TR ST AR R T SRR R T TR

§

i

Using the D3D-style stereo projection matrix and projecting a point into the left view gives us:

d 0 0 0

et

SURTE" T T

1]0 ad 00 [dx Sz+dT ady Qz Q]5
= 1 n 1
< s 0 0 1 Z y Oz z:

ey

dr 0 On 0

After the reciprocal divide and considering only the Subtracting these gives the displacement between

x values, we end up with: the left and right views in NDC space:

RS 7 B

dx dT | N

Xy =——S+— X —X =X +S—S—L—r +S—S—L§
'I{“;ﬂ “right lefi — " center - “renter -

Z Z z z &

25¢ i

. dT =255

- center r’

< However, NDC space has a range from -1 to 1.

Where x center is the result of non-stereo projection. To convert this to a displacement for texture ;
Expanding and simplifying, we end up with: coordinates, which range from 0 to 1, we halve the
dT distance, which gives us: ;

X . =x —§5+—

it center £

< ,

N dSc - tan(fov / 2) Sc .

=x -5 X =x_.+85——
center - right left
Z
Sc
= x{m# - S +— If we replace Swith s, this is clearly the same as the equation in
z Figure 6, so s is just S when reprojecting from a left eye view to
a right eye view. Note that for center reprojection, we would split
(Recall that d is cot(fov/2)). Similarly, for x right: the difference going from center to left and center to right, and so
halve the displacement.
Again, signs are important for computing this: for reprojecting
and rendering the left eye, we'd use —s, +s¢/z, S, and +T. For the
S right eye, we invert the signs and so use +s, —sc¢/z, +S, and -T.
3 =X + S _—— The end result is quite nice. We get most of the speed benefits
right cemier Z of reprojection, with the good-looking alpha of standard stereo,

and all it took was a little bit of math and some extra setup.

Sl b Lo T B e A

