
april/may 1996

G A M E D E V E L O P E R M A G A Z I N E

N
etwork gaming will recreate the
computer entertainment indus-
try and revitalize the cartridge
market. Within a few years,
online gaming will be the domi-
nant form of computer recre-
ation. Normally, I preach the
“horizon of predictability”—

beyond which nothing can be said with
certainty—is an astonishingly short 14 to
16 months away. Anyone who predicts
beyond that is like a six-year-old on a
whale-watching expedition, shouting,
“There’s a whale,” and pointing randomly.
And network gaming isn’t going to be a
major force in the next 14 to 16 months
(although by the end of 1996, early
adopters will play exciting new games); it’s
more likely to happen within 5 years. But
we’re on the eve of adopting several tech-
nologies, which point to explosive growth
in multiplayer gaming.

First and foremost, the world is get-
ting wired. In other words, everyone will
be able to at least “get to” game servers.

Second, 3D chips will take the mar-
ket by storm. In the cartridge market, one
need only look at the new generation of
machines to be impressed, while the desk-
top video card market has been fairly bland
for several years as the limitations of Win-
dows 3.1 overshadowed improvements in
card technology, color-depth, and onboard
RAM. The past 14 months have seen an
unprecedented boom in the high-end of
the desktop 3D market—the technology
gap Silicon Graphics has enjoyed for years
has rapidly shrunk and, according to some,
disappeared in the low-workstation price
points. Consumer 3D technology is poised
to enter the market, and card manufactur-
ers will enjoy perfect timing as 3D graphics
upgrades become the upgrade of the year.

Third, network connections will add
voice capabilities. I don’t think DVSD and
ASDL modems will enjoy the explosive

growth I predict for 3D video boards, but
they’ll become popular with niche, moti-
vated buyers. Initially, this motivation will
come from network-based telephony and
multiplayer gaming of existing games.
More importantly, ISDN should fill out
the niche without jeopardizing bandwidth.
ISDN, however, remains a technology
with a considerable barrier to entry. Most
people will wait for the big news. Which
will be high-bandwidth connections, cable
modems or ATM-to-the-curb.

This is the fourth, and furthest out
element prepping us for an online gaming
explosion. I can’t predict whether to buy
stock in cable companies or ATM manu-
facturers, since widespread availability of
these technologies is years away. The
bandwidth numbers of these technologies
are incredible—more than enough to make
believable the wildest ideas of network-
based applications. If these technologies
are really able to deliver and transmit sever-
al megabits per second, a revolution as
profound as the arrival of the desktop PC
will follow.

Finally, why did I say that network
gaming will revitalize the cartridge market?
Let’s talk about the Java terminals comput-
er magazines say have no market. They’re
right to say people won’t download word
processors and work on their resumes with
an Internet terminal rather than their
$3,500 home PC; kids will download the
latest version of “Java Warriors,” to their
cartridge machines. Sun’s second-tier
MicroJava chip is scheduled for the first
quarter of 1997, with a unit price of $25 to
$50. Can an Internet terminal be built for
$500? Let’s see—a Java game cartridge,
hooked up to a cable modem, on a Sony
PlayStation or Ultra64. Do you think it
would sell? ■

Larry O’Brien
Editorial Director

Network Games

G A M E P L A N

6 GAME DEVELOPER • APRIL/MAY 1996

MGA EGAME

Editorial Director Larry O’Brien
gdmag@mfi.com

Senior Editor Nicole Freeman
76702.706@compuserve.com

Managing Editor Diane Anderson
dianderson@mfi.com

Editorial Assistant Jana Outlaw
joutlaw@mfi.com

Contributing Editors Alex Dunne
76702.1142@compuserve.com

Barbara Hanscome
bhanscome@mfi.com

Chris Hecker
checker@bix.com

Mike Michaels
mike@irvine.com

David Sieks
dsieks@arnarb.harvard.edu

Editor-at-Large Alexander Antoniades
sander@mfi.com

Cover Photography Charles Ingram Photography

Publisher Veronica Costanza
Group Director Regina Starr Ridley

Advertising Sales Staff

Western Regional Sales Manager

Steve Nikkola (415) 905-2256
snikkola@mfi.com

Promotions Manager/Eastern Regional Sales Manager

Holly Meintzer (212) 615-2275
hmeintzer@mfi.com

Marketing Manager Susan McDonald
Marketing Graphic Designer Azriel Hayes
Advertising Production Coordinator Denise Temple
Director of Production Andrew A. Mickus
Vice President/Circulation Jerry M. Okabe
Circulation Director Gina Oh
Associate Circulation Director Kathy Henry
Group Circulation Manager Mike Poplardo
Assistant Circulation Manager Jamai Deuberry
Newsstand Manager Debra Caris
Reprints Stella Valdez (916) 729-3633

Chairman of the Board Graham J.S. Wilson
Chairman/CEO Marshall W. Freeman
President/COO Thomas L. Kemp
Senior Vice President/CFO Warren “Andy” Ambrose
Senior Vice Presidents David Nussbaum, Darrell
Denny, Donald A. Pazour, Wini D. Ragus
Vice President/Production Andrew A. Mickus
Vice President/Circulation Jerry Okabe
Vice President/

Software Development Division Regina Starr Ridley

Miller Freeman
A United News & Media publication

http://www.mfi.com/gdmag

I
f you had been at Macworld in San
Francisco earlier this year, you prob-
ably wouldn’t have seen any overt
signs that Apple was auguring in.
More than 70,000 people attended
the show, you had to strong-arm
your way through the crowds, and
everyone seemed upbeat (even actor

Gregory Hines of “White Nights” and
“History of the World, Part 1” fame, who
I saw on the show floor). But the bustling
crowds and high energy at Macworld hid
a frightening fact: Apple is in serious
financial trouble, and despite Hines pres-
ence, there’s no white knight coming to
the company’s rescue.

The latest rumor before we went to
press was that Sun Microsystems was to
acquire Apple. Sun joins an illustrious list
of would-be suitors over the past few
years. Unfortunately, even if this merger
rumor had panned out, it probably would
have been too little, too late. Apple’s mis-
management has taken it to the brink.
Pursuits such as Newton, eWorld, Open-
Doc, Kaleida Labs, and Taligent have
drained the company’s coffers and divert-
ed its attention away from its bread-and-
butter computer business, which has suf-
fered as a result.

Now it appears that the Wintel
juggernaut has more than enough
momentum to carry it past any would-
be competition. Looking back a few
years, it all seems so clear now how mis-
guided Apple’s strategies were. Let’s set
our way-back machine to the beginning
of 1993 and roll tape.

1993: Spindler takes over.
January. Apple is enjoying outstanding
sales of the immensely popular Power-

Book notebook computers. However,
because Apple is cutting its hardware
prices to compete with the free-falling
prices of Windows-based computers,
first fiscal quarter earnings are actually
down compared to 1992.

March. Second quarter results are
again flagging, again due to price cuts.
In response, Apple contemplates cut-
ting its operating expenses through
reorganization.

May. CEO John Sculley announces
Apple is “shifting its focus away from
hardware and concentrating on the sys-
tem software that controls computers
and communications, and even online
information services.” David Coursey of
PC Letter calls the company “immensely
confused.”

June. Sculley steps down after a
ten-year stint as CEO, and the board
names president Michael Spindler to
take his place. Spindler is charged with
navigating the company out of its finan-
cial trouble and taking a greater hands-
on role in management. Sculley stays on
as chairman.

July. Third quarter results send
shock waves through the industry. Apple
reports a whopping $188 million loss, its
largest-ever quarterly loss, due mostly to
a $321 million restructuring. On the
same day, Apple declares that 2,500
employees (over 15% of the company)
will be laid off. Analyst Doug Kass, pres-
ident of the Viewpoint Group consulting
firm, sums it up when he tells the San
Francisco Chronicle, “A well-run company
shouldn’t have to reorganize every couple
of years. To bring out a ground-breaking
product like the PowerBook and then
stumble leaves us with little confidence

Applesauce

Those who do not

learn from history are

doomed to repeat it. At

Apple, Amelio‘s got his

work cut out. Let‘s

jump in the time

machine and look

back on Spindler‘s

reign.

Alex Dunne

C R O S S F I R E

GAME DEVELOPER • APRIL/MAY 1996 9http://www.mfi.com/gdmag

that they can navigate a new market with
Newton. . . .” How prescient.

August. At Macworld in Boston,
Apple unveils the Newton, its $700
dyslexic “personal digital assistant.”
Apple insists it is not betting the compa-
ny on Newton. Good thing.

September. Apple announces it will
license necessary technology to other
companies interested in manufacturing
Macintosh clones, reversing a decade of
closed-architecture strategy. Donald
Strickland, Apple’s vice president for
licensing, hints to the Chronicle that a
big player in the hardware industry will
be among the clone makers.

October. Robert Puette, president of
Apple USA, leaves a day before fourth
quarter results are announced that show
profits down 97%. Apple’s inventory of
unsold products stands at an unhealthy
$1.5 billion. Ian Diery, executive vice
president of Apple’s Personal Computer
Division, takes over for Puette. At Sey-
bold, Diery explains that Apple is central-
izing its forecasting procedures and moni-
toring aspects of sales to prevent product
shortages and overproduction. Sculley
leaves his position as chairman and is
replaced by Apple cofounder Mike
Markkula Jr.

November. Dell Computer, AST
Research, and Compaq allegedly are
approached about licensing the Mac OS
but all refuse Apple’s offer.

1994: Trimming Down,
But Losing Focus.
January. Apple’s online service, eWorld,
debuts at Macworld in San Francisco.
Gary Arlen, a media researcher, quips,
“Unless Apple has something new to
offer, it’ll be tough to hold its own
against the existing players.” eWorld is
priced much higher than competing
online services, such as America Online
and CompuServe. Earnings for the first
quarter are down 75% by the ongoing
price war in the hardware industry,
despite record shipments of Macs.

February. Apple unveils its own ver-
sion of a TV set-top box for delivering
movies and services like electronic shop-
ping. The box, which will sell at about
$300, gets shrugs from analysts.

March. Apple launches its line of
PowerMacs, which are driven by Motoro-
la’s PowerPC chip. The launch at Lincoln
Center in New York is the most antici-
pated event since Apple launched the
Macintosh a decade earlier. Oracle CEO
Larry Ellison considers buying Apple
with help from convicted junk-bond king
Michael Milken. Go figure.

April. Gaston Bastiaens, head of
Apple’s Personal Interactive Electronics
(PIE) division responsible for the New-
ton, is fired because of the product’s dis-
mal sales. The Apple PIE division
employees reportedly break into cheers
upon hearing the news. Spindler blames
poor Newton sales on retailers who
weren’t doing enough to explain the
Newton to customers.

May. Rumors fly that Apple is try-
ing to persuade IBM to produce Macin-
tosh clones. Ten years earlier, IBM was
portrayed as Big Brother in Apple’s
famous television commercial launching
the original Macintosh. How times
change!

July. System 7.5 is launched. Ana-
lyst Bruce Lupatkin of Hambrecht &
Quist says the operating system is “a
nice, evolutionary extension, but there is
nothing dramatic about it.”

September. Apple starts an aggres-
sive campaign to license its operating
system, targeting major U.S. companies.

October. AT&T holds talks with
Apple about a possible takeover, accord-
ing to the Chronicle. Motorola is also
mentioned as a possible contender for
Apple. None of the companies com-
ment. Spindler reportedly talks with
IBM about securing an equity invest-
ment in Apple and possibly leasing the
MacOS.

November . Apple, IBM, and
Motorola team up to design a common
machine. Two weeks later at Comdex,
IBM backs away from the alliance, citing
concerns from its corporate customers
who think IBM might be wavering in its
support for OS/2 by working closely
with Apple.

December. Power Computing, a
company with only 20 employees, and
Radius announce that they will be the
first companies to sell Macintosh clones.

1995: The Downward Spiral
January. Information Week reports that
Oracle, Philips Consumer Electronics,
and Matsushita are about to undertake a
hostile takeover of Apple. Oracle is
apparently interested in the MacOS and
Taligent software, while Philips and
Matsushita will split the hardware busi-
ness. All parties deny the rumor, and
Apple reiterates it is not for sale.

Apple posts record revenues of
$2.83 billion for the first fiscal quarter,
due largely to outstanding Power Macin-
tosh sales and cuts in operating costs.

February . The Supreme Court
denies Apple’s appeal in a seven-year old
lawsuit against Microsoft. The suit
accused the Redmond company of copy-
ing the Macintosh graphical user inter-
face, dating back to Microsoft Windows
2.03. Apple dashes off a letter to U.S.
District Judge Stanley Sporkin, warning
Sporkin that Microsoft has bullied
Apple and can’t be trusted to abide by
the proposed antitrust settlement. Gates
chastises Spindler for Apple’s legal tac-
tics, and denies Apple’s allegation that
Microsoft threatened to stop producing
software for the Macintosh.

March . Spindler acknowledges
Apple is having problems filling orders
for Power Macintoshes because of poor
planning and component shortages.
Salomon Bros. cuts its earnings esti-
mates as a result, lowers its rating on
Apple to underperform, and the compa-
ny’s stock drops 8% in one day.

April. Spindler announces another
major shakeup at Apple. Four divisions
are merged into two, and veterans David
Nagel and Dan Eilers are given leader-
ship over the divisions. Ian Diery,
Apple’s executive vice president and
head of the PC Hardware division,
resigns.

Meanwhile, rumors swirl that
Canon Inc. is in talks with Apple about
acquiring the company.

May. Apple Chief Financial Officer
Joseph Graziano states that Apple is not
for sale and that the impact of licensing
the MacOS will be “modest” during
1995. Radius announces it has to wait
until fall to ship its Macintosh clones in
large quantities due to a shortage of parts.

C R O S S F I R E

10 GAME DEVELOPER • APRIL/MAY 1996 http://www.mfi.com/gdmag

C R O S S F I R E

June. eWorld celebrates its first
birthday. With a subscriber base of only
80,000, prices slightly higher than com-
peting services, and no internet connec-
tions other than e-mail, the service is
described by one analyst as, “America
Online with nicer artwork, no content,
and no users.”

July. Frank Seiji Sanda, the presi-
dent of Apple’s successful Japanese oper-
ation, quits unexpectedly. Apple’s third
quarter results fall short of expectations,
as earnings are down due to supply prob-
lems. Markkula sells 400,000 shares of
his Apple stock. Apple declines to
explain why.

August. Apple tries to dismiss the
hype surrounding the launch of Win-
dows 95 with their “been there, done
that” slogan. Senior Apple executives
sell hundreds of thousands of more
shares of Apple stock. In two months,
Markkula has pared his stake in Apple
by $44.1 million.

Apple executives have quietly
drawn up “golden parachute” agreements
for themselves, entitling management to
large payments in the event they lose
their jobs or are demoted following a
takeover. Spindler’s payout alone could
be worth as much as three times his
salary and bonus, or around $3 million.

September. In one day, the compa-
ny delivers a double-whammy of bad
news. First, it advises investors that its
earnings for the fourth quarter will be
“well below” Wall Street estimates. Sec-
ond, it announces that it has stopped
shipping its new PowerBook 5300
models, due to problems with their
lithium ion batteries that have a ten-
dency to overheat and ignite.

Following this announcement,
business columnist Herb Greenberg
slams Spindler. “Yesterday, Apple
appeared to be spinning out of control,
but Spindler was nowhere to be found.
On a day when he should personally
have been reassuring investors, the press,
and customers that all is well, he was out
of his office, and he wasn’t expected to
return until Monday. Terrible timing.”

Apple lays out plans to revamp
eWorld, by offering sections of the ser-
vice to users of the World Wide Web,

and allowing eWorld subscribers access
to the web from within the service.
eWorld, still lagging far behind other
services with only 115,000 members, is
in trouble.

An increasingly skeptical press and
analyst community speculates whether
Spindler is going to get the boot from
Apple. Markkula remains strongly
behind Spindler, however, and there’s
little chance that the board will act to
fire Spindler without the Chairman’s
say-so.

October. Joseph Graziano, Apple’s
CFO for six years and a member of the
board, leads efforts within the board to
remove Spindler, reports the Chronicle.
According to unnamed sources,
Graziano says, “Either Spindler goes
and the company is sold, or [I] will
quit.” Apple’s board meeting held there-
after produces no changes, and
Graziano announces his resignation, cit-
ing “differences of opinion” with
Spindler as the reason.

Commenting on Graziano’s depar-
ture, Kimball Brown of Dataquest tells
the San Jose Mercury News, “The most
dangerous job in high tech today is the
No. 2 spot at Apple, because Spindler is
not comfortable sharing power.”

Approximately a week later, Apple
undergoes another reorganization. In the
shakeup, the media group, which used to
report to senior vice president Dan Eil-
ers, now reports directly to Spindler.

November . Dan Eilers resigns.
Apple and IBM’s joint venture, Kaleida,
shuts down.

December. Apple announces it will
probably lose money in the first quarter,
citing its inability to meet production
demands and its shrinking profit margin.
Apple’s stock drops 15% in the two days
following this announcement, and as a
result Standard & Poor’s Corp. puts the
company’s debt on credit watch for pos-
sible downgrading.

Apple and IBM end their partner-
ship in Taligent, an effort to advance
object-oriented software technology.
Taligent becomes a subsidiary of IBM.

1996: Chapter 11?
Acquistion? Your Call
January. A busy month indeed. At Mac-
world, Apple makes no major news
announcements and holds no news con-
ferences for the press. Spindler doesn’t
even make an appearance at the show.

Another exodus of Apple executives
takes place, as a stream of vice presidents
depart: Barbara Krause (VP of Corporate
Communications), Jim Groff (VP of
Education Marketing), Peter Friedman
(VP and General Manager of Internet
Sources), Keith Fox (VP of the Home
Division), and Don Strickland (VP of
Business and Government Sales). The
number of high-ranking executives that
have left in the past year stands at 14.

Apple reveals that it lost $60 mil-
lion during the traditionally strong
Christmas quarter and that its profit
margins have hit a record low of 15% —
despite further price cuts. Apple’s mis-
judgment of demand for the more pow-
erful Power Macintoshes resulted in a

12 GAME DEVELOPER • APRIL/MAY 1996 http://www.mfi.com/gdmag

Micheal Spindler, CEO
Photo Courtesy of Apple Computer Inc.

Mike Markkula, Chair
Photo courtesy of Apple Computer Inc.

backlog and lost sales during the holiday
season. Apple announces it will undergo
a huge restructuring, cutting 1,300 jobs
at the company, and jettison unprofitable
businesses.

Radius sells its clone-making busi-
ness to Umax Data Systems. Linley
Gwennap, editor of Microprocessor Report
opines to the Chronicle, “It sounds to me
as if Umax and Radius decided it wasn’t
worth having both of them [making
clones] and that they’d rather combine
their efforts...[the demand for clones] is
not taking off as quickly as people
thought it would.”

The Wall Street Journal reports that
Sun Microsystems is in negotiations to
acquire Apple, and Sun’s stock falls 9%.
Apple denies the rumor, states that it is
not for sale, and says that Spindler has
the full support of the board.

Markkula announces that Spindler
is suffering from health problems and
says Spindler’s role at the company

“could be lessened or redefined.” Some
speculate this may be a way to ease the
CEO out of the company gracefully.
Others demand Markkula’s resignation,
blaming him for the company’s travails.

At the annual shareholder’s meet-
ing, insults fly at Apple management. As
Spindler and Markkula sit in front of
500 investors and employees, there are
calls for resignations, accusations of
incompetence, and demands for im-
provement. Employees complain about
the loss of competent managers. One
employee almost breaks down crying,
explaining that though he loves Apple,
he’s considering job offers from other
companies.

February. Apple’s board announces
that Gilbert Amelio, former president
and CEO of National Semiconductor,
will replace Spindler and take over the
Chairman position from Markkula. The
appointment signals to the world that an
acquisition by Sun Microsystems is off.

Where to From Here?
That’s the saga as we go to press. What-
ever its future, major changes will contin-
ue to rock the company. Some have sug-
gested that by spinning off its hardware
business and focusing solely on its more
profitable software business, Apple would
insulate itself from the cutthroat hardware
price wars which have caused the compa-
ny’s profit margins to dive. It’s not a bad
idea, but I doubt Apple will consider it,
given their strong feelings about keeping
the company intact.

This past January, one Macworld
attendee was resigned to all of the
depressing reports about Apple: “Most
Macintosh people are used to hearing
bad news all the time.” Unfortunately,
the worst may be yet to come. ■

While Alex Dunne is allegedly a Mac
fan, coworkers have never seen him use
one. Contact him via e-mail at
76702.1142@compuserve.com.

C R O S S F I R E

14 GAME DEVELOPER • APRIL/MAY 1996 http://www.mfi.com/gdmag

Games Aren’t
Just for Kids
Anymore!

S E Z U !

SATISFACTION GUARANTEED!SATISFACTION GUARANTEED!
Dear Editor:

G
reat issue! Particularly, “The Play’s The
Thing” by Barbara Hanscome (Dec./Jan.
1996). I especially enjoyed reading quotes

from people like Corey Cole and Jonathan
Knight. Please do that again and more often. I
much prefer to hear developer people talk
than reviewers pontificate. Insights are
invaluable.

Courtland Shakespeare
Via e-mail

EAT, SLEEP, AND DRINK GAME DEVELOPEREAT, SLEEP, AND DRINK GAME DEVELOPER

Dear Editor:

M
y copy of Game Developer and a Snapple
6-pack were placed on my desk by a car-
ing individual. Before looking at the

cover, I tried to picture what it would look
like. “Windows 95 and Game SDK” page 62,
“The Game Companies in and Around the
New York Area” page 94, and “The Best
C/C++ Compilers for Windows 95” page 105.
I understand that the last two are recent
requests, and you could not have possibly
known of their existence. But the first arti-
cle—there are 100 million Windows users in
the world, and half of them have Windows 95.
DOS is dead, and Windows 95 is the future. I
just realized my opportunity, and I was hop-
ing that you would help us lone programmers
get a jump start with Game SDK. The last two
requests are desperately needed by a young C
and assembly student hoping to get a junior

position in any game company. Help me,
you’re my only hope.

Sean S. Whalen
Via e-mail

Editorial Assistant Jana Outlaw responds:
Stay tuned: upcoming issues cover game pro-
gramming using the Microsoft Game SDK.
Maybe the Multimedia Careers section of the
magazine will point you in the right direction,
in the meantime.

CHRIS HAS FANS!CHRIS HAS FANS!
Dear Editor:

T
hanks for the excellent series on “3D Texture
Mapping.” In the discussion of the lines-of-
constant-z approximation to perspective tex-

ture mapping, Chris Hecker writes, “walls and
floors are special cases where lines-of-con-
stant-z are vertical and horizontal,” but explains
why it is not satisfactory in the general case.
Maybe the best answer is to use the lines-of-
constant-z method for the special cases of walls
and floors, and to use the subdividing affine
method for polygons that require the general
solution. A closer examination of the lines-of-
constant-z method for this very common special
case would be valuable, although maybe it is
too simple to fill a whole column.

Steve Schonberger
Via e-mail

Chris Hecker responds:
Some people have vertical and horizontal ras-
terizers and they use the vertical ones for

16 GAME DEVELOPER • APRIL/MAY 1996

SAY IT !SAY IT !
The shady staff of Game Developer would love to hear your comments, questions, and suggestions! Please send them to: Game
Developer magazine, Sez U!, 600 Harrison St., San Francisco, Calif., 94107. For those of you who do have access to the Inter-
net, send e-mail to joutlaw@mfi.com or go to the Game Developer web site at http://www.mfi.com/gdmag. Thanks!

http://www.mfi.com/gdmag

Our Readerspolygons that are more wall-like and the hori-
zontal ones for polygons that are more floor-
like. This lets you subdivide less if you’re doing
adaptive subdivision (since your “canlines” are
closer to the lines-of-constant Z, so there’s
less warp along them), but it means you have
to integrate both rasterizers in your code.

ANOTHER SATISFIED CUSTOMERANOTHER SATISFIED CUSTOMER
Dear Editor:

T
he magazine is great! I don’t read anything
but Game Developer. It’s my one-stop infor-
mation magazine!!!

Anonymous

INQUIRING MINDS WANT TO KNOWINQUIRING MINDS WANT TO KNOW

Dear Editor:

I
was reading Michael J. Norton’s article,
“The Mode X-Files” in the Oct./Nov. 1995
issue of Game Developer magazine and was

wondering how I would get in contact with
him. He stated in the article that he was
working on a book for programming the Win-
dows 95 SDK. I’d like to find out when he
thinks the book will be done and who will be
publishing it. I’ve been looking for a book like
this for a while now.

Robert Hildebrand
Via e-mail

Michael Norton responds:
I'm glad to hear there is interest in a Microsoft
Windows 95 Game SDK book. This summer,
Spells of Fury by Waite Group Press, will be
reaching the shelves of your local computer
book store. This is a culmination of a year of
work on a very exciting project. As a profes-
sional in the industry, I pulled together my
resources to form a development team includ-
ing programmers, artists, and musicians to
put together ten fully functioning DirectX

games. The chapters devoted to these games
go through every inch of code with a magnifying
glass. Source code in these game examples
were evaluated by professionals at Microsoft
and other software engineers in the game
industry for accuracy.

The subject matter in Spells of Fury will sat-
isfy a broad range of programmers, from the
novice to the professional developer—no stone
is left unturned.

This month, our read-

ers search for books,

examine lines-of-

constant-z, and

explain their feelings

about Game Developer

magazine and its

staff.

ERRATA

Q
uality is job one here at Game
Developer magazine. We strive to
correct any mistakes we’ve made
and give any additional informa-

tion that may be helpful in providing
you with the best product we can.

• In “Bit Blasts” (Feb./Mar. 1996),
we told you that you could order a
trial demo CD of Caligari's True-
Space2 for $14.95. One reader,
David Scarbrough, informed us
that at ftp.caligari.com, you can
download it for free. The directory
is /pub/trueSpace, and the two
files are ts2trial.txt and ts2trial.zip.
Anonymous login is allowed; you
can use your e-mail address for
your password.

• In Chris Hecker’s “Let’s Get to the
[Floating] Point” (Feb./Mar.
1996),there were two exponent
typos. On page 20, it says, “so we
can represent numbers as large as
21000 and as small as 21000.” The
second exponent should be 2-1000.
On page 22, it also says, “What
happens if we add in 223....” The
number should read 223.

http://www.mfi.com/gdmag18 GAME DEVELOPER • APRIL/MAY 1996

What’s
the Buzz?

B I T B L A S T S

A
t press time, we are looking forward
to the Computer Game Developer’s
Conference. Here are some products
to check out while you are there.

Capture Polhemus
Polhemus is building on its motion cap-
ture system; Ultratrak Pro is its new ver-
sion. It incorporates DSP technology and
is targeted toward game developers,
movie studios, and production houses
involved in animation and special effects.
It uses real-time, six-degree-of-freedom
data from numerous sensors. Data can be
processed in real-time for live broadcast
or virtual set applications. Using the Long
Ranger transmitter, Ultratrak Pro pro-
vides a working area of more than 700
square feet. Drivers are available for most
major software packages including
Alias/Wavefront, Softimage, Side Effects,
4DVision, and Hash Animation. Ultra-
trak Pro is an integrated system free of
DIP switches, in a 19-inch rack mount-
able chassis. Data is transmitted to a
workstation over an Ethernet or SCSI
interface or may be saved to the hard
drive. Pricing depends on receiver and Hz
configuration and ranges from $23,500 to
$71,500.
■ For more information contact:

Polhemus Inc.
1 Hercules Dr.
Colchester, Vt. 05446
Tel: (802) 655-3159
Fax: (802) 655-1439

Stealth 3D 2000
Diamond announces Diamond Stealth
3D 2000, a new multimedia accelerator

that delivers 3D animation, 2D graphics,
and digital video playback acceleration for
PCs running Windows 95. It uses S3’s
triangle-based polygon rendering engine
and features perspective-corrected texture
mapping, bi-linear filtering, MIP-map-
ping, alpha blending, depth-cueing, and
fogging. It comes standard with 2MB of
DRAM that is split between display
memory and Z-buffer memory, but can
be upgraded to 4MB of DRAM for bet-
ter Z buffering, texture mapping, and bet-
ter acceleration of 3D applications at
higher resolutions. The Diamond Stealth
3D 2000 features full-motion digital
video playback at 30 frames-per-second
by off-loading functions from the host
CPU. The Diamond Stealth 3D 2000
with 2MB EDO DRAM for the PCI-
bus costs $300. Upgrades, such as the
MPEG Video Player 1100 daughtercard
or the Diamond DTV 1100 TV tuner,
are available from Diamond as well.
■ For more information contact:

Diamond Multimedia
2880 Junction Ave.
San Jose, Calif. 95134-1922
Tel: (408) 325-7000
Fax: (408) 325-7070
Web: http://www.diamondmm.com

Softimage 3.0
Microsoft is now shipping a Windows
NT version of its 3D modeling and ani-
mation software, which offers the same
animation environment as Softimage 3D
for Silicon Graphics. Softimage 3D for
Windows NT requires Windows NT
3.51 (with Service Pak 2 installed), a min-
imum of 64MB of RAM, 1GB of hard-
disk space, and a supported OpenGL

20 GAME DEVELOPER • APRIL/MAY 1996

What‘s new in the

world of developing

games? Check out

products that capture

motion, that model

animation, and that

accelerate it. And a

word from the Gossip

Lady mourning the

loss of Eden at Apple.

Diane Anderson

http://www.mfi.com/gdmag

graphics accelerator card. Softimage for
Windows NT is optimized for several
turnkey hardware configurations. Softim-
age 3D for Windows NT costs $7,995
through the Softimage network of VARs.
Owners of version 2.66 or earlier can
upgrade for approximately $1,995 (hard-
ware not included). Softimage also
announced support for Silicon Graphics
Indigo2 Impact workstations, adding to
the list of certified configurations.

■ For more information contact:
Microsoft
1 Microsoft Wy.
Redmond, Wash. 98052
Tel: (800) 576-3846
Fax: (206) 936-7329

Web: http://www.softimage.com

Diane Anderson is managing editor of
Game Developer magazine.

S
c
h

m
o

o
z
e

n

e
w

s
...

S
c
h

m
o

o
z
e

n

e
w

s
...

22 GAME DEVELOPER • APRIL/MAY 1996 http://www.mfi.com/gdmag

Multimedia
Shakeout Intensifies...
Digital Pictures axed 30 people a
couple of weeks ago. Sanctuary
Woods drop-kicked their CEO (Scott
Walchek) and laid off 20 of their 100
people. Guess Director games didn’t sell
too well over Xmas! After lulling Comp-
ton’s game people with promises that it
would continue producing “quality”
games, SoftKey fired virtually the entire
game development crew. Reports are
that the few who received offers to stay
opted to go looking for greener pastures
anyway.

Death Threats from Disk
Pirates in South China
The organization that represents the
global music industry has closed its
Canton, China operation after staff
learned that local CD pirates had hired
hit-men in an imaginative anti-anti-pira-
cy move. Hopefully U.S. and Canadian
pirate shareware publishers won’t get
ideas!

The Miles Drivers Boogie
RAD Software acquired John
Miles’s AIL sound library, renamed it to
“Miles Sound System” and intends
to extend it to the Mac and PowerMac.

Speaking of Macs...
Apple Computer Inc. seems to be
withering on the vine. With a huge loss
for the last quarter and CEO Spindler’s
departure, things are looking pretty bleak
for the hardware and software manufac-
turer. One comment heard on the news:
“Is the Macintosh going to become the
next eight-track tape player?”One thing
is certain: now is a REALLY lousy time
to be an Apple employee. Layoffs are
looking likely. Industry analysts are pre-
dicting up to one quarter of the Apple
employees will receive pink slips in a
major reorganization. The moral of the
story here is: “Evolve or die.”

The sad part is that if Apple had had
smarter management, they’d be in
Microsoft’s position right now.
Instead, they’re in the situation that if
they had sold off their manufacturing
division and invested the proceeds in
Microsoft stock, they would have had a
much better year. The Gossip Lady
predicts that Apple will be sold in the
next year, and that they’ll become a
superb software division for a major
hardware company.

Wanna talk?
E-mail The Gossip Lady at
71501.3553@compuserve.com.

B I T B L A S T S

C
heck the date on the Game
Developer in your hands. Does
April/May 1996 mean any-
thing special? How about the
same issue last year: April/May
1995? What, you have no idea
what I’m talking about? That’s
understandable, since it was so

long ago. I’ll refresh your memory with a
small quote from my column in that
1995 issue: “My next two articles should
fix this lack of documentation, first by
giving an easy-to-understand mathemati-
cal foundation…and sample code to
implement the naive algorithm. In the
next article, we’ll speed it up to interac-
tive performance.”

Yes, you guessed it, the April/May
1995 issue contained the first installment
of my “two-part” perspective texture
mapping series. Now, a year later, we’re
finally going to finish the two part series
with this issue, part five. True to my soft-
ware engineering background, I can’t
estimate how long it will take me to do
something to save my life. However, I
feel the somewhat lengthy trip has been
worth it.

A Long, Strange Trip
Unlike the first installment, this article
will not be a journey through the elegant
theory and math behind perspective tex-
ture mapping. Instead, this article will
romp through the myriad optimization
tricks and techniques we can use to
squeeze every last bit of texture mapping
performance from the Intel Pentium
processor. While the rest of the series was
platform independent, we have to turn to
assembly language to get the most out of
modern processors, and the Pentium is

the market leader (and the CPU I know
best). You’ll still get a lot from reading
this regardless of your chosen platform,
but the code is specific to Intel. However,
I got a new Macintosh clone from Power-
Computing with a PowerPC 604 chip in
it, so don’t be surprised to see a PowerPC
version of this texture mapper at some
later date (as soon as I get used to the
concept of 32 general purpose registers)!

To quickly bring us up to date, we
decided to use a subdivided affine
approximation to the true perspective
curve (Behind the Screen, Dec./Jan.
1995). This approximation uses short lin-
ear spans with perspectively correct end-
points to approximate the rational per-
spective curve. I modified the DrawScan-
Line function to do the affine subdivision
in C++ and the texture mapper got three
times faster than the version with the
divides. I uploaded a sample application
that contains the texture mappers we
developed so far. Of course, I was late in
uploading it (see above comment about
saving my life), and I apologize to anyone
who looked and couldn’t find it. The
sample is up now though—see the end of
this column for information on where to
find it.

I can provide an overall outline for
the optimizations we’ll cover before
going into detail. Our main optimiza-
tions will take advantage of the dual inte-
ger pipelines on the Pentium to imple-
ment a very fast fixed-point linear texture
mapper for our affine spans, and we’ll use
the floating-point unit’s ability to overlap
execution (especially those costly perspec-
tive divides) with integer instructions to
calculate the interpolation values for the
next span as we render the current span.

Perspective Texture
Mapping, Part V:
It’s About Time

Finally! The moment

game developers have

been waiting for. At

long last, Chris Hecker

unveils the denoue-

ment of his texture

mapping series. What

a long, strange trip it

has been.

Chris Hecker

B E H I N D T H E S C R E E N

GAME DEVELOPER • APRIL/MAY 1996 25http://www.gdmag.com

In addition, we’ll pull a bunch of cheap
tricks along the way to give it that extra
kick.

Carry Me Away
Listing 1 shows the C++ linear inner
loop for our DrawScanLine function. While
this is better than our previous loops with
their divides, it’s still not great because
it’s doing a multiply and a bunch of shifts
and adds for each pixel. If we look at why
it’s doing a multiply, we see it’s calculat-
ing the source texture offset for each new
coordinate, even though we’re just doing
a normal linear interpolation through the
texture for each span. By definition, a
linear interpolation increments by the
same amount each step, so we can take
advantage of this coherency to speed up
our loop.

Let’s ignore the V coordinate for the
moment and see how we can take advan-
tage of the U coordinate’s coherency. As
you can see from the loop, the U fixed-
point variable is shifted down to extract
its integer portion for each pixel, which is
then added into the texture pointer.
However, since we’re linear, the integer
portion of DeltaU is going to stay constant
for the span—always incrementing the
integer part of U by the same amount—
so there’s really no need to keep the inte-
ger portion of U around at all. If we think
only of the U increments, we can keep the
source pointer at the current texture pixel,
and we can find the next texture pixel by
just adding in the integer part of DeltaU—
calculated outside the loop—to the point-
er at each step. The only problem with
this plan is the fractional part of U plus
the fractional part of DeltaU will some-
times carry into the integer part of U. We

need to know when this happens and add
an extra step to our source pointer.

This carry problem uncovers a major
hole in C and C++ from the standpoint of
integer optimizations: there’s no carry bit.
In other words, in assembly language, it’s
trivial to know when two added numbers
overflow because the carry bit will be set,
but in C++ there’s no way to know with-
out doing a bunch of cumbersome tests.
So, in pseudocode, we want to do this:

UFrac += DeltaUFrac

pTexture += DeltaUInt + Carry

Where the variable Carry is set to 0 if
the fractional addition didn’t carry into
the imaginary integer part (that we’re not
storing anymore) and is set to 1 if the
addition did carry. This pseudocode is
trivial in all the assembly languages I’ve
ever seen, for example, in x86 assembly:

add ebx,ecx

adc esi,edx

Assuming the given registers contain the
right values, the adc (add with carry) will
add in the step and any carry from the
previous addition. Implementing this
code in C++ would be a mess.

That’s it for the U coordinate, but
we conveniently ignored the V coordinate
because it’s a good deal trickier. Like U,
the V coordinate is linear for our span, so
we can precalculate our increment and
leave the integer part of V out of our loop.
However, as you can see from Listing 1,
the integer part of the V coordinate is
scaled to step vertically in our texture
bitmap. This doesn’t present a problem
for the normal V step, but when the frac-

tional part of V carries into the integer
part, the source pointer no longer steps by
1, it steps by the width of the texture
bitmap. Not even assembly language has
an instruction to add in an arbitrary num-
ber—like the TextureDeltaScan in Listing
1—on carry.

Quickly adding in the vertical source
step on V’s carry is where 99% of the pro-
gramming brainpower is spent on linear
texture mapping optimizations. I’ve seen
about five or six ways of doing it myself,
but by far the coolest, fastest, and most
elegant way I’ve seen was invented by
Michael Abrash. However, before I
describe it, I’m going to address the opti-
mization a lot of the experienced texture
mappers in the audience think I’m going
to use here.

If you go out on the Internet and
look for affine texture mappers, you’ll
undoubtedly run into a lot of very opti-
mized x86 code that only works with
power-of-two source texture sizes, and
specifically two to the eighth power (or
256-bytes wide for 8bpp textures),
because if you keep your textures to a
power-of-two width, you can very easily
handle the V carry we’re discussing using
some special x86 instructions that operate
on 8-bit portions of the full registers.

Let’s run through an example, where
our source texture is 256 by 256. We’ll
use the x86’s ebx register, and its corre-
sponding “byte registers,” bh and bl. The
byte registers are part of the 32 bit ebx
register, and bl (b-low) is the lowest 8
bits—bit 0 through 7—and bh (b-high) is
the next higher 8 bits—bit 8 through 15.
If we keep the U coordinate in bl and the
V coordinate in bh, we can use the follow-
ing code to increment both U and V
(assuming ecx and edx have the current
UFrac and VFrac, respectively, and esi con-
tains the texture pointer):

add ecx,[DeltaUFrac]

adc bl,[UIntStep]

add edx,[DeltaVFrac]

adc bh,[VIntStep]

add esi,ebx

Notice the second adc. It adds in the
carry from the VFrac addition, but I just
got finished saying how this wouldn’t

B E H I N D T H E S C R E E N

26 GAME DEVELOPER • APRIL/MAY 1996

for(int Counter = 0;Counter < AffineLength;Counter++)
{
int UInt = U>>16;
int VInt = V>>16;

*(pDestBits++) = *(pTextureBits + UInt +
(VInt * TextureDeltaScan));

U += DeltaU;
V += DeltaV;

}

Listing 1. The C++ Inner Loop

http://www.mfi.com/gdmag

work because V’s carry needs to add in the
width of the texture. The trick is that bh is
actually already multiplied by the width of
our texture—256—by virtue of its bit
position in ebx. Neat, huh? Now, given
such a cool trick, why wouldn’t we use it?
There are two reasons: first, restricting
yourself to power-of-two textures isn’t
very flexible and is bad for cache coheren-
cy (see Behind the Screen, Oct./Nov.
1995). More importantly, with the Pen-
tium Pro, this code will run slowly due to
a new pipeline stall called the Partial Reg-
ister Stall (PRS). The PRS happens when
you modify one of the byte registers and
then try to use the encompassing 32-bit
register, much like the above code. The
instruction add esi,ebx will stall for a very
long time on the Pentium Pro. Why did
Intel let this happen? I have no clue,
although they say it will let them increase
the clock speed more than if they had pre-
vented the stall. Regardless, it’s there, and
we’ll need to live with it.

So, given that we’re not going to use
the power-of-two texture trick, how do
we write our code so it can carry an arbi-
trary value into the pointer when VFrac
overflows? Enter Abrash’s code snippet
shown in Listing 2. This is the code for a
pixel from the middle of an unrolled loop,
so there’s a bit of setup not shown here,
but imagine this same snippet concate-
nated with itself a bunch of times. See if
you can figure out how it works and then
read on for the description of this tour de
force of optimization.

Hit the Pipe
There are so many cool things about this
code it’s hard to know where to start
describing it, but, since we were dis-
cussing the V carry, we’ll start with how
the code addresses that problem. The

first half of the solution is these two
instructions:

add edx,[DeltaVFrac]

sbb ebp,ebp

The first instruction adds in the
fractional step as usual, but the second
instruction saves the carry flag, using a
neat trick involving the sbb (subtract
with borrow) instruction. The sbb
instruction is like the opposite of adc, it
subtracts its source from its destination,
but also subtracts the carry bit, so sbb
ebp,ebp will subtract the ebp register from
itself, giving 0 if there was no carry, or -1
if there was a carry. Thus, the carry bit
from the VFrac addition is stored as a 0
or a -1 in ebp.

The second half of the solution
comes with these instructions:

add ecx,ebx

adc esi,[4*ebp + UVStepVCarry]

The first instruction is the UFrac
addition, so after it completes, the carry
bit is set appropriately. The next instruc-
tion is where all the action occurs. It’s an
adc, so it adds in the carry from the UFrac
addition as you’d expect. However, it’s
an adc from memory, and it uses a two
dword array to accomplish its magic.
UVStepVCarry is the address of the second
dword in the array, and the 0 or -1 in ebp
from the VFrac carry will select either the
second dword if there was no V carry, or
the first dword if there was a V carry
(since 4 • -1 will subtact 4 bytes from the
array address). The only thing left is to
make sure the array has the appropriate
steps in it, including the U and V integer
steps and the V carry step for the first
element in the array.

As if the basic operation wasn’t good
enough, the pipelining on this code is
amazing as well. The order of instructions
perfectly fills both pipes on the Pentium
and manages to run the two additions
from memory—both two-cycle instruc-
tions—in the Pentium U and V pipes at
the same time (remember, the next pixel’s
code will come right after this pixel, so
the add edx and the adc esi will run at the
same time). The instructions are also far
enough away from each other that there
are no Address Generation Interlocks.
Overall, it’s a beautiful piece of code.

Walking and Chewing Gum
Regardless of how amazing our integer
affine inner loop is, we’ll still be slower
than we need to be if we’re waiting for the
floating-point unit to calculate the per-
spective-corrected texture coordinates
before starting each span. This is where
the floating-point overlap I hinted about
in the last issue enters in. Most modern
processors can execute floating-point
instructions at the same time as integer
instructions, and some, like the Pentium,
can execute multiple floating-point
instructions at the same time. As an
example of integer and floating-point
overlap, the following code will take 36
cycles on a Pentium in double precision
mode:

fdiv [Number1]

fst [Number2]

The division takes 33 cycles, the
store takes two cycles, and there’s a one-
cycle stall for trying to store the result of
the division right after it’s completed.
Guess how long the following code takes:

fdiv [Number1]

rept 33

add ebx,ecx

add edx,eax

endm

fst [Number2]

To guess correctly, you need to
know that the rept macro repeats the
contained code 33 times, so there are
actually 66 instructions between the fdiv
and the fst. This is actually a trick ques-

28 GAME DEVELOPER • APRIL/MAY 1996

B E H I N D T H E S C R E E N

add edx,[DeltaVFrac] ; add in dVFrac

sbb ebp,ebp ; store carry
mov [edi],al ; write pixel n

mov al,[esi] ; fetch pixel n+1
add ecx,ebx ; add in dUFrac

adc esi,[4*ebp + UVStepVCarry] ; add in steps

Listing 2. The x86 Asm Inner Loop

http://www.mfi.com/gdmag

tion because this code takes the same 36
cycles as the first snippet, but we got to
execute 66 integer instructions for free!

Well, we don’t really get just any 66
instructions for free, but we do get 33 U
and V pipe slots in which we can try to
get some work done before using the
result of the division. Some instructions,
like integer multiplies, won’t overlap with
the floating-point unit, and you can’t
really do many other floating-point
instructions at the same time as floating-
point division, but we can start up the

perspective divide for our next span and
have it calculate as we’re processing the
current span, making it almost free.

Short Stack
The second floating-point technique I
mentioned, executing multiple floating-
point operations simultaneously, is slight-
ly more convoluted. The Intel floating-
point architecture is stack based, which
means almost all the floating-point
instructions will only operate on the top
of the stack. This made it hard for Intel
to pipeline the floating-point unit for the
Pentium since all the instructions were
vying for the same register—the floating-
point top-of-stack register. So, instead of
breaking all the existing floating-point
code by making a bunch of new instruc-
tions to randomly access the floating-
point registers, Intel decided to make it
possible to move operands around on the
stack very quickly. I actually wish they’d
broken the code and made random regis-

ter access easy, but Intel doesn’t usually
ask my opinion on these things, so I’ll
quickly describe the stack-based solution.

Listing 3 shows the obvious way to
add some numbers together, along with
the cycle counts for each instruction. It’s
implementing this C++ code:

a1 += b1; c1 += d1; e1 += f1;

The code executes in 21 cycles,
including the three stalls (the 2+1 fstp

B E H I N D T H E S C R E E N

30 GAME DEVELOPER • APRIL/MAY 1996

fld [a1] ; 1
fadd [b1] ; 1
fld [c1] ; 1
fadd [d1] ; 1
fld [e1] ; 1
fadd [f1] ; 1
fxch st(2) ; 0
fstp [a1] ; 2
fstp [c1] ; 2
fstp [e1] ; 2

Listing 4. Quick Adding

fld [a1] ; 1
fadd [b1] ; 3
fstp [a1] ; 2+1
fld [c1] ; 1
fadd [d1] ; 3
fstp [c1] ; 2+1
fld [e1] ; 1
fadd [f1] ; 3
fstp [e1] ; 2+1

Listing 3. Naive Adding

http://www.mfi.com/gdmag

timings) for storing the results of an
operation immediately following its
completion. Listing 4 shows an alternate
implementation of the same code, which
executes in 12 cycles, or almost twice as
fast. The instructions can pipeline if you
don’t access their results before the
instruction is finished (the fld instruc-
tion pushes its operand onto the stack,
and the previous fadd continues on its
operand even as it’s moved down one
stack position). In our example, the fadds
take 3 cycles each in Listing 3, but only a
single cycle each in Listing 4.

The second thing to notice is that
the fxch instruction is free in Listing 4.
This is Intel’s offering to the angry God
of Processor Architecture, who threat-
ened to smite Intel dead if it didn’t
pipeline the floating-point unit. The
almost-free fxch instruction makes it
possible—not easy, just possible—to
pipeline your floating-point code even
though most of the instructions only
operate on the top-of-stack register.
Using fxch, you can move things around
while they’re still calculating, like the
e1+f1 addition in Listing 4. I called it
“almost-free” because there are some
restrictions you have to obey to keep it
free; for example, the following instruc-
tion must be a floating-point operation,
as it will stall a cycle if the following
instruction is an integer operation. Intel’s
AP500 Application Note, available on
their www.intel.com site and the Intel
Architecture Labs CD, describes this
technique in detail.

Finally
There are more tricks in the assembly
texture mapper that deserve a mention,
but they’re all minor and I’m out of
space. You can find them in the code
itself. As with most assembly code, the
texture mapper is way too long to
include here in the magazine. You can,
however, get it in the texture mapping
archive on the Game Developer web site,
on its ftp site (ftp.mfi.com/pub/
gamedev/src), or on my homepage at
http://ourworld.compuserve.com/
homepages/checker.

How fast is it? Well, I must admit,
I’m not finished optimizing it yet as I

write this (again, see the comment about
estimating how long it takes me to do
something at the beginning of this arti-
cle), but it’s already two times as fast as
the C++ subdividing affine texture map-
per, and I hope to make it another two
times faster by the time you read this
and are able to pick up the code. It’s cur-
rently drawing 4.5 million pixels per sec-
ond on a Pentium 133, which is 5 times
faster than our original texture mapper,
and fast enough to do 70 frames per sec-

ond at 320 by 200 if you’re not doing
anything else except texture mapping.
That’s definitely fast enough for a high-
end 3D game, and I think we can safely
say we’ve met the goals we set for our-
selves at the beginning of this series,
even if we did meet them a bit late. ■

You can e-mail Chris Hecker at check-
er@bix.com. Don’t be surprised if it takes
him a while to respond, although he’ll assure
you it will only take a second....

B E H I N D T H E S C R E E N

GAME DEVELOPER • APRIL/MAY 1996 33http://www.mfi.com/gdmag

Data Capture
of 3D Models

3 D M O D E L I N G

A
fficionados of the popular
arcade video game, Primal
Rage, are well acquainted
with the combatants—
Sauron, Talon, Blizzard, Ver-
tigo, Diablo, Chaos, and
Armadon. These seven pre-
historic fantasy creatures are

some of the largest fighting game char-
acters, and each has a distinct personali-
ty and fighting style.

When Time Warner Interactive Inc.
in Milpitas, Calif. decided to recreate Pri-
mal Rage for play on home video game
equipment, it was imperative that nothing

about the well-known characters changed
as they made the transition to new hard-
ware. Maintaining consistency across
platforms was a challenge, however,
because graphic imaging requirements for
each game device differ. For example, the
resolution available in a CD-ROM ver-
sion, with its prerendered images, is far
superior to that of the arcade game which
renders scenes in real-time. Consequent-
ly, CD-ROM creatures can display more
detail and move more realistically.

To ensure that Sauron, Talon, and
company made an accurate transition to
the new PC CD-ROM version of the
game, Time Warner hired 3Name3D, a
Santa Monica, Calif.-based geometric
modeling company. 3Name3D sculpted
each of the Primal Rage creatures, then
digitized the sculptures using the Faro
Arm, a portable coordinate measuring
machine from Faro Technologies in
Lake Mary, Fla.

According to 3Name3D CEO,
Sandeep Divekar, this approach assured
his company of getting truly realistic
recreations of the creatures. “Objects that
must be replicated exactly must be digi-
tized or scanned rather than modeled on
screen using CAD or other modeling
software,” says Divekar. “We chose a
coordinate measuring machine to control
where we captured the x, y, z coordi-
nates. We chose the Faro Arm because
the Primal Rage sculptures we created
were up to three-feet long, and we need-
ed its large working envelope.”

Three Architects
3Name3D was founded by three archi-
tects—Oscar Yglesias, Steve Wallock,
and Divekar. The company creates digi-

A wireframe model of Armadon, one of the beasties in the Primal Rage game. Every character
in the game started out as a sculpture, which was then digitized. A coordinate mapping sys-
tem ensured realistic movement.

34 GAME DEVELOPER • APRIL/MAY 1996 http://www.mfi.com/gdmag

tal models for clients in a variety of
industries and offers a collection of
ready-made computer models.

For the Primal Rage project, Time
Warner supplied 3Name3D with the
original nine-inch latex models that had
formed the basis for the arcade game
characters. To create the arcade game,
these fully jointed models had been
filmed using the stop-motion technique,
in which a series of painstakingly small
movements are recorded. Stop-motion
would not work for the PC CD-ROM
game, according to Divekar, because it
would not supply the sufficient level of
detail or the highly realistic motion
Time Warner wanted.

3Name3D’s first step was to create
its own set of sculptures of the Primal
Rage creatures. They made them bigger
to capture more detail but otherwise they
were identical to the original latex mod-
els. With the exception of Blizzard (a
gorilla), the new sculptures were con-
structed of the modeling clay, Sculpey.
Sculpey couldn’t support Blizzard’s long
arms, however, so Blizzard was sculpted
in clay. A latex mold was made of the
clay, then Blizzard was cast in plaster of
paris with armatures supporting his arms.

Once the sculptures were complete
and approved by Time Warner, the
process of recreating them as digital
models began. First, grid lines were
placed on the sculptures to indicate the
locations of the points (x, y, and z coor-
dinates) to be entered into the computer.
Coordinate location was a critical issue
because the models were going to be ani-
mated. “This meant they had to be bro-
ken at joints, with each joint positioned
precisely so the movement would look

realistic,” explains Divekar. (Imagine a
knee positioned mid-way up the thigh.
The motion of that leg would not look
very realistic.)

Because grid line placement affect-
ed the location of the joints and
3Name3D needed precise control over
these lines, laser scanning was ruled out
as a method of capturing the coordi-
nates. “If a model is going to sit off in
the corner of a digital set and not move,
it doesn’t need joints and, in that situa-
tion, laser scanning is fine,” says
Divekar. “But laser scanners pick up
point locations in a regular pattern. A
jointed, moving model requires irregular
grid lines. With a coordinate measuring
machine, grid lines can be placed in
response to the animator’s needs. The
user tells it where to capture coordinates
by pointing at them and then clicking
the probe.”

Although on previous projects
3Name3D had used another company’s
small 3D digitizer, its probe was limited
to a sphere of 12 inches. The Primal
Rage models were three-feet long. To
get the reach they needed, 3Name3D
bought a portable coordinate measuring
machine with a six degrees of freedom
arm and a spherical working envelope of
eight feet.

Called a “liberated” coordinate
measuring machine, the Faro Arm used
by 3Name3D is not restricted to three
axes. Unlike some other digitizing meth-
ods, there are no line-of-sight limita-
tions or restrictions on digitizing metal
objects. Although generally used in labs,
engineering offices, and manufacturing
facilities, computer artists are now start-
ing to use it. The Faro Arm features

How did Time Warner

move critters to a

new platform? A

portable coordinate

measuring machine

was key to replicating

the arcade game

characters for a PC

CD-ROM version of

Primal Rage.

Caren D. Potter

GAME DEVELOPER • APRIL/MAY 1996 35http://www.mfi.com/gdmag

direct serial port input into AutoCAD
and other modeling packages and sup-
ports standard output formats such as
IGES, ASCII, DXF, and ACL.

One-Person Digitizing
Often, digitizing large objects is a two-
person job—one person operates the
probe while the other watches the com-
puter screen to make sure data is cap-
tured correctly. However, 3Name3D
needed only one person to digitize the
Primal Rage creatures because the soft-
ware they used to capture input from the
arm, Mira Imaging’s HyperSpace, incor-
porated audio feedback.

Explains Divekar, “HyperSpace,
which we run on a Macintosh computer,

uses audio cues to provide feedback to
the operator. When a point is entered, it
signals the computer to emit one kind of
sound. If the point has to be locked on
to a previous point, the computer makes
a different sound when the two points
are identified. The person who did the
digitizing of Primal Rage sculptures,
who was also the artist who had created
them, spent very little time looking at
the screen.”

HyperSpace was also the software
used to create the surfaces over the
points. After the points representing a
certain area of the sculpture were
entered, the software was given the com-
mand to place a skin over them.

When the model was completely
digitized and surfaced, the HyperSpace
file was transferred to Wavefront’s
Advanced Visualizer software running
on a Silicon Graphics workstation.
There, it was cleaned up and broken
down into logical groups to make joints.
The last step was translating the
Advanced Visualizer file to 3D Studio
file format. (3D Studio was the model-
ing and animation software used by
Time Warner.)

It took 3Name3D about four days
per creature to complete the process of

digitizing a sculpture and adding sur-
faces to the computer model. The entire
operation, from making a sculpture to
creating a fully surfaced, jointed digital
model, took about 10 days per creature,
and 3Name3D modeled five of the seven
Primal Rage creatures.

For 3Name3D, the Primal Rage
project has led to additional work, in
part due to the use of a digitizing arm.
“There’s no way we could have done this
without one,” says Divekar. Game artists
interested in rapidly creating complex
shapes would do well to consider the
advantages of sculpting and digitizing
models rather than creating them entire-
ly digitally. The availability of large
envelope, six-degree-of-freedom digitiz-
ing arms makes this a valuable cost-cut-
ting option.

The PC CD-ROM version of Pri-
mal Rage was released on August 25,
1995 along with versions for other
home game equipment such as the Sega
Genesis, Super Nintendo Entertain-
ment System, and Nintendo Game
Boy. Time Warner has already shipped
more than one million units of these
new releases, and appears to have
another hit on its hands. ■

Caren D. Potter is a freelance writer
living in McKinleyville, Calif. She has
been writing about computer technology, in
its various forms, for 10 years. Contact her
via e-mail at cpotter@northcoast.com.

3 D M O D E L I N G

36 GAME DEVELOPER • APRIL/MAY 1996 http://www.mfi.com/gdmag

Before and after pictures of Vertigo (left) and Sauron (right). The wireframe images appear
on top and the rendered versions are below.

Digitizing the models.

A final screenshot of Talon vs.
Blizzard.

The Z Buffer
Algorithm

T H E Z B U F F E R A L G O R I T H M

Y
ears ago—when I got my feet
wet in the virtual world of 3D
computer graphics—I stum-
bled upon an algorithm. This
algorithm, in case the title of
this article hasn’t completely
spoiled the surprise, is popu-
larly known as the Z buffer

algorithm and deals with the slippery
problem of visual surface determination.
Visual surface determination and its con-
verse, hidden surface elimination, are
two approaches to solving the age-old
problem of correctly rendering 3D sur-
faces on a 2D screen.

In the real world, mere mortals can-
not see through opaque surfaces. How-
ever, in the world of 3D computer
graphics, no such limitation exists. In
fact, we 3D programmers go to great
lengths to impose this limitation on our
3D worlds so as to model the real world
more accurately. The only other alterna-
tive to imposing this limitation on our
3D worlds is drawing all polygons in the
dataset in an arbitrary order, ignoring
their 3D properties, which will almost
guarantee that some distant surfaces will

show through closer surfaces, producing
a surrealistic effect that is generally not
desirable.

One method of dealing with this
annoying problem of distant objects
showing through closer ones is to draw
all surfaces (polygons) in a back-to-front
order. If done properly, this assures us
that the resulting view will be rendered
accurately. Known as the Painter’s or
Depth Sort Algorithm, this approach
has three serious flaws: first, the amount
of time it takes to sort the surfaces
increases exponentially with regard to
the number of polygons in the dataset;
second, precious time is wasted rasteriz-
ing pixels that will be over-written fur-
ther down the list; finally, surfaces can-
not penetrate each other (such as a boat
in water, or aircrafts soaring through
clouds). Though you can probably over-
look the second and third deficiencies,
the first one is tough to swallow. In large
datasets, the amount of sorting and test-
ing that must be performed is prohibi-
tively complex—rendering this method
useless for many modern applications.
Thus, many developers of 3D software
have turned to two more flexible and
faster approaches: BSP (Binary Space
Partition) trees and Z buffering.

A BSP tree is a collection of poly-
gons listed in an order based on the rela-
tive position and orientation of all poly-
gons to each other. Typically, the cre-
ation of this BSP tree is rather time-
consuming, and, therefore, a BSP tree
compiler creates it in advance. Though
this method provides extremely quick
sorting, it suffers from other problems of
the Painter’s Algorithm and imposes a
limitation of its own—it restricts the

A B C

+ =

5

5

5

5

5

5

4

4

4

4

4

3

3

3

3

2

2

2

1

1

0 3 3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3 5

5

5

5

5

4

4

4

4

4

3

3

3

3

3

3

3

3

3

3

3

3

3

3

5

Figure 1. The result of Z buffering polygon A and B is shown in Box C.

38 GAME DEVELOPER • APRIL/MAY 1996 http://www.mfi.com/gdmag

dataset to static objects. The static
requirement of the BSP tree has
prompted a number of developers to
search for ways to integrate moving
objects into a BSP tree without per-
forming time-consuming calculations,
most of which are less than successful.

With the rise of faster processors,
more memory, and video cards with
onboard Z buffers, the Z buffer algo-
rithm is starting to look attractive to
many developers simply because it over-
comes all flaws of the Painter’s Algo-
rithm (save number two, where a num-
ber of adaptations may be used while
maintaining visual accuracy). The Z
buffer algorithm is an image-precision
algorithm, meaning it deals with visual
surface determination at the image
level, requiring an increase in memory
for an increase in resolution. With
8MB of memory standard on today’s
machines and 16MB common, this
memory requirement is somewhat less
than restricting, especially considering
the number of problems the Z buffer
eliminates.

The Z buffer is, as implied by its
name, a linear array of Z (the depth
coordinate) values. Each pixel in the
viewport corresponds to an element in
the Z buffer. This array is designed to
hold the Z values of all the visible poly-
gons in the viewport. When rasterizing
a polygon, before each pixel is written to
the viewport, the corresponding Z value
in the Z buffer is checked against the Z
value of the pixel being rasterized. If the
Z value of the current pixel is closer to
the viewpoint than the Z value previous-
ly stored in the Z buffer, the current Z
value is stored in the Z buffer and the

pixel rasterized; if not, the process con-
tinues. (See Figure 1 for illustrations.)
As you might have guessed, this means
the Z buffer must be cleared (reset) every
frame to some number (the farthest pos-
sible Z value), though a later optimiza-
tion removes this requirement.

The only apparent difficulty we
might have is determining the Z (depth)
at each point, which is not as hard as it
sounds. The equation for a plane or
polygon is as follows:

Ax + By + Cz + D = 0

Solving for Z gives us:

Z = (-Ax - By - D) / C

However, we can compute Z incre-
mentally for coplanar surfaces, which is
fortunate for our sakes because it saves
us from solving the above at each pixel.
Once the value of Z has been deter-
mined (which we’ll call Zc), the value of
Z at the following pixel is:

Zc - (A / C)

A single subtraction per pixel! As
fate would have it, however, we’ll mostly
be interpolating 1/Z values instead of
direct Z values. The reason is simple: 1/Z

is linear in screen space, and can be
interpolated using a linear equation,
whereas Z is linear in 3D space, and
cannot be linearly interpolated in screen
space. Since this means our Z values are
inverted, we must clear the Z buffer to
zero each frame, which represents a lit-
eral infinity: the farthest possible 1/Z

value. On the positive side, interpolating

If you are involved

with 3D graphics, you

are familiar with the

problem of visual

surface determina-

tion. The Z buffer

algorithm can help

you get around the

problem.

John De Goes

GAME DEVELOPER • APRIL/MAY 1996 39http://www.mfi.com/gdmag

T H E Z B U F F E R A L G O R I T H M

40 GAME DEVELOPER • APRIL/MAY 1996 http://www.mfi.com/gdmag

a#include <Math.H>

#include <Windows.H>

// The precision to the right of the imaginary decimal point:

const ZPREC = 26; // s00000.00000000000000000000000000 = 0.000000015

class ZBuffer {

protected:

long *ZBuff, ZTrans;

WORD Init, Code;

unsigned int Width, Height;

public:

enum { NoMem = 0, Success };

// Sets defaults:

ZBuffer () : Init (0), Code (NoMem),

ZBuff (NULL), ZTrans (0) { }

// Accepts width and height for Z buffer creation:

ZBuffer (int W, int H) : Init (0), Code (NoMem),

ZBuff (NULL), ZTrans (0)

{ Create (W, H); }

// Deallocates memory:

~ZBuffer () { delete [] ZBuff; }

// Initializes the Z buffer:

inline BOOL Create (int W, int H);

// Width and height member functions:

unsigned int GetWidth () { return Width; }

unsigned int GetHeight () { return Height; }

// Returns the 1/Z translate value:

long GetZTrans () { return ZTrans; }

// Returns the error code:

WORD GetCode () { return Code; }

// Returns a pointer to the Z buffer (use with caution):

long *GetPtr () { return ZBuff; }

// Performs a “safe”, slow Z buffer write:

// (Dest must be a 256 color buffer equal in dimensions

// to the Z buffer.)

void Write (WORD X, WORD Y, long Z, BYTE Val, BYTE *Dest)

{

unsigned int Index;

if ((Init) && (X < Width) && (Y < Height))

{

Index = X + Y * Width;

if (ZBuff [Index] < Z)

{

ZBuff [Index] = Z;

Dest [Index] = Val;

}

}

}

// Performs a “safe”, slow Z buffer read:

long Read (WORD X, WORD Y)

{

if ((Init) && (X < Width) && (Y < Height))

return ZBuff [X + Y * Width];

return 0;

}

// Performs an “unsafe”, fast Z buffer write:

// (Dest must be a 256 color buffer equal in dimensions

// to the Z buffer.)

void FastWrite (unsigned int Index, long Z, BYTE Val, BYTE *Dest

)

{

if (ZBuff [Index] < Z)

{

ZBuff [Index] = Z;

Dest [Index] = Val;

}

}

// Performs an “unsafe”, fast Z buffer read:

long FastRead (unsigned int Index)

{

return ZBuff [Index];

}

// Clears the Z buffer to zero:

// (Optionally accepts the number of completed

// frames to aid in the clear reduction algorithm.)

BOOL Clear (unsigned int FrameCount = 0);

};

inline BOOL ZBuffer::Create (int W, int H)

{

// Function creates a Z-buffer - can be called

// in succession:

delete [] ZBuff;

ZBuff = NULL;

Init = 0;

ZTrans = 0;

if ((ZBuff = new long [W * H]) == NULL)

{

Code = NoMem;

Width = 0; Height = 0;

return 0;

}

Init = 1; Code = Success;

Width = W; Height = H;

// Clear the Z buffer:

return Clear ();

}

class ZEdge {

protected:

long Z, ZStep;

public:

ZEdge () : Z (0), ZStep (0) { }

// Clip function for clipping a coordinate to boundary:

void Clip (int C, const B)

{

// Takes advantage of the fact that

// ((a * (b * c)) / c) is equal to (a * b):

if (C < B)

Z += ZStep * (B - C);

}

// Init function for stepping along polygon edges:

inline void Init (float OneOverZ1, float OneOverZ2,

int Length, ZBuffer &ZBuff);

// Init function for stepping along scanlines:

inline void Init (ZEdge &Left, ZEdge &Right,

Listing 1. Classes to Make a Z Buffer (Visual Surface Determination Algorithm Implementation)

1/Z allows us to use fast linear equations,
while at the same time providing infor-
mation necessary for perspective texture
mapping.

Optimizations are also important.
Two of the most blindingly obvious per-
formance reducers of the Z buffer are
the test per pixel and the actual clearing
of the Z buffer. The clearing of the Z
buffer cannot be avoided, but you can
reduce the number of Z buffer clears you
must perform by using 32-bit integers
for the Z buffer. I call this optimization
the clear reduction algorithm, and it has
saved many a processor cycle on my own
applications. Since the values in the Z
buffer are never greater than 1, and
because 1 is the closest possible value to
the viewport, it is possible to fool the Z
buffer into thinking that each frame is

closer than the previous frame by adding
a translation value to the 1/Z terms, thus
eliminating the need to clear the Z
buffer every frame. You can think of it as
a translation of all polygons, bringing
them closer to the viewport each frame
by an amount proportional to the maxi-
mum extents of the dataset. Though this
may sound a bit difficult, it adds but a
few lines of code.

To implement this optimization,
for every new frame you should add 1
more to each of the 1/Z terms than you
added the previous frame, taking care
not to exceed the limit of the data-type
you are dealing with. By definition, the
1/Z terms will never exceed a [0-1]
range, meaning that adding an offset to
these terms will effectively translate the
dataset closer to the viewpoint by an

amount equal to the translate value.
The number of frames you can wait
before you clear the Z buffer (and reset
the translate value) will depend on
whether or not you’re using fixed-point
or floating-point math. If you use fixed-
point math, the number of frames will
depend on where you place your imagi-
nary decimal point. Traditionally, you’ll
have a ClearZBuffer function in your
main loop, perhaps such as:

ClearZBuffer (ZBuffer);

Using this optimization, that same
portion of code might become:

if ((FrameCount % MAX_WAIT) == 0)

{

ClearZBuffer (ZBuffer);

GAME DEVELOPER • APRIL/MAY 1996 41http://www.mfi.com/gdmag

unsigned int Width);

// Step operators:

void operator ++ () { Z += ZStep; }

void operator ++ (int) { Z += ZStep; }

// Function returns the current fixed-point Z value:

long GetZ () { return Z; }

};

inline void ZEdge::Init (float OneOverZ1, float OneOverZ2,

int Length, ZBuffer &ZBuff)

{

// Calculate the steps for a polygon edge:

long FixedZ1, FixedZ2;

if (Length)

{

FixedZ1 = long (OneOverZ1 * float (1 << ZPREC));

FixedZ2 = long (OneOverZ2 * float (1 << ZPREC));

Z = FixedZ1 + ZBuff.GetZTrans ();

ZStep = (FixedZ2 - FixedZ1) / Length;

}

else {

Z = 0; ZStep = 0;

}

}

inline void ZEdge::Init (ZEdge &Left, ZEdge &Right,

unsigned int Width)

{

//Calculate the steps for a scan-line:

if (Width)

{

Z = Left.GetZ ();

ZStep=(Right.GetZ () - Z) / Width

}

else {

Z=0; ZStep = 0

}

}

Listing 1. (Continued from p. 40)
#include “ZBuffer.HPP”

BOOL ZBuffer::Clear (unsigned int FrameCount)

{

// Function clears — if necessary — the Z-buffer to

// zero (infinity):

// Calculate the number of frames before each Z buffer

// clear:

unsigned int MaxWait = pow (2.0F, (31.0F - ZPREC));

unsigned int N, Length, Rem;

// Determine if a clear is in order:

if (MaxWait == 0)

Rem = 0;

else Rem = FrameCount % MaxWait;

Length = Width * Height;

if (Init)

{

if (Rem == 0)

{

// If clear reduction is enabled, there is no need

// for an assembly Z buffer clear function as the

// Z buffer is cleared only once per so many frames.

for (N = 0; N < Length; N++)

ZBuff [N] = 0;

ZTrans = 0;

}

// Else no clear - adjust translate value:

else ZTrans += (1 << ZPREC);

// Return success:

return TRUE;

}

// Return failure:

return FALSE;

}

Listing 2. Code for Z Buffer Classes

ZTrans = 0.0F;

}

else ZTrans += 1.0F;

Obviously, this example uses float-
ing-point math, which is a definite no-
no as far as fast 3D graphics are con-
cerned. The ZTrans term is the value that
is added to the 1/Z starting terms at each
of the polygon’s vertices preceding ras-
terization. MAX_WAIT, is of course, the
maximum amount of frames before the
Z buffer is cleared, and FrameCount is the
total number of frames that have been
completed.

If much of what has been discussed
regarding Z buffers has been review for
you—with the exception of the clear
reduction algorithm—you’re probably
wondering what you can do to eliminate
the test per pixel that is required for an
academic Z buffer. The solution is theo-
retically simple, but a pain to implement:
Z buffer at the scan-line level instead of
the pixel level. Using this approach, you
never have to write a pixel more than
once, and the Z buffer never has to be
cleared. Note that, in such an implemen-
tation, the Z buffer becomes a linked list
of scan-line information.

It’s beyond the scope of this article
to discuss the subject of proper rasteri-
zation, so I will provide a set of 32-bit,
operating system independent classes
instead of a full rasterizer. The classes
can easily be added to just about any
rasterizer. The classes, whose declara-
tion appears in Listing 1 and whose
non-inline code appears in Listing 2,
implement a Z buffer algorithm in
fixed-point mathematics and include all
the necessary code for the clear reduc-
tion algorithm (see above). Of particu-
lar interest is the ZBuffer class’s Clear ()
member function. This function
optionally accepts the number of frames
that have been displayed since the pro-
gram’s initialization.

If you do not wish to use the clear
reduction algorithm, it is not necessary
to provide this argument; however,
providing it lets the function reduce
the number of Z buffer clears that
occur without sacrificing visual quality.
In the ZEdge class, you will notice that

one of the initialization functions
accepts two 1/Z values. You can calcu-
late these values by taking the inverse
of the Z values at the vertices of the
polygon. The other initialization func-
tion accepts two ZEdge classes, which
represent the sides of the polygon at a
given scan line.

Typically, you will use one ZBuffer
object per window, and three ZEdge

objects for rasterizing polygons. One
ZEdge object will represent the right side
of the polygon being rasterized, anoth-
er, the left side, and the third, the scan
line being rasterized. If you perform
polygon clipping at the image level, you
will find the Clip () member function
most helpful, which accepts a coordi-
nate and the boundary for that coordi-
nate. (The coordinate will be an X or Y
point, depending on which axis you are
clipping on; an X point for scan-line
clipping, and a Y point for the top of
the polygon clipping.) The ZEdge class
overloads the ++ operator, so each time
you step in a coordinate (that is, step-
ping down the left or right edge of the
polygon or across the scan line), you can
simply use this operator.

For those curious souls among you,
I decided to put multiple Z buffer read
and write functions in the ZBuffer class
because while debugging an application,
you can use the slow, safe functions;
when optimizing, you should be able to
easily convert to the fast, unsafe func-
tions. Your application can use all the
help it can get during debugging, and
since the safe functions cannot do any-
thing harmful to your system memory
(barring unequally sized Z buffers and
screen buffers), you can be assured that
the application’s problems will not be
related to the Z buffer classes.

One last word on the provided
source code: the Z buffer write func-
tions will actually write to the video
buffer, but the buffer must be equal in
dimensions to that of the Z buffer, and
each byte in the buffer must represent a
single pixel (with a range of 256 colors).
In mode 13h, for instance, this is the
case, as it is for many windowed appli-
cations running under Windows 95 or
Windows NT.

For a discussion on proper rasteriza-
tion, I suggest checking out the highly
regarded Computer Graphics: Principles and
Practice (Addison-Wesley, 1990) by
Foley, van Dam, Feiner, and Hughes, or
back-ordering Chris Hecker’s excellent
series of Game Developer articles on tex-
ture mapping, which also covers correct
rasterization. For more information on
the clear reduction algorithm, along with
general information and source code for
Z buffering, perspective texture mapping,
Phong shading, intensity interpolation,
Gouraud shading, and related informa-
tion, you can pick up my up-coming
book, Cutting Edge 3D Game Program-
ming (Coriolis Group, 1996). There are
many resources out there for anyone
interested in the topic. ■

John De Goes is a freelance C/C++
programmer currently working on high-
performance 2-D and 3-D graphics soft-
ware for individuals and companies
wealthy enough to afford his outrageously
high rates. He can be reached at
75404.2752@compuserve.com for a mere
$10 a message (plus tax).

T H E Z B U F F E R A L G O R I T H M

42 GAME DEVELOPER • APRIL/MAY 1996 http://www.mfi.com/gdmag

You can be

assured that the

application’s

problems will not

be related to the Z

buffer classes.

Full-Screen Graphics
for Macintosh
and Windows 95

F U L L - S C R E E N G R A P H I C S

T
he best entertainment meticu-
lously crafts an experience for its
audience. Just as the best film
directors carefully control the
viewer’s experience, the best game
designers carefully control the
player’s experience. In simulation
and strategy games, this often

involves a system of overlapping windows
the player can arrange to access maps,
charts, and tools they need to play effec-
tively. Most adventure and action games
immerse the player in the game world by
controlling every visible pixel. In such
games, window elements like caption bars,
window borders, and other applications in
the background waste space and intrude
on the experience.

Games that use windows can benefit
from a cross-platform windowing library
like the one we’ve seen so far in XSplat.
For games that want the whole screen,
however, XSplat as it stands solves the
wrong cross-platform problem.

This month, I’m going to step back a
bit from the XSplat windowing system
and head off in a different direction.
We’re going to look into enabling full-
screen graphics on Windows and Macin-
tosh, leaving their integration with XSplat
for another day.

Once again, I’m going to describe a
bit too much code to print in a magazine
article, so you’ll find the complete source
code on the Game Developer ftp site.

Direct to Windows
The amount of hype and number of new
trademarks surrounding the Windows 95
Game SDK Featuring DirectX has been
incredible. The praise is also deserved: the
DirectX team at the ’soft bent over back-

wards to provide Windows 95 applications
low-level hardware access comparable to
what has traditionally been available only
under DOS. Microsoft even provides a
consistent interface to eliminate the night-
mare configuration programs, buggy
VESA drivers, and technical support calls
over IRQ and DMA settings. Or such is
the religion it preaches.

We’ll start our DirectX experimenta-
tion with a function that sets up a com-
plete full-screen, double-buffered environ-
ment for us, called BeginFullScreen. You
tell this function the display settings you
want, and it sets everything up for you.
Listing 1 shows the complete source code
for BeginFullScreen, if you want to follow
our negotiations with DirectDraw.

We need a window. Any window
will do because it’s just an anchor for
DirectDraw, so we’ll just use a static text
window. The fun begins when we hook
up with DirectDraw. DirectDrawCreate
returns a pointer to a DirectDraw COM
object, essentially a pointer to a table of
DirectDraw functions. You can think of it
as a C++ object except that when you’re
done with it, you call Release instead of
using the delete operator.

Once connected to DirectDraw, Set-
CooperativeLevel tells the system that we
want to take over the video hardware for a
while, and SetDisplayMode makes the actual
resolution switch. If the requested mode
isn’t available, SetDisplayMode will return
an error code (something other than
DD_OK), and we’ll bail out of the setup func-
tion. We’re going to run our sample appli-
cation at 640-by-480-by-8, a mode avail-
able on 99.99% of PC video hardware and
a required mode in all Macintosh monitors
other than the full-page portrait display.

44 GAME DEVELOPER • APRIL/MAY 1996 http://www.mfi.com/gdmag

After switching the video mode, the
static text window we created fills the
screen. DirectDraw only uses the window
as a link to the operating system, handling
all the graphics through DirectDraw sur-
faces. The window could be 1-by-1 and
we would still have full-screen graphics,
though we’d have problems receiving
mouse messages occurring over most of
the screen.

DirectDraw uses low-level surfaces,
not high-level windows, so we need to
create a primary surface representing the
visible portion of video memory, the
whole display. To create a surface, you use
CreateSurface, passing a DDSURFACEDESC
structure describing the surface you want.
The primary surface can have secondary
(off-screen) surfaces attached to it to
enable hardware page-flipping, so we’ll try
to take advantage of that.

We begin by setting dwBackBuffer-
Count to 2 and including the DDSCAPS_FLIP,
DDSCAPS_COMPLEX, and DDSCAPS_VIDEOMEMORY
flags in our primary surface request. This
request asks DirectDraw to create a pri-
mary surface and to allocate two addition-
al buffers in off-screen video memory that
we can page flip into visible memory. If
this fails, we try again for a primary sur-
face with only one off-screen buffer in
video memory, and if this fails, we just
accept a standard no-frills primary surface.

You may be wondering why we go
for two offscreen buffers if we want only a
double-buffered library. Well, Direct-
Draw’s page flipping function can take
place asynchronously, temporarily pre-
venting access to the two surfaces being
switched. It may wait for a vertical retrace
before flipping or blting, which means
that an attempt to lock the offscreen sur-

face immediately after a call to Flip or Blt
may fail, forcing you to burn cycles wait-
ing for the video hardware to catch up.
The flip or blt doesn’t involve the third
buffer, though, so one surface will always
be available for drawing. If you can triple
buffer, your application will never have to
wait on a lock.

With a primary surface in hand, we
now need to go for a secondary surface. If
DirectDraw succeeded in creating a page
flipping surface, GetAttachedSurface will
return a pointer to the off-screen buffer. If
we had to settle for a simple primary sur-
face, we have to create a second surface
manually. The PageFlip global will tell us
later what type of surface we have.

Finally, we have to set up a color
environment by setting up an array of
PALETTENTRY structures, passing it to Cre-
atePalette, and passing the resulting
DirectDrawPalette pointer on to
SetPalette.

If all this succeeds, we’ll have the
full-screen graphics environment we
always wanted (and always had under
DOS!).

Managing the
Macintosh Display
Until recently, Macintosh systems
required a specific dot pitch in their
monitors. You could change the bit
depth of the display, but if you wanted
more pixels, you bought a larger moni-
tor. With the introduction of the Pow-
erMacs, Apple made a number of
changes to their software architecture,
including the Display Manager, which
worked its way back to the 68K Macs in
system 7.5.1. With the Display Manag-
er installed, it’s possible for Mac appli-

DirectDraw and

cross-platform

compatibility? Is it

possible? Not only

is it possible,

we‘ve got the code

to prove that it‘s

possible!

Jon Blossom

GAME DEVELOPER • APRIL/MAY 1996 45http://www.mfi.com/gdmag

F U L L S C R E E N G R A P H I C S

46 GAME DEVELOPER • APRIL/MAY 1996

DDSCAPS_FLIP |

DDSCAPS_COMPLEX |

DDSCAPS_VIDEOMEMORY;

DDReturn = pDirectDraw->CreateSurface(&SurfaceDesc,

&pPrimarySurface, 0);

if (DDReturn != DD_OK)

{

// We couldn’t get a triple buffer, try a double-buffer

SurfaceDesc.dwBackBufferCount = 1;

DDReturn = pDirectDraw->CreateSurface(&SurfaceDesc,

&pPrimarySurface, 0);

if (DDReturn != DD_OK)

{

// We couldn’t get a page-flip-able surface at all.

PageFlip = 0;

// Just go for a no-frills primary surface

SurfaceDesc.dwFlags = DDSD_CAPS;

SurfaceDesc.dwBackBufferCount = 0;

SurfaceDesc.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;

DDReturn = pDirectDraw->CreateSurface(&SurfaceDesc,

&pPrimarySurface, 0);

if (DDReturn != DD_OK)

goto Failure;

}

}

if (PageFlip)

{

// Get the attached page-flip-able surface as the

// offscreen buffer

DDSCAPS caps;

caps.dwCaps = DDSCAPS_BACKBUFFER;

DDReturn = pPrimarySurface->GetAttachedSurface(&caps,

&pOffscreenSurface);

}

else

{

// Create a second surface for the offscreen buffer

ZeroMemory(&SurfaceDesc, sizeof(SurfaceDesc));

SurfaceDesc.dwSize = sizeof(SurfaceDesc);

SurfaceDesc.dwFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH;

SurfaceDesc.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN;

SurfaceDesc.dwWidth = Width;

SurfaceDesc.dwHeight = Height;

DDReturn = pDirectDraw->CreateSurface(&SurfaceDesc,

&pOffscreenSurface, 0);

}

if (DDReturn != DD_OK)

static HWND Window;

static HINSTANCE ghInstance;

static LPDIRECTDRAW pDirectDraw;

static LPDIRECTDRAWSURFACE pPrimarySurface;

static LPDIRECTDRAWSURFACE pOffscreenSurface;

static LPDIRECTDRAWPALETTE pPalette;

static int PageFlip;

int BeginFullScreen(int Width, int Height, int Depth)

{

// Create a Width x Height popup window using the STATIC

// control class so we don’t have to implement a window

// procedure right now

Window = CreateWindow(“STATIC”, “FullScreen”, WS_POPUP,

0, 0, Width, Height,

0, 0, ghInstance, 0);

if (!Window)

goto Failure;

ShowWindow(Window, SW_SHOWNORMAL);

UpdateWindow(Window);

// Connect to DirectDraw, if not already connected

if (!pDirectDraw)

DirectDrawCreate(0, &pDirectDraw, 0);

if (!pDirectDraw)

goto Failure;

// Set up DirectDraw for full-screen exclusive mode at the

// requested resolution

HRESULT DDReturn;

DDReturn = pDirectDraw->SetCooperativeLevel(Window,

DDSCL_EXCLUSIVE | DDSCL_FULLSCREEN);

if (DDReturn != DD_OK)

goto Failure;

DDReturn = pDirectDraw->SetDisplayMode(Width, Height, Depth);

if (DDReturn != DD_OK)

goto Failure;

// Create the primary surface

// Try to get a triple-buffered one we can page flip

PageFlip = 1;

DDSURFACEDESC SurfaceDesc;

ZeroMemory(&SurfaceDesc, sizeof(SurfaceDesc));

SurfaceDesc.dwSize = sizeof(SurfaceDesc);

SurfaceDesc.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;

SurfaceDesc.dwBackBufferCount = 2;

SurfaceDesc.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE |

Listing 1. Setting Up a Full-Screen Environment Using DirectDraw (Continued on p. 47)

http://www.mfi.com/gdmag

GAME DEVELOPER • APRIL/MAY 1996 47http://www.mfi.com/gdmag

cations to exert low-level control over
display settings.

Display Manager 1.0 now ships as
part of System 7.5.1, but it sports a
clunky programming interface and is not
always reliable. Display Manager 2.0 is
available as an extension for these systems
and is integrated into System 7.5.2. It’s
cleaner and simpler, so we’ll be writing
for version 2.0.

If you don’t have Display Manager
2.0, you can download it from Apple’s ftp
site, at ftp://ftp.info.apple.com/
Apple.Support.Area/Developer_Services/
Development_Kits/Display_Manager_
Development_Kit.

Listing 2 shows the complete Begin-
FullScreen procedure for the Macintosh so
you can sing along.

The first step to taking over the Mac-
intosh display is to get rid of that pesky
menu bar. I’ve written a StealMenuBar func-

tion to recover the screen space used by
the Macintosh menu bar. Once it’s gone,
we’ll create a window of the requested size
and set up a palette as I discussed in previ-
ous articles.

Now the Display Manager comes into
play. The first thing to do is to store away
the current display settings so we can
restore them when we’re done harassing the
video hardware. A call to GetMainDevice
gives us a handle to the main display device,
and DMGetDisplayMode fills us in on its cur-
rent settings.

On the Macintosh, a display mode is
defined by two numbers: csMode and csData,
which together describe a unique color for-
mat, resolution, and refresh rate setting. In
order to change the display mode, we have
to find out the appropriate secret numbers
for the mode we want. The Display Man-
ager will provide us with a list of available
modes through DMNewDisplayModeList, and

we’ll scan through that list until we find an
appropriate one.

DMGetIndexedDisplayModeFromList iter-
ates through the list for us. You give this
function a pointer to a callback function
and a pointer to some data of your choice,
and it invokes the callback on each element
in the list. NewDMDisplayModeListIteratorProc
(whew!) creates a universal procedure
pointer to use as your callback (this is simi-
lar to the Win16 MakeProcInstance func-
tion). We’ll pass along a custom DisplayMode
Request structure that tells the callback what
resolution to look for and includes space for
it to return the csMode and csData codes if it
finds the requested resolution.

Once out of the loop, ModeRequest will
contain valid information if the Display
Manager reported a mode we can use. If so,
DMSetDisplayMode will make the switch for
us.

Finally, we can create an offscreen
GWorld for the window as we did before, and
we have total double-buffered control at the
desired resolution.

Offscreen Access
A few more functions round out our full-
screen needs. EndFullScreen will undo every-
thing done by BeginFullScreen. SwapBuffer
will either copy or page flip the offscreen
buffer onto the screen. SwapRect will copy a
portion of the offscreen buffer onto the
screen. OffscreenLock and OffscreenUnlock
will give us access to the bits of the off-
screen image, and between these two calls,
GetOffscreenBits and GetOffscreenStride
will provide us with the information we
need to draw on the surface.

On the Macintosh, we don’t have to
learn anything new. Sure, we’ve used the
Display Manager to tweak the monitor to
the settings we want, but otherwise every-
thing’s fundamentally the same: we still
have a window, a GWorld, and palette. We’ll
still use CopyBits to get the GWorld to the
screen, and we’ll still lock and unlock the
bits of the GWorld PixMap to gain access to
the offscreen buffer, as I demonstrated
before.

Under Windows, however, things
have changed. No more DIBSections, no
more WinG. We’re now cooking with
DirectDraw surfaces, and they require
some special handling. The OffscreenLock

goto Failure;

// Set up a palette - a grey wash in 0..255

PALETTEENTRY PaletteColors[256];

int i;

for (i=0; i<256; ++i)

{

PaletteColors[i].peRed = i;

PaletteColors[i].peGreen = i;

PaletteColors[i].peBlue = i;

PaletteColors[i].peFlags = PC_RESERVED;

}

DDReturn = pDirectDraw->CreatePalette(DDPCAPS_8BIT,

PaletteColors, &pPalette, 0);

if (DDReturn != DD_OK)

goto Failure;

// Attach the palette to the surface

DDReturn = pPrimarySurface->SetPalette(pPalette);

if (DDReturn != DD_OK)

goto Failure;

// Success!

return 1;

Failure:

return 0;

}

Listing 1. (Continued from p. 46)

48 GAME DEVELOPER • APRIL/MAY 1996

F U L L S C R E E N G R A P H I C S

static WindowPtr Window;

static PaletteHandle hPalette;

static GWorldPtr pOffscreenGWorld;

static GDHandle DisplayDevice;

static unsigned short csPreviousMode;

static unsigned long csPreviousData;

// This structure encapsulates the data sent to the Display Manager list

// enumeration callback function. We fill in the desired values, pass

// this on through the enumeration, and it fills in the csMode and

// csData info we need.

struct DisplayModeRequest

{

// Returned values

unsigned short csMode;

unsigned long csData;

// Provided values

long DesiredWidth;

long DesiredHeight;

long DesiredDepth;

};

// This function filters through the display modes reported by the

// Display Manager, looking for one that matches the requested

// resolution. The userData pointer will point to a DisplayModeRequest

// structure.

pascal void DisplayModeCallback(void* userData, DMListIndexType,

DMDisplayModeListEntryPtr pModeInfo)

{

DisplayModeRequest *pRequest = (DisplayModeRequest*)userData;

// Get timing info and make sure this is an OK display mode

VDTimingInfoRec TimingInfo = *(pModeInfo->displayModeTimingInfo);

if (TimingInfo.csTimingFlags & 1<<kModeValid)

{

// How many modes are being enumerated here?

unsigned long DepthCount =

pModeInfo->displayModeDepthBlockInfo->depthBlockCount;

// Filter through each of the modes provided here

VDSwitchInfoRec *pSwitchInfo;

VPBlock *pVPBlockInfo;

for (short Count = 0; Count < DepthCount; ++Count)

{

// This provides the csMode and csData information

pSwitchInfo =

pModeInfo->displayModeDepthBlockInfo->

depthVPBlock[Count].depthSwitchInfo;

// This tells us the resolution and pixel depth

pVPBlockInfo =

pModeInfo->displayModeDepthBlockInfo->

depthVPBlock[Count].depthVPBlock;

if (pVPBlockInfo->vpPixelSize ==

pRequest->DesiredDepth &&

pVPBlockInfo->vpBounds.right ==

pRequest->DesiredWidth &&

pVPBlockInfo->vpBounds.bottom ==

pRequest->DesiredHeight)

{

// Found a mode that matches the request!

pRequest->csMode = pSwitchInfo->csMode;

pRequest->csData = pSwitchInfo->csData;

}

}

}

}

int BeginFullScreen(int Width, int Height, int Depth)

{

// Hide the menu bar

StealMenuBar();

// Create a window of the requested size

Rect WindowRect = { 0, 0, Height, Width };

Window = NewCWindow(0, &WindowRect, “\pFullScreen”,

TRUE, plainDBox,

WindowPtr(-1), FALSE, 0);

if (!Window)

goto Failure;

// Set up a palette with a gray wash

hPalette = NewPalette(256, 0, pmExplicit | pmAnimated, 0);

if (!hPalette)

goto Failure;

RGBColor Color;

int i;

for (i=0; i<256; ++i)

{

Color.red= i << 8;

Color.green = i << 8;

Color.blue = i << 8;

SetEntryColor(hPalette, i, &Color);

}

// Force 0 and 255 to White and Black

SetEntryUsage(hPalette, 0,

pmExplicit | pmAnimated | pmWhite, 0);

SetEntryUsage(hPalette, 255,

pmExplicit | pmAnimated | pmBlack, 0);

http://www.mfi.com/gdmag

Listing 2. Setting Up a Full-Screen Environment Using Display Manager 2.0 (Continued on p. 49)

GAME DEVELOPER • APRIL/MAY 1996 49

SetPalette(Window, hPalette, TRUE);

// Store information about the current display settings

DisplayDevice = GetMainDevice();

if (!DisplayDevice)

goto Failure;

csPreviousMode = -1;

csPreviousData = -1;

VDSwitchInfoRec DisplayInfo;

OSErr MacError = DMGetDisplayMode(DisplayDevice, &DisplayInfo);

if (MacError != noErr)

goto Failure;

csPreviousMode = DisplayInfo.csMode;

csPreviousData = DisplayInfo.csData;

// Get the display ID for the main display

DisplayIDType DisplayID;

DMGetDisplayIDByGDevice(DisplayDevice, &DisplayID, FALSE);

// Use it to get a list of available modes from the

// Display Manager

DMListIndexType DisplayModeCount = 0;

DMListType DisplayModeList;

MacError = DMNewDisplayModeList(DisplayID, 0, 0,

&DisplayModeCount, &DisplayModeList);

if (MacError != noErr)

goto Failure;

// Create a callback function pointer to filter available modes

DMDisplayModeListIteratorUPP uppDisplayModeCallback =

NewDMDisplayModeListIteratorProc(DisplayModeCallback);

if (!uppDisplayModeCallback)

{

// Aborting - let go of the mode list

DMDisposeList(DisplayModeList);

goto Failure;

}

// Go through the list, comparing each available mode with

// this mode request

DisplayModeRequest ModeRequest;

ModeRequest.csMode = -1;

ModeRequest.csData = -1;

ModeRequest.DesiredWidth = Width;

ModeRequest.DesiredHeight = Height;

ModeRequest.DesiredDepth = Depth;

for (short Count = 0; Count < DisplayModeCount; ++Count)

{

DMGetIndexedDisplayModeFromList(DisplayModeList, Count,

0, uppDisplayModeCallback, (void*)&ModeRequest);

}

// Done with the list

DMDisposeList(DisplayModeList);

// Done with the callback

DisposeRoutineDescriptor(uppDisplayModeCallback);

// If we found a mode fitting the request, switch to it!

if (ModeRequest.csMode == -1 || ModeRequest.csData == -1)

goto Failure;

DisplayInfo.csMode = ModeRequest.csMode;

DisplayInfo.csData = ModeRequest.csData;

unsigned long Mode = DisplayInfo.csMode;

MacError = DMSetDisplayMode(DisplayDevice,

DisplayInfo.csData, &Mode,

(unsigned long)&DisplayInfo,

0);

if (MacError != noErr)

goto Failure;

// Create a matching GWorld using current device and window

CGrafPtr CurrentPort = (CWindowPtr)Window;

PixMapHandle CurrentPixMap = CurrentPort->portPixMap;

CTabHandle ColorTable = (*CurrentPixMap)->pmTable;

NewGWorld(&pOffscreenGWorld, (short)Depth,

&CurrentPort->portRect, ColorTable,

DisplayDevice, noNewDevice);

if (!pOffscreenGWorld)

goto Failure;

// Success!

return 1;

Failure:

RestoreMenuBar();

return 0;

}

http://www.mfi.com/gdmag

Listing 2. (Continued from p. 48)

F U L L - S C R E E N G R A P H I C S

50 GAME DEVELOPER • APRIL/MAY 1996

and OffscreenUnlock functions just map
onto calls to DirectDraw’s Lock and
Unlock, but these may fail if the surface is
busy.

If an asynchronous blt or a flip has
been started but hasn’t finished, we’ll
receive a DDERR_WASSTILLDRAWING code from
most DirectDraw functions, indicating
that we have to wait until the hardware
has completed its task. If we receive a
DDERR_SURFACELOST notification, Direct-
Draw has given our video memory to
someone else, and we have to restore all

of our surfaces before we can use them
again. Although this shouldn’t happen
when we’ve set ourselves to DDSCL_EXCLU-
SIVE, we should be ready for it. We have
to wait in a while(1) loop trying to lock
the surface until we receive a DD_OK or a
fatal error code.

A similar situation occurs during a
Flip, a Blt, or a BltFast call: it may be nec-
essary to wait until the surface becomes
available. Passing DDFLIP_WAIT, DDBLT_WAIT,
or DDBLTFAST_WAIT will force DirectDraw to
wait until the operation completes before

returning, eliminating the possibility of
contention, but that may waste time you
could spend doing some other processing.

Listing 3 shows the DirectDraw
implementation of OffscreenLock. The
other functions use a similar loop to wait
until the operation succeeds, bailing out if
an error occurs.

This Month’s Cheesy Demo
Of course, to prove this works, I have to
write a simple cross-platform program
using these functions. Unfortunately,

static char unsigned *pBits;
static long Stride;

int OffscreenLock(void)
{
int ReturnValue = 0;

pBits = 0;
Stride = 0;

DDSURFACEDESC SurfaceDesc;
ZeroMemory(&SurfaceDesc, sizeof(SurfaceDesc));
SurfaceDesc.dwSize = sizeof(SurfaceDesc);

// Loop until an error occurs or the lock succeeds
HRESULT DDReturn = DD_OK;
while (1)
{

// Attempt the lock
DDReturn = pOffscreenSurface->Lock(0, &SurfaceDesc, 0, 0);

if (DDReturn == DD_OK)
{

// Successful lock - store bits and stride
pBits = (char unsigned *)SurfaceDesc.lpSurface;
Stride = SurfaceDesc.lPitch;
ReturnValue = 1;
break;

}
else if (DDReturn == DDERR_SURFACELOST)
{

// Attempt to restore the surfaces
DDReturn = pPrimarySurface->Restore();
if (DDReturn == DD_OK)

DDReturn = pOffscreenSurface->Restore();

if (DDReturn != DD_OK)
{

// Surfaces could not be restored - lock fails
break;

}
}
else if (DDReturn != DDERR_WASSTILLDRAWING)
{

// Some other error happened - fail
break;

}
}

return ReturnValue;
}

void DemoMain(void)
{
if (BeginFullScreen(640, 480, 8))
{

// Go for 10 seconds
char unsigned Color = 0;
long unsigned Time = GetMillisecondTime();
while (GetMillisecondTime() - Time < 10000)
{

if (OffscreenLock())
{

// WARNING: YOU CANNOT USE A DEBUGGER IN BETWEEN
// LOCK..UNLOCK CALLS WHEN USING DIRECTDRAW!

// Draw a wash offscreen using memset
char unsigned *pSurface = GetOffscreenBits();
long Stride = GetOffscreenStride();

for (int i=0; i<480; ++i)
{

memset(pSurface, (Color + i)%256, 640);
pSurface += Stride;

}

OffscreenUnlock();
// OK TO USE A DEBUGGER NOW

// Next time through we’ll use a different color
// (Allow this to overflow back to zero)
++Color;

}

SwapBuffer();
}

}

// Undo everything done by BeginFullScreen.
// Even if BeginFullScreen failed, it may have partially succeeded
// and may require cleaning up
EndFullScreen();

}

Listing 3. Loading a DirectDraw Surface Listing 4. A 640x480x8 Cross-Platform Demo

http://www.mfi.com/gdmag

there’s no means of user input in this
month’s code, though by combining the
full-screen code presented here with the
message processing architecture in XSplat,
you can easily build an interactive system.

This month’s demo has the simple
goal of setting up a 640-by-480-by-8
graphics environment and drawing palette
washes for ten seconds, starting each wash
with a different index. The resulting pat-
tern will make you feel like your old black-
and-white has lost vertical synch. The
code is shown in Listing 4. If you’re look-
ing at this with a page-flipped DirectDraw
surface, you’ll see how incredibly smooth
page flipping can be.

The GetMillisecondTime function was
presented in my last article, if you’re won-
dering about that. It maps onto timeGet-
Time on Windows and TickCount (or
Microseconds) under MacOS.

Thoughts and Warnings
Before I return to my cage for the next
couple of months, there are a few hairy
details you should hear about before
plunging in with this full-screen API.
Here’s my laundry list of warnings:
• When you lock a DirectDraw surface,

DirectDraw grabs the Win16 lock, the
semaphore that prevents reentrant exe-
cution of 16-bit system code including
GDI and USER. This means that
essential system components shut down
as long as you have a locked surface. If
you attempt to step through code with a
GUI debugger while a surface is locked,
you will hang the system.

• SetCooperativeLevel uses the contents of
the GWL_USERDATA bytes of a window to
store information used to restore the
display state. This means that the HWND-
to-CXSplatWindow mapping used in my
previous articles can not coexist with
DirectDraw. If you want to use this
association technique, set cbWndExtra to
sizeof(CXSplatWindow*) when registering
the “XSPLAT” window class and use 0
instead of GWL_USERDATA when setting or
retrieving the data.

• On many banked display cards, Direct-
Draw emulates direct video access using
a virtual device driver called
VFLATD.386, which maps video
memory banks onto selectors and uses a

page fault handler to switch video banks
when you cross a boundary. Only one
display memory bank can be active at
any time, so if you write across one of
these boundaries, the fault handler will
thrash as it attempts to write to both
pages at once. This will hang your sys-
tem. Using only 32-bit aligned writes
will guarantee that you never write
across one of these boundaries.

• Because the SwapBuffer function may
use flip instead of blt, there is no guar-
antee of the contents of the offscreen
buffer after a swap. After a flip, the
buffer will contain the former contents
of the display. After a blt, it will remain
the same. If you need to preserve the
contents of your offscreen buffer, always
use SwapRect instead of SwapBuffer.

• DirectDraw preserves color 0 as black
and color 255 as white. Changing the
Macintosh display resolution and creat-
ing a full-screen window doesn’t cause
the Mac to release colors 0 (white) and
255 (black) either, so the color zero

problem remains. Don’t forget!
• When you shrink the resolution of the

screen, Display Manager 2.0 will reposi-
tion the open windows and icons on the
desktop. When you set the resolution
back, it may not replace them, leaving
your desktop looking very strange.

• The display mode you request through
BeginFullScreen may not be available.
You can ask for a 100x609x13 display if
you want, and BeginFullScreen will try
to accommodate you. A more robust
system would provide a list of available
modes rather than leaving you to cross
your fingers, but do you expect a maga-
zine article to do all your work for you?

That’s it! You can find the complete
source code referenced in this article on
the Game Developer ftp site. ■

Jon Blossom sometimes wishes operating
systems would go away so he could stop
tweaking with Macintosh, Windows, OS/2,
and X. He can be reached at blossom@slip.net
or through Game Developer magazine.

GAME DEVELOPER • APRIL/MAY 1996 51http://www.mfi.com/gdmag

Fuzzy Logic
in Games

F U Z Z Y L O G I C I N G A M E S

F
uzzy logic is a powerful artificial
intelligence (AI) technique
appropriate in many gaming
situations. The basic fuzzy
technique is to specify a situa-
tion using fuzzy linguistic vari-
ables (FLVs), which, when
cross-referenced on a fuzzy

associative matrix (FAM), create a “fuzzy
set” on a third FLV. A fuzzy manifold
can either be manipulated as its own type
of object or it can be defuzzified into a
more traditional crisp value. Similarly,
crisp values can be fuzzified into FAMs.
If that jargon didn’t explain it all, the

accompanying source code should make
it concrete.

A fuzzy linguistic variable is an
array of labels such as “Hot,” “Warm,”
“Cool,” “Cold.” Associated with this
array is a mapping of a crisp values such
as 68° F into the array. This mapping is
done with trapezoidal membership defi-
nitions, as illustrated in Figure 1. For
each slot in the array, the logic designer
chooses four numbers representing the
begin low, full membership low, full
membership high, and begin high values.
Listing 1 shows a simple and quick func-
tion for assigning a membership value to
a value.

As Figure 1 shows, a single crisp
value can have some amount of member-
ship in several slots in the FLV. For
instance, the way I’ve designed the room
temperature manifold, 68° is an inflec-
tion point, where the set changes from
some membership in Cool as well as
Warm to some membership in Hot as
well as Warm. The greater the overlap
you put in your manifolds, the more
continuous will be the fuzzy logic
response curve—in effect, your critters
will be less decisive. By decreasing the
overlap, you can tune your AI for the
opposite effect—more capriciousness.
This is the essence of fuzzy logic—mani-
fold tuning, which can be done by a
nonprogrammer on a spreadsheet, can
create dazzlingly complex results.

The complexity stems from the
fuzzy associative matrix, a matrix in
which two FLVs combine to specify
membership in a third, as shown in Fig-
ure 2. Adjusting the FAM provides gross
adjustments in fuzzy logic, while mani-
fold tuning provides the richness. A

Figure 1. Trapezoids map precise variables such as temperature into linguistic variables such
as “Warm.”

52 GAME DEVELOPER • APRIL/MAY 1996 http://www.mfi.com/gdmag

fuzzy system is simply one that sets up
input FLVs and uses the resulting out-
put FLV to specify behavior.

As a concrete example of the power
of fuzzy logic, let’s say you were working
on a real-time strategy game of the
Command & Conquer school. It’s usual-
ly very difficult to get to work on the AI
for such a game early in the design
process, but fuzzy logic lets you do so.
The AI designer can start with general
rules such as, “Distance to the enemy
and relative strength determine unit
movement.” After the rules have been
determined, the FLVs associated with
the antecedents (distance to the enemy

and relative strength) and the conse-
quent (movement) are roughed out. For
simple purposes, you might choose,
“Proximate,” “Near,” “Separated,” and
“Far” as your distance FLVs “Dead
Meat,” “Overmatched,” “Equal,”
“Undermatched,” and “Steamroller” for
relative strengths, and “Run away,” “Sur-
render,” “Retreat,” “Fall Back,” “Hold,”
“Probe,” “Assault,” and “Overrun” for
movement. Behavior can then be
roughed into a Fuzzy Associative
Matrix, such as that shown in Figure 3.

In a classical expert system or with
naive state-based AI, the richness of this
rule is severely reduced by the three-fold

Forget classical

expert systems.

Fuzzy logic makes

your game AI subtle

and complex, but it is

easy to program and

lightning fast at run-

time. Here‘s a look at

FLVs and FAMs.

Larry O’Brien

GAME DEVELOPER • APRIL/MAY 1996 53http://www.mfi.com/gdmag

Figure 2. The two top fuzzy sets define the inputs to fuzzy output set at the bottom. Notice
asymmetries introduced to make AI more aggressive.

pigeonholing of crisp values. We all
know games where opponent behavior is
clearly discontinuous—stand at one spot
and the guards will ignore you, move
another step closer and they start swarm-
ing at you in their predictable manner.
Fuzzy logic creates richer, continuous
responses by evaluating all the rules, but
gauging them on a spectrum ranging
from totally false to totally true, with
infinite gradations (rejecting the law of
the excluded middle and the law of con-
tradiction, for you fans of dead Greek
mathematicians). Since it evaluates all
the rules, the performance of a fuzzy
logic inference engine degrades propor-
tional to the total number of rules, and it
is not subject to the catastrophic non-
linear degradations that classical expert
systems are prone to.

After filling in the FAM and the
FLV array for the fuzzy expert system,
evaluation is the next step. Each cell in
the FAM represents a rule so, for
instance, the upper-left corner of the
matrix in Figure 3 represents the fuzzy
rule, “If the forces are engaged, and
we’re dead meat, surrender.” To evaluate
the rule, we determine the membership
in the input FLVs as described previous-
ly and illustrated in Listing 1. While dis-
tance is a crisp value, membership in the
Relative Strength FLV is probably the
result of another fuzzy rule. Assume that
membership in the “dead meat” FLV is
28%. The degree of membership in the
output is set equal to one of these two
values—the minimum if the rule “and”s
the antecedents, the maximum if the rule
“or”s them. In this case, the rule is
intended to be read “If the forces are
engaged, and we’re dead meat, surren-
der,” and not “If engaged or dead meat,
surrender,” so we set the membership in
“surrender” for this rule to 28%.

Since fuzzy logic allows various
shades of truth, the entire rulebase is
evaluated, setting various memberships
in each of the output FLVs. For an
“and” FAM, the maximums of the out-
put values are chosen, if an “or” is cho-
sen, the minimums are taken. A typical
result is shown in Figure 4. This output
fuzzy set can be used as input to another
rule or, if necessary, defuzzified by the

F U Z Z Y L O G I C I N G A M E S

54 GAME DEVELOPER • APRIL/MAY 1996 http://www.mfi.com/gdmag

class FuzzySet{

public:

...

float Membership(const float& inVal);

private:

float lowMin, lowTrue, highTrue, highMin;

}

float FuzzySet::MemberShip(const float& inVal){

if(inVal > lowMin && inVal < highMin){

if(inVal > lowTrue){

if(inVal < highTrue){

membership = 1.0;

}else{

//must be on high edge

membership = (inVal - lowTrue) / (highMin - lowTrue);

}

}else{

//must be on low edge

membership = (inVal - lowMin) / (lowTrue - lowMin);

}

}else{

membership = 0.0;

}

return membership;

);

Listing 1. A Quick Function for Determining Membership in a Trapezoidal Fuzzy Set

Figure 3. Being able to see and edit an entire matrix of rules simultaneously is one of the
strengths of fuzzy logic.

simple technique of calculating the cen-
troid of the polygon.

Fuzzy logic is an extraordinarily
powerful and flexible artificial intelli-
gence technique that is much easier to
program than alternatives such as classi-
cal expert systems. Unlike neural net-
works, fuzzy logic systems can be tuned
manually, and unlike genetic-based sys-
tems, fuzzy systems work “out of the
box.” For continually improving perfor-
mance, you can use machine-learning
techniques to modify the parameters of
the FLVs. Of course, “improved” is a
fuzzy concept itself, and judging the effi-
cacy of a move can be as hard or harder
than making the move in the first place.
Strategic analysis techniques, one of the
oldest and deepest veins in the field of
artificial intelligence, will have to wait
for another day, however. ■

Editorial Director Larry O’Brien spe-
cializes in artificial forms of intelligence.

GAME DEVELOPER • APRIL/MAY 1996 55

Figure 4. A moderate distance and slightly inferior enemy make for a cautious advance.

http://www.mfi.com/gdmag

W
elcome to Chopping
Block. In this issue, we’ll
look at Warcraft II: Tides
of Darkness, the sequel to
last year’s sleeper hit, War-
craft: Orcs & Humans.
Warcraft II is a real-time
strategy war game with a

fantasy theme. The object is to survive
long enough to decimate all opposing
forces and destroy all they hold dear.

Like its predecessor, the heart of the
game is resource management. Before
you can train your knights and archers,
you must have a barracks to train them
in. Before you can build a barracks, you
must mine enough gold and harvest
enough trees. Before you can mine gold
and harvest trees, you must have peasants
to do the work for you. How you allocate
your limited resources can mean the dif-
ference between victory and defeat.

The game is played from an over-
head, isometric viewpoint. Unlike other
games in this genre, the viewpoint is
close enough to the ground that both
the buildings and the creatures are ren-
dered with a high degree of detail. This
propensity of detail stems from the
game objects (creatures, buildings, ves-
sels) being first modeled (using 3D Stu-
dio or the like) and then rendered at the
required sizes. The knights you control
in the game are rendered from the same
model used to generate the knights in
the cut-scenes.

The game is tile based, and all
game objects are an integral number of
tiles large. Don’t make the mistake of
assuming that the game looks blocky.
The programmers did a wonderful job
when they created their map editor. I
won’t venture a guess as to what algo-
rithm they used to create their coast-

Blizzard of ’96

The secret to gaming

success is getting

users hooked on your

game. Discover what

the folks at Blizzard

Entertainment did to

make Warcraft II such

an addictive game.

Mike Michaels

C H O P P I N G B L O C K

GAME DEVELOPER • APRIL/MAY 1996 57

In Warcraft II: Tides of Darkness, the player has to learn to manage resources effectively.

http://www.mfi.com/gdmag

lines, but I was extremely impressed by
how natural and asymmetric it all is. A
creature can move without too much
hint of tile transitions. Obviously,
enough frames of animation were pro-
vided to make the tile transitions seam-
less. The only time you realize this
underlying tile system is when a creature
must go around another creature or
object. When this occurs, the creature
makes a 45-degree turn and moves to a
diagonal tile. Then the creature finds
the nearest tile it can move to that reori-
ents it on its goal. The overall effect is
that the creatures move in a very unnat-
ural manner (angular rather than a more
natural, circular path).

The interface is very intuitive. You
can control creatures using either the
mouse or the keyboard (or a combina-
tion of both). Simply clicking the cursor
on a creature selects that creature and
brings up a series of buttons represent-
ing actions the creature can perform.
Moving the cursor over one of the but-
tons brings up a description of the
action and, if appropriate, the amount of
resources that must be paid to perform
the action.

Distinguishing itself from it’s pre-
decessor, Warcraft II provides sea and
air units along with shipyard and
aviaries to train these units. The beauty
of the interface is that there is essentially
no difference between controlling a sol-
dier and controlling a battleship. The
same options are available for both. Just
choose an option and choose a target.
It’s that simple.

Warcraft II lets players choose
either single-player or multiplayer sce-
narios. Multiplayer support is available

via null modem, modem, and IPX net-
work. With a network connection, up to
eight simultaneous players are possible,
including computer opponents.

I didn’t get a chance to try the
direct connect or modem options, but I
can attest that the game plays smoothly
over a standard IPX network. I installed
it at work on two Pentium machines
running Windows 95 with standard net-
work support. No extra effort was
required, the game picked up connec-
tion immediately, and the speed of game
play seemed to be identical to that of
single-player mode.

If you choose to play the single-
player game, fourteen human and four-
teen orc campaigns are provided. Things
don’t really start getting difficult until
around the sixth or seventh campaign, at
which point they get very challenging.
Unfortunately, this challenge isn’t really
due to increasing the game’s artificial
intelligence (AI). Rather, the challenge
comes from increasing the amount of
resources your enemy starts the scenario
with. It can be a little discouraging to be
attacked by dragons when you can’t even
build flying units yet.

But other than the numerical
advantage, the computer opponent
doesn’t appear to cheat. It seems to be
following the exact same rules you have
to follow. On the other hand, the AI
doesn’t appear to be particularly smart
either. There doesn’t appear to be an
overriding intelligence in the computer
opponent. As a human player, I jump
around the map keeping track of what
is going on in many sectors of the game
at once. The computer artificial intelli-
gence doesn’t have this advantage. In
general, it looks like each creature has
its own AI routine to determine what
its next action should be. With no

omniscient intelligence, the computer
opponent makes the same mistakes
repeatedly.

For example, assume there is a gold
mine out of visual range for any of the
enemy’s fighting units. You can sit a few
soldiers and archers around the mine
and pick off enemy peons as they come
to mine the gold. If this happened to a
human player, units would be dis-
patched almost immediately to get rid of
the troublemakers screwing up the gold
supply. The computer opponent doesn’t
seem to notice that the peons it is send-
ing to collect gold never seem to return.

The map editor is included with
the game so that you can create your
own scenarios. The map editor requires
Windows 95 to execute. Building maps
is a snap. It’s as simple as selecting an
object and clicking on the map screen.
There’s even an animate feature that will
let you give your scenario a test run.

Like it’s predecessor, Warcraft II is
extremely addictive. The graphics are
vibrant; the sound is great (hilarious at
times); and the ability to play the game
against many opponents makes this a
sure bet at bringing the office network
to a standstill.

That’s it for this month. I’m still
interested in hearing your opinions
about the direction that you’d like to see
this column progress. If you have any
idea’s or opinions, just drop me an e-
mail at the address provided below! ■

Mike Michaels is doubtful that any-
one reads these little bios (unless they’re
looking for his e-mail address to flame him)
and therefore chose not to write one this
month. He may be reached via e-mail at
mike@irvine.com or through Game
Developer magazine.

C H O P P I N G B L O C K

58 GAME DEVELOPER • APRIL/MAY 1996

Blizzard Entertainment
P.O. Box 18979
Irvine, Calif. 92713
Tel: (800) 953-7669
Web: http://www.blizzard.com/
Price: $54.95

System Requirements: 486DX/33,
8MB RAM, 29MB free hard-drive space,
SVGA graphics, Sound Card (Redbook
Audio, General Midi, Sound Blaster, PAS,
Gravis, and compatibles), and a double-
speed CD-ROM drive.

Warcraft II: Tides of Darkness

http://www.mfi.com/gdmag

In Blizzard Entertainment’s game, you
strategize to survive.

G
ame graphics used to be easy:
you’d put row after row of
blocky space aliens at the top
of the screen and a clunky
space cannon at the bottom
of the screen, all against a
black background (because,
did I mention, this takes

place in space) and ta-dah...you got
game graphics. At this level, graphics
could routinely be handled by the pro-
grammers themselves—no need to
involve an artist.

Now, of course, it is a different
matter. The visual component seems to
have taken precedence over game play
and originality. (Hey, that’s not my beef:
this is the Artist’s View, man.) The
market demands that games of all gen-
res look as good as they can get, which
provides plenty of opportunity and chal-
lenge for talented artists.

Even relatively straight-ahead
shooters have gorgeous, rendered back-

grounds; it’s all but mandatory to include
cinematic intros and cut sequences in
everything from flight sims to fight-
fests. Since the coming of Myst, adven-
ture games must (it is a law) try to outdo
one another in visual atmosphere. When
you try to make eye-popping visuals at
this demanding level, when your task is
to capture an audience’s interest and spur
its imagination, you need to make use of
every tool at your disposal.

Artists working with three-dimen-
sional graphics now need to acknowledge
something that photographers and cine-
matographers have held as a central tenet
of their art forms throughout the century
and that realist painters have practiced
for longer still: control of a scene’s light-
ing determines much of its impact. One
cannot discern color or form without illu-
mination, but, in the context of a scene,
lighting takes on added significance.
Used judiciously, areas of light and dark
create the overall composition, direct the

Where the Sun
Don’t Shine

Lighting is vital to

making your 3D games

look realistic. Sieks

takes us through the

ins and outs of hard

and soft lighting—

learn how to really set

the mood.

David Sieks

A R T I S T ‘ S V I E W

GAME DEVELOPER • APRIL/MAY 1996 61http://www.mfi.com/gdmag

The addition of a bouncing flashlight beam heightens the creepty tension of the 11th
Hour, sequel to The 7th Guest, from Virgin Entertainment and Trilobyte Inc.

audience’s attention, and can work to cue
expectations in the viewer and to under-
score the narrative.

Yes, 3D artists should realize the
importance of lighting. It is all too easy
to focus on the obvious challenges of
modeling, texture mapping, and anima-
tion and pay only perfunctory notice to

the demands of lighting a scene whose
other components we have worked on
so painstakingly. To do justice to every
element, you need to spend equal time
on and pay equal attention to each. A
careless approach to lighting, however,
can negate much of the hard work put
into every other aspect by creating a
flat, dull scene—or one that looks
instantly and unmistakably computer
generated.

Effect over Fact
When tackling the task of lighting a
scene, one must think in terms of con-
trast—that is, the juxtaposition of light
and dark. The effect is the important
thing: not how many lights you place or
where or what the logical source of such
illumination would be, just how it all
looks. A common pitfall is to create
lights in the 3D scene that are, as nearly
as possible, strictly analogous to the real-
world light sources. Unfortunately, in
the realm of 3D graphics, good lighting
isn’t as easy as flicking a switch.

First, the particular characteristics
of computer graphics lights usually make
it necessary to work with placement,
intensity, and so on to finagle the desired
effect. For example, you might need to
place additional lights to simulate the
effects of radiosity (the dispersal and
propagation of reflected light). Or you
might need to situate a light somewhere
other than its apparent source in the
scene: for example, positioning a light
outside the dimensional model of the
light fixture to avoid an unwanted hot
spot (a bright, central highlight) on a
nearby surface. The guiding precept
should be to forget about what makes
strict sense and place the light where it
gives the best effect. Artists are only
constrained by reality on rent day.

Despite the fact that they are cap-
turing images of the real world, photog-
raphers and cinematographers (who are
also rent-paying artists) go to great
lengths to achieve the lighting effects
they want. Even when the end result is
intended to be perceived as realistic, they
make use of multiple lights, reflectors,
diffusers, filters, and so on. As Anthony
Burgess notes in A Clockwork Orange, the
colors of the real world never look so real
as on the screen.

Pick a Palette of Light
There are two basic approaches to light-
ing a scene: the realistic and the expres-
sionistic, or, to throw out a real film-
weenie term, the diegetic and the
nondiegetic. Diegesis refers to the narra-
tive, so diegetic lighting is that which,
for the most part, seems consistent with
the setting and the action of the narra-

tive. Subtle finagling with additional
lights, diffusers, reflectors, and filters (or
their computer graphics counterparts)
still falls within this first category as long
as a convincing look is the intent.

On the other hand, expressionistic,
nondiegetic l ighting is that which
throws all pretense of realism out the
window (at least for the moment) and
goes purely for effect, using sometimes
subliminal, psychological connotations
of light, shadow, and color to make its
point: bathing a scene of violence in red
light or shining a heavenly light from
above on a redeemed character.
Nondiegetic lighting can tend to be
clichéd and even campy, but, used with
restraint, can also be very effective in
getting a point across quickly and sure-
ly, as most people in your audience will
intuit the intended meaning.

Two basic ways of applying light to
a scene exist: hard and soft lighting.
Hard lighting refers to sharply defined
areas of light and shadow, whereas soft
lighting uses a more diffused light, with
gentler shadows and blended areas.

Though you may not have thought
about it in such, well, black and white
terms before, it’s easy to see how hard
and soft lighting fit into the basic light-
ing styles and how they relate to the dif-
ferent moods or genres commonly asso-
ciated with them. Low-key lighting,
often used for scenes of mystery or sus-
pense, makes use of moody, atmospheric
pools of light and dark. High-key light-
ing is bright but not harsh, even illumi-
nation with minimal shadows, generally
used for lighthearted subjects. And high-
contrast lighting juxtaposes dramatic
streaks of light and shadow for a stark,
edgy look full of tension.

These lighting conventions are not
ironclad rules. Of course, you don’t
have to use high-key lighting for a
lighthearted scene. They are, however,
conventions that come with baggage we
have carried for millennia: our ancestral
memory tells us shadows are frighten-
ing; you’d better be prepared to work
around that if you’re determined to use
low-key lighting in the splash scene for
The Frolicsome Pony’s Interactive
Learning Adventure For Ages 6 to 9.

A R T I S T ‘ S V I E W

62 GAME DEVELOPER • APRIL/MAY 1996 http://www.mfi.com/gdmag

There are two

basic approaches

to lighting a

scene: the realistic

and the expres-

sionistic, or, to

throw out a real

film-weenie term,

the diegetic and

the nondiegetic.

Can’t Tell the Players
Without a Program
The hump, of course, is figuring out how
to control the lighting of a scene to use
contrast knowingly and to your advan-
tage. Though computer artists have many
challenges unique to our medium, we can
still learn much by observing the tradi-
tional approaches to lighting practiced by
film artists. There we find not only a
long, practical experience with the topic,
but an established professional jargon that
facilitates its discussion.

The classic Hollywood approach to
lighting generally involves at least three
light sources—namely the key light, fill
light, and backlight. Of primary impor-
tance among one’s lighting tools is the
key light. This is the chief light source
for the scene and casts the dominant
shadows. A fill light is then used to “fill
in” or soften shadows created by the key,
while the backlight serves to separate the
figure from the background. Typically,
each major character (or other object of
focus) will be assigned a key, fill, and
backlight, though often one light can
serve more than one figure.

The purpose of lights is to define
form by painting the figure with light
and shadow. To that end, the key light is
generally positioned so its rays strike the
figure diagonally from the front, near but
off to one side and typically higher than
the camera; this is known as “modeling
light” because it tends to model the form
well and be the most flattering. More
direct, frontal lighting is to be avoided,
as it will work to minimize shadows and
thus flatten the appearance of form. A
“skim” or “raking” light is a key light
that comes from an oblique angle to the
viewpoint; that is, one set more to the
side than at a diagonal. It creates strong,
long shadows and is useful for capturing
surface detail. The key light will be the
brightest in the scene and should be
placed first.

Try a test render with just the key
light in place. Next, place a fill light to
soften and deepen the shadows cast by
the key. The fill light should be lower
than the key in intensity and is also often
positioned lower in the scene, to light
the figure from slightly underneath. Or,

sometimes fill light is set to gently illu-
minate a portion of the background to
diminish a cast shadow.

One great advantage computer
artists have over film artists is their abili-
ty to use shadow casting selectively. All
3D programs seem to have some provi-
sion for turning shadows on or off, so
that either a light doesn’t cast them or an
object doesn’t receive them. Take advan-
tage of this ability. A fill light that soft-
ens existing shadows without adding
more shadows to the scene can be a great
tool. Just because a real-world light
would cast shadows doesn’t mean every
light in your 3D scene has to.

A kicker or backlight—also known
as a rim or separation light—provides
depth cues by separating the figure from
the background. The intensity of illumi-
nation should fall between the key light
and the fill lights. If there is not suffi-
cient difference in the intensities of these
lights, the tonal variations will not work
well to suggest form, and the result will
be a flatter, less dimensional look. Back-
lighting works best when directed from
above and, obviously, behind the figure.
It can be more or less to one side or the
other as preferred.

At this point in your lighting setup,
it is a good idea to balance the intensity
levels of these main lights to achieve ade-
quate illumination for the scene, remem-
bering that to get a good tonal range the

lights should decrease in brightness from
key light to backlight to fill light. Do test
renders and change light levels till the
overall brightness and mix of light and
dark is to your liking. You have “roughed
out the canvas,” so to speak. Now look at
the scene with an eye to detail and really
begin to paint with light.

See Spot Shine
The spotlight is the lighting technician’s
sable hair brush. Spotlights can be accu-
rately aimed to illuminate objects or
areas, to highlight details and direct the
audience’s attention. (3D Studio lets you
place a highlight where you want, then it
positions the source light accordingly.)
One characteristic of spotlights is falloff:
the extent to which the light diminishes
in intensity away from the center of the
beam. A light with little or no falloff
appears as a sharply defined circle
(assuming a circular spot), where a light
with greater falloff has less distinct edges
with a brighter center: the hot spot. A
tightly focused spotlight that highlights
a very specific area is known as an accent
light. A spot aimed so the hot spot
“misses” the figure—thus achieving a less
intense highlight on the subject itself—is
called a feathered light.

You can use multiple spots of vary-
ing size and falloff to highlight and
brighten key features, but be aware of
the amount of illumination you add to

64 GAME DEVELOPER • APRIL/MAY 1996

A R T I S T ’ S V I E W

http://www.mfi.com/gdmag

Thanks in large part to its moody, carefully lit 3D scenery, Myst—from Broderbund Software
and Cyan Inc.—showed the world how good-looking a game could be.

the scene. As you add more lights to
your scene, you’ll want to adjust the
intensity levels of existing lights so you
don’t wash out details by over-illuminat-
ing them. Avoid overwhelming the scene
with shadows that come from all direc-
tions because of the myriad lights set
about. For most accenting purposes,
spotlights can best be set to cast light
without shadows.

One interesting lighting tool com-
puter artists have over film artists is the
darkon, a light with a negative intensity
value. By setting the intensity level
below zero, the darkon’s rays in fact
remove light color from areas they con-
tact. In addition to a darkening effect,
the darkon can force a color shift in the
affected area. What it’s doing is sucking
light color from everything it touches in
the scene, but doing so selectively. Even
white light is composed of RGB values
(translated to hue, luminance, and satu-
ration or HLS values); by removing
more of the red channel, for example,
the darkon can cause the remaining
light to appear greenish. It’s a neat spe-
cial effect, but it can be tricky to con-
trol. If the darkon is neutral in color—
that is, has a zero saturation setting—it
reduces the RGB color channels evenly
and has a darkening effecting without
changing color.

Imitating Mother Nature
Effective use of light and shadow not
only helps the look of a scene, it can
contribute to its narrative strength
while saving the artist time and effort.
A very useful tool toward this end is a

2D transparency map used as a gobo. A
gobo is a screen that blocks light—or,
more usefully, partially blocks light. In
computer graphics terms, the gobo is
used as a projection light: the opaque
areas cast shadows on the scene. With a
gobo, it’s easy to create the appearance
of shadows cast by offstage objects. You
can create the effect of dappled sunlight
through a forest canopy without having
to model a forest full of trees or suggest

a jail cell with the stripey shadows of
cell bars.

Your gobo can be animated, too,
which adds even more detail and depth
to the scene with minimal effort: it can
be much easier to create a 2D animation
in silhouette than to model and animate
a comparable scene in 3D. A 3D pro-
gram that doesn’t have projection lights
per se but that does have raytracing
capability can still make use of the gobo

GAME DEVELOPER • APRIL/MAY 1996 65http://www.mfi.com/gdmag

From guttering torches to glowing force
fields, atmospheric lighting effects set
the mood in Buried In Time, by
Sanctuary Woods and Presto Studios.

technique by painting a planar object
with the transparency map and position-
ing it in front of the light source so that
it casts the desired shadow.

The gobo technique can also be
used with subtler grey scale or color gra-
dations as a computer graphics analog to
the photographer’s diffuser to soften the
effect of a light or break up the evenness
of its illumination. This results in a less
rigid, more natural appearance. When
striving for realistic lighting effects—
especially for outdoor lighting—don’t be
constrained by the limits of the computer
screen. The closer lights are positioned to
the objects in a scene, the more apparent
the effect of falloff will be, and the more
flare any cast shadows will display.

Because of its great distance from
the Earth, sunlight produces both an
even illumination and shadows we per-
ceive as running parallel. Simulate this
by placing “sun” light sources at a dis-
tance from your scene. Also for simulat-

ed sunlight, avoid using attenuated light
levels—those that diminish with dis-
tance from the source—with the possible
exception of a sunset effect.

What Do They Expect?
With these tools in your arsenal, you can
use light and shadow to greater effect in
your scenes. Beyond making an image
look good, lighting gives you the oppor-
tunity to play on the psychological con-
notations with which dark and light are
freighted. There are pretty clearly under-
standable reasons why our primitive
ancestors feared the darkness, which
have only been reinforced by the symbol-
ic use of light and dark through the ages.
In darkness lurks all that is unknown and
unsafe—dread, evil, death. By dispelling
darkness, light promises truth, brings
reassurance, and suggests virtue, happi-
ness, safety.

Likewise, lighting color has signif-
icance as well. Orangey-red lights sug-

gest fire, violence, or danger, while yel-
low light is warm and welcoming.
Bluish light can be morbid and is good
for suggesting nocturnal scenes. Green-
ish hues seem unnatural and are just
plain creepy. Feathered accent hits of
colored lights in an outwardly natural
looking lighting scheme can add a nice
undercurrent of implied meaning to
your scene.

Of course, these expectations can
be played with, too. You can build ten-
sion in the shadows without fulfilling it,
and you can rain horror down upon
your scene from a clear blue sky. The
point is that, used knowingly, lighting
effects can set your audience up just
where you want them; what you hit
them with is up to you. ■

Dave Sieks is a contributing editor to
Game Developer. You can contact via e-
mail at 103302.301@compuserve.com or
through Game Developer magazine.

66 GAME DEVELOPER • APRIL/MAY 1996

A R T I S T ’ S V I E W

http://www.mfi.com/gdmag

	back:

