all textures are
kept in system RAM at all times. The
fetching of textures from disk is per-
formed asynchronously, and whenever
a texture is not yet ready, its highest
available MIP-maps are used.

The texture cache is not limited in
size, but it’s generally kept small by a
cache sweeper, which looks at 1/16 of
the textures in the cache at each
frame and discards those that have
not been used for 300 milliseconds.
After some reflection, this appears to
be a less than optimal cache design,
but it’s adequate for present purposes.
The texture cache generally occupies
between 2MB and 4MB of system
RAM when resolution is set to
640×480. ■

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

56

T E X T U R E C A C H I N G

Caching graphics in a game is certainly not a new practice. See Jonathan Clark,

“Object Cache Management,” Game Developer, February/March 1996, for a discussion

of data caching in the 2D game ABUSE; this article will serve as a good introduction for

those not used to thinking about caching.

For implementations of simpler caching schemes used by successful games, the

reader is referred to the source code to ABUSE (www.crack.com/games/abuse) and

DOOM (ftp://ftp.idsoftware.com/idstuff/source).

More information about KAGE can be found at www.terminalreality.com/engine/

kage.html. For other technical info and some research papers that were influential in

KAGE’s design, see www.grafix3d.dyn.ml.org.

Crystal Space executables and source code can be found at www.geocities.com/

SiliconValley/Horizon/3856.

Information about GOLGOTHA, including demo executables, can be found at

www.crack.com/games/golgotha.

Technical descriptions of WULFRAM’s implementation can be found at

www.bolt-action.com.

General information about DESCENT 3 can be found at Outrage Entertainment’s web

site, www.outrage.com. At present, there is not much technical information, but the

site promises to include developer comments in the future.

John McCarthy’s home page, including some tidbits related to Hyper3D, can be

found at www.geocities.com/SiliconValley/Peaks/6846. He can be contacted at

John@McCarthy.net.

A good explanation of lightmaps can be found in Michael Abrash’s “Quake’s

Lighting Model: Surface Caching,” Dr. Dobb’s Sourcebook #260, November/December

1996.

Zen of Graphics Programming (Second Edition) (The Coriolis Group, 1996) by

Michael Abrash is considered a classic.

You can get details about computing texture gradients in screen space in Chris

Hecker’s “Perspective Texture Mapping Part 1: Foundations,” Game Developer,

April/May 1995.

Hin Jang’s “Tri-Linear MIP Mapping,” available at www.scs.ryerson.ca/~h2jang/

gfx_c.html, contains a good introduction to MIP-mapping.

Peter Lindstrom’s “Real-Time, Continuous Level of Detail Rendering of Height

Fields” (SIGGRAPH 96 Conference Proceedings) outlines an algorithm that’s handy for

landscape rendering.

Paul Nettle’s “The KAGE Surface Caching Mechanism” is available at

www.terminalreality.com/engine/kage.html

Discrete Mathematics and its Applications (McGraw-Hill, 1991) by Kenneth H. Rosen

is a good text for helping you figure out power series.

Functions used to determine texture detail levels can be found in section 3.8.1 of

The OpenGL Graphics System: A Specification (version 1.1) by Mark Segal and Kurt

Akeley. It’s available at www.sgi.com/Technology/OpenGL/glspec1.1/glspec.html.

Choosing which elements of a cache to discard is a well-studied subject. For

starters, look up LRU in Operating System Concepts (Third Edition) (Addison-Wesley,

1991) by A. Silberschatz, J. Peterson, and P. Galvin.

RR EE FF EE RR EE NN CC EE SS

Many thanks to Trey Harrison at Crack
Dot Com, Crystal Space author Jorrit
Tyberghein, John McCarthy, Jason
Leighton at Outrage Entertainment,
and Paul Nettle at Terminal Reality Inc.
for their indispensable help in supply-
ing information for this article.

Acknowledgements

h t t p : / / w w w . g d m a g . c o m A P R I L 1 9 9 8 G A M E D E V E L O P E R

57

P R O D U C T R E V I E W

time. Still, many of these aspects are
beyond the comprehension of all but
the most prickly programmer.
Fortunately, there are a few products
on the market that make this task easi-
er; one such product is Intel’s VTune.

When Intel designed the Pentium
Pro class of processors, it built in
instrumentation that allows you to
identify problems such as cache misses.
VTune uses these counters to profile
your code, which makes it fairly simple
to gather a host of information about
your program’s execution.

Why Profile?

H ere’s an example of an instance in
which profiling comes in handy.

Recently, one of my clients wanted me
to use OpenGL to render a scene for
use as a texture. Everything was fine
until they wanted to alpha-blend the
texture. “Ummm… software renderers

typically don’t support destination
alpha,” I mumbled. After doing a quick
check of pixel formats using both
Microsoft’s and SGI’s OpenGL .DLLs, I
confirmed that destination alpha
wasn’t supported in any mode.
(Destination alpha is a display buffer
that supports the A in RGBA, not just
the usual RGB of the typical raster dis-
play. In OpenGL software renderers,
the alpha is used up to the last color
calculation, then is lost in the write to
the screen buffer.)

Essentially, my problem was that I
had a buffer filled with RGBRGBRGB…
byte values that I needed to convert to
RGBARGBARGBA… format. My first
step was to create a quick program to
copy from one buffer, smash in an

alpha value, and then write out to
another buffer. The code looked like
the following:
vvooiidd SSiimmppllee((iinntt ww,, iinntt hh,, cchhaarr** ssrrcc,,

cchhaarr**ddeesstt))

{{

iinntt ii,,jj;;

ffoorr ((ii == 00 ;; ii << ww ;; ii++++))

ffoorr ((jj == 00 ;; jj << hh;; jj++++))

{{

//// ttaakkee aann RRGGBB,, mmaakkee iitt aann RRGGBBAA

ddeesstt[[00]] == ssrrcc[[00]];;

ddeesstt[[11]] == ssrrcc[[11]];;

ddeesstt[[22]] == ssrrcc[[22]];;

ddeesstt[[33]] == 225555;; //// mmaaxx aallpphhaa

ssrrcc ++== 33;; //// ssrrcc iiss RRGGBB

ddeesstt ++== 44;; //// ddeesstt iiss RRGGBBAA

}}

}}

As Fast as You Want to Be:
IntelÕs VTune 2.5

b y R o n F o s n e r

rogramming today’s PCs is much more complicated

than in years past. Multitasking operating sys-

tems, multithreaded programs, multiprocessor

systems, multipiped CPUs, and multicached

CPUs contribute to programming headaches. All of

these new layers have to be taken into account if

you want to assess how your program spends itsPP
Ron Fosner works on fast 3D rendering code at Data Visualization, is the author of
OpenGL Programming for Windows 95 and Windows NT from Addision-
Wesley, and is teaching a course on code tuning at the 1998 Computer Game
Developers Conference, so stop in and say "Hi" if you're in town.

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

58

P R O D U C T R E V I E W

This was a simple, hard-to-screw-up
implementation. The values came into
the loop byte-by-byte and I simply
slapped on an alpha value of 255 to
make the texture totally opaque. (The
client would do some processing later.)
Now, being the savvy coder that I am
and knowing in advance that I had to
write this review, I proceeded to write

five more versions of this function.
First, I switched over to using pointers,
then I wrote a version that did an in-
place, reverse mmeemmccooppyy. (Assuming that
we’re given the memory for an RGBA
bitmap, we read the RGB values into
this space and then start grabbing val-
ues off of the end of the RGB area and
filling the RGBA area, eventually meet-

ing at the beginning of the bitmap.) In
addition to bytes, I did another version
that operated on wwoorrdds and finally, one
that processed 32 bytes at a time. All of
these functions were in a test harness
so that I could easily validate the
results and play with the functions.
This, then, would be my project with
which to test VTune’s capabilities.

On to The Profiler

Installing VTune was no problem. The
basic installation took up about

45MB and went flawlessly. Setting up
VTune was easy. A wizard took me
through the steps of creating a profiling
project and associating it with code. My
first problem arose when I ran out of
disk space for the database files and a
dialog box popped up with the message
“Assert in barn.c line 666. 1 == 0.” Now,
when I see this kind of thing in produc-
tion code, it doesn’t exactly fill me with
confidence. It took me little time to fig-
ure out what was causing this particular
problem. I cleared some disk space, tried
again, and this time everything worked.
After watching three different progress
meters complete their jobs, I was asked
if I wanted to “Open the session.”
Clicking O.K., I was presented with the
fairly cluttered graph seen in Figure 1.

This figure illustrates my biggest
complaint against VTune. It uses multi-
ple windows to display information. To
get successively more detailed informa-
tion about your program, you drill

F I G U R E 1 . Opening a profiling session in VTune. F I G U R E 2 . VTune’s hotspot window.

U and V pipes. The Pentium family of

processors has two execution pipelines

that can operate in parallel. If you have a

smart compiler or know assembly, you

can theoretically fill both pipelines and

execute two instructions per cycle. Each

pipeline consists of five (for Pentium)

stages, in which five instructions can be

overlapped. Instructions have to fall into

the prefetch, decode, execution, write-

back order. (The Pentium Pro and

Pentium II have a twelve-staged architec-

ture.) What you should understand is that

the order of instructions has a great

effect upon execution speed. In addition,

the V pipe can only process certain

instructions.

AGI. Address Generation Interlocks

occur when you calculate an address and

then use it immediately. Typically, AGI

causes a two-clock stall. However, this

only occurs on the Pentium, and AGI

offers a big performance gain if you’re

running on a Pentium Pro or Pentium II.

L1/L2 Cache. The L1 cache is an 8K or

16K on-chip buffer (one for data and one

for code) in which data can be fetched in

one cycle. The L2 is the secondary cache

(off-chip on the Pentium) and it’s typical-

ly 256K to 1MB. If you can keep loops

within the L1 cache size, your program

execute much more quickly. If you can

prefetch data before you need it, you

won’t have to wait for the data to become

available.

BTB. The Branch Target Buffer contains

a history of mispredicted branches. The

processor actually tries to predict which

way branches will go and maintains a

buffer of mispredicted branches. Keep

loops small, since the buffer holds only

256 addresses. Large loops with lots of

braches can swamp the buffer, thus slow-

ing down your program.

Terminology for the Pentium
Family of Processors

down (read, double-click), which pops
up another window on top of the last
one. It wasn’t unusual for me to have
six, eight, ten, or more windows clut-
tering my screen when using VTune.
And since I was usually only interested
in the information in the most recent
window, I had a bunch of useless win-
dows sitting on my desktop.

Notice that the screen in Figure 1 is
pretty cluttered for a program that only
has eight functions. That’s because the
first window that VTune brings up is of
system-wide activity listed in alphabet-
ical order. Using the minuscule lines of
that you can see in Figure 1, I could
eventually find my program and dou-
ble-click to find out more information.
Because I was careful about how I set
things up, the long cyan line in Figure
1 is my program. Double-clicking on
that line brought up another window
containing the program’s hotspots.
With this window, you can select
hotspots by function, location, source
file, or, if you’re profiling a Java appli-
cation, by Java class (the Java-class
option is nice, but I’d like to be able to
view by C++ class as well). A hotspot
window is shown in Figure 2.

The hotspot window is probably
where you’ll start the initial interpreta-
tion of your profiling results, since it’s
the most useful. While VTune uses
many annoying windows with tiny
lines, its user interface also has some
bright spots. In the hotspots window,
you can not only select source file, loca-
tion, or function, but if you hover your
cursor over a line, a pop-up information
box displays that line’s properties (in

this case, percentage of CPU
and actual number of sam-
ples). In addition, you can
right-click and drag the cur-
sor to zoom in on a particular
area of the display. Or you

can simply double-click on a single line
to look at a particular source file, func-
tion, or location. This navigation
method lets you easily drill down into a
particular file or part of a file, but you
can get carried away and really clutter
up your screen this way. For large pro-
grams with thousands of functions,
you’ll have to do some judicious click-
ing on some very small lines to get any
meaningful information out of the data.
Figure 2 shows the window after I had
selected the various swabbing functions.
The small cyan bar on top is the main
function, and the other bars are the var-
ious versions of the swabbing function.
The bars are color-coded, with red, blue,
and green indicating the three most
CPU-intensive functions. The remaining
functions are alternately displayed in
cyan and magenta. Switching to a loca-
tion-based display brings up Figure 3.

In addition to having pop-up infor-
mation boxes all over the place, you
can right-click on a window and get a
pop-up help menu. The one for the
hotspots window is shown in Figure 4.
These menus are very effective in help-
ing you figure out the interface and
some of its hidden power.

In Figure 3, you see a long cyan line.
This single line displays a hotspot in my
initial code. If you double-click on that
line, you enter a source code–based dis-
play. In order to get VTune to work with
your source code, you’ll have to provide
it with some method of determining
how its sample database relates to the
source code. This is where I ran into my
first serious problem with VTune. In my
initial attempts to get my source code

displayed, VTune repeatedly told me
that no source was available. Yet I had
built a debug version and had correctly
identified the location of the source.
Delving into the Read Me file and the
well-crafted online help, I discovered
that VTune requires a Visual C++ .DLL
in order to decode a .PDB file. No prob-
lem, that file was present. The help file
mentioned that this .DLL was probably
located in the x:\msdev\bin directory
and in any event would have to be
located somewhere along the path.
Now, with Visual C++ 5, Microsoft has
started sharing .DLLs, and it stores these
DLLs in a SharedIDE\bin subdirectory.
Adding this directory to my path solved
VTune’s problem in locating the source.

I noticed that Intel’s web site hosts a
VTune discussion. There were lots of
appeals from fellow programmers cry-
ing that they could not get VTune to
display source with their Visual C++
programs. I noticed that there were no
replies from any Intel folks as to how
to solve this problem. Hello Intel!

Once that problem was solved, I pro-
vided a preprocessed source file (using
the /P option on the compiler line —
you can also provide a makefile so that
VTune can preprocess your source
code), and soon my VTune displayed
my source, along with timing informa-
tion. From Figure 2, double-clicking on
the top magenta line (the line for the
simple swabbing function) and then
double-clicking on the longest line in
the display (which corresponds to the
longest line in Figure 3), gives us the
source code display, shown in Figure 5.

This is where you have to be careful.
With instruction pairing (remember
those U and V pipes), the actual per-
centages shown are typically smeared
across instructions. In assembly view,
for example, the times associated with
a particular instruction are typically off

h t t p : / / w w w . g d m a g . c o m A P R I L 1 9 9 8 G A M E D E V E L O P E R

59

F I G U R E 4 . Pop-up

help example.

F I G U R E 3 . Hotspots location-based display.

F I G U R E 5 . VTune’s source-code display.

by one instruction, sometimes by two
because of pairing issues. So some judi-
cious interpretation of timing results is
in order. Most programmers will be
content to stop at this point — you
have a time associated with functions
and source lines. However, if you ever
need to delve into a more detailed view
or if you frequently need to code in
assembly, then VTune is more than
capable of going the distance.

If you display the mixed assembler
and source, you’ll get the display shown
in Figure 6. Here, each assembly line is
displayed with a time. In addition,
there’s a lot of other information on the
screen. The red and blue blocks on the
right side of the window indicate pairing
issues with the U and V pipes. There are
also blocks that indicate pairing prob-
lems. With some reordering of com-
mands, it’s possible to alleviate some of
the pairing issues, but in practice I’ve
found that there’s only so much you can
do in C or C++. If you’re programming
in assembly, you have many more
opportunities for optimizations.

On the right side of the window are
listed problems associated with the par-
ticular commands. For example, notes
that start with EExxpp__AAGGII are referring to
commands that directly require infor-

mation from the previous operation
and result in an Address Generation
Interlock. For example, fetching a
value and then using it immediately
will typically result in an AGI.
Reordering the operations, such as
sticking an unrelated operation from
another part of the loop in-between
the fetch and usage, will alleviate the
AGI condition. VTune is excellent at

pointing out these types of issues, and
with a little bit of practice, you can
train yourself to avoid coding them.
VTune includes a Code Coach, which
will make suggestions as to how you
can modify your code to make it faster.
The Code Coach currently works only
with C and ASM, but VTune 3.0 will
include C++ support.

Is It Worth It?

Y ou might wonder if purchasing a
profiler is really worth the

expense. In fact, you’ll really never
know until you profile. If you examine
Figure 2, you can see why. I wrote six
separate versions of code to do essen-
tially the same thing. In Figure 2, the
total time spent in the program is dis-
played from the top with main, simple
array access, pointer access, quad
access version 1, quad access version 2,
word access, and byte access. I expect-
ed the pointer version to be slightly
faster than the one using array access,
the version that accessed 16 bits to be
faster than the pointer version, and
finally the 32-bit memory access to be
faster than the 16. It turns out that the
simple, array access function that I
started with (the top magenta line) is
faster than both the pointer version
and the byte access version, finally
tying with the 16-bit access version —
and the simple version uses two
buffers! In fact, it turns out that doing
the complicated math required for the

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

60

P R O D U C T R E V I E W

F I G U R E 6 . Where VTune shines — the disassembly display.

Rating (out of five stars): ✪✪✪✪
Intel Corp.

Santa Clara, CA
408-765-8080
http://developer.intel.com

Price: $199
Software Requirements: Microsoft Windows 95 or NT 3.51 or higher.
Hardware Requirements: ‘486 (Pentium or better recommended), 32MB of RAM, 40MB

of disk space, CD-ROM.
Technical Support: Web-based and hotline support
Pros:
1. Easy to install and use.
2. Excellent processor support.
3. Gives you a lot of information for the price.
Cons:
1. User interface needs some work.
2. Designed only for Intel processors.
3. Might be too much information for those who don’t care about processor issues or

ASM programming.
In short: For the price you get a lot of stuff. If you just need a basic profiler and you can

find one cheaper, then go for it. But for $199, I certainly can’t complain about all the
“extra” things. Version 3.0 will sport a much-improved user interface, but at the higher
price of $279. This new price is getting close to the point where it’s tough to get an
automatic “OK” from your boss. Still, if it helps boost your program’s speed by 10%,
it’s still a bargain.

VTune 2.5

32-bit version was the only thing that
made it faster. Apparently, my initial
assumptions about how the code
would profile were almost totally
wrong. This isn’t an unexpectd result
of profiling, and I wasn’t dissapointed
by it. My experience illustrates the fact
that you often just don’t know how
fast something is until you measure it.
So if you’re still guessing as to where
the slow areas of your program are, do
yourself a favor and try measuring it. I
guarantee, you’ll be quite surprised.

The basic VTune setup uses sampling
(halting the processor every few cycles
and seeing where the code is executed)
to get a profile, but if you have a
Pentium Pro or Pentium II processor,
you can perform event-based sampling
(EBS), which measures performance
related processor events such as data
cache misses. These types of events are
important if you process a lot of data —
such as sending a lot of vertices across
the bus or dynamically altering texture
maps. In addition to the basic program
profiling capabilities that VTune comes
with, it also has a static code analysis
function that will work on .EXE, .OBJ,
.VxD, or .DLL files. If source code is
available, VTune will use it; otherwise,
it will generate assembly. The static
code analysis looks at the code, estimat-
ing the expected performance and
pointing out performance changes you
can make. Another option is to use the
Dynamic Analyzer to dynamically ana-
lyze and fine-tune a small section of
your application. The Dynamic
Analyzer executes the application,
traces its execution, then simulates and
monitors any portion of code that you
specify. This is a way of profiling only a
small section of code for a very detailed
analysis. These options generally take
longer than just plain sampling because
VTune is doing a lot more work.

Besides VTune, the CD contains the
Intel C/C++ and Fortran compilers.
You can also install a plug-in for
Microsoft Visual C++ that will allow
you to use the Intel C/C++ compiler in
the Developer Studio. The Intel
Performance Library Suite includes a
signal- and image-processing library
and a math kernel library, which have
been optimized for MMX processing.
Also included is some Intel architecture
documentation, which contains infor-
mation on writing fast Pentium,
Pentium Pro, and MMX code.

In addition to the regular features
that you’d expect from a profiler, VTune
is capable of monitoring the entire sys-
tem. It is designed to assist in finely tun-
ing code, especially at the assembly
level. It’s surprisingly easy to get up and
running with VTune, and on the whole
the online manual is thoughtfully laid
out and the hypertext links are quite
useful. On the negative side, the user
interface quickly clutters up your desk-
top, and the focus on assembly might
be a bit overwhelming for those who
don’t care to get such a detailed report
at such a low level. However, if you or
someone on your team isn’t scared of
assembly, then VTune can be a valuable
tool for discovering what is actually
going on with your program. The online
documentation (essentially, the only
documentation) was fairly complete.
Intel provides both web-based support
and a hotline phone number. When I
ran into a problem identifying my
source location, I put in a call to Intel’s
hotline and left a message on an engi-
neer’s voice mail. I received a call back
within 24 hours, and after playing some
phone tag, I found the support call only
moderately helpful. But support did call
back to make sure everything was O.K.

By the time you read this, Intel’s
VTune 3.0 should be almost out. Its
features are supposed to include a sin-
gle screen UI and an improved C++ and
ASM coach, plus better support for
Pentium II processors. Stay tuned to see
if the support improves. ■

h t t p : / / w w w . g d m a g . c o m A P R I L 1 9 9 8 G A M E D E V E L O P E R

If you’re looking for good books on tun-

ing programs, I have to recommend two.

DirectX, RDX, RSX, and MMX

Technology by Rohan Coelho and Mike

Hawash ($44.95 from Addison-Wesley,

1997) is highly recommended for all lev-

els of high-performance programmers.

It includes information on DirectX 3 and

a VTune tutorial (the authors work for

Intel). The CD includes a trial version of

VTune.

For those of you who live and breath

assembly, try Inner Loops by Rick Booth

($39.95 from Addison-Wesley, 1997).

This book gives in-depth explanations

about how to write fast inner loops and

gives many examples that show how

changing one line of code can effect a

program's speed, sometimes by 25%.

FF OO RR FF UU RR TT HH EE RR II NN FF OO

s the team at Bungie Software put the

finishing touches on the

MARATHON series of first-person

action games, our thoughts

drifted to bringing our 3D

game experience to the

real-time strategy game (RTSG) genre. We

were inspired by movies such as Braveheart,

with its close-up portrayal of bloody

melees between large forces, and books

such as Glen Cook’s The Black Company, in

which gruesome tales of battle contrast

with engaging and intriguing characters.

We envisioned a dark, amoral world where

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

MYTH:
THE FALLEN LORDS

AA
b y J a s o n R e g i e r

P O S T M O R T E M

62

opposing sides are equally brutal and their unity is torn by
power struggles within the ranks. We dreamed of game play
that combined the realism and excitement of action games
with the cunning and planning required by strategy games.

Our original design document, if you could call it that,
was simply opposing lists of “Stuff that Rocks” and “Stuff
that Sucks.” Anything vaguely cliché, such as excessive refer-
ences to Tolkien novels, Arthurian legend, or “little boys
coming of age and saving the world,” went in the “Sucks”
category. The “Stuff that Rocks” list was filled with ideas that
contributed to the visual realism of the game: a true 3D
landscape, polygonal buildings, reflecting water, particle-
based weather, “blood-spattered battlefields littered with
limbs,” explosions that send shock waves through the ter-
rain, and “lightning frying guys and their friends.”

Our goals for the product were lofty: simultaneous release
on Windows 95 and Macintosh platforms, integrated
Internet play, and a free online service to allow players from
across the globe to battle one another. From this vision,
MYTH: THE FALLEN LORDS was born.

The Making of a Legend, er, Myth

T he project began in January 1996 with four program-
mers, two artists, and a product manager; midway

through development, one programmer dropped out and an
artist was added. Music, sound effects, and cut scenes were
done out-of-house, and a few artists were contracted to help
with interface artwork.

The roots of the MYTH programming team were on the
Macintosh, so most initial coding was done on the Mac with
Metrowerks CodeWarrior. When PC builds were required,
though, we used Microsoft Visual C/C++. MYTH was written
entirely in C.

In addition to creating the shipping product, we devel-
oped four tools to aid in the construction of the game. One
utility, the Extractor, handled the importing of sprites and
the sequencing of their animations. Another tool, dubbed
Fear, dealt with importing polygonal models such as houses,
pillars, and walls. The Tag Editor was responsible for editing
the constants stored in cross-platform data files, which we
called tags. And finally, Loathing, our map editor, handled
the rest. Loathing was built around the MYTH engine and
allowed us to modify the landscape, apply lighting, set ter-
rain types, script the AI, and place structures, scenery, and
monsters.

The artists used Alias|Wavefront’s PowerAnimator and
StudioPaint on a single Silicon Graphics Indigo 2 to create
polygonal models and render all the characters. At one
point, the artists worked separate day and night shifts so
that they could maximize their time on the SGI. Models
were brought into the game using Fear, while the sprites
were cleaned up in Adobe Photoshop and imported with the
Extractor. To create the texture maps for the terrain, the
artists used Photoshop to draw what looked like an aerial
photo and applied it to a 3D landscape in Loathing.

If this sounds like a lot of work to you, you’re right. Most
maps took at least a week or two to create. We considered
using fractal-generated landscapes, but we were worried that
the inherent randomness of such terrain would make it

extremely difficult to design good levels. As a result, all maps
were painstakingly constructed by hand. As the artists put
the finishing touches on the landscapes, the programmers,
who doubled as level designers, scripted the AI for the levels.

MYTH took approximately two years from start to finish. It
began as a six-degree of freedom engine that allowed you to
fly around a landscape. Soon, troops were added, heads start-
ed flying, blood was made to destructively alter the terrain’s
color map, and the network game was born. Most of the first
year was spent developing the initial network/multiplayer
game play. Almost the entire second year was spent develop-
ing the single-player game, refining the levels, and testing
bungie.net, our free online service.

What Worked

1.BRINGING CARNAGE TO THE MASSES. It’s a real trick to create
a simultaneous, identical-look-and-feel, cross-platform

release. It’s even harder to do so within the expected time
frame with only three programmers. Our experience porting
MARATHON, our popular Macintosh-only action game, to
Windows 95 was a valuable learning experience, and we
vowed when starting MYTH that, “This time, we’re going to
do it right.”

Doing it “right” meant designing MYTH from the ground
up to be cross-platform compatible. Ninety percent of the
code in the game is platform independent; the other ten per-
cent is split evenly between routines that handle PC- and
Macintosh-specific functionality. It was a programmer’s
dream come true… we spent almost all our time implement-

h t t p : / / w w w . g d m a g . c o m A P R I L 1 9 9 8 G A M E D E V E L O P E R

Jason Regier is currently a senior programmer at Bungie
Software. He has four titles under his belt and was lead pro-
grammer for two of them. He started making games profes-
sionally in 1994 while attending Harvey Mudd College and
has been doing so ever since. He can be reached at
jregier@bungie.com and welcomes résumés from anyone inter-
ested in joining Bungie for future projects.

63

The MYTH development team. From left to right: Mark Bernal

(artist), Frank Pusateri (artist), Rob McLees (artist, holding

statue of a Trow), Jason Regier (programmer), Jason Jones

(programmer/project leader) Marcus Lehto (artist). Not pic-

tured: Ryan Martell (programmer), Tuncer Deniz (product

manager), Jay Barry (level design).

ing features and solving real problems,
rather than wasting it fighting the OS.

All of the data for MYTH, from animat-
ed cut scenes to the percentage of war-
riors who are left-handed, is stored in
platform-independent files called tags.
Tags are automatically byte swapped
when necessary and are accessed via a
cross-platform file manager.

One of our programmers worked in
conjunction with Apple Computer Inc.
to develop a cross-platform networking
library code-named Über. One of the
greatest things about Über is that it
supports plug-in modules for network
protocols. Thus, although MYTH cur-
rently only allows games over TCP/IP,
AppleTalk, and through TEN, it would
be trivial to add support for new proto-
col modules. MYTH must provide a user
interface to set up the connection, but
once Über establishes that connection,
game play over a LAN is the same as
over the Internet.

To keep the game’s appearance iden-
tical across platforms, we implemented
our own dialog and font managers.
This allowed us (actually, it required
us) to use custom graphics for all inter-
face items. We designed our font man-
ager so that it supported antialiased,
two-byte fonts, as well as a variety of
text-parsing formats. Thus, our over-
seas publishers Eidos and Pacific
Software Publishing were able to local-
ize relatively painlessly. The German
version of MYTH was finished only a
couple of weeks after the English
release, with Japanese and French ver-

sions close behind. The only game
experience that is different for the two
platforms is the installation, and two
players on bungie.net have no idea
whether their opponents are on
Macintoshes or PCs.

2.BUNGIE.NET AND BETA TESTING. MYTH

was also released with integrat-
ed support for our first online service,
bungie.net. This service was designed
specifically for MYTH and was devel-
oped simultaneously. Similar to online
services for other games, it allows play-
ers to connect via the Internet to game
rooms, where they can chat or play
against one another. The Linux-based
server that runs bungie.net keeps track
of player statistics and gives everyone a
score in our ranking system. The ser-
vice’s web site (www.bungie.net) has
access to this database and sports a
leader board that lists the top players.

Our networking layer is based on a
client/server model. Once you adver-
tise a game on the network, you
become a server, and other players join
your game. Network traffic during a
game is limited to the commands
issued by the players. All copies of
MYTH in a network game run determin-
istically and merely interpret the com-
mands that they receive. This makes
cheating difficult; if you hack the game
to perform something illegal, such as
making all your units invincible, you’ll
go out of sync with other players.
When portions of the game data are
periodically checksummed and com-
pared, a message will indicate that

you’re out of sync (and out of luck). So
far, the only form of cheating we’ve
encountered is users trying to exploit
the bungie.net ranking system.

To rigorously test our server load
capacity and the bungie.net code, we
released a public beta of the network
game. We were initially apprehensive
because it was our first public beta test
of a product, but it was an amazing suc-
cess. When errors occur, MYTH alerts
the player, logs the error messages, and
usually allows the user to save a replay
of the problem. Testers submitted these
detailed bug reports via e-mail and
chatted about features and improve-
ments to levels on internal newsgroups.

Best of all, the testers used bungie.net
to give instant feedback to the develop-
ers. This interaction allowed us to gath-
er even more useful information about
bugs, and it made the testers really feel
involved in the final product. By the
end of the beta-testing cycle, we not
only had a clean product, but also had
a loyal following of users who sang our
praises when the NDAs were lifted.

3.3D GRAPHICS ACCELERATION. When the
project started, 3D acceleration

hardware was only just starting to
become popular. Nevertheless, we tried
to keep hardware acceleration in mind
when designing our rendering pipeline.
When the opportunity arose to add
hardware acceleration, the implementa-
tion worked beautifully. We worked
closely with people from 3Dfx and
Rendition and added support for their
chipsets in about a week. It’s amazing

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

64

P O S T M O R T E M

how much these accelerators add to the
smoothness of the terrain, the fluidity
of camera movement, and the realism
of the units and effects. These chips
rock, and great on-site developer assis-
tance made them easy to support.

4.GETTING BACK TO THE PEOPLE. Once
we had released MYTH, we defi-

nitely did the right thing by waiting for
player feedback and then releasing a
patch to address their issues. Since our
public beta test caught most of the
bugs in the shipping product, nearly all
our post-shipping efforts were directed
towards adding user-requested features.
We scoured the newsgroups, read e-
mail, and talked to customers about
their complaints. From these disparate
sources, we compiled a list of improve-
ments for our 1.1 patch.

All major user complaints were
addressed in the patch. We added sup-
port for Rendition and Voodoo Rush
cards. We extended the camera’s maxi-
mum zoom for a better view of the bat-
tlefield. We made our easy difficulty
levels even easier. And we improved
the unit AI. By the time the early
reviews came out, we’d already released
a beta patch that addressed almost
everything on the reviewers’ lists of
MYTH’s failings.

5.DOING MORE WITH LESS. It doesn’t
take fifty people to create a major

cross-platform software title. Period.
Bungie Software has barely half that
number of employees in the entire
company, and we not only develop all
our games, but publish and distribute
them as well! Macintosh and PC ver-
sions of MYTH, all our internal tools,

and our online service were essentially
developed by only six people, and
everything shipped on time with no
major glitches. There’s no big quality
assurance department here at Bungie;
the public did our testing for us, and
we listened to them as seriously as if
they were coworkers on the project.

We didn’t hire any game designers,
writers, or level designers to come up
with our game concept and story line.
MYTH truly is the combined vision of
our team, and each of us feels that it
was our game. We came to work each
day excited about the project, and
we’re damn proud of what we managed
to create.

What Went Wrong

1.STAFFING PROBLEMS. On the flip
side, it became clear very early in

the project that we were understaffed
for such an ambitious undertaking.
Success or failure rested with a handful
of people, and that was extremely
stressful. Losing a programmer halfway
through development added still more
pressure during the final push to get
the game out the door. Additional pro-

gramming tasks had to be shouldered
by the remaining developers, who were
already also responsible for level
design. To alleviate the problem some-
what, we even found it necessary to ask
our busy network administrator to aid
in AI scripting and level design.

We did hire a third artist near the
end of the project, but it was almost
too late. While his contributions to the
final product were by no means
insignificant, it took a long time to get
him up to speed. Similarly, when we
dropped the services of our original
sound guy late in the development
cycle, a new sound team had to rush to
redo all the work.

If you’re looking for good anecdotes
about how we blew off steam with wild
weekend trips to Cancún, you won’t get
any. We all worked incredibly hard, and
did so willingly because MYTH represent-
ed a two-year labor of love. All the great
previews and supportive feedback from
beta testers kept us excited and made us
realize that we really did have something
special on our hands. Nobody wanted to
slack off and allow competing products
to beat us to the shelves. The moral of
the story: staff up as early as possible and
plan to weather the unexpected.

h t t p : / / w w w . g d m a g . c o m A P R I L 1 9 9 8 G A M E D E V E L O P E R

65

2.SCRIPTING. The biggest
announced feature that didn’t

make it into the final version of MYTH

was a scripting language that would
allow the player to modify elements of
the game. We had hoped that user
scripts could be written for extensible
artificial intelligence, as well as custom
formations, net game rules, and map
behaviors.

We selected Java as a good basis for
the MYTH scripting language because of
its gaining popularity, good informa-
tion-hiding capabilities, and relatively
simple byte code interpretation. After
several months of work, early versions
of the game loaded, compiled, and ran
code from tag files. A few simple scripts
worked for presentation purposes,
including one that instructed a unit to
search the battlefield for the heads of
the enemy and collect them in a pile.

Unfortunately, when the program-
mer responsible for the scripting lan-
guage parted ways with Bungie, we
were left with a number of features to
implement and no library of user-
friendly interfaces with the game code.
Given its incomplete state at such a late
stage of development, there was little
choice but to drop this functionality.

3.MORE FRAMES OF ANIMATION. One of
the complaints most often

voiced by players is that the sprite-

based units’ animations are not fluid
enough. At the start of the project,
when we planned for the number of
frames of animation per unit, there
was a good deal of uncertainty regard-
ing how much RAM would be con-
sumed by large texture maps, sounds,
and other resources. As things were, it
was not uncommon for our landscape
textures to reach 5MB in size, and cer-
tain animations already con-
sumed close to 1MB — our
uncertainties were not unfound-
ed. We erred on the conserva-
tive side. Though we imple-
mented caching schemes that
greatly reduced our memory
requirements, there wasn’t
enough time to rerender the
units.

4.PATHFINDING. Perfect
pathfinding seems to

have become the Holy Grail for
games in the RTSG genre, and
MYTH is no exception. The
game’s terrain is a 3D polygonal
mesh constructed from square
cells, each of which is tessellated
into two triangles. Cells have an
associated terrain type that indi-
cates their impassability, and
they may contain any number
of solid objects, including trees,
fence posts, and units.

Ah! Square cells, you say? Having
read previous Game Developer articles
(Bryan Stout, “Smart Moves: Intelligent
Pathfinding,” Game Developer,
October/November 1996; Swen Vincke,
“Real-Time Pathfinding for Multiple
Objects,” Game Developer, June 1997),
your first thought may be that the A*
pathfinding should do the trick. The
first problem with a pure A* approach
for MYTH is that impassable obstacles,
such as troops and trees, may lie any-
where on the terrain. Penalizing the
cells beneath impassable obstacles is a
bad idea because the cells are fairly
large and obstacles are not guaranteed
to be aligned at the center of a cell.
Furthermore, even if a tree did con-
sume exactly one cell, the A* path to
avoid it would make a unit walk up to
the tree, turn, and continue around it.
Units that bump into trees and walk
between the centers of large cells
appear extremely stupid; you really
want your group of troops to avoid
obstacles (including each other) ahead
of time, and smoothly weave their way
through a forest.

To produce this effect, we created our
own pathfinding algorithm. First, we
ignore all obstacles and calculate the A*
path based solely on the terrain impass-
ability. For all intents and purposes, the
terrain in MYTH never changes, so this
path can be calculated once and remem-
bered. Now, we consider the arbitrarily
placed obstacles and periodically refine

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

66

P O S T M O R T E M

our path using a vector-based scheme. If
the planned path would cause us to hit
an obstacle, we need to deviate our
path. We recursively consider both left
and right deviations, and choose the
direction that causes us to deviate least
from our A* path. Thus, we’ve consid-
ered terrain impassability information
and we can avoid arbitrarily placed (or
even moving) obstacles well before we
bump into them.

For every game, pathfinding is a
pretty complex and sensitive beast.
This method worked well for 90 per-
cent of our cases, but rigorous testing
revealed certain cases that were not
adequately handled. As the ship date
drew near, we were forced to say
“good enough” rather than handle
these problem cases and risk introduc-
ing new bugs. Our current algorithm
works pretty well and provides the
effect we sought, but there’s definitely
room for improvement.

5.FEATURES THAT MISSED THE CUT. With
a few exceptions, everything

from our list of “Stuff that Rocks” made
it into the final product. Those features
that didn’t make it came so close and
were so exciting that they definitely
deserve mention.

Near the end of the project, we
started adding support for 3D fire,
which would be ignited by explosions
and flaming arrows. Our flames were
sprite-based 3D particle effects, com-
plete with translucent smoke. Fire
could spread across the landscape and
move at different rates over the vari-
ous types of terrain. To our dismay,
when a spark in the woods spread into
a raging forest fire (as it should), all
the translucent smoke sprites slowed
even fast, 3Dfx-accelerated machines
to a crawl. With little time to rectify
the problem, we had to put out the
fire, so to speak.

We had also planned for wildlife to
scamper across the terrain and for birds
to fly through the air, breathing life
into our empty landscapes. Our
attempt at ambient life started with a
giant squirrel created by one of our
artists. Unfortunately, due to time con-
straints, we didn’t have a chance to cre-
ate very interesting behaviors for it.
Just about the only AI that we had a
chance to code simply made the squir-
rels gravitate towards the player’s units.
We thought it best to drop ambient life
rather than subject players to hordes of
nuzzling squirrels.

Post-Release Reactions

W ith all the prerelease
hype MYTH had

received, we were very anxious
to see how the public would
receive the final version. The
reactions from beta testers were
phenomenally positive, as were
the comments from customers
and reviewers. Our swiftness in
correcting problems and adding
several user-requested features
with a 1.1 patch only earned us
more kudos from the press and
public.

But possibly the most satisfy-
ing result of the game is the
degree to which it lessens the
appeal of playing with a tradi-
tional isometric perspective.
Working on MYTH so consumed
our time that we didn’t get a
chance to play anything else;
we looked forward to playing
some old favorites and the lat-
est demos of our high-profile
competition after we shipped.
It was a real surprise to discover

that once we were accustomed to
MYTH’s 3D camera and its associated
freedom, playing isometric games was
frustrating — the action seemed dis-
tant and unrealistic, while the view of
the world was annoyingly rigid. This
sentiment was echoed in both player
comments and reviews of the game.
Since our MARATHON products were
derided by some as DOOM rip-offs, it
was especially satisfying to hear play-
ers say that MYTH pushes the genre in
a new direction, from which there’s
no looking back.

As of late 1997, MYTH: THE FALLEN

LORDS had shipped 350,000 copies
worldwide in four languages on two
platforms. bungie.net currently boasts
tens of thousands of registered users
and is being expanded to keep up
with the constantly increasing
demand. As I write, it has just been
declared Game of the Year by
Computer Games Strategy Plus and
Strategy Game of the Year by
Computer Gaming World. It remains to
be seen whether MYTH will inspire
other entries into the 3D real-time
strategy game genre. But if nothing
else, MYTH is proof that a very small
team with a strong product vision can
still make a very big game. ■

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

68

P O S T M O R T E M

This topic is much bigger than tex-
ture mapping, rigid body dynamics, or
any of the technoid topics I’ve written
about in the past. If you put my
thoughts on this topic into product
development terms, they would be in
the pre-alpha stage, so bear with me,
and don’t expect a completely polished
and airtight presentation.

I’m going to talk about power and
control in the game industry.

This is a huge subject that permeates
every level of this industry, from the
artistic to the financial. In the interest
of staying focused, I’m going to restrict
my attention to the subject of control
over the technical direction of the
game industry — of where the power to
set technical direction currently lies
and where it should rightly lie.

My experience over the past
year with a very contentious
technical issue has really opened
my eyes and started me thinking
about power and control in this
industry. However, this speech
isn’t about that specific
issue. This speech

is about the meta-issue that was under-
lying it at all times, but was never
brought to the fore and discussed in any
meaningful way. Because I can’t claim
to have all the answers at this pre-alpha
stage, I will simply bring the meta-issue
into the spotlight where we can hope-
fully have an intelligent discussion
about it.

The contentious issue that I’m refer-
ring to is, of course, the 3D API

battles that have raged over
the past year between
Microsoft’s Direct3D API
and the OpenGL API.

However, as I

said, this speech is not about 3D APIs.
Feel free to substitute in your own con-
tentious technical issue (whether it’s
Sega’s choice of 3D chip in their next-
generation console, Nintendo’s choice
to use cartridges, Intel’s MMX instruc-
tions, or something else), and I think

the meta-issue will stay the same: who
makes the controlling decisions and
what are their motivations for making
these decisions?

Before I answer this question, I feel
compelled to give a sort of disclaimer.
A couple of people have tried to paint
me as being “anti-Microsoft,” and this
simply isn’t true. It’s a shame that I
even have to mention this, but I think
if you really listen to what I’m saying
with an open mind, you’ll see that my
comments are not anti-Microsoft in

any way. My ideas are very pro-
developer — they may be

totally useless and random,
but they’re certainly not
anti-Microsoft. That said,
I’ll continue.

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

72

b y C h r i s H e c k e rS O A P B O X
Developer Power

and the “U” Word

I’m going to talk about something I feel very

strongly about. It’s a subject that might get me

laughed off the stage as some kind of wacko, or at

best a hopeless idealist. We’ll see.

Chris Hecker is the technical director of definition six inc. He can be reached at checker@d6.com.

Editor’s Note: This was originally presented as a speech at
the Seattle Computer Game Developer’s Mini-Conference in
November 1997. It has been edited for length.

Continued on page 70.

70

So, who makes the controlling deci-
sions and what are their motivations
for making these decisions?

With regards to my specific example
of the 3D API battles, the answer to the
“who” part of that question is Microsoft.
Microsoft decided to make Direct3D the
“official” 3D game API for Windows.
Now, as for their motivations, we could
formulate various theories, but as I said,
this speech isn’t about the 3D API issue.
Beyond any specific motivations, what
is the underlying motivation at the very
base of all the decisions made? There
only can be one answer for any well-
run, publicly traded company. That
motivation is raising the stock price. Of
course, there are other secondary moti-
vations (especially at the individual
employee level), but at the base of it all,
Microsoft, SGI, Intel, Nintendo, Sega,
Sony, IBM, and all the rest must make
decisions that will raise their stock price,
or they’ll be out of business.

Should we hate Microsoft for its deci-
sion regarding 3D APIs? Should we
think that the company is inherently
evil or engaged in some sort of Usenet
conspiracy hijinks? No. I certainly
don’t hate Microsoft for making this
decision. The company has a fiduciary
responsibility to its shareholders, and

business plans and technical directions
undertaken by Microsoft must uphold
this responsibility.

However — and this is the crux —
just because something is a good direc-
tion for Microsoft or another large and
influential company does not necessari-
ly mean that it’s a good direction for
the game industry. Why should it be?
They’re completely separate entities.
Sure, sometimes (and possibly, the
majority of the time) directions taken
by large corporations will be in line
with what’s best for the game industry,
but sometimes they won’t.

Which brings us to my thesis: it’s our
failure as game developers when a direc-
tion taken by an influential company is
not in our industry’s best interests.

How can it be our failure when we
aren’t the ones making the actual deci-
sion? Because we failed to stop that
decision from being made. We failed to
change the decision into something
that is best for us as game developers,
rather than best for that company’s
shareholders. Rather than the compa-
ny’s direction changing because we, its
customers, demand it, we settle for a
different direction because the compa-
ny demands it. That is 100% backwards
from the way it should be. Rather than

the industry setting the direction, the
company sets direction and the indus-
try is only allowed to provide feedback
on that direction — feedback that may
or may not be heeded. The final deci-
sion lies with the company. Again,
100% backwards.

Remember the last time that you were
sitting in your office trying to write to
some awful API or instruction set, and
you started ranting about how the person
who designed it had clearly never written
a game and how you could design a bet-
ter API in your sleep? And remember how
your coworker told you to shut the hell
up and get back to work because that’s
the way things are in this industry? Well,
guess what. You were probably right and
your coworker was wrong.

The secret to turning this situation
around is understanding where the real
power in the game industry lies. The fact
is that power lies in our hands as the cre-
ative force driving this industry. All of this
money and politics and business exists
because we make games that are fun to
play and that people buy as a result.
Without our games, the industry collaps-
es. That’s why we have the real power.

I’ve seen glimpses of this power in
the past year. One time was when I
organized the OpenGL letter from

Product Company URL Phone Page
3D Studio MAX Kinetix www.ktx.com 415-547-2000 55

3D Studio R4 Kinetix www.ktx.com 415-547-2000 40

Animator Pro Kinetix www.ktx.com 415-547-2000 37

CodeWarrior Metrowerks www.metrowerks.com 512.873.4700 63

Dune 1.0 Nichimen Graphics www.nichimen.com 310-577-0500 10

Game Control Interface (GCI) Quantum3D Inc. www.quantum3d.com 408-919-9999 10

Lucidity RT Digital Media Interactive Inc. www.dmix.com 650-655-4924 11

MeshPaint Positron www.3dgraphics.com 402-330-7011 38

Optimize 3D Connection www.3d-connection.dk +45 32 96 98 62 43

Photoshop Adobe www.adobe.com 408-536-6000 37, 63

PowerAnimator Alias|Wavefront www.aw.sgi.com 416-362-9181 40, 63

StudioPaint Alias|Wavefront www.aw.sgi.com 416-362-9181 63

TrueMotion 2.0 The Duck Corporation www.duck.com 212-692-2000 11

Visual C++ Microsoft www.microsoft.com 425-882-8080 59, 63

VTune Intel http://developer.intel.com 408-765-8080 57

Product Resources

Continued from page 72.

h t t p : / / w w w . g d m a g . c o m A P R I L 1 9 9 8 G A M E D E V E L O P E R

71

game developers asking Microsoft to
support OpenGL on Windows 95. Now,
you might ask, what good did that let-
ter do, since Microsoft didn’t actually
end up supporting OpenGL on
Windows 95? [This was written before
the joint Microsoft/SGI OpenGL
announcement in December 1997, so
maybe the letter did have some positive
effect after all! - Ed.] But you would be
overlooking the real effect the letter
had. No, Microsoft didn’t heed the let-
ter’s demands, but the letter did won-
ders for the morale of game developers
interested in using OpenGL, and it let
people in isolated pockets know they
weren’t so isolated in the industry after
all. It showed IHVs that developers
were serious about using OpenGL for
games. And, of course, it brought the
press spotlight onto the issue.

The reaction to the letter indicated to
me that the power to change the direc-
tion of the industry for the better truly
does lie in our hands. However, tap-
ping into this power is extremely diffi-
cult for two reasons.

First, we only have true power when
we act collectively, and getting people
to think bigger than themselves or their
current project or their company is very
difficult. We need to start thinking
about what’s best for the industry glob-
ally and in the long run, in addition to
how you can get these bugs fixed or
make your milestone on Friday.

If we can’t make that leap, then oth-
ers who can think strategically (such as,
say, a large, well-organized company)
will control our destiny forever, and we
should stop complaining about it. If
we’re not going to do something about
it, then we forfeit the right to complain.

Second, even once people are think-
ing in this long-term and global mind-
set, it’s incredibly hard to get them to
spend any time doing anything about
it. I often hear developers say, “Sure, I
want to use OpenGL in the long run,
but I’ve just got to ship this game
before I can think about it.” Well, there
might not be an OpenGL in the long
run if developers don’t actively support
it. This is true of any technical issue,
not just 3D APIs. There will be a small
window in time in which to act for the
good of the industry. If we miss it, we’ll
live forever with whatever technology
is being pushed, whether it’s the best
technology for our industry or not.

Let’s make a flying leap and say that
I’ve convinced you that we really do
have this power, and you’re now think-
ing globally about various issues that

affect your daily job and this industry
as a whole. Where do we go from here?
I think the raw energy to harness the
power is already here and being spent
on a daily basis. Every time you rant
about some brain-dead technical direc-
tion in which we’re being led, that’s
energy that we could theoretically
apply to fixing the problem. Most
developers rant like that every day, and
that’s a lot of energy that’s just dissipat-
ing. We need to focus it.

One way to focus that energy is to
form ad hoc interest groups, as I did for
the OpenGL issue. I got on the phone
and e-mail and organized a ton of game
developers, and one of the results of
that organization was the letter. This
effort worked and it’s still working, but
it’s incredibly tiring. There would be
days when I was supposed to be work-
ing on our game, but instead I’d spend
all day on the phone or answering e-
mail. I care deeply about this issue, but
I can’t let it ruin my company, so I’m
forced to budget the time that I spend
on it. I like to think that if I could have
worked full time at organizing people,
there wouldn’t even be an issue any-
more — we’d have won already.
However, there’s no way I could spend
all of my time on it, so I’m sort of
forced to do a half-assed job if I want
our company to survive.

I’m not the only one who’s tried to
organize ad hoc technical committees.
Zack Simpson of Titanic Entertain-
ment, who used to be at Origin, tried
twice to do this — once with sound
standards a few years back, and again
with joystick APIs. Like me, Zack found
that it takes an incredible amount time
to organize people and get results.

One could argue that the reason that it
takes so much effort to organize people
on these issues is because people really
don’t care, but I don’t think that’s true.
People do care, and if someone’s doing
the dirty work of organizing (such as me,
Zack, or someone else), then developers
are willing to spend a bit of their own
energy. It’s just that there’s such a huge
busywork barrier to entry for setting up
this leverage that it rarely happens.

So, I think the ad hoc organization
isn’t a viable model in the long term. I
think that we need a more persistent
body, one where the initial costs of set-
ting things up can be amortized across
a number of issues: a body that has
respect so that these companies pay
attention to its demands, and a body
that has teeth for when the companies
don’t pay attention.

Now, this is the part where you want
to get the rotten tomatoes ready. I’m
going to use the “U” word. Union.

Now, of course I don’t mean a union
in the full Jimmy Hoffa-sense of the
term, since this isn’t a labor-manage-
ment situation. Mostly, I use the term
union because it seems to have some
mystical power these days: people
either hate them or love them. Hope-
fully, I got your attention.

However different our situation may
be, if you look at some of the words and
concepts that I’ve been using, such as “a
group of people who are powerful
together, and powerless when separat-
ed,” “collective bargaining,” and
“putting teeth into our demands,” you
start to see some similarities. If you
don’t like the term union, you could call
what I’m talking about a standards body
with the means to enforce its standards.

This would be a body made up of
people who have a vested interest in
seeing the absolute best thing done for
the industry, and that means us devel-
opers. If we were well-organized, we
could easily force companies to do the
right thing, rather than hoping and
praying that they do the right thing, as
it is now. The teeth we would wield
would be everything from simple
endorsements, logo programs, and
press releases (you’d be surprised by
how much these large companies fear
bad press!) all the way to boycotts or
working with a competing vendor to
shut out a disagreeable company.

So now what? How do we move for-
ward? This is where it becomes evi-
dent that my thoughts are still in the
pre-alpha stage. I can think of a num-
ber of organizational models, such as
companies pitching in money to fund
the organization and developers vol-
unteering their own time. I will think
about this some more, and I encour-
age you to think about it as well. I
think the time has come for this idea,
but it’s not going to happen unless we
make it happen.

And now for the requisite quotations:
Voltaire said, “The best is the enemy

of the good.”
This quote is apt for our situation,

but John Miles rephrased it recently for
the Direct3D/OpenGL battles, and I
like his version even better.

Miles said, “The good-enough is the
enemy of the excellent.”

I don’t know about you, but I’m
sick of settling for good-enough when
it’s well within our power to have
excellence. ■

	back:

